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Abstract. Using pea as our model crop, we sought to understand the regulatory control over the import of sugars and
amino acids into the developing seeds and its importance for seed yield and quality. Transgenic peas simultaneously
overexpressing a sucrose transporter and an amino acid transporter were developed. Pod walls, seed coats, and cotyledons
were analysed separately, as well as leaves subtending developing pods. Sucrose, starch, protein, free amino acids, and
endogenous cytokininsweremeasured during development. Temporal gene expression analyses (RT-qPCR) of amino acid
(AAP), sucrose (SUT), and SWEET transporter family members, and those from cell wall invertase, cytokinin biosynthetic
(IPT) and degradation (CKX) gene families indicated a strong effect of the transgenes on gene expression. In seed coats of
the double transgenics, increased content and prolonged presence of cytokinin was particularly noticeable. The transgenes
effectively promoted transition of young sink leaves into source leaves.We suggest the increasedflux of sucrose and amino
acids from source to sink, along with increased interaction between cytokinin and cell wall invertase in developing seed
coats led to enhanced sink activity, resulting in higher cotyledon sucrose at process pea harvest, and increased seed number
and protein content at maturity.
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Introduction

Devising strategies to meet the need for increased plant
productivity in a world with increasing population and
decreasing land availability for growing crops is a recognised
challenge. Seeds provide a large proportion of human food and
animal feed. Cereals provide bulk calories, but pulse crops
including pea (Pisum sativum L.) have greater potential to
contribute to protein security and, through their nitrogen
fixing capabilities, to sustainable agriculture (Foyer et al.
2016; Considine et al. 2017). Breeding objectives for pea
depend on the end use of the crop. ‘Field peas’ are harvested

atmaturity and the dry seeds are used primarily for production of
pea protein powder and as animal feed. For ‘process peas’, seeds
are harvested while immature, during a short window when
sucrose content is high and starch concentration is still low.
Theyare consumed freshor frozenandaspart of frozenvegetable
mixtures.

Ensuring nutrient transport to seeds and plant metabolic
processes are operating at optimal capacities is an essential
approach to the challenge of enhancing seed yield and
maintaining seed quality. Sugars and amino acids, the primary
products of carbon (C) and nitrogen (N) metabolism, are
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transported through the phloem from sites of synthesis (sources)
to sites of utilisation (sinks) (Yadav et al. 2015). Plants acquire
inorganic N from the soil through their roots or, as in legumes,
additionally from the atmosphere through nitrogen-fixing
Rhizobia in root nodules. Generally, amino acids are made
that are either used in the roots or transported to
photosynthetically active leaves that assimilate C (Tegeder
2014; Gojon 2017). Sucrose and amino acids are finally
exported from the leaves and transported in the phloem to a
variety of sink tissues (e.g. fruits and seeds).

Transporters that facilitate source to sinkmovement of amino
acids include the amino acid permeases (AAP) (Sanders et al.
2009; Tegeder 2012). Physiological and molecular studies in
Arabidopsis thaliana (L.)Heynh. have indicated that gene family
members (GFMs) in Cluster 3A are predominantly involved in
xylem-to-phloem transfer (Zhang et al. 2010). Those in Cluster
4B including AtAAP1, are necessary for phloem loading and/or
seed development (Sanders et al. 2009; Santiago and Tegeder
2016),whereas the functionof theGFMs inCluster 1 hasyet to be
determined. Pea has multiple copies of AAPs, which are
distributed in three gene clusters (1, 3A, and 4B) (Dhandapani
et al. 2017), with expression throughout the plant (Tegeder et al.
2007; Jameson et al. 2016; Ninan et al. 2017, 2019).

Transporters involved in sucrosemovement include the SUT/
SUC transporters (sucrose transporters) and the SWEET (sugar
will eventually be exported) efflux carriers. SUT/SUC
transporters belong to a small gene family with distinctive
physiological roles associated with either loading sucrose into
the phloem, or exporting from the vacuole into the cytoplasm
(Ayre 2011; Jian et al. 2016). In pea, four PsSUTs are expressed
in germinating seeds (Jameson et al. 2016), during early pod and
seed development (Ninan et al. 2017), and in leaves (Ninan et al.
2019).

The SWEETs are a large gene family, with different members
transporting hexoses (Clade I and II), sucrose (Clade III) and
glucose and fructose (Clade IV) (Eom et al. 2015). Pea has
multiple copies of the SWEET GFMs (Dhandapani et al. 2017;
Ninan et al. 2019).

Cell wall invertases (CWINV) convert sucrose into fructose
and glucose and, as such, are an integral component of the
movement of sucrose between sources and sinks (Ruan et al.
2010; Yu et al. 2015). They play a key role in the early stages of
seed development by creating a high sugar environment (Weber
et al. 2005). In embryos, Wang and Ruan (2013) suggested the
transition from cell division and expansion to storage activities is
usually associatedwith a decrease inCWINVexpression. Cross-
talk between cytokinin and CWINV is suggested to enhance
phloem unloading and sugar import into endosperm (Rijavec
et al. 2009).

Cytokinins are implicated in regulation of cell division and
establishment of sink activity in fruits and seeds (Jameson and
Song 2016). The content of cytokinin in plants is a balance
between biosynthesis by isopentenyl transferase (IPT),
destruction by cytokinin dehydrogenase (CKX) and
inactivation by glucosylation (Jameson and Song 2020).
Strong homeostatic controls operate via destruction and/or
glucosylation to regulate the levels of active cytokinins during
developmental processes such as seed development (Jameson
and Song 2016; Chen et al. 2020).

Genetic modification has been used to understand the
contributory role of transporter genes in increasing the C and
N nutrition of seeds. Transporter genes for sucrose and amino
acid supply to seed sinks, have been overexpressed individually
in a range of species. Often the genes and their products were
upregulated but, since their products also act as signals (Sang
et al. 2012), understanding their actions is complex. C, N or S
partitioning to seeds has been altered via manipulation of C
transporters in barley (Weichert et al. 2010), rice (Wang et al.
2015), pea (Rosche et al. 2002; Weigelt et al. 2008; Lu et al.
2020) and in Arabidopsis (Dasgupta et al. 2014); N transporters
inVicia narbonensisL. (Rolletschek et al. 2005;Götz et al. 2007)
and inpea (Zhang et al. 2015); andS transporters in pea (Tanet al.
2010).

Seeds of transgenic lines of pea and V. narbonensis plants
that overexpressed AAP1 (GFM in Cluster 3A) showed
increased amino acid uptake and higher protein content.
Seed yield was increased in pea (Weigelt et al. 2008;
Zhang et al. 2015) but not in V. narbonensis (Rolletschek
et al. 2005). These studies with AAP1 in pea (Weigelt et al.
2008; Zhang et al. 2015) and V. narbonensis Rolletschek et al.
(2005) generally concluded that seed storage protein amounts
are limited by the import of amino acids into cotyledons and
that utilisation of enhanced amino acids in the seed may also be
limited by the need for C to provide the carbon skeleton for
protein synthesis. In addition, Götz et al. (2007) found that
concentrations of cytokinins were significantly increased in
transgenic AAP1 V. narbonensis lines and suggested that
cytokinin plays a role in N-mediated growth.

Transgenic barley overexpressing HvSUT1 (Weichert et al.
2010) andpeaoverexpressingPsSUT1 (J.Grant, unpubl. data;Lu
et al. 2020), had increased seed yield and the seeds showed an
increase in storage protein accumulation, suggesting the
increased sucrose delivered to the embryo was used for
protein as well as for carbohydrate synthesis. Further, in the
transgenic pea plants, amino acid movement from source to sink
was also improved (Lu et al. 2020). In both barley and pea,
overexpression of the SUT1 gene led to increased seed yield.

Little is known about the interrelationship of C and N
transport processes and their impact on cytokinin dynamics
for seed performance. Our goal was to reveal these
relationships by manipulating both sucrose and amino acid
transport to pea seeds and to analyse the consequence for seed
metabolism and nutritional quality.

To investigate the regulatory control of transporters over N
and C uptake and metabolism in seeds, homozygous transgenic
process pea lines were produced overexpressing both a sucrose
transporter (AtAAP1::PsSUT1) and an amino acid permease
transporter (35S::PsAAP1(3a)). The AtAAP1 promoter was
used to target the SUT1 transporter to the phloem and seed
(Tegeder et al. 2007; Lu et al. 2020), whereas the 35S promoter
was used to drive cellular amino acid import throughout the plant
(Holtorf et al. 1995). To gain insights into the controlmechanism
between elevatedN andC transport and hormonal regulation, we
analysed a developmental series of seed components for
(i) sucrose, starch and protein content, (ii) expression of the
transgenes and associated genes involved in source-sink
relationships, and (iii) cytokinins as known regulators of yield
components (Jameson and Song 2016). Our approach presents a
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successful strategy to maximise sink development for protein,
starch and sucrose content in seed.

