Secure Shared Processing on a Cluster of Trust-Anchors

Keith Mayes

Royal Holloway, University of London, Egham, Surrey, UK,
kei th. myes@ hul . ac. uk

Abstract. Attacks on computer systems and networks have never beenprmr
lific, hence the great effort from government, industry aoddemia, to identify
and adopt information/cyber security best-practices.tbshis effort has been
directed to the logical design and operational securityystesns, however the
security of implementation is also vitally important, esiadly for critical and
machine-to-machine infrastructures. One approach torpimdeng implementa-
tion security, is to distribute, certified-secure chipshasiware security modules
(HSM), to provide strongly attack-resistant and trustedpaints for protocols.
A risk with physically deploying fixed function HSMs is thdtey may need to
have a long life-time, yet be unable to support new algorittand protocols in
response to evolving threats and defenses; so a manageabie latform is
attractive. Existing single-chip platforms have spestaliardware security, in-
cluding crypto coprocessors to help performance, howédsr general process-
ing is slow, due to the secure platform software defensehjmivhat are small,
low-cost and low-power chips. In this research we exploeeitlea of multiple
HSMs sharing resources on security processing tasks, utittoonpromising that
security via inter-HSM communications. The proposal ardteel performance
experiments center around clusters of up to eight HSMsgustommunications
protocol, based on Offset Codebook authenticated enorypsharing resources
for processor intensive tasks. A localised cluster of MUISTOust-Anchor chips
was used for experimentation, although the principles efpfoposal extend to
clusters that are widely dispersed.

Keywords: Authenticated Encryption, OCB, MULTOS, HSM, Security, Stier

1 Introduction

Deployed Hardware Security Modules (HSM) are seen as a wayatécting criti-
cal infrastructure and Machine-to-Machine (M2M) systemaiast implementation at-
tacks. The HSMs may be Security Chips (SC), which have umaeréprmal Common
Criteria (CC) [2] evaluation to a high level, including imEndent laboratory testing
of tamper and attack resistance. An SC would include a Cr@uiprocessor (CCoP)
for efficient support of common cryptographic algorithmsl aelated processes, but
otherwise the chips are low-power, low-cost and with limi@PUs and memory. Di-
rect implementation of fixed-functionality on the proceasse best for performance,
but for widespread and long-term deployment, a manage&glers platform is re-
quired, which is abstracted from the underlying hardwarehls research we use the

2 Keith Mayes

MULTOS [11] platform based on its high levels of CC, which Head to its use in
payment cards and passports; in particular we use the MULTIT@S-Anchor [12] SC,
which is intended for Internet of Things (loT) security a@pptions. To illustrate the
performance challenge of using such a small secure plafi@roomplex security pro-
cessing, we refer to a previous study [10], which showedftiradn identical chip, the
performance difference between non-secure native coddightly secure MULTOS
application code, could be two orders of magnitude; witlused native code, expected
somewhere in between. In this research, we explore the idealaster of SCs work-
ing collaboratively on a security process to overcome perémce restrictions. This
presents a major security challenge, as the evaluated &6 helavily, on security pro-
cessing being carried out within the single chip, usingesear private keys which also
do not leave the chip, and with no intermediate results ‘ilegikfrom the chip. The
distribution of long-term keys and cryptographic credalstis not a primary concern,
as this is inherently supported within MULTOS, however SQatmrative working
suggests that sensitive data and intermediate resultdwiixposed on communica-
tions interfaces. The CCoP supports secret key algorithitisrelative efficiency, so
one could imagine using AES [4] encryption to preserve cemifiiility of communica-
tions, however this alone is insufficient, as a man-in-thidete attack may modify or
insert messages to alter the process result. The chosemsappras to design a proto-
col around Authenticated Encryption (AE) [5], which hashbetudied [10] with respect
to MULTOS (and native) platforms for the EMV payment carchstards at the request
of EMVCo [3]. There are several AE modes which could be usedigver the earlier
work showed that for messages of 40bytes or more, Offseti@mlg OCB) [8] was the
most efficient mode for the MULTOS platform; and chosen fas tesearch, based on
anticipated test message sizes. The OCB AE implementatamiease of 128-bit key
AES as the block cipher. To investigate the proposed m@tafproach, we created a
generic load case, whereby a processing task of contrelthbvation could be split into
eight parts and then shared between the available supgp&@s. For the experimental
system, we chose the MULTOS Trust-Anchor (TA) as the SC type;TA being in-
tended for I0T security applications. To evaluate the panénce aspects, a cluster of
eight TAs, was used under the supervisor of a Master TrushAn(MA).

