
Secure Shared Processing on a Cluster of Trust-Anchors

Keith Mayes

Royal Holloway, University of London, Egham, Surrey, UK,
keith.mayes@rhul.ac.uk

Abstract. Attacks on computer systems and networks have never been more pro-
lific, hence the great effort from government, industry and academia, to identify
and adopt information/cyber security best-practices. Most of this effort has been
directed to the logical design and operational security of systems, however the
security of implementation is also vitally important, especially for critical and
machine-to-machine infrastructures. One approach to underpinning implementa-
tion security, is to distribute, certified-secure chips, ashardware security modules
(HSM), to provide strongly attack-resistant and trusted endpoints for protocols.
A risk with physically deploying fixed function HSMs is that they may need to
have a long life-time, yet be unable to support new algorithms and protocols in
response to evolving threats and defenses; so a manageable secure platform is
attractive. Existing single-chip platforms have specialist hardware security, in-
cluding crypto coprocessors to help performance, however their general process-
ing is slow, due to the secure platform software defenses, within what are small,
low-cost and low-power chips. In this research we explore the idea of multiple
HSMs sharing resources on security processing tasks, without compromising that
security via inter-HSM communications. The proposal and related performance
experiments center around clusters of up to eight HSMs, using a communications
protocol, based on Offset Codebook authenticated encryption; sharing resources
for processor intensive tasks. A localised cluster of MULTOS Trust-Anchor chips
was used for experimentation, although the principles of the proposal extend to
clusters that are widely dispersed.

Keywords: Authenticated Encryption, OCB, MULTOS, HSM, Security, Cluster

1 Introduction

Deployed Hardware Security Modules (HSM) are seen as a way ofprotecting criti-
cal infrastructure and Machine-to-Machine (M2M) systems against implementation at-
tacks. The HSMs may be Security Chips (SC), which have undergone formal Common
Criteria (CC) [2] evaluation to a high level, including independent laboratory testing
of tamper and attack resistance. An SC would include a Crypto-Coprocessor (CCoP)
for efficient support of common cryptographic algorithms and related processes, but
otherwise the chips are low-power, low-cost and with limited CPUs and memory. Di-
rect implementation of fixed-functionality on the processor, is best for performance,
but for widespread and long-term deployment, a manageable secure platform is re-
quired, which is abstracted from the underlying hardware. In this research we use the



2 Keith Mayes

MULTOS [11] platform based on its high levels of CC, which haslead to its use in
payment cards and passports; in particular we use the MULTOSTrust-Anchor [12] SC,
which is intended for Internet of Things (IoT) security applications. To illustrate the
performance challenge of using such a small secure platformfor complex security pro-
cessing, we refer to a previous study [10], which showed thatfor an identical chip, the
performance difference between non-secure native code andhighly secure MULTOS
application code, could be two orders of magnitude; with secured native code, expected
somewhere in between. In this research, we explore the idea of a cluster of SCs work-
ing collaboratively on a security process to overcome performance restrictions. This
presents a major security challenge, as the evaluated SC relies heavily, on security pro-
cessing being carried out within the single chip, using secret or private keys which also
do not leave the chip, and with no intermediate results ”leaking” from the chip. The
distribution of long-term keys and cryptographic credentials is not a primary concern,
as this is inherently supported within MULTOS, however SC collaborative working
suggests that sensitive data and intermediate results willbe exposed on communica-
tions interfaces. The CCoP supports secret key algorithms with relative efficiency, so
one could imagine using AES [4] encryption to preserve confidentiality of communica-
tions, however this alone is insufficient, as a man-in-the-middle attack may modify or
insert messages to alter the process result. The chosen approach was to design a proto-
col around Authenticated Encryption (AE) [5], which has been studied [10] with respect
to MULTOS (and native) platforms for the EMV payment card standards at the request
of EMVCo [3]. There are several AE modes which could be used, however the earlier
work showed that for messages of 40bytes or more, Offset Codebook (OCB) [8] was the
most efficient mode for the MULTOS platform; and chosen for this research, based on
anticipated test message sizes. The OCB AE implementation made use of 128-bit key
AES as the block cipher. To investigate the proposed multi-SC approach, we created a
generic load case, whereby a processing task of controllable duration could be split into
eight parts and then shared between the available supporting SCs. For the experimental
system, we chose the MULTOS Trust-Anchor (TA) as the SC type;the TA being in-
tended for IoT security applications. To evaluate the performance aspects, a cluster of
eight TAs, was used under the supervisor of a Master Trust-Anchor (MA).

