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Abstract

This project investigates the use of model assessment techniques for stochastic

spatiotemporal models, with a focus on embedding classical style tests within the

Bayesian framework and applying them to study real-world systems. Techniques

will be investigated within the context of epidemic models. These models model

the spread of a disease, for example, citrus canker, over a spatial region. We will

focus on methods of choosing between different transmission kernels. The trans-

mission kernel is a component in the model which determines how the disease

spreads over space and time, and is important in choosing the right strategy for

the disease, for example, culling of infected individual. The methods for model

selection within this context are challenging to develop and implement. Building

on recent work within the group which has focused on tests applied to residual

processes, we will investigate how likelihood-based tests might be applied to lat-

ent processes in order to formulatemethods that avoid the sensitivity to parameter

priors suffered by purely Bayesian approaches to model comparison. In addition,

we extend existing latent residual tests to detect the presence of anisotropic spatial

kernels. The power of these tests will be calculated and their advantages and dis-

advantages investigated, both from a computational and a practical perspective

as well from a theoretical perspective. These investigations will be carried out

using computational statistical methods performed on simulated and real-world

data sets, including the DEFRA data-set for the foot-and-mouth outbreak of 2001.

Our investigations show that the likelihood-basedmethods are able to detect mis-

specification of spatial kernel, sometimes exceeding the power of existing latent

residual tests. Our directional infection link residual test is shown to be able detect

anisotropy in simulated data. Using hybrid computational programming tech-

niques, our tests have been shown to scale to big data sets of 188,361 individuals,

and detect mis-specification of kernel in an existing analysis of the data.
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Chapter 1

Introduction

In this thesis, we focus our attention on specialized tests of goodness-of-fit for

spatio-temporal models of infectious disease. It is critical that epidemic mod-

els accurately model behaviours that are central for making decisions on control

measures, since thewrong choices of controlmeasures could lead to failure to con-

trol the epidemic, and significant losses in terms of life, livestock or financial loss

(for example, [13, 15]). We propose several new methods for determining model

comparison, and extend existing measures for model adequacy. We also develop

new computational techniques and algorithms which use the computer’s Graph-

ics Processing Unit (GPU) to accelerate model fitting and model assessment for

epidemic models, increasing the potential for widespread uptake of the methods.

1.1 Definition of infectious disease

An infectious disease is one that is caused by a pathogen, or a toxin produced

by such a pathogen [147, 188, 11], that can be spread between hosts (members

of the population, either single organisms, or multiple organisms e.g. a farm of

animals) either directly, for example through coughing or sneezing, or indirectly,

for example, through a vector (organisms which can transmit the disease from

host, or its wastes, to another host or its food or surroundings, for example,

blood-sucking insects [147]), or be transmitted through spores dispersed by the

wind [147]. The disease may exhibit a latent period during which a host may be
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incubating the pathogen without showing symptoms or yet being able to infect

others [55]. An example of an infectious disease is Citrus Canker.

Citrus canker is a disease caused by a bacterial pathogen [72, 35]. The dis-

ease causes lesions to appear on the fruit, leaves and stems of the citrus plants.

This causes the fruit to become unsaleable, and causes disruption in the trans-

port of fruit by triggering movement bans which are commonly put in place as

control measures. The bacteria ooze from the lesions, and are transmitted by a

combination of wind and rain, where water containing the pathogen is blown to

other trees, and enter through the stomata or any existing wounds on the plant,

including those caused by pruning and those caused by other organisms. Control

measures of citrus canker involve spraying, quarantine and culling of infected

trees. Citrus canker has a short latent period of approximately seven to twenty-

one days [73], so after apparent eradication, the disease can re-occur [35]. Observe

that in this example, there is a spatial, temporal, and stochastic nature to the epi-

demic. There is also an element of missing data, which is due to the latent period

of an infection. This is true for many other epidemics.

1.2 Brief introduction to epidemic models and their

evolution

Epidemics have a spatial, temporal and stochastic nature. There have been many

epidemic models created for many different purposes sometimesmaking approx-

imations or ignoring various aspects of epidemics thought to have little impact

on results obtained from using such models. The first epidemic models were de-

veloped centuries ago. For example, Bernoulli [20] created mathematical models

to determine whether mass vaccination for smallpox would increase the overall

life expectancy (an early case of using a mathematical model to determine the

efficiency of a control measure).

Many modern mathematical models have grown from the work of Kermack

and McKendrick [102], which is an “ancestor” of the models used in this thesis.
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Thismodel is not used in this thesis, but a brief illustration is provided here, as this

model usesmanydifferent ideaswhich are incorporated into the stochasticmodels

used later in this thesis. The Kermack-McKendrick model [102] is a deterministic

model which makes the assumption that the overall population size remains

constant; that is, the population is closed. Individuals in the population are

either susceptible, infected, or removed. The model consists of three differential

equations that determine the rates of change of the susceptibles, infectious, and

removed numbers of hosts in the population:

dS
dt

� −βSI

dI
dt

� βSI − γI

dR
dt

� γI

where S(t), I(t) and R(t) are the proportions of hosts that are susceptible, infected,

or removed at time t. The parameter β is the rate of secondary infection. γ is

the removal rate ( 1
γ is the average sojourn time in state I). This is known as a

compartmental modelwith compartments S, I , R, between which hosts transition.

An interesting result from the Kermack-McKendrick model is known as the

epidemic threshold; the conditions for which the number of infectious hosts

grows. Observe that dI
dt > 0 ⇔ S(t) > γ

β . Therefore, if the initial proportion of

susceptibles S(0) < γ
β , the epidemic will die out. This result can be expressed in

an alternative way: the quantity R0 � (γβ )−1 �
β
γ , known as the basic reproduction

number, which can be interpreted as the expected number of infections caused

by an infectious host assuming the population of hosts is entirely susceptible. If

S(0) � 1, the epidemic will grow if R0 > 1 or die out if R0 < 1. There are many

extensions to this model, for example, models withmore states, which can allow a

model tomodel various phenomena such as immunity, waning immunity, periods

where hosts are not infectious but carrying the pathogen. There are also many

other modifications that can be made: for example, seasonality, multiple species
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of host, multiple pathogens, different age classes and so on.

This clear relationship between the parameters and initial conditions, and

whether the epidemic “takes off” or “dies out”, is one of the advantages of de-

terministic models like the Kermack-McKendrick model. In many deterministic

models, it may be possible to directly derive an analytical solution for the con-

ditions in which the epidemic spreads and becomes larger, and also analytical

results for final size of the infected number of hosts (for example, [102]). In some

circumstances, it is possible to solve the differential equations themselves and

obtain equations for the proportions of populations of hosts in each state of the

model over time (for example, [102, 80]). In addition, deterministic models do

not need a large amount of computer power to simulate from, and thus it may be

possible to obtain simulations of more complex epidemics than stochastic mod-

els. However, despite the strengths of deterministic models, deterministic models

cannot answer questions related to probabilities of events happening.

Epidemicmodels have beendevelopedover time tomodel the stochastic nature

of epidemics, and to model many states of infection, multiple transmission routes

(for example, [9, 10, 27, 26, 36, 48, 49, 53, 52, 123, 134, 141, 140, 169]).

Increasing computer power has allowed more advanced models and tech-

niques to be used, and increased the accuracy of predictions. High-dimensional

data-sets require large amounts of computer power, which nowadays can only

be harnessed through parallel programming techniques [177]. The computer ar-

chitecture itself has changed from that in the early days of epidemic modelling,

requiring new expertise to program.

In the case of epidemicmodel fitting, the difficulty of themodel-fitting process

is increased, as a lot of the dynamics underlying the epidemic are unobserved.

With spatio-temporal epidemics, the probability of infection depends on the close-

ness of infectives nearby, but it is often not possible to record the infected hosts

because there is a latent period where infected individuals do not show symp-

toms, or there is a delay between infection and clinical confirmation, creating

unobserved data. In this case, the difficulty is often caused by this unobserved

4



Chapter 1: Introduction

data. This will be elaborated upon in further detail in later chapters.

1.3 On the impact ofmodel selection on controlmeas-

ures and policy

Epidemic models are increasingly used as decision-support tools which influence

the response to epidemics. Recent examples of epidemics whose control was

informed by mathematical modelling are Clostridium difficile in Scotland [166],

HIV/AIDS in India [151], the pandemic response to Influenza [87, 101] and Foot-

and-Mouth Disease (FMD) [49, 48, 100] in the UK. Different assumptions made

in the creation of the epidemic model(s) involved in decision-making can result

in a very different choice of control strategy [3]. The response to an epidemic

may involve changes to government policy, regulation, or the implementation

of control measures such as mass culling or vaccination. Therefore, assessment

of the validity of the assumptions underlying epidemic models that are used as

decision support tools is important for effective decisions regarding the control of

the epidemic.

Choosing an appropriate response to an epidemic is a particularly important

task because the consequence of a poorly chosen control strategy is the loss of

life, or the cost of billions of pounds of financial loss to industry (for example

the foot-and-mouth disease epidemic in the UK in 2001 had a heavy cost, both

in terms of culled animals, and financial loss [6]). Global trade and travel in the

modernworldmakes the control of diseasemore important [180, 184]. Sometimes

a poorly chosen control strategy may not stop the spread of an epidemic or even

result in epidemic spreading at a faster rate (for example, [38]).

1.3.1 A recent exampleofhowepidemicmodels influenceddecision-

making

An example of how spatial epidemicmodels had an influence on epidemic control

policy is the response to the 2001 Foot and Mouth disease epidemic (FMD) [6].
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The disease spreads in cattle, sheep and pigs, which each have different levels of

susceptibility and infectivity [6]. FMD was initially detected at an abattoir and

an existing culling policy was put into place (the slaughter of all infected animals

on the premises and all "dangerous contacts" with those infected premises) [6].

It was soon realized that the existing policy was not sufficient to contain the

epidemic. This was because a large number of infections remained undetected

for a period of time before the authorities were notified [6]. At the start of the

epidemic, despite requirements to report occurrences of the disease, the outbreak

of FMD at Burnside farm, where the disease it thought to have first occurred, was

not reported for several weeks. The disease is hard to diagnose in sheep as sheep

may show mild or no symptoms, and the symptoms (if they occur) are mild and

easily confused with other diseases. It also took time to test whether each case

was clinically confirmed.

The Veterinary Laboratories Agency (VLA) used the InterSpread (determin-

istic) model to make predictions [6]. Model predictions were compared with

actual observations to target unexpected cases for further investigation. The

Ministry of Agriculture, Fisheries and Food (MAFF) also provided data to four

groups of epidemiologists from various universities to analyse. The Imperial Col-

lege group modelled the epidemic and recommended that a 1 kilometre to 1.5

kilometre call radius should be sufficient to bring the epidemic under control with

minimum culling [49]. A contiguous cull was put in place justified by the fact that

models by all epidemic modelling teams showed that a contiguous cull would

bring the epidemic under control. Approximately 6,000,000 sheep, cattle and pigs

were slaughtered to stop the infection from spreading resulting in a cost to the UK

public sector of approximately £3 billion and the private sector of approximately

£5 billion. If the culling was too aggressive excessive amounts of healthy cows

and sheepwould have been culled, resulting in further financial losses for farmers

and the farming industry. If the culling was not aggressive enough, the epidemic

may have continued to spread, incurring a large cost.
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1.3.2 The Importance of Testing Model Adequacy and the Im-

portance of the Spatial Kernel in Epidemic Models

In fitting an epidemic model, assumptions need to be made, most of them stem-

ming from the fact that there often is unobserved data. This can arise because

some of the transition times of the hosts are unobserved. In some cases, this is

because there is a latent period. In other cases, there may be a delay between the

time the host becomes infected and the case becomes clinically confirmed as an

instance of the disease [182, 6]. To fit a model of how these individuals transition

in and out of these unobserved state(s), assumptions need to be made about how

the infected individuals pass on the infection to the susceptibles, which is encap-

sulated inwhat is called a spatial kernel, a function thatmodels how the infectious

challenge from an infected host to a susceptible host falls off with distance. In

many cases, the control strategy for an epidemic, for example, culling in the FMD

is heavily influenced by this assumption.

Hence, the correct choice of spatial kernel is highly important to creating

accurate predictions of an epidemic. The assumption of a specific kernel, contains

in itself assumptions about the tailedness of the kernel, the relative susceptibility

and infectivity between different population segments and isotropy of the spatial

kernel, making this a complex assumption to specify.

Suppose an epidemic with a latent period is being modelled. If the kernel

is mis-specified, this leads to incorrect numbers of non-symptomatic infected

individuals, which leads to mis-estimation of latent period, which leads to mis-

estimation of the infected period (if snapshot data are used). This also leads

to mis-estimation of the background levels of infection relative to between-host

infection. This leads to incorrect predictions about whether a control strategy

would be effective.

This has impact on the control strategy that is chosen: mis-specified kernels

lead to ill-advised control strategies. Certain hosts will be seen as more likely

to infect other hosts, or be at risk of infection and are more likely to be culled

or vaccinated. This can lead to an ineffective culling or immunisation strategy
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which may fail to control the epidemic, or generate huge financial losses. It could

also lead to an entirely unsuitable epidemic control strategy to be performed, for

example the purchase of large amounts of vaccine, when an epidemic could die

out by itself. Such methods tend to produce other conservative estimates as it

is "harder" for a chain to transition to higher dimensional spatial kernels for this

reason.

However, the transmission kernel models transitions into a state that is not

directly observed, making it difficult to assess the adequacy of the spatial kernel

that has been assumed.

1.4 Motivation for developing new epidemic model

selection methods

The use of epidemic models in epidemic control makes it necessary to construct

tests which are specialized towards detecting specific mis-specification within

epidemic models, namely that produced by mis-specification of the transmission

kernel, as this is what models the transmission of the pathogen from one host to

another. There are existing tests which are used to determine model adequacy,

butmost approaches are not oriented towardsmodel selection for spatio-temporal

epidemicmodelswith unobserved data, andmany approaches to epidemicmodel

assessment do not focus on the selection of spatial kernel. The various existing

methods for model selection will be reviewed in further detail in later chapters.

1.4.1 Contributions made in this Thesis

In this thesis,weaim tomake several contributions to thefieldofmodel assessment

and comparison in stochastic spatial epidemic models.

First of all, we aim to extend embedded testing methodology [111, 66, 173]

for model assessment to model comparison for spatial stochastic compartmental

epidemic models, allowing the comparison of two competing models, rather than

simply only determining whether there is substantial discrepancy between the
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model that has been fitted and the data. This thesis investigates the potential for

improveddetection ofmodel discrepancy thatmodel comparison tests offer, as the

comparison of two competingmodels is a farmore focused question thanwhether

a model was adequate or not, and may have the ability to detect discrepancy in

certain cases that model adequacy tests may not, for example, in the comparison

between two models which are very similar. Two latent likelihood ratio tests will

be introduced for this purpose in later chapters, one of them focusing on specific

aspects of misfit. The ability to detect discrepancy of these tests will be compared

between each other and existing embedded testing methods and their relative

merits compared against each other.

Second of all, existing embedded testing methods [111] will be extended to

testing for anisotropy in the spatial kernel. As stated earlier, specifying the spatial

kernel involves specifying several assumptions, for example, the long or short-

tailedness of the spatial kernel, and whether the spatial kernel is isotropic. There

are existing methods for the assessment of the tailedness of the spatial kernel. In

this thesis, such methods will be extended and modified to test for anisotropy in

the spatial kernel. Effectiveness of such methods to detect such mis-specification

will be assessed in this thesis.

Third of all, new computational techniques to utilise the graphics processing

unit (GPU) as a coprocessor to the CPU on the computer to accelerate the MCMC

and model assessment techniques described herein. The algorithms for data

augmented MCMC and model assessment techniques will be adapted for rapid

calculation on the GPU allowing for potential speed-ups of several hundred times

upon conventional implementations. These developments should allow research-

ers the ability to performepidemicmodel fitting andmodel assessment techniques

within a shorter time-frame, allowing accurate results to be obtainedwhen an epi-

demic is in progress.

1.5 Outline of the rest of the Thesis

The contents for the rest of this thesis is as follows:
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Chapter 2 contains a summary of the class epidemic models that will be the

focus of this thesis, spatial stochastic compartmental epidemic models, and the

approach to inference for such models, comprised of Markov Chain Monte Carlo

and Reversible Jump Markov Chain Monte Carlo methods. This chapter outlines

the data augmentation techniques that are commonly used for inference in the

presence of unobserved infected hosts in an epidemic. Chapter 3 contains a review

of model assessment methods commonly in use, and the drawbacks of existing

methods. In particular a review of embedded testing methods and their the-

oretical background will be detailed here, and their interpretation. This thesis

extends upon existing embedded testing methods for spatial stochastic compart-

mental epidemic models. These innovations will be described in this chapter.

Chapter 4 describes the comparison of these novel testing methods with existing

methods using simulated data. Chapter 5 details the background theory and in-

novations involved in using the graphics processing unit (GPU) as a coprocessor

to the CPU to accelerate the methods described herein. Chapter 6 assesses the

ability of the novel testing methods for the detection of anisotropy to detect dis-

crepancy in simulated data between a model with an isotropic spatial kernel and

the simulated data set in which an anisotropic kernel was utilised for generating

the data. Chapter 7 demonstrates how these previous innovations can be applied

to a large and complex dataset, namely the foot-and-mouth disease data-set of

2001, in which a combination of the testing methods mentioned previously and

the GPU computation methods are used to rapidly assess the fit of a model to the

data. Chapter 8 concludes the thesis with a review of the conclusions that have

been obtained from the previous chapters.
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Epidemic models

In the first chapter, we have described infectious disease epidemics, epidemic

models and motivated the importance of model selection for designing control

measures.

In this chapter, we will go into further depth, formally introducing the class

of models that will be the focus of this thesis and giving a more technical account

of their nature. We will also describe the techniques that will be used to estimate

parameters in these models and present some other technical material that will

be used in the course of the thesis.

2.1 Description of the epidemic model

The model that we will be investigating in this thesis is the spatio-temporal SEIR

model (Susceptible-Exposed-Infectious-Removed), as described in [63]. This is a

compartmental model in which hosts move between four states: Susceptible (S),

Exposed (E), Infectious (I) and Removed (R). Let S(t), E(t), I(t), R(t) be the set

of hosts in the relevant state at time t. Hosts transition from S → E, E → I and

I → R. Similar population structures have been used in models in [36] and [96]

for foot and mouth disease, and for citrus canker, for example in [38] and [134].

The hosts (which are indexed by 1, 2, . . . ,N) are distributed over a 2-dimensional

region at knownpoints {x1, . . . , xN}, where the population is of a known size N . It

is useful to identify an individual i with its location xi without ambiguity. Hosts in
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state S at time t, in the set S(t) experience infectious challenge from two sources:

primary infectious challenge, from sources/sites external to the system under

study, and secondary infectious challenge, from infectious individuals within the

system. Let α and β be the primary and secondary infection rates. Then the

probability of exposure (for an arbitrary host j ∈ S(t)) can be modelled by the

following equation:

Pr( j exposed during [t , t + dt]) � C(x j , t) dt + o(dt)

�
©­«α + β

∑
i∈I(t)

K(x j , x i , κ)
ª®¬ dt + o(dt)

(2.1.1)

The function K(x , y , κ) is known as the transmission kernel, which models

the effect of locations on the infectious challenge from each infectious host to

x. Common transmission kernels specified are the exponential kernel K(x , y , κ) �

exp {−κ |x − y |} and the power-law kernel K(x , y , κ) � (1 + |x − y |κ)−1 (used for

example in [123, 134, 36, 38]) where | · | is the Euclidean distance. Other distance

norms can be used, for example, to take into account population structures such

as households, schools etc. (for example, [104, 169, 28, 171]. Other effects can be

incorporated into the transmissionkernel, such asdifferent levels of infectivity and

susceptibility between hosts. The sojourn times in E and I are usually modelled

as being independent of the time of entry into the current state, usually with a

Gamma, Weibull or Exponential distribution (for example, [145, 100, 97, 96, 134,

131]).

Readers should note that a host may be an individual (for example, [134,

145]), or several individuals, for example a farm or site (for example, [71, 96,

100]). In addition, effects can be included into the models such as network-based

transmission without much difficulty (for example,[95]).
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2.2 Simulating Data from the Epidemic Model

It is crucial to be able to generate simulated data from the model. These data will

be used to test and implement the methods for model selection detailed later in

this thesis. Here we are using a variant of the Gillespie algorithm (as in [63]).

Suppose that we have a population of size N , with members situated at points

{x1, . . . , xN}. Let the probability densities of the sojourn times of hosts in the E

state and I state, be fE and fI respectively.

1. Set t � 0. Set S(0) � {x1, . . . , xN} (all members are in state S) and E(0) �

I(0) � R(0) � Ø.

2. Set t′min to be the minimum sojourn times of the hosts in sets E(t) and I(t).

Let this host that this sojourn time belongs to be denoted k. If E(t) � ∅ and

I(t) � ∅ then t′min � ∞.

3. Draw the waiting time τ for the next exposure from its distribution τ ∼

Exp(∑i∈S(t) C(xi , t)).

4. If t + τ < t′minthe next transition is from S to E. Draw a point, j ∈ S(t) from

all the points in S(t) with probability C(x j ,t)∑
i∈S(t) C(xi ,t) . This is the host that will

transition from state S to E at time t + τ. Generate a sojourn time for this

host from the sojourn time distribution fE.

5. If t + τ > t′minthe next transition is from E to I or I to R. The next transition

is host k which transitions into the next state and is moved into sets I(t) or

R(t) accordingly. If the host transitions from E to I, generate a sojourn time

for this host from the sojourn time distribution fI .

6. Repeat from step 2 onwards, until the desired stage in the simulation is

reached.

2.2.1 An Example Data-set

To illustrate the dynamics of an epidemic produced by the SEIR epidemic model,

several simulated datasets have been generated with the above algorithm. The
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epidemic simulations used similar parameters to those found in [145] where

a similar model was used to model a Huanglongbing epidemic in citrus fruit

in Clewiston, Florida. The parameters were based on posterior distributions

obtained in the paper for trees with ages in the range of 3 to 10 years old. The

primary infection, secondary infection and kernel parameters used to generate the

data were α � 0.075 yr−1, β � 25.0 yr−1, κ � 0.2. The sojourn times in the E state

were Gamma distributed with shape 14.0 and scale 0.125 yr. The sojourn times

in the I state were Gamma distributed with shape 100.0 and scale 0.002 yr. The

simulated data-sets contained 1000 hosts uniformly distributed across a square

shaped region. Figures 2.2.1 and 2.2.2 show the epidemics generated with the

same parameters, with an exponential transmission kernel in fig. 2.2.1 and a

power-law transmission kernel in fig. 2.2.2. Note the “patchy” spread of the

epidemic under a power law kernel compared to the clustering of exposures next

to infectious hosts with the exponential kernel.

2.2.2 Likelihood Function

Key to estimating parameters based on observation of an epidemic will be the

likelihood function, as the methods of inference detailed here all take the likeli-

hood as a starting point, and thus follow the likelihood principle [17, 23, 92]. In

this models used in this thesis, the transition times from the exposed state to the

infectious state and from the infectious state to the removed state were assumed

to have independent Gamma probability densities fE(·; αE , νE) and fI(·; αI , νI),

where

f (x; α, β) � 1
Γ(α)να xα−1 exp

(
−x
ν

)
Let the corresponding cumulative distribution functions for the sojourn times be

denoted FE(·; αE , νE) and FI(·; αI , νI). We shall assume that the times that the

ith host entered the exposed, infectious and removed state are observed values

t(i)E , t
(i)
I , t

(i)
R . Let the full set of event times for a given realisation be x � (tE , tI , tR).

If a host does not transition during the period in which observations are recorded,

the transition time is set to∞. Let the observation period be denoted as the time
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Figure 2.2.1: Snapshots of the simulated epidemic generated with an exponential kernel. Each
point on the graph represents one host. Points are colour-coded to represent the current state of
the host. Susceptible points are not displayed to maintain clarity of the graph. The colour of the
points on the graph indicate the state of each host at the given time. Red indicates the host is
exposed, green indicates the host is infectious and blue indicates that the host is removed.
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Figure 2.2.2: Snapshots of the simulated epidemic generated with a power-law kernel. Each point
on the graph represents one host. Points are colour-coded to represent the current state of the host.
Susceptible points are not displayed to maintain clarity of the graph. The colour of the points on
the graph indicate the state of each host at the given time. Red indicates the host is exposed, green
indicates the host is infectious and blue indicates that the host is removed.
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Chapter 2: Epidemic models

interval (0, T). The likelihood function can be derived as follows (derivation is

similar to [36]):

L
(
α, β, κ, αE , νE , αI , νI ; x

)
� L

(
α, β, κ; tE

)
· L (αE , νE; (tI − tE)) · L (αI , νI ; (tR − tI))

�

∏
i

L
(
α, β, κ; t(i)E

)
· L

(
αE , νE; (t(i)I − t(i)E )

)
· L

(
αI , νI ; (t(i)R − t(i)I )

)
(2.2.1)

As by (2.1.1) in Section 2.1 on page 11,

Pr(i exposed during [t , t + dt]) � C(xi , t) dt + o(dt)

the transitions times from S to E have hazard rate at time t, and hence:

L
(
α, β, κ; t(i)E

)
�


exp

[
−

∫ t(i)E
0 C(xi , t) dt

]
· C(xi , t

(i)
E ) t(i)E ≤ T

exp
[
−

∫ T
0 C(xi , t) dt

]
t(i)E > T

(2.2.2)

using the relationship between hazard rate, probability density function and

survival function. Also, using the sojourn time densities and cumulative distri-

bution functions,

L
(
αE , νE; (t(i)I − t(i)E )

)
�


fE(t(i)I − t(i)E ; αE , νE) t(i)I ≤ T

1 − FE(T − t(i)E ; αE , νE) t(i)I > T > t(i)E

(2.2.3)

and,

L
(
αI , νI ; (t(i)R − t(i)I )

)
�


fI(t(i)R − t(i)I ; αI , νI) t(i)R ≤ T

1 − FI(T − t(i)I ; αI , νI) t(i)R > T > t(i)I

(2.2.4)

and hence, by substituting (2.2.2), (2.2.3), (2.2.4) into (2.2.1):
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L(α, β, κ, αE , νE , αI , νI |x) ∝
©­­«

∏
i;t(i)E ≤T

exp

[
−

∫ t(i)E

0
C(xi , t) dt

]
· C(xi , t

(i)
E )

ª®®¬ · (2.2.5)

©­­«
∏

i;t(i)E >T

exp
[
−

∫ T

0
C(xi , t) dt

]ª®®¬ ·
©­­«

∏
i;t(i)I ≤T

fE(t(i)I − t(i)E ; αE , νE)
ª®®¬ ·©­­«

∏
i;t(i)I >T

(
1 − FE(t(i)I − t(i)E ; αE , νE)

)ª®®¬ ·
©­­«

∏
i;t(i)R ≤T

fI(t(i)R − t(i)I ; αI , νI)
ª®®¬ ·©­­«

∏
i;t(i)R >T

(
1 − FI(t(i)R − t(i)I ; αI , νI)

)ª®®¬
� LSE(α, β, κ; x) · LEI(αE , νE; x) · LIR(αI , νI ; x) (2.2.6)

where the likelihood function is partitioned into three parts: LSE(α, β, κ |x)

(the contribution of the transitions from S to E), LEI(αE , νE |x) (the contribution to

the likelihood of the transitions from E to I), and LIR(αI , νI |x) (the contribution to

the likelihood function of transitions from I to R). Since the likelihood function

produces very small values, we shall use the log-likelihood function:

l(α, β, κ, αE , νE , αI , νI |x) � log
[
L(α, β, κ, αE , νE , αI , νI |x)

]
� log

[
LSE(α, β, κ |x)

]
+ log [LEI(αE , νE |x)] (2.2.7)

+ log [LIR(αI , νI |x)] (2.2.8)

� lSE(α, β, κ; x) + lEI(αE , νE; x) + lIR(αI , νI ; x) (2.2.9)

The log-likelihood can be expressed as the sum of log-likelihood-parts, so to

maximise the likelihood is to maximise the log-likelihood, which can be done by

maximising each of the log-likelihood-parts. This greatly lowers the computation

time for maximum-likelihood estimation, which is a method of model fitting if

the full data are available (see next section), since this changes the problem from

maximising a function in seven dimensions to two 2-dimensional maximisations

and a 3-dimensional maximisation. In addition, the maximisation of each of the

partial log-likelihoods can be performed in parallel on a parallel processor.
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2.3 Model fitting methods

This thesis is concerned with the case where the transitions of hosts from the S

state to the E state are unobserved, which is often the case in real world epidemics,

for example, where there is a latent period (for example, [134, 145]). However,

if the transitions to the E state are observed, then since the likelihood function

would be tractable in this situation, maximum-likelihood estimation can be used

to obtain parameter estimates. In this thesis, maximum-likelihood estimationwill

be embedded within our framework of model testing. This section details how

maximum-likelihood estimation is performed within this thesis.

2.3.1 Maximum-Likelihood Estimation of Parameters for Com-

plete Data

To maximise the log–likelihood, a common approach is to use a numerical op-

timisation algorithm. The Nelder-Mead Simplex algorithm [132] is one of the

algorithms that have been used in this thesis to maximise the log-likelihood. As

in the numerical literature, the optimisation algorithms presented here in this

thesis are in the form used for function minimisation, but the same algorithm

can be used for maximisation since maximisation of a function is the minimisa-

tion of the negative of the function. The Nelder-Mead Simplex algorithm is a

gradient-free optimisation algorithms for multivariate functions. The algorithm

involves the use of a simplex in n dimensions, which adapts itself at each iteration

based on the function values at the points forming the simplex in order to find

the local minimum. The algorithm consists of four operations: sorting, reflection,

expansion, contraction. The general idea of the algorithm is that the simplex

should extend on encountering a long slope, change direction on encountering a

valley, and contract on encountering a minimum (using the description given in

[109]). The algorithm was chosen because of its flexibility, and inclusion in many

programming libraries (for example [98]).

The Nelder-Mead algorithm was selected over gradient-based alternatives

19



Chapter 2: Epidemic models

such as Low Storage Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm

[114, 137], or other quasi-Newtonian algorithms, or the gradient-descent al-

gorithm [42, 33] because a separate implementation of the gradient function is

not needed, simplifying the computer implementation greatly. The L-BFGS (low

storage BFGS) algorithm was also found to be effective at finding the maximum-

likelihood estimate (and consistently found the same maximum as the Nelder-

Mead algorithm). Gradient-based optimisation algorithms can be used in place

of the non-gradient basedmethods used here, although there is a severe drawback

in termsofmaintaining anddebugging the code for separate gradient calculations.

Another alternative is to use the Nelder-Mead algorithm to obtain an estimate of

theMLE and use a gradient basedmethod to refine this estimate further, although

the time saved in terms of computationmay be outweighed by the labour involved

in maintain and debugging a separate gradient function. Note that the maxim-

isation of the likelihood is performed with bound constraints on the parameter

values, which limits the choice of algorithms to those which can handle bound

constraints.

Algorithm 1 (Nelder-Mead Simplex Algorithm for function minimisation). For a

real valued function f (x) : x ∈ Rn , let ρ > 0, χ > ρ, 0 < γ < 1, 0 < σ < 1 (note that

in almost all implementations ρ � 1, χ � 2, γ �
1
2 , σ �

1
2 ). Then for each iteration k,

perform the following steps:

Sort For each vertex in simplex ∆k , order the vertices {x1, . . . , xn+1} such that

f (x1) ≤ f (x2) ≤ . . . ≤ f (xn+1)

Reflection Let:

x̄ �

∑n
i�1 xi

n

xr � x̄ + ρ(x̄ − xn+1)

Then, if f (x1) ≤ f (xr) < f (xn), xn+1 � xr
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Expansion If f (xr) < f (x1), let:

xe � x̄ + χ(xr − x̄) � x̄ + χρ(x̄ − xn+1)

If f (xe) < f (xr) then xn+1 � xe else xn+1 � xr

Outside Contraction If f (xn) ≤ f (xr) < f (xn+1), let

xc � x̄ + γ(xr − x̄) � x̄ + γρ(x̄ − xn+1)

If f (xc) < f (xr) then xn+1 � xc and go to next iteration k + 1, else xn+1 � xr and go

to shrink step

Inside Contraction If f (xr) ≥ f (xn+1), let

xcc � x̄ − γ(x̄ − xn+1)

If f (xcc) < f (xr) then xn+1 � xcc and go to next iteration k + 1, else xn+1 � xr and

go to shrink step

Shrink Let

xi � x1 + σ(xi − x1)

for all i > 1.

Note the log-likelihood function for this model is composed of the sum of sep-

arate independent parts (see equation 2.2.9) which only involve separate groups

of parameters, so this likelihood can be maximised with respect to each of these

groups separately, easing the computational burden greatly, as the computation

time required to find the maximum-likelihood estimate increases sharply as the

number of parameters increases.

The advantage of using the Nelder-Mead algorithm to find the maximum-

likelihood estimates of the parameters in this thesis is that it does not require

programming and maintenance of a separate gradient function, which is time-

consuming particularly with the nature of the exploratory and experimental work

performed for this thesis. Despite the fact that there is no satisfactory convergence
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theory for the Nelder-Mead algorithm, nor any guarantee that it will converge to

a minimum [109, 122] (unless under very strict constraints), the Nelder-Mead

algorithm has been used in a vast amount of research in many fields [105, 109,

21] - the original paper [132] has approximately 27,000 citations at the time of

writing. Due to its popularity, the Nelder-Mead algorithm has been implemented

in many numerical libraries [98, 149], and is included in the R and MATLAB

language. In this thesis direct search methods are the only option for lEI(αE , νE |x)

and lIR(αI , νI |x), as their gradient functions (which involve the derivative of the

incomplete gamma function) are extremely difficult to implement in C++ in an

accurate and efficient manner.