Experimental procedures

Development of transgenic Pisum sativum

Pea cultivars ‘Bolero’ (process pea, with wrinkled seeds and
green cotyledons) and ‘Bohatyr’ (field pea, with round seeds and
yellow cotyledons) were transformed according to the methods
of Grant et al. (1995); Grant et al. (1998), using Agrobacterium
tumefaciens strain AGL1 with constructs cloned either into
pTKan with the coding sequence of the SUT1 gene (U76190)
fromPisum sativumL. and theAAP1 promoter fromArabidopsis
thaliana (L.)Heynh. (Hirneret al. 1998)or intopBINARwith the
coding sequenceofAAP1(3a) gene (AY956395) fromP. sativum
and the 35S cauliflowermosaic virus promoter. Single copy lines
were determined by Southern analyses from these
transformations, and homozygous progeny lines were selected.

Production of double homozygous transgenic lines

Transgenic ‘Bolero’ line 104 (104-SUT1) homozygous for the
SUT1genewasused as the recurrent parent for backcrossingwith
the donor parent transgenic ‘Bohatyr’ line 1/55 (1/55-AAP1(3a))
homozygous for the PsAAP1(3a) gene for four generations, to
obtain lines with 96.9% similarity to the recurrent process pea
parent (see Supplementary material Fig. S1 for schematic). The
presence of both transgenes was confirmed at each generation
using PCR. After four backcrosses the lines were selfed and
grown for two generations to obtain the double homozygous
lines. PCR was used to confirm the presence of both transgenes
using samples from pea seed cotyledons before planting and in
leaf samples of the germinated plants (Grant and Cooper 2006).
Primers used for confirming the presence of the promoter-gene
of interest for AtAAP1::PsSUT1 were 50-CGTCCCTCCATAT
GTGGTCT-30, 50-GTTAGCGACGTCGAGAATCCAG-30 and
for 35S::PsAAP1 were 50-CATTCCTTCGCAAGACCC-30,
50-ACCGTGTATCCAATCGCGACC-30. For the presence of
the AtAAP1 promoter the primers were 50-CGTCCCTCC
ATATGTGGTCT-30, 50-CAACACAGAAGGACACAACCA-30.
Other primers for the presence of the introduced genes are as in
Grant et al. (1998) and Zhang et al. (2015).

Plant production

Plants were grown in pots (PB3) in a controlled environment at
the Lincoln University Biotron Facility, programmed for 16 h
23�C days, 8 h 16�C nights. The pots were fertilised regularly
with Hoagland solution from flower initiation. Flowers were
tagged just as the standardpetal opened, atwhich timepollination
will have occurred. Pods were harvested at 12, 14, 16, 18, 20, 23,
30, 37 days after pollination (DAP) for the seed and pod
developmental series. At 14 DAP the water content of the
cotyledons was between 85.5–85%, at 18 DAP it was
81.5–79.7%, at 20 DAP it was 77.8–76.3%, at 23 DAP it was
74.2–71.6%, at 30 DAP it was 62.1–59.9% and at 37 DAP it
was 50.4–33%.

Individual podswere collected (at least four per time point per
line), opened and the middle 3–4 seeds were taken. Seed coats
and embryos from the middle seeds were dissected and pooled
into seed coats and embryos, while the cotyledons were cut up,

mixed, divided into four aliquots, and weighed. The aliquots
were then used for dry weight, sucrose, protein, and RNA
analyses. The latter three aliquots were flash frozen in liquid
nitrogen and stored at –80�C until required.

Yield components were determined on four plants chosen at
random and these plants were not used for any other analyses. A
further 10 plants per line were grown for phenotyping only.
Characters assessed included date of first flower, pod number,
seeds per pod, seed number, and seed weight.

Sucrose, starch and free amino acid analyses

One hundredmilligrams of frozen cotyledons or seed coats were
extracted in 1 mL 80% (v/v) ethanol using a tissue lyser (Tissue
Lyser II, www.retsch.com). Sucrose analysiswas as described in
Revanna et al. (2013) using the reconstituted supernatant. This
reconstituted supernatant was also used for free amino acid
analysis (Gosden 1979). For the free amino acid analysis,
60 mL of the supernatant was pipetted into the well of a
microtitre plate and 60 mL of ninhydrin reagent added, the plate
covered with plastic foil and incubated at 85�C for 25 min. Once
cooled, 90 mL of 50% ethanol was added. The samples were in
triplicate and the plate read at 570 nm. The precipitate from the
alcohol extraction was used for starch measurement using the
Megazyme total starch kit (Ireland, www.megazyme.com).

Protein analyses

Total protein was extracted from 100 mg frozen cotyledons
using 400 mL of Hou buffer (Hou et al. 2005) with 2 mM
dithiothreitol instead of mercaptoethanol. Extracts were mixed
at 100�C for 5 min, centrifuged for 2 min at 5000g, and
the supernatant used for analysis with Coomassie protein
assay reagent (www.ThermoFischer.com) and NanoOrange
(Invitrogen) according to the manufacturers’ instructions.

Expression analyses

Samples of ovaries (–1DAP), entire pods including ovules (with
petals removed) from 0 to 3 DAP, pod walls and seed were
separated 5, 7, and 10DAP and allflash frozen in liquid nitrogen.
From 12 DAP the pod walls, seed coats and cotyledons were
collected separately, and are the same samples as described in
‘Plant production’. Leaves subtending pods at 5 DAP (5 days)
and 20 DAP (20 days) were similarly collected.

Target gene sequences were isolated as reported in
Dhandapani et al. (2017) and Ninan et al. (2019) from a pea
transcriptome of mixed tissues. RNA isolation, cDNA synthesis
and reverse transcription quantitative PCR (RT-qPCR) were as
described in Dhandapani et al. (2017), using their
PsELONGATION FACTOR (eEF-1a), PsGAPDH and
PsACTIN as reference genes. Briefly, the reference genes
were selected after first comparing their expression stability in
cDNA samples from different tissues at different developmental
stages. The averagemean of the reference geneswas then used as
the internal control to normalise the data by correcting for
differences in the quantity of cDNA used as templates (Song
et al. 2012; Dhandapani et al. 2017). An inter-run calibrator was
also used in each RT- qPCR run, as all the samples could not be
tested at one time. The calibrator was a mixture of all cDNAs of
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all tissue types. The relative expression (fold change) of each
target gene was then calculated using the 2�DDCt method (Pfaffl
2001) using a constant DCt of 30 minus the average correction
factor derived from the reference genes as the value against
which all samples were calculated.

For ease of comparison, the data are presented as heat maps,
with values for the double transgenics (and 104-SUT1 for
cotyledons) calculated in fold-change relative to the non-
transgenic control ‘Bolero’. The two independent double
transgenic lines provide the biological replication.
Additionally, datasets for the field pea single transgenic donor
parent 1/55-AAP1(3a) and its wild-type ‘Bohatyr’ control are
provided in the Supplementary material (Fig. S4).

Endogenous cytokinin analyses

Three biological replicates of whole pods (1 and 3 DAP), pod
walls (7, 12, 14, and 16 DAP), seed coats (10, 12, 14, 16, and
20 DAP) and cotyledons (7, 10, 12, 14, 16, and 20 DAP) were
extracted from ‘Bolero’ and double transgenic line 562 in 1.0mL
ofmodifiedBieleski buffer (60%MeOH,10%HCOOHand30%
H2O) together with a cocktail of stable isotope-labelled internal
standards (0.25 pmol of each of the cytokinin bases, ribosides,
N-glucosides, and 0.5 pmol of cytokinin O-glucosides and
nucleotides added per sample). All samples were purified
using the method published previously by Dobrev et al.
(2002) with some minor modifications (Antoniadi et al.
2015). The samples were analysed by the LC-MS/MS system
consisting of an ACQUITY UPLC® I-Class System (Waters)
and Xevo® TQ-S (Waters) triple quadrupole mass spectrometer
scanning in a multiple reaction-monitoring (MRM) mode of
selected precursor and product ions (Sva�cinová et al. 2012).
Quantification was obtained using a standard isotope dilution
method (Rittenberg and Foster 1940).

Statistical analyses

Statistical analyses were carried out using GENSTAT 18th edn.
Sampleswere comparedwith eachotherusing twosample t-tests.
For sucrose at 23 DAP and protein at 30 DAP and 37 DAP there
was a minimum of four biological replicates. For seed size and
seedweight therewas aminimumof12biological replicates. The
means of the double transgenic lines were compared with the
means of ‘Bolero’ and to themeans of 104-SUT1. In addition, the
means of ‘Bolero’were compared with the means of 104-SUT1.
Further details are provided in figure legends.