This report first introduces the MULTOS Trust-Anchor and theexperimental cluster
in Section 2 and then provides goals and requirements for a security protocol in Section
3. A proposal for an AE-based protocol is described in Section 4, and experimental
results are presented and discussed in Section 5. Conclusions and suggestions for future
work are presented in Section 6.

2 MULTOS and Trust-Anchor

MULTOS is a robust and highly secure Operating System (OS), backed by a large indus-
try consortium [11]. It has an on-chip Virtual Machine (VM) that was originally used to
provide a secure multi-application platform for smart cards used in high-security appli-
cations, such as payment and passports. MULTOS devices haveCCoP support and use
different memories for code, non-volatile data, and RAM forthe stack and variables.



Trust-Anchor Cluster 3

The memory map is shown in Figure 1, but note that the physicalRAM space in partic-
ular, is usually just a fraction of what could be theoretically addressed. A critical aspect
of MULTOS devices is the high-levels of CC evaluated security, which includes exten-
sive independent lab-testing of resistance to attacks, including physical, side-channel
[6] [7] and fault [1]. Another vitally important aspect of MULTOS, is the ability to
strictly control the data and applications to be loaded intothe chip; which is enforced
by a Public Key Infrastructure (PKI), in which developers and their proposed load-
units have to be registered and certified. The loading security is well suited to device
personalisation and loading post-deployment. Source codedevelopment for MULTOS
is normally in theC language, which is compiled to MULTOS Execution Language
(MEL), the VM is 16-bit, with 32-bit extensions for memory access; an introduction
can be found in [9]. MULTOS chips intended for smart cards arenot suited to our coop-
erative cluster proposal, as they have limited I/O and are not intended to be free-running
processors; the MULTOS Trust-Anchor does not have these limitations, and offers more
RAM memory.

Fig. 1. MULTOS Application Memory Architecture

2.1 Trust-Anchor

The MULTOS Trust-Anchor (TA) device [12] is intended to offer highly attack-resistant
security, for IoT applications. It offers 9.5kbytes of stack and session RAM and a further
3.5kbytes of public RAM, and a total of 315kbytes Non-Volatile Memory (NVM) for
the secure OS, application code and static data. It has a sensor and shield protected
dual processor CPU, a 2kbits+ CCoP, internal timers and random number generation, a
legacy smart card interface, a USB interface and up to 12 GPIOlines. Two of the GPIO
lines can be configured to form an I2C bus; which is normally used for the control of
peripherals, however, in our experiments, it was re-purposed to connect the cluster of
devices. The actual chip package area is only 25mm2, although larger breakout boards
were used for development.



4 Keith Mayes

2.2 The Cluster

Our proposal makes use of a cluster of TA security devices as shown in Figure 2. The
cluster has up to eight TAs acting as secure processing service providers (SPSP) to the
MA; which itself acts as a SPSP to the requester, representedby thePC in Figure 2.
In normal secure use, each device would be personalised witha unique address and
security credentials (including cryptographic keys), however for experimentation, the
TAs determine their (hard-coded) address from reading three of their GPIO lines. The
address is used to select from a set of stored personalisation profiles, allowing a com-
mon build and configuration to be used during performance testing. Note that the very
limited RAM mentioned in 2.1, imposes restrictions not juston the TA applications, but
also on the communications buffering, which dictates some design choices in multi-TA
cluster processing.