2.3.1.1 The Subplex Algorithm for Maximisation

The Nelder-Mead algorithm is an appropriate choice of algorithm for obtaining

the MLE for a single data set. Unfortunately, when the maximisation needs to be

performed for thousands of data sets, which is often the case when embedding

maximum-likelihood estimation into another algorithm like MCMC, which will

be used in this thesis for model testing, an algorithm is needed in which the

maximum-likelihood estimator is found consistently for all the data sets without

the need for human intervention. In some cases in this thesis, the Nelder-Mead

is not sufficient for this purpose (for example, maximising the full likelihood

within themodel testingmethods detailed later in this thesis). In these situations,

the Subplex algorithm [155] for optimisation is a more appropriate choice of al-

gorithm. The Subplex algorithm incorporates the Nelder-Mead algorithm within

itself, and intends to improve convergence to the actual maximum based on two

properties of the Nelder-Mead algorithm. First of all, the Nelder-Mead algorithm

tends to be able to find the maximum with more ease in lower dimensional

problems, than higher dimensional problems. Second of all, in certain cases of

non-convergence, it has been found that restarting the Nelder-Mead algorithm at

the last location, re-initialising the simplex, can allow the Nelder-Mead algorithm

to converge to a maximum, dislodging the simplex from a situation where it has
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collapsed or got “stuck”. The Subplex algorithm determines a step-size, and

then divides the parameter space into several subspaces and maximises using the

Nelder-Mead algorithm along each subspace. If a termination test (detailed later)

is not satisfied, the step-sizes and subspaces are set again and the Nelder-Mead

algorithm is restarted on these subspaces. This continues until the termination

test is satisfied. A brief formal outline is as follows (as described in [155]):

Algorithm 2 (Subplex). In addition to the Nelder-Mead coefficients defined above (the

default Nelder-Mead strategy used for Nelder-Mead algorithm embedded in the Subplex

algorithm is ρ � 1, χ � 2, γ �
1
2 , σ �

1
2 ), let “scale” be a vector of step sizes. Let

ψ, ω be the simplex reduction coefficients and step reduction coefficients respectively

where 0 < ψ < 1 and 0 < ω < 1. Let nsmin and nsmax be the minimum and

maximum subspace dimensions. The default values of these settings (used in this thesis)

are ψ � 0.25, ω � 0.1, nsmin � min(2, n), nsmax � min(5, n). Let x be the current

approximation to the minimum.

1. Determine step size (see Algorithm 3).

2. Set subspaces (see Algorithm 4).

3. Perform the Nelder-Mead algorithm on each subspace .

4. If

max
(
‖∆x‖∞ ,



step · ψ



∞

)
max(‖x‖∞ , 1)

< tol

where ∆x is the difference between x and its value on the previous cycle

of the algorithm, and tol is the error tolerance required, then the algorithm

ends. Otherwise, go to step 1.

Algorithm 3 (Subplex (Setting the Stepsize)).

1. If the algorithm has just been started, that is, this is the first time that the

step-size is being set, step � scale. Otherwise, perform the following steps:
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(a) step ←


step ·min

(
max

(
‖∆x‖1
‖step‖1

, ω

)
, 1
ω

)
nsubs > 1

step · ψ nsubs � 1

(b) for each component stepi of step:

stepi ←


sign(∆xi) · |stepi | ∆xi , 0

−stepi ∆xi � 0

where ‖x‖1 �
∑

i |xi |.

Algorithm 4 (Subplex (Setting the subspaces)). Let ∆x be the vector of progress.

Let nsmin and nsmax be the minimum and maximum subspace dimensions. Let

there be subs subspaces of ns1, ns2, . . . nssubs dimensions (which sum to n), where

∀i ∈ {1, 2, . . . , subs} : nsmin ≤ nsi ≤ nsmax.

1. Sort ∆x � (∆x1,∆x2, . . . ,∆xn) such that the largest component is first. Let

this be denoted ∆̃x � (∆̃x1, ∆̃x2, . . . , ∆̃xn).

2. Set

ns1 � arg max
k∈K

©­­­«

‖(∆̃x1 ,...,∆̃xk)‖1

k − ‖(∆̃xk+1 ,...,∆̃xn)‖1
n−k k , n

‖(∆̃x1 ,...,∆̃xk)‖1
k k � n

ª®®®¬
whereK � {k |nsmin ≤ k ≤ nsmax and nsmin d(n − k)/nsmaxe ≤ n − k},‖x‖1 �∑

i |xi | . This step determines where the “gaps” are in ∆̃x.

3. Repeat step 2 for ns2, ns3, . . . until
∑subs

i�1 � n.

An advantage of the simplex algorithm is that it allows bound constraints on

values of x. This was alluded to in the original description in [155], and imple-

mented in the numerical C++ library NLOpt [98]. If any of the Nelder-Mead

steps produces a simplex with a point outside of these constraints, the point is

moved (usually to the nearest point within the constraints) such that the simplex

lies within the constraints. This is useful as, in the likelihood we are maximising,

α, β, κ > 0. The motivation behind each of these steps in the Subplex algorithm

lies far outside the scope of this thesis, and indeed form a chapter of the PhD

thesis in which it was first described (for further details see [155]).

24



Chapter 2: Epidemic models

2.3.2 Maximum Likelihood Estimation and Model Comparison

Methods: Challenges of EmbeddingMaximum Likelihood

Estimation within Other Algorithms

The model comparison methods described later in this thesis involve what is

essentially thousands of maximum-likelihood estimations, each on different data-

sets. This produces additional challenges:

Since in this thesis, maximum-likelihood estimation is performed through nu-

merical maximisation of the likelihood function, finding the global maximum of

many functions in bulk is relatively difficult in comparison to maximising only

one function. There are several reasons. First of all, there is absolutely no guaran-

tee that the maximum found is a global maximum and not a local maximum. It

is harder to check when maximum-likelihood estimation is performed on many

data-sets in bulk because the only practical way to test convergence to the global

maximum is to reset the maximiser and find the maximum-likelihood again start-

ing at a different starting point. If the algorithm for numerical maximisation

outputs a different minimum (recall that numerical maximisation of the likeli-

hood function performed by using a numerical minimisation algorithm on the

negative of the log likelihood function) and this minimum is even more negative,

it would mean that the maximum likelihood estimate had not been reached in the

previous performance of the algorithm. Performing the numerical maximisation

several times in order to verify the global maximum increases and multiplies the

computation time needed to get an accurate result. Choosing such an algorithm

for finding themaximum likelihood estimate for thousands of different data-sets is

not an easy task. This is because in addition to verification of the global maximum

being totally automated, the choice of starting point for the numerical algorithm

needs to be totally automated. Within numerical optimisation literature there are

very few global maximisers (a term specific to numerical optimisation and not to

be confused from normal usage) which means that regardless of which starting

point the optimiser is started at, the algorithm will converge to a local maximum.

There is also the problem of finding an optimiser which does so in a reasonable
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number of iterations. For example, the simulated annealing algorithm will find

a maximum, but may take many thousands of iterations to converge. When per-

forming maximum-likelihood estimation in bulk, there is the problem that each

likelihood is different in terms of mathematical properties. One log-likelihood

function may have the properties necessary to allow the optimiser to converge,

but another may cause optimiser to never converge to a stable value. This is a

problemwith certain optimisers such as theNewton type algorithms, for example,

which need the function to be approximately locally quadratic.

In order to combat these problems we use the following algorithm for each

maximum likelihood estimation (performed in bulk) within the algorithms (for

model comparison) in this thesis:

1. Utilise the optimisation algorithm (Subplex) to obtain an estimate of the

MLE (within given stopping criteria and tolerances)

2. Verify that this is the maximum likelihood estimate by restarting the op-

timiser at a different starting point. If the optimiser produces a point with

the same likelihood value (subject to tolerances that have been prespecified)

accept the current estimate as themaximum likelihood estimate. Otherwise,

take the point which produces the largest likelihood value and repeat this

process again from the start.

This provides some verification that the estimate produced by the optimiser is the

maximum likelihood estimate. This algorithm appears to eliminate or minimise

most of the problems mentioned above. In most cases, only two optimisations

were needed to obtain two matching values. However, sometimes the optimiser

would perform successive optimisations for over half an hour to get two successive

matching values.

In this thesis we used the Subplex algorithm, which is based on the Nelder-

Mead algorithm, which is a heuristic method. From the experience of many

practitioners, in practice the Subplex algorithm is able to find the maximum of a

function from awide variety of starting points and find themaximum in functions

which are difficult to optimise. However, few mathematical results have been
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derived that prove that the optimiser will always reach a maximum regardless

of starting point, or results which show the conditions under which a maximum

can be reached. At present such results exist in literature involve showing that

the Nelder-Mead algorithm will do so in simple cases, but in complicated cases

as found here it is much more difficult to analytically derive any sort of results for

this algorithm. This algorithm, was tested on some runs against a gradient based

algorithm and does converge to the maximum value that is found by gradient-

based methods in almost every case, and does not require the programming and

maintenance for code for a derivative function which makes the probability of

coding errors a lot less. Measures have been taken tomitigate these drawbacks for

example the restarting the simplex frommany points to verify that the maximum

found is a global maximum. The Nelder-Mead algorithm can run for many

thousands of iterationswith no improvement in function value, giving the illusion

of convergence. The risk is mitigated by restarting the simplex every time the

optimiser appears to have converged. This has been incorporated into the Subplex

algorithm.

2.3.3 Bayesian Inference Using Data Augmentation

Incomplete data are commonly encountered within epidemic modelling. Often,

the exact transition times are not observed (for example: [36, 134, 143, 145, 172]).

This can arise because of the nature of the infection: an example is in the SEIR

model, where the transition from the susceptible state S to the asymptomatic

infection state E cannot be observed. Depending on the observation process,

some transitions between states may not be observable. For example, in the

situation of a disease with a long latent period in which symptoms are not visible,

only the transitions from the E state to the I state are observed. A similar situation

which the transition times are not exactly known arises when there is a delay in

diagnosis or reporting of the disease. This can be the case especially when the

symptoms of the disease in its early stages resembles many other diseases (for

example, foot-and-mouth disease, in [100, 96, 97]). Another situation in which
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the transition times cannot be precisely recorded is that of snapshot data. In this

type of data the transition time is not observed directly; instead the disease status

of individual hosts is recorded at fixed sampling times, providing what is known

as a “snapshot” of the epidemic at these times. The host is known to not have

made the transition before a certain snapshot and is only known to have made the

transition between two consecutive snapshots. For examples of epidemics where

this has been the case see [73, 134, 53, 145]. Combination of these missing data

types may occur, for example in the SEIR epidemic model, where transition times

to the I state may not be observed directly, but only constrained to lie between

successive sampling times. Another type of unobserved data occurs in which the

data only records the times at which individuals are removed from the population

(for example [64, 141, 143]). This is known as "removal-only data". This situation

occurs frequently in infections which are quarantined or culled when an infection

is detected, but there is a delay between the infection time and the time that the

infection is detected. The final size of the epidemic is often unknown. If the

disease has a latent period, or there is a delay in reporting or diagnosis, there will

be cryptic infections - infected hosts which are infected but are not detected or

asymptomatic.

In this thesis, in which spatio-temporal epidemics are the focus, these types

of missing data are very common. Because of this, Bayesian statistics and data

augmented MCMC is often used to fit models. In this chapter, a brief outline of

data augmented MCMC will be given. In later chapters, the model assessment

methods developed in this thesis will be developed to fit into this framework.

For the past 20 years, model fitting for incomplete data has predominantly

been performed using Bayesian methods. In Bayesian inference, all quantities

including model parameters are treated as random variables with distributions

which are updated in the light of observation, using the laws of conditional

probability. The distribution assigned at any time to a parameter represents belief

about its value in the light of all available information on the parameter up to that

time.
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This interpretation of probability leads to a different approach inmodel fitting.

In Bayesian statistics, rather than trying to estimate the true value of a parameter,

the aim is to obtain a distribution which represents the belief about the value of

the unknown parameter. To do so requires specification of a distribution which

represents the initial belief about the value of the unknown parameter, known as

the prior distribution. This prior distribution is combined with the information in

the data through Bayes theorem to obtain what is known as a posterior distribution,

which represents the belief of the parameter’s value given thedata. More formally:

let θ represent the parameter vector of interest and let y represent the observed

data. According to Bayes theorem, the posterior distribution π(θ |y) is given by,

π(θ |y) �
π(y |θ) · π(θ)

f (y)
∝ π(y |θ) · π(θ)

where

f (y) �
∫
Θ

π(y |θ)π(θ)dθ

The posterior distribution is often only calculated up to a constant of pro-

portionality; since it is a probability distribution, it must integrate to unity. In

addition, the denominator of the above formula may be difficult to calculate. For

more details about Bayesian statistics, refer to [58, 19].

However, in epidemic modelling, there is often missing data. In this case,

data augmentation (originally developed for use with the EM algorithm but later

extended for use with MCMC and RJMCMC [44, 178, 56, 179]) can be used (for

example [65, 64, 143, 172, 52, 66, 166, 36, 134, 32, 96, 97, 145, 95, 100, 104, 107, 63]).

Following this approach, the missing data are taken as extra parameters z, with

the “complete” data x being comprised of the observed data y and unobserved

data z:

x � (y , z)
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The posterior density π(θ |y) can be obtained by integrating out the missing

data [65, 143, 64, 27, 172, 171]:

π(θ |y) ∝ π(θ)
∫
π(y , z |θ)π(θ) dz

� π(θ)
∫
π(y |z , θ)π(z |θ) dz

The integral
∫
π(y , z |θ)π(θ) dz in the above equation may have no analytical

solution. Nevertheless, the joint density π(y , z |θ) may be analytically tractable.

Therefore, we can construct iterative methods for sampling from this joint dis-

tribution, obtaining information about π(θ |y) from the samples obtained, and

thus obtain estimates of posterior summary statistics such as mean or variance

of a parameter, or histogram estimates of univariate or multivariate marginal

distributions.

TheMonte Carlomethod [79, 159] is used to obtain estimates of such summary

statistics. Monte Carlo is the technique of generating a large number of samples

from the posterior distribution π(θ |x), and calculating an estimator of the statistic

of interest. For example, theMonte Carlo estimator for the posterior mean of g(θ)

(where θ1, . . . , θm are samples from the posterior distribution π(θ |x)) is given by:

Eπ(g(θ)) ≈
1
m

m∑
i�1

g(θi)

The law of large numbers makes this estimator converge to the actual values.

This method is straightforward if it is possible to sample from the posterior dis-

tribution directly. However, it may not be possible to sample directly from the

distribution of interest. For this situation, Markov chain Monte Carlo (MCMC) is

used.

MCMC is the method whereby one formulates a Markov chain such that its

stationary distribution is the distribution of interest (which in epidemicmodelling

is the posterior distribution π(θ |x)). Readers may recall that a Markov chain is

a stochastic process which is “memoryless”. That is, more formally (see [77] for

30



Chapter 2: Epidemic models

further information on the theory behind MCMC):

Definition 5 (Markov Chain). A Markov chain is a sequence of random variables

{Xt}, where t � 0, 1, 2, . . . such that

Pr (Xt � xt |Xt−1 � xt−1,Xt−2 � xt−2, . . . ,X0 � x0) � Pr (Xt � xt |Xt−1 � xt−1)

In other words the current state of a Markov Chain is only dependent on its

previous state. If theMarkov chain is irreducible and aperiodic, theMarkov chain

will converge in distribution to the stationary distribution.

Definition 6 (Irreducible). A Markov chain is irreducible if ∀x1, x2 ∃t < ∞ :

Pr (Xt � x2 |X0 � x1) > 0 .

Definition 7 (Period). The period of state x, denoted period(x) is defined as:

period(x) � gcd ({t ≥ 1| Pr (Xt � x |X0 � x) > 0})

Definition 8 (Aperiodic). AMarkov Chain is aperiodic if all elements have period

1.

It is assumed that these conditions are alwaysmet. There aremany algorithms

that can create an aperiodic irreducible Markov chain that has a stationary distri-

bution equal to a desired distribution, the most commonly used algorithm is the

Metropolis Hastings algorithm [127, 85] (for a good overview of its usage within

Bayesian statistics see [154]). The Metropolis-Hastings algorithm generates an

aperiodic irreducible Markov chain with a stationary distribution equal to any

desired target density, as long as the target density is known up to a constant of

proportionality.

However, the Metropolis-Hastings algorithm is not totally suitable for fitting

spatio-temporal epidemic data in which the infection events are unobserved.

Since the final size of the epidemic is unknown, the unobserved component

of the augmented data z, now treated as a nuisance parameter, is a vector of

unknown size. The Metropolis-Hastings algorithm is not designed for parameter
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vectors of unknown size. An extension of the Metropolis-Hastings algorithm

known as Reversible jump MCMC [75] can be used in this situation (for example

[65, 64, 143, 172, 52, 66, 166, 36, 134, 32, 96, 97, 145, 95, 100, 104, 107, 63]).

The original paper [75], explained that amodel with a parameter space of vari-

able dimension canbe considered as ahierarchicalmodel consisting of sub-models

which have parameter vectorsφ1,φ2,φ3 . . . , of different dimension. Thus, an epi-

demic model with unknown cryptic infections can be thought of as a hierarchical

model containing sub-models of dimension k � 1, . . . , kmax where kmaxis themax-

imum possible number of cryptic infections. The parameters of each sub-model

φk � (θ, zk), where the zk is the vector of unobserved asymptomatic infection

times corresponding to the case where the epidemic has k cryptic infections. In

[75], the following is used to generate aMarkov chain for the posterior distribution

using the following reasoning.

Given the current distribution of φ′,P(t)(φ′), at time t of the Markov chain,

the state of the chain at time t + 1 is the density P(t+1)(φ′) �
∫

T(φ′|φ)P(t)(φ)dφ

(T(φ′|φ) is the transition kernel of the Markov chain), and the stationary distri-

bution π satisfies π(φ′) �
∫

T(φ′|φ)π(φ)dφ. This means transitioning from one

time step of theMarkov chain does not affect the stationary distribution. Consider

only reversible Markov chains, where the detailed balance equation must hold:

T(φ |φ′)π(φ′)dφ′ � T(φ′|φ)π(φ)dφ.

Similar to theMetropolis-Hastings algorithm, themove to the next sub-model,

which is proposed from distribution j(k′|k), the next sub-model having k′ expos-

ure (asymptomatic infection) events and the current sub-model having k events,

consists of proposing u and u’, proposal vectors of length r and r′ such that

k + r � k′+ r
′, from its known proposal distribution gk→k′(u). It is then combined

with current state φ with some known deterministic function h(φ, u) to give a

proposed new state (φ′, u′). This proposed new state is accepted with probabil-

ity α
(
(φ′ , u′)|(φ, u)

)
. To make this algorithm converge to the desired stationary

32



Chapter 2: Epidemic models

distribution, the following must be satisfied:

j(k |k′)gk′→k(u)α
(
(φ, u)|(φ′ , u′)

)
π(φ′) du′ dφ′

� j(k′|k)gk→k′(u′)α
(
(φ′ , u′)|(φ, u)

)
π(φ) du dφ

Applying the change of variable rule to the left-hand side we obtain:

j(k |k′)gk′→k(u)α
(
(φ, u)|(φ′ , u′)

)
π(φ′)

�����∂h(φ′ , u′)
∂(φ, u)

����� du dφ

� j(k′|k)gk→k′(u′)α
(
(φ′ , u′)|(φ, u)

)
π(φ) du dφ

which is only satisfied if

j(k |k′)gk→k′(u′)α
(
(φ′ , u′)|(φ, u)

)
π(φ) � j(k′|k)gk′→k(u)α(φ′,φ)π(φ′)

�����∂h(φ′ , u′)
∂(φ, u)

�����
⇒

α
(
(φ′ , u′)|(φ, u)

)
α

(
(φ, u)|(φ′ , u′)

) �
j(k′|k)gk′→k(u)π(φ′)
j(k |k′)gk→k′(u′)π(φ)

�����∂h(φ′ , u′)
∂(φ, u)

�����
Therefore, [75] selects α

(
(φ′ , u′)|(φ, u)

)
� min

{
1, j(k′ |k)gk′→k(u)π(φ′)

j(k |k′)gk→k′(u′)π(φ)

����∂h(φ′ ,u′)
∂(φ,u)

����}
Thus, to generate a Markov Chain which converges to the stationary distribu-

tion corresponding to the posterior distribution π(θ, z |y) the following algorithm

can be used:

Let φ � (θ, z). The Reversible JumpMCMC algorithm requires as input k and

φ0 as starting values. Choose proposal distributions j and g.

1. Propose the move to k
′ cryptic infections from k cryptic infections, from

proposal distribution j(k′|k).

2. Let u and u′ be vectors of length r and r′ such that k + r � k′ + r
′. Sample

u from proposal distribution with joint density gk→k′(u) (the probability

density of the reverse move is g
′

k→k′(u
′)).
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3. Generate a proposed φ′k′ from the diffeomorphism (φ′k′ , u′) � h(φk , u).

4. Accept the move (φ′k′ , u′)with probability

α
(
(φ′k′ , u

′)|(φk , u)
)
� min

{
1,
π(k′ ,φ′k′ |x)
π(k ,φk |x)

j(k |k′)
j(k′|k)

g
′

k→k′(u
′)

gk→k′(u)

�����∂(φ′k′ , u′)∂(φk , u)

�����
}

For the SEIR model example used in this chapter, the above algorithm is

simplified greatly by making it only possible at each state in the Markov chain

only to add a cryptic infection or delete a cryptic infection, (moves in which the

number of cryptic infections is kept the same reduce to a standard Metropolis-

Hastings update step). Therefore, u will always consist of at most a single random

number. To simplify things further g is chosen as the uniform distribution and h

simply maps u onto the added infection time without any transformation. Thus,

the Jacobian term, acceptanceprobability, and the algorithmaregreatly simplified.

The method detailed below is based upon the work [64, 143] adapted to an SEIR

spatial epidemic model. The algorithm can be easily adapted to work with SIR,

SI, and any other type of compartmental model.

For each iteration, the following process is repeated:

1. Let the current state of the algorithm at time k � 0, 1, 2, . . . be denoted by

(θ(k), z(k)) where θ(k) � (α(k), β(k), κ(k), µ(k)E , σ(k)E , µ(k)I , σ(k)I ) and the times of

transition into the exposed state be denote by z(k) � z(k)1 , z(k)2 , . . . , z(k)N where

N is the number of hosts where N is fixed (and hence the length of z(k) is

fixed).

2. Using the Metropolis-Hastings algorithm, update each of the parameters in

the parameter vector individually. That is, for each parameter φ(k) in θ(k):

(a) Draw a proposal value φ′ from the proposal distribution q(φ′|φ(k)).

(b) Calculate the probability of acceptance α. Let θ∗ be θt with φ(k) re-

placed by φ′:

α � min

(
1,

π(θ∗ |z(k), y) · q(φ′|φ(k))
π(θ(k) |z(k), y) · q(φ(k) |φ′)

)
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(c) With probability α, set θ(k+1)
� θ∗, otherwise set θ(k+1)

� θ(k).

3. For each data item z(k)i in z(k):

(a) if t(i)I < T set move type to Standard.

(b) else :

i. if z(k)i does not fall within [0, T] (which is only the case when the

transition does not happen within [0, T] and thus z(k)i is set to ∞)

set move type to Addition

ii. else set move type to Shift or Deletion with probability 1
2

(c) if move type is Standard, Addition or Shift: Generate proposal z(k)∗i ∼

Unif(0, T)

(d) else set proposed value of z(k)∗i to be outside [0, T]

(e) ifmove type is Standard or Shift set ν � 1

(f) else ifmove type is Addition ν �
T
2

(g) else ifmove type is Deletion set ν �
2
T

(h) Set z∗ � z(k)1 , . . . , z(k)∗i , . . . , z(k)N . Then the acceptance probability α is

given by:

α � min

(
1,

π(θ(k) |z∗, y)
π(θ(k) |z(k), y)

· ν
)

(i) With probability α, set z(k+1) � z∗c otherwise z(k+1) � z(k)

The above algorithm can be modified to make it more efficient, for example by

using an independence sampler for the proposal distributions for the transition

times to the infectious state [140, 107]:

q(Ii − zi , Ii − z∗i ) ≡ Gamma(αI , νI)

α � min

(
1,

π(θ(k) |z∗, y)
π(θ(k) |z(k), y)

·
q(z∗ |z(k))
q(z(k) |z∗)

)
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for the cases where it is known that Ii < T.

In practice, whilst it may reduce the amount of autocorrelation between the

MCMC samples, it would be computationally expensive to update all of the

augmented data items per cycle of the algorithm. In practice, only a percentage

of the exposure times are updated per cycle of the algorithm, usually chosen

randomly. The percentage of the augmented data which is updated per cycle

of the algorithm is chosen such that there is a balance in the trade-off between

computation time and chain mixing. There appear to be no results giving a

theoretical level of augmented data which should be updated per cycle, so this

percentage is usually determined approximately by running several runs and

determining what the trade-off is in terms of computation time versus chain

mixing [107].

It should also be noted that there will be posterior correlations between the

various parameters in the model. For example there will be a correlation in the

posterior distribution between the kernel parameter and the secondary infection

rate. In addition, there will be dependence between the imputed infection times

and the parameters which determine infectious challenge. As a result, the chains

produced by RJMCMC and data augmentation methods usually have high auto-

correlation or poor mixing. Work has been done on this topic to reduce the

amount of correlations between parameters, but is outside the scope of this thesis.

In the context of this thesis, the algorithms presented here provide sufficiently

low autocorrelation and low posterior correlations between model parameters

for our purposes, which is to assess the effectiveness of model comparison and

model assessment methods. For more information, see work done on partially

non-centred parametrisations [107, 97]. The methods presented here only re-

quires that samples are generated from π(θ, z |y) - how the samples are generated

is unimportant.

There has beenmuchwork on efficientMCMC for stochastic epidemicmodels,

but this algorithm is favoured because of its simplicity and adequate mixing on

models involved. More complex algorithms can be used [107, 97, 108, 130] but
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Parameter Actual values
α 0.001
β 3.000
θ 0.030
µE 5.000
σ2

E 2.500
µI 1.772
σ2

I 0.858

Table 2.1: Parameter values used to generate the simulated data. Parameters on the left column
with the actual values used to generate the data in the right-hand column.

there is a trade-off between the advantages and the disadvantages in using them.

2.4 Example: Comparison of Maximum-Likelihood

and Full Bayesian Approach

To illustrate the estimation process, a data-set has been generated using the spatio-

temporal Gillespie algorithm above, with the parameters given in Table 2.1. A

plot of the data can be found in 2.4.1.

Maximum-Likelihood Estimation can be used on the full data, if the exposure

times are known,which in this case is possible because thedata has beengenerated

artificially through an algorithm. In a real-world situation it is difficult to get

observations of the exposure times if the infection is asymptomatic, unless for

example, if it is possible to test to see if the pathogen is present directly.

For the demonstration of maximum-likelihood estimation given here all the

transition times are “observed”. However, for the demonstration of RJMCMC

given here, the observations consist of the times of entry into the infectious I and

removed R states, but the times of the transitions into the exposed state E are

not known, which corresponds to a situation where tests that detect symptoms

perfectly are applied with arbitrarily high frequency. In this example, the data

was observed until all hosts entered the removed state. The RJMCMC algorithm

detailed earlier can be applied to snapshot data as well, with a few modifications.

Posterior means and variances are available for the unobserved exposure times,

but it would be impractical to list these results here. The reversible jump MCMC
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Figure 2.4.1: Snapshots of the simulated epidemic generated with an exponential kernel. Each
point on the graph represents one host. Points are colour-coded to represent the current state of
the host. Susceptible points are not displayed to maintain clarity of the graph. The colour of the
points on the graph indicate the state of each host at the given time. Red indicates the host is
exposed, green indicates the host is infectious and blue indicates that the host is removed.
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algorithm used is the algorithm detailed above in the previous section.

The results of the maximum-likelihood estimation (using simulated data in

which all the transition times are observed) are as shown in Table 2.2. The Nelder-

Mead algorithm was used to obtain maximum-likelihood estimates but note that

a gradient-based method would be also suitable for the maximum-likelihood

estimation. The maximum-likelihood estimation took approximately one second.

As a check that the results from the maximum-likelihood estimation algorithm

were reasonable, which in turn provides support that the algorithmwas correctly

coded, the deviance was calculated and the resulting p-value was calculated, as

this is known to come approximately from the chi-square distribution (Likelihood

Ratio test with Wilks’ theorem):

−2 log(Λ) ∼ χ2
7

where

Λ �
L(x|θact)

L(x|θ̂)

and L(x|θact) is the likelihood evaluated at the actual knownparameter values and

L(x|θ̂) as the likelihood evaluated at the maximum-likelihood estimate obtained

by running the computer code. The value of the deviance was 3.079372 with a

p-value of 0.877564 which shows that the estimates of the maximum-likelihood

estimator through the Nelder-Mead algorithm appear to be not significantly dif-

ferent from the actual parameter values and thus showing that the computer code

is giving results which seem reasonable. This shows that the true parameter vec-

tor would lie in a confidence interval of any reasonable confidence level. This

gives support that the algorithm is correctly coded, although it is not absolute

proof.

The reversible jumpMCMC algorithmwas run for 10,678,487 iterations which

took approximately 4 hours. Details on methods used to accelerate the reversible

jump MCMC algorithm will be detailed in future chapters, but readers must
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Parameter Actual values MLE
α 0.001 0.001
β 3.000 3.012
θ 0.030 0.030
µE 5.000 5.033
σ2

E 2.500 2.437
µI 1.772 1.798
σ2

I 0.858 0.907

Table 2.2: Table of maximum-likelihood estimates obtained from the full data.

Parameter Actual values Posterior Mean Posterior SD
α 0.001 0.000827 0.000233
β 3.000 3.4995873 0.5120371
θ 0.030 0.0311221 0.0012444
µE 5.000 5.0058293 0.1224685
σ2

E 2.500 2.9744470 0.3519408
µI 1.772 1.8066625 0.0326887
σ2

I 0.858 0.9252789 0.0546392

Table 2.3: Table of posterior means and variances obtained from the data with exposures unob-
served.

note that an unoptimised implementation would take 200 times the runtime and

a optimised parallel implementation would take 16 times the runtime. After

discarding a conservative burn-in of 1million updates, and thinning the output by

a factor of 7, the posteriormean and the standard deviation estimates can be found

in table 2.3. Readers should observe that the true parameter values fall within

two posterior standard deviations of the posterior mean. Posterior densities and

trace plots of the MCMC can be found in fig. 2.4.2 and fig. 2.4.3. Bivariate plots

showing the posterior correlations between model parameters can be found in

fig. 2.4.4. As expected, the parameters β and κ display some correlation, which

can be reduced through normalisation of the transmission kernel, at the cost of

making the results more difficult to interpret. Readers should note that one of

the advantages of using data-augmented reversible-jump MCMC is that one can

obtain samples from the posterior distribution of the unobserved data. This is

crucial for the work presented later in this thesis in which classical tests of model

fit are embedded in this framework.
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Figure 2.4.2: Trace andKernel density plots for the posterior distributions of themodel parameters
(1 of 2 plots).
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Figure 2.4.3: Trace andKernel density plots for the posterior distributions of themodel parameters
(2 of 2 plots).
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Figure 2.4.4: Pair plots for the RJMCMC samples of the posterior distributions of the model
parameters.
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Chapter 3

Model selection techniques - a

Review of Existing Methods

The fitting of epidemic models has presented several interesting challenges in

model comparison. A feature typical of epidemic data is a lack of replication

of observations, that is, the epidemic process is only observed once. Since an

epidemic consists of a series of infection events which are not independent nor

identical, an epidemic cannot be taken as a realisation of multiple independent

identically distributed events. As a result, the parameter posteriors are more

likely to be non-normal (for example, [67]) leading to difficulties in choosing

point estimators for measures of model fit such in the case of the DIC ([164], see

Section 3.2 on page 57, and [69] for more discussion).

The partial nature of the observations in epidemic settings also leads to further

challenges in determining model fit. Data augmentation (described in Subsec-

tion 2.3.3 on page 27) can be used to treat missing data as a nuisance parameter,

and hence fit the model within the Bayesian framework using Data Augmented

MCMC. However, as a result the parameter posteriors are sensitive to the choice

of parameter priors. This creates challenges in using methods which use inform-

ation from the parameter posteriors (for example, the DIC). Some measures of

model fit may be sensitive to choice of parameter prior, even if the parameter

posteriors are insensitive to the parameter priors.

In addition, epidemic models can have a high level of complexity, with differ-
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ent varieties of compartmental models that can be used, and different sources of

population heterogeneity that can be modelled, for example species (for example,

[36, 100]), households (for example, [104]), vector-based transmission and season-

ality (for example, [95]), etc. mis-specification of any of these can be a source of

model misfit. A measure of model fit must thus focus on sources of model inad-

equacy that are relevant to the purpose of the model; that is, one must “worry

selectively about model inadequacies” [24].

There have been a variety of approaches at developing methods for assessing

the fit of epidemic models to the data. These can be organised on a spectrum,

consisting of purely Bayesian techniques at one end and the frequentist techniques

at the other end. In the middle are techniques combining both Bayesian and

frequentist techniques. In this chapter, we present an overview of the existing

techniques in the literature to assess the fit of an epidemic model. First, we

cover Bayesian model choice methods. Next an overview of posterior predictive

checkingmethods is given. Finally, anoverviewofDeviance InformationCriterion

in its various forms is given.

3.1 Bayesian model choice methods

Within the context of two competing models M1 and M2 and observed data y, let

π(θi |Mi) for i ∈ {1, 2}be the parameter prior for θi , the parameters of model i.

