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ABSTRACT 

As an emerging class of two-dimensional (2D) materials, van der Waals (vdW) 

magnets have attracted a lot of research attention since they can give access to 

fundamental physics and potential spintronic device applications. Among these 2D 

vdW magnets, CrSiTe3, as an intrinsic ferromagnetic semiconductor, exhibits 

great potentials in low-dimensional spintronics. Of particular interest in this 2D 

vdW magnet, is the electronic and magnetic properties at atomic-scale, which has 

yet fully explored so far. Here, combing angle-resolved photoemission 

spectroscopy, bulk magnetic measurements and synchrotron-based X-ray 

techniques, an unambiguous picture of the electronic and magnetic states of 

CrSiTe3 is presented. Hybridization of Cr-3d and Te-5p orbitals and the 

semiconducting behavior are confirmed by the band structure detection. Intrinsic 

ferromagnetism with a magnetic anisotropy constant of 1.56 × 105 erg/cm3 is 

attributed to the superexchange interaction of the Cr3+ ions. In addition, 

temperature-dependent spin and orbital moments are determined, and a fitted 

critical exponent of 0.169 implies the CrSiTe3 is in good agreement with the 2D 

Ising model. More remarkably, unquenched orbital moments are experimentally 

evidenced, bringing CrSiTe3 with orbital-dependent intriguing effects and great 

potentials towards the spintronic devices. 
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Two-dimensional (2D) materials, in particular unprecedented realization of 2D 

van der Waals (vdW) magnets recently, have attracted a lot of research attention due to 

the application as building blocks for spintronic devices.1-5 Notable examples, including 

gate-tunable tunneling magnetoresistance (TMR) in CrI3 spin-filter magnetic tunnel 

junctions,6-8 giant magnetoresistance (GMR) or TMR in Fe3GeTe2-based spin 

valves,9,10 topologically nontrivial spin textures in CrGeTe3
11 and beyond,12,13 as well 

as the spin-orbit torque (SOT) -driven magnetization switching in 2D magnets-based 

heterostructures,14-16 have witnessed the great potential of pushing the spintronic 

configurations from conventional magnetic thin films to the recent 2D vdW magnets 

with atomically thin limit. 

Among these 2D vdW magnetic materials, processing both intrinsic 

ferromagnetism and semiconducting character simultaneously is highly required as an 

indispensable component in dissipationless spintronic devices. Indeed, CrSiTe3 (CST) 

is promising as an intrinsic ferromagnetic semiconductor with the Curie temperature 

(TC) of ~ 34 K and the indirect/direct bandgap of 0.4/1.2 eV.17-19 The mobility of CrSiTe3 

has been reported to be ~ 0.01 cm2V-1s-1 at 295 K characterized by transport curves 

based on the field-effect transistor devices. Inheriting from the other 2D materials, it is 

expected that monolayer or few-layer CST can possess some distinct properties 

compared with its bulk counterpart. Since it is prone to be exfoliated down to single 

layer,20 the TC of the monolayer CST is predicted to be much higher (~ 92 K) than that 

of the bulk one and largely enhanced by applying a moderate strain.21-23 This is in sharp 

contrast to other typical 2D ferromagnets, such as CrI3,24 CrGeTe3,25,26 Fe3GeTe2
27 and 
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CrTe2,28 where the TC is decreased when thinning samples from bulk to few- (mono-) 

layer. Meanwhile, taking the third nearest-neighbor exchange interactions into 

consideration, monolayer CST is otherwise predicted to be antiferromagnetic with 

zigzag configurations.29 CST was thought to be the Heisenberg ferromagnet according 

to the previous neutron measurement.23 Later critical behavior conducted by bulk 

magnetization measurements, however, reveals CST belongs to the 2D Ising model.30 

Since there are some discrepancies in both theoretical calculations and experimental 

results, it is a necessary precursor to comprehensively understand the bulk CST to have 

a firmer foundation for future investigations on few-layer or monolayer samples and 

their potential applications. 

