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Abstract 

Introduction: Recently, there has been a growing interest into the monitoring of 

training and match load and subsequent physiological responses adolescent 

footballers experience (Malone, 2014). Before a physical performance test can used 

as a monitoring tool, its reliability must be quantified (Thorpe et al., 2015). Therefore, 

the aims of this thesis are two-fold: 1) quantify the reliability of a number of physical 

performance tests and 2) using the same physical performance tests quantify 

physiological responses to load over acute and chronic training periods. 

Methodogly: First the reliability of eccentric hamstring strength, isometric adductor 

strength and linear sprint tests were quantified, in a cohort of adolescent footballers 

(n = 37). Secondly training and match load was recorded over a 4-week period in 

another group of adolescent footballers (n = 10). Measures of lower body strength 

and speed were recorded prior to the start of every training session and match.    

Results: Acceptable levels of reliability were found for at least one metric of the three 

physical performance tests. An increase greater than the typical error of the test in 

eccentric hamstring strength was found after a 4-week training period but despite 

variations in load, no changes in lower body strength and speed were recorded 

between training sessions and matches. 

Discussion: Eccentric hamstring strength, long lever isometric adductor strength and 

30-metre sprint performance are reliable tests to assess adolescent footballers. 

However, these measures are not be sensitive enough to detect true changes in 

performance in relation to variations in training and match load. Alternative methods 

must be established that quantify the physiological responses to load experienced by 

adolescent footballers. 
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Chapter 1 – Introduction 

 

The popularity of football amongst adolescents throughout the world has led to an 

increase in interest around monitoring the load these players are exposed to (Malone 

et al., 2014). Each adolescent player will have an individual physiological response 

in response to the load placed on them (Jeong, Reilly, Morton, Bae & Drust, 2011). 

Previous research has attempted to establish the effects of load on adolescent 

players lower body power, through the use of countermovement jump (CMJ) tests. 

Results of these studies have reported that, despite significant fluctuations in load, 

tests of CMJ height were not able to detect a real change in power (Malone et al., 

2015; Thorpe et al., 2015 & Fitzpatrick, Akenhead, Russell, Hicks & Hayes, 2019). 

This suggests that CMJ tests may not be appropriate for monitoring responses to 

load in adolescent footballers. Linear sprint tests are a common method of assessing 

the speed of footballers (Twist & Highton, 2013) and during a football match, is most 

common action that precedes a goal (McCunn, Weston, Hill, Johnston & Gibson, 

2017). This highlights the importance of speed to adolescent footballers and 

therefore a reliable method of assessing speed must be quantified. Lower body 

strength is another important physical quality for adolescent footballers as it aids 

them to maintain balance and protect the ball under pressure from an opponent 

(Stolen, Chamari, Castagna & Wisloff, 2005). Despite this, there is a lack of research 

that analyses the effects of different loads on adolescent footballers’ lower body 

strength. Establishing reliable methods of monitoring power, speed and lower body 

strength would enable coaches and practitioners to understand the impact of their 

training (Djaoui, Haddad, Chamari & Dellal, 2017). 
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Football governing bodies are implementing different strategies in order to optimise 

the talent development process of many adolescent footballers (Miller, Cronin & 

Baker, 2015). The Premier League’s, Elite Player Performance Plan (EPPP), 

developed in 2011, is a “long-term strategy with the aim of developing more and 

better home-grown players,” (The Premier League, 2011). The Scottish Football 

Association (SFA) has since developed their own strategy, known as Project Brave, 

to increase the effectiveness of elite football academies across the country (SFA, 

2018). As adolescent players within a pro-youth academy are exposed to higher 

training frequencies and volumes, compared to non-academy players (King, 2017), it 

is important that load is quantified to ensure each player is provided with an 

appropriate stimulus. The combination of volume and intensity in training and 

matches is commonly referred to as ‘load’ (Malone et al., 2015) which determines 

the physiological responses players exhibit (Jeong, Reilly, Morton, Bae & Drust, 

2011). External load is the culmination of physical actions performed by players 

during training and/or match play (Malone et al., 2015). Internal load is the 

physiological and perceived exertion players experience during a training session 

(Malone et al., 2015). Many different metrics are available to measure external and 

internal load. The use of global positioning systems (GPS) to assess locomotor 

activities, such as total distance covered and high speed running distance, is 

common practice in football (Buchheit, Manouvrier, Cassirame & Morin, 2015). The 

reliability of GPS has been found to be poorer when used over short distances (<10 

metres) and high speeds (>14 km/h-1) (Johnston et al., 2012). However, GPS units 

can be worn under a players’ kit, using a custom built vest, during training sessions 

and matches making it a simple and effective method of collecting external load data 

(Aughey, 2011 & Buchheit, Gray & Morin, 2015).  
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Heart rate analysis is regularly used to quantify internal load in elite athletes. 

Banister et al., (1980) developed training impulse (TRIMP) in order to combine a 

number of heart rate responses elicited by training, into a single unit of physical effort 

(Akubat & Abt, 2011). Derivations of Banisters TRIMP have been developed that 

measure the time spent in different heart rate zones to quantify internal load 

(Edwards, 1993; Foster, 1995; Lucia, 2003). Measuring time spent above 90% heart 

rate maximum is another metric used to establish internal load. Maximal oxygen 

uptake is most effectively trained when players work at an intensity greater than 90% 

of their maximum heart rate. Measuring the time players spend in this heart rate 

zone will provide practitioners with information on the most appropriate training 

methods to improve players maximal oxygen uptake (Helgerud, Engen, Wisloff & 

Hoff, 2001). Collecting an athletes’ rate of perceived exertion (RPE) after each 

training session is another method of quantifying internal load. Using the Borg 

category ratio scale, athletes rank their perceived level of exertion from 0 – 10, with 0 

being ‘rest’ and 10 being ‘maximal’ (Foster et al., 2001). The number given by the 

athlete is multiplied by the session duration to gain a session RPE score (Foster et 

al., 2001). Differential ratings of perceived exertion (dRPE) have the potential to 

provide information on an athlete’s central and peripheral exertion (McLaren, Smith, 

Spears & Weston, 2017). Scores of breathlessness (RPE-B), leg muscle exertion 

(RPE-L) and technical/cognitive exertion (RPE-T) have previously been assessed in 

footballers to quantify internal load (Barrett, McLaren, Spears, Ward & Weston, 

2018). 

RPE methods have been shown to significantly (p < 0.01) correlate with heart rate 

TRIMP methods ( r = 0.50 – 0.85) in adolescent footballers (Impellizzeri, Rampinini, 

Coutts, Sassi & Marcora, 2004). Using RPE is also a simple, cost effective method of 
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quantifying internal load (Impellizzeri, Rampinini, Coutts, Sassi & Marcora, 2004). As 

well as monitoring load, it is important that the physiological responses to load are 

also assessed.  

Each individual player will have different physiological responses to the load 

imposed on them (Jeong, Reilly, Morton, Bae & Drust, 2011). Therefore, many 

applied practitioners working with adolescent footballers use different tests to 

monitor changes in performance associated with daily load (Taylor, Chapman, 

Cronin, Newton & Gill, 2012). A common method of quantifying speed is assessing 

linear sprint performance (Twist & Highton, 2013). Rampinini et al., (2011) found that 

the sprint performance of adolescent footballers takes 48-hours post match to fully 

recover. This is in contrast to research by Rowsell et al., (2009) who reported that 

adolescent footballers speed was unaffected, after playing four stimulated matches 

in four days. Further research is required to assess the effects of training and match 

load on adolescent footballer’s speed. The research reported used a single match to 

analysis the effects of adolescent players sprint performance. The effects of longer 

training periods must be analysed to give practitioners a better understanding on the 

fluctuations in sprint performance during the in-season. Apparatus has recently been 

developed by Vald Performance (Queensland, Australia) that assesses local 

muscular strength. The Nordbord is able to test the strength of an athletes’ 

hamstrings and the Groinbar can be used to assess adductor and abductor strength. 

Information on peak force produced by the muscles is relayed to practitioners in real 

time. However, there has been no research into the potential use of the Nordbord or 

Groinbar, as tools for monitoring the response to imposed load. 

Before a physical performance test can be credibly used as a physiological 

monitoring tool, its reliability and sensitivity must be quantified (Thorpe et al., 2015). 
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Relative reliability offers information on the reproducibly of a test at either group or 

individual level whereas absolute reliability provides information about the between 

day reliability of a test (Scott, McLaren, Caia & Kelly, 2018; McMahon, Lake & 

Comfort, 2018). The sensitivity of a test refers to its ability to detect a true change in 

performance, outside the noise of the assessment (Thorpe et al., 2015). The 

reliability of linear sprint tests is well established in adult populations (Hetzler et al., 

2008) but to date there is limited research into its reliability in adolescents. Similarly, 

the reliability of the Nordbord and Groinbar has previously been quantified in adults 

(Opar, Piatkowski, Williams & Shield, 2013; Ryan, Kempton, Pacecca & Coutts, 

2018) but not in an adolescent cohort.  

Using reliable tests to monitor adolescent footballers’ physiological responses to load 

will facilitate effective decisions that balance training and recovery (Thorpe, Atkinson, 

Drust & Gregson, 2017). Adolescent players must be exposed to some overload 

training in order to improve performance (Smith, 2003). However, it is essential that 

enough recovery time is afforded between sessions to allow for physiological 

adaptation whilst preventing the accumulation of fatigue which may have detrimental 

effects on performance (Meeusen et al., 2013). As adolescent players are still 

growing, they are at higher injury risk than adult players (Naughton, Farpour-

Lambert, Carlson, Bradney & Van Praagh, 2000). Higher injury incidence has been 

found for acute injuries in adolescent players 6 months pre and post peak height 

velocity (PHV) (Bult, Barendrecht and Tak, 2018). Furthermore, more overuse 

injuries have been reported in players who are 1 year pre-PHV compared to 1 year 

post-PHV (van der Sluis, Elferink-Gemser, Brink and Visscher, 2015). This highlights 

the importance of monitoring the load-response relationship in this population. The 

maturation status of an adolescent player can also have an effect on physical 
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performance measures, such as linear speed (McCunn, Weston, Hill, Johnston & 

Gibson, 2017). Therefore, practionoers must be confident testing protocols are 

reliable within the adolescent population so that informed decisions can be made on 

these players development. 

 

The aims of this thesis are two-fold: 1) quantify the reliability of a number of physical 

performance tests in a group of adolescent footballers and 2) using the same 

physical performance tests, quantify the physiological responses to load in 

adolescent footballers. Changes in physiological responses will be compared over 

acute and chronic training periods.  
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Chapter 2 – Literature Review 

 

Introduction 

Across the world, there are more than 22 million adolescents playing football 

regularly (FIFA, 2007). With such a high participation rate, it is not surprising that 

many football governing bodies are implementing strategies to aid the development 

of adolescent footballers (Miller, Cronin & Baker, 2015). The English Premier League 

introduced the EPPP in 2011 with broad aim of increasing the number of talented 

players available for selection at an international level (Towlson, 2016). EPPP 

ambition is to enable English football to provide a world class academy programme 

that increases the efficacy of youth development (The Premier League, 2011). Other 

comparable initiatives have been developed in other parts of the UK and also 

internationally. The SFA have implemented their own strategy to improve talent 

development within elite football academies. Project Brave aims to “ensure a more 

efficient pathway to first-team football” by increasing the “focus on talent 

development and optimise playing opportunities” for young Scottish footballers (SFA, 

2018). Adolescent players within these elite academies are usually selected based 

on a successful initial trial period. Academy players tend to gain access to a higher 

quantity and quality of coaching and training facilities compared to non-academy 

players (Miller, Cronin & Baker, 2015). Adolescent players who have more time to 

develop their technical, tactical and physical qualities have a higher chance of 

becoming senior professionals (Reilly & Korkusuz, 2011). Therefore, it is important 

that the load experienced by adolescent players, who attend an elite academy, is 

quantified in order to ensure an appropriate stimulus is prescribed (Malone, 2014). 
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Furthermore, monitoring the physiological responses that adolescent players have to 

different loads will aid practitioners in the design of training regimes that allow 

players to maximise training time in order to improve different qualities essential to 

becoming a senior professional (Thorpe, Atkinson, Drust & Gregson, 2017). 

Quantifying load in adolescent footballers can be done by a variety of methods that 

quantify external and internal metrics (Coutts & Cormack, 2014). External load can 

be measured using global positioning systems (GPS) that provide information on the 

different locomotor activities of players, depending on their position within a team 

(Cummins, Orr, O’Connor & West, 2013). Internal load is different for each player 

(Brink, Nederhof, Visscher, Schmikli & Lemmink, 2010). One method of quantifying 

internal load is rate of perceived exertion (RPE) which allows each player to score 

the intensity of training sessions based on their perception of exertion linked to 

anchor statements (Impellizzeri, Rampinini, Coutts, Sassi & Marcora, 2004). 

Physiological measures of quantifying internal, such as heart rate and 

haematological methods, have been found to correlate well with RPE during football 

specific training (Coutts, Rampinini, Marcora, Castagna & Impellizzeri, 2009). This 

suggests RPE is a valid indictor of the internal load placed on footballers during a 

training session. Like RPE, daily wellness questionnaires can be used to monitor the 

perceptual responses that adolescent footballers have to training and have been 

found to be a reliable method of doing so (Noon, James, Clarke, Akubat & Thake, 

2015).   

Tests of linear sprint performance is also a common method used to analyse 

physiological responses to load (Gathercole, Sporer, Stellingwerff & Sleivert, 2015). 

Linear sprint tests have been found to have acceptable levels of reliability in 

adolescent athletes (Darrall-Jones et al., 2016; Morris et al., 2018). However, it’s 
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ability usefulness to detect real changes in performance is unknown. New 

apparatuses have recently been developed (Vald Performance, Queensland, 

Australia) to assess muscular strength in the hamstring and adductor muscles but 

once again their reliability and usefulness to detect real change when used in 

adolescent footballers is unknown. The reliability and usefulness of these methods 

must be established before their use as monitoring tools can be deemed credible. 

Therefore, one of the main objectives of this study will be to investigate the reliability 

and usefulness of linear sprint and muscular strength performance tests in 

adolescent footballers. 

Monitoring load and physiological responses is an essential part of the training 

process for adolescent footballers. Loads, too high or too low may result in high 

levels of accumulated fatigue and detraining respectively, whereas suitable loads 

underpin improvements in physical performance (Buchheit, 2014). The high volume 

of training placed on adolescent footballers puts them at greater risk of micro 

traumatic injuries than adults, especially during intense periods of growth (Naughton, 

Farpour-Lambert, Carlson, Bradney & Van Praagh, 2000). Therefore, monitoring the 

load of adolescent players is paramount during maturation. Monitoring load also aids 

the talent development process to ensure that all adolescent footballers are given 

the opportunity to reach their potential by adjusting individual load within and 

between micro cycles (Ford et al., 2020; Buchheit, 2014). An aim of the present 

thesis will be to quantify the load and physiological responses to load in a cohort of 

adolescent footballers within an elite football academy. 

The literature review will discuss the following areas associated with monitoring 

responses to load: the physical demands of adolescent football; strategies of 

developing adolescent players; procedures of quantifying external and internal load 
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and their reliability. Methods of monitoring individual responses to load and their 

ability to detect a true change in performance; the importance of monitoring training 

and individual responses in adolescent football will also be discussed.  

 

Developing Adolescent Football Players 

Football is thought to be the most popular sport in the world, being played in every 

country around the globe (Reilly & Williams, 2003). In 2007, the Fédération 

Internationale de Football Association (FIFA) estimated that there had been an 

increase of 7% in adolescent players (under 18) participating in football representing 

22 million registered adolescent players globally. The increase in adolescents 

participating in football had led to an increased interest in the physical demands of a 

match. The physical demands of an adolescent football match appear to be 

dependent on the players chronological age. Harley et al., (2010) used an 

individualised approach to calculate the match demands of adolescent footballers 

within a variety of age groups. Peak velocity for each player was calculated using a 

20-metre sprint with a 10-metre flying sprint time recorded. These individual peak 

velocities were used to calculate mean peak velocity for each age group. Finally, the 

mean peak velocity of each age group was divided by the mean peak velocity of a 

group of adult footballers and then multiplied by commonly used thresholds to 

establish age specific speed zones. Results showed that the total distance covered 

in a match was significantly higher (p > 0.05) when comparing an under-16 match 

(7672 ± 2578 metres) to under-12 (5967 ± 1277 metres), under-13 (5813 ± 1160 

metres) and under-14 matches (5715 ± 2060 metres). On average, high-intensity 

distance, very high-intensity distance and sprint distance accounted for 30.4%, 
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11.9% and 3.6% of total distance covered respectively, across the under-16, under-

15, under-14, under-13 and under-12 age groups. High-intensity distance, very high-

intensity distance and sprint distance accounted for 9.2%, 3.1% and 1% of match 

exposure respectively, across all adolescent age groups (Harley et al., 2010). 

However, when compared to relative match exposure, in metres/min-1, no significant 

differences in match work rate were found (Harley et al., 2010). This highlights the 

importance of analysing both absolute and relative match load when comparing 

match running performance across different adolescent age groups.   

To be successful in football, adolescent players need to improve in a range of 

technical and tactical skills such as; passing, shooting, dribbling and tackling 

(Meylan, Cronin, Oliver & Hughes, 2010). Increasing physical capabilities is also 

necessary for adolescent players in order to cope with the physical demands of the 

sport. Improving physical qualities will also lead to enhancements in overall 

performance (Arnason et al., 2004). Physical qualities that are important to 

adolescent footballers include but are not limited to; speed, agility, lower limb power, 

strength, flexibility and aerobic endurance (Gil, Gil, Ruiz, Irazusta & Irazusta, 2007). 