Let pi be the prior probability of Mi , then the marginal likelihood of y |Mi , also

known as the evidence:

Pr(y |Mi) �
∫
π(y |θi ,Mi)π(θi |Mi)dθi

Then by Bayes theorem, for i ∈ {1, 2}, we have:

Pr(Mi |y) �
Pr(y |Mi)Pr(Mi)

Pr(y |M1)Pr(M1) + Pr(y |M2)Pr(M2)

Hence
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Pr(M1 |y)
Pr(M2 |y)

�
Pr(y |M1)Pr(M1)
Pr(y |M2)Pr(M2)

�
Pr(y |M1)
Pr(y |M2)

· Pr(M1)
Pr(M2)

(3.1.1)

The Bayes factor of M1 vs M2, denoted B12 is defined as:

B12 �
Pr(y |M1)
Pr(y |M2)

which using Equation 2.3, can also be expressed:

B12 �

Pr(M1 |y)
Pr(M2 |y)
Pr(M1)
Pr(M2)

�
Posterior odds of Model 1 vs. Model 2
Prior odds of Model 1 vs. Model 2

If the value of this ratio is above a certain level, [92], [99] then there is con-

siderable support in favour of M1. Note that in contrast with classical hypothesis

testing, the twomodels are given equal status, as opposed to the frequentist frame-

work where one assigns a “null” and “alternative” hypothesis, of which the null

can never be accepted, but only “fail to be rejected”.

The above representation of the Bayes factor as the ratio of the posterior odds

to the prior odds shows that the prior odds of Model 1 vs. Model 2 affects the

value of the Bayes factor, and therefore the decision onwhich hypothesis to accept.

In the situation where there is a lot of prior information, this can be incorporated

into the prior odds.

A related way of ranking models is through the use of posterior model prob-

abilities. This was first put forward by Draper [47] who suggested an approach to

model selection as follows: consider the model (S, θ)where θ are the model para-

meters and S is the structural assumptions of the model. The Bayesian approach

is to calculate the posterior distribution of the model. However, calculation of this

integral over the set of all possible models may be impossible since the space of
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all models is so large that it would not be possible to use a diffuse prior. Draper

illustrates this in [47] by considering the following example:

Example 9. Suppose the observed dataY � (Y1,Y2, . . . ,Yn) is a sequence of binary

numbers.

Each model for the data is a joint distribution for all possible observations:

p0000...0, p1000...0, p0100...0, p1100...0, . . . , p1111...1

Thus, the set of all models is

{(p0000...0, p1000...0, p0100...0, p1100...0, . . . , p1111...1) :

p0000...0, p1000...0, p0100...0, p1100...0, . . . , p1111...1 ≤ 1,

p0000...0 + p1000...0 + p0100...0 + p1100...0 + . . . + p1111...1 � 1}

Different structural assumptions of the model, for example, independence, or

identical distribution etc. would correspond to different subspaces of the model

space. The dimension of the model space is 2n − 1. The dimension of the model

space increases exponentially as the size of the data increases. For example, for a

data size of n � 10, the model space would be of dimension 1023. Thus, it would

be unreasonable to expect that each additional observation would add sufficient

amounts of information about the relative plausibility of the various structural

choices.

Thus, Draper suggests startingwith a candidatemodel and performingwhat is

called "model expansion", in which, starting from the candidate model the space

of models is expanded to include other likely models.

This could be in some way related to the full posterior model distribution in

that this distribution is the same distribution if zero prior density is assigned to

certain sets of models.

Model expansion can either be continuous or discrete. Continuous model

expansion involves embedding the model into a larger continuous class of mod-
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els, the initial model being a special case of the larger class of models, for ex-

ample, the Unif(0, 1) distribution as a special case of the Beta(α, β), distribu-

tion (since Unif(0, 1) ∼ Beta(1, 1)), or the Exponential as a special case of the

Gamma distribution (since if X ∼ Exp(λ), then X ∼ Gamma(1, λ)). Discrete

model expansion involves the expansion of the model into a discrete class of

models, where a finite or countably infinite number of models are compared.

Suppose that we would like to compare several competing epidemic models

M1,M2,M3, . . . ,Mk , with parameter vectors θ1, θ2, θ3 . . . , θk and prior distri-

butions π(θ1), π(θ2), π(θ3) . . . , π(θk). The posterior model probability can be

obtained by using Bayes Theorem:

Pr(M j |y) ∝ p j Pr(y |M j) � p j

∫
π j(y |θj ,M j)π(θj |M j)dθj (3.1.2)

where p j is the prior probability of model j ∈ {1, 2, . . . , k}. These posterior model

probabilities can be used for model averaging.

There are several ways of calculating the Bayes factor, and the posterior model

probabilities [99]. Bayes factors are usually difficult to calculate analytically, so

tend to be calculated through the use of approximations or iterative methods

such as [31] (a Gibbs sampler in which a model indicator variable is added,

pseudo-priors are specified for the parameters not in each model, and MCMC is

performed for the joint posterior of all models to be compared, their parameters

and the model indicator) and RJMCMC [75] (similar to the previous algorithm,

except rather than incorporating all the parameters of all the competing models

and the model indicator into a large parameter vector, RJMCMC instead allows

dimension switching moves between models). Such algorithms, which explore

the model space, tend to be difficult to implement and tune for adequate mixing.

The problems in using these algorithms within the context of epidemic model

selection will be discussed in further detail later.

Readers should note the difference between Bayesian and classical approaches

to model selection. In the classical Neyman-Pearson approach a null hypothesis

model H0 is compared against an alternative hypothesis model HA. To assess
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model adequacy, a test statistic, ameasure of thediscrepancy between thedata and

the null hypothesis which also supports the alternative hypothesis is calculated. If

the test statistic is within the critical region, which event should have a probability

no greater than α, the specified type I error rate (recall a type I error is rejecting

the null hypothesis even though the null hypothesis is true). If the test statistic is

in this region, then the null hypothesis is rejected. If this is not the case, then the

null hypothesis cannot be accepted, it can only be “failed to be rejected”. From

this, one can observe that the models are not given even status. In contrast, in the

Bayes Factor/Posterior Model Probability approach, one specifies two (or more)

candidate models. The amount of posterior support for the data being generated

by each model is calculated. Hence, in summary, the classical method assesses

model adequacy based on the probability of getting a test statistic more extreme

than would be observed under the null hypothesis, whilst the Bayesian methods

of model assessment selects models based on the posterior support that the data

comes from that model. In certain circumstances this can lead to Bayesian tests

and frequentist tests giving opposite results, as exemplifiedby the Jeffreys-Lindley

paradox (see [153],[91],[112] for more information). A counter-intuitive property

of Bayes factors is that Bayes factors can be over-conservativewhen used formodel

selection. That is, when using Bayes factors to select among is a set of models,

these factors tend to favour the simpler models. To intuitively see this, consider

the following example where two models, M1 and M2 are compared.

Example 10. Let model M1 be parametrised by θ1 � (θ11, θ12, . . . , θ1d1), a vec-

tor of d1 non-negative components. Let model M2 be parametrised by θ2 �

(θ21, θ22, . . . , θ2d2), a vector of d2 non-negative components.

Suppose d2 > d1.

Let the prior distribution on the parameters θi of Mi be such that each com-

ponent is i.i.d Unif(0,A), that is,

π(θi) �


( 1

A

)di if all of θi1, θi2, . . . , θid1 ∈ (0,A)

0 otherwise
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Then:

Pr(y |Mi) �
∫
Θi

π(y |θi ,Mi)π(θi |Mi)dθi

�

(
1
A

)di ∫ A

0

∫ A

0
· · ·

∫ A

0
π(y |θi ,Mi)dθi1dθi2 . . . dθidi

The evidence for M1 tends to be larger than M2 since d2 > d1, if the integral is

similar in value for both models. To demonstrate this:

Consider the case where for some K, a > 0, π(y |θi ,Mi) ≤ Ke−a
∑
θi j for any

fixed y and i � 1, 2.

Pr(y |Mi) �
(

1
A

)di ∫ A

0

∫ A

0
· · ·

∫ A

0
π(y |θi ,Mi)dθi1dθi2 . . . dθidi

≤
(

1
A

)di ∫ A

0

∫ A

0
· · ·

∫ A

0
Ke−a

∑
θi j dθi1dθi2 . . . dθidi

�

(
1
A

)di

K
(
1 − e−aA

a

)di

≤
(

1
A

)di

K

Hence, as A→∞, Pr(y |Mi)will tend to a fixed constant, which will tend to be

larger for M1 as d2 > d1.

A simple demonstration of this can be seen in the following example:

Example 11. We extend the example from [153], to consider the case where there

is a sample of n observations from a normal distribution of known variance,

∀i ∈ {1, . . . , n} : xi ∼ N(θ, σ2) (instead of a single observation). Set the prior to

be θ ∼ N(θp , σ2
p), and suppose that the hypotheses to be tested are:

H1 :θ � θ0

H2 :θ , θ0

H1 is a model with no free parameters (dimension 0) whilst H2 is a model with
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1 parameter. Then we have:

B12 �

φ

(
x̄−µ0
σ2
n

)
∫
φ

(
x̄−µ
σ2
n

)
φ

(
µ−µp

σ2
p

)
dµ

�

(
1 +

nσ2
p

σ2

) 1
2 exp

{
1
2

(
σ2

p +
σ2

n

)−1
(x̄ − µp)2

}
exp

{ 1
2

n
σ2 (x̄ − µ0)2

}
Then as σ2

p → ∞ , B12 → ∞ , regardless of the observed data. Note that this

arises primarily from the fact the H2 is a more complex model (it has one more

parameter) and thus there is one more parameter to integrate over.

In fact the Bayes factor is bounded from below:

B12 �

(
1 +

nσ2
p

σ2

) 1
2 exp

{
1
2

(
σ2

p +
σ2

n

)−1
(x̄ − µp)2

}
exp

{ 1
2

n
σ2 (x̄ − µ0)2

} ≥
exp

{
1
2

(
σ2

p +
σ2

n

)−1
(x̄ − µp)2

}
exp

{ 1
2

n
σ2 (x̄ − µ0)2

}
≥ 1

exp
{ 1

2
n
σ2 (x̄ − µ0)2

}
This disadvantage of the Bayes factor makes it unsuitable for use unless there

is strong prior information available.

If there is prior information available, problems can naturally arise when this

prior information is inappropriate or misleading. This is because the posterior

model probabilities and Bayes factors are more sensitive to the priors on the

parameters than the parameter posterior distribution is sensitive to the priors

on the parameters . Reference [189] gives an example which shows this prior

sensitivity intuitively. Consider a model with a single parameter θj , where all

of the likelihood is negligible outside the interval [0, 1]. If the uniform prior

Unif(−100, 100) is used, suppose the marginal likelihood Pr(y |M j) is b. That is:

Pr(y |M j) �
∫
π(y |θj ,M j)π(θj |M j)dθj � b

If the prior is changed to Unif(−1000, 1000) , the parameter posteriors will not
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change significantly, but themarginal likelihoodPr(y |M j)will essentially decrease

by a factor of 10 to b
10 . Essentially, the act of integrating out the parameters makes

the Bayes factor and the posterior model probabilities more sensitive to choice of

parameter prior distribution than theparameter posterior distributions is sensitive

to the choice of parameter prior distribution.

As mentioned earlier, the posterior model probabilities and Bayes factors have

been frequently calculated using Reversible Jump MCMC (RJMCMC), which can

be used to produce aMarkov chain which has a limiting distribution which is that

of Equation 3.1.2. Suppose we have a set of models M1,M2,M3, . . .which have

parameter vectors , which may be of different dimensions (for k ∈ N : θk is the

parameter vector for Mk). A model can also represent a candidate model that we

are selecting from, for example a spatial kernel. Instead of the usual state vector,

we take (k , θk), where θk ∈ Rnk as the current chain state. The algorithm is as

follows:

1. Propose the move to model k
′ from k, from model proposal distribution

j(k′|k). The dimension of the parameter spaces of the two models may be

different.

2. Let u and u′ be vectors of length r and r′ such that nk + r � n
′

k + r
′. Sample u

from a proposal distribution with joint density g(u) (the probability density

of the reverse move is g
′(u′)).

3. Generate a proposed θ′k′ from the diffeomorphism (θ′k′ , u′) � h(θk , u).

4. Accept the move (θ′k′ , u′)with probability

α
(
(θ′k′ , u

′)|(θk , u)
)
� min

{
1,
π(k′ , θ′k′ |x)
π(k , θk |x)

j(k |k′)
j(k′|k)

g
′(u′)

g(u)

�����∂(θ′k′ , u′)∂(θk , u)

�����
}
.

The posterior model probability is estimated as the proportion of iterations spent

by the Markov chain in the parameter space of each model. Note that the data

augmented MCMC algorithm (in Section 2.3.3) is a special case of the RJMCMC

algorithm, where the Jacobian determinants are simple to compute.
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The unobserved data that is often present in epidemic data makes it difficult

to apply the Bayes factor or posterior model probability approaches to the com-

parison of spatial kernels as it is difficult to develop computer algorithms that

will allow mixing of the RJMCMC – to transition between models would involve

transition between spatial kernels. Since the unobserved infection times are de-

pendent on the spatial kernel the chain would have a low acceptance rate for

proposals to move between models with different spatial kernel. This is because

RJMCMC requires the specification of a mapping to move between the different

parameter spaces of each model. Given that the infection times (the augmented

data) between each model are not equivalent to each other, it is non-trivial to

specify a mapping h to move between the states in two epidemic models which

produces a satisfactory acceptance probability.

Furthermore, there is the addeddifficulty of there being cryptic infections. The

complexity of using RJMCMC on the epidemic models is compounded by the fact

that RJMCMC is used to fit eachmodel of an epidemic. In this situation RJMCMC

is used to move between different dimensional parameter spaces within the same

model, which correspond to different numbers of cryptic infections. Hence, each

model can be defined for the purposes of RJMCMC as a set of models, each

representing an epidemic with different numbers of cryptic infections, so the full

model space is actually a product space of the candidate models with all the

models representing different levels of cryptic infections. The structure of the

compartments in each of the candidate models to be compared may be quite

different. For example, consider an SEIR model versus a SIR model, where the

unobserved state in the former would be E and I in the latter. The unobserved

data in each model is different, making it difficult to specify a mapping h to allow

the RJMCMC algorithm to move between model spaces. Hence, the problem of

determining an algorithm which would mix well for this general problem is not a

trivial one.

Nevertheless, there havebeen several attempts touseBayesianmodel choice for

epidemicmodel selection. An example of such a paper is the paper by [131], which
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examines the 1861 Hagelloch measles epidemic. This data-set has a particularly

large amount of information about the population, comprising each individual’s

name, age, sex, time of appearance of first symptoms, and the date the rash first

appeared as well as other information. The model itself represents the following

process for each individual i: the appearance of symptoms (at time Si), appearance

of rash (at time Qi), time of infection Ii , and time of removal Ri . The time of first

appearance of symptoms is typically the time of appearance of Koplik spots (white

spots on the inside of the cheek). The time of the appearance of the rash refers

to the time of appearance of the red skin rash. The force of infection is modelled

as being related to a household effect βH , classroom effects β1
C , β

2
C (Li denotes the

classroom of individual i), and a distance effect βG (distance between individuals

i and j is ρ(i , j)).

αi j � βH1{ρ(i , j)} + β1
C1{Li�L j�1} + β

2
C1{Li�L j�2} + βG exp

(
−θρ(i , j)

)
First, the authors compared each of the models that exclude one household or

classroom effect and found that the rank of themodels was relatively robust to the

specification of the spatial kernel for both fixed and imputed infection times; but

no Bayesian comparison was made of the spatial kernels. Rather, they noted that

the posterior model probabilities gave similar model rankings with other choices

of spatial kernel chosen, and thus that the model rankings were robust to choice

of spatial kernel.

Note that in allmodels thatwere compared, the nature of themissing data, that

is, the infection and the removal times, were the same. Therefore, RJMCMC only

requires to formulate dimension changing moves related to model parameters

but not the augmented data, simplifying the algorithm and its implementation.

Runswith simulated data-sets found thatwhilst, in general, the correctmodelwas

selected, model ranking was affected by prior specification, with more informat-

ive priors yielding more posterior support for the full model in some simulated

data-sets. On epidemics generated with models with no household effects, there

was difficulty in identifying the correct model, as the household effect can be
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compensated for by the kernel parameters and the spatial coefficient. This identi-

fiability issue makes prior specification have influence over model ranking in this

situation, making prior specification an important issue.

Another paper utilising Bayesian model choice is [104]. This paper uses an

epidemic model which assumes the population contains a number of known

individuals and is partitioned into several known households. The observed

data consists of the final numbers of individuals in each household that have

ever become infectious during the epidemic. All individuals are assumed to be

susceptible at the start of the epidemic. More formally, if there are ni j households

containing j individuals that are initially susceptible of whom i become infected,

D �
{

ni j , j � 1, 2, . . . , i � 0, . . . , j
}

The model that is used in the paper assumes that a given infective makes

contact with the global population at times given by a Poisson process of ho-

mogeneous rate λG and the contact is randomly selected from the population.

There is also a local infection rate λL, where within the household contacts are

made at times given by a homogeneous Poisson process with rate nλL (where n

is individual’s household size), and the individual that makes contact is selected

randomly from the individuals and household. An assumption of mutual inde-

pendence is made regarding all the Poisson processes. The epidemic ends when

the whole population is infected. The infectious period is assumed to be constant,

and the final outcome distribution can be shown to be invariant to latent period,

as long as the latent period is almost surely finite. The paper tests between three

competing models:

1. M1 with parameters λL and λG

2. M2 where λL � λG

3. M3 where λL � 0

The authors use exponential priors for the model parameters. In this paper, the

augmented data consists of the infectious contacts, both local and global, and the
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recipients of these contacts. Thus, the RJMCMC algorithm does not have to make

moves with respect to the augmented data, only with respect to the parameters

θ � (λL , λG). This eliminates some the potential problems associated with using

RJMCMC in epidemic models of this kind.

Regarding prior sensitivity, the authors present a lemma which shows that if

there is at least one partially infected household the Bayes factor will favour M2

and M3 which are the simpler models as the priors become increasingly vague.

Quoting from the paper [104]:

Lemma12. Case 1, partially infected households: If there exists at least one householdwith

at least one, but not all, members infected, then limµ→0 B12(µ) � limµ→0 B13(µ) � 0.

Case 2, fully infected households in a partially infected population: Suppose that

not all households are infected, but that in every infected household, all members of that

household are infected. If all infected households are of size one, then limµ→0 B12(µ) �

limµ→0 B13(µ) � 1. Conversely, if there exists at least one infected household of size two

or more, limµ→0 B12(µ) > 1 and limµ→0 B13(µ) > 1.

Case 3, fully infected population: If every individual in the population is infected, then

limµ→0 B12(µ) � limµ→0 B13(µ) � 1.

Consider a population in which all households become infected apart from

one household which is only partially infected with a single individual becoming

infected by the endof the epidemic. In this case, thiswill fulfilCase 1 of the lemma,

which would favour M2 and M3 very heavily, as the priors become increasingly

vague. If this individual does not get infected, we would have Case 2 where there

will be a preference for M1, as the priors become increasingly vague. If this whole

household is infected, then we would have equal weight on M1 versus M3, as

the priors become increasingly vague. There would also be equal weight on M1

versus M2, as the priors become increasingly vague. Hence, as the priors become

more uninformative, which model is favoured can depend on the outcome of a

single household. This shows the importance of prior specification in Bayesian

model selection.
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3.2 Deviance Information Criterion

Another measure used for model comparison is the deviance information cri-

terion, also known as the DIC. This measure was first proposed by [164], basing

the choice of measure through approximate decision theoretical reasons, using

a logarithmic utility function. The DIC for observed data, also known as the

observed DIC, denoted DIC1, can be expressed:

DIC1 � −4Eθ
{
log π(y |θ)|y

}
+ 2 log π(y |θ̃)

where θ̃ is an estimate of θ.

DIC1 can also be expressed as:

DIC1 � −2Eθ
{
log π(y |θ)|y

}
+ PD

where PD � −2Eθ
{
log π(y |θ)|y

}
+ 2 log π(y |θ̃). The first of the terms of the DIC

was proposed in the original paper [164] as a measure of model goodness of fit,

and the second term as a measure of model complexity. The original paper [164]

proposed this measure for model selection with a heuristic justification for the

measure.

To comparemodels using theDICeach candidatemodel is fitted to thedata and

the DIC is calculated conditioning on themodel that has been fitted. The DICs are

then compared and the models are ranked by DICwith the model with the lowest

DIC being ranked the highest or most adequate model. This method of model

selectionhas the benefit that it is easily integrated intoMCMC, and is implemented

in the software package WinBUGS. However, there are some disadvantages with

the method: note that PD is not invariant to the estimate used for θ̃. Some may

argue that this approach is fundamentally not a Bayesian approach (see [69] and

discussions on the papers [164, 165], for example, the discussion by Dawid on

the former). The DIC for each model is calculated conditioning on that model so

there is a lack of a “standard perspective” from which to compare models and

interpret jointly the DICs for two mutually exclusive models.
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As stated earlier, the justification for the DIC given in the original paper [164]

is a heuristic one. The key idea behind the DIC is the idea of model parsimony:

finding the optimal trade-off between model fit and model complexity, model

complexity being represented by effective number of parameters PD . The authors

of the original paper [164] using idea called "focus", where the parameters of

interest in a hierarchical model must be identified before determining the form of

the DIC. Suppose a hierarchical model is to be assessed in which the parameters

of the model are θ1 which depend on a further set of parameters θ2. Depending

on how the model is to be used, the focus can either be θ1 or θ2 and thus θ � θ1

or θ � θ2 or θ � (θ1, θ2) depending on what the parameters of interest are.

Whilst the idea of “focus” in model selection is intuitive for simple models, in

more complex models, such as hierarchical models, mixture models, and models

with missing data there are many different approaches regarding the treatment

of the missing data, the parameters, and estimate θ̃ used for the parameters

leading to different forms of the DIC. This was investigated in [34] where the

authors of this paper investigated various forms of the DIC for mixture models

andmissing datamodels. They proposed eight different forms of DIC, depending

on how the missing data and the parameters is treated as well as the form of the

parameter estimate. These include different forms for DIC when the likelihood

can be derived analytically for observed data, and where it is not possible.

Each of the proposed forms of the DIC give different model rankings. In fact,

there are infinitely many possibilities for the forms of DIC, depending on how

“missing” data are specified, giving infinitely many different model rankings. As

a result, the selection of DIC to use in model assessment needs to be carefully

considered. This is especially true in epidemic modelling, which often requires

the use of one of the missing data DICs, in which there are many different ways

that the focus and estimator can be specified, with no clear way to select which is

the most appropriate form of DIC.

In the comments to the paper by Celeux [126], it is also noted that the aug-

mented data z may be of high dimension, and that whilst the observed data may
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contain enough information to estimate θ̂, there might not be adequate informa-

tion to produce a valid estimate of the augmented data z.

Reference [43] compares several versions of the DIC (DIC1 with the posterior

mean, median and maximum as θ̃, DIC3, and a form of the DIC from [59]) for

spatial temporal models in discrete time with no latent period, but with latent

susceptible classes. Using simulated data they find DIC3 to be more robust to

lack of information on the susceptible latent classes.

In the context of spatial temporal epidemic modelling, as shown in the earlier

sections the likelihood of the observed data π(y |θ) cannot usually be found ana-

lytically. Thus, the forms of theDIC that have been applied in epidemicmodelling

are usually the missing data variants. Several examples of DICs that have been

used to compare epidemic models are:

DIC4 � −4Eθ,x
{
log π(y , x |θ)|y

}
+ 2Ex

{
log π(y , x |Eθ(θ |y , x)|y

}

DIC6 � −4Eθ,x
{
log π(y , x |θ)|y

}
+ 2Ex

{
log π(y , x |θ̂(y))|y

}
where θ̂(y) is an estimate of θ from the observed data posterior distribution

π(θ |y), and

DIC8 � −4Eθ,x
{
log π(y , |x , θ)|y

}
+ 2Ex

{
log π(y , |x , θ̂(y , x)|y

}
where θ̂(y , x) is an estimate of θ from the observed data posterior distribution

π(θ |y , x).

In [104] several epidemic models were compared using the DIC4. For some of

the models and datasets compared, the DIC was found to be less prior sensitive

than the Bayes factor in ranking models. In [111] DIC4 and DIC8 was used to

rank spatio-temporal SEIR models with different spatial kernels. This was done

with both real world and simulated data. The model rankings produced were
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different depending on the form of DIC used.

Thus, since different forms of the DIC yield different model rankings it is

important to be as clear as possible about what decisions are being made when

choosing a form of the DIC. The focus of the DIC is particularly important. In

the data augmentation methods which are often used for epidemic models, the

choice of latent processes embedded in the marginal model makes no difference

to the posterior distributions of the parameters of interest. However, with the

DIC, the choice of latent process and whether it is treated as missing data or as a

parameter of interest affects the model rankings. Several of the missing data DICs

from [34] can be expressed as the posterior mean of some measure calculated by

a notional observer of the complete data. In the case of DIC4 we can express this

as:

DIC4 � Ex[−4Eθ{log π(y , x |θ)|y , x} + 2 log π(y , x |Eθ(θ |y , x)|y]

� Ex[DIC1(x , y)]

that is, the expectationover x (the full data) ofDIC1(x , y), theDIC1 of theobserved

and unobserved data. This can be interpreted as a Bayesian observer’s posterior

mean (given the observed data y) of DIC1 computed over the full data x, and is a

natural extension of DIC1 to missing data. DIC6 can be expressed as

DIC6 � Ex[−4Eθ{log π(y , x |θ)|y , x} + 2 log π(y , x |θ̂(y))|y]

where the estimate θ̂(y) is only based on the observed data and not the full

data x. In this DIC, the latent observer, despite having access to the full data,

bases his/her estimate on the observed data y only. This seems less rational than

in DIC4. DIC8 can be written as:

DIC8 � Ex[−4Eθ{log π(y |x , θ)|y , x} + 2 log π(y |x , θ̂(y , x))|y]

where the estimate θ̂(y , x) is based on the observed data and the full data x,
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but only the partial likelihood π(y |x , θ) of the observed data is used. Hence, the

focus of this DIC is on the model for y conditional on x. In some cases, DIC8 may

not have an appropriate focus, for example the case where the data x is observed

through an observation process, yielding the observed data y, such that themodel

can be expressed:

π(x , y |θ) � π(x |θ1) · π(y |x , θ2)

Where θ1 is the parameter vector for the dynamical model of x, and θ2 is the

parameter vector for the observation process, which gives the observed data y

from the full data x. In this case, since the aspect of the model that is of interest

is the dynamical model for x, it is clear that the focus of DIC_8 is inappropriate,

as its focus is on the observation model for y given x, π(y |x , θ2). In [111], as

well as using posterior predictive p-values, DIC8was used to assess the adequacy

of spatial kernels in models fitted to Giant Hogweed data. The models assessed

were SI models, which were fitted to snapshot data. This is an example of such a

model described earlier, with the SI model being the dynamical model for the full

data x, where θ1 is the parameter vector of the parameters for the SI model, and

observation model being parametrised by θ2, the probability at each snapshot of

reporting a site as colonised given that it has been colonised. Because of this,

DIC8 may not be the most appropriate choice of model comparison measure.

In summary, there are several properties of theDICwhichmake it attractive for

model comparison. The calculation of the DIC fits well into the data augmented

RJMCMC methods used to fit epidemic models, hence the calculation of the DIC

is farmore straightforward thanwith Bayes factors. This is primarily because only

onemodel needs to be fitted at one time, so complicated algorithms do not need to

beused to jumpbetween competing epidemicmodels – asmentioned earlier, when

comparing spatial kernels, a model in the sense of epidemic modelling is actually

a class of models in terms of RJMCMC and is not trivial to find an algorithm to

move between models. The motivation for the DIC is straightforward for simple

cases: the idea of parsimony in combination with the ability to explain the data,

is an intuitively natural way to rank models.
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However, there are several disadvantages to the DIC. The DIC for each model

is calculated conditioning on that model, so there is no unified single Bayesian

observer fromwhose perspective themodels are compared. Thismakes it difficult

to interpret the model rankings given by the DIC. In addition, with missing data,

the idea of "focus", which is straightforward with simple models, leads to many

different forms of DIC. In addition, since the posteriors of epidemic models are

often non-normal, it is not clear what should be used as an estimator for the

parameters. Different forms of theDIC lead to different rankings and it is not clear

which choice of DIC is optimal in any given situation. In addition to the points

above, [165] summarised the many criticisms of the DIC which occur even when

there is no unobserved data and the models are relatively simple: the DIC is not

invariant to re-parameterisation, that the underlying philosophy of the DIC does

not include the belief of a "true model" (making the results of such comparisons

difficult to interpret). TheDICwas created to assesswhether amodel can produce

replicate data consistent with the observed data, yet uses a point estimate instead

of the full posterior predictive distribution. The justification behind the DIC was

heuristic, and there is no rigorous theoretical justification behind the DIC.

3.3 Posterior predictive checking

Another approach to assessing model fit is to check the discrepancy between the

predictions made by the model and the observed data [78]. If a model is used

to create predictions, and if decisions are made based upon these predictions, it

is important that these predictions are realistic. A model may be "incorrect" as

long as it does not affect the predictions in any substantial way as far as decision-

making is concerned. In frequentist statistics, this can be done through the use

of a statistical test, which produces a p-value. In Bayesian statistics this is often

done by checking observed quantities against a reference distribution.

One method developed for checking observed data against a reference distri-

bution was proposed by [25], who proposed that the prior predictive distribution,

which does not require any data to be observed, to be used as a reference distri-
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bution:

π(y) �
∫
Θ

π(y |θ)π(θ) dθ

In his paper, Box stated "I believe that it is impossible logically to distinguish

between the model assumptions and the prior distribution of the parameters.

The model is the prior in the wide sense that it is a probability statement of

all assumptions currently to be tentatively entertained a priori. On this view,

traditional sampling theory was of course not free from assumptions of prior

knowledge.". By comparing the observed data using a "checking function", the

amount of discrepancy from themodel that has been assumed could be quantified,

and if it were over a certain level, the model would be deemed inadequate. A

natural choice of checking function is an analogue of the classical p-value:

p � P(T(yrep) ≥ T(y)) �
∫

P
(
T(yrep) > T(y)|θ

)
π(θ)dθ

where yrepis a replication of the data (data from a replicate experiment), and

T is a function known as a test statistic.

This is known as a prior predictive p-value. There are obvious downsides to this

approach, as for example, uninformative improper prior distributions cannot be

used. The results of a prior predictive check are heavily dependent on the prior

distribution that is chosen; the model π(y |θ) may be rejected because of poor

choices of prior.

Another method of checking model fit is the use of posterior predictive check-

ing, which uses the posterior predictive distribution π(yrep |y) [78, 157, 158]:

π(yrep |y) �
∫
Θ

π(yrep |θ, y)π(θ |y) dθ

�

∫
Θ

π(yrep |θ)π(θ |y) dθ
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where yrep represents the data from a replicate experiment generated under

the model. It is possible to use vague or improper priors for this method, as long

as the posterior distribution is proper. The central idea behind this method of

checking model fit is that the observed data y should not appear extreme when

benchmarked against the posterior predictive distribution π(yrep |y).

The simplest type of model checking which uses the posterior predictive dis-

tribution is a graphical check [58], which involves computing some summary

statistics from replicate data from the posterior predictive distribution and com-

paring that with the observed data graphically.

As with prior predictive checking, the statistical testing approach can be taken

as well. Observed data can be compared to data obtained from the posterior

predictive distribution via a checking function. A natural choice of checking

function would be [125, 60]:

p(y) � P(T(yrep) > T(y)|y)

�

∫
P

(
T(yrep) > T(y)|θ

)
π(θ |y)dθ

�

∫
p(T, y , θ)π(θ |y)dθ

where p(T, y , θ) � P
(
T(yrep) > T(y)|θ

)
. This checking function that is known

as the posterior predictive p-value, which is the posterior mean of the probability

of obtaining a test statistic greater than that with data generated under the current

model. This can be interpreted as the posterior expected value of p(T, y , θ), the

p-value of a classical test, that is, the posterior probability of obtaining a test

statistic more extreme than would be observed under the null hypothesis, where

the null hypothesismodel is the currentmodel. However, unlike the frequentist p-

value, the prior distribution of the posterior predictive p-value is less stochastically

variable than Unif(0, 1) [125]. This can also be seen using the law of total variance.
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y π(θ|y) π(p(T, y, θ)|y)

Figure 3.3.1: Diagram of interpretation of the posterior predictive p-value

Since:

Var(p) � Ey(Var(p |y)) + Vary(E(p |y))

then,

Vary(E(p |y)) � Var(p) − Ey(Var(p |y))︸          ︷︷          ︸
≥0

≤ Var(p)

Because of this, it is often better to look at the distribution of p(T, y , θ), which

can be interpreted as the posterior predictive distribution of the classical p-value.

This can be interpreted to obtaining a posterior distribution for the replicate data

given the observed data, and handing this over to an independent frequentist

observer who tests the fit of the model using a traditional frequentist test (see fig.

3.3.1).

There are several advantages to using posterior predictive p-values to test

model fit.

1. First of all, note that no specific alternative hypothesis is needed to be spe-

cified. Unlike Bayes factors and the DIC, which compare between models,

PPP-value can be used to assess model adequacy, in addition to the uses in

model comparison.

2. Vague or improper priors may be used as long as the posterior distribution

is proper. Bayes factors, as mentioned previously in section 3.1 on page 49,

can favour one model over another when vague priors are used, and cannot

be used when improper priors are used.

3. Theposterior predictive p-value is sensitive to the choice of prior distribution
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only to the extent that the posterior distribution is sensitive to the prior.

This is contrast to the pure Bayesian approach in which the posterior model

probabilities aremore sensitive to the parameter prior distributions than the

parameter posterior distributions (see section 3.1).

4. The calculation of posterior predictive p-values can be easily integrated

within MCMC. This is because the data are used to obtain both the value

of the test statistic and the posterior predictive distribution which is used to

calculate the tail probability.

5. Unlike the DIC, the posterior predictive p-value does not need selection of

a point-estimator for θ.