This report first introduces the MULTOS Trust-Anchor andélperimental cluster
in Section 2 and then provides goals and requirements fanaisgprotocol in Section
3. A proposal for an AE-based protocol is described in Saclipand experimental
results are presented and discussed in Section 5. Conudumial suggestions for future
work are presented in Section 6.

2 MULTOSand Trust-Anchor

MULTOS is a robust and highly secure Operating System (Gkéd by a large indus-
try consortium [11]. It has an on-chip Virtual Machine (Mgt was originally used to
provide a secure multi-application platform for smart canded in high-security appli-
cations, such as payment and passports. MULTOS device<d@oE support and use
different memories for code, non-volatile data, and RAM tfog stack and variables.

Trust-Anchor Cluster 3

The memory map is shown in Figure 1, but note that the phyBiéall space in partic-
ular, is usually just a fraction of what could be theoreticatidressed. A critical aspect
of MULTOS devices is the high-levels of CC evaluated segiwihich includes exten-
sive independent lab-testing of resistance to attackfydimyy physical, side-channel
[6] [7] and fault [1]. Another vitally important aspect of MOOS, is the ability to
strictly control the data and applications to be loaded thtochip; which is enforced
by a Public Key Infrastructure (PKI), in which developergdaheir proposed load-
units have to be registered and certified. The loading sgcsrivell suited to device
personalisation and loading post-deployment. Source dedelopment for MULTOS
is normally in theC language, which is compiled to MULTOS Execution Language
(MEL), the VM is 16-bit, with 32-bit extensions for memoryasss; an introduction
can be found in [9]. MULTOS chips intended for smart cardstesuited to our coop-
erative cluster proposal, as they have limited I/O and atétended to be free-running
processors; the MULTOS Trust-Anchor does not have thestlions, and offers more
RAM memory.

Data Space
] Registers
/1 Stack (_\\-4 Dyn Top
/ . Local Base
/ Session Dyn Bottom
// — Public Top
i < Public _~ Public Bottom
i / / | Static Top

__RAM | :% Stafic Botiom

o . — _sttic_|
EEPROM < - -
Application

Code Space

Fig. 1. MULTOS Application Memory Architecture

Code Pointer

2.1 Trust-Anchor

The MULTOS Trust-Anchor (TA) device [12] is intended to afféghly attack-resistant
security, for loT applications. It offers 9.5kbytes of dtand session RAM and a further
3.5kbytes of public RAM, and a total of 315kbytes Non-Vd&atiiemory (NVM) for
the secure OS, application code and static data. It has arsand shield protected
dual processor CPU, a 2kbits+ CCoP, internal timers andormnmtlimber generation, a
legacy smart card interface, a USB interface and up to 12 GiR&S. Two of the GPIO
lines can be configured to form an 12C bus; which is normallgdutr the control of
peripherals, however, in our experiments, it was re-puegds connect the cluster of
devices. The actual chip package area is only 25maithough larger breakout boards
were used for development.

4 Keith Mayes

2.2 TheCluster

Our proposal makes use of a cluster of TA security devicetiasrsin Figure 2. The
cluster has up to eight TAs acting as secure processingcsepvoviders (SPSP) to the
MA; which itself acts as a SPSP to the requester, represénytéioe PC in Figure 2.
In normal secure use, each device would be personalisedawithique address and
security credentials (including cryptographic keys), lbwer for experimentation, the
TAs determine their (hard-coded) address from readingtbfeheir GPIO lines. The
address is used to select from a set of stored personatigatddiles, allowing a com-
mon build and configuration to be used during performandatgeNote that the very
limited RAM mentioned in 2.1, imposes restrictions not josthe TA applications, but
also on the communications buffering, which dictates soeségh choices in multi-TA
cluster processing.