It is generally recognized that the underlying magnetic mechanism in CST systems 

is the dominant ferromagnetic superexchange interactions of the nearly 90o Cr-Te-Cr, 

against the antiferromagnetic direct exchange interactions of Cr t2g states.23,31,32 These 

Cr ions in CST are trivalent and located at the center of a nearly perfect octahedron with 

a slight distortion. The orbital moments (ml) of Cr3+ should be largely quenched due to 

this perfect lattice structure with centrosymmetry, and relevant spin-orbit coupling 

(SOC) as well as Dzyaloshinskii-Moriya interactions (DMI) is precluded.33 However, 

DMI-induced magnetic skyrmions, which are of broad prospects in low-power and high 

density data storage, have been already observed in its analogue compound of 

CrGeTe3.11 This inspires us to explore whether the orbital moments and resultant SOC 

are fully quenched in CST. Synchrotron radiation-based soft X-rays techniques could 

probe the atomic-scale ferromagnetism and the element-specific spin moments (ms) as 
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well as ml, which is particularly suitable for investigating the indeterminate properties 

of CST but has yet reported before. 

In this letter, we demonstrate an unambiguous picture of the electronic and 

magnetic state of CST by various techniques including bulk magnetic measurements 

and elemental specific probes. Intrinsic ferromagnetism with a magnetic anisotropy 

constant of 1.56 × 105 erg/cm3 and semiconducting behavior are investigated. 

Electronic configuration of Cr3+ and its ferromagnetic exchange interactions contribute 

to the intrinsic magnetism of the CST. Moreover, detailed spin and orbital moments are 

determined. Temperature-dependent moments fitting suggests the 2D Ising model of 

CST. Effective orbital moments are experimentally evidenced, showing potential 

intriguing effects, such as SOC and DMI, in this 2D vdW ferromagnet of CST. 

CST single crystals were grown using the excess Si and Te as the flux by means 

of the selfflux method as previously reported.34,35 The stoichiometry and the crystal 

structure were characterized by the energy-dispersive X-ray spectroscopy (EDX) and 

the X-ray diffraction (XRD). The band structure of bulk CST crystal was measured by 

angle-resolved photoemission spectroscopy (ARPES), consisting of a SPECS 

PHOIBOS 150 hemisphere analyzer with a UVS 300 helium lamp (He Iα = 21.2 eV). 

The energy and angular resolutions were 40 meV and 0.2° at 120 K, respectively. 

Magnetic properties of CST single crystals were probed by superconductivity quantum 

interference (SQUID). Electronic correlation and magnetism were further elemental-

specifically probed by the synchrotron-radiation based X-ray absorption spectra (XAS) 

and X-ray magnetic circular dichroism (XMCD), respectively. Synchrotron-based 
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measurements were performed on Beamline I10 at Diamond Light Source with 

magnetic fields up to 14 T at various temperatures. Before performing all above 

experiments, a fresh surface was obtained initially by exfoliating the top layers of CST 

crystal using a tape. 

The crystal structures of CST are schematically illustrated in Fig. 1(a) and 1(b). In 

the ab slabs, the hexagonal close packings are built up by Te atoms, while the octahedral 

sites are occupied by the Cr and Si atoms consecutively along the c axis. Same with 

other 2D vdW crystals,28 adjacent layers are coupled via the van der Waals force and 

therefore vdW gaps (d0 = 3.3 Å) are formed, making it possible to exfoliate the bulk 

one into 2D flakes. The quality of CST single crystal is further measured by EDX and 

XRD characterizations, as displayed in Fig. 1(c) and (d), respectively. The spectrum 

detected Cr, Si and Te elements with an atomic ratio of 1: 0.97: 2.83, which is nearly 

the ideal composition of 1: 1: 3. The inset of Fig. 1(c) shows an optical image of a 

platelike CST bulk with the metallic luster. The thickness of this bulk sample is 0.148 

mm. It is noticeable that only diffraction peaks from (0 0 l) series are present in the 

XRD patterns [Fig. 1(d)], confirming the highly oriented nature of the single-crystal 

CST. Electronic structure was initially measured by ARPES. CrSiTe3 bulk samples 

were cleaved in situ and measured at 120 K to avoid the charging effect. Figure 1(e) 

exhibits the band dispersion around the center of the Brillouin zone. There are two 

parabolic bands locate near  point (as indicated by the dashed lines). The spectrum 

matches with the corresponding calculated bands closely.18 No density of state is 

observed at the Fermi level, corresponding to its semiconducting behavior. Unlike the 
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conducting vdW ferromagnets of Fe3GeTe2 systems,25 the semiconducting property of 

CST precludes the mechanism of itinerant carriers induced ferromagnetism. The 

measured valence bands are derived from the hybridization of Cr-3d and Te-5p orbitals. 

A complete ARPES band diagram of bulk CST can refer to the supplementary material. 