Fig. 2. Experimental Cluster of Trust-Anchors

3 Security Goals and Requirements

The primary security goal within our research, is that the use of a TA cluster for security-
sensitive processing, is no less secure than carrying out the entire process within a single
chip. The protection of a centralized authentication entity and server is out of scope for
this study, but is expected to follow security best-practices, suitable for it to be a trusted
endpoint. We assume that the TAs within our cluster and the communications between
them are accessible to attackers, however as the MULTOS TA isvery strongly attack-
resistant, (as can be proven by CC evaluation), we do not focus on requirements for TA
implementation attack protection, but rather on the inter-TA communications.



Trust-Anchor Cluster 5

3.1 Inter-TA Communication Attacks

The difficulty of compromising a communications interface or path, depends on the de-
sign and technology used, but also on its location and accessibility to the attacker. In
our proposal, we assume that attackers can both passively monitor transmissions and ac-
tively attempt to modify transmissions, or insert fake transmissions (often referred to as
Man-In-The-Middle attacks). Therefore, to protect sensitive communications between
two legitimate parties (the TAs), requires the following defenses:

1. Prevention of security information discovery by passiveeavesdropping
2. Detection and rejection of fake messages from non-authenticated sources
3. Detection an rejection of replayed, or re-ordered legitimate messages
4. Detection and rejection of modified legitimate messages
5. Detection of blocked and missing legitimate messages
6. Detection of Denial of Service (DoS) transmissions

Eavesdropping within the planned context, could potentially expose sensitive data,
cryptographic keys and credentials, partial algorithm results, or information that could
be exploited in other attacks. The solution is to encrypt transmissions using a best-
practice algorithm, such as AES. A protocol that incorporates source authentication
will detect fake message insertion, and cryptographic integrity protection will detect
modification of legitimate messages. Replayed and re-ordered messages are detected
by protocols that incorporate a count, or initialization value, which updates for each
protected message block; a mechanism that can also detect missing messages in a se-
quence. With the exception of DoS our security requirementscan be supported on secu-
rity chips by using Authenticated Encryption (AE) protocols, standardised in ISO/IEC
19772 [5]. A DoS attack is detectable by unexpected transmissions and failures, and
in the planned context, the MA has the option to return to non-clustered processing,
at the expense of performance. In the next section we proposea protocol that lever-
ages from best-practice standards, satisfies the security requirements and will permit
practical performance evaluation.

4 Secure Cluster Protocol Proposal

Our proposal assumes that each TA in the cluster has been securely personalized with
unique long-term cryptographic credentials such as keys and IDs; so they are uniquely
addressable and can support the operational and managementbasis of a security end-
point. We also assume that the desired functionality used incluster-based processing
has been pre-loaded into the devices, which can be verified via the TA’s Service Ta-
ble, which is reported to the MA. All personalization is achieved using the well-proven
MULTOS management protocols. Only the MA is aware of the overall cluster opera-
tion and associated data, other TAs just respond to service processing requests, based
on sub-sets of data. The only common key that is personalizedto the sub-set of devices
that form the cluster, is the default cluster key. This key isonly used to generate a new
cluster session key, when requested by the MA.



6 Keith Mayes

The MA is responsible for the cluster (and associated session key) establishment as
well as management of cluster processing. In order to do thissecurely, it needs a method
of protecting transmissions to maintain confidentiality and integrity of communications
between authentic parties. Authenticated Encryption (AE)is a solution for the security
protection problem and having previously [10] been proven to be practical on MULTOS
platforms, was selected as the method for this research. Various modes of AE have been
standardized ISO/IEC 19772 [5]. It has been shown in [10] that Encrypt-Then-MAC
(ETM) mode is efficient for very small data payloads (up to 32 bytes); but for larger
messages, OCB is faster. The latter was chosen for this work,and introduced below.