Results

Phenotype, yield and cotyledon component analyses

The double homozygous (SUT1 + AAP1(3a)) transgenic pea
lines (‘562’ and ‘382’), were phenotypically similar to the single
SUT1 homozygous line (104-SUT1) and to the process pea
cultivar ‘Bolero’ from which they were developed. All lines
were determinate, grew to a similar height, were white flowered,
and had wrinkled seeds at dry pea harvest. Line 562 generally
flowered 1 week later than 382, 104-SUT1 and ‘Bolero’. Line
562 also segregated for yellow/green cotyledons, whereas line
382 always producedgreen cotyledons at drypea harvest.During
seed development, sucrose, starch and protein content in
cotyledons each showed similar trends for all lines although

there were quantity differences between them (Fig. 1). ‘Bolero’
showed a high amount of sucrose at the early stages and a much
more rapid decline at later stages than any of the transgenic lines.
At 23 DAP line 382 showed a significantly greater amount of
sucrose in the cotyledons compared with either 104-SUT1 (P <
0.001) or ‘Bolero’ (P < 0.001) (Fig. 1a). As well, line 562 and
104-SUT1bothhad significantlymore sucrose than ‘Bolero’ (P=
0.03 andP= 0.01 respectively) but notmore than each other. The
accumulation of starch was similar for all lines (Fig. 1b). The
sucrose-starch crossover point, which is when the cotyledons
have similar amounts of starch and sucrose, occurs ~2 days
before peas are normally harvested for processing. In the double
transgenic lines, this crossover point was delayed. For line 562
the crossover pointwas~1day later, and for 382, 2 days later than
in ‘Bolero’ (Fig. 1c) and in 104-SUT1 (data not shown). By 30
DAP, the sucrose content of all lines was similar.

For protein content, the double transgenic lines showed a
higher concentration between 23 and 30 DAP than ‘Bolero’ and
104-SUT1 (Fig. 1d) and by 30 DAP both double transgenic lines
had significantly more protein than either ‘Bolero’ or 104-SUT1
(Fig. 1d).Accumulation of protein then continued at a slower rate
until 37DAPwhere the double transgenic lines had an average of
252.8 mg protein g–1 DM (line 382) and 247.03mg g–1 DM (line
562).At 37DAP ‘Bolero’ cotyledonscontained181.5mgprotein
g–1DM,whereas the single transgenic line104-SUT1, showedan
elevated protein content of 221.4 mg g–1 DM. The double
transgenic lines had significantly more protein at 37 DAP than
wild-type ‘Bolero’ (P = 0.02) although not significantly more
than 104-SUT1.

Further, the free amino acid content was similar for all lines,
except for line 382, which contained more free seed amino acids
at an early developmental stage (14 DAP) (Fig. 1e).

In the field pea donor parent 1/55-AAP1(3a) and in its wild-
type parent ‘Bohatyr’ sucrose content was high at 14 DAP and
already low at 18 DAP whereas starch and protein content was
increasing. Fig. S2 highlights some of these differences between
field peas and process peas.

For the yield components, although the seed number per plant
was quite variable, the double transgenic lines had significantly
more seed per plant than the wild-type ‘Bolero’ (for line 562 P =
0.008; for line 382 P = 0.03). In addition, the double transgenic
line 562 had more seed than the single PsSUT1 transgenic line,
104-SUT1, P = 0.05, but not significantly more seed than the
double transgenic line 382, P = 0.08 (Fig. 2a). The first four
trusses on the main branch of a process pea indicate the yield at
green pea harvest (H. Stace, pers. comm.). Line 562 had more
pods and, therefore, more seed than ‘Bolero’ or line 104-SUT1,
while line 382 generally had an extra pea per pod compared with
‘Bolero’ or line 104-SUT1 (Fig. S3).

For seed weight, the single PsSUT1 transgenic line (104-
SUT1) and the double transgenic line 382 produced heavier seed
than ‘Bolero’ (P = 0.01 and P = 0.03 respectively); however,
double transgenic line 562 produced seed with weights between
those of ‘Bolero’ and line 104-SUT1 (Fig. 2b).

By combining seed number and seed weight the total seed
yield per plant for the double transgenic line 562 is 89% greater
than ‘Bolero’ and 33% greater than 104-SUT1. Line 382 and
104-SUT1 yields are 42 and 41%, respectively, greater than
‘Bolero’.
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(a) Sucrose content in cotyledons during development
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(c) Sucrose  and starch content in cotyledons during development
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Fig. 1. (a) Sucrose content in pea cotyledons during development. Double transgenic line 382 showed a significant increase in sucrose at 23 days
after pollination (DAP) compared with that in the recurrent parent 104-SUT1 (P = 0.06) and wild-type ‘Bolero’ (P = 0.03). (b) Starch content in
cotyledons during development. The high variability meant that there were no significant differences. (c) Sucrose and starch content during
development showing the crossover point for starch and sucrosewas delayed in the double transgenics by1–2days. (d) Protein content in cotyledons
during seed development.Double transgenics showedgreater amounts of protein at 30DAP than thewild-type ‘Bolero’ (382P=0.01; 562P=0.06)
and104-SUT1(382P<0.001; 562P=0.01).At37DAP thedouble transgenicshad significantlygreater amounts of protein than ‘Bolero’ (P=0.02).
(e) Free amino acids in cotyledons measured as micrograms per mL of glutamine equivalent.
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Gene expression analyses

Leaves subtending pods

The AAP1(3a) transgene was strongly expressed in the
double transgenic lines in leaves subtending to pods at 5
DAP and 20 DAP (Fig. 3a). However, relative to wild-type
‘Bolero’, there was no difference in gene expression at 20 DAP,
whereas a strong effect was observed for leaves 5
DAP. Generally, an upregulation of SWEET (with the
exception of PsSW17) and SUT GFMs was observed.

Further, Cluster 3A PsAAP GFMs were upregulated, whereas
two cluster 4Bmembers were strongly downregulated. Variable
effects were found for CWINV GFMs. There was a weak
downregulation in the expression of PsIPT GFMs, strong
downregulation of PsCKX2, but consistent upregulation of
PsCKX7 in the transgenic younger leaves relative to control.
A very similar pattern of gene expression for the donor parent
(35S::PsAAP1(3a) single transgenic line 1/55-AAP1(3a)) was
seen in leaves 5DAP, although expression of the transgene itself
was much reduced in the leaves 20 DAP (Fig. S4).
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Pod walls

TheAAP1(3a) transgene was strongly expressed in pod walls
of the double transgenics lines relative to the ‘Bolero’wild-type
(Fig. 3b). Elevated expression of the SUT1 transgene was also
apparent compared with other SUT GFMs. However, compared
with the seed coat and cotyledon, fewer of the tested genes were
upregulated in the pod wall, although at 16 DAP, CWINV and
most SWEETSwere upregulated relative to those in the ‘Bolero’
control. With the exception of IPT4 at 1 DAP, there was little
change in the expression of the cytokinin IPT or the CKXGFMs
in pod walls relative to that in the ‘Bolero’ control.

Ovules

Strong expression of AAP1(3a) in the double transgenic lines
could be detected in the undissected pods immediately post
fertilisation, and in the dissected pod walls and seeds (Fig. 4).
SUT1 expression was only modestly elevated relative to the
‘Bolero’ control, as were other SUT GFMs. There was little
change in expression of Clade I SWEETs relative to ‘Bolero’, but
enhanced expression in both Clade II and III SWEETs was
detected. Particularly noticeable was the reduced expression

of the Clade III SWEET15b in the dissected pod walls
compared with the strong expression in the whole seed
(embryo plus seed coat) relative to ‘Bolero’. Enhanced
CWINV expression was noticeably greater in the combined
tissues at 3 DAP, and in whole seed at 5 and 7 DAP but less
so in the separated pod walls, indicating the importance of
CWINV to the developing seed.

PsIPT1, 2 and 4 showed modest increases in expression
relative to control at 1 DAP, and in the young pod wall, but
generally reduced expression in the whole seed. Expression of
PsCKX2 was strongly elevated relative to the ‘Bolero’ control
(Fig. 4).