As well as improving technical, tactical and physical abilities, it is important that 

adolescent footballers are available to train and play throughout the competitive 

season (Watson, Brickson, Brooks & Dunn, 2016). It is thought the more time 

adolescent players spend training and practicing their skills, the more chance they 

will have of becoming a senior professional player (Le Gall, Carling & Reilly, 2006).  

Developing adolescent players into senior professionals appears to be a process 

many football associations and governing bodies are looking to implement in a more 

effective manner (Miller, Cronin & Baker, 2015). For example, the Scottish Football 

Association (SFA) have implemented a strategy, known as Project Brave, to improve 
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the “efficiency” of elite adolescent academies. The main objectives of Project Brave 

are to “bring a greater focus to talent development and optimise playing 

opportunities,” as well as “ensuring a more efficient pathway to first-team football,” 

(SFA, 2018). However, it is this authors’ belief that Project Brave aims to increase 

effectiveness of elite adolescent academies as opposed to efficiency. Increasing the 

number of adolescent footballers who progress from elite adolescent football to elite 

senior football should be the priority for all football governing bodies, irrespective of 

the different strategies put in place to achieve this. 

Many professional football club’s identity adolescent players who they believe have 

the potential of becoming a senior professional. These adolescent players are invited 

to join the clubs’ academy where they have the opportunity to train and develop in an 

elite environment. Adolescent footballers who are part of an academy are exposed to 

higher training volumes than non-academy players (King, 2017). Therefore, it is of 

paramount importance that load is regularly monitored. Training and match load data 

can be used by coaches and practitioners to aid the periodisation process. Day to 

day alterations in load can be made to ensure each adolescent player is being 

exposed to an appropriate training stimulus that allows for physiological adaption 

whilst ensuring the accumulation of fatigue rarely occurs (Buchheit, Manouvrier, 

Cassirame & Morin, 2015).  

 

Methods of Monitoring Load 

Quantifying individual load and subsequent physiological and perceptual responses 

for every training session and match can be challenging in team sports, such as 

football. The combination of duration and intensity is referred to as load (Malone et 
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al., 2015). The culmination of physical actions performed by players during a training 

session or match play is referred to as external load and is measured in duration and 

distance covered in various running modalities. The physiological and perceived 

stress placed on the athlete during a training session is known as the internal load. 

Each athlete will have different levels of internal load imposed on them during 

training and competition (Brink, Nederhof, Visscher, Schmikli & Lemmink, 2010). For 

athletes involved in team sports, a combination of both external and internal load 

monitoring, is suggested due to the high-intensity intermittent nature of training and 

matches. Research has shown that in the same training session, external load 

showed the greatest inter player variation during a technical and tactical training 

drills due to position specific demands whereas during containing more high speed 

running, accelerations and decelerations internal load showed more variation 

(Weaving, Marshall, Earle, Nevill & Abt, 2014). Therefore, the use of both external 

and internal load monitoring is recommended. 

 

External Load Monitoring  

Advances in microtechnology has enabled applied sport scientists to monitor 

athletes in real time. Devices such as Global Positioning Systems (GPS) and 

accelerometers give detailed information on the external load being placed on an 

athlete during training and matches (Coutts & Cormack, 2014). GPS units can 

measure the speed and movement patterns of an athlete. This data will not only 

enable external load to be quantified but also provide information on position 

specific, physiological workload for a variety of team sports (Cummins, Orr, 

O’Connor & West, 2013). Modern GPS units are small, lightweight and able to store 
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up to 4-hours of data. GPS units are placed into the back of a purpose-built GPS 

vest that can be worn under an athletes’ kit. (Buchheit, Gray & Morin, 2015). This 

makes them practical and suitable for use in field sports (Aughey, 2011).  

Currently, there are GPS units that collect data at a number of different frequencies. 

Literature suggests that the higher the frequency of the GPS unit, the more reliable 

and valid the measure (Jennings, Cormack, Coutts, Boyd & Aughey, 2010; Varley, 

Fairweather & Aughey, 2012). GPS units have also been found to have improved 

reliability when used over longer distances and at slower speeds. Coefficient of 

variation (CV) was decreased from 32.4% to 9.0% when used for sprint distances of 

10-metres and 40-meters respectively, when using a 5-Hz GPS unit. The CV was 

reduced further to 3.8% when the same GPS unit was used during participation in a 

140-metre modified team sport running circuit (Johnston et al., 2012). As sprints 

completed by footballers during a match rarely exceed 20-metres in distance and 4 

seconds in duration (Carling, Bloomfield, Nelsen & Reilly, 2008), the reliability of 

GPS units to quantify high-intensity actions in footballers is questionable.  

The validity and reliability of GPS units at different velocities has also been a popular 

area of research. GPS error has been found to be lower at slower speeds with one 

study finding that standard error of estimate (SEE) was 0.7% at a walking speeds of 

1.7 m/s-1 compared to a SEE of 5.6% at a running speed of 6.0 m/s-1 (Portas, Rush, 

Barnes, & Batterham, 2007). Johnston et al., (2012) supports these findings as their 

research found that at low intensity activity (<13.99 km/h-1) typical error of 

measurement (TEM) was 4.9%. During high-intensity running (14.00 – 19.99 km/h-1) 

TEM increased to 7.9%. Finally, during very high-intensity running (>20.00 km/h-1) 

TEM increased again to 12.7%. The study concluded that applied sport scientists 
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should be cautious when using GPS units to analyse workloads above 20 km/h-1 

(Johnston et al., 2012). 

Until recently, GPS units on their own are unable to quantify the forces imposed on 

an athlete such as, impacts from player-to-player collision and contacts with the 

ground, such as falls and foot strikes (Carling, Bloomfield, Nelsen & Reilly, 2008). 

However, modern GPS units with built in triaxial accelerometers allow practitioners to 

measure the body load imposed on an athlete. The accelerometer measures the 

acceleration of an athlete in the X, Y and Z axis and expresses the body load in G-

force (Cummins, Orr, O’Connor & West, 2013). Further improvements to technology 

has allowed the combination of triaxial accelerometers and GPS data to be 

quantified and is termed PlayerLoad. PlayerLoad TM data provides a cumulative 

measure of rate of change in accelerations in anteroposterior, mediolateral and 

vertical axial planes and has shown moderate to high test-retest reliability (ICC = 

0.80 – 0.99) and absolute reliability (%CV = 3.1 – 8.7) when used during a football 

match (Barrett et al., 2016; Barreira et al., 2016). The use of GPS with imbedded 

triaxial accelerometers, like PlayerLoad TM, is common practice in elite team sport 

and may provide a more complete picture of the locomotor demands of an athlete 

(Buchheit, Gray & Morin, 2015; Waldron, Twist, Highton, Worsfold & Daniels, 2011). 

GPS units and accelerometers are widely used by many football teams to quantify 

external load. GPS units are practical, portable and provide data on the speed and 

movement of team athletes during training and matches. However, their accuracy is 

dependent on the frequency at which the GPS unit collects data. The literature has 

found measurements to have reduced validity and reliability when used at high 

speeds and short distances. This may be of concern to applied sport scientists who 

work with football players due to the amount of distance covered at high speed 
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during training and matches (Carling, Bloomfield, Nelsen & Reilly, 2008; Lambert & 

Borresen, 2010; Harley et al., 2010). GPS units are also expensive and purchasing 

enough to cover the needs of a whole squad may not be cost-effective even for 

some elite teams (Carling, Bloomfield, Nelsen & Reilly, 2008).  

 

Internal Load Monitoring 

To monitor internal load in team sports, the duration and intensity of each training 

session and match must be quantified (Impellizzeri, Rampinini & Marcora, 2005). 

While the duration of a training session or match can be measured with ease, 

measuring the intensity can be more challenging (Alexiou & Coutts, 2008).  

However, training and match intensity can be quantified objectively by monitoring the 

heart rate and subjectively using rates of perceived exertion (RPE). These are the 

two most common methods of monitoring internal load in team sport athletes (Little & 

Williams, 2007). 

Heart Rate 

Measuring an athletes’ heart rate to describe and determine internal load is based on 

the linear relationship between an individuals’ oxygen uptake (VO2) and heart rate 

over a wide range of steady state submaximal workloads (Åstrand, Rodahl, Dahl & 

Stromme, 2003). However, caution should be exercised when using heart rate to 

measure internal load in high-intensity, intermittent team sports. Training impulse 

(TRIMP) (Banister et al., 1980) is a method which has been developed in order to 

combine all perturbations of heart rate caused by training into a unit ‘dose’ of 

physical effort (Akubat & Abt, 2011). Banister et al., (1980) were the first to impose 

the use of TRIMP. They stated that measuring an individuals’ heart rate response to 
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exercise may be an effective way to quantify the internal load placed on that 

individual. TRIMP is calculated by using; the duration of a training session or match, 

the athletes resting heart, the athletes maximum heart rate and the athletes mean 

heart rate (Borresen & Lambert, 2009).  However, using mean heart rate to quantify 

TRIMP will not reflect the true internal load placed on athletes who are involved in 

intermittent, team sports as it fails to account for short, but important, periods of high-

intensity exercise and the delayed response of the sympathetic branch after sudden 

increases in exercise intensity (Stagno, Thatcher & van Someren, 2007). Therefore, 

derivations of Banisters’ original TRIMP model have been developed. Foster et al., 

(1995) proposed that an exercise score could be calculated by assigning each heart 

zone a number and multiplying the duration spent in each heart zone by its allocated 

number. Heart rate zones are numbered as follows: 50%-60% = 1; 60%-70% = 2; 

70%-80% = 3; 80%-90% = 4; 90%-100% = 5 (Esteve-Lanao, Foster, Seiler & Lucia, 

2007). Another method is to use heart rate zones that represent low- intensity 

exercise (values below ventilatory threshold (VT) or below 70% VO2 max); moderate-

intensity exercise (values between VT and respiratory compensation point (RCP) or 

between 70%-90% VO2 max) and high-intensity exercise (values above RCP or 

above 90% VO2 max) (Lucia, Hoyos, Santalla, Earnest & Chicharro, 2003). 

However, a limitation of these methods is that the weighting factor of each zone 

increases linearly, although anaerobic and lactate threshold vary between 

individuals. Therefore, the metabolic stress experienced by individuals, such as 

when lactic acid can no longer be removed from the muscles at the same rate it is 

being produced, might be different although their heart rate may be within the same 

zone (Borresen & Lambert, 2009).   
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There are a few limitations of using heart rate methods to quantify internal load. 

Each method requires a significant amount of time and work to determine and 

monitor on a daily basis, especially in a team sport setting. Although obtaining heart 

rate information from a heart rate monitor is simple, downloading and analysing the 

data requires a high level of technical proficiency and expertise. Potential equipment 

failure, leading to the loss of heart rate data of athletes is a further disadvantage 

(Coutts & Cormack, 2014). The short, intense bursts that occur during football, could 

lead to a players’ heart rate being unreflective of the intensity of the training session 

or match (Achten & Jeukendrup, 2003; Aroso et al., 2004).  

Rate of Perceived Exertion 

An alternative method for quantifying internal load is to record an athletes’ rating of 

perceived exertion (RPE). Borg (1982) described perceived exertion of exercise as a 

combination of information from the peripheral muscles and joints that are doing the 

work, the central cardiovascular and respiratory systems and the central nervous 

system. A number of different scales exist. The 15-point scale was first constructed 

by Borg and designed so that perceptual ratings on the scale increased in a linear 

relationship with heart rate and oxygen consumption, during exercise. The scale 

starts with the number 6 and increases up to number 20. An estimate of heart beats 

per minute-1 (bpm-1) can be calculated by simply adding a 0 on the end of the 

number on the scale given by an individual. For example, if an athlete gave a score 

of 14, it can be estimated that the athletes heart rate is 140 bpm-1. However, the 

literature states that this is only the case during steady-state exercise (Borg & 

Kaijser, 2006). Little and Williams (2007) conducted a study into the reliability of 

Borgs’ 15-point RPE scale, using senior footballers. Each player (n = 28, 24 ± 5 

years) verbally communicated their RPE score after the completion of a high-
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intensity, football specific, small-sided game. Players also had their heart rate 

monitored during the small-sided games that ranged from 2v2 to 8v8 players per 

team. CV of the RPE scores ranged between 5.1% and 9.9% for each of the small-

sided games. This would suggest the 15-point RPE scale is a reliable measure of 

exercise intensity in senior footballers. However, the relationship between RPE score 

and heart rate measures was found to be not significant (p = 0.20). The researchers 

suggest this may be due to the relationship between heart rate and energy 

expenditure becoming non-linear during very high-intensity exercise. However, the 

researchers do concede that some individuals may perceive the same training 

intensity differently due to their psychological state. Therefore, the use of both RPE 

and heart rate methods of internal load monitoring may be optimal.  

Since not all physical responses have a linear relationship with exertion, especially 

during high intensity exercise, the category-ratio 10 (CR-10) RPE scale was 

developed. This scale uses values ranging from 0 to 10 and each value is anchored 

by a verbal expression, each defining intensity as harder than the previous 

expression (e.g. strong and very strong). A high correlation between the category-

ratio RPE scale and both muscle and blood lactate has been described in the 

literature (Borg, Noble, Jacobs, Ceci & Kaiser, 1983). The category-ratio RPE scale 

is thought to be of best use in high-intensity sports, such as football, due to the 

fluctuation in exercise intensity throughout a training session or match (Coutts & 

Cormack, 2014). 

RPE scores have been used in order to quantify the intensity of training sessions 

and matches in football. The session-RPE (s-RPE) is calculated by multiplying the 

duration of a training session or match by the corresponding RPE given by the 

athlete upon its completion (Wrigley, Drust, Stratton, Scott & Gregson, 2012). It 
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appears that s-RPE has positive relationships with other methods of quantifying load. 

Gaudino et al., (2015) analysed the relationship between s-RPE scores and external 

load in football players. A group of 22 senior footballers (26 ± 6 years) had their s-

RPE scores and external load, using a 10-Hz GPS unit integrated with a 100-Hz 

accelerometer, collected throughout a competitive season. Significant correlations (p 

< 0.001) were found when comparing total high speed running distance (r = 0.61), 

number of accelerations (r = 0.63) and number of impacts (r = 0.73) to s-RPE score 

throughout the course of the season. Results of this study suggest that s-RPE may 

be a good judge of external load placed on adult footballers throughout a season. 

However, the same theory may not apply to adolescent footballers who experience 

different physiological demands, in terms of distance covered and number of 

accelerations (Rebelo, Brito, Seabra, Oliveira & Krustrup, 2014). In a group of 

adolescent footballers (n = 19, 17.6 ± 0.7 years) s-RPE scores and heart rate 

measurements were collected over a 7 week in-season period. Heart rated based 

TRIMP was calculated using suggested methods from Edwards, Banister, and Lucia, 

that have been previously described in this literature review. All individual s-RPE 

scores significantly (p < 0.01) correlated with Edwards (r = 0.54 – 0.78), Banisters’ (r 

= 0.50 – 0.77) and Lucia’s (r = 0.61 – 0.85) heart rate based methods. (Impellizzeri, 

Rampinini, Coutts, Sassi & Marcora, 2004). The results of this study suggest s-RPE 

may be a more cost and time effective method of monitoring load in adolescent 

football players. Recent research into the perceptual and physiological responses to 

different high intensity running drills in adolescent footballers has been published. A 

number of methods, including RPE using the CR-10 scale, were used to collect the 

internal load of 17 adolescent footballers (14.9 ± 0.6 years) after; a high intensity 

running (HIR) drill, a repeated sprints (RS) drill and a drill that combined both HIR 
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and RS. Results found RPE scores to be highest during the RS drill (6.3 ± 1.4) and 

lowest during the HIR drill (5.9 ± 1.7). Similarly modified TRIMP scores were found to 

be highest during the RS drill (48.6 ± 12.7) and lowest during the HIR drill (43.2 ± 

16.2) (Gibson, Henning & Twist, 2018). These results suggest that adolescent 

footballers may be able to use RPE to estimate the physiological stress placed on 

them during high-intensity drills. Previously it had been suggested that adolescent 

players RPE scores should be collected 10 minutes after completing training to 

encourage the younger players to think about the intensity of their training session in 

its entirety and not just the last drill of that session (Foster, 1998). However, more 

recently no differences were found in the RPE scores of adolescent footballers 

collected immediately after the completion of training or 30 minutes after (Fanchini, 

Ghielmetti, Coutts, Schena & Impellizzeri, 2015). 

RPE is a simple, time-efficient and cost-effective method that shows good levels of 

reliability (Impellizzeri, Rampinini, Coutts, Sassi & Marcora, 2004). It also has strong 

relationships with external and heart rate based methods of monitoring load (Coutts 

& Cormack, 2014; Gaudino et al., 2015; Scott, Black, Quinn & Coutts, 2013). 

Therefore, due to its non-invasive nature and strong validity with other methods of 

quantifying load, RPE appears to be a valid method of collecting data on the internal 

load of adolescent footballers.   

 

Assessing Individual Responses to Load 

It would be unwise to assume that each athlete in a team responds in the same 

manner to a set load, or indeed experiences a set load. Although this may be 

challenging in a sporting environment, it is essential that coaches and sport science 
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staff monitor and analyse individual physiological and psychological responses to 

external and internal loads (Coutts & Cormack, 2014). Adolescent footballers are 

required to play matches once and on occasion twice per week. Hence, the balance 

between training adaption and recovery is of importance to coaches and sport 

science personnel. Monitoring tools in adolescent football are often limited by 

expense, time constraints and ease of data collection. Therefore, the most common 

field based monitoring methods, and their ability to detect changes in load, are 

described in the following section of this literature review.  

