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Abstract

The hypothesis of randomness is fundamental in statistical machine
learning and in many areas of nonparametric statistics; it says that the
observations are assumed to be independent and coming from the same
unknown probability distribution. This hypothesis is close, in certain re-
spects, to the hypothesis of exchangeability, which postulates that the
distribution of the observations is invariant with respect to their permu-
tations. This paper reviews known methods of testing the two hypotheses
concentrating on the online mode of testing, when the observations ar-
rive sequentially. All known online methods for testing these hypotheses
are based on conformal martingales, which are defined and studied in de-
tail. An important variety of online testing is change detection, where the
use of conformal martingales leads to conformal versions of the CUSUM
and Shiryaev—Roberts procedures; these versions work in the nonpara-
metric setting where the data is assumed IID according to a completely
unknown distribution before the change. The paper emphasizes concep-
tual and practical aspects and states two kinds of results. Validity results
limit the probability of a false alarm or, in the case of change detection,
the frequency of false alarms for various procedures based on conformal
martingales. Efficiency results establish connections between randomness,
exchangeability, and conformal martingales.

1 Introduction

A standard assumption in several areas of data science has been the assumption
that the data is generated in the IID fashion, i.e., independently from the same
distribution. This assumption is also known as the assumption of randomness
(see, e.g., [60], [26, Section 7.1] and [54]). In this paper we are interested in
testing this assumption.

The notion of randomness has been at the centre of discussions of the foun-
dations of probability for at least 100 years, since Richard von Mises’s 1919
article [3I]. For von Mises, random sequences (collectives in his terminology)
served as the basis for probability theory and statistics, and other notions, such
as probability, were defined in terms of collectives. Random sequences have
been eclipsed in the foundations of mathematical probability theory by measure
theory since Kolmogorov’s 1933 Grundbegriffe [18], but the conceptual side of



weak validity
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Figure 1: The structure of this paper (apart from the introduction and conclu-
sion); the numbers refer to Sections

randomness has been explored in the algorithmic theory of randomness (also
initiated by Kolmogorov). We will discuss the conceptual side in Section [5| and
then in Appendix [A] but we start the main part of the paper with practical
methods of detecting nonrandomness.

The most familiar mode of testing randomness in statistics is where we ask
whether a given batch of data could have been generated by an IID process. In
Section 2l we will see how the standard statistical tests for real-valued observa-
tions can be adapted to more general observation spaces.

We then move on to testing randomness online, assuming that observations
arrive sequentially. Known methods of online testing of randomness are based
on so-called conformal martingales. Conformal martingales are constructed on
top of conventional machine-learning algorithms and have been used as a means
of detecting deviations from randomness both in theoretical work (see, e.g., [54]
Section 7.1], [14], [I1]) and in practice (in the framework of the Microsoft Azure
module on time series anomaly detection [62]). They provide an online measure
of the amount of evidence found against the hypothesis of randomness: if the
assumption of randomness is satisfied, a fixed nonnegative conformal martingale
with a positive initial value is not expected to increase its initial value manyfold;
on the other hand, if the hypothesis of randomness is seriously violated, a prop-
erly designed nonnegative conformal martingale with a positive initial value can
be expected to increase its value substantially. Correspondingly, we have two
desiderata for a nonnegative conformal martingale S:

e Validity is satisfied automatically: S is not expected to ever increase its
initial value by much, under the hypothesis of randomness.

e But we also want to have efficiency, e.g., to have S,, /Sy large with a high
probability, if the hypothesis of randomness is violated.

Validity corresponds to controlling the error of the first kind in the language
of statistical hypothesis testing, and efficiency is analogous to (but different
from) statistical power (one minus the error of the second kind) in the Neyman—
Pearson paradigm (see, e.g., [27]). In this paper a more Fisherian understanding
of efficiency (introduced in Sections will be more useful.

Conformal martingales are defined and their validity is established in Sec-
tion [3] Efficiency of a specific conformal martingale is not guaranteed and



depends on the quality of the underlying machine-learning algorithm. Our ex-
position then branches in two directions, with Section [frelaxing the requirement
of validity and Sections discussing efficiency; see Fig.

It is often argued that the kind of validity enjoyed by nonnegative martin-
gales is too strong, and we should instead be looking for a testing procedure that
is valid only in the sense of not raising false alarms too often. In the context of
testing randomness, the interpretation of the data-generating process adopted
in Section [ is that at first the data is IID, but starting from some moment T’
it ceases to be IID; the special case T' = 0 describes the situation where the
IID assumption is never satisfied (and so this interpretation does not restrict
generality). We want our procedures to be efficient in the sense of raising an
alarm soon after the null hypothesis (such as the assumption of randomness)
becomes violated; both validity and efficiency can be required to hold with high
probability or on average. In Section [4] conformal martingales are adapted to
such less demanding requirements of validity using the standard CUSUM and
Shiryaev—Roberts procedures.

Sections [f] and [6] discuss the much more difficult question of efficiency in the
context of the strongly valid procedures of Section We ask how much we
can potentially lose when using conformal martingales as compared with unre-
stricted testing of either IID or exchangeability. We will see that at a crude scale
customary in the algorithmic theory of randomness we do not lose much when
restricting our attention to testing randomness with conformal martingales.

Our main running example will be the well-known USPS dataset of hand-
written digits (see, e.g., [54, Section B.1]), which is known to be non-random.
In Section 2] we check that it is really non-random: combining Bartels’s ratio
test with the Nearest Neighbor method we obtain a tiny p-value. This fact,
however, is not particularly useful. In Section |3| we report the performance of a
nonnegative conformal martingale on the USPS dataset; it attains a huge final
value. Such martingales are potentially very useful in practice allowing us to
decide when a trained predictor needs to be retrained. The performance guaran-
tees for prediction algorithms in mainstream machine learning are proven under
the assumption of randomness, and after the deployment of such a predictor we
might want to monitor whether the new data remains IID. As soon as it ceases
to be IID, it is wise to retrain the predictor.

We will also use a much less well-known dataset called “Absenteeism at
work” (abbreviated to Absenteeism) and available at the UCI Machine Learning
Repository [10]. The data was collected from July 2007 to July 2010 at a courier
company in Brazil. We can imagine the management of the company monitoring
the absences of the workforce. If the pattern of absences loses its stability (ceases
to be IID), they might want to raise an alarm and investigate what is going on.
In Section [3] we will construct a simple conformal martingale that finds decisive
(to use Jeffreys’s [I5, Appendix B] expression) evidence against the hypothesis
of randomness for the dataset.

Connections with the algorithmic theory of randomness will be explained in
Appendix [A] The main part of this paper will not use the algorithmic notion of
randomness; however, as customary in the algorithmic theory of randomness,



in our discussions of efficiency we will concentrate on the binary case and on
the case of a finite time horizon N. These restrictions go back to Kolmogorov
(cf. [53} arXiv, Appendix A]); it would be interesting to eliminate them after a
complete exploration of the binary and finite-horizon case (but we are not at
that stage as yet).

Remark 1.1 (terminology related to the hypothesis of randomness). In this
paper we discuss two main hypotheses about the data, randomness and ex-
changeability. The terminology related to the former is less standardized and
will be summarized in this remark. We will use constantly (often adjectivally)
two closely related terms, “randomness” and “IID”; the latter is, of course, al-
ways related to independent and identically distributed observations but is not
always simply an abbreviation of “independent and identically distributed”. For
example, IID distributions (or IID measures) are those of the form QV, where
N is a natural number, or Q°°, @) being a probability measure. IID distribu-
tions generate IID observations. The hypothesis of randomness means that the
data-generating distribution is an IID distribution (and so the observations are
1ID).

2 Conformal tests of randomness in the batch
mode

As already mentioned, in this paper we are mainly interested in the online
mode of testing: we assume that observations arrive sequentially, and after each
observation we evaluate the degree to which the hypothesis of randomness has
been discredited. We will discuss this online setting starting from the next
section, but in this section discuss the batch setting, which is more standard in
statistics.

Let usfix N € N := {1,2,...}, the size of the batch. We would like to test the
hypothesis of randomness using N observations. There are numerous standard
tests of randomness in statistics: see, e.g., [26l Chapter 7]. These tests, however,
are usually applicable only to batches of real numbers, whereas in this paper we
are interested in more general observations. In particular we will apply them to
the USPS dataset of handwritten digits discussed in Section |1} To reduce the
general case to real-valued observations we can apply basic ideas of conformal
prediction [54]. Let Z be a measurable space, the space of observations.