USB[
Master ‘
< > PC
Anchor | ‘ ‘
12C
§ Bus
I/0 ‘ ' 11/0
<,‘/:(> Anchoro Anchoréd </:>
1/0) 11/0
=) Anchorl Anchor5 |4
/o ’ \1/o
@@= Anchor2 Anchor6é (<=
1/O ‘ 11/0
é=)| Anchor3 Anchor7 |e=)

Fig. 2. Experimental Cluster of Trust-Anchors

3 Security Goalsand Requirements

The primary security goal within our research, is that theeafsa TA cluster for security-
sensitive processing, is no less secure than carrying eetttire process within a single
chip. The protection of a centralized authentication gatitd server is out of scope for
this study, but is expected to follow security best-pradjsuitable for it to be a trusted
endpoint. We assume that the TAs within our cluster and tihenconications between
them are accessible to attackers, however as the MULTOS VArisstrongly attack-
resistant, (as can be proven by CC evaluation), we do nosfoouwequirements for TA
implementation attack protection, but rather on the iffi®lcommunications.

Trust-Anchor Cluster 5

3.1 Inter-TA Communication Attacks

The difficulty of compromising a communications interfacgath, depends on the de-
sign and technology used, but also on its location and aibiéysto the attacker. In
our proposal, we assume that attackers can both passiveligantvansmissions and ac-
tively attempt to modify transmissions, or insert fake saissions (often referred to as
Man-In-The-Middle attacks). Therefore, to protect semsitommunications between
two legitimate parties (the TAs), requires the followindeteses:

Prevention of security information discovery by passseesdropping
Detection and rejection of fake messages from non-atitaded sources
Detection an rejection of replayed, or re-ordered legite messages
Detection and rejection of modified legitimate messages

Detection of blocked and missing legitimate messages

Detection of Denial of Service (DoS) transmissions

oukwnhE

Eavesdropping within the planned context, could potdgt@tpose sensitive data,
cryptographic keys and credentials, partial algorithnultesor information that could
be exploited in other attacks. The solution is to encryptgnaissions using a best-
practice algorithm, such as AES. A protocol that incorpesagource authentication
will detect fake message insertion, and cryptographiagritye protection will detect
modification of legitimate messages. Replayed and re-edderessages are detected
by protocols that incorporate a count, or initializatioiuea which updates for each
protected message block; a mechanism that can also detihgimessages in a se-
quence. With the exception of DoS our security requiremesnisbe supported on secu-
rity chips by using Authenticated Encryption (AE) protagadtandardised in ISO/IEC
19772 [5]. A DoS attack is detectable by unexpected trarsams and failures, and
in the planned context, the MA has the option to return to dmistered processing,
at the expense of performance. In the next section we propgsetocol that lever-
ages from best-practice standards, satisfies the secaqtyrements and will permit
practical performance evaluation.

4 Secure Cluster Protocol Proposal

Our proposal assumes that each TA in the cluster has beerebeparsonalized with
unique long-term cryptographic credentials such as kegld@g; so they are uniquely
addressable and can support the operational and manageasénbf a security end-
point. We also assume that the desired functionality useduster-based processing
has been pre-loaded into the devices, which can be verifeethe TA's Service Ta-
ble, which is reported to the MA. All personalization is amred using the well-proven
MULTOS management protocols. Only the MA is aware of the all@luster opera-
tion and associated data, other TAs just respond to servaeepsing requests, based
on sub-sets of data. The only common key that is personatizihd sub-set of devices
that form the cluster, is the default cluster key. This kegrify used to generate a new
cluster session key, when requested by the MA.

6 Keith Mayes

The MA is responsible for the cluster (and associated segsp) establishment as
well as management of cluster processing. In order to dséuarely, it needs a method
of protecting transmissions to maintain confidentialitg &megrity of communications
between authentic parties. Authenticated Encryption (i&E&)solution for the security
protection problem and having previously [10] been proedre practical on MULTOS
platforms, was selected as the method for this researclougamodes of AE have been
standardized ISO/IEC 19772 [5]. It has been shown in [10f BExecrypt-Then-MAC
(ETM) mode is efficient for very small data payloads (up to ¥2b); but for larger
messages, OCB is faster. The latter was chosen for this wodkintroduced below.