Hence, the specification of test statistic is of particular importance. In theory,

any test statistic can be used. But in practice, if the test statistic is not chosen

with care, the test will be unable to detect discrepancy with the null hypothesis.

For example, [45] considers a sample from a normal distribution with unknown

mean. An inappropriate choice of test statistic is the sample mean: in fitting

the model to the data, the location parameter posterior will have a large amount

of mass centred around the observed sample mean, and the posterior predictive

distribution will therefore generate replicate data with a sample mean close to the

observed sample mean. Hence, this test statistic is highly unlikely to detect any

discrepancy between the predicted data and the observed data, and is an inap-

propriate choice of test statistic. More formally (writing out the verbal description

in [45] in mathematical terms):

Example 13. Suppose that Y � (Y1,Y2, . . . ,Yn) is an i.i.d. random sample. Sup-

pose themodel that is fitted to this data is Yi i.i.d. with Yi ∼ N(θ, σ2), θ unknown,

σ2 known. Suppose that a non-informative prior is used for θ, θ ∼ N(µ0, σ2
0)

where µ0 and σ2
0 are specified.
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The posterior distribution obtained is

θ |y ∼ N(µ1, σ
2
1)

where σ2
1 �

(
1
σ2

0
+

n
σ2

)−1

µ1 � σ2
1

(
µ0

σ2
0
+

n
σ2 ȳ

)
Consider the case when T(yrep) � ȳrep . The posterior predictive distribution

for this discrepancy statistic is:

Ȳrep |θ ∼ N(θ, σ
2

n
)

⇒ Ȳrep |y ∼ N(µ1, σ
2
1 +

σ2

n
)

and thus the posterior predictive p-value is:

Pr(Ȳrep ≥ ȳ |y) � 1 −Φ
(

ȳ − µ1

σ2
1 +

σ2

n

)
Consider the case where there is little prior information,

As σ2
0 →∞,

σ2
1 �

(
1
σ2

0
+

n
σ2

)−1

→ σ2

n

µ1 � σ2
1

(
µ0

σ2
0
+

n
σ2 ȳ

)
→ ȳ

Thus,

Pr(Ȳrep ≥ ȳ |y) � 1 −Φ
(

ȳ − µ1

σ2
1 +

σ2

n

)
→ 1 −Φ (0) � 0.5
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This can be interpreted as the following: as the amount of prior information

decreases, the discrepancy statistic can never find discrepancy between the data

and the model. This is unsatisfactory.

However, one can choose instead a test statistic which quantifies discrepancy

in regards to the variance, skewness or kurtosis of the observed data versus the

replicated data. The reason why using the sample mean in this example cannot

detect model mis-specification is that the data needs to be used twice, once to

obtain the posterior distribution and again to obtain the tail probability. This

leads to a reinforcement phenomenon, where the test tends to favour H0 if the

discrepancy measure is not chosen well.

As well as selecting a more appropriate choice of test statistic, there has been

research on transforming the data (stripping the data of information) to lessen the

double use of the data. In [14] the authors propose a conditional posterior predict-

ive p-value as an alternative to the posterior predictive p-value. The conditional

posterior predictive value is calculated in the following way:

1. Select a function U such that U(X) and T(X) share as little information as

possible. Let the transformed observed data be denoted u � U(y).

2. Calculate t � T(x)

3. Evaluate π(θ |u) ∝ π(u |θ)π(θ) to obtain π(θ |u)

4. The conditional posterior predictive p-value is:

pcpred(y) �
∫

P (T rep > t |θ) π(θ |u)dθ

It appears straightforward to extend conditional posterior predictive p-values

to models where data augmentation is used and also to include the use of dis-

crepancy variables, by integrating over x and θ given y. However, it is difficult

to choose a suitable U, and the posterior distribution π(θ |u)may only be obtain-

able through MCMC. In addition, it may be only possible to obtain P (T rep > t |θ)

throughMonte-Carlomethods. NestedMonte-Carlo (Monte-CarlowithinMonte-

Carlo) greatly increases the computational burden and makes this approach of

model assessment difficult to implement in practice.
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Within the field of epidemic modelling, there have been several examples of

posterior predictive testing using posterior predictive p-values for epidemiolo-

gical data. In several papers, disease progress curves have been used for T(y), for

example to test the adequacy of spatio-temporal models for the Huanglongbing

(HLB) virus in citrus plants in [145]. Such disease progress curves involve the

predicted number of infectives at the times where such observations exist. If the

number of infectives is not observed, for example in removal only data, the pre-

dicted number of removals at times where such observations exist can be used.

In this approach, observed disease progress curves are compared to an envelope

of progress curves drawn from the predictive distribution. Another approach is

to check the event times for the kth individual, as in [26], where the kth removal

time is checked various k, where the model that was fitted uses a step function to

model the inhomogeneous removal rate.

Several papers have taken the approach of using a T(y) which is a correlation

function or a spatial autocorrelation function. For example, in [145], the authors

calculate the spatial correlation using a two point correlation function; a modified

version of Moran’s I statistic for presence and absence data, with a weighting

function which is equal to the Euclidean distance between the two points if this

distance is in between two specified radii. The spatial autocorrelation was plotted

for 100 simulations from each model and compared to the actual observed two

point correlation. In [134] a spatial autocorrelation function is used, where a

spline correlogramwas used as a non-parametric estimator for the autocorrelation

function, which was fitted to the observed data.

These test statistics succeed in quantifying the discrepancy in such a way that

tests are able to detect model mis-specification if it exists. However, it is important

that test statistics must quantifying discrepancy that is relevant. Since disease

models are oftenused in the selecting the control strategy, for example ring culling,

it is of prime concern that the model is capable of predicting which individuals

are most at risk of being infected next. Using disease progress curves as test

statistics can identify model mis-specification regarding the predicted numbers
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of infections at each time, but it does not directlymeasuremodelmis-specification

with regards to spatial interactions in the transmission process.

In [182], a paper on model fit for the models for foot-and-mouth disease that

were used in [100] used measures of model mis-specification that emphasised

accuracy of predictions from these models. Several measures of model fit were

formulated which compare the predicted states against the observed states at

some future time. The authors use amatrix of the number of hosts in the observed

versus predicted states averaged over multiple realisations of the data from the

fitted model. This matrix is used in calculating these measures of discrepancy.

Whilst the framework for model fitting was frequentist, these methods can be

easily adapted to the Bayesian approach of using posterior predictive p-values,

with the multiple realisations from the fitted model being replaced by draws of

replicate data from the posterior predictive distribution.

From these examples, it can be concluded that posterior predictive checking

can be successfully used in determining model fit in the absence of specifying an

alternative model whilst targeting aspects of mis-specification which are relevant

to the problem, such as determining the control measures, or prior hypotheses

regarding model mis-specification. However, as noted in [69], with the use of low

dimensional test statistics, there is a risk of oversimplifying what is inherently

a complex phenomenon. Whilst easy to interpret, the attempts to reduce the

quantification of mis-specification to a single value may reduce the power of

posterior predictive tests [69]. Several tests have been developed to increase

sensitivity of the tests to mis-specification by using more complex measures to

quantify model mis-specification.

3.3.1 Discrepancy measures and posterior predictive checking

These tests use a generalisation of the test statistic by using test statistics which are

functions of the parameters, which are called discrepancy measures [125, 60]. This

idea is analogous to the Z-test of the mean of a normal distribution with known

variance σ2. The test statistic is both a function of the observed data y and the
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parameter σ2.

More formally, the posterior predictive p-value of a discrepancy measure

T(x , θ) is expressed as:

p(y) �
∫

P (T(xrep , θ) > T(x , θ)|x , θ) π(x , θ |y)dx dθ

For example, consider the model for Y where y is an i.i.d. sample of size n

from N(µ, σ) , the discrepancy measure ȳ−µ√
σ2
n

would be a logical choice.

3.3.2 Test Statistic ConstructionUsing Latent Residuals Through

the Functional Model Representation of Epidemic Models

Amethod of creating test statistics for epidemicmodelswhere there is unobserved

data uses what can be called latent residuals. Test statistics can be created for

epidemic models by the use of what is known as latent residuals. The concept

of latent residuals is based on the ideas of functional-model representations put

forward by [41], and the ideas of a generalised residuals put forward by [39],

applied to epidemic model checking. Constructing tests based on latent residuals

allows the development of tests oriented at detecting specific aspects of mis-

specification.

The construction of latent residuals is based on the following reasoning: Con-

sider set of themodelsπ(y , r1 |θ), π(y , r2 |θ), π(y , r3 |θ) . . .whichall share the same

marginal model π(y |θ) and prior π(θ), where r1, r2, r2 . . . are different choices of

latent (or unobserved) process. The observed data y do not contain the inform-

ation about the model adequacy of each model in the set relative to the other

models in the set. Thus, evidence against one model in the set is evidence against

all models in the set. Thus, the adequacy of the model can be evaluated by choos-

ing a latent process (with marginal model π(y |θ)) of known distribution given

the fitted model.

Definition 14 (Latent Residual). Consider a function hθ such that the data (in-

cluding both the observed and unobserved data) x � hθ(r) . The function hθ(x)
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can be specified to be any invertible function as desired as long as the marginal

model remains the same, and the distribution of r is known under the assumed

model. The vector r can be treated as a vector of latent residuals and it is used

to detect mis-specification of the epidemic model in way analogous to how the

residuals from a fitting of a linearmodel can be used to diagnosemis-specification

of a linear model.

Since the distribution of r is known under the assumed model, one can

test the model adequacy of model π(y , r |θ), and thus all models in the set{
π(y , r |θ)|π(y , r |θ) has marginal model π(y |θ)

}
, and thus the model adequacy

of π(y |θ):

1. Choose r such that:

(a) The marginal model of π(y , r |θ) is π(y |θ).

(b) The distribution of r, π(r), is known under the assumed model

2. Choose a discrepancy statistic T(r). T(r) should be a discrepancy measure

between r and its known distribution π(r).

3. Sample from posterior distribution π(θ, r |y).

4. From each sample (θ, r), calculate p(T, r), the latent p-value of the imputed

r, using discrepancy measure T (specified earlier), for each sample.

5. The sample mean of the samples of the latent p-value, obtained in the pre-

vious step, is a Monte-Carlo estimate of the posterior predictive p-value.

This approachwas first used in [66] where the approachwas used to assess model

fit of an SImodel fit to data of a fungal pathogen known as R. Solani in radish. The

Sellke thresholds [161] of each individual post were used as residuals to assess

model fit of this spatio-temporal model. The consistency of the residuals with an

exponential distribution was tested using the Kolmogorov-Smirnov test. That is,

given the snapshot data, the infection times of each individual post was imputed,

and from this the Sellke thresholds were imputed and used as latent residuals, to
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”Complete” data x = h(r̃, θ)

r̃j ∼ Unif(0, 1) θ ∼ π(θ)

Observation y = g(x)

Figure 3.3.2: Diagram of the latent residuals framework

impute the results of a Kolmogorov-Smirnov test. This yielded a distribution of

p-values which were used to detect mis-specification of the model.

The paper [111] extended this approach, with a focus on determining the

adequacy of the spatial kernel used in eachmodel, with simulated and real-world

data. Four sets of latent residuals r̃ � (r̃1, r̃2, r̃3, r̃4) were used, where each r̃ j ,

j � 1, 2, 3, 4 determines a different aspect of the epidemic process. Each r̃ j is a

vector of indeterminate length. Under the assumedmodel each of these residuals

would be a vector of i.i.d. Unif(0, 1) random variables.

The kth element in the vector r̃1k is the total infectious challenge over all sus-

ceptibles at time tk (population level Sellke threshold) which determines the time

of the kth exposure event. The residuals r̃2k determine the infection link (determ-

ines which susceptible became infected due to contact with which infective). r̃3k

gives the quantile of E to I sojourn time. r̃4k gives the quantile of I to R sojourn

time.

This separates the information in the data into various components which

could be tested individually (see fig. 3.3.2), allowing the construction of tests

targeted at distinct aspects of the epidemic process through the consideration of

the processes r̃ j , j � 1, 2, 3, 4. Of particular interest are the infection link residuals

r̃2k , which determinewhich I-S pair are responsible for each exposure, whichwere

found to be particularly effective at detecting mis-specification of spatial kernel:

Definition 15 (Infection Link Residual). The infection link residual r̃2k determines

the S-I pair responsible for the kth exposure event according to the following:
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Let the kth exposure event be between hosts i and j with probability pi j ∝

βK(xi , x j , κ). Primary infection is treated as infection from a notional infector

with force of infection α.

For all m ∈ S(tk) and n ∈ I(tk), let pmn ∝ βK(xm , xn , κ).

Let the pmn be ordered such that p(1) ≤ p(2) ≤ p(3) ≤ p(4) ≤ . . . .

Let s′ be such that p(s′) � pi j .

The infection link residual of the kth exposure r̃2k satisfies the following equa-

tion:

inf

{
s | r̃2k <

s∑
l�1

p(l)

}
� s′

Hence, the Infection Link Residual can be used to check model adequacy as

follows:

1. Choose r to be r̃2k :

(a) The marginal model of π(y , r̃2k |θ) is π(y |θ).

(b) The distribution of r, π(r̃2k), is known under the assumed model to be

Unif(0, 1)

2. Choose a discrepancy statistic T(r). T(r) tests that r̃2k is a sequence of

Unif(0, 1) random variables.

3. Sample from posterior distribution π(θ, r̃2k |y).

(a) This cannot be performed directly, so instead, since RJMCMC can

be used to sample from π(θ, x |y), sample fromπ(θ, x |y) and impute

(θ, r̃2k) from (θ, x) (described below).

4. From each sample (θ, r̃2k), calculate p(T, r̃2k), the latent p-value of the im-

puted r, using discrepancy measure T (specified earlier), for each sample.

5. The sample mean of the samples of the latent p-value, obtained in the pre-

vious step, is a Monte-Carlo estimate of the posterior predictive p-value.
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r̃2j

Figure 3.3.3: Diagram of final stage of algorithm to impute the ILR for the kth infected individual

The infection link residual test is embedded within the RJMCMC and imputed

using the following algorithm:

1. The infection link for the kth exposure between individuals i and j is chosen

with probability pi j from the possible links at time tk .

2. The infection links are then ordered and the ranking s′ of pi j is determined.

3. Generate a random deviate from Unif(∑s′−1
l�1 p(l),

∑s′
l�1 p(l)). This is the im-

puted infection link residual for the kth exposure (fig. 3.3.3).

Since this test will be extended as part of this thesis, it would be valuable to

elaborate further as to the rationale behind the reason for ordering the links

by size: as described in the supplementary material for the paper [111], the

motivation for this choice of the infection link residual (ILR) as a test statistic for

detecting mis-specification of spatial kernel can be seen in fig. 3.3.4. Suppose the

actual kernel that the data has been generated from is Kactual(κ, d) and the kernel

that has been fitted to the data is K f itted(κ, d). Since the actual kernel is longer

tailed than would be expected under the fitted model, the infection links will

have a tendency to be too small, thus r̃2k would be non-uniform, and discrepancy

from the null hypothesis can be detected by using a test of uniformity, e.g. the

Anderson-Darling test for uniformity.
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d

f(d)

f(d) = Kfitted(κ, d)

f(d) = Kactual(κ, d)

Figure 3.3.4: Diagram of motivation for the infection link residual (ILR) r̃2k

3.3.3 Latent Likelihood-based Tests for Epidemic Models

The posterior predictive testing framework allows the construction of tests which

can be used to compare two competing models. This type of tests can be useful in

certain circumstances, such as when comparing twomodels with different spatial

kernels (as opposed to assessing the adequacy of a spatial kernel of a model). In

addition, the use of alternative model may potentially make the test more able to

detect differences from the null hypothesis than a test that has no fixed model to

compare against.

A natural way to do this is by embedding the likelihood ratio test within the

posterior predictive testing framework. Suppose we are interested in two models

M1 and M2 with parameter vectors θ and θ′ respectively. Let π1(x |θ) be the

likelihood of θ under model M1, and let π2(x |θ′) be the likelihood of θ′ under

model M2. Let θ̂′(x) be the maximum likelihood estimate of θ′ given x, obtained

by maximising π2(x |θ′).

Thus, we can compare M1and M2 by sampling fromπ(θ, x |y ,M1) and calculat-

ing from these samples P (T(xrep , θ) > T(x , θ)|x , θ) � p(x , T, θ), where T(x , θ) �
π1(x |θ)

π2(x |θ̂′(x))
. If there is a large amount of posterior support for the p-value being

small, this indicates a high amount of discrepancy from the null hypothesis.

Whilst thismethod compares twomodels, it has the benefit that it avoids fitting

twomodels to the data, only fitting the firstmodel. The p-value can be obtained by

asymptotic approximations if the models are nested. If the models are non-nested

the p-value can be calculated by using a nestedMonte Carlo algorithm embedded

within the data-augmented RJMCMC:

1. Every K RJMCMC iterations, perform the following steps (where i is the
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current MCMC iteration, x(i) � (y , z(i)) and θ(i) are the current value of the

full data and the parameters θ at MCMC iteration i):

(a) Calculate T(x(i), θ(i)) � π1(x(i) |θ(i))
π2(x(i) |θ̂′(x(i)))

where θ̂′(x(i)) is the value of the

maximum-likelihood estimate of θ′ given x(i)

(b) To estimate the p-value via Monte-Carlo, for n times:

i. Generate a new data set x∗under H0 given θ(i)

ii. Calculate T(x∗, θ(i)) � π1(x∗ |θ(i))
π2(x∗ |θ̂′(x∗))

(c) The estimate of the p-value is p̂ �
Count(T(x∗ ,θ(i))>T(x(i) ,θ(i)))

n

All the models considered in this thesis M1 and M2 will share a common latent

process. When this is not the case it may nevertheless be possible to compare

models by creating a common latent process [67].

Note that this method is essentially the same as a posterior predictive test con-

ditioning on M1 of the AIC difference between the two models, as the parameter

difference between the models is a fixed constant. In contrast with the DIC, since

the test is embedded within the posterior predictive framework, there is an uni-

fied Bayesian perspective from which the latent AIC of both models is calculated,

making the results of such tests easier to interpret. The DICs of two competing

models are calculated given each model alone, but there is no DIC calculated

conditioning on the other model, so the models are never compared from one

single perspective, unlike the latent likelihood ratio test.

In [173] this was the method used to compare models with exponential Sellke

thresholds versus models with Weibull Sellke thresholds. This paper demon-

strates that the latent likelihood ratio testing method is capable of selecting the

correct model, through the use of simulated data to test the effectiveness of this

model comparison method.
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3.4 Our contributions to model comparison and criti-

cism

In subsequent chapters we will build on the approaches of Section 3.3 by focusing

on the following challenges:

1. Likelihood based tests statistics for model comparison (vs. model selection),

with an emphasis on spatial kernel assessment.

2. Latent residual based test-statistics for detection of anisotropy in spatial

kernels.

3. Massively parallel algorithms for the calculation of the likelihood and ILR

test, allowing the model fitting and model assessment techniques detailed

in this thesis to be applied to large or complex data-sets.

3.4.1 Likelihood based test statistics for model comparison and

detection of anisotropy

Since the latent likelihood ratio test is able to select the correctmodel in the context

of non-spatio-temporal epidemics, the next logical step would be to determine its

effectiveness in comparing spatio-temporal models. In such models the spatial

kernel is crucial in determining the control measure to be taken against an epi-

demic, for example determining the culling radius in a ring culling strategy, it

is crucial that such test statistics are able to select the correct spatial kernel out

of two competing spatial kernels. A test statistic that will be investigated in this

thesis is the likelihood ratio test statistic with the full likelihood:

T(x , θ) � π1(x |θ)
π2(x |θ̂(x))

where π1(x |θ) is the likelihood under model 1, π1(x |θ) is the likelihood under

model 2, and θ̂(x) is the maximum-likelihood estimator of θ.

This thesis aims to evaluate its effectiveness in relation to the infection link

residual test statistic described in earlier sections from [111]. Model reinforcement

can lead to a loss of power of the test so therefore it may be wise to also consider
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the likelihood ratio test with the partial likelihood. By limiting the amount of

imputed information in the test statistic it may be possible to lower the amount of

model reinforcement that occurs. In previouswork, it was found that the infection

link residuals test, which uses the sets of potential infectors at each infection time,

but not the infection times themselves was found to be an effective test of model

adequacy. In this vein, the partial likelihood used will be:

lpartial(θ; tE , x) �

∑
{i |tE(xi)≤T}

log


C(xi , t
(i)
E )∑

{ j |x j∈S(t(i)E )}
C(x j , t

(i)
E )


where: C(x , t) � α + β

∑
y∈I(t)

K(x, y, θ)

K(x, y, θ) � Transmission Kernel

This partial likelihood can be interpreted as: for each S → E transition i, the

likelihood that particular i got infected given the S and I hosts at time of infection.

This can also be seen as similar to the Cox partial likelihood for survival models.

This partial likelihood was used by [46] for model fitting (but not assessment of

model fit). This thesis aims to determine the effectiveness of this test statistic, in

addition to that of the full latent likelihood ratio statistic and the infection link

residual test statistic.

3.4.2 Latent residual based test-statistics for detection of aniso-

tropy

As stated earlier it is important to focus on aspects of mis-specification which are

most pertinent to the purposes that the model will be put. In many situations it

is important to test the assumption that the kernel is isotropic. Using the idea

of latent residuals we can devise a test statistic for testing for the presence of

anisotropy, extending previous work on latent residual tests (see [111]):

Definition 16 (Directional Infection link residuals). Suppose that host j is infected

by infectious host i and that this is the kth exposure event. The infection link
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residual for this infection time is defined by the following:

Let the kth exposure event be between hosts i and j with probability pi j ∝

βK(xi , x j , κ). Primary infection is treated as infection from a notional infector

with force of infection α.

For all m ∈ S(tk) and n ∈ I(tk), let pmn ∝ βK(xm , xn , κ).

Order the pmn such that p(1), p(2), p(3), p(4), . . . is ordered by the cosine of the

angle between the infection link and the vector (1, 1).

Let s′ be such that p(s′) � pi j .

The infection link residual of the kth exposure r̃2k satisfies the following equa-

tion:

inf

{
s | r̃2k <

s∑
l�1

p(l)

}
� s′

We also used an alternate versionwhere p(1), p(2), p(3), p(4), . . . is ordered by the

angle between the infection link and the vector (1, 1).

This test statistic is based on the ILR test statistic mentioned above but it has

been extended to testing for anisotropy by ordering the links by angle or the cosine

of the angle instead of the size of the infection links. The latent likelihood ratio

test statistics detailed above can also be used to test for anisotropy, as long as the

form of the anisotropic kernel to be tested against is known, and therefore can

only be used to compare models with specific anisotropy. In addition, the latent

likelihood ratio test can be used to test between different anisotropic kernels.

80



Chapter 4

Latent Likelihood Tests for Epidemic

Models

4.1 Introduction

In this chapter, the ability of the infection link residuals (ILR) and latent likelihood

ratio tests (LLR) to detect mis-specification of spatial transmission kernel will be

compared using simulated data. Both forms of the LLR tests will be used: one

using the full likelihood, and one using a partial likelihood which only uses

information about the order of infections (not the actual infection times). The

analysis performed in this chapter consists of initial exploratory runs to determine

general trends, and then further runs to verify these trends hold over a variety of

datasets. The datasets that will be used are simulated data, which are generated

with known parameters, model and spatial kernel. In order to compare the ability

of the aforementioned tests to detect discrepancy between the fitted model and

data, the model fitted to the data will use a spatial kernel different to the kernel

used in the model that the data was generated from.
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4.2 Methodology

4.2.1 Generation of Simulated Data

The data were generated using the Gillespie-based algorithm described in Section

2.2. The model used to generate the data is the model described in Section 2.1 on

page 11, an SEIR model consisting of states: Susceptible S, Exposed E, infectious

I and Removed R. Members of the population transition from S to E to I to R,

and the transition is only in one direction, that is, there are no transitions in the

reverse direction. Hosts in state I can infect hosts in state S which then transition

to state E upon infection. When hosts transition to state R they cannot transition

any further and are no longer infectious.

The force of infection is given by:

C(x , t) � α + β
∑

y∈I(t)
K(x , y , κ)

where K(x , y , κ) is the transmission kernel, α is the primary infection rate, and

β is the secondary infection rate.

The distributions of the waiting times for states E and I are gamma distri-

butions, parametrised by their means µE , µI and variances σ2
E , σ

2
I . In a setting

analogous to that in the paper [111], the transition times into state E are not ob-

served but transition times into state I and R during the time interval [0, T] are

observed. The hosts are uniformly distributed over a square region.

4.2.2 Likelihood

As in 2.2.5, in Section 2.2.2 on page 14 the likelihood can be expressed in the form:
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L(α, β, κ, µE , σ
2
E , µI , σ

2
I |x) ∝

©­­«
∏

i;t(i)E ≤T

exp

[
−

∫ t(i)E

0
C(xi , t) dt

]
· C(xi , t

(i)
E )

ª®®¬ ·©­­«
∏

i;t(i)E >T

exp
[
−

∫ T

0
C(xi , t) dt

]ª®®¬ ·
©­­«

∏
i;t(i)I ≤T

fE(t(i)I − t(i)E ; µE , σE)
ª®®¬ ·©­­«

∏
i;t(i)I >T>t(i)E

(
1 − FE(T − t(i)E ; µE , σE)

)ª®®¬ ·
©­­«

∏
i;t(i)R ≤T

fI(t(i)R − t(i)I ; µI , σ
2
I )
ª®®¬ ·©­­«

∏
i;t(i)R >T>t(i)I

(
1 − FI(T − t(i)I ; µI , σ

2
I )
)ª®®¬ .

The likelihood function, which is key to the iterative calculation of all the es-

timates in this chapter is often extremely computationally intensive to calculate.

Algorithms have been derived in this thesis to parallelise these calculations in

such a way that the graphics processor (which is normally used for matrix calcu-

lations for the real-time generation of 3D graphics) of the computer can be used to

accelerate the calculation process. These algorithms will be detailed later in the

thesis.

4.2.3 Prior Specification

A Unif(0,M) uniform prior was used for α, µE , σ2
E , µE , σ2

E, where M ≈ 1.7 × 10308

is the computer limit for double precision floating point numbers in C++.

The prior distributions used for the other parameters were:

β ∼ Γ(µ � 1, σ2
� 100)

κ ∼ Γ(µ � 1, σ2
� 100)

4.2.4 Calculation of the Posterior Expected Imputed P-Value

The process for the computation of the expected posterior imputed p-value is

embedded within the data augmented MCMC (a special case of RJMCMC, and is
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sometimes referred to herein as RJMCMC) that was described in Section 2.3.3 on

page 34.

4.2.4.1 Data Augmented MCMC

Recall that in Section 2.3.3, the algorithm used for data augmentedMCMC (some-

times referred as RJMCMC herein; DAMCMC is a special case of RJMCMC) is:

For each iteration, the following process is repeated:

1. Let the current state of the algorithm at time k � 0, 1, 2, . . . be denoted by

(θ(k), z(k)) where θ(k) � (α(k), β(k), κ(k), µ(k)E , σ2(k)
E , µ(k)I , σ2(k)

I ) and the times of

transition into the exposed state be denoted by z(k) � z(k)1 , z(k)2 , . . . , z(k)N where

N is the number of hosts where N is fixed (and hence the length of z(k) is

fixed).

2. Using the Metropolis-Hastings algorithm, update each of the parameters in

the parameter vector individually. That is, for each parameter φ(k) in θ(k):

(a) Draw a proposal value φ′ from the proposal distribution q(φ′|φ(k)).

(b) Calculate the probability of acceptance α. Let θ∗ be θt with φ(k) re-

placed by φ′:

α � min

(
1,

π(θ∗ |z(k), y) · q(φ′|φ(k))
π(θ(k) |z(k), y) · q(φ(k) |φ′)

)

(c) With probability α, set θ(k+1)
� θ∗, otherwise set θ(k+1)

� θ(k).

3. For each data item z(k)i in z(k):

(a) if t(i)I < T set move type to Standard.

(b) else :

i. if z(k)i does not fall within [0, T] set move type to Addition

ii. else set move type to Shift or Deletionwith probability 1
2

(c) if move type is Standard, Addition or Shift: Generate proposal z(k)∗i ∼

Unif(0, T)
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(d) else set proposed value of z(k)∗i to be outside [0, T]

(e) ifmove type is Standard or Shift set ν � 1

(f) else if move type is Addition ν �
T
2

(g) else ifmove type is Deletion set ν �
2
T

(h) Set z∗ � z(k)1 , . . . , z(k)∗i , . . . , z(k)N . Then the acceptance probability α is

given by:

α � min

(
1,

π(θ(k) |z∗, y)
π(θ(k) |z(k), y)

· ν
)

(i) With probability α, set z(k+1) � z∗ otherwise z(k+1) � z(k)

The above algorithm is modified to make it more efficient, by using an independ-

ence sampler for the proposal distributions for zi for the cases where Ii < T. Thus,

in this case the proposal distribution and acceptance ratio (for the Standardmoves

in Step 3 above) is [140, 107]:

q(Ii − zi , Ii − z∗i ) ≡ Gamma(µI , σ
2
I )

α � min

(
1,

π(θ(k) |z∗, y)
π(θ(k) |z(k), y)

·
q(z∗ |z(k))
q(z(k) |z∗)

)
for the cases where it is known that Ii < T.

4.2.4.2 Embedding the Tests within DAMCMC

To embed the tests within the data augmented MCMC, the following steps were

added to the algorithm above as an extra step:

4. If k mod K � 0 where K is a positive integral value chosen by the user,

calculate the test statistic(s).

5. From each test statistic, calculate its p-value and store the p-value obtained.
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The following sections describe the calculation of the test statistics and their

relevant p-values based upon the full data x which includes both the observed

data y and imputed data z.

4.2.4.3 Infection Link Residuals (ILR) Test Statistic and Imputed P-Value Cal-

culation

4.2.4.3.1 Calculation ofTest Statistic As introduced in Section 3.3.2 onpage 73,

and the paper [111], recall that the definition of the infection link residuals (ILR)

test is:

Definition 17 (Infection Link Residual). The infection link residual r̃2k determines

the S-I pair responsible for the kth exposure event according to the following:

Let the kth exposure event be between hosts i and j with probability pi j ∝

βK(xi , x j , κ). Primary infection is treated as infection from a notional infector

with force of infection α.

For all m ∈ S(tk) and n ∈ I(tk), let pmn ∝ βK(xm , xn , κ).

Let the pmn be ordered such that p(1) ≤ p(2) ≤ p(3) ≤ p(4) ≤ . . . .

Let s′ be such that p(s′) � pi j .

The infection link residual of the kth exposure r̃2k satisfies the following equa-

tion:

inf

{
s | r̃2k <

s∑
l�1

p(l)

}
� s′

The infection link residual test is embedded with the RJMCMC and calculated

by the following algorithm (as mentioned in Section 3.3.2 on page 75, from [111]):

1. The infection link for the kth exposure between individuals i and j is chosen

with probability pi j from the possible links at time tk . Primary infection

is treated as being an infection caused by a notional infector with force of

infection α.

2. The infection links are then ordered and the ranking s′ of pi j is determined.
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3. Generate a random deviate from Unif(∑s′−1
l�1 p(l),

∑s′
l�1 p(l)). This is the im-

puted infection link residual for the kth exposure.

4.2.4.3.2 Calculation of Imputed P-Value The p-value is calculated using the

Anderson-Darling test [7]. This is a frequentist test of the hypotheses:

H0 :The data has cumulative distribution function F(x)

HA :The data does not have cumulative distribution function F(x)

The data for this test is a random sample denoted {X1,X2, . . . ,Xn}

Let the empirical distribution function be defined as:

Fn(x) �
number of X1,X2 . . . ,Xn that are ≤ x

n

The test statistic is defined as:

An � −n − 1
n

n∑
i�1
(2i − 1) [ln F(Xi) + ln(1 − F(Xn+1−i))] (4.2.1)

The Anderson-Darling test statistic can be expressed in another form, which

shows that it is the integral of theweighted squared difference between the empir-

ical distribution function and the hypothesised distribution function, multiplied

by a weighting with weight concentrated towards the tails of the distribution.

An � n
∫ 1

0

[Fn(x) − F(x)]2

F(x)(1 − F(x)) dF(x) (4.2.2)

This makes the Anderson-Darling test more able to detect discrepancy between

the hypothesised distribution and the data and the tails of the distribution than

the Kolmogorov-Smirnov test which is more commonly used.

To obtain the test statistic in Equation 4.2.1, use partial fractions on Equation

4.2.2:
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An � n
(∫ 1

0

[Fn(x) − F(x)]2

F(x) dF(x) +
∫ 1

0

[Fn(x) − F(x)]2

(1 − F(x)) dF(x)
)

(4.2.3)

Since the empirical CDF Fn(x) is a step function, it is straightforward to obtain

the test statistic given in Equation 4.2.1.

In this case F(x) is a uniform cdf between 0 and 1, the hypotheses and test

statistics simplify to:

H0 :The data has cumulative distribution function x

HA :The data does not have cumulative distribution function x

The test statistic is simplified to:

An � −n − 1
n

n∑
i�1
(2i − 1) [ln Xi + ln(1 − Xn+1−i)] (4.2.4)

Regarding the derivation of the test statistic, start with:

An � n
∫ 1

0

[Fn(x) − x]2

x(1 − x) dx

Use partial fractions on the integral to obtain:

An � n
(∫ 1

0

[Fn(x) − x]2
x

dx +

∫ 1

0

[Fn(x) − x]2

(1 − x) dx
)

Since the empirical distribution function Fn(x) of the data is a step function, it

is straightforward to integrate and simplify to obtain the test statistic in Equation

4.2.4.