A nonconformity measure is a measurable function A mapping any finite

sequence (21,...,2,) € Z™ of observations of any length n € N to a sequence
of numbers (a1,...,a,) € R™ of the same length that is equivariant in the
following sense: for any n € N and any permutation 7 : {1,...,n} — {1,...,n},

A(Zl, .. .,Zn) = (Oq, .. .,Ozn) — A(Zﬂ.(l), .. .,Zﬂ.(n)) = (a‘/r(l)a .. .,Ozﬂ.(n)). (1)

Intuitively, a; (the nonconformity score of z;) tells us how strange z; looks as
an element of the sequence (z1,...,2,). (At this time the only relevant value is
n := N, but in the next section we will need all n € N.)



Any conventional machine-learning algorithm can be turned (usually in more
than one way) into a nonconformity measure. For example, suppose each ob-
servation z; (an element of the USPS dataset) consists of two components,
zi = (x4,1s), where z; € [—1,1]16%16 is a hand-written digit (a 16 x 16 ma-
trix of pixels, each pixel represented by its brightness on the scale [—1,1]) and
y; € {0,...,9} is its label (the true digit represented by the image). The 1-
Nearest Neighbour algorithm can be turned into the nonconformity measure
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where d(z;, z;) is the Euclidean distance between x; and x;. Intuitively, a hand-
written digit is regarded as strange if it is closer to a digit labeled in a different
way than to digits labeled in the same way. See, e.g., [54] [I] for numerous other
examples of nonconformity measures.

In our terminology we will follow [56]. A p-variable for testing randomness
in ZN, where Z is a measurable space, is a measurable function f : ZV — [0,1]
such that, for any IID measure P on Z¥ (i.e., for any measure P of the form
QN , where Q is a probability measure on Z) and any € > 0,

P({(Zl7...7ZN)Zf(Zl,...,ZN)SE})SE. (3)

The value taken by f on the realized sample is then a bona fide p-value (perhaps
conservative) for testing the hypothesis of randomness. Similarly, a p-variable
for testing exchangeability in Z~ is a measurable function f : Z¥ — [0, 1] such
that, for any exchangeable probability measure P on ZV (i.e., for any measure
that is invariant with respect to permutations of observations) and any e > 0,
we have (3)). The values taken by such f are p-values for testing the hypothesis
of exchangeability.

It is clear that every p-variable for testing exchangeability is a p-variable
for testing randomness. Nonparametric statistics provides us with plenty of
p-variables for testing exchangeability in RV (under the rubric “testing of ran-
domness”, even though they in fact test the weaker assumption of exchangeabil-
ity; see, e.g., [60, 26] 2]). The following proposition shows how such a function
f, in combination with a nonconformity measure A, generates a p-variable for
testing exchangeability in Z"V. Set

(foA)(z1,...,2n) = f(A(21,...,2N)).

Proposition 2.1. If f is a p-variable for testing exchangeability in RN and A
s a nonconformity measure, then fo A is a p-variable for testing exchangeability
in ZN.

Proof. This follows immediately from the equivariance property (1): if P is
an exchangeable probability measure on Z%, then its pushforward PA~! is an
exchangeable probability measure on RY, and so

P(foA<e)=(PAH(f<e<e



Table 1: Some p-values for the USPS dataset and Bartels’s ratio test

‘ Euclidean distance Tangent distance
p-value ‘ 2.7 x 10711 7.5 x 10716

To check that the pushforward PA~! of an exchangeable probability measure
P on Z" is indeed exchangeable, it suffices to notice that, for any permutation
7:{1,...,N} = {1,...,N} and any event E C Z",

pPA~! ({(u1,...,un) : (Urqr), - - un(ny) € E})

=P ({(z1,---,28) : A(z1, .., 2n) € {(ua, .. un) ¢ (Un(1)s -« Un(v)) € E}})
:P({(zl,...,zN):A(zﬂ(l),...,zﬂ(m) GE})

=P ({(zx(1)s-- > 2x(v)) : A(2r(1)s- > 2x(v)) € E}) = PATY(E).

(The second equality follows from the equivariance of A and the third from the
exchangeability of P.) O

Example 2.2. Let us check that Proposition [2.1]ceases to be true if “exchange-
ability” is replaced by “randomness”. Suppose Z = [0, 1], and define the non-
conformity score «; of z; in (21,...,2,) by

;= .
0 otherwise,

where m; is the median of the multiset {z1,...,2;—1, 2i+1,-.-,2n}. Suppose N
is an even number (to simplify the notion of a median) and let P := U, where
U is the uniform probability measure on [0,1]. Then the pushforward PA~!
is concentrated on the subset of {0,1}"V containing equal numbers of Os and
1s. (Roughly, this corresponds to half of the elements being above the median.
Intuitively, A transforms a sequence that looks IID to a sequence that does not
look IID at all for a large N, since it contains equal numbers of Os and 1s.) By
Stirling’s formula (see, e.g., below), the probability of this subset is at most

N
27N ~ \/2/aNTY2 < NT1/2 4
()i o
under any IID measure. Therefore, assuming N is large, the function f taking
value N~1/2 on this subset and 1 elsewhere on {0, 1}" is a p-variable for testing
randomness while fo A is not (indeed, fo A will take value N ~'/2 almost surely
under P, and then it is obvious that it cannot be a p-variable).

Table [1] gives the p-values produced by Bartels’s [2] ratio test applied to
the nonconformity scores , where d is the Euclidean distance or the more
sophisticated tangent distance [48] [I7], as indicated. The p-values are very low,
especially for the tangent distance.



Remark 2.3. It is important to keep in mind that the standard implementa-
tions of the tangent distance are not always symmetric and d(z,z’') # d(z/, x)
is possible (in particular, this is the case for Keysers’s [I7] implementation used
in this paper). Whereas itself defines a nonconformity measure regardless of
the symmetry of d, efficient implementations of conformal testing of randomness
based on tend to rely on the symmetry of d and lose their validity if d is not
symmetric. This is true for the implementation used for empirical studies in
this paper; one possible solution (used here) is to replace d(z;, x;) in by the
arithmetic mean of d(z;,z;) and d(z;,z;) (using the geometric mean produces
similar results).

3 Conformal martingales

First let me give some basic definitions of conformal prediction (see, e.g., [54]
or [I] for further details). Let us fix a nonconformity measure A. If Z is a set,
Z* is the set of all finite sequences of elements of Z; if Z is a measurable space,
Z* is also regarded as a measurable space. The p-value p,, generated by A after
being fed with a sequence of observations (z1,...,2,) € Z* is

i > a0, [{i o = anl
n )

D =Pn(21, -0y 20, 0n) (5)
where i ranges over {1,...,n}, ai,...,q, are the nonconformity scores for
Zlyeee3”n,

(al,'--,an) :A(Zl,~"7zn)7

and 6,, is a random number distributed uniformly on the interval [0,1]. The
following proposition gives the standard property of validity for conformal pre-
diction (for a proof, see, e.g., [64, Proposition 2.8]).

Proposition 3.1. Suppose the observations zi,zs,... are IID, 01,0,...
are IID and distributed uniformly on [0,1], and the sequences zi,za,... and
01,05, ... are independent. Then the p-values p1,ps,... as defined in are
IID and distributed uniformly on [0, 1].

Remark 3.2. On a few occasions, we will also need a version of Proposition |3.1
for a finite horizon N € N. Now we have finite input sequences z1,..., 2N
and 61,...,0yN and, correspondingly, a finite output sequence p1,...,py. The
conclusion of Proposition will still hold even if we relax the assumption of
21,...,2Nn being IID to the assumption that they are exchangeable. (See [54]
Theorem 8.2].)

The formal definition of a nonnegative conformal martingale (equivalent to
the definition given in [54] Section 7.1]) given in this paragraph will be followed
by a discussion of the intuition behind it in the following paragraph (in our
informal discussions we will often abbreviate “nonnegative conformal martin-
gale” to “conformal martingale”). A betting martingale is a measurable func-
tion F : [0,1]* — [0, 0o] such that, for each sequence (uq,...,u,—1) € [0,1]"71,



n > 1, we have

1
/ F(uy, ... tup—1,u)du = F(ug,...,up_1); (6)
0

notice that betting martingales are required to be nonnegative. A nonnegative
conformal martingale is any sequence of functions S, : (Z x [0,1])> — [0, oo,
n=20,1,..., such that, for some nonconformity measure A and betting martin-
gale F, for all m € {0,1,...}, (21,22,...) € Z°, and (01,05,...) € [0, 1]°°,

Sm(zl791;227927"'):F<p17"'7pm)7 (7)

where p,,, n € N| is the p-value computed by from the nonconformity mea-
sure A, the observations z1, zo,..., and the nth element 6, of the sequence
(01,04, ...). Notice that S,,(z1, 61, 22,02,...) depends on 21,01, 22,05, ... only
via 21,01, ..., Zm, Om.