4.1 Offset Codebook Authenticated Encryption

The Offset Codebook approach to AE was pioneered by Phil Rag#13], and also
described in RFC 7253 [8]. It was includedraschanism 1in ISO/IEC 19772 [5]. The
mechanism can be briefly described with reference to Figuss 8vith most AE mech-
anisms the plaintext message is split into blocks readyhfebtock-cipher operations,
however, OCB differs in that an incomplete last block doesraquire padding. The
example of Figure 3, has three complete and one incomplessage blocks (M1-3,
M*), producing an output sequence of C1-3, C* plus an extgaTftaNote that there
is additional processing (of some significance) in computhre initialization vector,
although this is only recommended once every 64 blocks. Weotlase Authenticated
(but not encrypted) Data, sauth can be disregarded in the diagram. There are variants
of OCB; we used OCB2, as the most efficient mode found in [10].

A< Init(N)
AelInci(A) A«lnes(A) A<Incs(A) A«Inc,(A) A Incs(A)
0] (] (%] 6B, [
S T G : et
Eq Ex E Ey E
Pad Final
Me— a
s Gd et Tag
La] [e] [a] [N r
-1 —

Fig. 3. OCB with Incomplete Blocks [Rogaway]

4.2 Cluster and Session Key Establishment

HSMs are typically personalized before use, which invotiiesecure loading of unique
long-term cryptographic keys and related credentials,elkas common functions and

Trust-Anchor Cluster 7

data. It is best-practice to use open standardized crygpddg algorithms and diver-
sified keys and related data, so that HSMs are unique, anceimrlikely event of
compromise, will not aid an attack against other devicegrbctice, long-term keys
are normally used to generate session keys that are useatiopatly. We follow these
principles in our Trust-Anchor proposal, except that thes @6le to become part of the
cluster, have also been personalized with a common clusygeuked to establish cluster
session keys, for use between the TAs and MA. The protocps $te establishing the
cluster session key are shown in Figure 4, with symbols ineTajnoting that the figure
represents the interaction with a single selected TA, wawene practice the MA may
interleave its interaction across multiple TAs, as begsquarallelism and efficiency.

Trust Anchor Master Anchor
Tes +5[0.21%% — 1]
Nes +5[0.2"%° — 1]

AEnck, (Tes, Nes)

Irq,Co,C1,T <

(Mg, M1, TT) < ADeckC (Co, 01)

if(Tr #T) Nack Fail

(Tcs,ncs) <~ (MO,M1)

kes < Ency, (Tes) kes < Ency, (T¢s)
Acs + Imit(nes) Acs + Init(nes)
AEnc, (ST.)

— Co, Cl,T

(Mo, M1,TT) < ADeCkCS (Co, Cl)
if(T, = T)
ST, < (J\Jo7 Ml)

Fig. 4. Establishing Cluster Membership and Session Values

Referring to Figure 4, the MA, starts by generating a randomiver and a random
nonce, and copying into two AES blocks, which are AE encrgptging the long-term
cluster secret key and its associatiethult A.. The cipher blocks and token are then
sentto the TA, which AE decrypts the message into two platitiecks and regenerates
the token. If there is a mismatch between local and recekelts, aNack response
indicates the protocol has failed, otherwise, the randomber and nonce are copied
from the plaintext, and the random number is AES encryptatéuthe cluster key to
generate the cluster session key. The TA then AE encryp8eitgice Table (ST) data,
under the session key, and sends to the MA (which also geseitae key). The MA,
AE decrypts the message using the session key, and if tha tekerified, the cluster
membership and session key establishment has succeedked particular TA. The ST

8 Keith Mayes

Table 1. Symbol Definitions

Symbol Description

ke Personalized long-term AE cluster key (128-bit)

Kes The current cluster session AE key (128-bit)

Tes Random for cluster session key generation (128-bit)
Nes The current AE cluster session nonce (128-bit)

Ac Initialization value for long-term cluster key

Acs Initialization value for session cluster key

M;, C; The jth message and cipher blocks (128-bit)

i, T, The ith AE token, and recomputed token (64-bit

AEnc, Authenticated Encryption under key sety
ADecy, Authenticated Decryption under key set y

Enc, AES Encryption under key y
Init() Initialization value generator
Funcs() Service Function for Request x
STq Service Table for Anchor a

DI, DO Service Input and Output Data
Irq, Srq, Rrq Initial, Service and Read Requests
Flag, Service Completion Flag for Anchor a

data informs the MA of the services that the TA can supporh@diuster operational
phase. The establishment process may be repeated, tdrsfsson keys, nonces, and
Acs. The session key establishment has messages with 32-fydasao which could
have efficiently been protected by the ETM AE mode, howeveerational messages
are larger and will dominate performance, hence the use & fa€all transmissions.