The Anderson-Darling test is performed upon the infection link residuals that

are obtained through the algorithm described on page 86.
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4.2.4.4 Latent Likelihood Ratio Test (LLR) Test Statistic and Imputed P-Value

Calculation

4.2.4.4.1 Full Likelihood LLRT Recall that the test statistic used for the full

likelihood latent likelihood residual test (LLRT), given in Section 3.4.1 on page 78,

is:

T(x , θ) � L1(θ; x)
L2(θ̂(x); x)

where L1(θ; x) is the likelihood under model 1, L2(θ; x) is the likelihood under

model 2, and θ̂(x) is the maximum-likelihood estimator of θ.

4.2.4.4.2 Partial likelihood LLRT Recall that the test statistic used for the

partial-likelihood latent likelihood residual test (Partial LLRT), given in Sec-

tion 3.4.1 on page 78, is defined as the following:

Lpartial(θ; x) �

∏
{i |tE(xi)≤T}

C(xi , t
(i)
E )∑

{ j |x j∈S(t(i)E )}
C(x j , t

(i)
E )

where: C(x , t) � α + β
∑

y∈I(t)
K(x, y, θ)

K(x, y, θ) � Transmission Kernel

Tpartial(x , θ) �
L1,partial(θ; x)

L2,partial(θ̂(x); x)

where L1,partial(θ; x) is the likelihood under model 1, L2,partial(θ; x) is the likeli-

hood under model 2, and θ̂(x) is the maximum-likelihood estimator of θ.

4.2.4.4.3 Calculation of the Imputed P-Value Without loss of generality, sup-

pose the test statistic used is T(x , θ) (the same method is used for Tpartial(x , θ),

except T(x , θ) is replaced in the following steps with Tpartial(x , θ)).

1. Calculate T(x , θ)

2. For ntest times
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(a) Generate new data-set x∗ under the fitted model given θ(k)

(b) Evaluate T′(θ(k); x∗)

3. Store p̂ �
Count(T′(θ(k);x∗)>T(θ(k);,x))

ntest

In practice, it is only practical to have ntest set to 1, as this process takes a large

amount of time (data-regeneration, and maximum-likelihood estimation take a

relatively large amount of time). Under different values of ntest , many different

distributions of p̂ will be obtained, however, the average of overallMCMCsamples

of p̂ will converge to the expectation of posterior latent p-value regardless of the

value of ntest . In this thesis, this expected value is used to summarise the whole

the distribution because of computing power constraints.

4.3 Exploratory runs

4.3.1 Methodology

Computer runswere performed to investigate the ability of themodel comparison

methods (detailed above) to detect the mis-specification of spatial kernel. See

table 4.2 for results. The data were generated from an exponential kernel with

the parameters in Table 4.1 and the Reversible Jump MCMC algorithm was run

on this simulated data. This is to test the sensitivity of the model comparison

methods when a mis-specification of the kernel is present. The test’s ability to

detect discrepancy between the fitted model and the data with different amounts

of data was performed by truncating the data at different end times T such that

the proportion of infectious individuals was a given percentage.

The model that was fitted to the data had a different kernel: the kernels fitted

to the simulated data were the Gaussian kernel,

exp
{
−κd2}

Cauchy kernel

(1 + d/κ)−1
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Parameter Value
α 0.001
β 3.000
κ 0.030
µE 5.000
σ2

E 2.500
µI 1.772
σ2

I 0.858

Table 4.1: Parameter values used for data generation in the exploratory runs.

and power law kernel

(1 + dκ)−1

Since one of the most important aspects of a spatial kernel is its tail length, the

Gaussian kernel, Cauchy kernel, and power law kernel have been chosen as they

have different tail lengths. These kernels were chosen to be fit to the simulated

data as they allow the comparison of how the sensitivity of each of the tests is

affected by the different tail length of the fitted kernel, versus the tail length of the

actual kernel. The Gaussian kernel is similar in tail-length to that of the actual

kernel that the data is generated from, the exponential kernel (theGaussian kernel

is exponentially bounded). The power law and Cauchy kernel are quite different

from the exponential kernel in tail-length. Fitting these kernels to the data allows

us to see the relative sensitivity of each test with regards to how different the

spatial kernel fitted to data is versus the actual kernel that the data was generated

from.

RJMCMCwas used to obtain estimates of the posterior distributions. A burn-

in of 1 million parameter iterations was used. The runs took between 6 or seven

hours to complete on a HP Z420 workstation with a NVIDIA GTX Titan GPU.

The test statistic and p-value were estimated at an interval of 25,500 iterations

(of which 10,500 were parameter updates, 15,000 were updates of the augmented

data) starting after 1.5 million parameter updates. The RJMCMC was run for

approximately a further 10 million parameter updates (approximately 25,000,000

iterations), and not less than 5 million parameter updates. Readers should note

that the majority of the time was spent on the calculation of the test statistic
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Hypotheses Tested Simulated data-set Infection Link Residuals LLR(full) LLR(partial)

H0 HA (for LLR tests) Total %
Population Infected Iterations ˆE(p) Iterations ˆE(p) Iterations ˆE(p)

exp
{
−κd2} exp {−κd} 100 615 0.489 629 0.013 629 0.005

exp
{
−κd2} exp {−κd} 75 1680 0.500 1680 0.020 1680 0.016

exp
{
−κd2} exp {−κd} 50 2788 0.504 2073 0.050 2787 0.088

exp
{
−κd2} exp {−κd} 5 2091 0.503 2091 0.452 2091 0.510

(1 + d/κ)−1 exp {−κd} 40 1347 0.0000012 1346 0.004 1323 0.001
(1 + dκ)−1 exp {−κd} 40 894 0.0000445 894 0.056 1099 0.708

Table 4.2: Comparison of Latent Likelihood Ratio (LLR) test to Infection Link Residuals test: data-
set, null hypothesis tested and estimated expected p-values from the infection link residuals test,
LLR (full likelihood) and LLR (partial likelihood). The "iterations" referred to here, refers to the
number of times that the p-value was estimated, which is once every 25,500 Gibbs updates.

and p-value. Trace and density plots for an example run can be found for the

runs in Figures 4.3.1 and 4.3.2. Monte Carlo estimates of the posterior parameter

means and variances for an example run can be found in figure 4.3.3. High

autocorrelation was observed in the chains obtained. Hence, the chains were run

for a high numbers of iterations. There appears to be some correlation between

the parameters α and β. Oneway of reducing this in theMCMC is by normalising

transmission kernels (which would reduce the correlation between α and β, but

this has the disadvantage ofmaking the parameters obtaineddifficult to interpret).

It was decided to keep the parameters un-normalised for this reason.

4.3.2 Results

If the fitted kernel is similar to the actual kernel the LLR tests are more able to

detect mis-specification of the spatial kernel than the ILR tests. From Table 4.2,

the high values of expected posterior p-value for the ILR test show that the ILR

tests failed to find substantial discrepancywhere the fittedmodel used aGaussian

kernelwhen the actual kernel used to generate the datawas an exponential kernel.

In contrast, the LLR tests were able to detect substantial discrepancy in the fitted

model of a Gaussian kernel (where the actual model which used an exponential

kernel), as demonstrated by the low obtained posterior expected p-values in Table

4.2. The ability of the LLR tests to detect this misfit decreases as the amount of

observed symptomatic infection data decreases with the full likelihood variant of

the LLR outperforming the partial likelihood variant of the LLRwhen the amount

of observed symptomatic infection data decreases, shown by the relative increase
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in the posterior expected p-values in Table 4.2.

If the fitted kernel is very different from the actual kernel the ILR test appears to

bemore able to detect mis-specification of spatial kernel then the LLR tests. When

a power lawkernel or the long-tailed kernel (1 + d/κ)−1 wasfitted to the data (when

the simulated data was generated with an exponential kernel), very low expected

posterior p-values for the ILR were obtained. These posterior expected p-values

were smaller than those obtained for the LLR tests, although the full likelihood

LLR tests did find substantial levels of discrepancy, with low posterior expected

p-values, although not as low as those obtained from the ILR test. The partial LLR

was able to detect discrepancy for the fitted kernel (1 + d/κ)−1 (where the actual

kernel was exponential), with a low expected posterior p-value being obtained

despite only 40% of the observed symptomatic infection data being observed. It is

found in Table 4.2 that the partial LLR is unable detect discrepancy from the fitted

kernel of a power law kernel (when the actual kernel is an exponential kernel) and

only 40% of symptomatic infections are observed, with a high posterior p-values

being obtained (the chain of obtained test statistics was checked visually and

there appeared to be no signs of non-convergence of the MCMC to the stationary

distribution nor any obvious problems in the optimiser in finding maxima). This

is found to repeat itself in the verification runs in later sections. This shows that

theremay be a certain degree of difference between actual andfitted kernelswhere

the full Likelihood LLR outperforms the partial likelihood LLR.

4.4 Verification Runs

Having performed exploratory runs on simulated data-sets to identify possible

trends, further runs will be performed to verify that these trends re-occur over a

wide range of simulated data-sets.
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Figure 4.3.1: Trace and density plots of MCMC output for fitting model H0 : K(x, y, κ) � (1 +

|x−y|
κ )−1 vs. HA : K(x, y, κ) � exp {−κ |x − y|}. α, β, κ are referred to as “alpha”, “beta” and

“kappa” in the plots respectively. “Emu” and “Es2” refer to µE and σ2
E.
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Figure 4.3.2: Trace and density plots of MCMC output for fitting model H0 : K(x, y, κ) � (1 +

|x−y|
κ )−1 vs. HA : K(x, y, κ) � exp {−κ |x − y|}. “Emu” and “Es2” refer to µE and σ2

E. “Imu” and
“Is2” refer to µI and σ2

I .
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Iterations = 1:13796987
Thinning interval = 7
Number of chains = 1
Sample size per chain = 1970999

1. Empirical mean and standard deviation for each variable ,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha 3.785e-04 2.011e-04 1.432e-07 8.154e-07
beta 3.336e+01 4.762e+01 3.392e-02 7.323e+00
kappa 1.242e-01 1.479e-01 1.054e-04 1.720e-02
Emu 4.066e+00 1.836e-01 1.308e-04 1.038e-02
Es2 9.762e-01 3.892e-01 2.772e-04 2.931e-02
Imu 1.807e+00 3.264e-02 2.325e-05 9.292e-05
Is2 9.254e-01 5.452e-02 3.883e-05 1.554e-04

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha 8.541e-05 0.0002299 3.463e-04 4.919e-04 8.564e-04
beta 1.864e+00 6.2224700 1.528e+01 4.146e+01 1.868e+02
kappa 5.339e-03 0.0242465 6.594e-02 1.624e-01 5.413e-01
Emu 3.734e+00 3.9400200 4.057e+00 4.185e+00 4.444e+00
Es2 4.170e-01 0.7048780 9.191e-01 1.176e+00 1.864e+00
Imu 1.744e+00 1.7845200 1.806e+00 1.828e+00 1.872e+00
Is2 8.247e-01 0.8875950 9.232e-01 9.608e-01 1.038e+00

Figure 4.3.3: Summary of MCMC output for fitting model H0 : K(x, y, κ) � (1 +
|x−y|
κ )−1 vs.

HA : K(x, y, κ) � exp {−κ |x − y|}.α, β, κ are referred to as “alpha”, “beta” and “kappa” in the
output respectively. “Emu” and “Es2” refer to µE and σ2

E. “Imu” and “Is2” refer to µI and σ2
I .

4.4.1 Methods

The data was simulated from the Gillespie algorithm with the following known

parameters:

Parameter
Data-set

Original α × 2 β × 2 κ × 2

α 0.001 0.002 0.001 0.001

β 3.000 3.000 6.000 3.000

κ 0.030 0.030 0.030 0.060

µE 5.000 5.000 5.000 5.000

σ2
E 2.500 2.500 2.500 2.500

µI 1.772 1.772 1.772 1.772

σ2
I 0.858 0.858 0.858 0.858

The parameters used to generate the simulated data was taken as a starting

point. Three different data-sets were generated: α × 2, β × 2, κ × 2 with the

primary infection parameter, secondary infection parameter and kernel paramet-

ers doubled from the “Original” parameters respectively.

An exponential kernel was used to generate the data:
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K(x, y, κ) � exp {−κ |x − y|}

To determine whether the model testing methods were able to detect a mis-

specification of transmission kernel, alternative kernels were fitted to the data,

and the model testing methods were used to perform a test of whether the kernel

fits the data, or in the case of the likelihood ratio tests, that the kernels were an

exponential kernel. There were two alternate kernels used in this case whichwere

the Gaussian kernel

exp
{
−κd2}

and the power law kernel

(1 + dκ)−1

The Gaussian kernel is not as long-tailed as the power law kernel, and thus

it would be of interest to examine whether the model testing methods react dif-

ferently when the kernel is mis-specified as a longer tailed kernel or a shorter

tailed kernel. In the preliminary runs, a Cauchy kernel was also fitted to the data.

However, it was found that it was difficult to tuneMCMC to gain adequatemixing

withmodelswith this kernel, and themaximum-likelihood estimation algorithms

often were difficult to tune to obtain convergence to the maximum likelihood es-

timate. In addition, the Cauchy kernel, with its very heavy tail, would probably

be an unrealistic choice of kernel to fit to the data. It is for these reasons that the

Cauchy kernel is not fitted as a model in the set of runs.

It is also of interest to test how the model comparison methods perform when

there is a limited amount of data available. Several realisations of the same data-

set were used in which the observation period was varied such that observation

was stopped at times where certain percentages of the population were infected.

These levels used in this thesis were: 40%, 70%, and 100%.

Since the generation of the simulated data requires the random number gener-

ator to be startedwith a seed value, data-sets were also simulated using a different
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random number seed to generate different realisations of the epidemic with the

same parameters as above. This is to verify that the same trends are observable

with epidemics which have been generated using different sequences of random

numbers.

4.4.1.1 Algorithm

The RJMCMC algorithm from subsection 2.3.3 was used to obtain estimates from

the posterior distribution of the parameters and augmented data. The embedded

tests were performed every 10,500 iterations, to obtain samples which are relat-

ively independent of each other. In addition, performing the tests was found to

require a lot of computational resource, so performing the tests every RJMCMC

iteration would be time consuming, in addition to the fact that the RJMCMC

samples of the parameters tended to display high amounts of autocorrelation in

exploratory runs. The RJMCMC algorithm was tuned to have an acceptance rate

of approximately 15 to 20% for the parameter updates. The updates of the aug-

mented data, that is, the unobserved exposure times, were updated through the

use of the independence sampler (described in Chapter 2) if t(i)I > T. Otherwise,

a uniform proposal was used. Normal distributions were used as proposal dis-

tributions for the parameter updates, apart from the parameter updates for β and

κ, where generalised t1 distributions were used instead, since the posterior distri-

butions for these parameters tended to long-tailed and using a more longer-tailed

proposal distribution allowed the chain to explore the posterior distribution bet-

ter. The time to complete each run was approximately seven hours, which mostly

consisted of the time spent on the embedded tests. The computer used for the

runs in this thesis was a consumer grade gaming computer with a NVIDIA GTX

Titan graphics card, which is a consumer grade graphics card. Each run con-

sisted of approximately 10 million Gibbs-within-Metropolis parameter updates,

in which a 1% random scan was used to update the unobserved exposure times.

Chain mixing generally tends to improve as the percentage of the augmented

data updated in each sweep increases, although there is diminishing returns in
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data-set H0
Total %

Population Infectious Test Iterations ILR ˆE(p) LLR (Full) ˆE(p) LLR (Partial) ˆE(p)

α × 2 (1 + dκ)−1 100 2428 0.0000243 0.005319 0.0000000
α × 2 (1 + dκ)−1 70 952 0.0002571 0.02473 0.2269000
α × 2 (1 + dκ)−1 40 1465 0.0042040 0.1242 0.8014000
α × 2 exp

{
−κd2} 100 1818 0.4966585 0.0006974 0.0038500

α × 2 exp
{
−κd2} 70 1431 0.4929907 0.006932 0.0461200

α × 2 exp
{
−κd2} 40 457 0.4937340 0.06909 0.2801000

β × 2 (1 + dκ)−1 100 1704 0.0000006 0.0000 0.0000000
β × 2 (1 + dκ)−1 70 1316 0.0000013 0.01566 0.1771000
β × 2 (1 + dκ)−1 40 1710 0.0001413 0.1031 0.6801000
β × 2 exp

{
−κd2} 100 1397 0.4963660 0.02189 0.0157500

β × 2 exp
{
−κd2} 70 1196 0.4905312 0.03135 0.0393000

β × 2 exp
{
−κd2} 40 1490 0.4907014 0.1000 0.1295000

κ × 2 (1 + dκ)−1 100 1545 0.0004014 0.0000000 0.0000000
κ × 2 (1 + dκ)−1 70 1648 0.0002682 0.0000000 0.0000000
κ × 2 (1 + dκ)−1 40 1699 0.0000569 0.0000000 0.6845000
κ × 2 exp

{
−κd2} 100 3480 0.4970400 0.0000000 0.0000000

κ × 2 exp
{
−κd2} 70 2806 0.4920980 0.0000000 0.0021380

κ × 2 exp
{
−κd2} 40 3601 0.5088031 0.0000000 0.2474000

Original (1 + dκ)−1 100 1198 0.0000013 0.009208 0.0000000
Original (1 + dκ)−1 70 1258 0.0000011 0.02533 0.1325000
Original (1 + dκ)−1 40 1687 0.0000569 0.04713 0.6845000
Original exp

{
−κd2} 100 1198 0.5026800 0.009208 0.0108500

Original exp
{
−κd2} 70 1258 0.4943048 0.004225 0.0294100

Original exp
{
−κd2} 40 1687 0.4920137 0.06743 0.1191000

Original (New Seed) (1 + dκ)−1 100 1449 0.0000026 0.0000 0.0000000
Original (New Seed) (1 + dκ)−1 70 1014 0.0000240 0.002046 0.1174000
Original (New Seed) (1 + dκ)−1 40 1609 0.0009413 0.02326 0.6451000
Original (New Seed) exp

{
−κd2} 100 1397 0.5100904 0.0007158 0.0005900

Original (New Seed) exp
{
−κd2} 70 1393 0.4910087 0.01579 0.05212

Original (New Seed) exp
{
−κd2} 40 1620 0.4991936 0.03086 0.1722

Table 4.3: Comparison of Latent Likelihood Ratio (LLR) test to Infection Link Residuals test: data-
set, null hypothesis tested and estimated expected p-values from the infection link residuals test,
LLR (full likelihood) and LLR (partial likelihood)

increasing the amount of the augmented data which is updated in each sweep.

4.4.2 Results

Estimates of the expected p-values obtained from all three tests over all the data-

sets are shown in Table 4.3. These results are plotted in bar-charts in Figures 4.4.1,

4.4.2, 4.4.3, 4.4.4, and 4.4.5.

The ILR test appears to outperform the LLR tests when the fitted model is

very different to the actual kernel in most cases although the full LLR still detects

a substantial level of mis-specification in a large number of circumstances, and

the partial likelihood LLR test detects discrepancy in several of the cases. The

ability of the tests to detect mis-specification of the spatial kernel decreased as the

epidemics were simulated up to shorter time periods such that a lower proportion

of hosts became symptomatically infected. Evidence for this is, when the power

law kernel was fitted (and the data was generated from an exponential kernel)
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Figure 4.4.1: Comparison of Latent Likelihood Ratio (LLR) test to Infection Link Residuals test:
Bar chart of the expected posterior p-values obtain for the data set generated with the original
parameters, but with a new random seed for the coordinates of the hosts, where “Pow” denotes
a power law kernel was fitted and “Gauss” denotes a Gaussian kernel was fitted. The simulated
data was observed up to the time such that a set percentage of the population became infectious.
This percentage is in brackets.
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Figure 4.4.2: Comparison of Latent Likelihood Ratio (LLR) test to Infection Link Residuals test:
Bar chart of the expected posterior p-values obtain for the data set generated with the original
parameters, where “Pow” denotes a power law kernel was fitted and “Gauss” denotes a Gaussian
kernel was fitted. The simulated data was observed up to the time such that a set percentage of
the population became infectious. This percentage is in brackets.
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Figure 4.4.3: Comparison of Latent Likelihood Ratio (LLR) test to Infection Link Residuals test:
Bar chart of the expected posterior p-values obtain for the data set α × 2, where “Pow” denotes
a power law kernel was fitted and “Gauss” denotes a Gaussian kernel was fitted. The simulated
data was observed up to the time such that a set percentage of the population became infectious.
This percentage is in brackets.
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Figure 4.4.4: Comparison of Latent Likelihood Ratio (LLR) test to Infection Link Residuals test:
Bar chart of the expected posterior p-values obtain for the data set β × 2, where “Pow” denotes
a power law kernel was fitted and “Gauss” denotes a Gaussian kernel was fitted. The simulated
data was observed up to the time such that a set percentage of the population became infectious.
This percentage is in brackets.
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Figure 4.4.5: Comparison of Latent Likelihood Ratio (LLR) test to Infection Link Residuals test:
Bar chart of the expected posterior p-values obtain for the data set κ × 2, where “Pow” denotes
a power law kernel was fitted and “Gauss” denotes a Gaussian kernel was fitted. The simulated
data was observed up to the time such that a set percentage of the population became infectious.
This percentage is in brackets.
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over all datasets, the infection link residuals test detectsmis-specification of spatial

kernel; the posterior expected p-value produced by the ILR tests all are less than

0.01 indicating that a lot of discrepancy was detected between the fitted model

(power law kernel) and the data (generated from an exponential kernel). The

latent likelihood ratio tests were also able to detect mis-specification in many

cases: in the epidemic datasets which were observed until all the hosts became

symptomatic infectious, where a power law spatial kernel was fitted to the data

generated from an exponential kernel, indicated by the posterior expected p-

values being less than 0.05. These posterior expected p-values (in the α × 2 and

β × 2 datasets and data generated with the original parameters) are larger than

those obtained from the ILR tests, showing that the LLR tests appear to pick up

less of the discrepancy than the infection link residuals test. The ability of the LLR

tests to detect mis-specification of the spatial kernel is lessened as the epidemic

is observed for a shorter period of time. When the time that the epidemic is

observed is shortened, the expected posterior p-values increase to the point that

they are above 0.1, in the α × 2 and β × 2 datasets with the full likelihood LLR

test. The partial LLR was able to detect mis-specification when there was high

amounts of data but the ability of the partial LLR tests to detect discrepancy falls

awaymuch faster than the full likelihood LLR tests with the partial LLR unable to

detect substantial discrepancy between the fitted model and the data in the α × 2

and β × 2 datasets where the simulated data was generated until 40% of all hosts

became symptomatically infected. The expected posterior p-values produced

were approximately around 0.7 to 0.8 in the cases of the partial likelihood LLR

tests.

In the run results in Table 4.3, the LLR tests outperform the ILR test when the

fittedkernel is similar to the actual kernel. The runswith theGaussiankernel show

the relative ability of the LLR and ILR test to detect mis-specification of the spatial

kernelwhen there is less of a difference between the fitted kernel and actual kernel.

From Table 4.3, it can be seen that the ILR failed to detect mis-specification of the

spatial kernel in all cases where a Gaussian kernel was fitted to data generated
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from an exponential kernel, with obtained expected posterior p-values being

around 0.5. In contrast, the LLR tests produced small p-values, demonstrating

that the LLR tests were able to detect substantial misfit between the fitted model

and simulated data. The p-values obtained from the LLR tests increased as

the truncation time of the data decreased, reflecting the decreasing amount of

information available fromwhich to determine the adequacy of the spatial kernel.

The p-values obtained from the partial likelihood LLR test increased at a faster

rate than the p-values obtained from the full likelihood LLR tests indicating that

the full LLR is more able to detect model mis-specification at an earlier time in

the epidemic. A set of runs were performed with a new random seed for the XY

coordinates of the hosts’ spatial locations. The similar results from these runs

verify that the patterns hold over many datasets and is not specific to a single

random seed.

Also included in this section are tables of parameter estimates obtained from

the RJMCMC runs (see Tables 4.4, 4.5, and 4.6). These show how the parameter

posterior distributions adapt in order to fit the mis-specified models, and demon-

strate the issues faced in epidemicmodellingwhen the transitions to certain states

are unobserved. The posterior distribution of the parameters and the augmented

data are obtained, and are also used to calculate the test statistics used to determ-

ine model fit. Hence, those intending to test model fit of such models should be

aware of this reinforcement effect.

4.4.3 Conclusions and Discussion

The results from the exploratory runs and the verification runs suggest that the

infection link residual test seems less effective than the LLR tests at detecting

model mis-specification when models are similar. The infection link residuals

test failed to find significant discrepancy in the runs where the null hypothesis

was a Gaussian kernel. This may be because the Gaussian kernel is quite similar

to an exponential kernel which is the actual kernel that the data is generated from.

The ability of the latent likelihood ratio tests to detect discrepancywhen the actual
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Data-set Total %
Population Infectious H0

α β κ
Mean S.D Mean S.D Mean S.D

α × 2 100 (1 + dκ)−1 0.00133 0.0003334 3512 506.4 2.392 0.02861
α × 2 70 (1 + dκ)−1 0.0006492 0.0002724 2776 443.8 2.369 0.03153
α × 2 40 (1 + dκ)−1 0.0006613 0.0002828 1796 374.7 2.284 0.04026
α × 2 100 exp

{
−κd2} 0.0029139 0.0004486 0.9023087 0.09043 0.0001535 0.00000898

α × 2 70 exp
{
−κd2} 0.002556 0.0004495 0.9037788 0.109 0.0001548 0.00001012

α × 2 40 exp
{
−κd2} 0.0022339 0.0007029 0.8149542 0.5498334 0.0001448 0.0002132

β × 2 100 (1 + dκ)−1 0.0004442 0.0001923 4794 635.7 2.414 0.02534
β × 2 70 (1 + dκ)−1 0.0003817 0.0001863 3678 559.2 2.388 0.02941
β × 2 40 (1 + dκ)−1 0.0004015 0.0001984 2540 457.7 2.312 0.03489
β × 2 100 exp

{
−κd2} 0.0012901 0.0003207 1.0636219 0.141 0.0001178 0.000007319

β × 2 70 exp
{
−κd2} 0.0011284 0.0003027 0.9717919 0.149 0.0001136 0.000007957

β × 2 40 exp
{
−κd2} 0.001087 0.0003053 0.8408861 0.1646 0.0001008 0.000008752

κ × 2 100 (1 + dκ)−1 0.0008384 0.00004733 2894 426.3 2.673 0.0357
κ × 2 70 (1 + dκ)−1 0.0007108 0.00006799 2538 401.9 2.644 0.03832
κ × 2 40 (1 + dκ)−1 0.0005803 0.0001156 2149 384.4 2.604 0.04290
κ × 2 100 exp

{
−κd2} 0.0010206 0.0000484 0.9636156 0.07927 0.0006301 0.00003171

κ × 2 70 exp
{
−κd2} 0.0010663 0.00007045 0.9170497 0.08298 0.0006164 0.00003415

κ × 2 40 exp
{
−κd2} 0.0012108 0.0001243 0.9734283 0.1103 0.0006277 0.00004283

Original 100 (1 + dκ)−1 0.0003585 0.000178 2558 476.7 2.378 0.03547
Original 70 (1 + dκ)−1 0.0003146 0.0001575 3533 525.7 2.434 0.02942
Original 40 (1 + dκ)−1 0.000696 0.000193 4313 561.4 2.455 0.02589
Original 100 exp

{
−κd2} 0.0013476 0.0002592 0.8482083 0.08723 0.0001498 0.000008934

Original 70 exp
{
−κd2} 0.0010269 0.0002521 0.9342897 0.1178 0.0001527 0.00001006

Original 40 exp
{
−κd2} 0.0009899 0.000265 0.9450705 0.1553 0.0001521 0.00001294

Original (New Seed) 100 (1 + dκ)−1 0.001213 0.0002561 3731 540.5 2.41 0.02903
Original (New Seed) 70 (1 + dκ)−1 0.0009564 0.0003077 3114 523.6 2.377 0.04164
Original (New Seed) 40 (1 + dκ)−1 0.001012 0.0003282 2129 431.8 2.296 0.04251
Original (New Seed) 100 exp

{
−κd2} 0.0016983 0.0002973 0.6972467 0.06671 0.0001295 0.00000753

Original (New Seed) 70 exp
{
−κd2} 0.0016752 0.0003794 0.7186071 0.08508 0.0001275 0.000008302

Original (New Seed) 40 exp
{
−κd2} 0.0018358 0.0004172 0.8079134 0.122 0.0001332 0.00001107

Table 4.4: Table of Posterior Means and Standard Deviation for the verification runs for α, β, and
κ

and mis-specified kernel are very similar could be attributed to the fact that the

latent likelihood ratio tests require a specific alternative hypothesis, whilst the

infection link residuals test does not require a specific alternative hypothesis.

From the results in Table 4.3, observe that in all the datasets in which a Gaus-

sian kernel was fitted, the full likelihood LLR test was able to detect substantial

discrepancy between the fitted Gaussian kernel and the actual exponential ker-

nel. The partial likelihood LLR test was able to detect substantial discrepancy in

data-sets where the end observation time was set such that more than 70% and

40% of the hosts became infectious. The ability of the partial likelihood LLR test

fell away more quickly than that of the full likelihood LLR test especially in the

2×α and 2×κ runs. As to why this is the case, a possible explanation is as follows:

• If we only consider the order of infection times, and not the infection event

times themselves, an increase in α is the same as a decrease in β. So the

effect of secondary infection in the 2 × α runs is less than that in the data

using the original parameters.
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Data-set Total %
Population Infectious H0

µE σ2
E

Mean S.D Mean S.D
α × 2 100 (1 + dκ)−1 4.805 0.1031 1.956 0.2294
α × 2 70 (1 + dκ)−1 4.523 0.1189 1.741 0.2386
α × 2 40 (1 + dκ)−1 4.451 0.1521 1.805 0.344
α × 2 100 exp

{
−κd2} 5.042126 0.1102 2.4812384 0.2898

α × 2 70 exp
{
−κd2} 4.9593773 0.1377 2.3839773 0.3476

α × 2 40 exp
{
−κd2} 4.843329 0.1968621 2.1531098 0.4522831

β × 2 100 (1 + dκ)−1 4.289 0.1153 1.925 0.2174
β × 2 70 (1 + dκ)−1 4.041 0.1357 1.819 0.2626
β × 2 40 (1 + dκ)−1 4.022 0.1633 1.912 0.352
β × 2 100 exp

{
−κd2} 4.7652099 0.124 2.5839779 0.2968

β × 2 70 exp
{
−κd2} 4.6984782 0.1549 2.4853798 0.3787

β × 2 40 exp
{
−κd2} 4.6826162 0.2359 2.6409302 0.6064

κ × 2 100 (1 + dκ)−1 4.945 0.1001 2.816 0.2872
κ × 2 70 (1 + dκ)−1 4.929 0.1121 2.872 0.339
κ × 2 40 (1 + dκ)−1 4.969 0.1349 2.702 0.3944
κ × 2 100 exp

{
−κd2} 4.9826195 0.09697 2.64989 0.2738

κ × 2 70 exp
{
−κd2} 4.979419 0.1082 2.6699676 0.3042

κ × 2 40 exp
{
−κd2} 5.0850028 0.1401 2.8226393 0.4221

Original 100 (1 + dκ)−1 4.42 0.162 2.057 0.3825
Original 70 (1 + dκ)−1 4.473 0.1243 2.06 0.2758
Original 40 (1 + dκ)−1 4.579 0.1075 2.236 0.2442
Original 100 exp

{
−κd2} 4.793396 0.1173 2.7646615 0.3458

Original 70 exp
{
−κd2} 4.8615001 0.1504 2.9812697 0.4669

Original 40 exp
{
−κd2} 4.9118098 0.1972 2.8702635 0.5652

Original (New Seed) 100 (1 + dκ)−1 4.862 0.1082 2.362 0.2636
Original (New Seed) 70 (1 + dκ)−1 4.756 0.1305 2.26 0.2975
Original (New Seed) 40 (1 + dκ)−1 4.66 0.1573 1.934 0.3628
Original (New Seed) 100 exp

{
−κd2} 4.9423912 0.1094 2.572538 0.3046

Original (New Seed) 70 exp
{
−κd2} 4.9488673 0.1389 2.4965248 0.3723

Original (New Seed) 40 exp
{
−κd2} 4.9545913 0.1762 2.5261648 0.4714

Table 4.5: Table of Posterior Means and Standard Deviation for the verification runs for µE and σ2
E
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Data-set Total %
Population Infectious H0

µI σ2
I

Mean S.D Mean S.D
α × 2 100 (1 + dκ)−1 1.801 0.03027 0.9134 0.04996
α × 2 70 (1 + dκ)−1 1.816 0.03786 0.9332 0.06434
α × 2 40 (1 + dκ)−1 1.825 0.05211 0.8917 0.08827
α × 2 100 exp

{
−κd2} 1.8004701 0.03029 0.9131307 0.05003

α × 2 70 exp
{
−κd2} 1.8152959 0.03783 0.9321667 0.06426

α × 2 40 exp
{
−κd2} 1.8247609 0.0520868 0.8913357 0.0879867

β × 2 100 (1 + dκ)−1 1.8 0.03024 0.9131 0.04983
β × 2 70 (1 + dκ)−1 1.796 0.03717 0.883 0.06131
β × 2 40 (1 + dκ)−1 1.825 0.05158 0.8927 0.0875
β × 2 100 exp

{
−κd2} 1.8002562 0.03023 0.9128844 0.04977

β × 2 70 exp
{
−κd2} 1.7959016 0.03717 0.8831906 0.06121

β × 2 40 exp
{
−κd2} 1.8250691 0.05174 0.8928353 0.0876

κ × 2 100 (1 + dκ)−1 1.801 0.0302 0.9132 0.04992
κ × 2 70 (1 + dκ)−1 1.835 0.03691 0.9523 0.06244
κ × 2 40 (1 + dκ)−1 1.851 0.04849 0.9248 0.08094
κ × 2 100 exp

{
−κd2} 1.8003755 0.03025 0.9130562 0.04992

κ × 2 70 exp
{
−κd2} 1.8351697 0.03694 0.9522412 0.0625

κ × 2 40 exp
{
−κd2} 1.8512757 0.04859 0.9250943 0.08113

Original 100 (1 + dκ)−1 1.798 0.05017 0.8894 0.08347
Original 70 (1 + dκ)−1 1.821 0.03738 0.9156 0.06274
Original 40 (1 + dκ)−1 1.8 0.0303 0.913 0.04998
Original 100 exp

{
−κd2} 1.8003004 0.03019 0.9129414 0.04981

Original 70 exp
{
−κd2} 1.8210957 0.03744 0.9158055 0.06292

Original 40 exp
{
−κd2} 1.797982 0.05013 0.8895275 0.08353

Original (New Seed) 100 (1 + dκ)−1 1.752 0.02889 0.8338 0.04531
Original (New Seed) 70 (1 + dκ)−1 1.771 0.03564 0.8385 0.05709
Original (New Seed) 40 (1 + dκ)−1 1.793 0.04971 0.7834 0.07785
Original (New Seed) 100 exp

{
−κd2} 1.7518828 0.0289 0.8337618 0.04526

Original (New Seed) 70 exp
{
−κd2} 1.7715113 0.03561 0.8385418 0.05685

Original (New Seed) 40 exp
{
−κd2} 1.7935544 0.04976 0.7836434 0.0782

Table 4.6: Table of Posterior Means and Standard Deviation for the verification runs for µI and σ2
I
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• Again, if we only consider the order of the infection times and not the

infection event times themselves, an increase in κ will lower the effect of

secondary infection, as the spatial kernel is not normalised in any way.