Intuitively, a betting martingale describes the evolution of the capital of
a player who gambles against the hypothesis that the p-values pi,ps,... are
distributed uniformly and independently, as they should under the hypothesis
of randomness (see Proposition [3.1]). The requirement (@ expresses the fairness
of the game: at step n — 1, the conditional expected value of the player’s future
capital at step n given the present situation (i.e., the first n — 1 p-values) is
equal to his current capital. This formalization of fair betting goes back to Ville
[51] and was made very popular in probability theory by Doob [g]; for a recent
review of developments in various directions, see [4I]. A conformal martingale
is what we get when we feed a betting martingale with p-values produced
by conformal prediction.

One way of constructing betting martingales is to use “betting functions”, in
the terminology of [II]. A betting function f : [0,1] — [0,00] is a function sat-
isfying fol f(u)du = 1. A useful method of betting against the hypothesis that
the p-values p1, po,... are independent and uniformly distributed is to choose,
before each step n, a betting function f,, that may depend on pq,...,p,—1 (in
a measurable manner). Then

F(pla"'apn) = fl(pl)“-fn(pn)a TL:O,I,..., (8)

will be a betting martingale (a conformal martingale if p1, po, ... are generated
by conformal prediction, )

Remark 3.3. Conformal martingales are exchangeability martingales, i.e.,
stochastic processes that are martingales with respect to any exchangeable dis-
tribution. The existence of non-trivial exchangeability martingales is, how-
ever, not obvious. It is easy to check that for the natural underlying filtration
(Fn)n=0,,.. generated by the observations z1,z2,... the only exchangeability
martingales are almost sure constants. There are two reasons why non-trivial
exchangeability martingales exist:



e Our underlying filtration is poorer than F,. A conformal martingale S
satisfies
E(Sn |Sla"'7Sn—1):Sn—17 nENa

i.e., it is a martingale in its own filtration. Moreover, it is a martingale
in the filtration (G, )n=0,1,... where G, is generated by the first n p-values

Piy---sPn-

e Conformal martingales are randomized: they also depend on the random
numbers 61,605, . ...

The first reason alone seems to be insufficient for getting really useful ex-
changeability martingales: e.g., in the binary case Z = {0, 1}, the observations
21, .- ., zpn are determined by the values Sy, S1, ..., Sy, unless .S; = S;_; for some
i € {1,...,n} (let us check this for n = 1: depending on the value of z;, we
have either S1(z1,...) > Sp or S1(z1,...) < So, and knowing which inequality
is true determines z;; for general n, use induction in n). In many practically
interesting cases there is not much randomness in conformal martingales; it is
only used for tie-breaking. However, even a tiny amount of randomness can be
conceptually important (other fields where this phenomenon has been observed
are differential privacy and defensive forecasting [41], Section 12.7]).

Remark 3.4. Notice that exchangeability martingales discussed in Remark [3.3]
can be equivalently defined as stochastic processes that are martingales with re-
spect to any IID distribution, assuming that the observation space Z is a Borel
space (this is a very weak requirement; see, e.g., [38, B.3.2]). Indeed, accord-
ing to de Finetti’s theorem (see, e.g., [38, Theorem 1.49]) every exchangeable
distribution is then a Bayesian mixture of IID distributions, and so being a mar-
tingale with respect to all IID distributions and with respect to all exchangeable
distributions are equivalent.

Using conformal martingales for testing randomness

We only consider nonnegative conformal martingales S with Sy € (0,00). Let
us see how such martingales can be used for testing randomness.

A possible goal is to raise an alarm warning the user about lack of random-
ness as soon as possible. Ville’s inequality [45, Chapter 7, Section 3, Theorem
1.IT1] says that, for any ¢ > 1,

P(3n:S,/Sy >c) <1/c

under any IID distribution. This means that if we raise an alarm when S,,/Sy
reaches threshold ¢, we will be wrong with probability at most 1/c. This is
a strong (in some situations too strong) requirement of validity, and we will
sometimes refer to it as strong validity.

We can also interpret S, /Sy directly as the amount of evidence detected
against the first n observations being IID. In principle, there is no need to
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Figure 2: Left panel: The values S,, of a nonnegative conformal martingale after
observing the first n digits, n = 0,...,9298, of the USPS dataset, with the log-
10 scale for the vertical axis. The initial value Sy is 1, and the final value Sga9s
is 4.71 x 10'®. Right panel: The values S, of the same nonnegative conformal
martingale as in the left panel after observing the first n digits of a randomly
permuted USPS dataset, with the log-10 scale for the vertical axis. The initial
value Sy is 1, and the final value Sgags is 0.0142.

raise an alarm explicitly, and we can leave the decision whether to abandon the
assumption of randomness with the user of our methods.

As an example, for the USPS dataset of handwritten digits (9298 in total),
the online performance of a nonnegative conformal martingale based on the
nonconformity measure (with Euclidean distance) is shown in the left panel
of Fig. 2| (which is Fig. 7.6 in [54], where full details of the conformal martingale
can be found). We already know from Section |2| that the USPS dataset is not
random, and its lack of randomness is detected by this conformal martingale in
the online mode. The advantage of the online mode is that such a conformal
martingale may be used in practice for deciding when a digit classifier needs
to be retrained (we can see that approximately after the 2400th observation it
would be definitely desirable).

The conformal martingale whose performance is shown in Fig. [2] is fairly
complicated, but the ideas behind its construction are instructive. Any function

f("‘)(u) =ru'"" wel0,1], we(0,1), (9)

is a betting function, in the sense of satisfying fo f%)(u)du = 1. This implies
that

FO (uy, . up) =[] £ (w)
i=1
is a betting martingale (satisfies @) and so determines, by @, a conformal
martingale S = S*). To get rid of the dependence on k, we can use the

conformal martingale fol S() dk, which was called the simple mizture in [54)
Section 7.1]. The simple mixture starts from 1 and its final value is 2.18 x 101°.

10



The simple mixture attains an astronomical final value, but it can be im-
proved further, in some sense tracking the best value of x (following Herbster
and Warmuth’s [13] idea of tracking the best expert). For a stochastic process
producing a random sequence K1, K2, ..., We can integrate

n

F(Hh,@,.“)(ul’ . 7'U/n) = H f(ﬁz)(ul)

i=1

with respect to the distribution of k1, ks, ..., and for a reasonable choice of the
stochastic process, we can improve the final value of the conformal martingale.
It can be further boosted by allowing the stochastic process to “sleep” at some
steps (so that the corresponding conformal martingale does not gamble on those
steps). In statistical literature, these ideas are discussed in [50].

The idea behind the betting functions @ is that the lack of randomness will
show itself in abnormally low p-values. Fedorova and Nouretdinov [I1] came up
with an unexpected new idea: in fact, we can gamble against any non-uniformity
in the distribution of the p-values, and this may be a very successful strategy
for detecting non-randomness.

Suppose we know the true distribution of the nth p-value p,, (conditional
on knowing the first n — 1 p-values), and suppose it is continuous with density
p- What betting function f should we choose? This is a continuous version of
the standard problem of horse race betting [16} [7]. The following simple lemma
sheds some light on ways of exploiting such non-uniformity.

Lemma 3.5. For any probability density functions p and f on [0,1] (so that
1 1
Jo p(p)dp =1 and [; f(p)dp=1),

1

/0 1(log,O(;D))p(p)dp2 /0 (logf(p))p(p)dp (10)

and

[ (10000t > 0. (1)

Proof. Tt is well known (and immediately follows from the inequality logz <
x — 1) that the Kullback—Leibler divergence is always non-negative:

/01 log(;ﬁig)p(p) dp > 0.