4.3 Operating the Cluster

Referring to Figure 5 and Table 1, we see how the MA requestistaace with a
security-sensitive data processing task. From the clgsteup phase, the MA learns
the Service Table of the TAs, so only requests supportedcssvThe MA generates a
service request, by AE encrypting, under the cluster seds®y, the input data (DI) to
be processed, and then sends this along with the token avidesgrpe request to the
TA, which AE decrypts the input data with the cluster sesdien If the recomputed
and sent tokens do not match thehlack is sent to the MA to indicate failure. If the
tokens match then the TA immediately sendsfek to the MA, indicating that the re-
quest has been accepted and the service function will cormendine MA then waits
(actually works with other TAs or processes itself) untileampletion flag is detected,
upon which it sends a read request for the output data (D@) TRresponds with the
DO, AE encrypted under the session key, and the correspgndiken. The MA AE
decrypts the message and if the tokens match, accepts th&l@® that completion
flag detection can be achieved by either a GPIO signal to thefidi the TA, the
MA polling the status of the TA, or a timer expiry. Optimum kasegmentation and
scheduling would minimize the idle time of the MA and TAs.

Trust-Anchor Cluster 9

Refreshing and Synchronizing To successfully AE encrypt and decryptan OCB trans-
mission sequence between MA and TA, requires a shared ckesdsion key, but also
the correct initialization vector. The vector is not statitd is incremented after each
block encryption, so there is potential for loss of synclisom either due to natural,
or malicious message disruption. As the MA knows exactly mouch DI has been
sent and how much DO is expected for a particular TA, it catimede and try al-
ternative vectors based on lost message scenarios. Isthissuccessful then the MA
can re-establish synchronism, by repeating the clusteimsekey establishment (for all
TAs) using fresh nonce and random values. With OCB, it is-peattice to re-fresh the
initialization vector after the protection of 64 x 16-bytessage blocks.

Slave Anchor Master Anchor

AEnc,, (DI)
Srq;Co, C.., T +

(MO, M__,TT-) — ADeckcs (Co,c)

if(Tr #T) Nack Fail
else(Flagq <+ 0) Ack Accepted
DO < Funcs,.,,(Mo, M) Wait...
AEncy ., (DO)
Flage <+ 1 Detect
Rrq
— Co, C“, T

(J\Jo7 M., TT-) — ADeckcs (C’o7 C)
if(T, = T)
(DO) = (Mo, M..)

Fig.5. Service Request and Response

4.4 Experimental Use-Case

The experimental test cluster, consists of eight TAs andvtAeconnected via an 12C
bus. Each TA has an internal flag bit used to indidtee when a task has been com-
pleted. The flag state is is duplicated on one of the TA's GRI@Q{ut) pins, which is
connected to a MA GPIO pin (input). This provides the MA wikte toption to deter-
mine TA processing state without raising queries over tl@& s, which could affect
performance tests; and also provides external means todraod visualize the effec-
tiveness of the TA scheduling. To permit a common softwaitg lfar testing, each TA

10 Keith Mayes

has three GPIO inputs to indicate its 12C address, whereaadhress of the MA is
implicit. The MA is connected to a PC via a USB port; with the p@viding control,

performance measurement and timing logic analysis. Eacim@kes use of in-built
millisecond timers to simulate processing tasks of vanrdifficulty and duration; as
requested by the MA.