Seed coats

AAP1(3a)was strongly and consistently expressed in the seed
coats of the double transgenics relative to the ‘Bolero’ control
(Fig. 5a). Several PsAAPs belonging to Clusters 1 and 3A were
also upregulated, whereas this was less so for Cluster 4B AAPs.
PsSUT1 was not consistently upregulated relative to the control
‘Bolero’, although PsSUT2 and 5 were. There was a general
upregulation of expression shown for theCWINVGFMs. Several
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(b) Seed weight - grown twice (minimum 12 plants per line)  

Bolero 104-SUT1 382 562 

Fig. 2. Seed yield in thewild-type pea ‘Bolero’, the recurrent parent line 104-SUT1 and the double transgenic lines 382 and
562.All lineswere grown twice in theLincolnUniversityBiotronwith aminimumof 12 plants for each line. (a) Seed number:
the double transgenic lines had significantly more seeds per plant than the wild-type ‘Bolero’ (562 P = 0.008; 382 P = 0.03).
Line 562 had significantly more seed than 104-SUT1 (P = 0.05). (b) Seed weight: the single PsSUT1 transgenic line (104-
SUT1) and the double transgenic line 382 produced heavier seed than ‘Bolero’ (P = 0.01 and P = 0.03 respectively).
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(a) Seedline 382,562 vs Bolero (LEAVES)

(b) Seedline 382, 562 vs Bolero (POD WALLS)

Target genes Stages

Target genes Developmental stages

382 562 382 562

382 562 382 562 382 562 382 562 382 382 562 382 562

5d 5d 20d 20d

12d 12d 14d 14d 16d 16d 18d 18d 20d 23d 23d 30d 30d

PsIPT 1 (604) 1.4 −1.8 −1.1 −1.1

PsIPT 1 (604) 2.2 2.2 2.1 3.5 1.3 −1.6 −2.4 −2.2 −2.6 −2.8 1.2 1.1 1.4

PsIPT 2 (605) −2.6 −4.2 1.0 −1.1

PsIPT 2 (605) −1.1 1.1 −1.2 1.5 1.7 1.1 1.0 −1.2 −2.1 1.0 1.6 1.2 1.6

PsIPT 4 (421) −3.4 −8.5 −1.0 −1.1

PsIPT 4 (421) 6.5 6.0 1.5 1.5 2.2 −1.5 −1.4 1.1 −1.2 −1.2 1.3 1.2 2.0

PsCKX 1 (930) 1.4 4.6 16.9 10.9

PsCKX 1 (930) 1.7 1.9 −1.0 1.6 −1.0 −1.8 −2.3 −2.0 −2.0 −1.3 1.3 1.1 1.4

PsCKX 2 (627) −45.7 −17.1 −1.3 −1.6

PsCKX 2 (627) 2.0 2.3 −1.0 1.9 1.1 −1.8 1.2 −1.8 2.0 1.8 3.0 1.1 1.5

PsCKX 5 (942) −2.4 −2.1 1.3 1.3

PsCKX 5 (942) 1.2 1.2 1.0 1.8 1.8 −1.2 1.8 −1.4 3.6 1.4 1.4 1.4 1.5

PsCKX 7 (910) 5.2 6.0 −1.1 1.8

PsCKX 7 (910) 3.5 1.7 −1.8 −1.1 1.7 −2.8 −2.0 −1.3 1.2 1.5 1.2 −1.1 1.4

PsSUT 1 (366 Transgene) 16.6 12.2 1.2 1.3

PsSUT 1 (366 Transgene) 1.8 3.7 1.5 2.4 28.4 22.1 7.8 4.2 16.4 30.4 41.3 23.0 13.1

PsSUT 2 (948) 61.5 22.2 −1.7 1.6

PsSUT 2 (948) 3.4 2.6 1.9 4.3 2.3 1.7 −3.1 −1.1 −1.8 1.9 2.3 2.1 1.6

PsSUT 3 (674) 6.5 3.7 −1.2 1.2

PsSUT 3 (674) 1.4 1.1 1.5 2.4 4.0 1.5 7.8 5.5 −1.5 3.1 3.5 3.7 2.7

PsSUT 5 (666) −5.2 −12.7 1.2 1.1

PsSUT 5 (666) 1.1 −1.8 −6.5 3.7 1.2 4.6 −9.1 2.9 6.1 6.2 5.6

PsAAP 1(3a) (532 Transgene) 20.6 59.7 65.9 20.4

PsAAP 1(3a) (532 Transgene) 92.6 31.8 42.2 13.0 233.1 116.0 44.3 10.7 30.2 26.6 8.5 81.5 23.6

PsAAP 7a (498)(Cluster 1) −13.0 −26.1 −1.5 −1.2

PsAAP 7a (498)(Cluster 1) 1.7 −1.2 −2.0 −2.7 14.6 4.6 −4.3 −6.4 −3.4 2.2 2.2 2.4 3.8

PsAAP 7b (9261) 2.3 −1.3 −1.9 1.1

PsAAP 7b (9261) 1.7 1.3 −2.7 −2.1 1.2 −1.6 −1.8 −4.1 −2.1 1.3 1.2 1.3 1.4

PsAAP 2a (675)(Cluster 3A) 42.1 49.6 1.9 3.3

PsAAP 2a (675)(Cluster 3A) 1.2 1.5 −2.8 −1.5 3.2 2.1 −1.3 −2.8 −1.9 1.1 1.7 −2.0 −1.8

PsAAP 2c (4401) 4.0 5.0 −3.7 −1.7

PsAAP 2c (4401) 2.4 2.5 1.2 −1.0 1.1 −1.2 −1.7 −2.8 1.0 1.9 2.2 2.8 2.5

PsAAP 2d  (840) 39.5 13.4 −1.2 1.4

PsAAP 2d (840) 1.6 2.5 −2.0 1.0 4.9 1.7 −1.2 −1.2 −1.2 1.2 1.9 4.7 4.8

PsAAP 3b (051) 17.3 10.4 −1.2 −2.1

PsAAP 3b (051) 1.0 1.0 −1.8 −1.9 14.6 11.3 −1.1 −2.3 −1.4 −1.2 −1.6 2.4 2.0

PsAAP 6a (931) (Cluster 4B) −13.0 −26.1 −1.0 −1.3

PsAAP 6a (931) (Cluster 4B) 3.5 1.9 −3.0 −1.4 −1.2 −3.5 −2.0 −1.7 −3.7 −1.2 −1.0 1.7 1.7

PsAAP 6b (328) 9.1 11.2 1.1 1.0

PsAAP 6b (328) −2.7 −1.6 −1.4 −1.3 7.4 4.3 1.4 1.3 2.4 1.9 1.6 2.3 2.1

PsAAP 1 (180) −17.2 −56.4 −1.9 −1.3

PsAAP 1 (180) −2.0 −7.1 −2.1 −2.8 1.9 −1.2 −6.7 −8.0 −11.5 3.8 −3.7 −1.7 −3.3

PsCWINV1 (240) −14.3 −32.8 1.9 1.6

PsCWINV1 (240) 6.8 7.8 −1.1 3.3 3.9 −1.7 −1.4 −1.6 −1.2 1.0 1.8

PsCWINV2 (448) 9.1 2.8 1.7 1.9

PsCWINV2 (448) 2.8 4.0 1.9 5.3 3.3 1.1 −1.2 −1.5 −1.5 −1.3 2.7 −1.9 −3.1

PsCWINV3 (415) −222.0 −73.1 −1.6 −1.3

PsCWINV3 (415) 4.1 2.1 1.3 1.5 14.1 2.5 −1.6 1.2 −2.8 −2.9 −1.5

PsCWINV6 (320) 93.0 75.4 1.6 2.8

PsCWINV6 (320) 3.6 6.3 −1.3 3.3 24.9 18.3 1.2 −1.1 −2.0 −1.0 4.3 5.3 6.6

PsSW 1 (1) (Clade I) −1.7 −1.2 −3.8 −8.1

PsSW 1 (1) (Clade I) −2.5 −2.0 −3.9 −3.2 3.6 6.5 −2.4 −6.7 −1.0 −1.1 −4.2 1.5 2.4

PsSW 2a (2a) 1.4 −1.1 −1.3 1.0

PsSW 2a (2a) −2.3 1.0 −1.4 1.7 4.2 2.8 −2.8 −2.9 −2.2 1.5 1.3 2.9 5.1

PsSW 2b (2b) 8.3 7.9 −3.1 −1.4

PsSW 2b (2b) −2.7 1.4 −2.9 −1.1 18.1 6.8 1.0 1.5 1.0 −15.1 −8.3 −1.2 −28.4

PsSW 4 (7) (Clade II) 29.6 8.8 1.5 1.3

PsSW 4 (7) (Clade II) −13.0 2.5 −6.2 36.9 −4.0 −61.8 −15.1 −143.0 −64.3 1.2 2.5 −2.4 −2.9