• Thus, the cases where the partial likelihood LLR test’s ability to detect

discrepancy falls away fast seems to be the cases where there is less effect of

secondary infection.

• This lowered effect of secondary infection in the data that was generated

could be the cause of the larger decrease in the ability to detect discrepancy

from the fitted model and the data as the epidemic was observed for a

shorter interval of time:

– At the start of each simulated epidemic, as there are relatively few

infectious hosts, the majority of infections will be primary infections.

– At the peak of each simulated epidemic, as there are many infectious

hosts, there will be a relatively large amount of secondary infections

compared to primary infections.

– If the order of infection times alone is used to determine model ad-

equacy, from a sequence of primary infections, it is impossible to de-

termine whether the model is adequate but not.

– If the infection times areused todeterminemodel adequacy (in addition

to the order of the infection times, as in the full likelihood LLR test), it is

possible to check the adequacy of the model from a stream of primary

infections, since the rate of primary infections should be plausible if

the model is adequate.

– Since at the start of each simulated epidemic, the majority of infections

are primary infections, the full likelihood LLR test would be more able

to check model adequacy than the partial likelihood LLR.

– This effect is amplified by the lowering of the effect of the secondary

infection in the simulated data.
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• An example in which this argument can be intuitively understood is as

follows: consider a simulated epidemic in which there is only primary

infection and no secondary infection. The partial likelihood LLR would

be unable to detect whether the model is adequate or not as it only uses

information on the order of the infections. Full likelihood LLR would be

able to detect whether themodel is adequate or not as it uses the event times

as well as the order of the event times.

An implication of this is that the full likelihood LLR test still remains a more

robust method for detecting model inadequacy than the partial likelihood LLR

test, at least in the case of comparing between similar kernels.

The infection link residuals test seems more effective that the LLR tests at

detecting model mis-specification when the models are very different. In all the

cases where a power law kernel was fitted to data generated from an exponential

kernel, the ILR was able to detect substantial discrepancy between the data and

the model. The full likelihood LLR also detected significant discrepancy between

model and data in all cases apart from one, which still had a small expected

posterior p-value. These expected posterior p-values were not as small as those

obtained for the ILR test, and a possible explanation for this is that the ILR test has

a vague alternative hypothesis whilst the LLR tests have a specific alternative hy-

pothesis, so are looking for discrepancy betweenmodel and data which conforms

to this specific alternative hypothesis. It was also observed that the partial likeli-

hood LLR tests produced similar posterior expected p-values when the simulated

data was generated until a time such that all the population became infectious.

As this time truncation was reduced, the ability of the partial likelihood LLR test

diminished to detect discrepancy much faster than that of the full likelihood LLR

test, possibly for the same reasons given as in the runs in which the Gaussian

spatial kernel was fitted to data from an exponential kernel. It appears that in

some cases, for example in the exploratory runs, the partial likelihood LLR test

was able to detect discrepancy between models and data in the run in which a

Cauchy kernel was fitted to data generated from an exponential kernel, and the
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data was simulated until the time that 40% of the population became infectious.

This indicates there may be a point at which the difference between the fitted ker-

nel and the actual kernel becomes so large that the partial likelihood LLR test is

able to detect mis-specification of spatial kernel, even at early stages in epidemic.

However, it seems from the runs where a power law kernel was fitted to data

generated from an exponential kernel that the full likelihood LLR test remains the

most robust method for detecting mis-specification of spatial kernel.

It appears that because the full likelihood LLR takes into account infection

times as well as order whilst the partial LLR only considers infection order, the

full likelihood ratio test was able to detect kernel mis-specification in cases where

the partial likelihood LLR was not. From the above proposed explanation of

why the ability to detect discrepancy in spatial kernel falls away faster for the

partial likelihood LLR compared to the full likelihood LLR, it appears that taking

the infection times into account when comparing between two similar kernels

is important for the detection of mis-specification of spatial kernel. From the

posterior parameter means and variances of α given in Table 4.4, it can be seen

that the primary infection rate often compensates for a kernel in which the tail

is too short or too long. Since the majority of infections during the early phases

of these simulated epidemics were primary infections, the full likelihood LLR

test could detect mis-specification unlike the partial likelihood LLR test which

only took into account the order of infections. It appears that the ILR test was

able to detect mis-specification, since its alternative hypothesis is non-specific,

and therefore takes into account all information on all discrepancy, whilst the

LLR test’s specific alternative hypothesis reduced the information available to the

test, and infection time information was needed in addition to the infection order

information.

It is very difficult to analytically derive a result of the relative power of the two

methods, as the likelihoods and models are complex. In addition, comparison

with the infection link residual test is difficult, as the infection link residuals test

relies on the Anderson-Darling test to detect non-uniformity of the infection link
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residuals. This means that the power of the infection link residuals test is limited

by the test used to detect non-uniformity of the residuals. At the current date of

writing there appears to be no literature which has derived results for the power

of the Anderson-Darling test which are relevant to this problem.

An area of investigation in the future is the derivation of the distribution of the

test statistic for the latent likelihood ratio test. In the case of nested models, it is

knownasymptotically to be a chi-squaredistribution. But in the case of non-nested

models, Monte Carlo simulation has been used in this case to obtain an estimate of

the posterior expected p-value, which is very computationally intensive, because

this algorithm cannot be parallelised. In fact most of the computation time is

probably due to the regeneration of an epidemic with the parameters from the

alternative model. This computational intensive makes it unfeasible to calculate

an estimate of the p-value each time a test statistic is calculated. Instead, the

dataset is regenerated under the fitted model, and a test that is recalculated and

it is determined whether this value is larger than the obtained test statistic. As

a result, a series of zeros and ones are obtained, which allow the calculation of

the expected posterior p-value. However, it would be much more informative

to calculate the exact p-values of each calculator test statistic, which would then

allow the posterior distribution of the p-value to be obtained, which would be

much more informative. It is known that in many of the cases obtained here that

the posterior expect p-value is very low, but it would be informative to know

the shape of the distribution and exactly how much of the distribution is below

0.05. Further insight can be gained into the relative performance of each test from

how the shape of the posterior distribution of the p-value changes with different

datasets.

Regarding the computational intensiveness of the expected posterior p-value

calculation, themajority of these computational difficulties have been surmounted

by the implementation of likelihood function on the graphics processor, whichwill

be described in the following chapter. Without these innovations, the runs per-

formed in this thesis would have been extremely time-consuming, or impossible.
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However, these innovations allow these runs to be performed in under a day. Since

the likelihood function in central to many of the calculations for the iterative al-

gorithms, including both the Monte Carlo methods and the maximum-likelihood

estimation, and acceleration in this produces quite a gaining speed makes these

methods feasible in a normal amount of time.

Regarding further investigation, a possible route for further investigation is

whether the infection link residuals test can be strengthened to compete against

the LLR tests, without using a specific alternative hypothesis like the LLR tests.

As mentioned above, one of the reasons why the full likelihood LLR test was

more able to detect discrepancy then the partial likelihood LLR test in many

circumstances was that it incorporated information about the transition times as

well as transition order. In the original paper [111], there were four different

proposed residuals. The first of those two residuals r̃1 (known as the exposure time

residuals) regarding the S to E transitions account for the infection times but not

infection order, and is effectively a population level Sellke threshold. The second

of those were the infection link residuals r̃2. Perhaps by combining these two tests

in some way, a more powerful test could be obtained, although the problem of

reinforcement could occur.

Another approach could be to focus whatever discrepancy that there has been

obtained, discarding even more information to reduce the effect of the reinforce-

ment: the infection link residual could bemodified to create a new type of residual

which is the absolute value of 0.5 minus infection link residual. Under the null

hypothesis this is obviously uniformly distributed. Further investigation could be

done to investigatewhether this ismore capable of detecting discrepancy between

the null hypothesis than the existing infection link residuals test.

A key benefit of using the functional-models and generalised residuals rep-

resentation of the epidemic model is that it can be used to produce tests which

are focused on different aspects of mis-specification. As long as the sampling

distribution of such a representation is exactly that of the model, any represent-

ation of the epidemic model can be chosen. The existing infection link residuals
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method is essentially reverse engineering the Gillespie-type algorithm, splitting

the step where the next infection is chosen into two steps: choosing the infective

host and infected host. Alternative representations of choosing how the infection

link is chosen can be formulated to detect anisotropy, for example. This will be

investigated in Chapter 6, where a test will be formulated to detect anisotropy.

In many situations, it may be important to determine whether there is aniso-

tropy present in how the infection spreads. The detection of such anisotropy could

indicate that there is an effect of wind or some other directional effects which has

not been taken account of by the model that has been fitted.

4.5 A Discussion of Reinforcement

Here we discuss how when using LLRT tests it is conceivable that the greater the

imputed information on which the test is based, the poorer the performance of

the test. This argument was originally presented in [68] by Gibson and Streftaris.

Definition 18. Let M0 and M1 be two models under comparison with a latent

likelihood ratio test. Let π0 and π1 be the sampling densities under M0 and

M1 respectively. In the latent likelihood ratio test, x is imputed using posterior

distributionunder M0, π0(x |y), and from this imputed x, the likelihood ratio test is

used on the imputed data to obtain p-value p(x), yielding distribution π0(p(x)|y).

Let the power for a latent test be defined as:

βx � E(π0(p(x) < α |y)|M1)

Remark 19. If M0 includes a prior with all belief at θ � θ0, and:

M0 :θ � θ0

M1 :θ � θ1

When x ≡ y, there is no unobserved data, and the latent likelihood ratio test

reduces to the classical likelihood ratio test, and βx � βy which is the classical
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power of the likelihood ratio test, which is the UMP test of M0 vs M1, by the

Neyman-Pearson Lemma.

Proposition 20. Suppose M0 includes a prior with all belief at θ � θ0, and:

M0 :θ � θ0

M1 :θ � θ1

Then βx ≤ βy .

Proof. In this case, the latent likelihood ratio test can be thought of as a Bayesian’s

belief of what a frequentist’s p-value would be. Furthermore the whole process

of performing a latent likelihood ratio test can be seen as a Bayesian imputing the

unobserved data to obtain x, then a frequentist performing a classical ratio test

with that data at level α. The UMP test of level α of M0 vs. M1 with data x is the

likelihood ratio test. Let πi
0(x) and π

i
1(x) be the sampling densities under M0 and

M1 of imputed x respectively. The test statistic of this test is:

πi
0(x)
πi

1(x)
(4.5.1)

Since πi
0(x) � π0(x |y)π0(y), and πi

0(x) � π0(x |y)π1(y), (4.5.1) can be expressed

as:

π0(x |y)π0(y)
π0(x |y)π1(y)

�
π0(y)
π1(y)

This is the same test statistic as a likelihood ratio test applied to y, thus, the

power of the UMP test statistic is βy .
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However, in a latent likelihood ratio test, the test statistic:

π0(x)
π1(x)

�
π0(x |y)π0(y)
π1(x |y)π1(y)

is used instead. This is not the same as:

πi
0(x)
π1(x)

This is not the test statistic of (4.5.1), and thus by the Neyman-Pearson lemma,

has less power as a test statistic. Thus, for any specified α,

P(p(x) < α |M1) ≤ P(p(y) < α |M1) � βy

Since:

P(p(x) < α |M1) �
∫
π0(p(x) < α |y)π1(y)dy

� E(π0(p(x) < α |y)|M1)

� βx

Thus:

βx � E(π0(p(x) < α |y)|M1) ≤ E(π0(p(x) < α |y)|M1) � βy

�

This shows that the power of a latent likelihood ratio test applied to x cannot

exceed that of a likelihood ratio test applied to observed data y. Furthermore:
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suppose M0 includes a prior π(θ), and:

M0 :θ � θ0

M1 :θ � θ1

Then βx ,θ ≤ βy ,θ.

The above result applies to only a very simple case of latent likelihood ratio

testing, but demonstrates that the loss of power, or ability to discernwhether there

is substantial discrepancy from the actual model, is due to the use of π0(x |y), the

imputation of the unobserved data under M0. As a result one can argue that as

the amount of imputed data increases, the latent likelihood ratio test loses more

ability to discern whether there is substantial discrepancy from the actual model:

Consider a situationwhere simple hypotheses M0 and M1 are being compared.

Suppose that y � f (x) and x � g(z) such that z has more information than x,

z includes information not observed. Let π0 be the sampling density of quantities

under M0 and π1be the sampling density of quantities under M1.

Suppose we impute z. Then the optimal test statistic is

π0(z)
π1(z)

�
π0(z)

π0(z |y)π1(y)
(4.5.2)

.

Letπi
0 andπ

i
1 be the imputed samplingdensitiesunderM0 andM1 respectively.

Then the Kullback-Leibler Divergence between the imputed sampling density of

z under M1,πi
1(z) and the sampling density of z under M1, denoted KL(πi

1, π1) is

118



Chapter 4: Latent Likelihood Tests for Epidemic Models

determined by the following:

KL(πi
1, π1) �

∫
πi

1(z) log

(
πi

1(z)
π1(z)

)
dz (4.5.3)

�

∫
πi

1(z) log
(
π0(z |x)π0(x |y)π1(y)
π1(z |x)π1(x |y)π1(y)

)
dz

�

∫
πi

1(z) log
(
π0(z |x)π0(x |y)
π1(z |x)π1(x |y)

)
dz

�

∫
πi

1(z)
(
log

(
π0(x |y)
π1(x |y)

)
+ log

(
π0(z |x)
π1(z |x)

))
dz

�

∫
πi

1(z)
(
log

(
π0(x |y)
π1(x |y)

))
dz

+

∫
πi

1(z)
(
log

(
π0(z |x)
π1(z |x)

))
dz

�

∫
π0(z |x)π0(x |y)π1(y)

(
log

(
π0(x |y)
π1(x |y)

))
dz

+

∫
π0(z |x)π0(x |y)π1(y)

(
log

(
π0(z |x)
π1(z |x)

))
dz

�

∫
π0(z |x)π0(x |y)π1(y)

(
log

(
π1(y)π0(x |y)π0(z |x)
π1(y)π1(x |y)π0(z |x)

))
dz (4.5.4)

+

∫
π0(z |x)π0(x |y)π1(y)

(
log

(
π1(y)π0(x |y)π0(z |x)
π1(y)π0(x |y)π1(z |x)

))
dz (4.5.5)

The integral (4.5.4) is equal to KL(πi
1(z), π1(y)π1(x |y)π0(z |x)).

The integral (4.5.5) is another K-L divergence and hence greater than 0. Hence,

from (4.5.3),

KL(πi
1, π1) ≥ KL(πi

1(z), π1(y)π1(x |y)π0(z |x))

There is a larger difference between distributions πi
1 and π1, than πi

1(z) and

π1(y)π1(x |y)π0(z |x).

Recall from (4.5.2) that the test statistic for z is:

π0(z)
π0(z |y)π1(y)
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Suppose that π1(y)π1(x |y)π0(z |x) is used on the denominator of a test statistic.

π0(z)
π0(z |y)π1(x |y)π1(y)

�
π0(z |y)π0(x |y)π0(y)
π0(z |y)π1(x |y)π1(y)

�
π0(x)
π1(x)

So the test statistic for z, if z is imputed, has the power as a test applied to x (if

x were observed, not imputed), since their test statistics are equivalent.

If both x and z are imputed, when a LLR test is performed, the test statistic

used is:

π0(z)
π1(z)

�
π0(z |y)π0(x |y)π0(y)
π0(z |y)π0(x |y)π1(y)

The test statistic π0(z |y)π0(x |y)π0(y)
π0(z |y)π1(x |y)π1(y) , has a denominator which is “closer” to πi

1(z)

than π1(z), and has the same power as a test applied to an unimputed x. Thus,
π0(z |y)π0(x |y)π0(y)
π0(z |y)π1(x |y)π1(y) , the test statistic with less imputation (only z imputed) than the

test statistic π0(z)
π1(z) (where both x and z are imputed), is likely to be more able to

detect discrepancy between the actual and fitted model.
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Chapter 5

Implementation of Algorithms using

Massively Parallel Programming

Techniques

In the previous chapters, we have laid out the theoretical framework for model

comparison in epidemicmodels. Thesemethods are computationally intensive, to

the extent that the initial test runs on a single thread on a single Central Processing

Unit (CPU) took an impractical amount of time, rendering the methods initially

too computationally difficult to use in a real-world application. This led to the

exploration of parallel computation methods to accelerate the computation of the

methodsdetailed in this thesis. Initially, straightforwardparallel computationwas

attempted on the CPU, but this did not yield an adequate speed up. Next, cluster

computing or distributed computing was investigated as a way of accelerating the

computations, but after some thought it was reasoned that the costs in terms of

communications between theCPUswouldprobably not yield anynet acceleration.

This led us to consider computation on an accelerator co-processor.

The use of accelerator coprocessors has become popular recently as a power

efficient and cost-efficient method [174, 175] of gaining heterogeneous massive

parallelism and allows high speed computation on consumer grade hardware.

Massive parallelism (a term coined in the late 1970s and early 80s, for example,

[12, 54]) refers to thedivision of a computational task intomany, usually thousands
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or millions, of parts and processing each part on a processor, the computer being

constructed ofmany processors running in parallel to complete the computational

task.

Massive parallelism has usually been considered as a field of programming

only utilised on supercomputers or cluster computers. The processors communic-

atewithin the supercomputer through special hardware (modern supercomputers

consist of several thousandprocessors), and the processors in the cluster computer

communicate through a network. Supercomputers have generally been costly (in

monetary terms) to use [8], and cluster computers incur a penalty through the

communication of processors through a network [118] (the speed of light is 30cm

per nanosecond), making cluster computers suited only to very specific parallel

tasks.

The use of accelerator coprocessors has become popular as of recently with

Graphic Processor Unit (GPU) programming [136] and Intel launching its own

coprocessor [88]. The coprocessor unit is used as well as the computer’s CPU to

run the computational task, which is divided between the CPU and coprocessors.

Because the parallel task is divided between two types of processor which are

different to each other, this is known as heterogeneous massive parallelism. Since all

the processors are situated in the same computer, there is less of a penalty when

communication is required between the processors.

The GPU is used as a coprocessor in the computations in this thesis, as GPUs

are found in all computers. GPU programming used to be a niche field, with pro-

grammers having to write their programs in terms of graphical objects. Recently

graphics cardmanufacturers discovered that programmers outside the traditional

field of computer graphics were using their processors for numeric computation

(for example, [84, 190]), and created their own programming languages to allow

programmers to program a graphics card without the need to re-express their

algorithms in terms of graphics. One of the dominant programming languages is

CUDA C++ [135] which is an extended version of C++ which allows programs to

be written for GPUs manufactured by the NVIDIA Corporation. This language
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Chapter 5: Implementation of Algorithms using Massively Parallel Programming
Techniques

has the benefit of being able to interface with existing C++ code without complic-

ated programming. Note however, that GPU programming is different from CPU

programming. The constraints on what can be programmed on the GPU are laid

out below.

As well as pertaining to our computational requirements, massively parallel

heterogeneous computation is relevant and beneficial to the field of epidemic

modelling and, arguably, to Bayesian statistics as a whole. In the past, statistics

and epidemic modelling have both benefited from increases in computational

power. This has mostly been in the form of increases in processor clock speed,

making any given computer code run faster without any change in programming.

However, the power consumption requirements of increasing the clock speed

any further have made any further gain in clock speed impractical [160]. Any

increase in computer power has been due to the number of parallel processes

running on the same computer. This implies that in order to benefit from any

advances in computing power, the same computer code cannot be used [177, 5].

Instead, modifications must be made to take advantage of the parallel processing

resources available in the computer. There has been an increasing demand for

more computer power asmethods anddata-sets become larger andmore complex.

The construction of efficient parallel algorithms for Bayesian computation and

model selection, especially in epidemic modelling, becomes of vital importance,

allowing researchers to explore more theoretically complex methods and extract

information and conclusions from larger data.

5.1 Glossary of technical terms

At this point we find it helpful to provide a glossary of the specialist terms

regarding the programming of the GPU as an accelerator coprocessor.
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API Application Programming Interface. Defined in [144] as: “A

set of functions and procedures allowing the creation of ap-

plications that access the features or data of an operating

system, application, or other service”.

architecture The components of a computer or a computer part and how

they are related to each other.

asynchronous Refers to parallel operations that do not start and/or finish

at the same time (and therefore happen independent of each

other).

atomic An operation that cannot be interrupted or interfered with

once started and appears to other threads as one indivisible

operation.

bandwidth The maximum rate at which data can be transfered from one

component to another.

branch divergence Where some threads (see thread) in awarp (seewarp) satisfy an

"if" statement (branch) and some do not. Considered a drain

on performance. Some architectures have the capability built

into the hardware to minimise this performance drain.

cache Defined in [144] as: “An auxiliary memory from which high-

speed retrieval is possible.”.

clock cycle The amount of time between successive pulses of the CPU

or GPU clock. This is the smallest unit of time in which one

processor activity can be performed. [146]
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clock speed Number of clock cycles per second. Usually given in Hertz,

for example, 1 GHz is 109 clock cycles per second.

coalesced access Refering to a read or write where consecutive threads read

consecutive memory addresses. One of the methods by

which memory bandwidth can be used most efficently.

compile To translate fromahigh-level language (in this exampleCUDA

C++) to machine code (binary). For example, a compile-time

error is a mistake in the code which causes the compiler to be

unable to compile the code.

compute capability “The compute capability of aGPUdetermines its general spe-

cifications and available features.” [139]. This is expressed as

a number, or a name refering to GPUs of the same architec-

ture e.g. Fermi, Kepler, Maxwell, Pascal, Volta. Synonymous

with "architecture".

debug To modify code to eliminate errors.

device In GPGPU programming, refers to the GPU.

DRAM Dynamic random access memory. Also known as the RAM.

GPGPU General Purpose computing on the GPU. Use of the GPU in

non-traditional fields, such as scientific computation.

host In GPGPU programming, refers to the CPU.

runtime The period of time when the program is run. For example,

a "runtime error" is an error that occurs when the program

is running but does not hinder the program from being com-

piled.

texture A term originally used in GPU programming to refer to

images which are laid (after some transformation) over a
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polygon mesh when creating 3D graphics. In GPGPU pr-

gramming this term is often used to refer to texture memory,

which is convenient to use in the situation where consecut-

ive threads access consecutive memory addresses. Texture

memory is also cached on-chip, creating a possible perform-

ance benefit.

thread “A single sequential flow of control within a program.” [30].

Like many computing terms, this term is loosely defined,

withmany different definitions of "thread" evolving since the

1950s which are similar to the definition given here, but may

not be equivalent. Common to all definitions is the idea that

a thread is a serial set of computations that can be paused,

and then resumed at a later time [18], without changing the

result. Hence it is possible to have many threads in flight on

a single processor, by partially executing a thread, pausing,

and then switching to other threads and the switching back.

In GPGPU programs, there are usually many more threads

(millions or billions) than processors (thousands).

warp A group of 32 threads

5.2 The CUDA Programming Model

Since the limitations of programming on the GPU have a large impact on how an

algorithmcanbe implemented inCUDA,or anyGPGPU language, it isworthwhile

to have an overview of the CUDA programming model and the anatomy of a

typicalGPGPUprogram. Themotivation for these programming abstractionswill

be given in later sections. A program on the GPU is called a kernel in traditional

literature. This can be confused with other usage of the term in this thesis, so will

be referred to as a "GPU kernel" in this thesis.

As mentioned earlier, programming the GPU can be achieved using CUDA
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Figure 5.2.1: Diagram from [138] of a typical GPGPU program.
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C++. Even though this programming language is based on C++, there are several

important differences to programming a single core CPU program. This arises

from the fact that the CPU and GPU are built for different purposes and therefore

have different structures and properties. The GPU is far less flexible than a

CPU. For example, it cannot run an operating system. The GPU requires a lot of

intervention from the CPU in performing a computation.

In a typical GPGPU program, the data that will be used for the computation

has to be initialized by the CPU. The data at the start of the program resides

only on the CPU and needs to be transferred on to the GPU. This involves the

explicit instruction of the GPU to set aside memory. The GPU will then allocate

the memory and pass back an address to the CPU. Note that everything needs

to be called from the CPU, so this address needs to be stored on the CPU in case

it needs to be used later. The next thing to be done is to copy the data from the

CPU to the GPU. This is done using several commands in the CUDA language,

which instruct the CPU to copy the data from the CPU to the GPU at the address

obtained earlier. This address is situated in what is known as global memory,

a programming abstraction, which refers to memory which is accessible from

both the GPU (referred to as the device) and the CPU (known as the host). The

reason for these programming abstractions is probably to allow the programming

language to be able to program for future GPUs. The global memory, at this

time of writing refers to the DRAM situated on the graphics card. This DRAM

is a temporary, relatively fast memory, where the data are stored in capacitors. It

however is off-chip, which makes it slow in GPGPU terms.

A parallel program consists of many threads: sequential series of compu-

tations which can be paused and resumed without changing the result of the

computations. These threads in a GPU program are not autonomous, because of

hardware limitations, instead these threads are executed in groups of 32, known

as warps, in which all threads in the warp must execute the same instructions as

each other. "If" statements are dealt with by executing both cases of the statement,

and discarding the result which does not apply for each thread (there are ways
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Figure 5.2.2: Diagram from [138] of CUDA thread model. A collection of threads, indexed by a
coordinate, make up a block. The coordinate can be one, two or three dimensional. Several blocks,
indexed by a coordinate, make up a grid. A CUDA kernel executes on a grid.

that the compiler and GPU can avoid this, which are beyond the scope of this

chapter).

To make it easier to work with threads, most programming languages, includ-

ing CUDA, group threads into blocks of threads (fig. 5.2.2). A block is a pro-

gramming abstraction which consists of a specified number of threads. Several

blocks make a grid. The blocks and grids are indexed by a 1,2 or 3-dimensional

coordinate, which can be referred to in the programming language. Grid and

block size are specified by the programmer in the code.

The GPU kernel can now be launched, by calling it from the CPU explicitly, by

using commands in the CUDA language. The kernel is run, the same instructions

being run in all threads in the grid. But suppose the programmer wants each

thread to perform different instructions? This can be done by using an "if" state-

ment, where different cases of the "if" statement refer to different thread indexes

(for example, “if the thread x index is less than 1000, do ...”). This is why each

thread has an index. Providing that the same branch of the “if” statement is taken

for all the threads in each warp, there is no performance loss due to branching. If
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there is one or more threads that follows the other branch of the “if” statement,

both branches of the if statement will have to be followed by the whole warp,

with each thread only keeping the result that is needed. This is known as “branch

divergence”, and is to be avoided in GPGPU programming.

During the GPU computation the CPU thread that launched the GPU kernel

runs asynchronously, until it reaches a command given in the code to wait for

the GPU to finish (called a barrier). Ones this barrier has been reached by the

GPU, the CPU thread resumes. When the GPU has finished its computation, the

programmer needs to indicate in the code for the CPU to copy the results back into

the main RAM. The global memory has to be explicitly cleared via instructions in

the code, otherwise the samememorywill be available to the next kernel to be run.

However, this can be desirable, as this keeps results from the last computation on

the GPU, so that they do not need to be uploaded again. Memory copies from the

CPU to the GPU take a relatively long time to perform.

These are the basic steps in a GPGPU program, and many of the languages

used to program the GPU use these steps, although the terminology may be

different for each language. There are simpler languages, but they do not yield

the great performance gains typically obtained by more low-level languages.

These steps are not enough to gain a increase in performance. Often, code por-

ted from a serial implementation will run slower than the GPU implementation.

More detail will be given in further sections, but one of themain opportunities for

increasing the performance of a program is to use what is called shared memory.

Shared memory (fig. 5.2.3) is memory that is on-chip and is approximately

100 times faster than the global memory. However, there are a lot of constraints to

using this ultra-fast memory. Unlike the global memory, the shared memory can

only be accessed from the threads on the device. This means that memory cannot

be loaded directly onto shared memory. Instead, the data need to be loaded into

the global memory, then commands need to be given in the GPU kernel code for

threads tomove the data on to the sharedmemory. Hence, sharedmemory should

only be used for data that are to be used several times per thread. In addition,
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Figure 5.2.3: Diagram from [138] of CUDA memory model. Each thread can access thread local
memory. Each thread in a block can also access block shared memory for the block that it is in.
All threads in all blocks can access global memory. The bottom figure shows that if two kernels
are running, one after another, or simultaneously (an advanced technique) on two different grids,
all of their threads can access the same global memory.

as its name indicates, the memory is shared for each block, which means that

threads in the same block use the same shared memory. This can be used to pass

data from thread to thread.

Often many algorithms require data to be passed from thread to thread. To

make sure that all the threads in the same block are at the same stage in the

computation when they swap results, there is a command in the CUDA language

to synchronize threads. This command creates a barrier in the code, where all

the threads in the block must wait at until all the other threads in the block reach

the barrier. At this point, data can be swapped between threads via the shared

memory.

This concludes the brief description of the structure of a CUDA program and
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Figure 5.3.1: Diagram from [138] of CUDA how blocks in the grid are mapped to streaming
multiprocessors during compilation.

the basic constraints in CUDA programming, but there is a lot more detail to be

covered, as this only scratches the surface of a very complicated subject. The

material covered here will yield a speed up of ten times upon serial code, but not

the 300 times speed-ups which have been associated with GPGPU programming.

Further detail on GPU program optimisation will be given in later sections.

5.3 GPU architecture and CUDA code scalability.

A basic understanding of GPU architecture is necessary to understand certain

parts of this chapter. The GPU is built out of many streaming multiprocessors.

Each of these streaming multiprocessors consist of 32 CUDA cores. One of the

reasons why the code is written in blocks is that during compilation, these blocks

are allocated by the compiler to streaming multiprocessors (see fig. 5.3.1). The

reason for this is forward and backwards compatibility. Other models of GPU

than the one used on the developer’s computer may have more streaming multi-

processors, or fewer streaming multiprocessors. The block abstraction allows the

same code to be compiled for different GPUs.
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5.4 Challenges of GPGPU programming

Note fromabove that there are several challengeswhenprogramming on theGPU.

There is limited autonomy between threads in the GPU – each thread in a warp

needs to perform the same operations. The data need to be transferred to and

from theGPUbefore and after the kernel has been completed, incurring overhead.

The differences between the GPU and CPU create obstacles for the program.

Programming on the GPU involves some low-level manipulation of memory to

gain speed up. This is because there are several types of memory in the GPU.

Globalmemory is slowbut can be accessed fromall threads. Localmemory is very

fast but is not shared between threads. Shared memory is shared between blocks

of threads and is almost as fast as local memory (100x that of global memory). As

mentioned in the previous section, attention must be given to memory allocation

and usage to allow maximum performance. Indeed, the first implementation

of a GPGPU program may run slower than a CPU implementation and careful

performance tuning is necessary to gain performance which is superior to a CPU.

Even carefully performance-tuned programs can run slowly when transferred to

a computer with a different GPU from the GPU in the computer that they were

developed with, as GPU technology has evolved rapidly over the last few years.

NVIDIA has released GPUs of each generation with a different architecture,

each with different structures and performance properties. Each architecture is

given a name (for example: “Tesla”) and a number, denoting compute capability.

Compute capability is a term often used interchangeably with architecture, but

can indicate the capabilities of the GPU in a more specific way. For example,

the first wave of CUDA GPUs were of the architecture “Tesla”, which comprises

GPUs of compute capability 1.0, 1.1, 1.2, 1.3. GPUs of compute capability ≥ 1.1 are

able to perform integer atomics on 32-bit words in global memory, for example,

whilst a GPU of compute capability 1.0 cannot do so. To date there have been

Fermi, Kepler, Maxwell, Pascal, and Volta architectures. The differences between

the architectures are too numerous to list here. For a full list of the differences

between GPUs of different architecture, see [138]. The Kepler architecture has
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been used for the runs in this thesis, which was the latest architecture at the start

of the project. A lot of the additions and advances in GPU technology have since

been oriented towards machine learning (such as low-precision computation),

which has been one of the major uses of GPGPU programming. This thesis will

detail themethods used to allow the program to self-tune towhatever architecture

of GPU is running on the computer.

Aswith all parallel programming, there is the issueof synchronization. Threads

throughout the device can only be synchronised from the host (i.e. the CPU).

Threads within each block can be synchronised from the GPU. Hence, there is

an incentive to partition blocks such that the computation for each block is inde-

pendent of other blocks.