Wellness Questionnaires 

Wellness Questionnaires are commonly used to assess how load is affecting specific 

components of wellness over time. Changes in an athletes’ mood and affective 

states have been described as an early indication of overtraining (Gastin, Meyer & 

Robinson, 2013). The Profile of Mood States Questionnaire, the Recovery-Stress 

Questionnaire for Athletes, Daily Analysis of Life Demands for Athletes and the Total 

Recovery Scale are able to detect changes in wellness, training related stress, strain 

and recovery (Moalla et al., 2016). Hooper and Mackinnon (1995) created a 

psychometric questionnaire that can be used to monitor well-being factors such as 

sleep duration and quality, muscle soreness, fatigue and stress. Fessi et al., (2016) 

used the Hooper questionnaire to assess responses of senior footballers (n = 17, 

23.7 ± 3.2 years) to different loads. Ratings in stress, sleep, fatigue, muscle 

soreness and load were collected for all players during the last week of pre-season 

and during an in-season week. Unsurprisingly, external load was found to be 

significantly greater (p < 0.01, ES > 2) during the pre-season week compared to the 

in-season week. Results showed that during the pre-season week perceived; 

quantity of stress (ES = 1.5), fatigue (ES > 2) and muscle soreness (ES > 2) were all 
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significantly higher (p < 0.01) when compared to the in-season week. Perceived 

quality of sleep (ES = 1.2) was found to be significantly lower (p < 0.01) during the 

pre-season period. The outcome of this study shows that lower levels of perceived 

wellness are present during periods of training where load is high. The use of the 

Hooper questionnaire appears to be a useful method of monitoring the phycological 

and psychometric responses to different loads in footballers. Research analysing the 

relationship between load and perceptions of wellness in adolescent footballers has 

also been conducted. A group of 14 adolescent footballers (17 ± 1 years) completed 

a perception of wellness and recovery questionnaire between 1 and 4 times per 

week during 4 separate training blocks in a season. As the season progressed, 

training exposure (hours per week) increased significantly (p < 0.05) for all players. 

Consequently, results of the wellness questionnaires found a moderate decrease 

(ES = 0.30, p < 0.05) in the perceived quality of sleep, moderate increases in 

perceptions of fatigue (ES = 0.36, p < 0.05) and stress (ES = 0.47, p < 0.05), and a 

large increase in perceptions of muscle soreness (ES = 0.53, p < 0.05) as the 

season progressed (Noon, James, Clarke, Akubat & Thake, 2015). Results of this 

study concur with those of Thorpe et al., (2015) who found that day-to-day variability 

of total high intensity running distance had moderate-to-strong correlations (r = -0.51, 

p < 0.001) with perceived levels of fatigue in footballers (n = 10, 19.1 ± 0.6 years). 

These results suggest that perceived ratings of wellness are sensitive to the daily 

fluctuations of in-season load. Perceived ratings of wellness are a time-effective, 

simple and non-invasive method of assessing adolescent footballers’ responses to 

in-season load. Therefore, monitoring perceived wellness ratings appears to be a 

valid method of quantifying subjective responses to load. 
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Linear Speed Tests 

Sprint tests are a popular method of monitoring speed in the field (Twist & Highton, 

2013). Electronic timing gates are normally used to measure sprint times in the field 

due to their high levels of precision and accuracy. Hetzler et al., (2008) found 

electronic timing gates to have excellent relative reliability (ICC = 0.98) when 

measuring multiple sprint split times. When comparing the use of a hand held stop 

watch for measuring multiple split times, only 2.4% of the results agreed with the 

electronic timers. The hand held stop watch also had a mean error of 0.16 seconds. 

Results of this study indicate electronic timing gates are the best method for 

measuring sprint times in the field. However, electronic timing gates are not without 

limitation. Inconsistent procedures are found in the literature with varying timing gate 

heights being reported from hip, knee and head height (Altmann et al., 2017). The 

height at which the timing gate is set at has been shown to influence the time 

recorded during a linear sprint test (Cronin and Templeton, 2008). To ensure validity, 

practitioners should aim to minimise the variation in timing gate height between 

individuals, even though this may be time-consuming and challenging in a team-

sport setting.  

Previous research has found that sprint performance is impaired immediately after 

strenuous exercise. A group of team sport athletes (n = 8, 23.0 ± 3.7 years) had their 

20-metre sprint times recorded prior to taking part in a Yo-Yo fatiguing protocol, that 

was performed to exhaustion. The fatiguing protocol was performed on an outdoor 

concrete track to elicit a neuromuslcar load similar to team sport activities. Players’ 

sprint times were then re-tested immediately after, 24-hours after and 72-hours after 

the fatigue protocol and results were compared to the baseline measure taken prior 

to the fatigue protocol. Sprint performance largely decreased (ES = 3.65) 
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immediately after the fatiguing protocol. However, when re-tested 24-hours later, 

sprint performance showed no difference to baseline measures and 72-hours later, 

moderate improvements were (ES = 1.08) found. These results suggest that the 

sprinting ability of team sport athletes recovers quickly after a fatiguing period of 

exercise (Gathercole, Sporer, Stellingwerff & Sleivert, 2015). Katis and Kellis (2009) 

reported that the sprint ability of adolescent footballers (n =34, 13.0 ± 0.9 years) 

decreased significantly (p < 0.05) immediately after a 70-minute training session but 

no follow up measures were taken in this study. However, Rampinini et al., (2011) 

measured the 40-metre sprint times of 22 adolescent footballers (19 ± 1 years) prior 

to a 90-minute match, 40-minutes post match, 24-hours post match and 48-hours 

post match. Compared to pre-match sprint times, 40-minute post match sprint times 

significantly increased (slower time) (p < 0.001) by 2.6%. Sprint times were closer to 

pre-match values 24-hours post match but still 0.9% higher (p = 0.49). No significant 

differences (p > 0.22) were found when comparing sprint times, prior to match and 

48-hours post match. These findings suggest that sprint tests could be used to 

monitor the recovery of speed following training and match play. Unlike CMJ tests, 

sprint tests are largely determined by concentric function, which is a possible reason 

for quicker recovery times in athletes (Gathercole, Sporer, Stellingwerff & Sleivert, 

2015). Sprint tests appear to be a good indicator of speed after intense periods of 

exercise and could be used to assess the physiological responses to daily load. 

However, the reliability of liner sprint tests when used in adolescent footballers has 

not been investigated. The reliability of sprint tests and consequently their ability to 

detect meaningful changes in adolescent footballers, requires further research. 
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Muscular Strength Tests 

Sprinting, quick changes of direction and over reaching for the ball are all actions 

that take place during a football match and is the suggested cause of hamstring and 

groin strains in footballers (Ekstrand, Hägglund & Waldén, 2011). Adolescent 

footballers are at greater risk of these injuries occurring as they grow and mature. It 

is suggested that monitoring the strength of key muscle groups in adolescent 

footballers may identify players who are struggling with their current load and are at 

a greater risk of injury occurrence (Read, Oliver, De Ste Croix, Myer & Lloyd, 2016). 

Recently, Vald Performance (Queensland, Australia) has developed new 

apparatuses for assessing hamstring, abductor and adductor strength.  

The Nordbord hamstring testing system is able to provide information on the 

maximum force, peak torque and imbalances between the hamstring muscle group 

in each leg (Bjorkheim, 2017). The Nordbord is a padded board with two ankle 

hooks. Players kneel on the padded board and have their ankles secured superior to 

the lateral malleolus. The two ankle hooks are connected to two force cells that 

measure the force at which the ankle hooks are being pulled whilst an individual 

completes a Nordic hamstring curl. The data is transmitted and displayed on a tablet 

or smart phone in real time (Opar, Piatkowski, Williams & Shield, 2013; Bjorkheim, 

2017). The Nordbord requires little skill to operate compared to isokinetic 

dynamometry and hand held dynamometry which require an individual to be highly 

skilled to use the proper technique (Stark, Walker, Phillips, Fejer & Beck, 2011). 

Research has found the Nordbord to have moderate to high test re-test reliability 

(ICC = 0.83 – 0.90) and an acceptable level of typical error (CV = 5.8% - 8.5%) in 

adult populations (Opar, Piatkowski, Williams & Shield, 2013). Although some 

studies have used the Nordbord to assess hamstring strength in adolescent 



33 
 

footballers (McGrath, Gibson, Lombard, Harper & McCunn, 2018; Bjorkheim, 2017), 

to this authors knowledge no studies have tested the reliability of the Nordbord in this 

population. Furthermore, the ability of the Nordbord to detect small but meaningful 

changes in muscular strength is yet to be quantified. 

Similar to the Nordbord, the Groinbar, also developed by Vald Performance, is able 

to measure the maximum force and imbalances between an individuals’ abductor 

and adductor muscles. The Groinbar is made up of a bar with four pads, two for 

adductor measures and two for abductor measures. Pressure applied to the pads is 

measured by force cells and data is transmitted to a tablet or smart phone. The 

Groinbar can be used in supine positions and long and short lever measurements 

can be recorded (O'Brien, Bourne, Heerey, Timmins & Pizzari, 2018). The Groinbar 

has shown excellent reliability (ICC =0.94, CV = 6.3%) when measuring isometric 

adductor and abductor strength from short lever positions and is more accurate 

compared to dynamometry and a sphygmomanometer (Ryan, Kempton, Pacecca & 

Coutts, 2018). The reliability of the Groinbar when forces are measured from long 

lever positions is unknown. However, peak torque adductor scores, measured at 

long lever positions, from the Grionbar have been found to have a moderate to good 

relationship (0.63 – 0.71) with peak torque adductor scores, also taken from long 

lever positions, using a hand-held dynamometer (O'Brien, Bourne, Heerey, Timmins 

& Pizzari, 2018). Furthermore, hand-held dynamometers have been shown to 

produce more reliable results when adductor strength is measured from a long lever 

position compared to a short lever position (Krause, Schlagel, Stember, Zoetewey & 

Hollman, 2007). Although the Groinbar has been used to assess the adductor 

strength of a cohort of adolescent footballers (Forsdyke, Salter, Weston & Cresswell, 
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2018), to this authors knowledge, its reliability and ability to detect small but 

meaningful changes in muscular strength are unknown.  

 

Assessing Reliability and Usefulness of Monitoring Tools 

For all physiological and psychological monitoring tools, reliability and ability to 

detect real change must be quantified before it can be used in an applied setting 

(Thorpe et al., 2015). This will give practitioners confidence that daily fluctuations in 

both external and internal load, resulting in potential meaningful changes in lower 

body power, speed and muscular strength, can be detected by their monitoring 

system.  

To assess the reliability of a physical performance test within a population, intraclass 

correlation coefficients (ICC) can be calculated. This type of analysis has been used 

in team sports previously to quantify the relative reliability of heart rate recovery after 

a submaximal shuttle test (Scott, McLaren, Caia & Kelly, 2018). The following 

thresholds were used; >0.99, extremely high; 0.90-0.99, very high; 0.75-0.90, high; 

0.50-0.75, moderate; 0.20-0.50, low; and <0.20 very low (Hopkins. 2000). These 

thresholds show that the higher the ICC of a monitoring tool, the better the relative 

reliability. Absolute reliability provides analysis of between day reliability of a 

monitoring tool. Recently, McMahon, Lake and Comfort (2018) quantified the 

absolute reliability of the flight time to contraction time ratio and the 

reactive strength index of an individual using a CMJ test. Typical error (TE) 

expressed as a percentage of the coefficient of variation (%CV) are calculated to 

quantify the absolute reliability of a physical performance test. A %CV of <5%, 5% - 
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10% and >10% were set as thresholds for defining excellent, good and poor 

absolute reliability respectively.     

Applied sport scientists commonly quantify the usefulness of a physical performance 

test by comparing the smallest worthwhile change (SWC) to the TE (Roe et al., 

2016). This will give a comparison of test signal (SWC) to test noise (TE). SWC is 

calculated by multiplying the between subject standard deviation by 0.2. This is due 

to the fact that Cohens’ effect size of 0.2 is deemed small (Hopkins, 2004). If SWC > 

TE the usefulness of a test to detect real change is good. When SWC = TE, 

usefulness is satisfactory and when SWC < TE usefulness is marginal. These 

thresholds have been used previously to assess the usefulness of a repeated sprint 

test in adolescent football players (Castagna et al., 2018).  

 

Importance of Monitoring Load & Response in Adolescent Footballers 

The balance between load and recovery is an essential part of any training regime 

with the aim of enhancing athletic performance (Brink, Nederhof, Visscher, Schmikli 

& Lemmink, 2010). Not all athletes have the same physiological response to the 

same training dose, nor do they have the same external response to the same 

training drills. Therefore, in order to maximise the benefits of training, individual loads 

and responses must be analysed. This will then allow sport scientists and strength 

and conditioning coaches to use periodisation, in order to manipulate load on an 

individual basis to allow for optimal improvements to an athletes’ aerobic, 

cardiovascular and muscular systems (Buchheit, 2014; Coutts & Cormack, 2014). In 

order to improve performance, athletes must be exposed to some overload training 

that stresses the body to an extent not experienced before (Smith, 2003). Whilst 
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recovering from overload training, athletes return to a state of homeostasis. During 

this time that the body goes through physiological changes, so that the same training 

stimulus does not tax the body to the same extent. This process is known as 

supercompensation (Coutts & Cormack, 2014). Fatigue is a normal part of the 

training process and is experienced after training and can temporally impair an 

athletes’ physical performance. This impairment can be acute and last only a matter 

of hours. However, impairments such as muscle injury and soreness that occur after 

periods of training, consisting of high eccentric loads, can last up to serval days 

(Thorpe et al., 2015). With adequate recovery, fatigue is not an issue to be 

concerned with. However, when appropriate recovery between training sessions is 

not present, athletes are at risk of entering a state of overreaching. Extended 

durations in this state can lead to a reduction in levels of athletic performance 

(Meeusen et al., 2013). Decreased performance in submaximal shuttle run tests and 

poor perceived psychological wellness have been found to be consequences of 

overreached adolescent footballers (n = 77, 16.5 ± 1.1 years) (Schmikli, Brink, de 

Vries & Backx, 2010). 

Overreached adolescent footballers are also at an increased risk of injury and 

illness. A systematic review into the incidence of injury in elite adolescent footballers 

found that 2.0 to 19.4 injuries occurred per 1000 hours of exposure to training and 

matches (Pfirrmann, Herbst, Ingelfinger, Simon & Tug, 2016). Between 27% and 

33% of these injures were defined as overuse injuries. Overuse injuries are caused 

by repetitive physiological stresses being placed on the body without sufficient time 

to recover and are one of the most common injuries in adolescent athletes (Brenner, 

2007). Research by Brink et al., (2010) monitored the overall stress and recovery of 

elite adolescent footballers (n = 53, 16.5 ± 1.2 years) over the course of two 
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competitive seasons. Results from the study showed that physical stress was related 

to the incidence of both injury and illness, with odds ratios (ORs) ranging from 1.01 

to 2.59. Levels of psychosocial stress and recovery were related to the occurrence of 

illness (ORs = 0.56 – 2.27) in footballers that participated in the study. Helsen et al., 

(2000) stated that success in football is related to the amount of training hours 

completed each week. Therefore, it is essential that load and physiological 

responses are monitored to ensure adolescent footballers are fit and available to 

train all season long.   

Many coaches and sport scientists now implement a load monitoring system (Taylor, 

Chapman, Cronin, Newton & Gill, 2012). Monitoring load can also aid the talent 

development process, as many football academies aim to give their players the 

opportunity to reach their full technical and physical potential (Ford et al., 2020). 

Assessing responses to load also gives coaches and sport scientists an insight into 

whether adolescent footballers are responding positively or negatively to both the 

external and internal loads being placed on them (Thorpe, Atkinson, Drust & 

Gregson, 2017). This information will be the basis for which adaptations are needed 

for each individual players’ load in order to give them the best chance to be 

successful. However, to date there is no research available which uses 30-metre 

sprint performance and local muscular strength tests as physiological monitoring 

tools, over acute and chronic training periods, in adolescent footballers.    

 

Conclusion 

In conclusion, with football governing bodies and football academies striving to 

develop more adolescent footballers into senior professionals, it is important that 
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load and physiological responses are monitored effectively. The most appropriate 

methods of monitoring load and individual responses to load have been well 

documented throughout this literature review. However, the reliability and usefulness 

of some of these methods when used in adolescent footballers is still unknown. 

Further research into the fluctuations of load and physiological responses is 

important. This information could be used to alter the training regimes of adolescent 

footballers in order to improve the pathway from adolescent football to the senior 

game by maximising training time and opportunities. The current research will aim to 

determine the reliability of different tools that are used to monitor the physiological 

responses of adolescent footballers. Furthermore, load and subsequent 

physiological effects for a cohort of adolescent footballers over acute and chronic 

training periods, will also be quantified.  
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Chapter 3 – Reliability and Usefulness of Physical Performance Tests in 

Adolescent Football Players. 

 

Introduction 

The growing number of adolescents participating in football has led to an increase in 

research regarding the loads associated with adolescent players and the dose-

response relationship with assessments of physical capacity (Akubat, Patel, Barrett 

& Abt, 2012). Monitoring physiological responses to load is an important part of any 

physical training schedule. In association football, in-season load fluctuates weekly 

and is periodised to minimise fatigue and maximise player readiness to compete in 

weekly matches (Malone et al., 2015). Therefore, it is important to establish the 

reliability of the measures used to monitor responses to daily load so that 

practitioners can make more effective decisions on training content and intensity 

(Meeusen et al., 2013). 