4.1 Offset Codebook Authenticated Encryption

The Offset Codebook approach to AE was pioneered by Phil Rogaway [13], and also
described in RFC 7253 [8]. It was included asmechanism 1 in ISO/IEC 19772 [5]. The
mechanism can be briefly described with reference to Figure 3. As with most AE mech-
anisms the plaintext message is split into blocks ready for the block-cipher operations,
however, OCB differs in that an incomplete last block does not require padding. The
example of Figure 3, has three complete and one incomplete message blocks (M1-3,
M*), producing an output sequence of C1-3, C* plus an extra tag T. Note that there
is additional processing (of some significance) in computing the initialization vector,
although this is only recommended once every 64 blocks. We donot use Authenticated
(but not encrypted) Data, soAuth can be disregarded in the diagram. There are variants
of OCB; we used OCB2, as the most efficient mode found in [10].

Fig. 3. OCB with Incomplete Blocks [Rogaway]

4.2 Cluster and Session Key Establishment

HSMs are typically personalized before use, which involvesthe secure loading of unique
long-term cryptographic keys and related credentials, as well as common functions and



Trust-Anchor Cluster 7

data. It is best-practice to use open standardized cryptographic algorithms and diver-
sified keys and related data, so that HSMs are unique, and in the unlikely event of
compromise, will not aid an attack against other devices. Inpractice, long-term keys
are normally used to generate session keys that are used operationally. We follow these
principles in our Trust-Anchor proposal, except that the SCs able to become part of the
cluster, have also been personalized with a common cluster key, used to establish cluster
session keys, for use between the TAs and MA. The protocol steps for establishing the
cluster session key are shown in Figure 4, with symbols in Table 1; noting that the figure
represents the interaction with a single selected TA, whereas in practice the MA may
interleave its interaction across multiple TAs, as best suits parallelism and efficiency.

Trust Anchor Master Anchor

rcs←$ [0.2128 − 1]

ncs ←$ [0.2128 − 1]

AEnckc(rcs, ncs)

Irq, C0, C1, T ←

(M0,M1, Tr)← ADeckc(C0, C1)

if(Tr 6= T ) Nack Fail

(rcs, ncs)← (M0,M1)

kcs ← Enckc(rcs) kcs ← Enckc(rcs)

∆cs ← Init(ncs) ∆cs ← Init(ncs)

AEnckcs(STa)

→ C0, C1, T

(M0,M1, Tr)← ADeckcs(C0, C1)

if(Tr = T )

STa ← (M0,M1)

Fig. 4. Establishing Cluster Membership and Session Values

Referring to Figure 4, the MA, starts by generating a random number and a random
nonce, and copying into two AES blocks, which are AE encrypted using the long-term
cluster secret key and its associateddefault ∆c. The cipher blocks and token are then
sent to the TA, which AE decrypts the message into two plaintext blocks and regenerates
the token. If there is a mismatch between local and received tokens, aNack response
indicates the protocol has failed, otherwise, the random number and nonce are copied
from the plaintext, and the random number is AES encrypted under the cluster key to
generate the cluster session key. The TA then AE encrypts itsService Table (ST) data,
under the session key, and sends to the MA (which also generates the key). The MA,
AE decrypts the message using the session key, and if the token is verified, the cluster
membership and session key establishment has succeeded forthe particular TA. The ST



8 Keith Mayes

Table 1. Symbol Definitions

Symbol Description
kc Personalized long-term AE cluster key (128-bit)
kcs The current cluster session AE key (128-bit)
rcs Random for cluster session key generation (128-bit)
ncs The current AE cluster session nonce (128-bit)
∆c Initialization value for long-term cluster key
∆cs Initialization value for session cluster key
Mj , Cj The jth message and cipher blocks (128-bit)
Ti, Tr The ith AE token, and recomputed token (64-bit)
AEncky Authenticated Encryption under key set y
ADecky Authenticated Decryption under key set y
Encky AES Encryption under key y
Init() Initialization value generator
Funcx() Service Function for Request x
STa Service Table for Anchor a
DI,DO Service Input and Output Data
Irq, Srq, Rrq Initial, Service and Read Requests
F laga Service Completion Flag for Anchor a

data informs the MA of the services that the TA can support in the cluster operational
phase. The establishment process may be repeated, to refresh session keys, nonces, and
∆cs. The session key establishment has messages with 32-bytes of data, which could
have efficiently been protected by the ETM AE mode, however, operational messages
are larger and will dominate performance, hence the use of OCB for all transmissions.