PsSW 5a (6a) −1.0 −31.0 1.6 1.1

PsSW 7 (4) −2.6 −1.3 −1.4 −1.1 6.1 3.2 −2.6 −4.4 −2.4 −1.3 1.5 5.9 10.3

PsSW 5b (6b) 24.7 9.7 1.0 1.1

PsSW 9 (9) (Clade III) 5.2 3.0 −4.0 1.4 18.3 2.0 −1.1 −1.5 −12.8 1.1 1.1 −29.1 −21.8

PsSW 7 (4) 1.0 −2.9 −1.7 −2.7

PsSW 12 (13b) 1.3 2.1 −1.8 1.8 3.3 2.3 1.0 −7.1 1.1 −1.1 −1.7 2.4 1.3

PsSW 12 (13b) (Clade III) 3.3 10.5 −1.8 −2.4

PsSW 13 (13a) 5.3 2.2 −5.4 −2.0 8.4 1.9 −1.8 −15.0 −2.9 −5.4 −5.5 3.5 −1.8

PsSW 13 (13a) 48.5 46.4 −1.3 −1.1

PsSW 15a (534) 4.5 4.1 −2.7 −1.5 2.9 1.1 4.5 −1.5 −6.4 −1.6 −4.4 1.3 1.3

PsSW 17 (17) (Clade IV) −31.3 −20.2 −2.5 −4.9

PsSW 15b (445) 12.4 2.0 −4.7 −1.5 3.5 −1.7 −5.6 −4.4 −5.2 1.0 1.1 1.6 2.3

PsSW 15c (624) 3.0 3.5 −1.5 2.3 15.6 4.9 −4.1 −7.1 −2.7 2.4 5.1 1.2 1.7

<−54.0 18.0 to 53.9 17.9 to 6.0 5.9 to 2.0 −1.9 to 1.9 2.0 to 5.9 6.0 to 17.9 18.0 to 53.9 >54.0

Fig. 3. Relative expression of gene family members of cytokinin biosynthesis (PsIPT), cytokinin degradation (PsCKX), sucrose
transporters (PsSUT),aminoacid transporters (PsAAP),cellwall invertase (PsCWINV) andsucroseeffluxcarriers (PsSWEET=(PsSW)) in
Pisumsativum (a) leavessubtendingpods5and20daysafterflowering(5dand20d); (b)separatedpodwalls from12to30DAP(12dto30d)
in thedouble transgenic lines382and562.Valuesare fold-changes relative to theexpression in thewild-type ‘Bolero’ line.Thecolour scale
indicatesupregulatedexpression(red),similarexpression(white), anddownregulatedexpression(blue)relativeto that inthewild-type line.
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Concurrent overexpression of SUT1 and AAP1(3a) Functional Plant Biology I



(a)  Seedline 382, 562 vs Bolero (SEED COATS)

(b)  Line 104−SUT1, 382, 562 vs Bolero (COTYLEDONS)

Target genes Developmental stages

Target genes Developmental stages

12d 12d 14d 14d 16d 16d 18d 18d 20d 20d 23d 23d 30d 30d

12d 12d 12d 14d 14d 14d 16d 16d 16d 18d 18d 18d 20d 20d 20d 23d 23d 23d 30d 30d 30d

382 562 382 562 382 562 382 562 382 562 382 562 382 562

104 382 562 104 382 562 104 382 562 104 382 562 104 382 562 104 382 562 104 382 562

PsIPT 1 (604) −1.1 1.3 1.2 1.1 1.5 1.3 3.4 −2.1 −1.6 −1.6 −1.3 1.0 1.3 1.5

PsIPT 1 (604) 3.8 1.4 3.0 2.8 3.2 2.9 −1.1 1.2 2.3 2.9 6.3 2.6 −1.1 1.9 1.8 1.3 1.2 1.1 − − −

PsIPT 2 (605) 3.1 4.1 7.4 6.7 2.2 2.8 5.6 9.1 2.8 2.7 6.3 1.7 10.2 7.0

PsIPT 2 (605) 2.4 −2.2 3.4 −1.3 6.1 8.0 5.6 −2.2 2.0 1.6 7.4 3.1 −1.2 1.7 1.7 1.5 1.2 −3.1 − − −

PsIPT 4 (421) 11.0 12.0 10.9 13.3 7.0 8.6 12.1 12.6 4.1 3.6 4.1 3.5 5.3 5.9

PsIPT 4 (421) 1.5 11.0 12.0 1.8 10.9 13.3 2.4 7.0 8.6 6.8 12.1 12.6 1.4 4.1 3.6 1.0 4.1 3.5 1.0 5.3 5.9

PsCKX 1 (930) 2.3 1.9 2.4 2.7 2.7 2.9 5.2 4.6 1.9 2.2 2.0 2.3 1.9 1.6

PsCKX 1 (930) 4.9 −2.5 1.3 −1.4 2.3 2.2 −1.2 −4.3 2.8 4.8 5.7 1.7 −1.3 1.1 1.2 1.4 1.9 −1.7 3.7 48.3 14.2

PsCKX 2 (627) 33.1 22.2 27.6 20.1 28.7 18.4 13.1 25.7 8.1 8.3 8.2 16.4 4.1 8.9

PsCKX 2 (627) 2.1 −2.2 2.7 −2.4 4.9 4.7 2.2 −4.3 −1.1 −1.1 4.7 1.7 −1.7 −1.4 −1.4 −1.1 −1.5 −4.5 −1.2 2.6 1.4

PsCKX 5 (942) 5.9 8.7 −1.6 −1.2 14.5 12.8 2.0 2.3 9.6 10.8 17.5 14.4 25.8 23.0

PsCKX 5 (942) − 1.5 1.2 − 1.2 1.3 − 1.1 1.0 − 1.3 1.1 − 1.4 1.5 − 1.0 1.0 − 1.2 1.1

PsCKX 7 (910) 3.0 2.8 2.6 2.2 2.9 2.3 4.3 4.0 3.4 2.7 3.6 3.2 16.4 16.1

PsCKX 7 (910) 1.3 2.4 4.6 −1.1 2.4 1.4 −5.6 −1.9 −1.2 1.6 −1.1 −4.0 −4.9 1.0 −1.0 1.4 9.9 1.7 21.7 34.9 4.1

PsSUT 1 (366 Transgene) 1.8 5.2 2.1 6.7 1.6 1.4 3.7 3.1 5.5 8.0 −1.6 −1.2 −1.6 −1.2

PsSUT 1 (366 Transgene) −1.7 −3.6 −1.2 1.1 7.2 2.1 1.7 −3.6 3.9 1.6 2.7 −1.3 −1.2 −1.0 3.3 −1.8 −1.2 1.1 −3.7 2.8 8.7

PsSUT 2 (948) 24.6 23.1 19.3 17.0 15.7 15.3 16.8 22.6 9.9 10.7 4.5 4.2 1.5 2.1

PsSUT 2 (948) 2.7 2.3 3.5 1.1 7.2 2.1 1.4 2.6 3.4 1.6 2.7 −1.3 1.2 1.2 4.0 1.8 1.5 2.1 3.7 10.4 32.3

PsSUT 3 (674) 1.1 1.2 1.7 1.3 2.0 2.0 6.9 8.7 2.7 3.0 1.7 2.7 −1.0 −1.0

PsSUT 3 (674) −8.3 1.1 1.7 −1.9 3.0 4.4 −1.5 −3.1 1.2 −1.2 3.3 1.1 −2.4 −1.1 −1.3 −2.3 2.1 −3.3 −1.4 3.6 3.4

PsSUT 5 (666) 1.2 1.5 13.0 10.6 6.0 10.2 28.6 23.4 1.8 2.7 4.2 4.0 3.6 1.1

PsSUT 5 (666) 1.9 −1.1 3.5 −1.1 10.5 19.1 1.6 −2.3 12.4 −1.4 3.5 5.3 1.9 1.3 12.1 2.1 1.9 1.5 1.0 16.2 5.2

PsAAP 1(3a) (532 Transgene) 37.5 22.6 120.9 90.4 188.2 113.0 480.8 715.5 510.7 326.5 479.4 222.0 55.1 96.0

PsAAP 1(3a) (532 Transgene) −2.8 13.0 1.9 −1.2 13.7 2.1 −6.3 1.5 1.2 −3.1 3.6 −6.3 −9.7 1.7 −3.4 −3.2 4.3 −2.4 −17.9 5.1 2.6

PsAAP 7a (498)(Cluster 1) 1.5 1.3 9.5 10.0 10.3 9.4 137.4 49.4 37.8 27.7 57.1 4.7 47.7 34.0

PsAAP 7a (498)(Cluster 1) −2.6 −1.9 2.2 2.3 2.0 2.1 −1.7 −16.2 −4.2 −1.7 −2.1 −4.1 −3.0 1.2 −1.9 −2.6 2.1 −5.6 6.1 24.5 17.4