Linear sprint tests can be used to assess the physiological responses athletes 

experience in relation to different loads (Twist & Highton, 2013). Previous research 

has found that the sprint performance of adolescent footballers is impaired after the 

match and takes up to 48 hours to return to pre match levels (Rampinini et al., 2011). 

Research by Ascensão et al., (2008) found that 72 hours post-match, the sprint 

performance of adolescent footballers was still 0.02 seconds slower than baseline 

measures. However, Haugen and Buchheit (2015) suggest that an increase in 20-

metre sprint time does not have a direct impact on performance during a football 

match if the increase is less than 0.03 seconds. This is based on the distance and 

time that one player needs to be ahead of an opponent to win the ball (Haugen & 
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Buchheit, 2015). Electronic timing gates are preferred to hand-held stopwatches 

when it comes to measuring linear sprint times in the field and have been found to 

have excellent levels of relative reliability (ICC = 0.98) in adult populations (Hetzler et 

al., 2008). However, the reliability of sprint tests within a population of elite 

adolescent footballers, is still unknown.  

Accelerations, decelerations and sharp changes of direction are suggested causes 

of muscular injuries in footballers (Ekstrand, Hägglund & Waldén, 2011). Previous 

research has shown that it may take up to 72 hours post match for muscular strength 

to return to optimal levels (Ascensão et al., 2008). Assessing levels of muscular 

strength is another method of monitoring individual response to load. Isokinetic 

dynamometers have been found to be reliable instruments and are generally 

considered the ‘gold standard’ for measuring muscular strength (Stark, Walker, 

Phillips, Fejer & Beck, 2011). However, they are expensive and non-portable making 

their use as a daily monitoring tool, in a field setting, impractical (Desmyttere, Gaudet 

& Begon, 2019). Although hand-held dynamometry test is a reliable, inexpensive and 

portable alterative for assessing muscular strength in field based settings, it is 

subject to between-tester bias and some level of skill and experience is required to 

administer the test (Whiteley et al., 2012; Kemp, Schache, Makdissi, Sims & 

Crossley, 2013). The Nordbord and Groinbar are two pieces of apparatus that 

assess the strength of the hamstrings and adductors, respectively. During Nordbord 

testing, individuals preform a Nordic curl on a padded board with their ankles 

secured by two hooks connected to force cells. As a player performs a Nordic curl, 

the force exerted on the hooks is measured (Bjorkheim, 2017). For Groinbar testing, 

players can have their adductor and abductor strength tested in both short and long 

lever positions. An adjustable bar, with movable force transducers, has its height 
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altered depending on which type of test is desired (O'Brien, Bourne, Heerey, 

Timmins & Pizzari, 2018). The reliability of the Nordbord (ICC = 0.83 – 0.90, %CV = 

5.8 – 8.5) and Groinbar (ICC = 0.85, %SEM = 8.2) has been found to be of an 

acceptable level when measuring the peak forces produced by the hamstring and 

adductors in adult populations respectively (Opar, Piatkowski, Williams & Shield, 

2013; Desmyttere, Gaudet & Begon, 2019). However, the reliability of both pieces of 

apparatus when used by adolescent footballers is unknown. 

Intraclass correlation coefficients (ICC) have previously been used in a team sport 

setting to measure relative reliability (Scott, McLaren, Caia & Kelly, 2018). Absolute 

reliability can be assessed by calculating the typical error (TE) of a test expressed as 

a percentage of the coefficient of variation (%CV) (Hopkins, Marshall, Batterham & 

Hanin, 2009). Defining the usefulness of any physical performance test is also 

essential if practitioners wish to use the tests to monitor adolescent athletes 

(Buchheit, Spencer & Ahmaidi, 2010). Test usefulness is analysed by comparing the 

TE, also known as the noise of a test, to the smallest worthwhile change (SWC) in 

terms of performance. SWC is calculated by multiplying the between subject 

standard deviation of a test score by 0.2. This is based on Cohens effect sizes where 

an effect size of 0.2 is defined as small (Hopkins, 2004). Ideally, the SWC of a test is 

greater than the TE. If so, practitioners can use the tests with confidence that they 

will be able to detect true change in physical performance (Pyne, 2003).     

The objective of this study is to establish the reliability and usefulness of sprint 

performance, eccentric hamstring strength and isometric adductor strength tests 

using the My Jump app, Brower Timing Gates, Nordbord and Groinbar respectively, 

in a population of adolescent footballers. It is hypothesised that at least one outcome 
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metric in all of the physical performance tests will have acceptable levels of relative 

reliability and absolute reliability. 

 

Methodology 

Experimental Approach to the Problem 

A repeated measures approach was used to assess the relative reliability, absolute 

reliability and usefulness of lower body power, muscular strength and speed tests in 

a group of adolescent footballers. Each player completed an eccentric hamstring 

strength, isometric adductor strength and liner sprint test using the Nordbord, 

Groinbar and Brower Timing System respectively. Testing took place on three 

separate occasions over a period of four days, with no less than 24 hours and no 

more than 48 hours between trials. All data was collected during a competitive, in-

season micro-cycle where the focus of the training sessions was the continued 

development of technical, tactical and physical capabilities of the players.  

 

Participants  

Forty-six adolescent footballers agreed to participate in this study. However, due to 

injury, illness and international commitments, only thirty-seven adolescent footballers 

(age: 14.7 ± 0.8 years; stature: 168.7 ± 7.8 cm; mass: 57.7 ± 9.1 kg; maturity offset: 

0.8 ± 0.9 years) completed all three trials, of at least one of the physical performance 

tests. All players attended the same elite youth academy, and each completed three, 

90 minute training sessions during the study. The researcher made no alteration to 

the players weekly training regime. At the start of the season each player, and their 
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parent or legal guardian, within the youth academy gave written consent for their 

child’s physical performance data to be used for research purposes. The study was 

granted full ethical approval by the School of Social Sciences at Heriot-Watt 

University, conforming to the declaration of Helsinki. 

 

Procedures 

All testing took place in the early evening prior to the players’ regular squad training. 

It is recommended that linear sprints should take place at the end of a physical 

performance testing battery due to the high levels of fatigue produced from sprinting. 

This ensures that the results of the other performance tests, within the testing battery 

are not affected (Baechle & Earle, 2008; Turner et al., 2011). Therefore, in the 

following order, each player completed the Nordbord and Groinbar tests indoors 

before making their way outside onto a synthetic grass football pitch to complete the 

liner sprint test. Outdoor temperature and wind conditions were similar between the 

three trials (temperature: 10 – 13°C; humidity: 86 – 95%; wind: 9.9 – 12.4 mph). 

Each of the four tests were part of the players normal physical assessment protocol 

at the club. Therefore, no habituation period with the protocol or equipment was 

necessary for any of the trials. Identical procedures were carried for each of the 

three trials. Prior to testing, all players completed a warm-up that included a raise, 

activate, mobilise and potentiate (RAMP) phase. The RAMP warm-up was used as it 

was non-fatiguing and optimally prepared the players for the high-intensity nature of 

the testing battery (Jeffreys, 2017). 
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Anthropometrics & Maturity Offset 

One week prior to testing, each player underwent an anthropometric assessment. 

Stature and seated heighted were measured to the nearest 0.1 centimetre using a 

Seca Alpha stadiometer. Body mass was measured to the nearest 0.1 kilogram 

using calibrated Seca Alpha scales. Age at peak height velocity (PHV) was 

estimated using the Mirwald predication equation (Mirwald, G. Baxter-Jones, Bailey 

& Beunen, 2002). Maturity offset was calculated by subtracting the players age at 

PHV from their chronological age.         

Eccentric Hamstring Strength 

Each player completed the eccentric hamstring strength test using the Nordbord 

(Vald Performance, Queensland, Australia). The Nordbord is a padded board with 

two ankle hooks that are each connected to force cells that record the force being 

produced by the hamstrings during a Nordic hamstring curl (Bjorkheim, 2017). Each 

player knelt onto the padded board and had their ankles secured superior to the 

lateral malleolus by the ankle hooks. The researcher then instructed the player to 

complete three maximum effort Nordic curls, encouraging them to lower their torso to 

as close to parallel with the ground as possible. Each player took a 5-10 second rest 

between each Nordic curl. Data was transmitted in real time into the researchers’ 

smart phone using the Scorebord app (Vald Performance, Queensland, Australia) 

before being uploaded onto the Dashbord database (Vald Performance, 

Queensland, Australia). During each Nordic curl, the Nordbord provided data on the 

peak force and peak torque produced by both the right and left hamstrings of each 

player. The highest force and torque produced by each player was imported from the 
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Dashbord database into a Microsoft Excel spreadsheet, after each trial. Figures 1a 

and 1b, depict the protocol of using the Norbord.  

Isometric Adductor Strength  

In each trial, after completing the eccentric hamstring strength test, players moved 

straight onto the isometric adductor strength test, using the Groinbar (Vald 

Performance, Queensland, Australia). The Groinbar is made up of a metal bar that 

can be adjusted in height depending on the testing position desired. The bar has four 

force pads attached to it, each connected to a force cell, that is able to measure the 

force being applied to it during different groin squeezes (O'Brien, Bourne, Heerey, 

Timmins & Pizzari, 2018). For long lever testing each player lay in a supine position, 

with their knees and hips at 0°. The force transducers were positioned perpendicular 

to the medial malleoli. The researcher then instructed each player to complete an 

isometric adductor squeeze, with maximum effort, for 5 seconds. Each player 

completed three long lever efforts with a 5 - 10 second rest separating each effort. 

The bar was then adjusted in height, so each player could complete three isometric 

adductor squeezes using short levers. Staying in a supine position, each player 

flexed their hips to 60° and the force transducers were set perpendicular to the 

medial femoral. Once again, the researcher asked each player to complete three, 

maximum effort, isometric adductor squeezes. A 5 -10 second rest was given 

between each effort. Data for both long and short lever squeezes were transmitted in 

real time to the researchers’ smartphone, through the Scorebord app. Peak force for 

the right and left adductor muscles was produced at both long and short levers. All 

data was uploaded to the Dashbord database and the highest force from each 

adductor, for both long and short lever tests, was imported into a Microsoft Excel 
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spreadsheet for each of the three trials. Figures 2a and 2b depict the protocols of 

using the Groinbar in long and short lever positions, respectively.  

Sprint Performance 

On completion of the isometric adductor strength test, players went outside to have 

their sprint performance assessed. Using a trundle wheel, distances of 5, 10, 20 and 

30-metres were measured and marked with a piece of white tape before the 

placement of a pair of Brower Timing Gates (Brower Timing Systems, Draper, Utah). 

A pair of gates were set-up at the start of the 30-metre distance, in order to start the 

electronic timer. As a player cut the light beam at each distance, the electronic timer 

produced a split interval time. Each player started the sprint test 30 centimetres 

behind the first pair of timing gates. This procedure has been used in previous 

reliability studies using Brower Timing Gates (Shalfawi, Enoksen, Tønnessen & 

Ingebrigtsen, 2012). Two plastic markers were placed 2-metres beyond the last pair 

of timing gates and each player was encouraged not to begin decelerating until they 

were past these markers. This ensured the times recorded were a true 

representation of the players’ sprint performance. Furthermore, a league table 

structure to rank each players’ sprint time was used for each trial. The league table 

was communicated to the players at the end of each trial in order to motivate them to 

improve on their ranking in the next trial. This procedure was used, as it has been 

found adolescent athletes who compete in team sports, are prone to having ego-

orientated motivates such as being better than their team mates (Rottensteiner, 

Tolvanen, Laakso & Konttinen, 2015). Each player was allowed one practice run 

through the gates at around 75% of maximum before the test began. Two maximum 

effort sprints were completed by each player and times were recorded for 5, 10, 20 
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and 30-metre distances. The lowest time for each distance, for each trial, was 

imported into a Microsoft Excel spreadsheet. 

 

Statistical Analysis   

All statistical analysis was performed using predesigned Microsoft Excel worksheets 

(Hopkins, 2015) and SPSS software (Version 25.0, IBM Corp., Armock, NY, USA). 

Shapiro-Wilk tests of normality were completed and showed all data to be parametric 

(p > 0.05). Confidence limits were set at 95% for all statistical analysis. Relative 

reliability of each physical performance test variable was calculated using ICC with 

thresholds set at; >0.99, extremely high; 0.90-0.99, very high; 0.75-0.90, high; 0.50-

0.75, moderate; 0.20-0.50, low; and <0.20 very low. (Scott, McLaren, Caia & Kelly, 

2018). For each performance variable, absolute reliability was also calculated by 

determining TE as a %CV according to Hopkins et al., (2009).  A CV of < 5%, 5%-

10% and >10% were set as thresholds for defining a test as having excellent, good 

or poor reliability, respectively (McMahon, Lake & Comfort, 2018). The SWC for each 

performance variable was calculated by multiplying 0.2 by the mean between-player 

standard deviation (Póvoas et al., 2015). The usefulness of a physical performance 

test to detect real change is considered good when TE < SWC, satisfactory when TE 

= SWC and marginal when TE > SWC (Veugelers, Naughton, Duncan, Burgess & 

Graham, 2016).  

Statistical analysis of Nordbord and Groinbar data was only completed for thirty-six 

players as one player was late for the first trial and therefore only completed trials 

two and three. All thirty-seven players completed the three sprint trials and were all 

included in the statistical analysis of sprint times.  



48 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1a. Start position for Nordic hamstring                                                                          

curl using the Nordbord. Figure 1b. Mid-point of Nordic hamstring curl using the Nordbord. 
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Figure 2a. Long lever testing position using the Groinbar. Figure 2b. Short lever testing position using the Groinbar. 
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Results 

Measures of peak force and peak torque in the eccentric hamstring strength test, 

displayed high ICC and good %CV in both the left and right hamstrings. Test 

usefulness was marginal as TE > SWC for all measures. All results for the eccentric 

hamstring strength test are presented in Table 1a.  

Peak force measures of the left and right adductors in the isometric adductor 

strength test produced high ICC at both short and long lever positions. Short lever 

measures produced poor %CV whereas long lever measures produced good %CV. 

As TE > SWC for all test measures in both short and long lever positions, test 

usefulness was marginal. Table 1b displays all results for the isometric adductor 

strength test. 

Increase in distance led to an increase in the ICC produced during the sprint 

performance test. Both 5-metre and 10-metre sprints displayed moderate ICC, 20-

metre displayed high ICC and 30-metre sprints displayed very high ICC. For all 

distances, excellent %CV were produced. The sprint performance test had marginal 

usefulness as TE > SWC for all distances. Results for the sprint performance test are 

presented in full in Table 1c. 
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Table 1a. Reliability of eccentric hamstring strength test (n = 36). 

ICC = intra-class correlation coefficient; TE = typical error; CV = coefficient of variation; SWC = smallest worthwhile change; N = newton; 

N.m = newton metre. 

 

 

 

  Left Hamstring – Force (N) Right Hamstring – Force (N) Left Hamstring – Torque (N.m) Right Hamstring – Torque (N.m) 

Trial 1 (mean ± SD) 271.14 ± 53.45 283.53 ± 54.13 115.25 ± 24.85 120.44 ± 25.15 

Trial 2 (mean ± SD) 274.86 ± 54.48 282.53 ± 55.32 115.86 ± 25.42 119.47 ± 25.85 

Trial 3 (mean ± SD) 269.92 ± 54.16 279.08 ± 56.90 113.28 ± 24.75 116.69 ± 25.93 

Change in mean     

Trial 1 v Trial 2  3.72 (-5.77, 13.21) -1.00 (-9.64, 7.64) 0.61 (-3.74, 4.96) -0.97 (-5.18, 3.24) 

Trial 2 v Trial 3  -4.94 (-12.53, 2.64) -3.44 (-11.06, 4.17) -2.58 (-5.69, 0.53) -2.78 (-5.87, 0.32) 

Trial 1 v Trial 3  1.22 (-10.01, 12.45) 4.44 (-7.22, 16.11) 1.97 (-2.57, 6.52) 3.75 (-1.08, 8.58) 

ICC     

Trial 1 v Trial 2 0.87 (0.76, 0.93) 0.90 (0.81, 0.95) 0.88 (0.77, 0.93) 0.89 (0.79, 0.94) 

Trial 2 v Trial 3  0.92 (0.85, 0.96) 0.92 (0.86, 0.96) 0.94 (0.88, 0.97) 0.94 (0.89, 0.97) 

Trial 1 v Trial 3 0.82 (0.67, 0.90) 0.82 (0.67, 0.90) 0.86 (0.74, 0.93) 0.85 (0.73, 0.92) 

Overall  0.87 (0.79, 0.93) 0.88 (0.80, 0.93) 0.89 (0.82, 0.94) 0.89 (0.83, 0.94) 

TE      

Trial 1 v Trial 2 19.84 (16.09, 25.88) 18.06 (14.65, 23.55) 9.10 (7.38, 11.86) 8.80 (7.14, 11.48) 

Trial 2 v Trial 3  15.84 (12.85, 20.67) 15.91 (12.91, 20.76) 6.50 (5.27, 8.47) 6.47 (5.25, 8.44) 

Trial 1 v Trial 3 23.47 (19.03, 30.61) 24.38 (19.77, 31.80) 9.50 (7.70, 12.39) 10.09 (8.18, 13.16) 

Overall  19.96 (17.40, 23.72) 19.78 (17.24, 23.50) 8.47 (7.38, 10.06) 8.59 (7.48, 10.20) 

CV (%)     

Trial 1 v Trial 2 8.3 (6.7, 11.0) 6.9 (5.5, 9.1) 9.1 (7.3, 12.0) 8.0 (6.4, 10.6) 

Trial 2 v Trial 3  6.3 (5.1, 8.2) 5.7 (4.6, 7.6) 6.2 (5.0, 8.1) 5.6 (4.5, 7.4) 

Trial 1 v Trial 3 9.3 (7.5, 12.4) 9.0 (7.2, 11.9) 9.1 (7.4, 12.1) 9.0 (7.2, 11.9) 

Overall  8.0 (6.4, 10.5) 7.2 (5.8, 9.5) 8.1 (6.6, 10.7) 7.5 (6.0, 10.0) 

SWC     

Swc 10.81 11.09 5.00 5.13 



55 
 

Table 1b. Reliability of the isometric adductor strength test (n = 36).  