Initial Test and Modelling A TA, in common with most SCs, has very limited RAM
and so buffering for preparation and transmission of messlaga also has to be lim-
ited. For testing, we assume that the MA can support a maximfubkybte buffering
for data, either waiting to be processed or in transmissiorg12-bytes for data need-
ing cluster processing and another 512-bytes for the reSaftour eight cluster ex-
periments we break this data into eight sub-sections of &4yach; with a delegated
processing task, processing this amount of input and rietyithe same amount of out-
put. Therefore, all our AE payloads will be 64 bytes of enteghdata (equivalent to
four AES blocks) plus the authentication token (eight byt€kere is a clear overhead
in outsourcing security processing tasks, this includegithes for MA data-input AE
encryption, TA data-input AE decryption, TA processing, fBsult AE encryption and
MA result AE decryption. The TA processing contribution rhbe sufficiently advan-
tageous to justify the four cryptographic processes. The &b needs to efficiently
schedule the TAs, to minimize their wait time, both to stadqgessing and to deliver
their results. The 8-cluster schedule is easiest to viseadis shown in Figure 6, with
time progressing from left to right. MA AE encryption and AEatyption are repre-
sented as MAE and MAD, and similarly TAE and TAD for the TA, wthe longer bars
representing TA data processing.

MAE [TaD W e
WAE [TAD T T MAD
W TAD 0 T o
WE T [t T W
MAE TAD ™ e W
MAE |TAD 185 T WAD
WE T 16 TE W
W ThD w T W

Fig. 6. Optimal 8-Cluster Schedule

The displayed schedule is optimal in that the MA encrypth#igput data messages
and decrypts eight result messages without waiting or biglleg Whether it is practi-
cally viable, is critically dependent on the duration of e cryptographic operations
relative to the duration of the overall processing task. fiits¢ part of the experiment
was therefore to determining OCB AE encryption and decoyptiimes for 64byte data
payloads. It was tested by using the PC to send fixed test gestathe MA, running
the process multiple times to improve accuracy, and timimgresponse using inter-
nal timers, to avoid communications aspects. Communicati@lays are considered in
later sections when the 12C bus is used.

Trust-Anchor Cluster 11

5 Experimental Results

The experiments were split into two stages. The Initial stagnchmarked the OCB
AE performance on the TA, which enabled the best-case mAltituster performance,
to be accurately modelled for the TA. When normalized by tleefcryption/decryp-
tion time, the results become relevant to other procesdatfppms. The initial results
did not consider transmission delays (as these are chaapehdent), or those due to
imperfect scheduling (implementation dependent); thepeets were addressed in the
transmission and scheduling results stage.

Initial Results The first results are shown in Table 2, indicating the TA spieed
OCB2. Note that the encryption and decryption processetharsame (just an added
token check for decryption), so the results represent batbgsses. For interest, a range
of data payloads is considered, although the 64 byte pradess09ms is the one that
we are interested in. It is worth noting that the performasce little slower than the
results in [10] which were obtained on an older MULTOS smartic The explanation
from MULTOS was that the TA has additional redundancy, teoffirther enhanced
attack-resistance.

Table 2. Trust-Anchor OCB Process Times (ms)

DataBytes 16 32 64 128 192
Duration (ms) 16.17 24.742.09 76.65 111.18

Using these results, we are able to model, predict and cartharbest possible
performance for the single MA and when assisted by clusfdvex four and eight TAs.
The absolute values are listed in the top rows of Table 3; and/shat as the overall
processing time increases with respect to the AE operatibespeed gain follows the
number of TAs in the cluster. We can express this generibgllyormalizing the values
with respect to the AE operation time; as shown in the lowessrof the table.

Table 3. Comparison of Cluster Processing Predictions

TAs Absolute Process Times (ms)
8 672 672 712 837 962 1087 1212 1337 1462
4 714 714 878 1128 1378 1628 1878 2128 2378
2
1

714 1047 1462 1962 2462 2962 3462 3962 4462

0 1000 2000 3000 4000 5000 6000 7000 8000
Normalized Process Times (multiples of AE time)

8 16.0 16.0 17.0 19.9 22,9 259 289 31.8 34.8
4 17.0 17.0 20.9 26.9 32.8 38.8 44.7 50.7 %6.6
2
1

17.0 249 34.8 46.7 58.6 70.5 82.4 94.3106.2
0 23.8 47.6 71.4 95.2 119.0 142.9 166.7 190.5

When the overall process time is still comparable with tli&the AE operations, the
potential for gain depends on the crossover of the clustdopeance curves as illus-
trated in Figure 7. The single TA case is actually the timimgrinning the process on

12 Keith Mayes

the MA, so does not involve AE operations. As our test cassistsiof eight messages,
each with 64bytes of data payload, the minimum processing tor a multi-TA cluster
is 16 times the AE duration; the time it takes for the MA to AEgIpt the eight inputs
and then decrypt the eight results.