PsAAP 7b (9261) −1.3 3.3 9.2 5.1 1.3 1.1 3.2 4.4 1.3 1.3 1.3 1.3 −1.3 1.3

PsAAP 7b (9261) −1.5 1.4 −4.1 2.6 4.1 8.1 −2.5 −30.1 −1.7 540.2 87.1 70.7 1.5 −1.1 1.3 −1.3 1.1 −2.4 2.9 3.9 3.1

PsAAP 2a (675)(Cluster 3A) 5.4 5.0 30.5 21.5 40.1 45.7 249.8 213.1 108.9 89.8 83.0 56.9 12.5 18.5

PsAAP 2a (675)(Cluster 3A) −7.3 −1.8 −1.6 2.2 7.8 11.8 −4.9 −6.8 −1.0 10.4 5.6 1.1 1.7 1.8 1.0 3.7 3.6 1.4 5.1 5.8 1.5

PsAAP 2c (4401) 3.0 2.8 1.3 1.1 2.9 2.3 4.3 4.0 3.4 2.7 3.6 3.2 16.4 16.1

PsAAP 2c (4401) 3.2 −1.0 5.1 3.0 7.0 7.9 2.4 −3.0 1.4 1.0 −1.1 2.0 −1.0 1.2 1.4 1.6 2.5 −1.1 3.6 4.8 5.2

PsAAP 2d  (840) 2.8 1.9 3.8 4.6 2.6 3.2 14.7 17.2 3.6 5.4 −1.4 −1.6 1.8 1.0

PsAAP 2d  (840) 1.5 −1.6 2.0 −2.1 3.7 3.9 −1.8 −9.3 −3.7 1.4 7.7 1.2 −1.6 1.4 −1.4 1.3 1.8 −3.7 3.3 4.5 2.6

PsAAP 3b (051) 20.9 26.4 4.4 9.0 60.0 69.2 23.4 20.5 41.0 37.6 3.5 2.7 1.7 1.4

PsAAP 3b (051) 4.7 −2.0 −1.2 2.2 −1.6 −1.6 −1.5 −10.1 −1.8 122.9 21.1 11.1 1.3 3.6 −1.9 −1.5 1.4 −2.3 5.3 9.3 8.6

PsAAP 6a (931) (Cluster 4B) 1.9 2.0 1.4 3.0 1.6 1.3 8.4 6.5 1.9 2.2 1.1 −1.0 17.1 42.6

PsAAP 6a (931) (Cluster 4B) 1.2 2.0 2.6 −1.7 −5.4 5.2 2.0 7.3 −3.6 −4.9 7.8 1.6 1.5 1.6 1.0 1.1 1.7 −2.6 2.3 3.7 1.3

PsAAP 6b (328) 1.5 1.3 4.5 3.1 3.1 2.1 4.1 3.4 4.3 3.7 2.3 2.5 9.3 1.3

PsAAP 6b (328) −4.3 −2.6 1.0 −1.7 2.6 2.8 −3.0 −5.7 −2.2 −1.1 1.2 −7.2 −1.7 1.5 −1.6 −3.1 −1.1 −8.1 8.4 20.9 3.0

PsAAP 1 (180) 2.4 2.1 1.1 1.2 2.1 1.8 3.5 3.8 2.4 2.9 2.3 2.2 3.0 3.4

PsAAP 1 (180) 3.9 −1.9 1.9 1.8 1.6 2.0 −1.8 −4.5 −3.1 −1.1 1.4 1.2 −2.3 7.0 2.0 1.9 3.6 1.7 −23.0 −1.1 −1.6

PsCWINV 1 (240) 1.6 1.3 19.0 19.2 6.8 5.2 17.4 23.1 −1.0 −1.1 1.1 −1.1 173.4 221.9

PsCWINV 1 (240) −1.2 3.1 1.1 −10.5 −2.8 2.4 12.6 −1.4 6.9 1.4 2.9 1.6 −5.1 −1.6 −1.1 7.8 4.1 10.2 2.0 1.6 1.4

PsCWINV 2 (448) 1.2 1.1 1.8 1.4 42.6 47.2 36.3 45.7 10.3 14.1 35.4 32.0 1.4 −1.1

PsCWINV 2 (448) −1.4 −3.2 3.7 5.2 9.0 17.9 31.6 −3.6 6.4 6.3 9.5 3.8 −1.0 3.0 4.0 11.6 13.7 4.5 183.3 240.4 499.4

PsCWINV 3 (415) 2.3 1.5 3.2 1.7 1.2 1.6 8.9 3.1 1.6 1.2 3.6 9.3 2.1 7.1

PsCWINV 3 (415) −4.7 −2.1 −2.6 −1.6 2.7 4.8 8.1 −1.9 −1.1 −1.2 1.2 −1.7 1.6 1.5 1.2 1.4 2.9 −1.1 −4.8 −16.4 −12.3

PsCWINV 6 (320) 2.1 1.7 2.8 2.2 1.0 1.1 3.0 2.5 1.3 1.1 2.6 2.3 3.4 3.3

PsCWINV 6 (320) 1.4 −1.0 2.5 −1.2 3.4 37.8 5.1 −1.2 7.1 −11.2 −4.2 −7.9 −17.2 2.4 3.1 16.6 3.1 1.4 7.2 2.9 3.1

PsSW 1 (1) (Clade I) 1.2 1.4 1.3 2.0 2.6 4.1 −2.1 −1.8 −1.6 1.0 1.0 1.4 10.2 22.6

PsSW 1 (1) (Clade I) − 1.1 2.8 − 4.8 4.9 − 1.9 2.1 − 1.3 1.1 − 1.4 3.1 − 1.7 −1.3 − 8.3 5.5

PsSW 2a (2a) 1.7 1.6 4.5 2.2 −1.4 −1.2 1.6 −2.3 −1.0 −1.2 1.5 −1.4 −1.9 −1.7

PsSW 2a (2a) −1.6 −1.7 1.6 −1.5 4.5 2.2 1.7 −1.4 −1.2 −2.7 1.6 −2.3 −2.4 −1.0 −1.2 −1.0 1.5 −1.4 −11.8 −1.9 −1.7

PsSW 2b (2b) 1.2 1.7 1.4 2.3 −1.2 2.1 −1.2 −1.2 2.9 5.5 1.8 3.4 1.7 4.7

PsSW 2b (2b) − 1.2 2.8 − 6.6 5.0 − 3.6 1.6 − −1.6 −1.1 − 2.1 2.0 − 24.8 8.9 − 20.5 5.7

PsSW 4 (7) (Clade II) 1.2 2.8 1.7 3.1 4.3 11.8 1.7 −1.2 −1.9 −1.1 2.0 2.9 2.9 6.8

PsSW 4 (7) (Clade II) − 1.8 1.6 − 4.5 4.3 − 3.7 2.0 − 1.4 2.0 − 1.4 1.5 − 30.9 3.9 − 1.6 7.3

PsSW 5a (6a) 2.2 3.4 1.2 2.4 −4.1 2.8 1.4 1.5 −5.7 −2.9 −4.5 −3.1 1.8 17.7

PsSW 5a (6a) − 1.7 4.9 − 4.8 11.2 − 2.9 1.4 − −2.5 −1.9 − 1.6 1.5 − 23.2 4.3 − 8.7 1.7

PsSW 5b (6b) 1.1 3.0 −1.2 1.4 −1.9 2.7 −2.6 −1.7 1.6 2.8 −1.1 −2.9 2.1 8.7

PsSW 5b (6b) − 1.2 2.1 − 4.6 4.6 − 1.6 1.1 − 1.1 1.2 − 1.0 1.0 − 2.1 1.4 − 1.3 2.0

PsSW 7 (4) 2.3 4.5 1.6 2.8 1.3 7.1 −2.4 −4.7 −4.8 −5.2 1.0 14.4 −1.2 2.2

PsSW 7 (4) − 1.1 1.9 − 3.0 4.5 − 1.5 1.1 − 1.0 1.8 − 3.1 1.1 − 1.4 −1.4 − 2.1 5.0

PsSW 9 (9) (Clade III) 2.5 10.2 21.8 12.6 21.9 46.1 7.9 42.4 −1.5 −4.9 121.3 63.4 7.6 2.5

PsSW 13 (13a) (Clade III) 24.8 −1.3 3.3 −1.1 9.2 5.1 −4.6 −9.7 −33.6 3.0 3.2 −7.5 −5.3 −3.0 −3.0 1.3 1.5 −1.3 −5.6 4.7 −2.4