ICC = intra-class correlation coefficient; TE = typical error; CV = coefficient of variation; SWC = smallest worthwhile change; N = newton. 

 

 

 

 

  
Left Adductor – Short Lever 

Force (N) 
Right Adductor – Short Lever 

Force (N) 
Left Adductor – Long Lever 

Force (N) 
 Right Adductor – Long Lever 

Force (N) 

Trial 1 (mean ± SD) 292.78 ± 70.49 308.61 ± 71.49 154.78 ± 29.88 161.44 ± 31.01 

Trial 2 (mean ± SD) 306.67 ± 68.84 324.72 ± 64.08 157.11 ± 30.40 162.17 ± 34.45 

Trial 3 (mean ± SD) 307.39 ± 69.49 326.97 ± 67.06 156.08 ± 31.36 162.94 ± 32.51 

Change in mean     

Trial 1 v Trial 2 13.89 (1.37, 26.40) 16.11 (5.89, 26.34) 2.33 (-4.44, 9.11) 0.72 (-6.05, 7.49) 

Trial 2 v Trial 3  0.72 (-15.55, 17.00) 2.25 (-14.35, 18.85) -1.03 (-5.33, 3.27) 0.78 (-4.16, 5.72) 

Trial 1 v Trial 3 -14.61 (-31.04, 1.81) -18.36 (-35.58, -1.15) -1.31 (-7.18, 4.57) -1.50 (-8.47, 5.47) 

ICC     

Trial 1 v Trial 2 0.87 (0.75, 0.93) 0.91 (0.82, 0.95) 0.79 (0.62, 0.89) 0.82 (0.68, 0.91) 

Trial 2 v Trial 3  0.77 (0.59, 0.87) 0.73 (0.53, 0.85) 0.92 (0.85, 0.96) 0.91 (0.83, 0.95) 

Trial 1 v Trial 3 0.77 (0.59, 0.88) 0.74 (0.55, 0.86) 0.85 (0.72, 0.92) 0.80 (0.64, 0.89) 

Overall  0.80 (0.69, 0.88) 0.80 (0.69, 0.88) 0.85 (0.76, 0.91) 0.84 (0.75, 0.91) 

TE      

Trial 1 v Trial 2 26.16 (21.21, 34.12) 21.37 (17.33, 27.87) 14.16 (11.49, 18.47) 14.15 (11.48, 18.45) 

Trial 2 v Trial 3  34.01 (27.59, 44.37) 34.70 (28.14, 45.26) 8.98 (7.28, 11.72) 10.33 (8.38, 13.47) 

Trial 1 v Trial 3 34.33 (27.84, 44.78) 35.98 (29.18, 46.93) 12.28 (9.96, 16.02) 14.57 (11.81, 19.00) 

Overall  31.73 (27.65, 37.70) 31.38 (27.36, 37.29) 12.00 (10.46, 14.26) 13.15 (11.47, 15.63) 

CV (%)     

Trial 1 v Trial 2 9.4 (7.6, 12.5) 8.1 (6.5, 10.6) 9.8 (7.9, 13.0) 9.7 (7.8, 12.8) 

Trial 2 v Trial 3  12.5 (10.1, 16.7) 11.8 (9.5, 15.7) 6.5 (5.2, 8.5) 6.6 (5.3, 8.7) 

Trial 1 v Trial 3 13.2 (10.6, 17.5) 13.0 (10.4, 17.3) 8.0 (6.4, 10.5) 9.4 (7.6, 12.5) 

Overall  11.7 (9.4, 15.6) 11.0 (8.8, 14.5) 8.1 (6.5, 10.7) 8.6 (6.9, 11.3) 

SWC     

swc 13.92 13.51 6.11 6.53 
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Table 1c. Reliability of linear sprint performance test (n = 37). 

ICC = intra-class correlation coefficient; TE = typical error; CV = coefficient of variation; SWC = smallest worthwhile change; s = seconds.

  5-metre (s) 10-metre (s) 20-metre (s) 30-metre (s) 

Trial 1 (mean ± SD) 1.16 ± 0.07  1.92 ± 0.09 3.30 ± 0.16 4.60 ± 0.24 

Trial 2 (mean ± SD) 1.18 ± 0.08 1.97 ± 0.10 3.35 ± 0.18 4.67 ± 0.25 

Trial 3 (mean ± SD) 1.05 ± 0.06 1.84 ± 0.08 3.24 ± 0.15 4.56 ± 0.24 

Change in mean     

Trial 1 v Trial 2 0.02 (0, 0.04) 0.05 (0.02, 0.07) 0.06 (0.03, 0.09) 0.07 (0.04, 0.11) 

Trial 2 v Trial 3  -0.13 (-0.15, -0.10) -0.13 (-0.16, -0.11) -0.11 (-0.14, -0.08) -0.11 (-0.14, -0.08) 

Trial 1 v Trial 3 0.11 (0.09, 0.13) 0.08 (0.06, 0.10) 0.05 (0.03, 0.08) 0.04 (0.02, 0.06) 

ICC     

Trial 1 v Trial 2 0.60 (0.35, 0.77) 0.74 (0.55, 0.86) 0.85 (0.72, 0.92) 0.91 (0.84, 0.95) 

Trial 2 v Trial 3  0.43 (0.13, 0.66) 0.70 (0.49, 0.83) 0.85 (0.73, 0.92) 0.92 (0.86, 0.96) 

Trial 1 v Trial 3 0.59 (0.34, 0.77) 0.78 (0.61, 0.88) 0.92 (0.84, 0.96) 0.97 (0.94, 0.98) 

Overall  0.53 (0.35, 0.70) 0.74 (0.60, 0.84) 0.87 (0.79, 0.92) 0.94 (0.89, 0.96) 

TE      

Trial 1 v Trial 2 0.05 (0.04, 0.06) 0.05 (0.04, 0.06) 0.07 (0.05, 0.09) 0.07 (0.06, 0.10) 

Trial 2 v Trial 3  0.05 (0.04, 0.07) 0.05 (0.04, 0.07) 0.06 (0.05, 0.08) 0.07 (0.06, 0.09) 

Trial 1 v Trial 3 0.04 (0.03, 0.05) 0.04 (0.03, 0.05) 0.05 (0.04, 0.06) 0.04 (0.04, 0.06) 

Overall  0.05 (0.04, 0.06) 0.05 (0.04, 0.06) 0.06 (0.05, 0.07) 0.06 (0.06, 0.08) 

CV (%)     

Trial 1 v Trial 2 4.1 (3.4, 5.4) 2.6 (2.1, 3.4) 2.1 (1.7, 2.7) 1.6 (1.3, 2.1) 

Trial 2 v Trial 3  4.9 (4.0, 6.4) 2.7 (2.2, 3.5) 1.9 (1.6, 2.5) 1.5 (1.2, 2.0) 

Trial 1 v Trial 3 3.8 (3.1, 5.0) 2.2 (1.8, 2.9) 1.4 (1.1, 1.8)  1.0 (0.8, 1.3) 

Overall  4.3 (3.5, 5.6) 2.5 (2.0, 3.3) 1.8 (1.5, 2.3) 1.4 (1.1, 1.8) 

SWC     

Swc 0.01 0.02 0.03 0.05 
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Discussion 

This is the first study to assess the reliability of eccentric hamstring strength, 

isometric adductor strength and sprint performance tests in adolescent footballers. 

The findings suggest that all measures of the physical performance tests produced 

acceptable levels of reliability. 

Results show that the eccentric hamstring strength test had high levels of relative 

reliability (ICC = 0.87 – 0.89) and good absolute reliability (%CV = 7.2 – 8.1) for 

measures of peak force and peak torque in both hamstrings. The reliability of 

measures of peak force did not differ greatly from the reliability of measures of peak 

torque. This is not surprising, as peak force is used in the calculation of peak torque 

of a muscle (Decker, 2019). In applied settings, it is suggested both force and torque 

measures are analysed over the early (100 ms) portion of the force/torque-time 

curve following force onset (Buckthorpe, 2019). This will provide practitioners with 

information on the rate of force development (RFD), during an eccentric contraction, 

of the hamstring muscles. The results of this study agree with the findings of Opar et 

al., (2013) who assessed the reliability of the Nordbord to test eccentric hamstring 

strength (ICC = 0.83 – 0.90, %CV = 5.8 – 8.5) in adults. An isokinetic dynamometer, 

when used to measure eccentric hamstring strength, has been found to have slightly 

higher levels of relative reliability (ICC = 0.95 – 0.97) compared to the results of this 

study (Pereira de Carvalho Froufe Andrade, Caserotti, Pereira de Carvalho, André 

de Azevedo Abade & Jaime da Eira Sampaio, 2013). This was expected as 

isokinetic dynamometers are considered the gold standard for measuring eccentric 

and concentric muscular strength. During testing, an isokinetic dynamometer 

provides a constant velocity, that is set by the tester, throughout a joints full range of 

motion (Valovich-McLeod, Shultz, Gansneder, Perrin & Drouin, 2004). It is not 
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possible to do this whilst using a Nordbord, potentially leading to slightly lower levels 

of reliability. The reliability of hand-held dynamometers, when used to measure 

eccentric hamstring strength, has been found to be slightly lower (ICC = 0.84) than 

the reliability of the Nordbord used in this study (Thorborg, Bandholm & Hölmich, 

2012). Hand-held dynameters are also subject tester skill and experience (Stark, 

Walker, Phillips, Fejer & Beck, 2011) whereas the Nordbord requires little skill to 

operate. This further supports the use of the Nordbord as a reliable method to 

quantify the eccentric hamstring strength of adolescent footballers. To date, there 

has been no research into the fluctuation of Nordbord scores throughout an in-

season period in adolescent footballers. 

Results of this study found that short lever measures of isometric adductor strength 

have high levels of levels of relative reliability (ICC = 0.80) and poor levels of 

absolute reliability (%CV = 11.0 – 11.7). This is lower than results of previous 

reliability studies that used the Groinbar to measure adductor strength in adult 

footballers (ICC = 0.85, %SEM = 8.2) and in adult Australian rules footballers (ICC = 

0.94, %CV = 6.3) (Desmyttere, Gaudet & Begon, 2019; Ryan, Kempton, Pacecca & 

Coutts, 2018). The lower reliability results of the short lever measures could be 

explained by the age of the players. It has been suggested the pubic symphysis is 

not matured fully until the age of 21. This may be the cause for the slightly lower 

reliability results (Wollin, Pizzari, Spagnolo, Welvaert & Thorborg, 2017). Long lever 

measures also produced high levels of relative reliability (ICC = 0.84 – 0.85). In 

contrast to short lever measures, long lever measures produced good absolute 

reliability (%CV = 8.1 – 8.6). This is the first study to quantify the reliability of 

isometric adductor strength from long lever positions, using the Groinbar, as such 

there is no comparable data in the literature. However, when using a hand-held 
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dynamometer, the isometric adductor strength of senior footballers produced higher 

levels of reliability (ICC = 0.97. %SEM = 2.5) from long lever positions than the 

results of this study (Light & Thorborg, 2016). Again, this may be due to the 

maturation status of the adolescent players. Similar to the results of this study, Light 

and Thorborg (2016) found long lever measures of isometric adductor strength to 

have higher levels of reliability than short lever measures. Research by Krause et al., 

(2007) found that long lever measures produced higher levels of reliability, when 

testing the unilateral isometric adductor strength of adults, compared to short lever 

measures. A possible reason for long lever measures producing better levels of 

absolute reliability is that it is easier to standardise the testing position. During long 

lever testing, hips are flexed at 0° whereas during short lever testing hips are flexed 

to 60°. We can be confident that the degree of hip flexion throughout long lever 

testing remains constant, within and between trials, as players were instructed to lie 

in a supine position with their legs straight. As such, any flexion of the hips would be 

more identifiable. Changes in the degree of hip flexion between short lever trials may 

be the cause for the poor levels of absolute reliability found in this study. The results 

of the study suggest that when using the Groinbar to test isometric adductor strength 

of adolescent footballers, measures from long lever positions produce reliable 

results. To date, there has been no research into the changes of Groinbar scores in 

adolescent footballers, throughout a chronic in-season period. Further research is 

required before a true assessment of the Groinbars’ usefulness can be made.  

For the sprint performance test, measures of relative reliability were classed as; 

moderate for both 5-metre (ICC = 0.53) and 10-metre (ICC = 0.74) performance, 

high for 20-metre (ICC = 0.87) performance and very high for 30-metre (ICC = 0.94) 

performance. These results are lower than those of Shalfawi et al., (2012), who also 
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used Brower Timing Gates, and found ICC of 10-metre, 20-metre and 30-metre 

sprint performance to be 0.91, 0.91 and 0.99 respectively. A possible cause for the 

lower relative reliability is that the players in the Shalfawi et al., (2012) study were 

university students who completed no athletic training between trails. This is in 

contrast to the players in this study who are elite adolescent footballers and trained 

between trials. Therefore, players in this study were better trained and more 

accustomed to completing regular sprints than the participants in the Shalfawi et al., 

(2012) study. Rampinini et al., (2011) reported sprint performance of adolescent 

footballers can still be impaired 24 hours post match, due to the high levels of fatigue 

experienced by players. Although relative reliability was still moderate to very high it 

is possible that fatigue accumulated during the in-season micro cycle effected the 

results, leading to slightly lower values compared to the players in Shalfawi et al., 

(2012) study. Levels of absolute reliability were deemed excellent for 5-metre (%CV 

= 4.3), 10-metre (%CV = 2.5), 20-metre (%CV = 1.8) and 30-metre (%CV = 1.4) 

sprint performances in this study. These results are similar to those reported by 

Darrall-Jones et al., (2016) who used Brower Timing Gates to assess the reliability of 

adolescent rugby players sprint performance. Darrall-Jones et al., (2016) found %CV 

for 10-metre, 20-metre and 30-metre sprint performance to be 3.1%, 1.8% and 2.0% 

respectively. Research by Morris et al., (2018) has found that adolescent footballers 

in pre-PHV and circa-PHV maturation groups improved their 30-metre sprint 

performance by 0.06 seconds over one full competitive season. In the current study 

the TE of the 30-metre sprint test was also 0.06 seconds. This suggests it is possible 

that the pre-PHV and circa-PHV adolescents in the current study could improve their 

30-metre sprint performance by a value at least equal to the TE of the test. However, 

Morris et al., (2018) reported that post-PHV adolescent footballers 30-metre sprint 
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performance decreased by 0.02 seconds. Morris et al., (2018) suggests that as post-

PHV players are exposed to higher loads as they progress through an elite youth 

academy and the accumulation of fatigue over the course of a season limits the 

development of sprint performance. Furthermore, a change of 0.02 seconds is within 

the TE established in this study for 30-metre sprint performance and therefore could 

not be deemed as a true change in performance. The maturation status of the 

players in the current study ranged across both circa-PHV and post-PHV maturation 

groups (0.8 ± 0.9 years). Although results of this study add to the rationale that sprint 

performance tests are reliable in adolescent footballers, further research is required 

to establish the magnitude of changes in sprint performance, in different maturation 

groups, over a longer period of time. This will provide practitioners with a better 

understanding of the usefulness of the sprint performance test to monitor speed in 

adolescent footballers, across different maturation groups.    

When analysing the sprint performance data of the current study, it was clear that 

both relative and absolute reliability increase as distance increases. This has also 

been reported in a previous reliability study using Brower Timing were the %CV of 

10-metre sprint performance (2.0) was higher than the %CV of 30-metre sprint 

performance (1.8) of adolescent rugby players (Waldron, Worsfold, Twist & Lamb, 

2011). A suggested reason for improved reliability with increased sprint distance is 

that athletes tend to lean forward during the acceleration phase of a sprint. 

Therefore, there is a risk an athlete may cut the starting light beam early with an 

upper limb leading to an inaccurate first split time (Darrall-Jones, Jones, Roe & Till, 

2016). Furthermore, between trials, there may have been slight differences in the 

size of the horizontal force initially produced by the players. These slight differences 

may have affected the reliability of 5 and 10-metre sprint performance as the 
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application of horizontal force is a key component of the acceleration phase 

(Buchheit et al., 2014). Overall, the results of this study suggest that 30-metres is the 

most reliable distance to assess the sprint performance of adolescent footballers. 