4.3 Operating the Cluster

Referring to Figure 5 and Table 1, we see how the MA requests assistance with a
security-sensitive data processing task. From the clusterset-up phase, the MA learns
the Service Table of the TAs, so only requests supported services. The MA generates a
service request, by AE encrypting, under the cluster session key, the input data (DI) to
be processed, and then sends this along with the token and service type request to the
TA, which AE decrypts the input data with the cluster sessionkey. If the recomputed
and sent tokens do not match then aNack is sent to the MA to indicate failure. If the
tokens match then the TA immediately sends anAck to the MA, indicating that the re-
quest has been accepted and the service function will commence. The MA then waits
(actually works with other TAs or processes itself) until a completion flag is detected,
upon which it sends a read request for the output data (DO). The TA responds with the
DO, AE encrypted under the session key, and the corresponding token. The MA AE
decrypts the message and if the tokens match, accepts the DO.Note that completion
flag detection can be achieved by either a GPIO signal to the MAfrom the TA, the
MA polling the status of the TA, or a timer expiry. Optimum task segmentation and
scheduling would minimize the idle time of the MA and TAs.



Trust-Anchor Cluster 9

Refreshing and Synchronizing To successfully AE encrypt and decrypt an OCB trans-
mission sequence between MA and TA, requires a shared cluster session key, but also
the correct initialization vector. The vector is not staticand is incremented after each
block encryption, so there is potential for loss of synchronism, either due to natural,
or malicious message disruption. As the MA knows exactly howmuch DI has been
sent and how much DO is expected for a particular TA, it can, estimate and try al-
ternative vectors based on lost message scenarios. If this is unsuccessful then the MA
can re-establish synchronism, by repeating the cluster session key establishment (for all
TAs) using fresh nonce and random values. With OCB, it is best-practice to re-fresh the
initialization vector after the protection of 64 x 16-byte message blocks.

Slave Anchor Master Anchor

AEnckcs(DI)

Srq, C0, C.., T ←

(M0,M.., Tr)← ADeckcs(C0, C..)

if(Tr 6= T ) Nack Fail

else(F laga ← 0) Ack Accepted

DO ← FuncSreq
(M0,M..) Wait...

AEnckcs(DO)

F laga ← 1 Detect

Rrq

→ C0, C.., T

(M0,M.., Tr)← ADeckcs(C0, C..)

if(Tr = T )

(DO)← (M0,M..)

Fig. 5. Service Request and Response

4.4 Experimental Use-Case

The experimental test cluster, consists of eight TAs and theMA, connected via an I2C
bus. Each TA has an internal flag bit used to indicatedone when a task has been com-
pleted. The flag state is is duplicated on one of the TA’s GPIO (output) pins, which is
connected to a MA GPIO pin (input). This provides the MA with the option to deter-
mine TA processing state without raising queries over the I2C bus, which could affect
performance tests; and also provides external means to record and visualize the effec-
tiveness of the TA scheduling. To permit a common software build for testing, each TA



10 Keith Mayes

has three GPIO inputs to indicate its I2C address, whereas the address of the MA is
implicit. The MA is connected to a PC via a USB port; with the PCproviding control,
performance measurement and timing logic analysis. Each TAmakes use of in-built
millisecond timers to simulate processing tasks of varyingdifficulty and duration; as
requested by the MA.