2000
1800
1600
1400
1200
1000
800
600
400
200
0

Cluster Process Time (ms)

0 500 1000 1500 2000
Total Process Time (ms)

..... § mmmd = =) —1

Fig. 7. Cluster Process Times Excluding Communications

Transmission and Scheduling Results The results presented in this section are based
on a specific scheduling and communications implementatiba supporting cluster
with either two, four or eight TAs, using the short-range 2@ for communications
and control. We assume optimal scheduling as illustratédgare 6, however, we now
also assume there is a time delay between the MA decidingtiatea secure TA task
and the TA beginning to AE decrypt the input data; similaHgre is a delay between
the TA completing AE encryption of the result, and it arriyiback at the MA. The
control and scheduling of a secure TA process is illustratettie captured traces of
Figure 8, for a dummy 1ms duration task.

The SCL andSDA traces are th&2C bus signals, shared by the MA and TAs, as the
primary means of communication. TH&-Flag trace is a secondary communications
means, in the form of a normally low GPIO output from a TA (ibpaithe MA) that
is raised high to indicate that the TA has completed its @siog task. ThdA trace
is used to indicate TA processing; first low when the MA dathesg AE decrypted
(TAD), high for the dummy 1ms task, then low when the resultéing AE encrypted,
then high again waiting for result collection and its neskteClearly, the time between
the MA starting to transmit AE encrypted data to the TA and Thestarting to AE
decrypt, is not insignificant, and neither is the time frora A completing its AE
encryption to the time that the MA has received it to start Adergption. The bulk
of the time lag is due to transmission on the 12C bus, whicluming at the default

Trust-Anchor Cluster 13

-20ms 0 +20ms Hms +60ms H0ms +100ms

.
It Bits:]

VG s et

Fig. 8. TA Processing Schedule Trace

100kHz clock speed, with the remainder due to event handlelgys within the MA
and TA. We investigate the starting lag in more detail, assiliated in Figure 9

Fig. 9. TA Starting Delay Trace

From the MA beginning transmission of an AE encrypted messiagthe TA start-
ing to AE decrypt it, there is a delay of 11.48ms. Now consitethe result lag in
Figure 10, we see delays between the end of the TA AE encryptid the assertion of
its flag, and then to the triggering and completion of comroatidon with the MA. The
overall lag at 11.31ms is very similar to the starting lag.

These results can be extended to various conditions by tiraglas an extension to
the TAE and TAD times, and will increase an effective TA rasgp®time by 22.79ms.
Because of the pipeline scheduling, the added delays hdyevonor effect. For an
eight, four, and two TA cluster, the processing time is ondteaded by 22.79, 45.58
and 91.16ms respectively. The final performance graph is/isho Figure 11, with

14 Keith Mayes

11,314000000 ms | 88,3861 Hz

T
o | T ML
TAFlag —Ji

-_

Fig. 10. TA Result Delay Trace

vertical axis normalized to the AE duration, for relevancéhe TA, but also to other
types of processor. The shape of the graph (up to 2000msYyyssumilar to that in
Figure 7, and we can see how the gain improves with even ldagks, shared between
the TAs.

200

e Y
oy e =@ M B~ o 2o
o o o o o o o

MNormalised Cluster Time {AE)
.
=

0 1000 2000 3000 4000 5000 6000 7000 8000
Total Process Time (ms)

------ 8 el = =) —1

Fig. 11. Cluster Execution Normalized to AE Time

6 Conclusion and Future Work

The study investigated the practicality of secure collakiee processing via a cluster of
security chips, in the form of MULTOS Trust-Anchors (TA); uge attack-resistance