Although all physical performance tests produced acceptable levels of reliability, the 

usefulness of each test was found to be marginal. This was due to the TE of each 

test outcome being larger than the SWC. Therefore, if a players’ test score increased 

or decreased by a value equal to the SWC, we are not able to determine if this 

change is real as the change is within the noise (TE) of the test. This is the first study 

to determine the usefulness of an eccentric hamstring strength test and isometric 

adductor strength test using the Nordbord and Groinbar, respectively. However, the 

usefulness of a sprint performance, using Brower Timing Gates, has previously been 

found to be marginal when used in adolescent rugby players (Darrall-Jones, Jones, 

Roe & Till, 2016). To combat the fact that the TE of a performance test is greater 

than SWC, Hopkins (2000) proposed a method whereby the changed score of an 

athlete is plotted, with TE as error bars, against the SWC. If the changed score and 

its error bars (TE) are out with the SWC, practitioners can say with 75% probability 

that this is a clear change (Hopkins, 2000). This will give practitioners key 

information on the practical significance of a change in physical performance and 

this method is currently being used in an applied setting (Duthie, Pyne, Ross, 

Livingstone & Hooper, 2006; Pyne, 2003).  

As all three trials of the physical performance tests were completed within one 

training micro-cycle, it was unlikely that any changes in scores between trials would 

have been larger than the noise of the test. Knowledge on the minimal change in a 

test score required to be deemed real is essential to applied sport scientists. With 

results of the current study in mind, changes in performance of adolescent 
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footballers must be greater than the TE and not the SWC of the test before the 

change can be deemed real. Further research is required to quantify the effects 

different football scenarios such as; an in-season training period, a competitive 

match and a week of training cessation, have on measures of lower body strength 

and speed. It is possible that these scenarios may induce changes in eccentric 

hamstring strength, isometric adductor strength and sprint performance test scores, 

greater than the TE established in this study. Therefore, this information could aid 

the monitoring process and the periodisation of training schedules of adolescent 

footballers (Buchheit, Spencer & Ahmaidi, 2010). 

In conclusion, this study has quantified the relative and absolute reliability of 

eccentric hamstring strength, isometric adductor strength and sprint performance 

tests in adolescent footballers. Results of the current study suggest that eccentric 

hamstring peak force and peak torque; long lever measures of isometric adductor 

peak force and 30-metre sprint performance are the most reliable measures of 

physical performance in adolescent footballers. Although test usefulness was found 

to be marginal for all performance outcomes, practitioners could follow the guidelines 

proposed by Hopkins (2000). The change score of a test, using TE as error bars, can 

be plotted against the SWC to assess if the change score is real (> TE) or of 

practical significance (> SWC). This study provides the rationale for the potential use 

of these physical performance tests as monitoring tools in adolescent footballers. 

However, further research is required to assess the changes in test scores over 

acute and chronic periods of time as well as various football scenarios.  
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Chapter 4 – Quantification of In-Season Load and Associated Changes in 

Lower Body Strength and Speed in Adolescent Footballers. 

  

Introduction 

It is common practice in many countries, Including Scotland, for adolescent players 

to be identified by professional clubs as having the potential to become a senior 

professional footballers. The talent identification process starts from an early age 

with players as young as 8 years old being recruited into youth academes (Ford et 

al., 2020). The players who are invited to join the clubs’ pro-youth academy have the 

opportunity to train and develop in an elite environment. This is in contrast to ‘grass 

roots’ players who participate in football at a non-elite level. Adolescent players who 

train and play with a pro-youth academy are commonly exposed to higher training 

and match loads, compared to ‘grass roots’ players, to accelerate talent 

development (King, 2017). However, at present our understanding of the 

physiological responses associated with such increases in training volume amongst 

adolescent players is poorly understood.  

Accordingly, monitoring the training and match load of adolescent footballers is an 

important area of research. In chapter 3, measures of eccentric hamstring strength, 

long lever isometric adductor strength and 30-metre sprint performance were found 

to have typical error (TE) values of 19.9 Newtons, 12.7 Newtons and 0.06 seconds, 

respectively. Whether this degree of sensitivity relates to changes associated with 

training and match play is unknown. If, following training and match play, changes in 

lower body strength and speed are greater than the TE, practitioners may benefit 

from collecting this data at various points throughout the season to add to their 
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understanding of how players are responding to the prescribed load. As such, there 

is growing interest in the load that players experience at different stages of the 

season and what effect this load has on different physical capabilities (Malone, 

2014).  

Muscular strength is an important physical quality in adolescent footballers as many 

changes of direction occur during a match which require forceful contractions of the 

musculature of the lower body, whilst trying to maintain balance or protect the ball 

under pressure (Stolen, Chamari, Castagna & Wisloff, 2005). Despite this, relatively 

little research is available that quantifies changes in local muscular strength in 

adolescent footballers following training and match play. Speed is an important 

physical quality in match situations, such as beating an opponent to a loose ball 

(Haugen, Tønnessen, Hisdal & Seiler, 2014).  Research has shown that linear sprint 

performance of adolescent footballers takes 48-hours to return to baseline post 

match (Rampinini et al., 2011). In contrast, Rowsell et al., (2009), reported that 

adolescent footballers were able to maintain their speed after participating in four 

matches in four consecutive days. Therefore, further research is required to establish 

the effects of a match on adolescent footballers’ linear sprint performance. 

Monitoring load and physical responses on a daily basis will give coaches and 

practitioners an indication of what modifications, if any, need to be made to the 

structure and content of training in order to optimise player performance and physical 

fitness (Djaoui, Haddad, Chamari & Dellal, 2017). During the in-season, if load has 

led to reductions in lower body strength or speed, greater than the TE of the test, this 

would suggest that the load being placed on the player is having a real change on 

performance. Whether this change is desired, for example where physiological 
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adaptation is the aim, or not, in instances where performance is trying to be 

maintained, will guide how subsequent training is scheduled. 

As adolescent players are required to play at least one match per week, it is 

important load is periodised to minimise fatigue and maximise player readiness 

(Malone et al., 2015). Therefore, practitioners often test players physical capabilities, 

such as lower body strength and speed, to assess individual responses to training 

and match load. Methods of monitoring lower body strength and speed must be 

reliable and sensitive to the daily variations in load (Thorpe et al., 2016; Fitzpatrick, 

Akenhead, Russell, Hicks & Hayes, 2019) if they are to be useful to the coach and 

practitioner. Methods that can be used to monitor changes in lower body strength 

and speed in response to load were reported in chapter 3. Previously in this thesis, 

the reliability of 5-metre, 10-metre, 20-metre and 30-metre linear sprint performance 

tests were quantified in adolescent footballers with 30-metres being the most reliable 

(ICC = 0.94, %CV = 1.4, TE = 0.06 seconds). Despite having high levels of reliability, 

there is little research that quantifies the perturbations in 30-metre sprint test 

performance, following a period of training and match play.  

The Nordbord and Groinbar are used to assess the strength of the hamstring and 

adductor muscles, respectively. The reliability of both has been established in 

chapter 3. Measures of peak force in the hamstring muscles were found to have very 

high relative reliability (ICC = 0.87 – 0.88), good absolute reliability (%CV = 7.2 – 

8.0) and a TE of 19.9 ± 11.0 Newtons. Measures of peak force in the adductors from 

a long lever testing position were also found to have very high relative reliability (ICC 

= 0.84 – 0.85), good absolute reliability (%CV = 8.1 – 8.6)  and a TE of 12.7 ± 6.3 

Newtons. As tests of muscular power, such as CMJ height, fail to detect true 

changes in performance in adolescent footballers in response to intense periods of 
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training, (Malone et al., 2015; Fitzpatrick, Akenhead, Russell, Hicks & Hayes, 2019) 

tests of muscular strength may provide a better insight into the effects of load. 

However, there is little research that investigates the changes in eccentric hamstring 

strength and isometric adductor strength, despite both tests having high levels of 

reliability.    

As well as a lack of research on the effects of training and match play on lower body 

strength and speed, there is little information available on what happens to these 

physical qualities when adolescent players stop training. In this authors experience, 

breaks in training during the in-season are unavoidable in adolescent football due to 

players going away with their families during the school holidays (e.g. Easter and 

Christmas) which can cause players to miss up to two weeks of training and match 

play. This can cause disruption, even in a well planned training schedule. Previous 

research by Joo (2016) found that a one week cessation of training for well-trained 

adult players can lead to significant reduction in repeated sprint performance. 

However, agility, intermittent aerobic endurance and 30-metre sprint performance 

were unaffected by the one week cessation of training. The effects a cessation in 

training has on adolescent players is not so clear and could be researched more to 

enable practitioners to make informed decisions on when best to load players to 

accommodate for these breaks in training.   

There are three objectives of this study; 1) monitor the daily load and subsequent 

changes in lower body strength and speed, in adolescent footballers, over a 4-week 

training period, 2) assess the changes in adolescent footballer’s lower body strength 

and speed from pre to 24 hours post match and 3) to assess the effects of a one 

week cessation of training on adolescent footballers’ lower body strength and speed.   
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Methodology 

Experimental Approach to the Problem 

Eccentric hamstring strength, isometric adductor strength and liner sprint 

performance, were measured in a group of adolescent football players, who attended 

the same pro-youth academy, pre, post and during a 4-week in-season training 

period. Each player was scheduled to participate in twelve training sessions and four 

competitive matches throughout the 4-week training period. However, due to 

reasons out with the authors’ control, only half of the training sessions and matches 

took place. Therefore, external and internal loads were quantified for six training 

session and two matches. Measures of lower body strength and speed were 

measured at the start of each new session. External load was quantified using GPS 

whilst internal load was monitored using, heart rate and ratings of perceived exertion. 

To quantify lower body strength and speed, each player completed a physical testing 

battery prior to each training session and match. Tests were completed in the 

following order throughout the duration of the study; eccentric hamstring strength; 

isometric adductor strength and 30-metre sprint. Figure 3 displays when each data 

collection point and training session or match took place. All data was collected 

during an in-season period were the focus of the training sessions was the continued 

development of technical, tactical and physical capabilities of the players.  

 

Participants 

Ten adolescent footballers (age: 15.1 ± 0.5 years; stature: 175.5 ± 4.6 cm; mass: 

65.7 ± 5.9 kg; maturity offset: 1.7 ± 0.4 years) agreed to participate in this study. 

Researchers made no alterations to the players weekly training regime. Each player 
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had been part of a pro-youth academy for a minimum of 3 years. At the start of the 

season each player, and their parent or legal guardian, within the youth academy 

gave written consent to their physical performance data being used for research 

purposes. The study was granted ethical approval by the School of Social Sciences 

at Heriot-Watt University conforming to the declaration of Helsinki. 

 

Procedures 

All testing took place approximately 30 – 60 minutes prior to the players’ training 

session or match. The players in the study were completed two resistance training 

sessions per week, prior to their pitch based training session. All testing was 

completed prior to the scheduled resistance training. All players completed a 

standardised warm-up before testing that consisted of a raise, activate, mobilise and 

potentiate (RAMP) phase. This warm-up was used as it prepared the players for the 

high-intensity nature of testing, training and matches (Jeffreys, 2017). During 

baseline data collection, each player completed three physical performance tests in 

the following order; eccentric hamstring strength, isometric adductor strength and 30-

metre sprint. Data collection took approximately 20 minutes.  

Each player then had their eccentric hamstring strength, isometric adductor strength 

and liner 30-metre sprint performance tested, prior to each training session and 

match, for a 4-week training period. During this period, external load was quantified 

through the use of GPS whilst heart rate monitors and rates of perceived exertion 

were used to quantify internal load. After the 4-week training period, post study 

measures were collected prior to the start of the next scheduled training session. 

Identical procedures were used for pre, post and during study data collection. 
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Anthropometry & Maturity Offset 

Prior to baseline data collection, anthropometric data was collected from all players 

for the calculation of maturity offset (Mirwald, G. Baxter-Jones, Bailey & Beunen, 

2002). All procedures were identical to those described in chapter 3 of this thesis.  

Eccentric Hamstring Strength 

The Nordbord (Vald Performance, Queensland, Australia) was used to assess 

eccentric hamstring strength of the players. The procedures used were identical to 

those described in chapter 3. An average of the highest force produced by the right 

and left hamstrings was calculated after each data collection point and put forward 

for data analysis. 

Isometric Adductor Strength 

To assess the isometric adductor strength of the players, the Groinbar (Vald 

Performance, Queensland, Australia) was used. All testing was completed in long 

lever positions as results documented in chapter 3 found this testing position to be 

the most reliable. The procedures used were identical to those described in chapter 

3. An average of the highest force produced by the right and left adductors was 

calculated after each data collection point and put forward for data analysis. 

Sprint Performance 

A linear sprint test was used to assess the speed of the players. Measuring sprint 

performance over a distance of 30-metres produced results with the best reliability 

compared to results produced at 5, 10 and 20-metre distances in chapter 3. 

Therefore, 30-metre sprint performance was assessed in this study. The procedures 

used were identical to those described in chapter 3. 
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External Load 

GPS devices were used to quantify the external load throughout the study. The GPS 

system used was the Catapult Optimeye S5 (Catapult Sports, Melbourne, Australia). 

Each Optimeye S5 unit contained a 10 Hz GPS and an integrated 100 Hz tri-axial 

accelerometer (J. Wylde, B.C. Lee, Chee Yong & J. Callaway, 2018). Prior to data 

collection, each Optimeye S5 device was switched on and left outside, in an open 

area, for approximately 15 minutes in order to obtain satellite connection. Each 

Optimeye S5 device was then placed in a pouch, situated between the scapula, on 

the back of a custom made vest worn by the players. Each player used the same 

Optimeye S5 unit for the duration of the study to ensure intra unit reliability. Data was 

downloaded from the Optimeye S5 units after each use and analysed using 

Openfield software (Catapult Sports, Melbourne, Australia). Speed zone thresholds 

were set in accordance with Harley et al., (2010) who outlined thresholds for 

adolescent players, similar in age to the players in this study, from 10-metre flying 

sprint time. The following metrics from the GPS analysis were put forward for data 

analysis; total distance (TD) covered in metres and total distance covered at high 

speed in metres. High speed running (HSR) was defined as any distance covered at 

a speed greater than 5.04 ms-1 for more than 1 second. 

Internal Load 

Heart rate monitors were used throughout the study to quantify internal load. Each 

player wore a heart rate monitor (Polar H1 transmitter, Polar, Kempele, Finland) on a 

coded heart rate strap that was housed inside the same custom made vest used to 

contain the Optimeye S5 units. The coded heart rate strap allowed heart rate data to 

be collected and stored wirelessly within the Optimeye S5 units. The heart rate 
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monitor recorded a data point every 5 seconds. All data from the heart rate monitors 

was downloaded and analysed using Openfield software. Maximum heart rate (HR 

max) of the players was set based on the highest heart rate achieved during a 

match. Total time spent above 90% HR max during each training session and match 

was collected for all players and put forward for data analysis. 

Internal load was also quantified using the s-RPE method. Using the CR-10 scale, s-

RPE was recorded for all training sessions and matches completed during the study. 

A load value (AU) was then produced for each player by multiplying their RPE score 

by the duration of the training or match, as described elsewhere (Foster et al., 2001). 

Players verbally communicated their RPE to a tester after each training session and 

match. The players were encouraged to give their RPE score honestly and without 

peer influence. Previous research has found that there are no differences in RPE 

scores given by adolescent footballers when comparing scores provided immediately 

after training to scores provided 30 minutes after training (Fanchini, Ghielmetti, 

Coutts, Schena & Impellizzeri, 2015). Therefore, the players were asked for their s-

RPE score at the cessation of each training session and match. All s-RPE data was 

recorded on a Microsoft Excel spreadsheet. 

 

Statistical Analysis  

All statistical analysis was performed on predesigned Microsoft Excel worksheets 

(Hopkins, 2015) and SPSS software (Version 25.0, IBM Corp., Armock, NY, USA). 

Shapiro-Wilk tests of normality were completed and showed all data to be parametric 

(p > 0.05). Change in mean (expressed as a percentage) with ± 95% confidence 

limits (CL) and effect sizes (ES) with ± 95% CL were calculated for all performance 
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test outcomes over the 4-week training period. Effect size thresholds were set at 0, 

0.2, 0.6 and 1.2 for trivial, small, moderate and large effects, respectively (Batterham 

& Hopkins, 2006). Effect sizes were also used to assess the differences in external 

load between each training session and match.  
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Figure 3. Timeline of data collection points throughout 4-week training period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1 = training session 1; T2 = training session 2; T3 = training session 3; T4 = training session 4; T5 = training session 5; T6 = training session 6; 

M1 = match 1; M2 = match 2; solid black arrows = data used to analyse changes lower body strength and speed after a 4-week training period; 

dark grey arrows = data used to analyse changes in lower body strength and speed between training sessions and matches; light grey arrows with 

black outline = data used to analyse the effects of a one week cessation of training on lower body strength and speed; white arrows with black 

outline = data used to analyse the effects of a match on lower body strength and speed. 

 

T1   T2  M1  T3  M2 T4  T5  T6 
B

as
e

lin
e

 M
ea

su
re

s 

 L
o

w
e

r 
B

o
d

y 
St

re
n

gt
h

 &
 S

p
e

e
d

 M
e

as
u

re
s 

Lo
w

e
r 

B
o

d
y 

St
re

n
gt

h
 &

 S
p

e
e

d
 M

e
as

u
re

s 

Lo
w

e
r 

B
o

d
y 

St
re

n
gt

h
 &

 S
p

e
e

d
 M

e
as

u
re

s 

Lo
w

e
r 

B
o

d
y 

St
re

n
gt

h
 &

 S
p

e
e

d
 M

e
as

u
re

s 

Lo
w

e
r 

B
o

d
y 

St
re

n
gt

h
 &

 S
p

e
e

d
 M

e
as

u
re

s 

Lo
w

e
r 

B
o

d
y 

St
re

n
gt

h
 &

 S
p

e
e

d
 M

e
as

u
re

s 

Lo
w

e
r 

B
o

d
y 

St
re

n
gt

h
 &

 S
p

e
e

d
 M

e
as

u
re

s 

Lo
w

e
r 

B
o

d
y 

St
re

n
gt

h
 &

 S
p

e
e

d
 M

e
as

u
re

s 

P
o

st
 S

tu
d

y 
M

e
as

u
re

s 



75 
 

Results 

Total distance, HSR distance, time spent above 90% HR max, session duration and 

s-RPE was collected on eight occasions (six training sessions and two matches) 

during the 4-week in-season period. External and internal load metrics for each of 

the eight data collection points are displayed in Table 2. Large effect sizes (ES =  

1.39 – 6.48) were reported for the changes in total distance covered between each 

training session and match. Large effect sizes (ES = 1.91 – 4.21) were reported for 

the changes in HSR distance between each training session and match apart from 

T5 and T6 where only a trivial change (ES = 0.08) was found.   