Initial Test and Modelling A TA, in common with most SCs, has very limited RAM
and so buffering for preparation and transmission of message data also has to be lim-
ited. For testing, we assume that the MA can support a maximumof 1kybte buffering
for data, either waiting to be processed or in transmission,so 512-bytes for data need-
ing cluster processing and another 512-bytes for the result. For our eight cluster ex-
periments we break this data into eight sub-sections of 64bytes each; with a delegated
processing task, processing this amount of input and returning the same amount of out-
put. Therefore, all our AE payloads will be 64 bytes of encrypted data (equivalent to
four AES blocks) plus the authentication token (eight bytes). There is a clear overhead
in outsourcing security processing tasks, this includes the times for MA data-input AE
encryption, TA data-input AE decryption, TA processing, TAresult AE encryption and
MA result AE decryption. The TA processing contribution must be sufficiently advan-
tageous to justify the four cryptographic processes. The MAalso needs to efficiently
schedule the TAs, to minimize their wait time, both to start processing and to deliver
their results. The 8-cluster schedule is easiest to visualize, as shown in Figure 6, with
time progressing from left to right. MA AE encryption and AE decryption are repre-
sented as MAE and MAD, and similarly TAE and TAD for the TA, with the longer bars
representing TA data processing.

Fig. 6. Optimal 8-Cluster Schedule

The displayed schedule is optimal in that the MA encrypts eight input data messages
and decrypts eight result messages without waiting or beingidle. Whether it is practi-
cally viable, is critically dependent on the duration of theAE cryptographic operations
relative to the duration of the overall processing task. Thefirst part of the experiment
was therefore to determining OCB AE encryption and decryption times for 64byte data
payloads. It was tested by using the PC to send fixed test messages to the MA, running
the process multiple times to improve accuracy, and timing the response using inter-
nal timers, to avoid communications aspects. Communications delays are considered in
later sections when the I2C bus is used.



Trust-Anchor Cluster 11

5 Experimental Results

The experiments were split into two stages. The Initial stage benchmarked the OCB
AE performance on the TA, which enabled the best-case multi-TA cluster performance,
to be accurately modelled for the TA. When normalized by the AE encryption/decryp-
tion time, the results become relevant to other processing platforms. The initial results
did not consider transmission delays (as these are channel dependent), or those due to
imperfect scheduling (implementation dependent); these aspects were addressed in the
transmission and scheduling results stage.

Initial Results The first results are shown in Table 2, indicating the TA speedfor
OCB2. Note that the encryption and decryption processes arethe same (just an added
token check for decryption), so the results represent both processes. For interest, a range
of data payloads is considered, although the 64 byte processof 42.09ms is the one that
we are interested in. It is worth noting that the performanceis a little slower than the
results in [10] which were obtained on an older MULTOS smart card. The explanation
from MULTOS was that the TA has additional redundancy, to offer further enhanced
attack-resistance.

Table 2. Trust-Anchor OCB Process Times (ms)

Data Bytes 16 32 64 128 192
Duration (ms) 16.17 24.7742.09 76.65 111.13

Using these results, we are able to model, predict and compare the best possible
performance for the single MA and when assisted by clusters of two, four and eight TAs.
The absolute values are listed in the top rows of Table 3; and show that as the overall
processing time increases with respect to the AE operations, the speed gain follows the
number of TAs in the cluster. We can express this genericallyby normalizing the values
with respect to the AE operation time; as shown in the lower rows of the table.

Table 3. Comparison of Cluster Processing Predictions

TAs Absolute Process Times (ms)
8 672 672 712 837 962 1087 1212 1337 1462
4 714 714 878 1128 1378 1628 1878 2128 2378
2 714 1047 1462 1962 2462 2962 3462 3962 4462
1 0 1000 2000 3000 4000 5000 6000 7000 8000

Normalized Process Times (multiples of AE time)
8 16.0 16.0 17.0 19.9 22.9 25.9 28.9 31.8 34.8
4 17.0 17.0 20.9 26.9 32.8 38.8 44.7 50.7 56.6
2 17.0 24.9 34.8 46.7 58.6 70.5 82.4 94.3 106.2
1 0 23.8 47.6 71.4 95.2 119.0 142.9 166.7 190.5

When the overall process time is still comparable with that of the AE operations, the
potential for gain depends on the crossover of the cluster performance curves as illus-
trated in Figure 7. The single TA case is actually the timing for running the process on



12 Keith Mayes

the MA, so does not involve AE operations. As our test case consists of eight messages,
each with 64bytes of data payload, the minimum processing time for a multi-TA cluster
is 16 times the AE duration; the time it takes for the MA to AE encrypt the eight inputs
and then decrypt the eight results.