PsSW 13a −1.3 3.3 9.2 5.1 −9.7 −33.6 3.2 −7.5 −3.0 −3.0 1.5 −1.3 −2.2 −2.4

PsSW 12 (13b) 3.7 −2.0 2.7 −1.6 3.8 6.8 2.8 −3.0 −1.4 −1.4 3.4 11.7 −2.6 −1.7 1.4 1.1 1.4 −2.9 −12.2 −4.1 −6.7

PsSW 13b −2.0 2.7 3.8 6.8 −3.0 −1.4 3.4 11.7 −1.7 1.4 1.4 −2.9 1.8 1.5

PsSW 15a (534) − −1.6 2.3 − 14.0 5.4 − 2.8 1.2 − −1.4 −1.3 − −1.8 −1.3 − 7.5 −1.3 − 10.6 10.8

PsSW 15a (534) 1.4 2.5 1.6 1.7 3.2 7.7 1.6 1.6 1.9 3.3 −1.2 1.5 2.8 8.5

PsSW 15b (445) − 1.1 2.7 − 5.2 4.5 − −3.3 −1.7 − −1.2 −1.2 − −14.1 −1.2 − −1.2 −2.0 − 11.5 −1.1

PsSW 15b (445) 2.9 3.4 2.1 1.8 −1.7 −1.0 −1.3 −1.5 1.7 3.1 19.8 39.4 8.4 36.0

PsSW 15c (624) − 3.8 1.9 − 2.9 5.4 − −1.1 −1.0 − 2.0 2.0 − −1.3 2.9 − −1.1 1.1 − 2.6 3.5

PsSW 15c (624) 1.7 2.5 1.4 2.4 86.4 58.4 −1.1 1.4 3.7 9.1 −2.0 −1.3 −8.3 −2.6

PsSW 15d (623) − 1.1 1.9 − 6.8 5.1 − 1.5 2.7 − 1.1 1.3 − 1.1 1.1 − 1.7 1.3 − 1.8 4.1

PsSW 17 (17) (Clade IV) 2.2 3.5 1.7 1.6 −1.1 4.7 −6.5 −3.5 −2.1 −2.0 −7.3 5.0 3.4 34.0

<−54.0 −18.0 to 53.9 −17.9 to 6.0 −5.9 to 2.0 −1.9 to 1.9 2.0 to 5.9 6.0 to 17.9 18.0 to 53.9 >54.0

Fig. 5. Relative expression of cytokinin biosynthesis (PsIPT), cytokinin degradation (PsCKX), sucrose transporters (PsSUT), amino acid transporters
(PsAAP), cell wall invertase (PsCWINV) and sucrose efflux carriers (PsSWEET (PsSW) gene family members in (a) seed coats; (b) cotyledons from the double
transgenic pea lines 382 and 562 and the single transgenic line 104-SUT1. Seed coats and the embryo axes were separated from cotyledons from 12 days after
pollination (DAP) to 30 DAP (12d to 30d). Values are fold-changes relative to the expression in the wild-type ‘Bolero’ line. The colour scale indicates
upregulated expression (red), similar expression (white), anddownregulatedexpression (blue) relative to that in thewild-type line.Expressionmeasurementsnot
made are noted as ‘-’.
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Clade IIISWEETGFMswereupregulated relative to the ‘Bolero’
control. PsIPT4 and 2 were consistently upregulated, as was
PsCKX2. Both PsIPT4 and PsCKX2 were also upregulated in
transgenic field pea donor parent 1/55-AAP1(3a) (Fig. S4).

Cotyledons

In contrast to the leaves, pod walls and seed coats (Figs 3, 4),
neither the AAP1(3a) transgene nor the SUT1 transgene were
consistently elevated in the cotyledons of the double transgenics
from 12 DAP relative to the ‘Bolero’ control during seed
development (Fig. 5b). In 104-SUT1 cotyledons, expression of
the SUT1 transgene and the AAP1(3a) GFM was generally more
similar to ‘Bolero’ than to the double transgenics. From 12 DAP,
the expression of PsIPT4 was consistently elevated throughout
seed development in the double transgenic lines, but not so in the
104-SUT1 line, relative to the ‘Bolero’ control (Fig. 5b). At 14
DAP, expressionofmost of the IPT,CKX,SUT,AAP,CWINV and
SWEET GFMs were strongly elevated in the double transgenics,
but not in the single transgenic line 104-SUT1.

Endogenous cytokinins

Multiple cytokinin forms were detected in the pea tissues,
including the nucleotides, free bases and ribosides of both zeatin
(Z)-type and isopentenyl adenine (iP)-type cytokinins in the double

transgenic and wild-type pea lines (Supplementary material
Table S1). Both cis- and trans-Z derivatives were detected along
with metabolites of dihydrozeatin. O-glucoside forms as well as
7- and 9-glucoside forms of zeatin were detected, but not the 7- or
9-glucoside forms of iP. The cis-Z nucleotide (cZRMP) was the
most significant form in the podwall, while isopentenyladenosine-
50-monophosphate (iPRMP)was in theseedcoat.TheN-glucosides
were in slightly greater amounts in seed coats and theO-glucosides
in pod walls relative to other organs (Table S1).

In the wild-type ‘Bolero’, the total cytokinin content of the
pod walls was relatively constant (Table S1), whereas it peaked
in the seed coat at 14 DAP (Fig. 6). A decrease in total cytokinin
levels was apparent in the cotyledons over time. Relative to pod
wall andcotyledons, the seed coat contained thegreatest amounts
of cytokinin – predominantly as iPRMP.

The most obvious difference between wild type and the
double transgenic line was the increased concentration of
iPRMP in the seed coats over a longer period of development
than in the ‘Bolero’ control (Fig. 6). This was reflected, but to a
lesser extent, in the amounts of iP and iPR in the seed coats.

Discussion

Peas are domesticated temperate legumes and have often been
chosen as a model to study regulation of C :N source to sink
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transport processes because of their relatively large seed and ease
of manipulation (Patrick and Offler 1995, 2001). The seeds are
themain harvestable product and used either for sucrose or starch
(C storage pool) or protein (N storage pool). Process peas and
field peas differ in significant ways. Process peas are generally
determinate and harvested immature when sucrose content is
high. They have been intensively bred for high sucrose content at
~20–25 DAP. The desiccated seeds from process peas are
wrinkled and normally have green cotyledons. Field peas are
generally indeterminate and harvestedwhen peas aremature and
dry. They are round and can have yellow or green cotyledons.
They are used for animal feed and for protein and starch
extraction. Through genetic modification followed by a
backcrossing and selfing program (Fig. S1), we have
produced novel process pea hybrids that overexpress both the
PsSUT1 gene (recurrent process pea parent), and the PsAAP1
(3a) gene (donor field pea parent) so the resulting lines are
phenotypically similar to a process pea. After fertilisation,
embryo development proceeds through morphogenesis
involving rapid cell division followed by a period of cell
expansion, then by maturation and accumulation of storage
products, and finally by desiccation and dormancy (Weber
et al. 2005).

Final yield in the double transgenic lines is driven by
expression changes in source leaves and seed coats

The most marked changes in gene expression in the double
transgenics relative to ‘Bolero’ control occurred in the leaves
subtending the young pods and in the seed coats throughout
development of the cotyledons.

The 35S::PsAAP1(3a) transgene was strongly expressed in
the leaves 5 DAP subtending young pods (5 DAP) as were other
members of Cluster 3A. As Cluster 3A AAPGFMs are involved
in the loading of amino acids into the phloem (Tegeder et al.
2007; Tan et al. 2010; Tegeder andWard 2012), we suggest this
implies an increased ‘pushing’ of amino acids towards the sink
tissues.

Clade IIISWEETswereupregulated in theyounger transgenic
leaves. Members of this clade have been identified as being
involved in the mobilisation of sucrose out of the leaves (Chen
et al. 2012). Release of sucrose into the leaf apoplast by the
SWEETs was matched by sucrose import through SUTs into
companion cells of the phloem in the transgenic leaves as
indicated by the strong upregulation of SUTs in the transgenic
leaves subtending the pods 5 DAP. Clade IV SWEET17, known
to be involved in import of hexoses to the vacuole for storage
(Chardon et al. 2013), was strongly downregulated. This again
emphasises the effect of the transgenes on these leaves as sources
of sucrose for the developing pods and, along with the decreased
PsIPT expression and the enhanced PsCKX7 expression,
supports the transitioning of young sink leaves into strong
source leaves (Ninan et al. 2019).

Cytokinins have been implicated in regulating cell division
during early seed development (Jameson and Song 2016) and in
enhancing sink strength (Quesnelle and Emery 2007; Jameson
and Song 2016). They have been shown to control pod number in
legumes (Kambhampati et al. 2017) and seed number in

Arabidopsis (Bartrina et al. 2011), oil seed rape (Schwarz
et al. 2020), and rice (Ashikari et al. 2005).