This means that an exchange interaction between Cr atoms is mediated by Te-5p 

orbitals, consistent with the ferromagnetism induced by the superexchange of Cr-Te-Cr. 

Magnetic properties of the bulk CST are initially measured by SQUID. Figure 1(f) 

shows the temperature-dependent magnetization (M) with an applied out-of-plane 

magnetic field (0H) of 50 Oe. Upon cooling the sample, the magnetization increases 

sharply below 40 K and tends to saturate at low temperature. This is a typical 

ferromagnetic behavior, corroborating the ferromagnetism in CST. Temperature 

dependence of the differential magnetization [dM/dT, inset of Fig. 1(f)] gives an 

accurate TC of 34 K, which is same with previous reports.17,30 Figure 1(g) shows the 

magnetization as a function of both in-plane and out-of-plane magnetic fields. The inset 

gives an enlarged view in a small magnetic field range from -300 Oe to 300 Oe under 

an out-of-plane geometry. Typical hysteresis loop with a relatively small coercive field 

(Hc ~ 23 Oe) can be seen, further manifesting the ferromagnetism. In the out-of-plane 

measurement configuration, the magnetization begins to saturate at a low magnetic field 

(HS ~ 2500 Oe), while the magnetization saturates only when 0H ≈ 13000 Oe with an 

in-plane geometry. This suggests an obvious perpendicular magnetic anisotropy of the 

CST crystal, in line with the most 2D ferromagnetic materials.25,28,36 The magnetic 

anisotropy constant is calculated to be 1.56 × 105 erg/cm3, which is comparable to that 
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of CrGeTe3 (4.8 × 105 erg/cm3),37,38 but smaller than the ones of CrI3 (3 × 106 erg/cm3),39 

Fe3GeTe2 (1.5 × 106 erg/cm3),40 and CrTe2 (5.63 × 106 erg/cm3).28 To further reveal the 

ferromagnetism in CST and to elucidate the underlying electronic and spin structures, 

elemental-specific soft X-rays spectra, including XAS and XMCD, were performed at 

Cr L2,3 edges. Figure 2(a) schematically shows the geometry for the synchrotron 

radiation measurements. X-rays with 100% circular polarization were applied 

perpendicular to the ab slabs of the CST. Parallel to the X-rays, different magnetic fields 

were applied. Unless specifically stated, all as-shown spectra were obtained in the total 

electron yield (TEY) mode at various temperatures between 5 K and 300 K. Note that 

the TEY mode is surface sensitive with a probe depth of ~ 4 nm, while the total 

fluorescence yield (TFY) mode (we measured simultaneously) gives a global signal of 

the bulk.41 Figure 2(b) shows a series of XAS spectra at Cr-L2,3 edges obtained by 

averaging the left- and right- circularly polarized data (denoted as + and -) at different 

temperatures. It is obvious that the lineshape of all the spectra obtained in TEY mode 

at different temperature is similar. The characteristic peaks in Fig. 2(b), for example the 

dominate peak at ~ 575.5 eV (the first dashed line), resemble that of the validated Cr3+ 

typical XAS spectrum,42,43 manifesting the Cr atoms in CST are indeed trivalent with 

three electrons in the t2g electronic structure. Note that an extra peak at ~ 577.3 eV (the 

second dashed line) is observed, which cannot correspond to the standard Cr3+ spectrum. 

In our TFY-obtained XAS spectrum, however, no peak is found at ~ 577.3 eV but only 

dominate Cr3+ peaks exist. Therefore, the peak at ~ 577.3 eV is surface-sensitive and 

originated from the oxidation since TEY mode is sensitive to the freshly cleaved surface 
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of the CST crystal. This oxidation peak of Cr XAS has also been observed in CrI3 single 

crystals previously.42 

In the light of the electronic structures of Cr ions, we further elaborate on the 

magnetic ground states probed by XMCD. Figure 2(c) displays the representative XAS 

pairs, XMCD spectra and their integrations. In particular, clear dichroisms at Cr-L2,3 

edges can be observed at low temperature. Between the two obvious negative peaks at 