Fig. 7. Cluster Process Times Excluding Communications

Transmission and Scheduling Results The results presented in this section are based
on a specific scheduling and communications implementation, of a supporting cluster
with either two, four or eight TAs, using the short-range I2Cbus for communications
and control. We assume optimal scheduling as illustrated inFigure 6, however, we now
also assume there is a time delay between the MA deciding to initiate a secure TA task
and the TA beginning to AE decrypt the input data; similarly there is a delay between
the TA completing AE encryption of the result, and it arriving back at the MA. The
control and scheduling of a secure TA process is illustratedin the captured traces of
Figure 8, for a dummy 1ms duration task.

TheSCL andSDA traces are theI2C bus signals, shared by the MA and TAs, as the
primary means of communication. TheTA-Flag trace is a secondary communications
means, in the form of a normally low GPIO output from a TA (input to the MA) that
is raised high to indicate that the TA has completed its processing task. TheTA trace
is used to indicate TA processing; first low when the MA data isbeing AE decrypted
(TAD), high for the dummy 1ms task, then low when the result isbeing AE encrypted,
then high again waiting for result collection and its next task. Clearly, the time between
the MA starting to transmit AE encrypted data to the TA and theTA starting to AE
decrypt, is not insignificant, and neither is the time from the TA completing its AE
encryption to the time that the MA has received it to start AE decryption. The bulk
of the time lag is due to transmission on the I2C bus, which is running at the default



Trust-Anchor Cluster 13

Fig. 8. TA Processing Schedule Trace

100kHz clock speed, with the remainder due to event handlingdelays within the MA
and TA. We investigate the starting lag in more detail, as illustrated in Figure 9

Fig. 9. TA Starting Delay Trace

From the MA beginning transmission of an AE encrypted message, to the TA start-
ing to AE decrypt it, there is a delay of 11.48ms. Now considering the result lag in
Figure 10, we see delays between the end of the TA AE encryption and the assertion of
its flag, and then to the triggering and completion of communication with the MA. The
overall lag at 11.31ms is very similar to the starting lag.

These results can be extended to various conditions by modelling as an extension to
the TAE and TAD times, and will increase an effective TA response time by 22.79ms.
Because of the pipeline scheduling, the added delays have only minor effect. For an
eight, four, and two TA cluster, the processing time is only extended by 22.79, 45.58
and 91.16ms respectively. The final performance graph is shown in Figure 11, with



14 Keith Mayes

Fig. 10. TA Result Delay Trace

vertical axis normalized to the AE duration, for relevance to the TA, but also to other
types of processor. The shape of the graph (up to 2000ms) is very similar to that in
Figure 7, and we can see how the gain improves with even longertasks, shared between
the TAs.

Fig. 11. Cluster Execution Normalized to AE Time

6 Conclusion and Future Work

The study investigated the practicality of secure collaborative processing via a cluster of
security chips, in the form of MULTOS Trust-Anchors (TA); whose attack-resistance