Pre to post changes in lower body strength and 30-metre sprint performance over 

the 4-week period are depicted in Table 3. An increase in eccentric hamstring 

strength (13.9%; ES = 0.80), which was also greater than the TE, was found. An 

increase in isometric adductor strength (6.8%; ES = 0.54) was found however this 

was less than the TE. Sprint performance showed a trivial decrement (0.1%; ES = 

0.03) which was less than the TE of the test. 

Figures 4 and 5 display the changes in eccentric hamstring strength and isometric 

adductor strength in comparison to the changes in total distance covered during 

each training session and match. Trivial to small changes (ES = 0.02 – 0.24) in 

eccentric hamstring strength were found when comparing scores taken prior to the 

first training session (T1) to subsequent measures. Changes in isometric adductor 

strength ranged from trivial to small (ES = 0.06 – 0.29). None of the changes 

recorded were greater than the TE of the test for either eccentric hamstring strength 

and isometric adductor strength measures. 
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Measures of lower body strength and speed taken pre and 24 hours post match (M2) 

of the study were used for analysis. The second match was used for data analysis 

due to the fact that there was a one week cessation of training following the first 

match (M1) in the study. Results found a trivial decrease (-3.7%; ES = 0.23) in 

eccentric hamstring strength pre to post match. Change in isometric adductor 

strength was found to be trivial (0.9%; ES = 0.09). A small decrement in 30-metre 

sprint performance (0.9%; ES = 0.22) was also found pre to post match. All changes 

were below the TE of each respective test. 

Physical performance test scores taken prior to the one week cessation of training 

(M1) were compared to those taken when the players returned to training (T3). 

Results found a trivial increase in eccentric hamstring strength (1.6%; ES = 0.08) 

and a trivial decrease in isometric adductor strength (-2.3%; ES = 0.16). A small 

improvement in 30-metre sprint performance (-1.1%; ES = 0.33) was found 

comparing results prior to M1 and T3. Changes in lower body strength and speed 

were smaller than the TE of each respective test. 
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Table 2. Load metrics (mean ± SD) for 4-week, in-season, training period (n = 10). 

T1 = training session 1; T2 = training session 2; T3 = training session 3; T4 = training session 4; T5 = training session 5; T6 = training session 6; 

M1 = match 1; M2 = match 2; m = metres; mins = minutes; AU = arbitrary units; grey area = no training or matches. 

 Week 1 Week 2 Week 3 Week 4 

 
T1 

MD-3 

T2 

MD-1 

M1 

MD 
- - - 

T3 

MD-2 

M2 

MD 

T4 

MD+1 
- 

T5 

MD+7 

T6 

MD+8 

Total Distance 

(m) 

6590  

± 780 

3947 

± 385 

8175 

± 2657 
   

5524 

± 331 

8317 

± 3206 

5135 

± 686 
 

6229 

± 802 

5048 

± 410 

HSR Distance 

(m) 

525 

± 267 

83 

± 75 

649 

± 249 
   

258 

± 64 

675 

± 308 

180 

± 37 
 

561 

± 228 

522 

± 204 

Time Spent 

Above 90% HR 

Max (mins) 

5.57  

± 5.55 

3.89 

± 4.91 

15.25 

± 18.19 
   

5.87 

± 3.99 

20.96 

± 16.28 

2.67 

± 5.71 
 

8.04 

± 6.58 

5.64 

± 4.97 

Duration 

(mins) 

90  

± 0 

90 

± 0 

79 

± 23 
   

90 

± 0 

71 

± 27 

90 

± 0 
 

90 

± 0 

90 

± 0 

s-RPE 

(AU) 

648  

± 83 

603 

± 95 

672 

± 229 
   

693 

± 85 

647 

± 251 

596 

± 82 
 

711 

± 51 

720 

± 73 
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Table 3. 4-week changes in lower body strength and speed (n = 10). 

N = newtons; s = seconds.  

 Baseline Measure 

(Mean ± SD) 

Post Study 

(Mean ± SD) 

Typical Error 

(95% CL) 

Change in Mean (%) 

(± 95% CL) 

Effect Size 

(± 95% CL) 

Eccentric Hamstring 

Strength (N) 
311.9 ± 48.0 354.3 ± 45.0 19.9 (17.3, 23.6) 13.9 ± 7.9 0.80 ± 0.42 

Isometric Adductor 

Strength (N) 
176.3 ± 20.1 188.1 ± 18.5 12.6 (11.0, 14.9) 6.8 ± 6.7 0.54 ± 0.51 

30-Metre Sprint (s) 4.59 ± 0.16 4.60 ± 0.16 0.06 (0.06, 0.08) 0.1 ± 1.1 0.03 ± 0.29 
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Figure 4. Changes in lower body strength from the first training session (T1) measure (n =10).  

ES = effect size of change in total distance covered between training sessions and matches. 
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Table 4. Effects of a match (M2) on measures of lower body strength and speed (n = 9).  

Mean playing duration = 72 ± 27 minutes. N = newtons; s = seconds; pre match measures were recorded approximately 30 minutes prior to the 

start of the match; post match measures were recorded approximately 24 hours after the end of the match. 

 

 

 

 

 

 Pre Match 

(Mean ± SD) 

Post Match 

(Mean ± SD) 

Change in Mean (%) 

(± 95% CL) 

Effect Size 

(± 95% CL) 

Eccentric Hamstring 

Strength (N) 
354.1 ± 49.0 341.2 ± 47.7 -3.7 ± 2.3 0.23 ± 0.15 

Isometric Adductor 

Strength (N) 
189.7 ± 17.1 193.5 ± 32.9 0.9 ± 9.4 0.09 ± 0.95 

30-Metre Sprint (s) 4.59 ± 0.17 4.63 ± 0.17 0.9 ± 1.6 0.22 ± 0.40 
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Table 5. Effects of a one week cessation of training on measures of lower body strength and speed (n = 10). 

N = newtons; s = seconds; pre cessation of training measures were recorded prior to M1; post cessation of training measures were recorded prior 

to T3. 

 

 

 

 

 

 Pre Cessation of 

Training  

(Mean ± SD) 

Post Cessation of 

Training 

(Mean ± SD) 

Change in Mean (%) 

(± 95% CL) 

Effect Size 

(± 95% CL) 

Eccentric Hamstring 

Strength (N) 
342.2 ± 60.6 345.6 ± 47.2 1.6 ± 6.0 0.08 ± 0.29 

Isometric Adductor 

Strength (N) 
185.5 ± 23.6 181.6 ± 26.4 -2.3 ± 5.3 0.16 ± 0.37 

30-Metre Sprint (s) 4.57 ± 0.17 4.52 ± 0.20 -1.1 ± 1.6 0.33 ± 0.41 
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Discussion 

The aim of this study was to quantify the external and internal load and subsequent 

changes in lower body strength and speed over a 4-week in-season training period 

in adolescent footballers. Furthermore, changes in lower body strength and speed in 

response to; each individual training session and match, a single match and a one 

week cessation of training were investigated.  

Acute and Chronic Changes in Lower Body Strength  

After a 4-week training period, a moderate increase (13.9%) in eccentric hamstring 

strength and a small increase (6.8%) in isometric adductor strength were found. As 

this is the first study to analyse the changes in adolescent footballers’ eccentric 

hamstring strength and isometric adductor strength over acute and chronic training 

periods, there is little comparable data in the literature. However, Nordbord 

measures taken at baseline in this study (311.9 ± 48 N) are similar to those found 

elsewhere for adolescent footballers (310.1 ± 54.3 N) (Sannicandro, Traficante & 

Cofano, 2019). There is currently no literature that uses the Groinbar to assess 

changes in adolescent footballers’ adductor strength. The measure of peak adductor 

force recorded after the 4-week training period in this study (188.1 ± 18.5 N) is 

similar to the peak adductor force recorded in a cohort of senior footballers (189.8 ± 

42.2 N) (O'Brien, Bourne, Heerey, Timmins & Pizzari, 2018). This could suggest that 

adductor strength is not trained in footballers due to the similarities in values 

produced by adolescents and adults. The increase in eccentric hamstring strength 

(42.4 N) found after the 4-week training period, was greater than the TE of the test 

established in chapter 3 (19.9 N) and can be deemed a real change. However, the 

increase in isometric adductor strength was smaller than the TE of the test 
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established in chapter 3. A suggestion for the real change found in eccentric 

hamstring strength, but not isometric adductor strength, is the fact that there is a 

greater use of the hamstring muscles during training and matches. A players’ 

hamstring has to act eccentrically to decelerate the tibia during rapid and forceful 

knee extensions that occur during sprinting and kicking (Delextrat, Gregory & Cohen, 

2010). It is likely that a high frequency of eccentric hamstring contractions were 

experienced by the players, in this study, which led to the moderate increase in 

strength after the 4-week training period. Furthermore, previous research has found 

that both the Nordic curl exercise and sprint training can lead to significant gains in 

eccentric hamstring strength in adolescent footballers (Drury, 2019; Freeman et al., 

2019). As the players were required to carry out three Nordic curls and two maximal 

sprints prior to each training session and match, it is possible that the procedures of 

this study may have caused the increase in eccentric hamstring strength, that was 

greater than the TE of the test.    

Figure 4 show the changes in eccentric hamstring strength and isometric adductor 

strength following each training session and match. Despite the large variations in 

total distance covered during the 4-week training period, only changes of a trivial to 

small effect size were recorded for measures of lower body strength. Furthermore, 

the changes that occurred were smaller than the TE of the respective tests. This may 

suggest that the imposed load did not cause decrements in local muscular strength. 

However, Goodall et al., (2015) reported that knee extensor maximum voluntary 

contraction force significantly reduces by 9% after two maximal sprints in a cohort of 

adult intermittent sport athletes. A potential reason the same reduction in lower body 

strength was not found in this study, after each training session and match, is that 

adolescents are less susceptible to fatigue following high intensity exercise (Ratel, 
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Williams, Oliver & Armstrong, 2004). Previous research has found that reductions in 

muscular strength, after a bout of muscle damaging exercise, to be less serve in 

adolescents than in adults. (Marginson, Rowlands, Gleeson & Eston, 2005). This 

due to adolescent’s greater flexibility and ability to produce greater relative strength 

at long muscles lengths, leading to less overextension of sarcomeres during high 

intensity exercise (Marginson, Rowlands, Gleeson & Eston, 2005). Furthermore, as 

the adolescents in this study are accustomed to training and playing regular 

matches, it is possible that the repeated bout effect (McHugh, 2003) may have 

protected the lower body strength of the players in this study (Gibson, McCunn, 

MacNay, Mullen & Twist, 2018). The trivial to small changes in lower body strength 

recorded throughout the 4-week training period, were less than the TE of the test. 

Furthermore, the large TE of both tests was established in a very controlled 

environment. In a less controlled environment, such as the varying daily training 

loads reported, it is even less likely that a change greater than the TE of the test 

would have occurred. Therefore, it is suggested that the eccentric hamstring strength 

and isometric adductor strength tests are not sensitive enough to detect small, but 

possibly meaningful, true changes in strength on a daily basis. Therefore, 

practitioners must find an alternative method of assessing the effects of daily load on 

adolescent players lower body strength.  

Acute and Chronic Changes in Speed 

Over the course of a 4-week training period, the 30-metre sprint time of the players 

in this study increased by 0.1%. This increase was smaller than the TE of the test. 

Trivial changes (+ 0.02 seconds) in 30-metre sprint performance have been reported 

previously in adolescent footballers, who were also post PHV, after a full season of 

football training (Morris et al., 2018). Previous research has found that the 
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maturation status of adolescent players can have an effect on their speed (McCunn, 

Weston, Hill, Johnston & Gibson, 2017). A large relationship between maturation 

status and 15-metre sprint performance has been found in players who are circa-

PHV. Therefore, fluctuations in speed, in adolescent players of this age, are to be 

expected as they grow and develop. However, for players that are post-PHV there is 

a small effect of maturity status on sprint performance (McCunn, Weston, Hill, 

Johnston & Gibson, 2017). As the players in this study were post-PHV (1.7 ± 0.4 

years), a change in sprint performance was not likely to occur over a 4-week training 

period. As sprint performance tests appear to lack the sensitivity to detect a true 

change in speed, coaches and practitioners must find an alternative method of 

assessing the effects of load on adolescent footballers’ physical performance.  

Effects of a Match on Lower Body Strength and Speed 

The effects of a match on the eccentric hamstring strength, isometric adductor 

strength and 30-metre sprint performance of adolescent footballers were also 

analysed in this study. The physical demands of an adolescent football match have 

been reported by Carling et al., (2019) who found that the total distance covered, 

ranged between 6609 – 9950 metres and HSR distance ranged between 806 – 1253 

metres. However, the effects of a single match on lower body strength and speed 

are less clear and is important given the prevalence of intensified period of 

competition in adolescent football (Arruda et al., 2015; Gibson, McCunn, MacNay, 

Mullen & Twist, 2018) In this study, there was no changes in lower body strength or 

speed greater than the TE of the respective tests, pre to post match with effect sizes 

no greater than small. Results agree with those of Wollin et al., (2018) who found 

adolescent footballers isometric adductor strength did not reduce by a value greater 

than the minimal detectable change after a match (Wollin, Pizzari, Spagnolo, 
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Welvaert & Thorborg, 2018). However, measures of adductor strength were taken 

using a hand-held dynamometer from a short lever position, making comparisons 

with the present study difficult. Previous research has analysed the effects of a 

football match on the isometric hamstring strength of adolescent footballer’s and 

found that it took 48 hours for strength to return to pre match values (Wollin, 

Thorborg & Pizzari, 2016). However, the same effect was not found in eccentric 

hamstring strength in this study. Post-match data was collected 24-hours post-

match. This was a result of the players training schedule which was pre-determined 

by the club at the start of the season, making MD+1 the only available day for post-

match data collection.  

The HSR distance covered by the players during the match in this study was 675 

metres. This is lower than the HSR distance covered by adolescent footballers in 

matches reported elsewhere (806 – 1253 metres) (Carling, Vieira, Barbieri, Aquino & 

Santiago, 2019). It should be noted that not all of the HSR thresholds reported by 

Carling et al., (2019) in the meta-analysis were calculated in the same way, a 

common issue when comparing external load values in adolescent players. As the 

hamstring muscles are required to work eccentrically during HSR (Delextrat, Gregory 

& Cohen, 2010), it is suggested that the high volume of HSR completed during a 

match would lead to a true reduction in eccentric hamstring strength 24 hours post 

match. This was not the case in this study and, suggests that the eccentric hamstring 

strength test was not sensitive enough to detect true a decrement in strength. 

Conversely, the volume of HSR completed during the match in this study (675 

metres) may not have been enough to induce a reduction in eccentric hamstring 

strength, greater than the TE of the test, 24 hours post match. A small decrease in 

30-metre sprint performance of the players was recorded 24 hours after the match. 
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This is in disagreement with Rampinini et al., (2011) who reported that it took 48 

hours post match for the sprint performance of adolescent footballers to return to 

baseline values. The TD covered by the players in the Rampinini et al., (2011) study 

was higher in comparison to the players in the current study (11764 metres vs 8317 

metres), as was the volume of HSR completed (2664 metres vs 675 metres). 

However, it should be noted that the threshold for HSR was higher in the current 

study (>5.04 ms-1 vs >4.17 ms-1). This highlights the issue on interpreting match 

running performance in football as there is no consensus on how HSR thresholds 

should be calculated. The lower external load placed on the players may be the 

cause for the maintenance of sprint performance, pre to 24 hours post match. The 

lower external load reported in this study could be explained by the match outcome. 

The players in this study were playing an opposing team ranked in the top three of 

their respective league away from home. The players did not concede a goal until 

the final minute match. It has previously been reported that footballers who are 

pursuing a goal carry out more HSR, such as sprints into the oppositions penalty box 

to receive a cross (Andrzejewski, Konefał, Chmura, Kowalczuk & Chmura, 2016). It 

is possible that the players were content with holding their opponents to a scoreless 

draw and thereby limited the intensity and volume of running. 

In this authors experience, and supported in the literature, it has been shown that 

adolescent footballers are often given the day off after a match or they engage in 

recovery strategies such as foam rolling, cold water emersion or wearing 

compression garments as opposed to participating in a training session (Kinugasa & 

Kilding, 2009). It is suggested that a day off and recovery strategies may not be 

necessary for adolescent footballers if the external load imposed by a match is 

similar to the values reported in this study, due to the trivial to small changes in lower 
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body strength and speed pre to post match. With the SFA implementing Project 

Brave in order to “bring a greater focus to talent development and optimise playing 

opportunities,” it is suggested that elite youth academies could be using training time 

more effectively to develop adolescent footballers, especially given the limited time 

available in part-time training regimes to develop technical proficiency. However, 

research has shown that participating in a football match induces a mental stress on 

the players due to the need for sustained concentration and consistent decision 

making under pressure from an opponent (Nédélec et al., 2012). Having the day off 

after a match may allow players the time to recover psychologically. Further research 

is required to assess the psychological effects of a match on adolescent footballers. 