This is equivalent to . And is a special case of corresponding to
the probability density function f := 1. O

If we choose a betting function f, the log of our capital will increase by the
right-hand side of in expectation. Therefore, according to , the largest
increase in expectation is achieved when we use p as the betting function. (In-
creasing the log capital as much as possible in expectation is a natural objective

11



Figure 3: Left panel: The histogram (with 10 bins) of the p-values at the last
step for the nonnegative conformal martingale of Fig. [4] on the Absenteeism
dataset. Right panel: The p-values of the same nonnegative conformal martin-
gale on the randomly permuted Absenteeism dataset.

since such increases add to give the log of the final capital, and so we can apply
the law of large numbers, as in horse racing [7, Section 6.1] or log-optimal port-
folios [7, Chapter 16].) The discrete version of this strategy is known as Kelly
gambling [1, Theorem 6.1.2].

How efficient the betting function p is depends on the left-hand side of ,
which is the minus (differential) entropy of p. The maximum entropy distribu-
tion on [0, 1] is the uniform distribution, as asserted by , whose right-hand
side is equal to the minus entropy of the uniform distribution. (This is a very
special case of standard maximum entropy results, such as [7, Theorem 12.1.1].)
The uniform true distribution for the p-values gives zero expected increase in
the log capital; otherwise, it is positive.

Let us apply these ideas to the Absenteeism dataset briefly described in
Section We will estimate the distribution of the past p-values using a his-
togram and then will use the estimated distribution for betting (therefore, we
will implicitly assume the stability of the distribution of p-values). The dataset
consists of 740 observations (employees’ absences) and a number of attributes;
it is given in the Clustering section of the repository, and so there is no specified
label. Let us use four attributes, Age, Disciplinary failure, Education, and Son
(meaning the number of children); the other attributes appeared to me more
subjective (such as Social drinker and Social smoker) or less relevant. To ap-
ply the same nonconformity measure as before, (2, we need to nominate one
of the attributes as label, and “Disciplinary failure” appears to be particularly
relevant for studying the phenomenon of absenteeism. To make the attributes
comparable, let us divide Age by 50, Education by 3 (this attribute ranges from
1, high school, to 4, master and doctor), and Son by 4. With this choice, the
histogram of p-values at the last step is given in the left panel of Fig. 3] and
it is visibly non-uniform, namely tends to increase from let to right (unlike the
more stable right panel showing the p-values for a randomly permuted dataset;

cf. Remark .
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Figure 4: Left panel: The values S, of a nonnegative conformal martingale after
observing the first n absences, n = 0,..., 740, in the Absenteeism dataset, with
the log-10 scale for the vertical axis. The initial value Sy is 1, and the final value
S740 is 100.50. Right panel: The values S,, of the same nonnegative conformal
martingale as in the left panel after observing the first n absences in a randomly
permuted Absenteeism dataset, with the log-10 scale for the vertical axis. The
initial value Sy is 1, and the final value S749 is 0.00841.

Figure [4] shows the results for a simple conformal martingale exploiting the
non-uniformity of the p-values. We maintain B bins corresponding to the subin-
tervals I, :== [(¢ — 1)/B,i/B] of [0,1], i = 1,..., B (we ignore the possibility of
p-values landing on a boundary between two bins). Initially, each bin contains
C p-values (these dummy p-values are an element of regularization). At step n,
after computing the n p-values for this step (using the nonconformity measure
), the algorithm puts them into the corresponding bins and uses as its betting
function f,, the function equal to (C' + n;)/(C + n/B) on the ith bin, where n;
is the number of p-values in that bin. The mean of the betting function is 1
(and C'+n/B is the normalizing constant), and it approximates Kelly gambling.
The conformal martingale whose performance is shown in Fig. [4]is ; its initial
value is 1.

The expectation of the martingale’s final value is 1 (it is an e-value [57, [12]
[39]), and we can use Jeffreys’s [I5, Appendix B] rule of thumb for interpret-
ing the amount of evidence against the null hypothesis of randomness that it
provides:

e A value below 1 supports the null hypothesis.

e A value in the interval (1,+/10) provides poor evidence against the null
hypothesis (is not worth more than a bare mention).

A value in (1/10, 10) provides substantial evidence.

For a value in (10,10%/2), the evidence is strong.

For a value in (103/2,100), the evidence is very strong.
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e Finally, for values above 100 the evidence is decisive.

For example, the evidence against the hypothesis of randomness provided by
the left-hand panel of Fig. 4] which uses B = C = 10, is decisive (although
bordering on very strong) since the final value of the conformal martingale is
100.50. Varying various parameters leads to similar, often stronger, results. For
example, replacing the ratio in by difference, adding two extra attributes
Social drinker and Social smoker, and setting B = C' = 20, leads to a final value
of 3446.75 greatly exceeding the threshold for decisive evidence. However, all of
these conformal martingales find deviations from randomness only at the end
of the period (starting from the 650th observation at the earliest).

Optimality of sequential testing procedures

The efficiency of our procedure for testing randomness will be the topic of Sec-
tion[6] and in this section we will only discuss the nature of the problem. Perhaps
the most satisfactory results about the efficiency of sequential testing procedures
are optimality results such as that obtained by Wald and Wolfowitz [61] for
Wald’s [68, 59| sequential probability ratio test. The goal of establishing such
optimality results for our procedures for testing randomness would be, however,
too ambitious.

Wald’s sequential probability ratio test was designed by him in April 1943
[58, Section B] for the problem of testing a simple hypothesis against a simple
alternative, with IID observations. Let S, be the likelihood ratio of the alter-
native hypothesis to the null hypothesis after n observations. The test consists
in fixing two positive constants A and B such that A > 1 > B and stopping as
soon as S, leaves the interval (B, A). If S, > A at that time n, we reject the
null hypothesis; otherwise, we accept it.

A sequential test can make errors of two kinds: reject the null hypothesis
when it is true (error of the first kind) or accept it when it is false (error of the
second kind). Any sequential probability ratio test T is efficient in a strong sense:
if another sequential test 7" has errors of the first and second kind that are not
worse than those for T', the expected time of reaching a decision is as good for T’
as it is for 7" (or better), under both null and alternative hypotheses. In other
words, sequential probability ratio tests optimize the number of observations
needed to arrive at a decision, under natural constraints.

Wald showed the efficiency of his test in the sections “Efficiency of the Se-
quential Probability Ratio Test” in [58] 59] ignoring the possibility of S,, over-
shooting A or undershooting B. In [61] he and Wolfowitz provided a full proof.

The strength of this result is made possible by the restricted nature of the
testing problem. Both null and alternative hypotheses are known probability
distributions. The test is specified by two numbers, A and B. The situation
with testing randomness using conformal martingales is very different. A confor-
mal martingale is determined by the underlying nonconformity measure, which
can even involve an element of intelligence. See, e.g., [54], which defines numer-
ous nonconformity measures based on powerful algorithms of machine learning,
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including neural networks. We cannot expect to be able to prove that such a
procedure is successful (as argued by philosophers in other contexts; see, e.g.,
[35, Section 20]). The task of designing a conformal martingale is too open-
ended for that.

Our approach to establishing the efficiency of our strongly valid procedures
will not be based on optimality. The idea is to show that our procedures do
not constrain us: whatever a procedure for testing randomness can achieve, can
be achieved with conformal martingales. Notice that even the Wald—Wolfowitz
result can be interpreted in this way. However, our results in Section [6] will be
much cruder.

4 Multistage nonrandomness detection

Our main concern in this section is application of conformal prediction to online
change detection, which we already started discussing in Section A typical
example of online change detection is where we observe attacks, which we assume
to be IID, on a computer system. When a new kind of attacks appears, the
process of attacks ceases to be IID, and we would like to raise an alarm soon
afterwards. The two benchmark datasets that we considered in the previous
section can also be used to illustrate the problem of change detection: we may
be interested in deciding when to retrain a predictor and in detecting a change
in the pattern of workforce absences.

There is vast literature on online change detection; see, e.g., [34, [46] for
reviews. However, the standard case is where the pre-change and post-change
distributions are known, and the only unknown is the time of change. General-
izations of this picture usually stay fairly close to it (see, e.g., [34, Section 7.3]).
Conformal change detection relaxes the standard assumptions radically.

Remark 4.1. The literature on batch change detection is also vast; see, e.g., [4]
for an early review. Here the problem is to detect changes in a data sequence
all of which is given to us in a batch rather than sequentially. The impor-
tance of this problem has grown in recent decades because of its applications
in bioinformatics; see, e.g., [47]. This paper, however, concentrates on online
problems.