Trust-Anchor Cluster 15

can be Common Criteria evaluated to a high level. The choice of the MULTOS plat-
form provided justification to focus on inter-platform communications security, rather
than chip attacks. Fundamental to high levels of security evaluation, is that for a se-
curity sensitive process, partial results cannot leak fromthe chip, or be manipulated,
whereas that is exactly what is at risk with a cluster approach. To overcome this prob-
lem, an inter-device secure protocol was proposed based on Authenticated Encryption
(AE). This first involved a protocol for session key and initialization vector set-up, using
long-term personalized keys; although the main investigative focus was on the subse-
quent operational protocol, used for sharing and processing the security sensitive tasks.
The protocol satisfied the communications security requirements, ensuring the privacy
and integrity of transmissions between authenticated parties, based on an OCB stan-
dardized mode of AE; which has previously been proven to be practical on MULTOS.
The security protocol comes at a cost to performance (compared to a non-secured pro-
tocol), which was initially tested and modelled by bench-marking the raw OCB speed
on the TA, without the inclusion of transmission and scheduling delays. The main tests
considered a processing cluster, with up to eight TAs, working on a task which could be
split into eight parts; each with 64 bytes of data input and output. The minimum overall
duration under these conditions, was the time for the MA to complete 16 AE oper-
ations (672ms), which can be considered as the threshold processing duration, after
which the cluster becomes increasingly useful. An investigation into communications
and scheduling aspects over the I2C bus, showed delays effecting the start and end of
TA processing. However, due to the parallel scheduling, thedelays only extended the
overall processing time by 22.79, 45.58 and 91.16ms, for clusters of eight, four and two
TAs, respectively. The secure cluster protocol has proven practical for the MULTOS
TA devices working locally over the I2C bus, and is advantageous for process durations
that exceed the threshold processing duration.

6.1 Future Work

Authenticated encryption is designed for general use and isnot restricted to localized
transmission; it was only the availability and convenienceof the I2C bus that led to its
experimental use. It would be very interesting to implementan alternative communi-
cation channel that would permit a widely dispersed clusterof TAs to collaborate on
a secure process. Other secure chips could also be tried, although the TA results nor-
malized by AE time, should allow reasonable prediction of performance, once the AE
duration has been bench-marked for the alternative chips.

Acknowledgment

The author would like to thank Chris Torr from MULTOS, for hisvaluable support and
guidance; and Crisp Telecom Limited for use of test and development resources.



16 Keith Mayes

References

1. D. Boneh, R. Demillo, and R. Lipton, “On the importance of checking computations,” in
Advances in Cryptography - Eurocrypt 97, volume 1233, pp. 37-51, Springer Verlag, 2013.

2. CC, ”Common criteria for information technology security evaluation part1: Introduction
and general model,” version 3.1 release 4, September 2012.

3. EMVCo, http://www.emvco.com/ [retrieved: May, 2020].
4. FIPS, “Federal Information Processing Standards, Announcing the Advanced Encryption

Standard (AES), Publication 197.” http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
[retrieved: May, 2020].

5. ISO/IEC, “19772 Information technology - Security techniques - Authenticated encryption,”
2009.

6. P. Kocher, “Timing attacks on implementations of diffie-hellman RSA DSS and other sys-
tems,” in Advances in Cryptology - CRYPTO ’96 Proceedings LNCS, volume 1109, pp.
104-113 Springer Verlag, 1996.

7. P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in Cryptology -
Crypto 99 Proceedings LNCS, volume 1666, pp. 388-397, Springer Verlag, 1999.

8. T. Krovetz and P. Rogaway, “The OCB authenticated-encryption algorithm, IETF RFC
7253,” May 2014.

9. K. Mayes and K. Markantonakis, editors.Smart Cards, Tokens, Security and Applications,
chapter Chapter 17. Springer, 2nd edition, 2017.

10. K. Mayes, “Performance of Authenticated Encryption forPayment Cards with Crypto Co-
processors,” inProc of ICONS17, pp. 1-9, 2017.

11. MULTOS, http://www.multos.com/ [retrieved: May, 2020].
12. MULTOS, “The MULTOS Trust Anchor Development Board,”

https://www.multos.com/devboards/devboarddetails, [retrieved: May, 2020].
13. P. Rogaway, “OCB mode,” http://web.cs.ucdavis.edu/˜rogaway/ocb/ [retrieved: May, 2020].