L3 edge of Cr, there is an energy splitting of ~ 1.1 eV in XMCD spectrum, which further 

confirms the Cr3+ in CST samples.41,42 It should be mentioned that despite surface 

oxidization gives rise to the peak at ~ 577.3 eV in XAS spectra, no dichroism is found 

from this oxidization peak. This means the magnetic signal is still attributed to the 

intrinsic CST sample. The main dichroism peak at ~ 575.5 eV in XMCD spectrum can 

be used to compare the strength of the ferromagnetism roughly. The magnitude of this 

dichroism peak decreases with increasing the temperature and vanishes when the 

temperature is higher than 70 K. It looks like that the transition temperature from 

paramagnetism to the ferromagnetism should be ~ 70 K according to the XMCD 

measurement, which seems to be higher than the one obtained by SQUID. In our 

SQUID measurement in Fig. 1(f), it is noticeable that magnetization begins to increase 

and deviates from the zero-magnetization line when the temperature is lower than 70 

K. Moreover, short-range correlations are reported to exist above the TC.23,44 On the 

other hand, the applied magnetic field for XMCD is 2 T, much larger than that of 50 Oe 

adopted for the SQUID measurement. Hence, paramagnetism at high temperature can 
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partially contributes to this dichroism under such a large magnetic field, as discussed 

in the following section. 

Besides the electronic and magnetic structures, these elemental-specifically 

probed synchrotron radiation-based techniques can also offer a quantitative 

determination of the magnetic moments of each element. By performing the sum-rules 

of the XMCD spectra, the magnetization including spin moments, ms, and orbital 

moments, ml, can be quantitatively calculated:45 
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Here nh, the number of d holes, is taken to be 7 for the trivalent state of Cr ions.28 SC 

estimated be 2.0 ± 0.2, is the spin correction factor for Cr3+.46 The magnetic dipole, 

<Tz>, plays a negligible role due to its Cr 𝑡2𝑔
3  configuration.28 

The calculated ms and ml of Cr in CST ranging from 5 - 300 K are presented in 

Fig. 3(a) and (b), respectively. Both ms and ml show a Curie-like behavior, 

demonstrating a ferromagnetic phase at low temperatures. The spin moments and 

orbital moments per Cr atom are demonstrated to be 2.76 ± 0.1 B and 0.30 ± 0.05 B 

at 5 K, respectively. Increasing the temperature, both ms and ml decrease then become 

zero eventually at high temperature. As shown in Fig. 3(a), the spin moments exhibit a 

tail structure and non-zero ms is still observed when the temperature is above the 
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SQUID-determined TC, which is similar to that of the dichroism persisting up to 70 K 

in Fig. 2(c) as discussed earlier. More remarkably, in contrast to a quenched ml as 

previously supposed, an effective ml larger than 0.2 B is obtained at low temperature, 

as shown in Fig. 3(b). Despite Cr atoms are in the center a nearly perfect octahedron 

with centrosymmetry, which largely quenches ml, ml of this Cr3+ ions in CST survives 

due to a slight distortion of the octahedron. The unquenched ml plays a key role in the 

generation of the SOC, giving rise to the perpendicular magnetic anisotropy as we 

discussed in Fig. 1 (g). Furthermore, DMI and relevant topological spin textures are 

also expected in this system thus offering unprecedented chances for spintronics, which 

were thought to be precluded in CST. 

Total magnetic moments (mtotal) per atom [Fig. 3(c)] can be achieved via adding 

the spin moments and orbital moments up, mtotal = ms + ml. Using the well-obeyed 

scaling theory of M = M0×(1-T/TC),25,36 where M0 is the saturation moment and  is an 

exponent, one can yield the TC, M0 and  by fitting the temperature-dependent mtotal 

without the inclusion of the paramagnetic tail. As displayed in Fig. 3(c), the fitted M0 

is 3.1 ± 0.1 B/Cr and TC is 36.6 ± 1.4 K, which are comparable to those derived 

from the SQUID measurements. Moreover, the fitted exponent  is 0.169 ± 0.04, 

which is in good agreement with the one of 0.170 ± 0.008 determined by the bulk 

magnetization measurements.30 This critical exponent of 0.17 indicates the 2D Ising 

model for the CST crystal. 