As explained in Section [I} we may regard any problem of detecting non-
randomness in the online mode as a problem of detecting a change point. The
latter includes as special case the situation where the assumption of randomness
is never satisfied, since 0 is an allowed change point. Our informal goal is to
raise an alarm as soon as possible after the hypothesis of randomness ceases to
be true. In the previous section we did not insist on having an explicit rule
for raising an alarm, and simply regarded the value of a nonnegative conformal
martingale starting from 1 as the amount of evidence found against the hypoth-
esis of randomness, but in this section it will be more convenient to couch our
discussion in terms of such rules.
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As already mentioned, the kind of guarantees provided by the policy of
raising an alarm when S,, /Sy > c¢ is often regarded as too strong to be really
useful. This can be illustrated using the analogue of the left panel of Fig. 2] for
a randomly permuted USPS dataset. The same conformal martingale performs
as shown in the right panel of Fig. [2| (this is Fig. 7.8 in [54]). The conformal
martingale is trying to gamble against an exchangeable sequence of observations,
which is futile, and so its value decreases exponentially quickly. If a change
occurs at some point in the distant future, it might take a long time for the
martingale to recover its value. This is a general phenomenon; we must pay for
giving ourselves the chance to detect lack of exchangeability by losing capital in
the situation of exchangeability.

The conformal martingale in Fig.[2]is based on the ideas of tracking the best
expert and sleeping, which often make it easier to recover the martingale’s value
(to “catch up”), as demonstrated by van Erven et al. [50]. The right panel of
Fig. [ suggests that this approach has its limits, and we need to do something
more radical: change the rules of the game.

Weaker guarantees are provided by multistage procedures originated, in a
basic form, by Shewhart in his control chart techniques [42] and perfected by
Page [32] and Kolmogorov and Shiryaev [24]. As Shiryaev mentions in his
fascinating historical account [44] Section 1], he and Kolmogorov rejected the
policy of raising an alarm when S,,/Sy > ¢ in favor of a multistage procedure,
which was “the correct formulation of the problem” (the emphasis is Shiryaev’s),
in January 1959 or soon afterwards, after talking to a practitioner, Yurii B.
Kobzarev, the founder of the Soviet school of radiolocation.

CUSUM-type change detection

A standard multistage procedure of raising alarms is the CUSUM procedure
proposed by Page [32] (see also [34] Section 6.2]). According to this procedure,
we raise the kth alarm at the time

S
Tk = min {n > TR max = > c} , keN, (12)

T=Th—15--y n—1 Sl
where the threshold ¢ > 1 is a parameter of the algorithm, 79 := 0, and
min{ := oo. If 7, = oo for some k, an alarm is raised only finitely often;

otherwise it is raised infinitely often. The procedure is usually applied to the
likelihood ratio process between two IID distributions, but it can be applied to
any positive martingale, and in this paper we are interested in the case where
S is a conformal martingale, which is now additionally assumed to be positive,
ensuring that the denominator in is always non-zero. CUSUM is often in-
terpreted as a repeated sequential probability ratio test [32, Section 4.2]. The
conformal CUSUM procedure (i.e., CUSUM applied to a positive conformal mar-
tingale) was introduced in [52]; however, a basic and approximate version of this
procedure has been known since 1990: see [30].

Properties of validity for the conformal CUSUM procedure will be obtained
in this paper as corollaries of the corresponding properties of validity for the
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Shiryaev—Roberts procedure, which we consider next.

Shiryaev—Roberts change detection

A popular alternative to the CUSUM procedure is the Shiryaev—Roberts proce-
dure [43] [37], which modifies as follows:

n—1
S
Tpi=mind n > T,_1: Z fZC , keN (13)

1=Tp—1

(i.e., we just replace the max in by >). We will again apply it to a
conformal martingale S, still assumed to be positive, obtaining the conformal
Shiryaev—Roberts procedure.

The procedure defining 77 is based on the statistics

|
—

n
R, =

%

|
—
=
=~
B

Il
=]

which admit the recursive representation

Sn
Snfl

R, = (Rp—1+1), mneN, (15)
with Ry := 0. An interesting finance-theoretic interpretation of this representa-
tion is that R,, is the value at time n of a portfolio that starts from $0 at time
0 and invests $1 into the martingale S at each time ¢ = 1,2,... [9], Section 2].
If and when an alarm is raised at time n, we apply the same procedure to the
remaining observations 2,1, Zn42, - - -

The following proposition gives a non-asymptotic property of validity of the
Shiryaev—Roberts procedure. Roughly, it says that we do not expect the first
alarm to be raised too soon under the hypothesis of randomness.

Proposition 4.2. The conformal Shiryaev-Roberts procedure (13|) satisfies
B3]

E(11) > ¢, for any ¢ > 1, under the assumptions of Proposition

Of course, we can apply Proposition [£.2] to other alarm times as well obtain-
ing E(7, — 74—1) > c for all k € N (and similar inequalities for some conditional
expectations, as discussed below in the proof of Proposition . Therefore,
more generally, the time interval between raising successive alarms is not too
short under the hypothesis of randomness.

All results of this section (from Propositionto Corollary are general
and applicable to any positive martingale S. However, they are usually stated for
S being the likelihood ratio between two IID distributions (pre-change and post-
change). To simplify exposition, I will state them only for S being a positive
conformal martingale with the underlying filtration (Gy)n=0.1,.., where G, is
generated by the first n p-values py, ..., p,. However, our arguments (which are
standard in literature on change detection) will be applicable to any filtration
and any positive martingale with respect to that filtration.
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Proof of Proposition[{.4 The proof will follow from the fact that R, —n is a
martingale; this fact (noticed, in a slightly different context, in [33}, Theorem 1])
follows from : since S is a martingale,

E(Sn | gnfl)

E(Rn ‘ gn—l) = S -

(Rn—l + 1) =R,_1+1.

Another condition for R,, — n being a martingale requires the integrability of
R,,, which follows from the integrability of each addend in :

o(5) <5 (s(% 16)) <5 =10

Fix the threshold ¢ > 1. By Doob’s optional sampling theorem (see, e.g.,
[45, Chapter 7, Section 2, Theorem 1]) applied to the martingale R,, — n,

E(ry) = E(R,,) > c.

Applying this theorem, however, requires some regularity conditions, and the
rest of this proof is devoted to checking technical details.

If 71 = oo with a positive probability, we have E(71) = oo > ¢, and so
we assume that 7 < oo a.s. Doob’s optional sampling theorem is definitely
applicable to the stopping time 73 A L, where L is a positive constant (see, e.g.,
[45, Chapter 7, Section 2, Corollary 1]), and so the nonnegativity of R implies

E(Tl) Z E(Tl A L) = E(RTl/\L) Z E(RTll{nSL}) Z CP(Tl S L) — C
as L — 0o, 1g being the indicator function of an event F. O

Corollary 4.3. The conformal CUSUM procedure also satisfies E(m1) > ¢
under the assumptions of Proposition|3.1).

Proof. All our properties of validity for the CUSUM procedure will be de-
duced from the corresponding properties for Shiryaev—Roberts and the fact that
Shiryaev-Roberts raises alarms more often than CUSUM does, in the following
sense. Let 73 (resp. 7;,) be the time of the kth alarm raised by Shiryaev-Roberts
(resp. CUSUM). Then 7, < 7, for all k; this can be checked by induction
in k. O

The next proposition is an asymptotic counterpart of Proposition given
in terms of frequencies.

Proposition 4.4. Let A,, be the number of alarms
Ay, = max{k: 1, <n}
raised by the conformal Shiryaev—Roberts procedure after seeing the first n
observations z1,. .., zn. Then, under the assumptions of Proposition [3.]],
A 1
lim sup ez
n—oo N C

a.s. (16)
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Under the assumptions of Proposition all alarms are false, and so
limits the frequency of false alarms.

Proof. Fix a positive conformal martingale S and a threshold ¢ > 0. We can
rewrite ([13)) as
Tk := min {n > Th_1: RfL > c} , (17)

where )
-— S
RF = Ly
EPL

1=Tk—1

It will be convenient to modify by forcing an alarm L steps after the last
one:
7= (tj_y + L) Amin{n >7/_; : R > c},

where 7 := 0 and

n—1
I
n L Sl
Z:kal

(The value of L will be chosen later.) Similarly to the proof of Corollary
by induction in k we can check that, for all k, 7, < 7.

We still have a recursive representation similar to for (RF and) R'*.
Notice that R/¥, n > 7/_,, is a nonnegative submartingale with n — 7{_, as its
compensator (and we can set R/¥ and its compensator to 0 for n < 71_,).