5.5 Parallel Programming Patterns and Parallel Pro-

gramming Libraries

This section begins with a review of two of the most important parallel program-

ming patterns [120]: reduction and map. These will be used to show how ap-

parently trivial algorithms can become complicated to implement using GPGPU,

despite the speed benefits. This section will conclude with a discussion of how

parallel programming libraries aid the parallelisation and tuning of algorithms

that fit common parallel programming patterns.

Many programs follow programming patterns (also known as algorithmic

skeletons)[120]. The first is “reduction”.

Example 21 (Parallel Reduction). Parallel reduction, a parallel generalisation of

serial reduction, is an example of a commonly used programming pattern which

needs to be parallelised.

Definition 22 (Reduction). Suppose we have a binary commutative and associat-

ive operator ⊕ : X2 → X. Let C � { f | f : X2 → X}. Then a reduction (a term

attributed to [1]) reduce : Xn × C → X of an array V ∈ Xn ,V � (v1, v2, . . . , vn) is

a function defined by (using notation similar to [22, 124]):
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reduce(V, ⊕) � v1 ⊕ v2 ⊕ . . . ⊕ vn

This is also known as a fold in functional programming (there are left and

right folds, which are outside the scope of this example, and for associative op-

erations a left fold is a right fold). The name “reduction” is thought to originate

from the Lisp programming language [119, 167]. This function is known as

Reduce(func, list, initval) in R, Fold[func, initval, list] in Mathem-

atica and std::accumulate(begin, end, initval, func) in C++.

This will be used to combine the different parts of the log-likelihood into a

single sum.

Corollary 23 (Summation is a reduction). Observe that:

n∑
i�1

vi � reduce(V,+)

Corollary 24 (Product is a reduction). Observe that:

n∏
i�1

vi � reduce(V, ·)

The most common algorithm used to implement this on a single processor is

as follows:

1. Create a variable called “sum”. Set this to 0.0

2. For i � 1, 2, . . . , n, add vi to sum

3. Return sum

This algorithm is not an efficient implementation a reduction on a parallel pro-

cessor, because there is no code that performs any parallel operations. Therefore,

there is no benefit from using a parallel processor. Another algorithm is needed,

which processes several items in parallel.

A commonly used algorithm, to implement a reduction on the GPU is the cas-

cading reduce, where the elements of the first half of the array are combined with
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the second half, the second half of the array is deleted, and this process is repeated

until there is a single element remaining, which is the result of the reduction. This

algorithm was created so that thousands of additions or multiplications (or any

other reduction operation) can be performed simultaneously on the GPU, which

has thousands of processors. For example, to parallelise the reduction for n � 2k

and ⊕ commutative, the associative and commutative property of ⊕ is used. For

example, for n � 8:

reduce(V, ⊕) � v1 ⊕ v2 ⊕ v3 ⊕ v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v8

� (v1 ⊕ v5) ⊕ (v2 ⊕ v6) ⊕ (v3 ⊕ v7) ⊕ (v4 ⊕ v8)

� ((v1 ⊕ v5) ⊕ (v3 ⊕ v7)) ⊕ ((v2 ⊕ v6) ⊕ (v4 ⊕ v8))

The reduction is done in steps, where the elements of the first half of the

array are combined element-wise with the second half using ⊕, the second half

of the array is deleted, and this process is repeated until there is a single element

remaining, which is the result of the reduction.

That is, at step 0 we have:

V0 � (v1, . . . , vn)

and at step 1 we have:

V1 � ((v1 ⊕ vn/2+1), (v2 ⊕ vn/2+2), . . . , (vn/2 ⊕ vn))

and so forth until we have

Vk � (v1 ⊕ v2 ⊕ . . . ⊕ vn)

Vi is stored in global memory and at each step all the GPU processors are syn-

chronised by the CPU. This is an example of how an apparently simple algorithm

sometimes becomes complicated when forming a parallel algorithm. In addition,
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there aremore complicated algorithms for themore general casewhich take n ∈ N

and ⊕ non-commutative. There are also algorithms with other performance char-

acteristics which may be desirable in various circumstances. However, many of

the simple reduction algorithms have been implemented in ready-to-use modules

in CUDA CUB, which contains several implementations of reduction. The effi-

cient implementation of fast reduction on the GPU is an active research topic in

computer science (for example, [81, 117, 86]).

Example 25. An example of another commonly used algorithm in our code is:

map : Xn × (X → X) → Xn

Definition 26 (Map). map : Xn × (X → X) → Xn is a higher order function

defined by:

map(V, f ) � ( f (v1), f (v2), . . . , f (vn))

This can be parallelised in a straightforward manner by loading vi into pro-

cessor i, performing f upon it and writing the result to global memory. If the

number of elements in V exceeds the number of processor, each processor will

process several elements. There are several variants of this algorithm which use

different types of memory, for different performance properties, and the gran-

ularity (how many elements are processed by each processor) can be tuned for

performance, due to latency or throughput issueswith the calculation of f . There-

fore, it is important to note that it is difficult to predict which algorithms are easy

to parallelize, as relatively similar algorithms can lead to very different imple-

mentations.

However, the complexity of implementing such algorithms likemap and reduce,

which are sometimes called primitives, has led to the creation of libraries such as

CUDA CUB, which is used in this thesis. CUDA CUB has implemented several

GPU primitives, such as map and reduce, using CUDA and template C++, such

that on compilation, the compiler detects what GPU is fitted in the computer and

selects the best algorithm automatically. Through the use of these libraries, the
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impact of different GPU architectures is minimized by using an algorithm that

can be expressed in terms of these primitives. However, such libraries are not

sufficiently flexible for everything to be expressible in terms of library functions,

and not all programs, including the programs used in this thesis, fit patterns, and

require extensive hand coding and tuning of certain parts of the algorithm.

5.6 GPGPUprogramoptimisation principles and pat-

terns

The total run time of a serial program is the sum of the execution times of all

the individual instructions in the program. For a parallel program when many

instructions are run simultaneously this is not the case. Instead the performance

of a parallel program is dependent on many complicated and interacting factors

(for example, see [186, 185, 187, 81]. Execution time is dependent upon the latency

and throughput of each item i.e. memory transactions, instructions etc. This is

referred to by some computer scientists as Little’s law [113]. The latency of each

item is the difference between the start and end time of each item. The throughput

is the rate at which items can be processed, usually measured in items per clock

cycle.

The latency on the GPU is mostly affected by memory loads and stores and

is usually hidden by keeping as many threads in flight as possible (GPU thread

switching incurs relatively little performance loss). The GPU is a throughput

focused processor, but branch divergence (i.e. conditional statements) can halve

the computational throughput since groups of 32 threads (warps) need follow

exactly the same commands. In addition, occupancy is affected by block size

which then affects the number of threads in flight. There is a limited amount of

shared memory and registers available, so only a limited number of threads can

run at the same time on the same SM (Streaming Multiprocessor, see Section 5.3)

and hence only a certain number of thread blocks.

Hence, optimisation of GPU code is a difficult task. Nevertheless, in [170] in
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a review of highly optimised CUDA code in the existing literature, found that

there were seven major techniques of optimising performance. These techniques

are not used in isolation; one technique tends to reveal an opportunity to use

another in the list. In addition, the list is not exhaustive; there are many low-level

and architecture-specific optimisation techniques which can be used. However,

the list gives a high-level view of the general techniques in improving parallel

program performance.

5.6.1 Data layout transformation

This technique involves a transformation of the data layout to optimise reads and

writes frommemory. Globalmemory is read in “chunks”, thus, to optimise theuse

of memory bandwidth, adjacent threads should read adjacent memory locations,

in order to minimise the number of memory transactions. This is called burst

utilisation [115]. There are many transformations that can be performed (some

of which are very complicated and beyond the scope of this thesis). The most

common transformation is transforming an array of structures into a structure of

arrays (see fig. 5.6.1), as the latter has better memory performance, since the reads

are from memory locations adjacent to each other.

5.6.2 Scatter to Gather Conversion

A scatter operation is defined as an operation in which each thread reads an

element of data (whose location is known) and produces many results (which

may or may not be statistically random in location), which are written to different

locations in the output vector. A gather operation is the opposite, in which each

thread reads many inputs (which may or may not be statistically random in

location) and writes to a single output location per thread (whose location is

known).

Gather operations are preferable for parallel programming because they avoid

many conflicting writes to the same location. When conflicting writes are made

to the same location, two or more threads may write to the same location at once.
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Figure 5.6.1: Diagram from [170] of how data layout transformation can allow efficient use of
memory bandwidth. In the top figure, each thread represented by the blue circles processes every
fourth element in the data. This is because the data are defined in the code on the right and an
array of structures. Transforming the data to be represent as a structure of arrays, represented by
the middle diagram now causes the threads to access adjacent entries in memory, allowing more
burst utilization. The bottom figure shows a more complex data transformation that allows all
threads to access entries in the memory which are next to each other.

This creates what is known as a memory race. To avoid each thread from making

conflicting writes, quite often atomic [148] operations (operations that appear to

each thread as an indivisible and uninterruptible single operation) are used. An

atomic memory operation is a memory operation which completes in one step

relative to other threads. Hence, when a thread is performing an atomic memory

write, the memory location is never visible as half complete to other threads,

hence cannot be modified by other threads while the write is in progress. Using

these produces a significant loss in performance, because it essentially makes the

memory writes serial [115].

A scatter-to-gather operation is a transformation of the program or kernel which

allows the computation to be changed from a scatter operation to a gather opera-

tion (see fig. 5.6.2). By converting the scatter to a gather the conflicting writes can

be eliminated without resorting to using costly atomic operations.

5.6.3 Tiling

Shared memory is a lot faster than Global memory, so if values are repeatedly

being loaded or stored, the data for those threads can be loaded from the Global
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Figure 5.6.2: Diagram from [170] of the scatter to gather parallel optimisation pattern. In this pat-
tern, a scatter, in the left figure, an operation which reads one input location per thread, but writes
to several locations causes several threads to write to the same location at once. These conflicting
write operation are denoted by the red arrows, and the non-conflicting memory operations are
denoted by the blue arrows. The right figure shows what happens when this scatter operation is
converted to a gather operation. The gather operation reads several memory locations per thread,
but only writes to a single output location per thread. By using this technique the conflicting
writes have been eliminated without resorting to using costly atomic operations.

Figure 5.6.3: Diagram from [170] of tiling. In the top figure, the unoptimised code reads from
global memory. Tiling, shown on the bottom left moves this data into shared memory, using the
shared memory as a scratchpad. This shared memory is approximately a hundred times faster
than global memory, allowing threads which reuse the data several times to avoid reading from
global memory several times. This is analogous to the tiling pattern for CPU parallel program
optimisation, shown on the bottom right, except that the copying needs to be done explicitly in
the GPU code, instead of implicit copying done on the CPU code, and often not all of the data can
be copied into limited shared memory on the GPU, so copying needs to be selective.

memory onto shared memory and accessed from there. This allows memory

which is being repeatedly used between several different threads to be quickly

accessed (see fig. 5.6.3). This only gives a speed-up if memory if being repeatedly

reused, as all data must first be transferred from the CPU to GPU Global memory

and cannot be transferred directly into Shared memory. Also, increasing shared

memory per block lowers the number of blocks that can be run on each streaming

multiprocessor as memory is a limited resource, leading to lower occupancy.

141



Figure 5.6.4: Diagram from [170] of privatization. The optimised code is written such that each
thread produces its own local results, only merging them at the end of each block”s computation
into a global result. This avoids writing to the same output location repeatedly.

5.6.4 Privatisation

Privatisation is the opposite of tiling. In this case, a private copy is made at the

thread or block level of data that is common between several threads or blocks,

so that threads and blocks can operate independently of each other. At the end

of each thread/block’s computation the private results are merged into a single

Global result (see fig. 5.6.4). The avoids several threadswriting to the same output

memory location repeatedly, as opposed to tiling, which avoids repeated reads

from the same input location.

5.6.5 Binning

It is sometimes unclear what input elements are taken by each thread. Creating a

data structure that maps output elements to small sets of possible input elements

is called binning (see fig. 5.6.5). This makes it possible to then use the scatter-to-

gather conversion technique.
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Figure 5.6.5: Diagram from [170] of binning (top), compaction (middle), and regularization (bot-
tom). It is common to use several of the seven GPU optimisation patterns in the same program.

5.6.6 Compaction

Often a computation taking n inputs and m outputs is parallelised using n
k threads

where k is the number of inputs per thread. If a large number of threads do not

produce any output, many of the threads will do very little processing, especially

if a single element is processed per thread (in which there is likely to be a con-

ditional statement determining whether that thread produces an output or not).

Eliminating entries which do not affect the output is known as compaction (see

fig. 5.6.5).

5.6.7 Regularisation

This involves load balancing threads, such that a minimal number of threads are

idle (see fig. 5.6.5).

5.7 Implementation of GPU accelerated RJMCMC

5.7.1 Identifying the bottleneck

The RJMCMC algorithm (see Section 4.2.4.1) is highly serial. There are two routes

to accelerating RJMCMC on the GPU [16]. One option would be to run parallel

chains on different processors, but this would require several million concurrent

chains for the GPU to be sufficiently occupied, in which case burn-in of the chain

would be difficult to assess, and large numbers of iterations would be discarded
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as burn-in. Another approach, which is the approach taken in this thesis, would

to be to run a single chain, and reduce the time for each iteration.

Consider each iteration of a single chain. Each step in the iteration is serial

dependent on the previous. However, there is a clear bottleneck in the calculation

for the likelihood. As the amount of data increases the time taken to evaluate the

posterior increases greatly.

In [110], MCMC is parallelized for a model for cancer data in the US. All

of the steps in the MCMC are performed on the CPU, including the Metropolis

step for updating one parameter and a Gibbs sampler step for another parameter.

However, the full conditional distribution is derived analytically for several of the

parameters, and these parameters are updated as a block in one Gibbs sampler

step, the calculation being performed on the GPU. This uses an algorithm to

generate many Gamma distributed random numbers in parallel. The authors of

[176] also use the GPU to update large blocks of variables simultaneously.

In [181], an approach is proposed in which data augmentation is used to

formulate GPU algorithms, in which the augmented data are updated in a single

Gibbs step. If the model is exchangeable, that is, for each observation yi there

exists a latent zi such that

π(yi |θ) �
∫
π(yi |zi)π(zi |θ) dzi

then z can be updated in a single Gibbs (or Gibbs within Metropolis) step. This

is demonstrated for horseshoe probit regression.

In these papers, Gibbs samplers (or Gibbs within Metropolis) are used to up-

date large amounts of variables in a single parallel operation. Apossible candidate

for such a strategy within epidemic models is the update of the augmented data.

However, this greatly increases the complexity of the code of the implementa-

tion, when already GPGPU code is very low-level and complex. If an analytic

form of the full conditional can be found, a separate code path would need to be

implemented for the block update of the data, and this would need to be tested

and updated, which is labour intensive, considering the work for this thesis re-
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quired a lot experimentation and modification. If the full conditional cannot be

analytically found it will be challenging to construct a block update algorithm

with sufficient acceptance rate. However, the approach of updating large blocks

of variables appears promising and further investigation is needed.

A possible idea for updating the unobserved data when using MCMC for

fitting an epidemic model is to use a non-centred parametrisation [107]. For

example, the residuals in section 3.3.2 are independent of the model parameters

and each other, and are uniformly distributed allowing them to be updated in

parallel in one step. However, parametrising the model in this way will require

re-expressing the likelihood. It is not clear, as in most GPU programs, whether

this method gives a speed gain over the method described here.

In the field of epidemic modelling there has been little work on creating GP-

GPU implementations for data augmented MCMC.

In RJMCMC, the slowest step is the calculation of the acceptance ratio, of

which the calculation of the likelihood at the proposed parameter and augmented

data values is a large part. A large speed gain can be obtained by accelerating

the calculation of the likelihood. In addition, unlike the papers featured here,

this thesis is an investigation into the effectiveness of model comparisonmethods,

several of which requiremaximum-likelihood estimation aswell asMCMC. These

methods also benefit from the acceleration of the likelihood, resulting in large

speed gains.

5.8 Previousworkoncomputational efficiency for epi-

demic models

In [29] the authors detail attempts to speed up MCMC on an SEIR model for

aphids on sugar cane plants in a plantation on the island of Guadeloupe. The

authors used the following approaches:

1. Pre-computation and storage of the distance between each host. In addition,

they compute a simplified version of the acceptance ratio for MCMC, can-
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celling terms that appear both on the denominator and the numerator. This

is a common approach used by most MCMC implementations.

2. The algorithm was parallelised. Since “snapshot” data are used, when

infections are known to have occurred in different time intervals, proposals

which violate this ordering are instantly rejected, and infection times are

updated in parallel when they occur in different intervals. The transmission

kernel is also pre-computed and stored.

3. Since an isotropic transmission kernel is symmetric in i and j, the number of

calculations can then be halved. Finally they truncated the transmission ker-

nel, assuming there are no secondary infections beyond a certain distance.

They also used a discrete-time approximation of the model.

The basic algorithm (with no optimisations) took 232.33 seconds for 100 itera-

tions. The parallel implementation took 92.81 seconds for 100 iterations. The

implementation with all the optimisations apart from the truncation took 25.12

seconds for 100 iterations. The implementation with truncation of the spatial

kernel took 5.03 seconds for 100 iterations.

Two discrete-time approximations were used, with the infection events only

possible at a discrete set of time points. The unoptimised discrete-time approx-

imation implementation toon 901.23 seconds for 100 iterations. When the spatial

kernel was truncated as before this implementation took 35.95 seconds for 100

iterations.

TheCUDAblog features an interviewwithChris Jewell of LancasterUniversity

[133]. In the interview, published in 2015, he details how using GPGPU with

CUDA has benefited his work, and the challenges and best practices that he

found in his programming experience. As of the time of writing, no paper has

been published detailing his methods, but a code repository is available online on

GitHub [93]. According to [93] the algorithm focused on offloading the calculation

of the likelihood to the GPU, and yielded substantial speed-up on the 2001 FMD

data set, which involved 188361 hosts (in this case farms are considered to be

hosts).
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The model fitted to the data consists of four states: susceptible S, infected

I, notified N , removed R. Farms which move onto the next stage of infection

cannot move backwards and recover. Farms which are in the notified state and

the infected state can infect animals in the susceptible state. There is a period in

which animals are infected but not infective, which is four days. Let λ( j, t) be the

infectious pressure on susceptible j at time t, then:

λ( j, t) � ε(t) +
∑

i∈I(t)
βi j h(t I

j − t I
i ) +

∑
i∈N(t)

β∗i j h(t
I
j − t I

i )

where

h(t) �


0 t < 4 days

1 otherwise.

The movement ban is modelled by altering the primary infection rate, so that

ε(t) �


ε1 t < movement ban

ε1ε2 otherwise.

The secondary infection rate consists of a susceptibility term, an infectivity

term and a distance-dependency term.

For i ∈ I(t), j ∈ S(t):

βi j � γ1β
(I)
i β
(S)
j β(D)i j

β∗i j � γ2βi j

where ci , si , pi are the numbers of cattle, pigs and sheep at site i, c̄ , s̄ , p̄ are the

mean numbers of cattle, pigs and sheep at each site. Here the susceptibility β(S),
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infectivity β(I) and distance dependency terms β(D) are:

β(I)i �

( ci

c̄

)ψ1
+ ξ2

(
pi

p̄

)ψ2

+ ξ3

(
si

p̄

)ψ3

β(S)j �

( c j

c̄

)φ1
+ ζ2

(
p j

p̄

)φ2

+ ζ3

(
s j

p̄

)φ3

β(D)i j �
δ

(δ2 + ρ2
i j)ω

Reading through the source code was challenging, as it is written as part of a

larger application, which involves data reading, output and visualization. Nev-

ertheless, the relevant files were identified. A brief read through of the approx-

imately 3000 lines of code required to implement calculation of the likelihood on

the GPU, several notable features of the implementation were noted. The GPGPU

code is written in CUDA, with a total of thirty different kernels for maintaining

and uploading the data to the GPU.

Part of the reason why many kernels are needed to maintain the data is due to

a key approximation made on the calculation of the transmission kernel. Outside

a radius of 25 kilometres the transmission kernel is assumed to be zero. Unlike the

algorithm in this thesis, instead of caching the transmission kernel, the distance

matrix is cached. This distance matrix would be too large to cache, for the data set

consists of 188361 farms, each of which is considered a host. Instead, the distances

between each host are evaluated and the entries for those pairs of hosts which are

further than the truncation radius are discarded. This in effect changes the spatial

kernel to:

β(D)i j �


δ

(δ2+ρ2
i j)ω

ρi j < 25km

0 Otherwise

This allows the distance matrix to be stored in a space-saving format known as a

sparse matrix. This stores a m × n matrix M as three arrays (A, IA, JA). A stores

all the non-zero entries of M. Let mi j be a non-zero entry of M. The zero entries

of mi j are not stored. The ith element of IA holds the index of the first element
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of A that is in row i (in programming terms, called the row pointer). The array

JA stores the column indexes from the original matrix: the kth element of JA

holds the column number (in the original matrix M) of the kth element of A. For

example, if the value of mi j � 1 were stored at A[k], then JA[k] would be j, and

A[k] � 1.

Jewell’s algorithm partitions the calculations in a manner that differs from

our approach, with the intermediate calculations stored on the GPU between

calculations and the code written. With the FMD model, the force of infection

between an infected individual and a susceptible individual, is comprised of a

term representing the susceptibility of the host (which depends on the mix of

animals present at the site), a term representing infectivity of the infector, and a

distance dependency term, which is the spatial kernel. The data stored on the

GPU are arrays of the susceptibility and infectivity of each host premises, and

the distance matrix, and the observed data and a vector of the unobserved infec-

tions. These are only updated when they are changed. Jewell’s code has different

updated routines that are run depending on the circumstance: recalculate the

full likelihood, recalculate the likelihood but avoid power calculations by using

the values
( ci

c̄

)ψ1 ,
(

pi
p̄

)ψ2
,
(

si
p̄

)ψ3
,
(

c j
c̄

)φ1
,
(

p j
p̄

)φ2
and

(
s j
p̄

)φ3
which are loaded from

stored memory. The latter is used when the parameters ψ1, ψ2, ψ3, φ1, φ2 and φ3

have not changed between successive evaluations of the likelihood. This is far

more complicated than the implementation in this thesis, which has only one up-

date routine. Nevertheless the implementation presented in this thesis appears to

offer a considerable gain in speed compared to Jewell’s implementation. Depend-

ing on which routine is called, different GPU kernels are called. These include a

kernel to update the “product” (analogous to S1i), and one to update the “integral”

(analogous to S2i). In addition, there are GPU kernels to calculate the “infectivity”

β(S)i , “susceptibility” β(S)i , and the primary infection integral
∫ t

0 ε(x)dx. These are

computed in a 1-dimensional grid (as opposed to a 2-dimensional grid in this

thesis), and reduced using a library called CUDPP [82, 83, 162, 163, 183]. These

stages are implemented as map-reduce patterns (although not explicitly named
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as such in the code, nor in the blog post).

This appears to be an adequate strategy for large data-sets (hundreds of thou-

sands of hosts). However, there are several features which make this approach

unsuitable for medium tomoderately large data-sets (thousands of hosts). In fact,

there appears to be work ongoing to make the code switch to the CPU automatic-

ally in this circumstance [156]. There are several features that lower the efficiency

of the implementation. The first is the use of sparse matrices. The data layout

of sparse matrices hinders the efficient accessing of memory, since the matrix is

stored in three arrays instead of one, the index array and row pointer array needs

to be accessed aswell as the data arraywhen performing calculations. Such global

memory operations are costly on the GPU. Because of the truncation and the use

of sparse matrices, memory accesses to the observed data (not the accesses to

the sparse matrix data, but any other data that need to be accessed as a result

of the sparse matrix data) tend to be uncoalesced, leading to inefficient use of

bandwidth. The implementation in this thesis uses dense matrices, which lower

the amount of memory accesses, and increase the likelihood of coalescedmemory

accesses. In addition, there are no approximations involved (such as the 25km

spatial kernel truncation mentioned above) therefore calculation of the likelihood

is exact.

In addition, the strategy of recalculating the likelihood in separate parts leads

to several inefficiencies: first of all, this has led to separate parts of the likelihood

being calculated in different GPU kernels. This serialises a lot of the calculation,

exploiting less of the possibilities of parallelism. In addition, each kernel launch

incurs a performance penalty. A kernel takes a set amount of time to launch

and complete regardless of what it does. Launching too many kernels serially

hinders performance greatly. In this thesis, the overhead of kernel launch was

found to be a substantial proportion of the run time of a kernel. A possibility

would be to parallelize kernel launches, leading to further complexity in the code.

This may not be possible as there may be not enough resources on the GPU to

run several of the kernels at once. The algorithm in this thesis is designed to
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calculate the “product”, “integral”, and “background integral” in one kernel,

instead of three, and does not serialize these tasks. Instead of running several

kernels simultaneously, the single internal reuses memory, such that all stages of

the map calculation can be performed in a single kernel, and will not encounter

the resource limitation caused by parallel kernel launches. Performing the map

operation in one kernel instead of several map operations in several kernels incurs

minimal overhead.

It may seem paradoxical that performing fewer calculations may hinder per-

formance, butGPUperformance is oftenunintuitive, particularlybecausememory

operations are slow relative to calculation, to the extent that it might sometimes

be faster to recalculate a value than to load from memory. In addition, it is not so

much the number of operations but rather the level of parallelism exposed: having

more threads in flight can hide the latency of costly memory operations. How-

ever, having too many threads in flight may incur a performance cost. Finding

the optimal balance is a non-trivial task.

In the codeby Jewell, the calculations appear tobeperformedona1-dimensional

grid, whilst the algorithm here uses a two dimensional grid, which allows bet-

ter control of granularity and generates more threads, allowing the GPU to hide

memory latency by switching thread. A possible motivation for this is that the

map-reduce pattern in this calculation may be seen is analogous to sparse matrix

multiplication. However, the difference between the calculations here and the

matrix multiplication task is that a lot more memory accesses are needed during

the map phase (the multiplication of individual elements). The latency needs to

be hidden by keepingmore threads in flight, so that the GPU can hide this latency

by switching threads whilst the memory load is in progress. the implementation

here uses a 2-dimensional grid for this purpose.

In addition, the calculations in Jewell’s code are float or 32-bit precision. This

means each decimal number in the program is represented by a 32-bit binary

code. In the programs used for this thesis the calculations are in double precision,

which means that in each calculation the numbers or represent by a 64 bit binary
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code. Thus, the calculations are rounded to a larger number of significant figures,

allowing more precise results. Finally the last difference between the code in

this thesis and Jewell’s code is that the code in this thesis auto-tunes itself to the

GPU present on each computer that it is run on. Macros in the code select the

most appropriate code path depending on the model of the GPU, and libraries

which are capable of auto-tuning are used, allowing the algorithm to be optimised

for whatever GPGPU the algorithm is run on. Jewell’s code does not have this

capability, although development is in progress to shift calculation from the GPU

back to the CPU when GPU performance is poor. .

The PhD thesis [28], focuses on implementing MCMC for compartmental

spatio-temporal epidemic models. The thesis is focused at creating an easy-

to-use library for R which is programmed in C++. The model used was an SEIRS

model, in which the “hosts” were sites comprising many individuals. Instead of

using a spatial kernel, the author used a distance matrix to model the interaction

of different sites over distance. The code was implemented in OpenCL, a library

for programming on the GPU. The reason for using OpenCL instead of CUDA

was that OpenCL code can run on GPUs produced by any manufacturer, whilst

CUDA code is limited to GPUs produced by NVIDIA. This flexibility is at the

cost of ease of use – OpenCL code is very verbose, requiring many more lines

of code than CUDA. The author of the thesis found that “As of this writing, the

OpenCL features of libSpatialSEIR are not being used for any of our own data analyses

or simulations. While much effort was devoted to developing the tools required to perform

the aforementioned full conditional distribution evaluations in parallel, doing so has not

yet proved practical on the wide variety of CPU and GPU hardware available to us. The

problem size for which parallelization the MCMC sampling algorithms described in the

rest of this chapter begins to pay dividends is still impractical;”. The author used two

methods to speed up the calculations on the GPU. Computation of the full condi-

tionals required computations of several sums, in which each component of each

sum was computed on the GPU and summed. The author remarked that this

requires data transfer, which either implies that the data were not stored on the
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GPU between iterations or the summation of the components was performed on

the CPU, or that it might be one of the constraints of using OpenCL. In any case,

the data transfer issues areminimized here, as data are only refreshed on the GPU

when needed and stored between iterations, and only one number is transferred

back at the end of the computation. The second performance optimisation by the

author was to use the clBLAS library, which is a library contains algorithms for

matrix operations. This library does not automatically adapt to whatever GPU is

on the system, unlike the library used in this thesis.

In summary, the nature of GPU programming requires hand-tuned code to

run effectively and outperform the CPU. There are so many different data-set

sizes, model structures, algorithms used in statistical epidemiology that an imple-

mentation that would be suitable for the majority of uses would be prohibitively

complicated, and difficult to debug and maintain. GPGPU is a powerful tool

which allows the acceleration of computer code without the communication costs

of cluster computers, and researchers in many areas of computational statistics

may benefit from becoming acquainted with GPGPU programming.

5.9 Preliminary derivation

In order to parallelize the likelihood on the GPU, the likelihood needs to be

expressed in a way that lends itself to easy implementation on the GPU. As with

any computer program, the implementation of the calculation as an algorithm

involves a lot of rearrangement of the formulae involved, such that it may be not

obvious that the algorithm finally derived calculates the desired formulae. In this

section, the derivation of the formulae used in the algorithm are given. Recall, as

in Equation 2.2.5 on page 18:

153



L(α, β, κ, αE , νE , αI , νI |x) ∝
©­­«

∏
i;t(i)E ≤T

exp

[
−

∫ t(i)E

0
C(xi , t) dt

]
· C(xi , t

(i)
E )

ª®®¬ ·©­­«
∏

i;t(i)E >T

exp
[
−

∫ T

0
C(xi , t) dt

]ª®®¬ ·©­­«
∏

i;t(i)I ≤T

fE(t(i)I − t(i)E ; αE , νE)
ª®®¬ ·©­­«

∏
i;t(i)I >T

(
1 − FE(t(i)I − t(i)E ; αE , νE)

)ª®®¬ ·©­­«
∏

i;t(i)R ≤T

fI(t(i)R − t(i)I ; αI , νI)
ª®®¬ ·©­­«

∏
i;t(i)R >T

(
1 − FI(t(i)R − t(i)I ; αI , νI)

)ª®®¬
As stated earlier, the log-likelihood is often calculated because the likelihood

produces very small values.

l(α, β, κ, αE , νE , αI , νI |x) ∝
©­­«

∑
i;t(i)E ≤T

−
∫ t(i)E

0
C(xi , t) dt +

∑
i;t(i)E ≤T

log C(xi , t
(i)
E )

ª®®¬ +∑
i;t(i)E >T

−
∫ T

0
C(xi , t) dt +

∑
i;t(i)I ≤T

log
(

fE(t(i)I − t(i)E ; αE , νE)
)
+

∑
i;t(i)I >T

log
(
1 − FE(t(i)I − t(i)E ; αE , νE)

)
+

∑
i;t(i)R ≤T

log
(

fI(t(i)R − t(i)I ; αI , νI)
)

∑
i;t(i)R >T

log
(
1 − FI(t(i)R − t(i)I ; αI , νI)

)

Merging
∑

i;t(i)E ≤T −
∫ t(i)E

0 C(xi , t) dt and
∑

i;t(i)E >T −
∫ T

0 C(xi , t) dt into one summa-

tion:
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l(α, β, κ, αE , νE , αI , νI |x) ∝
©­­«
∑

i

−
∫ min(t(i)E ,T)

0
C(xi , t) dt +

∑
i;t(i)E ≤T

log C(xi , t
(i)
E )

ª®®¬ +∑
i;t(i)I ≤T

log
(

fE(t(i)I − t(i)E ; αE , νE)
)
+

∑
i;t(i)I >T

log
(
1 − FE(t(i)I − t(i)E ; αE , νE)

)
+

∑
i;t(i)R ≤T

log
(

fI(t(i)R − t(i)I ; αI , νI)
)
+

∑
i;t(i)R >T

log
(
1 − FI(t(i)R − t(i)I ; αI , νI)

)
(5.9.1)

Computing the first and second sums are the operations thatwill be performed

on theGPU; the other four sums can involve complicated (for example, incomplete

gamma) functions that are not available on theGPU. These sumswill be computed

on the CPU in parallel whilst the computation of the first two sums are calculated

on the GPU and then added together.

The sum of the integrals need to be changed into a form that can be calculated

on theGPU. The second sum is amap operation followed by a reduction operation

(i.e. a summation), followed by a multiply and addition, so is already in the form

needed for easy implementation on the GPU.

Let i ∈ {1, 2, . . . ,N}:

C(xi , t) � α + β
N∑

j�1
1

t(i)E >t( j)I
1y j∈I(t)K(xi , y j , κ) (5.9.2)

⇒
∫ s

0
C(xi , t) dt �

∫ s

0

©­«α + β
N∑

j�1
1

t(i)E >t( j)I
1y j∈I(t)K(xi , y j , κ)

ª®¬ dt

� αs + β
N∑

j�1
1

t(i)E >t( j)I
K(xi , y j , κ)

∫ s

0
1y j∈I(t) dt

� αs +

β
N∑

j�1
1

t(i)E >t( j)I
K(xi , y j , κ)max

(
0,

(
min(s , t( j)R ) −min(s , t( j)I )

))
Hence:
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∫ min(t(i)E ,T)

0
C(xi , t) dt � αmin(t(i)E , T) +

β
N∑

j�1
1

t(i)E >t( j)I
K(xi , y j , κ)max

(
0,

(
min(t(i)E , T, t( j)R ) −min(T, t( j)I )

))
(5.9.3)

These equations only involve functions that can be computed on the GPU.