Effects of Cessation of Training on Lower Body Strength and Speed 

During this study, the players were given a week off from training and matches due 

to the belief of the academy director that it would allow them time to recover from 

previous training and matches. However, the desired outcome appears to have not 

been achieved. A trivial increase in eccentric hamstring strength, a trivial decrease in 

isometric adductor strength and a small improvement in 30-metre sprint performance 

were recorded pre to post cessation of training. These results are similar to those of 

Joo (2016) who analysed the effects of a short cessation of training in adult 

footballers. Results found no significant changes in 30-metre sprint performance or 

peak torques produced during knee flexion and extension at a range of different 

angular velocities (60° - 240°/s-1). Results suggest that a short cessation of training 

has no beneficial or detrimental effects on the lower body strength and speed of 

adolescent footballers. However, there is research to suggest that a longer cessation 

of training may have a negative impact on adolescent footballers’ physiological 

capabilities. After a 4 week cessation of training, Melchiorri et al., (2014) found a 
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significant reduction in maximum oxygen uptake (21.2%), peak aerobic (7.0%) and 

anaerobic (7.2%) running speeds. Although these physical qualities were not 

assessed in the present study, the results of Melchiorri et al., (2014) highlight the 

potential detrimental impact of a long cessation in training on running performance. 

Further research is required to assess the effects of a prolonged cessation of training 

on adolescent footballers’ lower body strength and speed. Furthermore, although not 

assessed in this study, the psychological effects of a short cessation of training may 

provide a greater insight into its usefulness during the in-season. It is suggested that, 

adolescent footballers do not require a cessation of training during the in-season as 

results of this study have shown that there are no benefits to the lower body strength 

or sprint performance of the players. Allowing adolescent players these short breaks 

is further restricting the already limited training time to improve not only physical 

qualities but also technical and tactical skills. Professional senior footballers are 

exposed to higher training volumes and in order to optimally prepare adolescents for 

the increase in physical demands they will experience as they get older, 

unscheduled in-season cessation of training should be avoided where possible. 

Conclusion 

In conclusion, this study has highlighted the changes in the lower body strength and 

speed of adolescent footballers over a 4-week training period. The largest increase 

and only change greater than the TE of the test was found in eccentric hamstring 

strength. Changes in isometric adductor strength and 30-metre sprint performance 

were less than the TE of the respective tests, after the 4-week training period. 

Despite the large fluctuations in external load between training sessions and 

matches, only trivial to small changes in lower body strength occurred. This would 

suggest that the tests used in this study were not sensitive enough to detect true 
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changes in local muscular strength on a daily basis. This study has also shown that 

a match has no significant effects on the lower body strength and speed of 

adolescent footballers. However, it should be noted that the match load experienced 

by the players was lower than match loads for adolescents reported elsewhere 

(Carling, Vieira, Barbieri, Aquino & Santiago, 2019). Furthermore, a one week 

cessation of training has been shown to have neither a beneficial or detrimental 

effect on lower body strength and speed. Practitioners should consider the results of 

this study when periodising training schedules and assessing the physiological 

development of adolescent footballers.   
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Chapter 5 – Discussion 

 

Main Findings 

This thesis has investigated the reliability of measures associated with eccentric 

hamstring strength, isometric adductor strength and linear speed in adolescent 

footballers and their usefulness in monitoring changes in performance following 

training and match play. The findings show that the Nordbord, Groinbar and 30-

metre linear sprint test are reliable measures of assessing eccentric hamstring 

strength, isometric adductor strength and speed, respectively, in adolescent 

footballers. Unlike measures of isometric adductor strength and speed, eccentric 

hamstring strength increased by a value greater than the TE after a 4-week training 

period. Despite fluctuations in load (ES = 0.08 – 6.48) between training sessions and 

matches over the same 4-week period, no changes in lower body strength were 

reported between discrete exposures to training and/or match play. Measures of 

lower body strength and speed were unchnaged by a single match and a one week 

cessation of training. 

The first aim of this thesis was to quantify the reliability of eccentric hamstring 

strength, isometric adductor strength and linear sprint performance tests in 

adolescent footballers. High levels of relative reliability (ICC = 0.87 – 0.89), good 

absolute reliability (%CV = 7.2 – 8.1) and a TE of 19.9 Newtons were reported during 

the eccentric hamstring strength test. This is the first study to document the reliability 

of the Nordbord, to assess eccentric hamstring strength, in adolescent footballers. 

Results agree with those of Opar et al., (2013) who found similar levels of reliability 

(ICC = 0.83 – 0.90, %CV = 5.8 – 8.5, TE = 24.6 Newtons) in adults. The Nordbord is 
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a more accessible method of quantifying eccentric hamstring strength compared to 

alternative methods such as hand-held dynamometers which require tester skill and 

experience (Stark, Walker, Phillips, Fejer & Beck, 2011). Based on the results of this 

thesis, the Nordbord is a reliable method of assessing eccentric hamstring strength 

in adolescent footballers. Although the Nordbord was found to have high levels of 

reliability, no changes greater than the TE of the test were recorded when comparing 

measures taken between training sessions, pre to 24 hours post match or pre to post 

one week cessation of training. Therefore, despite the Nordbord being a reliable 

method to assess eccentric hamstring strength in adolescent footballers, the test 

may not be sensitive to changes that occur following training and match play. Similar 

findings were reported for the isometric adductor strength test where long lever 

measures of isometric adductor strength produced high levels of relative reliability 

(ICC= 0.84 – 0.85), good absolute reliability (%CV = 8.1 – 8.6), and a TE of 12.7 

Newtons. Long lever measures were found to be more reliable than short lever 

measures. This is in agreement with Light and Thorborg (2016) who reported greater 

levels of reliability from long lever measures compared to short lever measures when 

using a hand-held dynamometer in adult footballers. A potential reason for this 

finding is the ease of standardisation in the long lever testing position compared to 

the short lever testing position (0° vs 60° hip flexion). Despite the high levels of 

reliability found during the long lever isometric adductor strength test, no changes 

greater than the TE of the test were found when comparing measures taken between 

training sessions, pre to 24 hours post match or pre to post one week cessation of 

training. Despite the Groinbar being a reliable method to assess isometric adductor 

strength in adolescent footballers, the test may not be sensitive to changes that 

occur following training and match play.  
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When assessing the reliability of a liner sprint test a distance of 30-metres produced 

the most reliable results (ICC = 0.94, %CV = 1.4, TE = 0.06 seconds) compared to 

distances of 5-metres, 10-metres and 20-metres. These results support those 

reported in adolescent rugby players where improved reliability over longer sprint 

distances was observed (Waldron, Worsfold, Twist & Lamb, 2011). This finding is 

likely due to the forward lean of the torso players adopted prior to accelerating. Due 

to this forward lean, there is a risk that the starting light beam may be cut early with 

an upper limb (Darrall-Jones, Jones, Roe & Till, 2016). The early cut on the starting 

light beam has the greatest effect on the first split time due to the short distance 

available to compensate for the false start. Additionally, slight differences in initial 

horizontal force produced by players may affect the reliability of shorter testing 

distances (Buchheit et al., 2014). As longer sprint distances take more time to 

complete there is a greater chance of changes occurring that are out with the TE of 

the test, assuming that the TE is the same for all sprint distances. However, no 

changes in 30-metre sprint performance greater than the TE of the test were 

recorded when comparing measures taken between training sessions, pre to 24 

hours post match or pre to post one week cessation of training. Although linear sprint 

tests are reliable in adolescent footballers, the test may not be sensitive enough to 

detect changes that occur in speed, following training and match play. 

Despite the eccentric hamstring strength test, isometric adductor strength test and 

linear speed test all having acceptable levels of reliability, none of the tests appear to 

be sensitive enough to detect true changes in performance in the acute period 

following training and matches. It was this author’s hypothesis that a reduction in 

lower body strength and sprint performance, greater than the TE of the test, would 

be found post training and matches but this was not found within the results. This 
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may be due to the length of time between consecutive measures. As all measures 

were recorded approximately 30 – 60 minutes prior to the start of each training and 

match, at least 24 hours had passed since exposure to training and/or match play. 

Therefore, it is possible that 24 hours was sufficient time for the players to fully 

recover these physical qualities. It is possible that if follow up measures had taken 

place at the cessation of training and matches, real (greater than the TE) reductions 

in lower body strength and speed may have been recorded. The maintenance of 

lower body strength and speed 24 hours post training and matches found in the 

players in this thesis is in disagreement with previous research. Goodall et al (2015) 

reported a 9% reduction in knee extensor maximum voluntary contraction after two 

maximal sprints in adult footballers. A potential reason that similar reductions in 

measures of lower body strength were not found in the adolescent players in this 

study is that muscle damaging exercise appears to have a less serve effect on 

adolescents, compared to adults, due to their greater flexibility and ability to produce 

greater relative strength at long muscles lengths (Marginson, Rowlands, Gleeson & 

Eston, 2005). Rampinini et al (2011) reported that it took 48 hours post match for the 

speed of adolescent footballers to return to pre match values. This is in contrast to 

the results of this thesis where only a small decrease in 30-metre sprint performance 

was recorded 24 hours post match. The external load placed on the players during 

the match in this thesis (TD = 8317 metres, HSR = 675 metres) was lower than the 

external load of the match reported by Rampinini et al (2011) (TD = 11764 metres, 

HSR = 2664 metres) and a potential reason there was no change, greater than the 

TE, in speed pre to 24 hours post match. However, it should be noted that the HSR 

threshold in this study was higher than the one used by Rampinini et al., (2011) 

(>5.04 ms-1 vs >4.17 ms-1). This highlights the issue of determining match running 
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performance in adolescent footballers as there is no consensus on how speed 

thresholds should be calculated.  

Although no changes greater than the TE of the test were reported in the acute 

period following each training session and match, there was a moderate increase 

greater than the TE (13.9%) in eccentric hamstring strength after a 4-week training 

period. A small increase (6.8%) in isometric adductor strength and trivial decrease (-

0.1%) in 30-metre sprint performance were also recorded but neither were greater 

than the TE of the test. A suggested reason for the increase in eccentric hamstring 

strength is the procedure that was carried out during the study. Each player 

completed three Nordic hamstring curls and two maximal sprints during eight data 

collection points throughout the 4-week study period. Recently, an increase in biceps 

femoris long head fascicle length has been reported when additional sprint training 

(16%) or Nordic hamstring curls (7%) are completed alongside regular training in 

adult footballers (Mendiguchia et al., 2020). Furthermore, it has been reported that 

the Nordic hamstring curl and maximal sprinting can lead to increases in eccentric 

hamstring strength in adolescent footballers (Drury 2019; Freeman et al., 2019). 

Therefore, it is possible that the procedures and testing protocol led to the increase 

in eccentric hamstring strength, greater than the TE, pre to post the 4-week training 

period. 

During this thesis, the players were given one week off from training and matches as 

a result of the belief amongst coaching staff that it would allow players to regain peak 

levels of physical performance. However, when comparing levels of lower body 

strength pre to post cessation of training, only a trivial increase in eccentric 

hamstring strength and a trivial decrease in isometric adductor strength was 

recorded. A small improvement in 30-metre sprint performance was found after the 
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one week cessation of training. Results show that a one week cessation of training 

had no beneficial or detrimental effect on lower body strength and speed in 

adolescent footballers. Based on these findings it is suggested that, during the in-

season and from a physical performance perspective, short and unscheduled 

cessations of training should be avoided as there is no benefit and adolescent 

players could be missing out on training that improves their technical and tactical 

skills. 

 

Strengths & Limitations 

Chapter 3 is the first study to quantify the reliability of the Nordbord and Groinbar to 

assess eccentric hamstring strength and isometric adductor strength in an 

adolescent population, despite both procedures being commonplace in the field. 

Based on these results, practitioners can use the Nordbord and Groinbar in a cohort 

of adolescent footballers with knowledge of the thresholds that determine real 

change. Furthermore, practitioners are now aware that the Nordbord, Groinbar and 

30-metre sprint performance tests do not detect changes in lower body strength and 

speed, 24 hours post training or match play, in adolescent footballers.  

Despite these strengths, this thesis is not without limitations. In chapter 4, the 

players completed resistance training prior to each football based training session. 

Unfortunately, the researchers had no control over the programming of the 

resistance training and therefore were unable to use an appropriate method to 

quantify the load, either objective or subjective, imposed on the players. Previous 

research has shown that a period of resistance training can lead to improvements in 

lower body strength and speed in adolescent footballers, similar in age to those in 
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this thesis (Christou et al., 2006) which may explain the improvement in eccentric 

hamstring strength observed. Furthermore, the organisation of the 4-week training 

period was a limitation to the second study in this thesis. The players were originally 

scheduled to complete twelve training sessions and four competitive matches during 

the 4-week training period. However, half of the training sessions (n = 6/12) and 

matches (n = 2/4) were cancelled or rescheduled, due reasons out with the 

researchers’ control. Therefore, the 4-week training period, used in this thesis, was 

different to that originally planned and which would be considered a normal meso 

cycle for the players. If more match data had of been collected, it may have been 

possible to analyse the matches out with the contextual factors that influence load 

such as, score line, opposition and tactics. Additional match data would have also 

given the author the opportunity to report the training load data as a percentage of 

match load. It was not possible to do this with accuracy with only two matches worth 

of data. Furthermore, due to the high level of variability in football tactics, score lines 

and opposition, even a whole seasons worth of match data may not have allowed for 

accurate comparisons to different match outputs. The small sample size in the 

second study of this thesis can also be considered as a limitation. This is specifically 

true for the analysis of the pre and post-match data as some players played less of 

the match than others. This made analysis of match load difficult considering there 

was only two matches played throughout the duration of the study. 

 

Future Areas of Research 

Measures of lower body strength and speed did not change by a value greater than 

the TE of the respective tests, 24 hours post training and match play. However, 
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previous research has found that measures of lower body strength and speed are 

reduced immediately post training and match play in adolescent footballers 

(Rampinini et al., 2011; Wollin, Thorborg & Pizzari, 2016). Therefore, further 

research is required to establish at what point do lower body strength and speed 

return to pre training or match values in adolescent footballers. It is possible 

adolescent players may only need 12 hours after a training session or match to fully 

recover their lower body strength and speed, which has implications for the 

scheduling of fixtures during intensified periods of competition (Gibson, McCunn, 

MacNay, Mullen & Twist, 2018). It is thought that the testing battery, that included 

Nordic hamstring curls and maximal sprinting, completed by each player led to the  

moderate increase (13.9%) in eccentric hamstring strength over the 4-week study 

period. However, it cannot be stated for certain that this was the true cause of the 

increase, as the players also completed regular training and matches throughout the 

study. Therefore, further research is required to assess the effects of the 4-week 

testing battery, without regular training and match play, on the eccentric hamstring 

strength of adolescent footballers. A one week cessation of training in this thesis 

produced no changes in the lower body strength and speed of the players. However, 

Melchiorri et al., (2014) reported that a 4-week cessation of training led to significant 

reductions in the maximum oxygen uptake, peak aerobic and anaerobic running 

speeds of adolescent footballers. Further research is required to assess if a 4-week 

cessation of training, a time course representative of the off-season period, would 

have the same effects on adolescent players lower body strength and speed. Due to 

the variation in speed thresholds that are used to quantify the amount of HSR that 

adolescent players are exposed to during training and matches (Carling, Vieira, 

Barbieri, Aquino & Santiago, 2019; Rampinini et al., 2011), it was difficult to compare 
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results of this thesis to the literature. Therefore, further research is required to 

establish a uniform method of setting speed thresholds, for adolescent footballers, 

that is of use to all practitioners working in the field.   

 

Practical Applications 

The Nordbord, Groinbar and 30-metre sprint test are reliable methods of assessing 

the eccentric hamstring strength, long lever isometric adductor strength and speed of 

adolescent footballers. Therefore, practitioners can use the thresholds established in 

this thesis to evaluate if differences in lower body strength and speed are real 

changes. Despite having acceptable levels of reliability, it appears that measures of 

lower body strength and speed are not sensitive enough to detect potential changes 

in performance 24 hours after a training session or match. Practitioners should 

consider if testing lower body strength and speed, to quantify the effects of the 

previous training or match load, is best conducted immediately after the cessation of 

a training session or match, especially in instances where training is conducted in 

the evening and on school nights. Isometric adductor strength and speed did not 

change by a value greater than the TE after a 4-week training period. Therefore, 

practitioners should consider if assessing these measures is necessary or time 

efficient on a monthly basis. It may be that a longer training period (e.g. 3 months) 

between testing sessions would produce changes greater than the TE when 

assessing lower body strength and speed in adolescent footballers and allow a more 

effective analysis of the dose response relationship. More data is required to 

establish the time course of real change in these measures and how much load is 

required to achieve notable change. The match load placed on the players in this 
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thesis did not lead to real changes in lower body strength and speed, 24 hours post 

match. Therefore, match load should be analysed in order to make an informed 

decision on the content and scheduling of subsequent training sessions. If match 

load is similar to values reported in this thesis, a recovery session may not be 

entirely necessary in adolescent footballers due to the maintenance of lower body 

strength and speed, pre to 24 hours post match. Furthermore, a one week cessation 

of training was found to have no beneficial effects to the lower body strength and 

speed of the players. It is suggested that cessation of training should be avoided 

during the in-season in order to allow adolescent players a greater chance to 

develop their technical, tactical and physical skills by maximising training 

opportunities. 
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