Remember that G, is the o-algebra generated by the p-values p1,...,pn,
and let G,/ be the o-algebra of events £ such that £'N {7, < n} € G, for all
n (informally, G- consists of the events E expressible in terms of the p-values
and settled at time 7).

Let us say that k € N is slow if

P(rh—th =L1Gn,) 2 c/Ls

otherwise, k is fast. Notice that the event that k is fast (or slow) is Gr -

measurable. By Doob’s optional sampling theorem and the nonnegativity of R’*,
where n > 74, for a fast k we obtain, similarly to the proof of Proposition 4.2}

/ / _ 1k
E (Tk — Ty | gr,;,l) =E (RT,; | gr/@fl)
_ 1k 'k
=B (R L rp =y |G, ) + B (R Vg rt <y 1611, )
>0+cE (1{7'12—7'};71([1} | g‘r;_l) > C(]- - C/L) =c— Cz/L'

Let F' C N be the random set of all fast k, S := N\ F' be the random set of all
slow k, and F (resp. Sk) be the set consisting of the K smallest elements of F'
(resp. S). The strong law of large numbers for bounded martingale differences
now implies

| I
l}(m_glof e kezs: (1 —T,_1) > L(c¢/L) = ¢ as. (18)
K
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and 1
llmll'le Z (T[Q _7—];,1) > C_CQ/L a.S.] (19)

K—o0
k€FKk

the inequality in (18] (resp. (19))) is interpreted as true when |S| < oo (resp.
|F| < c0). Combining and (19, we obtain

Tl
l%n_glof ?K = l%n_}gof Vi ;(T,Q —7_)>c—c%/L as.
Therefore, setting
Al = max{k : 7, <n},

we have A n
1
limsup — < limsup —2 < ————,
n—oo n n—oo n C — Cz/L
and it remains to let L — oo. O

Remark 4.5. It might be tempting to deduce from Proposition di-
rectly using a suitable law of large numbers. However, a simple application of
the Borel-Cantelli-Lévy lemma shows that we cannot do so without using the
specifics of our stopping times 7. Indeed, assuming ¢ € {2,3, ...}, we can define
a filtered probability space and stopping times 75, k = 0,1, ..., with 7 := 0, in
such a way that

= 1 with probability 1 — k=2
e (¢ —1)k* +1 with probability k=2

for all k € N (where the probabilities may be conditional on a suitable o-algebra
Gr._,). Then E(1y, — 7,—1) = ¢ (and E(1% — 7%—1 | Gr._,) = ¢) for all k but,
almost surely, 7, — 7x_1 = 1 from some k on.

Of course, the statement of Proposition also holds for the CUSUM pro-
cedure.

Corollary 4.6. Let A, be the number of alarms raised by the conformal
CUSUM procedure after seeing the observations z1,...,2z,. Then holds
under the assumptions of Proposition |3.1].

Proof. As in the proof of Corollary combine Proposition [£:4] with the fact
that Shiryaev—Roberts raises alarms more often than CUSUM does. O

Optimality of procedures for change detection

It is remarkable that both CUSUM and Shiryaev-Roberts procedures are opti-
mal under some natural conditions and for some natural criteria of optimality.
As already mentioned, in standard settings of change detection the task is to
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detect a change from one known IID distribution for the incoming data to an-
other known IID distribution. CUSUM and Shiryaev—Roberts procedures are
then applied to a specific martingale, the likelihood ratio of the post-change
distribution to the pre-change distribution. Therefore, they depend on just one
parameter, the threshold ¢ (for given pre-change and post-change distributions),
whereas in the context of testing randomness we have a wide class of CUSUM
and Shiryaev—Roberts procedures, built on top of different conformal martin-
gales.

The five standard criteria for the quality of such specific procedures have
been referred to by the letters A-E; see, e.g., Shiryaev [46]. Under natural
conditions, Shiryaev—Roberts is optimal under two of the criteria, and CUSUM
is optimal under one of them. Such statements of optimality are very satisfactory
results about the efficiency of the corresponding procedures.

In this paper we only discuss validity results for CUSUM and Shiryaev—
Roberts in the context of randomness testing and do not claim their optimality.
As discussed at the end of Section [3] this is a difficult task already for the
basic strongly valid testing procedure using conformal martingales. The null
hypothesis (that of randomness) is composite and, moreover, very large (for
large Z), and we do not specify any alternatives; we simply do not have enough
structure to specify a meaningful optimization problem.

5 IID probability vs exchangeability probability

We will be discussing two related interpretations of the efficiency of conformal
martingales: on one hand, we can think of them as detecting deviations from
randomness, and then “efficiency” would mean “ability to detect deviations from
randomness in small samples”. On the other hand, we can think of them as de-
tecting deviations from exchangeability, and the meaning of efficiency would
change accordingly. In this section we discuss the relation between efficient
testing for randomness and exchangeability in the simplest possible setting of
finite binary data sequences and batch statistical tests. For infinite sequences
randomness and exchangeability are connected by de Finetti’s theorem, as dis-
cussed in Remark [3.4} for finite sequences their relation becomes much less close.
We re-connect our insights to conformal martingales in the next section.

In the 1960s Kolmogorov started revival of the interest in random sequences,
believing that they are important for understanding the applications of proba-
bility theory and statistics. As already mentioned, he concentrated on binary
sequences (as a simple starting point), in which context he often referred to
them as Bernoulli sequences. His first imperfect publication on this topic was
the 1963 paper [19] (Kolmogorov refers to it as “incomplete discussion”, ac-
cording to the English translation of [20]). In the same year he conceived using
the notion of computability for formalizing randomness. Kolmogorov’s main
publications on the algorithmic theory of randomness were [20] 2T, 22].

Let Q := {0,1}"V be the set of all binary sequences of a given length N,
interpreted as sequences of observations. The time horizon N € N can be
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regarded as fixed in the rest of this paper (apart from and the appendix).

Let B, be the Bernoulli probability measure on {0, 1} with the probability

of 1 equal to p € [0,1]: B,({1}) := p. The upper IID probability of a set E C Q
is defined to be )

PY(E) = sup BY(E), (20)

and the upper exchangeability probability of E C () is defined to be

Pexh(E) = sup P(E), (21)

P ranging over the exchangeable probability measures on Q (in the current
binary case we can say that a probability measure P on €2 is exchangeable if
P({w}) depends on w € Q only via the number of 1s in w).

Remark 5.1. The lower probabilities corresponding to and are 1 —
Pid(Q\ E) and 1 — P (Q\ E), respectively. In this paper we never need lower
probabilities.

The function P4 can be used when testing the hypothesis of randomness:
if P4(E) is small (say, below 1%) and the observed sequence w is in E that is
chosen in advance, we can reject the hypothesis that the observations in w are
IID. Similarly, P*M can be used when testing the hypothesis of exchangeability.
This is an instance of application of Cournot’s principle, often regarded to be
the only bridge between probability theory and its applications. The principle
was widely discussed at the beginning of the 20th century and defended by,
e.g., Borel, Lévy, and Kolmogorov [40 Section 2.2]. Kolmogorov’s statement of
Cournot’s principle in his Grundbegriffe [18, Chapter I, Section 2] is

If P(A) is very small, then one can be practically certain that the
event A will not occur on a single realization of the conditions &.

(The conditions & in this quote refer to the probability trial under discussion.)
In the form stated by Kolmogorov, the principle goes back to Jacob Bernoulli
[B] (see, e.g., [40, Section 2.2]). It establishes a bridge between probability
theory and our expectations about reality; observing an event A (assumed to
be chosen in advance) of a small probability casts doubt on P. Cournot’s [6]
p. 78] contribution was to state that this is the only bridge between probability
theory and reality.

Cournot’s principle suggests the following understanding of the efficiency of
a method of testing the hypothesis of randomness: given any event E such that
Pid(E) is very small, the method should allow us to reject the hypothesis of
randomness after observing F.