To further detect the magnetic ground states of CST under an applied magnetic 

field, we performed field-dependent XMCD spectra in the ferromagnetic phase (5 K) 
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and paramagnetic phase (100 K). Figure 4(a) and (b) show the typical pairs of XAS and 

XMCD spectra captured with decreasing the magnetic field from 14 T to 0 T at 5 K and 

100 K, respectively. In the ferromagnetic phase (5 K), dichroisms and the lineshape of 

the spectra nearly keep the same with the magnetic field decreasing to 1 T, then vanish 

sharply at 0 T [Fig. 4(a)]. On the contrary, in the paramagnetic phase, dichroisms 

decrease upon lowering the fields at 100 K [Fig. 4(b)]. Likewise using the sum rules, 

calculated total moments of Cr as a function of the magnetic field at 5 K and 100 K are 

depicted in Fig. 4(c) and (d), respectively. In the ferromagnetic state, mtotal is nearly zero 

at zero magnetic field, and sharply increases to ~ 3 B then saturates when the field is 

larger than 1 T, which coincides with the SQUID characterization. This XMCD-derived 

hysteresis loop clearly demonstrates the ferromagnetism of CST at low temperature. 

The good agreement between the hysteresis loops measured by SQUID and the XMCD-

derived one indicates that the ferromagnetism in CST comes from the exchange 

interaction of the Cr ions, further confirming the nature of the intrinsic 2D ferromagnet. 

Meanwhile, as shown in Fig. 4(d), the derived mtotal increases monotonously from 0 B 

to ~ 1.3 B with increasing the magnetic fields from 0 T to 14 T, manifesting the 

paramagnetism of CST at high temperature. One can see that mtotal is approaching 0.1 

B when applying a magnetic field of 2 T at 100 K. Because of this paramagnetism, 

dichroism can be observed up to 70 K as we have discussed in Fig. 2(c). 

In summary, we have conducted a systematic investigation on the atomic-scale 

magnetism of the 2D vdW ferromagnetic semiconductor CST. Intrinsic ferromagnetism 

with a magnetic anisotropy constant of 1.56 × 105 erg/cm3 is verified by the SQUID 
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measurement. ARPES gives a direct evidence of the semiconducting behavior and a 

hybridized orbital between Cr-3d and Te-5p. Elemental specific techniques of both 

XAS and XMCD present an unambiguous picture of the electronic and magnetic states 

of the trivalent Cr ions under a t2g
3 configuration in CST. Superexchange interaction 

between Cr ions mediated by Te gives rise to the intrinsic ferromagnetism. Furthermore, 

temperature-dependent detailed spin and orbital moments are determined, and a fitted 

critical exponent implies the 2D Ising model of CST. Surprising unquenched orbital 

moments are experimentally evidenced, bringing CST with orbital-dependent 

intriguing effects and great advances towards the spintronic devices. 

 

SUPPLEMENTARY MATERIAL 

See the supplementary material for a complete ARPES band diagram, and the 

temperature-dependent resistance of bulk CST. 
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FIG. 1. Basic characterizations of the CST single crystal. (a) and (b) Schematic 

illustration of the CST crystal structure from top view and side view, respectively. (c) 

EDX spectrum of bulk CST with an atomic ratio of 1: 0.97: 2.83. The inset shows the 

optical image of a CST crystal. (d) XRD patterns of the CGT sample with a newly 

exfoliated surface. (e) Band structure of CST by ARPES measurements. (f) 

Temperature-dependent moment with an applied magnetic field of 50 Oe under out-of-

plane configuration. Inset: the differential magnetization dM/dT versus temperature. (g) 

The magnetic hysteresis loops measured at 5 K. The inset is the magnified view of the 

hysteresis loop under out-of-plane configuration. 
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FIG. 2. XAS and XMCD spectra. (a) Schematic diagram of the synchrotron-based 

experimental setup. (b) XAS spectra at Cr-L2,3 edges obtained at different temperatures. 

(c) Typical pairs of XAS and XMCD spectra of CST with rising temperatures obtained 

at 2 T. The spectra are offset for clarity. 
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FIG. 3. Temperature-dependent (a) spin moments (ms), (b) orbital moments (ml) and (c) 

total moments (mtotal= ms + ml) derived from the corresponding XAS and XMCD 

spectra in Fig. 2 using the sum rules. The red dashed line is the fitting curve. 
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FIG. 4. Typical pairs of XAS and XMCD spectra of CST obtained with various applied 

magnetic field from 14 T to 0 T in the (a) ferromagnetic phase of 5 K and (b) 

paramagnetic phase of 100 K. (c) and (d) The total moments of Cr derived from Fig. 

4(a) and (b) using the sum rules as a function of the magnetic field. Note that for easy 

understanding, the data in negative fields are obtained by symmetrizing the ones in 

positive magnetic field. Blue dashed lines are the guide for eyes. 
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