In pods and seed, at the early stages of development during
mitotic cell division, strong expression of theAAP transgenewas
induced by the 35S promoter. We suggest that the increased
expression of the AAP1(3a) transporter increased amino acid
import into seed enabling the development of an increased
number of seeds. The resulting increased N levels in the
developing pod and seed tissues may have been the stimulus
for the increased cytokinin biosynthesis in the seed coat (Gu et al.
2018;Kieber andSchaller 2018). This conjecture is supported by
the findings of Götz et al. (2007) who showed increased
cytokinin in Vicia seeds overexpressing an AAP gene. The
cytokinins in turn could have enhanced not only the activity
of CWINV, but also the expression of both the SWEETS and
SUTs (Jian et al. 2016) leading to seeds with a transiently
increased sugar content. In Vicia faba, CWINV activity in the
seed coatwas positively correlatedwith seed size, leadingWeber
et al. (1996) to suggest that hexose supply to the developing seed
was a controlling element of final seed size. Wang and Ruan
(2012) suggested invertase-mediated sugar signalling and cross-
talk by hormones contribute to regulation of cell cycle control
genes. Here, the double transgenics showed increasedPsCWINV
expression after fertilisation and in whole seed relative to the
‘Bolero’ control creating the high-sugar environment that
promotes cell division (Weber et al. 2005). Together, the
activity of transporters, CWINV and cytokinin is likely to
have contributed to the increased seed number and seed size.

Delivery of metabolites to the expanding cotyledons is
enhanced in the double transgenic lines

We separated the cotyledons from the seed coat and pod walls
from 12 DAP, which is close to the beginning of the cotyledon
cell expansion phase, to further understand the delivery of
metabolites from the maternal seed coat for release into the
seed apoplasm and subsequent uptake by the cotyledons via their
transfer cells.

A function of cytokinin in seed is to control sink strength
through activity of CWINV, whereas cytokinin degradation is
controlled by CKX (Jameson and Song 2016). In the double
transgenic cotyledons, expression of the cytokinin biosynthetic
gene IPT was upregulated from 12 DAP, while CKX expression
was not, again suggesting enhanced uptake of sugars and amino
acids. By 14 DAP there was strong upregulation of gene
expression in the cotyledons of the double transgenics
compared with ‘Bolero’ or the single transgenic line 104-
SUT1 for most of the genes tested. This suggests that the
cotyledons of the double transgenics were in the metabolically
highly active cell expansion stage and, through the signalling
role of sucrose (Patrick et al. 2013; Li and Sheen 2016) along
with elevated expression of the PsIPT genes, appeared to be
enabling enhanced uptake of C and N possibly via the epidermal
transfer cells at the cotyledon surface (Patrick and Offler 2001;
Offler et al. 2003). At a similar developmental stage Lu et al.
(2020) reported increased endosperm sucrose, supporting
increased sucrose flow from the seed coat to the cotyledons.

PsSUT2 and PsSUT5 were upregulated more highly in the
seed coat and in the cotyledons than the PsSUT1 transgene as
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seen inLu et al. (2020). Sauer andStolz (1994) suggest thatSUT1
and SUT2may have evolved from a common ancestral gene and
showed that, in Arabidopsis, they may operate differently at
different pH or that possibly one transporter may be involved in
loading, while the other one may be more involved with
unloading.

The transition from the morphogenesis to maturation and
storage activities has been associatedwith a decrease in invertase
expression and activity (Wang and Ruan 2013) and, in forage
brassica, expression of both BnIPT and BnCWINVwas shown to
be restricted to the morphogenesis phase of seed development
(Song et al. 2015). In the double transgenic lines, we show that
the expressionof thesegenes continued into thematurationphase
(Figs 5, 7) and appeared to disturb the clear transition from
morphogenesis to storage activities (Weber et al. 1995, 2005).

Concurrent expressionofSUT1andAAP1(3a) transgeneshas
the potential to lengthen the optimal harvest opportunity for
process peas and increase yield

As the pea seed progresses towards maturation, starch and
protein synthesis increase in the cotyledons while sucrose
content decreases. Process peas are generally harvested at a
tenderometer (note: a tenderometer is a device that measures
tenderness as the force required to effect shearing) reading of
95–110 (D. Goulden, pers. comm.). This is equivalent to a seed
stage ~19–23 DAP and a seed dry matter content of 20–25%.
During this time starch production has increased to where its
quantity is about the same or slightly greater than that of sucrose.
Harvesting process peas is a balance between sweetness and
yield. The crossover point, at which time the concentration of
sucrose and starch are approximately equal, was delayed in the
double transgenic lines by 1–2 days. This delay meant a
potentially useful increase in the harvest window for the pea
crop from being just 2–3 days to being 3–4 days. Essentially the
double transgenic cotyledons contain a higher sucrose pool,

which maintains sweetness of the pea for longer. This
increase in sucrose is reflected in the small burst in gene
expression in the cotyledons at 18 DAP, and also significantly
elevated gene expression in the seed coats. In particular, we note
IPT, CKX, SUT, AAP7, and CWINV gene family members were
upregulated in the seed coats and IPT, AAP, and CWINV in the
cotyledons.As a consequence, upregulation of these and/or other
genes, led to increased assimilate transfer from the seed coat via
the apoplast and into the cotyledons,finally resulting in enhanced
accumulation of storage products.

During maturation in the double transgenics, AAP GFMs
were upregulated and in particular AAP7. While a role for AAP7
has yet to be determined (Tegeder and Ward 2012), its strong
upregulation at 18 DAP in both seed coat and cotyledons,
indicates a possible role in the switch from cell expansion to
maturation and storage compound accumulation.

Cytokininshavebeenassociatedwith enhancing sink strength
and seed loading in legumes (Emery et al. 2000; Hwang et al.
2012; Kambhampati et al. 2017). In our double transgenic line
562, the increase in endogenous cytokinin in the seed coat
continued through the cotyledon expansion phase and into the
maturation and storage product accumulation stage (Fig. 6). It is
unlikely that this cytokinin was imported from the phloem, as
developing seeds, in contrast to the podwall, do not appear to act
as a sink for xylem or phloem cytokinins (Jameson et al. 1987;
Emery et al. 2000), although they actively accumulate nutrients.
In pea, both the endogenous data (Table S1) and the gene
expression data (Fig. 5a) indicate that the seed coat is also a
site of cytokinin biosynthesis, as has been suggested for soybean
and lupins (Singh et al. 1988; Emery et al. 2000). Enhanced
biosynthesis within the seed coat is the most likely source of the
elevated cytokinin that led to the extended accumulation of
iPRMP in the double transgenic line compared with the wild-
type ‘Bolero’. Recently, Kambhampati et al. (2017) suggested
that the iP-type cytokinins may play a significant role during
storage product accumulation in soybean – similar to the pattern
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Fig. 7. Summary of gene expression regulation in the seed of the double transgenic lines 382 and 562 compared with Bolero at (a) 7 days after pollination
(DAP), and (b) 18 DAP, showing the upregulation occurring in the podwall, seed coat, and cotyledons.
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seen here in pea. The enhanced cytokinin is, therefore, likely to
have affected the overall source-sink dynamics leading to a high
sugar environment for metabolism and maturation. High sugar
also stimulates N uptake through amino acid synthesis and
increased seed/grain protein (Weschke et al. 2000; Rosche
et al. 2002; Rosche et al. 2005; Zheng 2009; Lu et al. 2020).
By 30 DAP, pea C and N are being accumulated into storage
pools (protein and starch) in preparation for desiccation and
dormancy.

Conclusion

By developing double transgenic homozygous lines for SUT and
AAP we were able to investigate effects of pyramiding these
transporters in early pod stages, seeds, seed coats, cotyledons and
in leaves subtending pods. By separating the seed coat from the
developing cotyledon from the cell expansion stage, we
highlighted the effect of the seed coat on seed development.
When SUT and AAPwere overexpressed separately in pea lines,
seed metabolite levels were enhanced and resulted in increased
seed yield and protein content (Miranda et al. 2001; Zhang et al.
2015;Lu et al. 2020). In the double transgenic homozygous lines,
gene expression was further upregulated and greater increases in
protein content and seedyieldwere obtained.TheC :Ndynamics
of the double transgenic lineswere changed allowing increases in
the cotyledon sucrose pool thereby potentially extending the
harvest window for the process pea crop. It is evident that
cytokinins have a key role in seed development, as interplay
of cytokinin signalling alongwith sucrose signalling ensured that
normal seeddevelopmentproceededandoperatedat an increased
capacity to enhance yield.
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