Trust-Anchor Cluster 15

can be Common Criteria evaluated to a high level. The chdi¢ckeoMULTOS plat-
form provided justification to focus on inter-platform comnications security, rather
than chip attacks. Fundamental to high levels of securitjuation, is that for a se-
curity sensitive process, partial results cannot leak ftbenchip, or be manipulated,
whereas that is exactly what is at risk with a cluster apgro®o overcome this prob-
lem, an inter-device secure protocol was proposed baseditreAticated Encryption
(AE). This firstinvolved a protocol for session key and wiitiation vector set-up, using
long-term personalized keys; although the main investigdbcus was on the subse-
quent operational protocol, used for sharing and procgsbmsecurity sensitive tasks.
The protocol satisfied the communications security requémts, ensuring the privacy
and integrity of transmissions between authenticatedgsanbased on an OCB stan-
dardized mode of AE; which has previously been proven to betjmal on MULTOS.
The security protocol comes at a cost to performance (coedgara hon-secured pro-
tocol), which was initially tested and modelled by benchrdkingg the raw OCB speed
on the TA, without the inclusion of transmission and schedudielays. The main tests
considered a processing cluster, with up to eight TAs, warkin a task which could be
splitinto eight parts; each with 64 bytes of data input anighou The minimum overall
duration under these conditions, was the time for the MA tmglete 16 AE oper-
ations (672ms), which can be considered as the threshottbgsing duration, after
which the cluster becomes increasingly useful. An invesiign into communications
and scheduling aspects over the 12C bus, showed delaysieff¢lce start and end of
TA processing. However, due to the parallel scheduling ditlays only extended the
overall processing time by 22.79, 45.58 and 91.16ms, fatets of eight, four and two
TAs, respectively. The secure cluster protocol has proventigal for the MULTOS
TA devices working locally over the 12C bus, and is advantagfor process durations
that exceed the threshold processing duration.

6.1 FutureWork

Authenticated encryption is designed for general use andtisestricted to localized
transmission; it was only the availability and convenieatthe 12C bus that led to its
experimental use. It would be very interesting to implenamtlternative communi-
cation channel that would permit a widely dispersed clusfefAs to collaborate on
a secure process. Other secure chips could also be tribdugh the TA results nor-
malized by AE time, should allow reasonable prediction afgenance, once the AE
duration has been bench-marked for the alternative chips.

Acknowledgment

The author would like to thank Chris Torr from MULTOS, for higluable support and
guidance; and Crisp Telecom Limited for use of test and dgraknt resources.

16

Keith Mayes

References

10.

11.
12.

13.

. D. Boneh, R. Demillo, and R. Lipton, “On the importance bé&cking computations,” in

Advances in Cryptography - Eurocrypt 97, volume 1233, pp. 37-51, Springer Verlag, 2013.

. CC, "Common criteria for information technology secymvaluation partl: Introduction

and general model,” version 3.1 release 4, September 2012.

. EMVCao, http://www.emvco.com/ [retrieved: May, 2020].
. FIPS, “Federal Information Processing Standards, Anciog the Advanced Encryption

Standard (AES), Publication 197.” http://nvipubs.nistnistpubs/FIPS/NIST.FIPS.197.pdf
[retrieved: May, 2020].

. ISO/IEC, “19772 Information technology - Security teithues - Authenticated encryption,”

2009.

. P. Kocher, “Timing attacks on implementations of diffietnan RSA DSS and other sys-

tems,” in Advances in Cryptology - CRYPTO '96 Proceedings LNCS volume 1109, pp.
104-113 Springer Verlag, 1996.

. P. Kocher, J. Jaffe, and B. Jun, “Differential power as&ly in Advances in Cryptology -

Crypto 99 Proceedings LNCS, volume 1666, pp. 388-397, Springer Verlag, 1999.

T. Krovetz and P. Rogaway, “The OCB authenticated-erimgpalgorithm, IETF RFC
7253," May 2014.

K. Mayes and K. Markantonakis, editorSmart Cards, Tokens, Security and Applications,
chapter Chapter 17. Springer, 2nd edition, 2017.

K. Mayes, “Performance of Authenticated EncryptionRayment Cards with Crypto Co-
processors,” ifProc of ICONSL7, pp. 1-9, 2017.

MULTOS, http://www.multos.com/ [retrieved: May, 2420

MULTOS, “The MULTOS Trust Anchor Development Board,”
https://www.multos.com/deboards/devboardetails, [retrieved: May, 2020].

P. Rogaway, “OCB mode,” http://web.cs.ucdavis.edg@way/och/ [retrieved: May, 2020].