Proposition 5.2. For any B C €,

Pid(E) < PN (E) < 1.5V N PY(E). (22)
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Proof. The first inequality in follows from each IID measure on {2 being
exchangeable. If E contains either the all-0 sequence 0. .. 0 or the all-1 sequence
1...1, the second inequality in is obvious (Pi4(E) = P*H(E) =1). If E
is empty, it is also obvious (P4(E) = P*}(E) = 0). Finally, if £ is nonempty
and contains neither sequence, we have, for some k € {1,..., N — 1},

/(%)
(k/N)F(1 — k/N)N

_ N . / — .
N]T;f(’f\(]N f)}L‘Z)\;V_k Pnd(E) < mel/G k(NN k) Pud(E) (24)
(V2rel/8/2)V N PiY(E) < 1.5/ N Pid(E), (25)

PeXCh(E) _ ]PeXCh(E nQy) = — Piid(E N Q) (23)

IA

where , is the set of all sequences in 2 containing k 1s. The first equality in
follows from each exchangeable probability measure on {2 being a convex
mixture of the uniform probability measures on Q, k = 0,..., N. The second
equality in follows from the maximum of B,({w}), w € Q, over p € [0, 1]
being attained at p = k/N. The first inequality in is equivalent to the
obvious PiY(E N Q) < PU4(E). The second inequality in follows from
Stirling’s formula

1
n! = V2t 2e e 0 <y < o (26)
n

valid for all n € N; see, e.g., [36], where it is also shown that r, > The

1
2n+1-
first inequality in follows from max,e(o,1jp(1 —p) = 1/4.

Remark 5.3. The constant 1.5 in inequality is not too far from being
optimal: when N =2 and E = {(0,1)}, it can be improved only to /2 ~ 1.414.
Notice that our argument in fact gives v/2me'/6/2 ~ 1.481 instead of 1.5.

Kolmogorov’s [21], 22] implicit interpretation of was that Piid and Pexch
are close; on the log scale we have

—log PiY(E) = —log P**(E) + O(log N), (27)

whereas typical values of —logPid(E) and —logP®*"(E) have the order of
magnitude N for small (but non-zero) |E|. See Appendix [A|for further details.

From the point of view of Cournot’s principle, Proposition [5.2 may be inter-
preted as saying that there is not much difference between testing randomness
and testing exchangeability. If we have a test with critical region E of size € for
testing exchangeability, we can use it for testing randomness and its size will
not increase; in the opposite direction, if we have a test with critical region F
of size e for testing randomness, we can use it for testing exchangeability, and
its size will increase to at most 1.5v/Ne. On the log-scale of Equation the
difference between the evidence provided by E against the hypothesis of ran-
domness and against the hypothesis of exchangeability is O(log N); it is clear
that the left-hand side of can be as large as N (for a non-empty F and

23



assuming that the logarithms are binary). In the algorithmic theory of random-
ness it is customary to ignore such differences, although from the point of view
of statistics, the difference is substantial.

6 Conformal probability

In this section we explore the efficiency of conformal martingales, restricting
ourselves to the simple case of a finite horizon N (as in the previous section).
First we will define upper conformal probability P, an analogue of P! and
Pexh for testing randomness using conformal martingales. Our simple version
of upper conformal probability will be sufficient for our current purpose; there
are other natural definitions. The upper conformal probability of E C Q is

P (B) == inf{So : ¥(21,...,2n5) € E : Sy (21,01, 22,02,...) > 1 f-as.},

(28)
where S ranges over the nonnegative conformal martingales, “6-a.s.” refers to
the uniform probability measure over (61,602,...) € [0,1]*°, and Sy stands for
the constant So(z1,01, 22,603,...). The definition is in the spirit of [41]
Section 2.1]; P (E) < ¢ for a small ¢ > 0 means that there exists a nonnegative
conformal martingale with a small initial value, below €, that almost surely
increases its value manyfold, to at least 1, if the event E happens. Therefore,
we do not expect this event to happen under the hypothesis of randomness.
This is spelled out in the following lemma.

Lemma 6.1. For any event E, PU4(E) < Peonf( ).

Proof. Let P be an IID measure on ) and S be a nonnegative conformal mar-
tingale satisfying the condition in . It suffices to prove

P(E) < So; (29)

indeed, we can then obtain P!d(E) < P™(E) by taking sup of the left-hand
side of over P and taking inf of the right-hand side over S.

To check , remember that Sy > 1g a.s., where 1g is the indicator of FE.
Since S is a nonnegative martingale under P (like any nonnegative conformal
martingale), we have

P(E):/lEdPg/SNdP:SO. O

We will use upper conformal probability to make the notion of efficiency for
conformal martingales more precise. Namely, if Pid and P are shown to be
close, this could be interpreted as conformal martingales being able to detect
any deviations from randomness. By Cournot’s principle, any deviations from
randomness are demonstrated by indicating in advance an event E of small
probability under any IID measure, i.e., such that Pid(E) is small, which then
happens. If P4 and P are close, P*™(E) will also be small. This means
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that there exists a nonnegative conformal martingale S that increases its value
manyfold when E happens. We can choose S in advance since F is chosen in
advance. And such an S will be successful whenever E is.

The following proposition shows that P and P°* are close, in the
sense similar to the closeness of P4 and P! asserted in Proposition (see

also (27)).

Proposition 6.2. For any E C €,
Pexch (E) < Pconf(E) < NPEXCh(E). (30)

Proposition [6.2]is a statement of efficiency for conformal martingales. It says
that, at our crude scale, lack of exchangeability can be detected using conformal
martingales. Namely, given a critical region E of a very small size € := P*0(E),
we can construct a nonnegative conformal martingale with initial capital Ne or
less that attains capital of at least 1 when E happens.

Combining the right-hand sides of and we obtain

P (E) < 1L5N'PPH(E).

This inequality says that conformal martingales are efficient at detecting devia-
tions not only from exchangeability but also from randomness. Given a critical
region E of a very small size ¢ := P!9(E), there exists a nonnegative conformal
martingale that increases an initial capital of 1.5N!%¢ to at least 1 when F
happens.

Proof of Proposition[6.4 First we check the left inequality in . We will do
even more: we will check that it remains true even if the right-hand side of
is replaced by

inf{So :V(Zl,...,ZN) ck: Eg SN(21,91,22,92,...) > 1}, (31)

where the Ey refers to the uniform probability measure over (01,0s,...) €
[0,1]°°. Notice that Sp,..., Sy in is a martingale in the filtration (G,)
generated by the p-values pi,...,py under any exchangeable probability mea-
sure on {2; this follows from the fact that pi,...,px are IID and uniform on
[0,1] under any exchangeable probability measure (see Remark . There-
fore, for each £ C ) and each nonnegative conformal martingale S such that
Ey Sy > 1g, we have

PZ(E) §PZ(EQSN > 1) SEZ(EQSN):EZﬁSNZSQ, (32)
where P, refers to (z1,...,zx) ~ P, P is an exchangeable probability measure
on Q, Eg refers to (0y,...,0n) ~ U, U is the uniform probability measure on

[0,1], and E, 4 refers to (z1,...,25) ~ P and (61,...,05) ~ UY independently.
Taking the sup of the leftmost expression in over P and the inf of the
rightmost expression in over S, we obtain the left inequality in .
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It remains to check the right inequality in . Let us first check the part
“<” of the first equality in

con k'(N — k)' exC
Pt (o)) = PO pen )

where k € {0,..., N} and w € Q contains k 1s (the part “>" was established in
the previous paragraph; it will not be used in the rest of this proof).

Let w = (z1,...,2n) be the representation of w as a sequence of bits. Con-
sider the nonnegative conformal martingale S“ obtained from the identity non-
conformity measure A(z1,...,2,) := (21,...,2,) and a betting martingale F'
such that F(O) = 1/([]\!) (where O is the empty sequence) and

= if p, <k,/nand z, =1
F(p17"'7pn—17pn) L nn .
=< = ifp, > k,/nand z, =0
F(plv"'ap’nfl) n .
0 otherwise,
where n =1,..., N and k, is the number of 1s in w observed so far,

ko= {7 €{1,...,n}: 2z = 1}];

in particular, ky = k. (Intuitively, S gambles recklessly on the nth observation
being z,.) If the actual sequence of observations happens to be w, on step n the
value of the martingale S“ is multiplied, a.s., by the fraction whose numerator
is n and whose denominator is the number of bits z,, observed in w so far. The
product of all these fractions over n = 1, ..., N will have N! as its numerator and
k(N —k)! as its denominator. This conformal martingale is almost deterministic,
in the sense of not depending on 6,, provided 6,, ¢ {0,1}, and its final value on
w is, a.s.,
1 N!
(N ) EN(N — k)!
To move from singletons to arbitrary £ C €2, notice that a finite linear
combination of conformal martingales S“ with positive coefficients is again a
conformal martingale, since they involve the same nonconformity measure, and
betting martingales can be combined. Fix E C 2 and remember that € is the
set of all sequences in €) containing k 1s. Represent E as the disjoint union

=1

N
E= UEk, By, C Qy,
k=0

and let Uy be the uniform probability measure on ;. We then have

Pconf Z]P;conf {w} Z Z Pconf { } Z Z H])CXCh {w}

weFrE k=0 weFE} k=0 w€EFEy
N
= Ur(Ex) <N max  Uy(Ey) = NP> (E),
k=0 7
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where the last inequality holds when, e.g., E does not contain the all-0 sequence
0...0 € Q. If E does contain the all-0 sequence, it is still true that

Perf(E) <1< N = NPN(E). O

7 Conclusion

This paper gives a review of known methods of testing randomness online, all
of which are based on conformal martingales. It raises plenty of questions,
without giving many answers. Propositions and say that IID, exchange-
ability, and conformal upper probabilities are close, but the accuracy of these
statements is very low and far from meaningful in practice. The most obvious
direction of further research is to obtain more accurate results (a simple exam-
ple related to Proposition [5.2] will be given in Appendix [A]). It would be ideal
to establish exact bounds on upper conformal probability in terms of upper IID
probability and upper exchangeability probability. The most natural definition
of upper conformal probability in this context might involve randomness in a
more substantial way than our official definition does (cf., e.g., )
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A Connections with the algorithmic theory of
randomness

The emphasis of this appendix will be on Kolmogorov’s approach to randomness
and exchangeability expressed in Martin-Lo6f’s [28] terms, which are closer to the
traditional statistical language. (Kolmogorov’s original definitions, equivalent
but given in terms of algorithmic complexity, is discussed in Appendix ) In
our terminology we will follow [55]. Following Kolmogorov [20] 2], 22], we will
only consider the case of binary observations.

A measure of randomness is an upper semicomputable function f : {0,1}* —
[0,1] such that, for any N € N, any IID measure P on {0,1}", and any € > 0,
we have (3). The upper semicomputability of f means that there exists an
algorithm that, when fed with a rational number r and sequence w € {0,1}*,
eventually stops if f(w) < r and never stops otherwise.

In other words, a measure of randomness is a family of p-variables for testing
randomness in {0, 1}?V. The requirement of upper semicomputability is natural:
e.g., if f(w) < 0.01 (the p-value is highly statistically significant), we should
learn this eventually.

Analogously, a measure of exchangeability is an upper semicomputable func-
tion f:{0,1}* — [0, 1] such that, for any N € N, any exchangeable measure P
on {0,1}¥, and any € > 0, we have (3.

Lemma A.1l. There exists a measure of randomness f (called universal) such
that any other measure of randomness f' satisfies f = O(f’). There exists a
measure of exchangeability f (called universal) such that any other measure of
exchangeability f' satisfies f = O(f').

The proof of Lemma [A 1] is standard; see, e.g., [28] or [55, Lemma 4].

In the algorithmic theory of randomness, it is customary to measure lack of
randomness or exchangeability on the log scale. Therefore, we fix a universal
measure of randomness f, set d'9 := —log f, and refer to d'4(w) as the defi-
ciency of randomness of the sequence w € {0,1}*. Similarly, we fix a universal
measure of exchangeability f, set d**M := —log f, and refer to d**"(w) as the
deficiency of exchangeability of w. (Traditionally, the log is binary.)

Proposition [5.2] immediately implies

A7) ~ O(1) < d¥(w) < () + Jloa N +0(1), ()

where w ranges over {0,1}* and N is the length of w. In fact, we can interpret
as the algorithmic version of Proposition Kolmogorov regarded the
coincidence to within log as close enough, at least for some purposes: cf. the last
two paragraphs of [2I]; therefore, he preferred the simpler definition d**?(w) ~
0 of w being a Bernoulli sequence.

Proposition [5.2]is very crude, and Section [7| sets the task of obtaining more
accurate results. In fact, such results are known in the context of the algorith-
mic theory of randomness; some were obtained in the paper [53] written under
Kolmogorov’s supervision.
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To clarify relations between algorithmic randomness and exchangeability,
we will need another notion, binomiality. The binomial probability distribution
biny , on {0,..., N} with parameter p is defined by

biny ,({k}) := (JZ)pk(l —p)N7k ke{o,...,N}.

A measure of binomiality is an upper semicomputable function f : {(N,k) :
N e N,k € {0,...,N}} — [0,1] such that, for any N € N, any p € [0, 1], and
any € > 0,

biny ,({k: f(N, k) <e}) <e

Lemma A.2. There exists a measure of binomiality f (called universal) such
that any other measure of binomiality ' satisfies f = O(f).

We fix a universal measure of binomiality f, set d""(k; N) := —log f(N, k),
and refer to d”®(k; N) as the deficiency of binomiality of k (in {0,..., N}).

Proposition A.3. For any constant € > 0,

(1 =€) (d™M(w) + d"™(k; N)) — O(1) < d"(w)
< (L+e) (d™M(w) + d"™(k; N)) + O(1),

N ranging over N, w over {0,1}", and k being the number of 1s in w.

Proposition follows immediately from (and is stated, in a more precise
form, after) [53, Theorem 1]. It says, informally, that the randomness of w is
equivalent to the conjunction of two conditions: w should be exchangeable, and
the number of 1s in it should be binomial. For example, suppose that N is a
large even number and the number of 1s in w € {0,1}" is k = N/2. Then w
might be perfectly exchangeable whereas it will not be random since it belongs
to the set of all binary sequences with the number of 1s precisely N/2, whose
probability is small. (Example was based on this observation expressed
in a different language.)

B Connections with the algorithmic theory of
complexity

In Appendix [A]we gave the definition of randomness equivalent to Kolmogorov’s
but used Martin-Lo6f’s language of statistical tests. Kolmogorov himself used the
language of algorithmic complexity, nowadays known as Kolmogorov complexity.
Apart from his papers [20, 211 22] on this topic, Kolmogorov was also a co-
author of [25], which was based on his ideas and publications, although he did
not see the final version of that paper [25], Introduction] and did not take part in
preparing the talk on which it was based [49, p. 380]. Another valuable source
is the record of his 1982 talk [23]. From now on I will assume knowledge of some
basic notions of the theory of Kolmogorov complexity.
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Kolmogorov’s original notion of randomness for an element w of a simple
finite set M was that K (w) ~ — log | M|, where K is Kolmogorov complexity and
log is binary log (see [20, Section 4]). Martin-Lof [29] modified this requirement
to K(w | M) =~ —log|M]|, where K now stands for conditional Kolmogorov
complexity. In his 1968 paper [21], Section 2] Kolmogorov gave his alternative
formalization of von Mises’s random sequences, with a reference to Martin-Lof:
namely, Kolmogorov said that a binary sequence w of length N containing k 1s
is Bernoulli if

K(w | k,N) = log (27)

It is natural to call the difference

AP (w) := log (JZ

)—K(wk,N) (34)
the deficiency of exchangeability of w (in terminology close to that of [23] and
[25]). This definition is equivalent to the one given in Appendix [A| (in the
sense that the difference between and d**"(w) as defined in Appendix
is bounded in absolute value by a constant independent of w; this is the first
italicized statement in [28] p. 616]).

Being Bernoulli in the sense of Kolmogorov does not fully reflect the intuition
of being random, i.e., being a plausible outcome of a sequence of N tosses of a
possibly biased coin. This intuition is better captured by

d(w) = peiﬂ)f,l} (— logBéV(w) — K(w | p, N)) , (35)
which we call the deficiency of randomness of w, being small. This is equivalent
to the definition given in Appendix [A]

Proposition in Appendix [Al about the difference between and
can be made much more precise if we modify our definitions. Theorem 1 of [53]
shows that

D (w) = (log (Z) — KP (w | N, k, D"™(k; N))) + D" (k; N) + O(1),

where N ranges over N, w over {0, 1}N, k is the number of 1s in w, KP is
prefix complexity, D4 is the analogue of d'd using prefix instead of Kolmogorov
complexity, and Dbin(k‘; N) is the prefiz deficiency of binomiality of k defined
by
D™ (k;N) := inf (—logbiny,(k) — KP(k | p,N)),
p€l0,1]

where biny , is the binomial probability measure on {0,..., N} with parameter
p, as defined earlier. Theorem 2 of [53] characterizes DP(k; N) in terms of
prefix complexity, showing that it can be as large as %logN + O(1).
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