Substitute eq. 5.9.2 and eq. 5.9.3 into eq. 5.9.1:

l(α, β, κ, αE , νE , αI , νI |x) ∝
∑

i

[
αmin(t(i)E , T) +

β
N∑

j�1
1

t(i)E >t( j)I
K(xi , y j , κ)max

(
0,

(
min(t(i)E , T, t

( j)
R ) −min(T, t( j)I )

))]
+

∑
i;t(i)E ≤T

log ©­«α + β
N∑

j�1
1

t(i)E >t( j)I
1y j∈I(t)K(xi , y j , κ)

ª®¬ +∑
i;t(i)I ≤T

log
(

fE(t(i)I − t(i)E ; αE , νE)
)
+

∑
i;t(i)I >T

log
(
1 − FE(t(i)I − t(i)E ; αE , νE)

)
+

∑
i;t(i)R ≤T

log
(

fI(t(i)R − t(i)I ; αI , νI)
)
+

∑
i;t(i)R >T

log
(
1 − FI(t(i)R − t(i)I ; αI , νI)

)
We split the log likelihood into two parts for the purpose of computation:

l(α, β, κ, αE , νE , αI , νI |x) � l1(α, β, κ |x) + l2(αE , νE , αI , νI |x)

As stated earlier l1 will be computed on the GPU whilst l2 is being calculated

on the CPU. Further simplification yields:
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l1(α, β, κ |x) �

∑
i

[
αmin(t(i)E , T) +

β
N∑

j�1
1

t(i)E >t( j)I
K(xi , y j , κ)max

(
0,

(
min(t(i)E , T, t

( j)
R ) −min(T, t( j)I )

))]
+

∑
i;t(i)E ≤T

log ©­«α + β
N∑

j�1
1

t(i)E >t( j)I
1y j∈I(t)K(xi , y j , κ)

ª®¬
�

N∑
i�1

[
αmin(t(i)E , T) +

β
N∑

j�1
1

t(i)E >t( j)I
K(xi , y j , κ)max

(
0,

(
min(t(i)E , T, t

( j)
R ) −min(T, t( j)I )

))
+

1t(i)E ≤T log ©­«α + β
N∑

j�1
1

t(i)E >t( j)I
1y j∈I(t)K(xi , y j , κ)

ª®¬
]

�

N∑
i�1

[
αmin(t(i)E , T) +

β
N∑

j�1
1

t(i)E >t( j)I
K(xi , y j , κ)max

(
0,

(
min(t(i)E , T, t

( j)
R ) −min(T, t( j)I )

))
+

1t(i)E ≤T log ©­«α + β
N∑

j�1
1

t(i)E >t( j)I
1y j∈I(t)K(xi , y j , κ)

ª®¬
]

Let:

S1i �

N∑
j�1

1
t(i)E >t( j)I

K(xi , y j , κ) ·max
(
0,

(
min(t(i)E , T, t

( j)
R ) −min(T, t( j)I )

))
S2i �

N∑
j�1

1
t(i)E >t( j)I

K(xi , y j , κ) · 1y j∈I(t)

then

l1(α, β, κ |x) �
N∑

i�1

[
αmin(t(i)E , T) + βS1i + 1t(i)E ≤T log

(
α + βS2i

) ]
This is simply a series of map and reduce operations, which is suited to com-

putation on the GPU.

Observe in the above expression the outer sum can be evaluated in amassively

parallel way, where each element of the sum is evaluated individually and com-

bined into a final single value via a reduction.
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Note from above certain features of the expression:

1. If κ remains constant between successive likelihood calculations (often the

case in Metropolis-within-Gibbs), K(x, y j , κ) can be pre-calculated and re-

used. Since K(x, y j , κ) often involves the numerical calculation of the exp()

function, which is relatively lengthy, this transforms the task froma compute

intensive task to a series of memory lookups and indicator functions.

2. There are a relatively few number of conditional statements, making it suit-

able for the GPU. Any conditional statements that remain are trivial and

therefore quick to evaluate.

3. For each i in the outer sum above, there are several elements which are

repeated. The spatial kernel K(xi , y j , κ) and indicator 1
t(i)E >t( j)I

are sometimes

used twice per evaluation.

4. Only the numerical result of l1(α, β, κ |x) needs to be transferred back from

the GPU minimising memory transfer back from the GPU.

5. All of the observed data can be kept on the GPU for future likelihood calcu-

lations. This minimises memory copy to the GPU.

6. Note that S1i is an alternate form of

∑
i;t(i)E ≤T

−
∫ t(i)E

0
C(xi , t) dt +

∑
i;t(i)E >T

−
∫ T

0
C(xi , t) dt

7. Note that S2i is an alternate form of

∑
i;t(i)E ≤T

log C(xi , t
(i)
E )

Note that from above, it is possible to also parallelise S1i and S2i as well as

the outer sum, evaluating each element on different threads within a block and

performing a reduction. In fact it is possible to evaluate both a single element of
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the sum S1i and a single element of the sum S2i on a single thread, by first evaluat-

ing 1
t(i)E >t( j)I

K(xi , y j , κ) thenmultiplyingbymax
(
0,

(
min(t(i)E , T, t

( j)
R ) −min(T, t( j)I )

))
and 1y j∈I(t) to get an element of the sum of S1i and S2i respectively. This approach

is taken in the code for this thesis.

5.9.1 Layout of the thread grid and blocks

The thread blocks will need to therefore be 2-dimensional to implement the two

layers of summation above. The thread grid will be one block tall, and several

blocks wide (depending on the size of the data). Each thread in each thread block

will compute an element of the sums S1i and S2i , the results in each column will

be reduced via a reduction algorithm to obtain an element of the outer sum. After

each column in each block has evaluated an element of the outer sum, the outer

sum will be evaluated by performing a reduction.

The grid consists of mb thread blocks, which have the 2D arrangement:

block1 block2 block3 . . . blockmb

Each block consists of mtx × mty threads which are arranged in the following

2D configuration, where mty is always a power of two (the cascading reduction

described earlier will be used to reduce the inner sum):

thread11 thread12 thread13 · · · thread1mtx

thread21 thread22 thread23 · · · thread2mtx

thread31 thread32 thread33 · · · thread3mtx

... · · · · · · . . .
...

threadmty 1 threadmty 2 threadmty 3 · · · threadmty mtx

Note that the same time, as the GPU calculations are being completed, the

CPU calculates l2(αE , νE , αI , νI |x). This calculation is calculated in parallel on the

CPU (a simple map reduce operation). This result is added to the result from

the GPU to obtain the full likelihood l(α, β, κ, αE , νE , αI , νI |x) � l1(α, β, κ |x) +

l2(αE , νE , αI , νI |x). The calculation on the CPU is because the incomplete gamma
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function is not available on the GPU (at the time of implementation).

5.10 The CUDA kernels

Included here is the CUDA code for the GPU kernels. The CPU code is not in-

cluded here, since it comprises several hundred lines of code, mostly comprised of

boilerplate code (verbose code that performs basic but essential tasks, for example

memory transfer to and from the GPU, interface with the numerical optimisation

library, interface between the C++ and CUDA code, refreshing the data on the

GPU, conversion between the parametrisation used in different libraries etc.).

Readers are not expected to understand fully the code presented in this section,

as it would require an understanding of the thousands of lines of code not re-

lated to the material in this chapter. An explanation of what this code does is

detailed in section 5.11. An explanation will be given in the following sections,

with references to the relevant line numbers.

5.10.1 Precomputation and storage of the transmission kernel

1 __global__ void

2 SLogLKern2cached_general_updatekern(const double alpha, const double

beta, const double kappa, const double Ealpha, const double Ebeta,

const double Ialpha, const double Ibeta, const double* __restrict__

d_Etime, const double* __restrict__ d_Itime, const double*

__restrict__ d_Rtime, double* __restrict__ d_tempout , const double

time_T, const int N, double* d_currentkappa , double* __restrict__

d_cachedtrkern , int* d_kerneltype , int kerneltype , double*

__restrict__ d_cacheddist , double* d_loaddist , double* __restrict__

d_dirmatx , double* __restrict__ d_dirmaty , const double*

__restrict__ wx, const double* __restrict__ wy, const double*

__restrict__ tw, const int windtype , int* __restrict__ d_windtype)

3 {

4 double trkern;

5 double dr_cachedist;

6 double dr_xcoordj;
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7 double dr_ycoordj;

8 double dr_dx;

9 double dr_dy;

10

11

12 if ((__ldg(d_currentkappa) != kappa) || (__ldg(d_kerneltype) !=

kerneltype) || (dr_loaddist != 0.0) || (__ldg(d_windtype) !=

windtype))

13 {

14

15 for (MYINT j = blockIdx.x * blockDim.x + threadIdx.x;

16 j < POPSIZE;

17 j += blockDim.x * gridDim.x)

18 {

19 if (dr_loaddist != 0.0)

20 {

21 dr_xcoordj = d_xcoord[j];

22 dr_ycoordj = d_ycoord[j];

23 }

24 for (MYINT i = blockIdx.y * blockDim.y + threadIdx.y;

25 i < j;

26 i += blockDim.y * gridDim.y)

27 {

28

29 if (dr_loaddist != 0.0)

30 {

31 double t1 = d_xcoord[i] - dr_xcoordj;

32 double t2 = d_ycoord[i] - dr_ycoordj;

33 dr_cachedist = sqrtf(t1*t1 + t2*t2);

34

35 d_cacheddist[POPSIZE*j + i] = dr_cachedist;

36 }

37 else

38 {

39 dr_cachedist = __ldg(&d_cacheddist[POPSIZE*j + i]);

40 }

41
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42 if (kerneltype == 0)

43 {

44

45 trkern = expf(-kappa*dr_cachedist);

46

47 }

48 else if (kerneltype == 1)

49 {

50 trkern = 1.0f / (1.0f + powf((float)dr_cachedist , (

float)kappa));

51

52 }

53 else if (kerneltype == 2)

54 {

55 trkern = powf(1.0f + (float)(dr_cachedist / kappa),

-1.0f);

56

57 }

58 else if (kerneltype == 3)

59 {

60 trkern = 1.0 / (1.0 + (dr_cachedist*dr_cachedist /

kappa));

61 }

62 else if (kerneltype == 4)

63 {

64 trkern = 1.0f / (1.0f + (float)(dr_cachedist *

kappa));

65 }

66 else if (kerneltype == 5)

67 {

68 trkern = expf(-kappa*dr_cachedist*dr_cachedist);

69 }

70 else

71 {

72 printf("ERROR kernel");

73 }

74 d_cachedtrkern[POPSIZE*j + i] = trkern;
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75

76 }

77 }

78 }

79 }

5.10.2 Calculation of l1(α, β, κ |x) - Parts of the Log-Likelihood

that Can Be Calculated on the GPU

1 __global__ void SLogLKern2cached_aftergpucourse5_2cachedist2(const

double alpha, const double beta, const double kappa, const double

Ealpha, const double Ebeta, const double Ialpha, const double Ibeta

, const double* __restrict__ d_Etime, const double* __restrict__

d_Itime, const double* __restrict__ d_Rtime, double* __restrict__

d_tempout , const double time_T, const int N, double* d_currentkappa

, double* __restrict__ d_cachedtrkern , int* d_kerneltype , int

kerneltype , double* __restrict__ d_cacheddist , double* d_loaddist ,

const int calce)

2 {

3 double trkern;

4 double dr_Etimej;

5

6 if (blockIdx.y == 0 && blockIdx.z == 0)

7 {

8 __shared__ double sharedtemp[BLOCKV][BLOCKH];

9 __shared__ double sharedtemp2[BLOCKV][BLOCKH];

10

11 for (MYINT j = blockIdx.x * blockDim.x + threadIdx.x;

12 j < POPSIZE;

13 j += blockDim.x * gridDim.x)

14 {

15

16 double temp = 0.0;

17 double temp2 = 0.0;

18

19 dr_Etimej = __ldg(&d_Etime[j]);
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20

21 for (MYINT i = threadIdx.y;

22 i < j;

23 i += blockDim.y)

24 {

25 if (dr_Etimej > d_Itime[i])

26 {

27 trkern = __ldg(&d_cachedtrkern[POPSIZE*j + i]);

28

29 if (dr_Etimej < d_Rtime[i] && dr_Etimej <= time_T

&& d_Itime[i] <= time_T)

30 {

31 temp2 += trkern;

32 }

33 temp += fmax(0.0, (fmin(time_T, fmin(dr_Etimej ,

d_Rtime[i])) - fmin(time_T, d_Itime[i])))*

trkern;

34 }

35 }

36

37 sharedtemp2[threadIdx.y][threadIdx.x] = temp2;

38 sharedtemp[threadIdx.y][threadIdx.x] = temp;

39

40

41 __syncthreads();

42

43

44

45 for (MYINT i = BLOCKV / 2; i > 0; i >>= 1)

46 {

47 if (threadIdx.y < i){

48 sharedtemp[threadIdx.y][threadIdx.x] += sharedtemp[

threadIdx.y + i][threadIdx.x];

49 if (dr_Etimej <= time_T){

50 sharedtemp2[threadIdx.y][threadIdx.x] +=

sharedtemp2[threadIdx.y + i][threadIdx.x];

51 }
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52 }

53 __syncthreads();

54 }

55

56

57 if (threadIdx.y == 0)

58 {

59 if (dr_Etimej <= time_T)

60 {

61 d_tempout[j] = log(alpha + beta*sharedtemp2[0][

threadIdx.x]) - (alpha*fmin(dr_Etimej , time_T)

+ beta*sharedtemp[0][threadIdx.x]);

62 }

63 else

64 {

65 d_tempout[j] = -(alpha*fmin(dr_Etimej , time_T) +

beta*sharedtemp[0][threadIdx.x]);

66 }

67 }

68

69

70 }

71

72

73 }

74 }

5.11 Implementing the algorithm

We implement the RJMCMC to make use of the heterogeneous structure of the

computer. Random number generation and the choice to accept/reject proposals

are done on the CPU. In addition, there are some parts of the likelihood which

cannot be computed on the GPU, specifically the incomplete gamma function.

The likelihood is implemented as thus:

1. The data are copied to the GPU and any precomputation is performed

165



(Kernel “SLogLKern2cached_general_updatekern”):

(a) When the likelihood subroutine is called, the program on the host

checkswhether the data are up to date, otherwise the data are uploaded

to the GPU (CPU code, GPU code has an “if” statement to double check

at line 12).

(b) The distance matrix for all the hosts in the epidemic is precomputed

and stored. This is only updated if the data-set has been changed (lines

29-36).

(c) The transmission kernel K(xi , y j , κ) is pre-computed for all pairs of

hosts i and j in the epidemic, using the distance matrix in the last

step. The distances are read in from Global memory through the tex-

ture pipeline to speed up the loads. Adjacent threads access adjacent

memory locations, making use of “burst utilisation”, described in sec-

tion 5.6.1 on page 139). The results are stored in an array (line 74).

It is not computed if up to date. This is a parallel map (described in

section 26 on page 137) .

2. The task of calculating S1i j and S2i j is performed by column j, with the task

divided up between the threads in the column (Kernel “SLogLKern2cached

_aftergpucourse5_2cachedist2”):

(a) Each thread column in each block calculates several of the S1i j’s and

the S2i j’s, each thread in a column performing its own privatised cal-

culation (this is privatisation, as in section 5.6.4 on page 142, with

granularity coarsening, one of the general optimisation techniques for

parallel programming). These are summed in each thread to form a

temporary sum.

(b) There is a thread barrier where processors that have finished their cal-

culations so far have towait upon processors which are still calculating.

(c) The privatised results are merged into block-wide results: When all

processors have reached the barrier, a simple cascading reduce (de-
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scribed in section 5.5 on page 136) is performed on the temporary sums

stored by each thread column (this is why the number of each threads

in a column in each block are always a power of two). This yields S1i

and S2i .

3. Each element of the outer sum is computed: that is, Ei � αmin(t(i)E , T) +

βS1i + 1t(i)E ≤T log
(
α + βS2i

)
is calculated. This is a parallel map (described

in section 26 on page 137) . These are written to global DRAM. Adjacent

threads write to adjacent memory locations known as memory coalescing,

described in section 5.6.1 on page 139. The threads are synchronised at a

barrier. This yields an array containing the Ei’s which is situated on the

GPU (this is privatisation, as in section 5.6.4 on page 142).

4. As there is no way to form a barrier to synchronise all thread blocks on the

GPU without the intervention of the CPU, control is returned to the CPU,

which then waits for all computation to complete on the GPU and launches

a kernel on the GPU which computes l1(α, β, κ |x) �
∑N

i�1 Ei . This is a global

reduction, implemented in the library CUDA CUB. During compilation, the

librarydetermineswhatGPU isfitted in the computer and selects theoptimal

reduction algorithm. This may comprise one or many kernels, depending

on what is optimal for the model GPU fitted in the computer. This result is

then transferred from the memory of the GPU, back to the CPU.

5. At the same time, the CPU has been calculating l2(αE , νE , αI , νI |x), by the

standard method. This calculation is simply a parallel map followed by a

reduction, and is parallelised using OpenMP. There is a barrier where the

computer has to wait for both the GPU and CPU calculations to finish.

6. This result is added to the result from the GPU to obtain the full likelihood

l(α, β, κ, αE , νE , αI , νI |x) � l1(α, β, κ |x) + l2(αE , νE , αI , νI |x).
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5.12 Optimisation of the algorithm

Readers should note that the word "optimisation" is used in the programming

sense: to improve performance. This does not mean that the algorithm detailed

here is the ultimate algorithm for its purpose, and that no improvement is possible.

However, the algorithm detailed here gives high performance, whilst leaving the

code relatively straightforward to understand, and adequately flexible the work

that was done for this thesis.

Several optimisation patterns detailed in section 5.6 have been applied to the

code. Privatisation was applied, so that each thread will calculate its own partial

sum, with the final partial sums aggregated into one global result. The calculation

of the log-likelihood is a gather operation. Temporary data structures were held in

fast temporarymemory, with read-only loads from global memory going through

the texture buffer. Using the CUDA CUB library allowed the automatic selection

of reduction algorithm in the device-wide reduction dependent on what hardware

was available and the size of the data. The data were sorted to avoid warp

divergence.

5.13 Implementing the ILR residuals test on the GPU

For the initial test runs of the ILR, the algorithm was performed on the CPU.

However, for the FMD 2001 data-set, the data-set was so large (almost 200,000

hosts) that it took over 3 hours for 1 iteration of the algorithm. This algorithm

was ported to the GPU to speed up the calculation.

There are two major challenges in implementing the algorithm with GPGPU

programming. The first of these challenges is the size of the data: usually it

helps to implement a CPU version of the algorithm first, thenmove it step-by-step

onto the GPU. Since the CPU version of the algorithmwould crash because of the

size of the data, it was difficult to debug the GPU version. Intermediate results

from the CPU algorithm (sometimes with subsets of the data), were taken and

compared to the GPU algorithm for the purposes of debugging. In addition, since
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the data was so large, it required a new data layout to conserve space. With this

data layout, it was not straightforward to calculate the amount of memory needed

on the GPU, which needs to be specified when allocating memory on the GPU.

The new data layout also need implementation to be coded by hand, as there was

no library which would give the functionality needed.

The second challengewas that the operations required to calculate the ILRwere

not particularly suited to the GPU. In particular, there is a step in the algorithm

which requires sorting. However, an equivalent method was found that did not

require sorting, circumventing this challenge.

5.13.1 Sparse Matrices

The transmission kernel was assumed to be 0 outside a radius of 25km. This

made it possible to pre-compute and store the transmission matrix in CSR format,

a format for storing sparse matrices (matrices where the majority of entries are 0).

Definition 27 (CSR matrix format). This stores a m × n matrix M as three arrays

(A, IA, JA). A stores all the non-zero entries of M. Let mi j be a non-zero entry of

M. The zero entries of mi j are not stored. Suppose a program requires data mi j

from the matrix M which is stored as (A, IA, JA). The ith element of IA holds the

index of the first element of A that is in row i. For example, if the value of mi j � 1

were stored at A[k], then JA[k]would be j, and A[k] � 1.

Thus, to find element mi j :

1. Determine IA[i] and IA[i + 1].

2. Search JA[IA[i]] to JA[IA[i +1]] using a search algorithm (for example bisec-

tion search). Suppose this yields the result p (when mi j , 0). If the search

does not find any result, mi j � 0.

3. Retrieve element A[IA[i] + p] .

Readers will observe that it is an inefficient process to retrieve an element from

a matrix stored in this format. This is why the algorithms implemented in this
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chapter avoid looking up values at a given column index, and instead, from a

given entry A[IA[i] + p] at a given row index i, determine the column index by

retrieving JA[IA[i] + p].

5.13.1.1 Pre-computing the transmission kernel matrix

Memory management on the GPU is allocated and deallocated by the user.

Memory allocations cannot be altered in size once they are re-allocated. Thus,

the required size of A is calculated on the CPU by determining the pairs of plots

of land less than 25 km of each other. Since this does not change between itera-

tions, the amount of space is determined from this calculation and allocated. The

transmission kernel is pre-calculated by:

1. For i � 1 . . . n:

(a) For p � 1 . . . (IA[i + 1] − IA[i]):

i. Set j � JA[IA[i] + p].

ii. Store K(xi , y j , κ) at A[IA[i] + p].

5.13.2 Inferring the SI link

All the possible SI links for a plot of land at xi are stored in A[IA[i] + p] where

p � 1 . . . (IA[i +1]−IA[i]). From this sub-array, we can determine the index of the

potential infectors j � JA[IA[i] + p]. From this we can filter these links such that

each of the y j remaining are infective before xi and removed only after xi has been

infected. This yields an array KA of all the potential infectors of xi . Note that a link

is added for a notional infector corresponding to primary infection. A random

deviate from the uniform distribution r ∼ Unif(0,∑Size(KA)
i�1 KA[i]) is generated,

and then used to select a link from this sub-array, such that the link selected is

the greatest link k less than
∑k

i�1 KA[i]. The corresponding link k selected is the

inferred infection link. Let the infector in this susceptible-infective pair be denoted

j′.
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5.13.3 Determining rank

For each pair of hosts (l , j), recall that in an earlier step K(xl , y j , κ) has been pre-

computed. In this step, to determine all possible SI pairs at the time of infection,

the aforementioned array is filtered such that only the possible SI links at the time

of infection of i remain (that is for each j is the filtered array, j is infective and

unremoved before the infection of i). This yields the array KA2.

Now in the definition of the algorithm specified earlier in this thesis (see

Section 3.3.2 on page 75), there is a sorting stage in which these links are sorted

and the rank of the imputed SI link is determined in this array. Note that on the

GPU sorting is a relatively difficult operation to implement, but sorting can be

avoided by implementing an equivalent operation. First of all note, that they are

three corresponding classes of link: the links in KA2 that are smaller in value than

the imputed SI link, the links in KA2which are larger in value than the imputed SI

link, and the links in KA2which are the same in value as imputed SI link. From the

sub-array obtained earlier, the possible SI links can be categorised in parallel into

these three groups. Suppose that values of the links which fall into each category

are summed and stored in m[0], m[1], m[2] respectively. To generate the inferred

infection link residual, a uniform random deviate is generated

r2 ∼ Unif(0, 1)

From this the imputed SI link can be determined by computing:

m[0] + m[1] · r2
m[0] + m[1] + m[2]

thus avoiding a sorting step. This also lowers the complexity of the algorithm,

which can escalate when the data-set is large, as in the case of foot-and-mouth

disease. The infection link is then stored in an array on the host CPU. Once all the

infection link residuals have been calculated the p-value can be determined using

the usual calculation for the Anderson-Darling test p-value [116].
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Chapter 6

Directional Infection Link Residuals

Tests

One of the strengths of the functional-model approach for creating test statistics

is that as long as the sampling distribution for the whole model is preserved

the residuals can be specified to focus on various aspects of mis-specification

of the model. In many cases, the tail properties of the spatial kernel has been

of vital importance because of its relation to culling radius. There have been

several instances where mathematical modelling has influenced culling radius

(for example, [100, 48, 49]) or whether it is possible (under budget constraints)

that a ring culling strategy can be put in place at all (for example, [40]). Another

underlying assumption of many models is the isotropic assumption, where the

kernel is not dependent on the bearing from one host to another, but only the

length of the vector joining them. Such an assumption may be unsafe to make

under certain circumstances as there may be reason for the disease not to spread

evenly in all directions. Wind direction, local geography, and other phenomena

may cause infection spread in one direction more than another (for example,

[51, 152]). Such model mis-specification may cause the tail length of the kernel to

be misestimated. Therefore, it is desirable to have a test for all the various types

of mis-specification that would lead to the choice of wrong control strategy.

As well as affecting control strategy, selection of spatial kernel can affect sur-

veillance strategy [4, 3], in identifyingwhich hosts to survey in order to best detect

172



Chapter 6: Directional Infection Link Residuals Tests

occurrence of the disease.

In this chapter, tests for anisotropy are formulated and analysed using simu-

lated data to determine the relative power of the various test statistics which have

been developed for anisotropy. Here, we propose two variants of the infection

link residual test that are designed to detectmodelmis-specification arriving from

anisotropy of a spatial kernel. Specifically, we consider test that can be applied in

the absence of an alternate (anisotropic) model.

6.1 The Modelling of Anisotropy in Compartmental

Spatio-temporal Epidemic Models

The most straightforward way of representing anisotropy in the spatial transmis-

sion of the epidemic is through incorporation of the anisotropy in the spatial

transmission kernel, as this represents the infectious challenge between an infec-

ted host and a susceptible host. In this case, the spatial transmission kernel is a

function of angle of the infectious contact as well as the distance of the infectious

contact. The angle may be measured from a fixed angle or the prevailing wind

direction at the time of the infectious contact. In some cases, how the force of

infection varies proportionately by distancemay be separate from how force of in-

fection varies by angle, giving a kernel function that is separable into independent

distance varying and angle varying components.

6.1.1 Formal Description of the Model

More formally, as in Section 2.1 onpage 11, let S(t), E(t), I(t), R(t)be the set of hosts

in the relevant state at time t. Hosts transition from S → E, E → I and I → R.

The hosts (which are indexed by 1, 2, . . . ,N) are distributed over a 2-dimensional

region at known coordinates {x1, . . . , xN}, where the population is of a known size

N . Hosts in state S at time t, S(t) experience infectious challenge from two sources:

primary infectious challenge, from sources/sites external to the system under

study, and secondary infectious challenge, from infectious individuals within the
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system. Let α and β be the primary and secondary infection rates. Then the

probability of exposure (for an arbitrary host x ∈ S(t)) can be modelled by the

following equation:

Pr( j exposed during [t , t + dt]) � C(x j , t) dt + o(dt)

�
©­«α + β

∑
i∈I(t)

K(x j , x i , κ)
ª®¬ dt + o(dt)

(6.1.1)

The function K(x , y , κ) in equation 6.1.1 is known as the transmission kernel,

whichmodels the effect of distance andangle on the infectious challenge fromeach

infectious host to x. In previous chapters, models have featured such transmission

kernels as the exponential kernel K(x , y , κ) � exp {−κ |x − y |} and the power-law

kernel K(x , y , κ) � (1 + |x − y |κ)−1 (used for example in [123, 134, 36, 38]) where

| · | is the Euclidean distance. These kernels, being isotropic, are functions of the

distance metric between the coordinates of the S-I pair, x and y, d(x , y) � | · |.

This principle can be extended by allowing the transmission kernel to be related

to the angle between the vector between the S-I pair, y − x , and some vector v:

ϕ(x , y , v). Analogous to the expression of an isotropic kernel being expressed

in some papers as a function of distance, K(d , κ), an anisotropic kernel can be

expressed as a function of distance and angle K(d , ϕ, κ).

6.1.2 Extension of the Infection Link residuals Test to Test for

Discrepancy from the Assumption of Isotropy

As shown in [111], the formulationof the infection link residuals r̃2 shares the same

marginal model π(θ |y) regardless of whatever ordering is used for the infection

links. Thus, the infection link residuals test can be made to detect anisotropy if an

ordering of the infection links can be found that is sensitive to mis-specification

of the isotropy assumption.

If the infection links were to be ordered by φ or cos(φ), the angle between the

infection links and the vector (1, 1), if the assumption of isotropy were correct, the

imputed directional infection link residuals would be distributed Unif(0, 1). If the
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assumption of isotropy were incorrect, then this would produce a clustering of

imputed infection links at certain angles, and thus produce clustering of imputed

directional infection link residuals at certain sections of the unit interval, and thus

reveal any discrepancy. Thus, the infection link residual test can extended to the

directional infection link residual test, by the following definition:

Definition 28 (Directional Infection link residuals). Suppose that host j is infected

by infectious host i and that this is the kth exposure event. The infection link

residual for this infection time is defined by the following:

Let the kth exposure event be between hosts i and j with probability pi j ∝

βK(xi , x j , κ). Primary infection is treated as infection from a notional infector

with force of infection α.

For all m ∈ S(tk) and n ∈ I(tk), let pmn ∝ βK(xm , xn , κ).

Order the pmn such that p(1), p(2), p(3), p(4), . . . is ordered by the cosine of the

angle between the infection link and the vector (1, 1).

Let s′ be such that p(s′) � pi j .

The infection link residual of the kth exposure r̃2k satisfies the following equa-

tion:

inf

{
s | r̃2k <

s∑
l�1

p(l)

}
� s′

We also used an alternate versionwhere p(1), p(2), p(3), p(4), . . . is ordered by the

angle between the infection link and the vector (1, 1).

The cosine of the angle can be interpreted as the projection of inoculum blown

by wind in the direction from the infective to the susceptible, if that fixed angle

used is that of wind direction. Rather than a fixed direction vector, the angle can

be taken between the wind direction at the time of the infection and the infection

link, if wind direction data is available. However, wind direction is a complicated

phenomenon, altered by many variables such as height above ground level, and

other local geography, including buildings that may stand in the way of wind.
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These variables may often not be recorded. In addition, the wind direction is

not available at all points, and is instead interpolated from data from nearby

weather stations using a meteorological model, which may introduce errors in

terms of the wind direction. For this reason, it may be advisable to use a fixed

direction vector to measure the angle of infection links against. The prevailing

wind direction in the UK is generally accepted as being South-West, so the vector

(1, 1) is a reasonable choice of reference direction. The use of ordering the infection

links by the angle between the infection link and the direction vector instead of

using the cosine of the angle is motivated by the fact that the cosine function is

an even function, and hence by transforming the angle by the cosine function

may be losing some information about the angle. Primary infections are treated

as infectious challenge incoming from a notional infective, such that the angle

between the infection link and the vector (1, 1) is distributed Unif(0, 2π).

6.2 Methodology

Runs were performed to determine the ability of the Directional Infection Link

Residuals test to detect anisotropy versus Infection Link Residuals test. To calcu-

late a p-value the Anderson-Darling test was used on the residuals. We also used

the Kuiper test (to be described in the following section), as this test is rotation

invariant, as this may be a more powerful test if the residuals are sorted by angle.

Extensive code modification was necessary to implement the Directional In-

fection Link residuals test.

The data were simulated from the Gillespie-like algorithm in Section 2.2 on

page 13 with the following known parameters:
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α � 0.001000

β � 3.000000

κ � 0.030000

µE � 5.000000

σ2
E � 2.500000

µI � 1.772450

σ2
I � 0.858407

N � 1000

The distributions of the waiting times for states E and I are gamma distribu-

tions, parametrised by their means µE , µI and variances σ2
E , σ

2
I . The exposure

times were unobserved, but the infection and removal times were observed. The

host locations were uniformly distributed over a square region. The epidemic

was observed up to T � 50 time units, that is, S→ E transitions are not observed,

E → I and I → R transitions inside the interval [0, T] are observed. The data

in each simulated dataset was generated using an anisotropic exponential kernel,

an isotropic exponential kernel was fitted to the data in order to assess the test’s

ability to detect model mis-specification of the isotropy assumption.

An anisotropic exponential kernel was used to generate the data. We base our

choice of anisotropic kernel upon the paper [152]. In this paper, the researchers

estimate of the parameters for the kernel:

K(d , ϕ) �
f (ϕ)
(g(ϕ))2 exp

{
−d

g(ϕ)

}
where (d , ϕ) denotes the polar coordinates of a susceptible relative to an infective:

f (ϕ) ∝ exp
{
δ cos(ϕ − µ)

}
g(ϕ) ∝ exp

{
κ cos(ϕ − v)

}
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The estimates obtained were:

δ̂ � 2.28

κ̂ � 1.18

µ̂ � 3.974

ν̂ � 3.71

for Conidia spore dispersal for the fungus Mycoshaerella fijiensis (where angles

have been converted to radians). Conidia spores are spore which are asexually

produced spores produced from lesions in the diseased plants (there are also

sexually produced spores produced only at the latest phase in the disease). The

researchers used lines of trap banana plants situated every 2.5m up to 25m in

each of the eight directions (North, North-West, West etc.) from a single centrally

situated diseased plant, to obtain data to fit the dispersal kernel via maximum

likelihood estimation.

In the kernel above, there is normalisation termwhich ensures that it integrates

to 1. The kernels used in this thesis are not normalized. In order to see the

relationship between the isotropic exponential kernel used in earlier the chapters

of this thesis, the equation can be rearranged to make the comparison easier:

K(d , ϕ) ∝ eδ̂ cos(ϕ−µ̂)

(eκ̂ cos(ϕ−ν̂))2
exp

{
−d

eκ̂ cos(ϕ−ν̂) κ
}

� exp
{
δ̂ cos(ϕ − µ̂) − 2κ̂ cos(ϕ − ν̂)

}
(6.2.1)

× exp
{

−d

eκ̂ cos(ϕ−ν̂)κ
}

(6.2.2)
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Since:

δ̂ cos(ϕ − µ̂) − 2κ̂ cos(ϕ − ν̂) � Re(δ̂ exp i(ϕ − µ̂)

−2κ̂ exp i(ϕ − ν̂))

� Re(exp(iϕ)(δ̂ exp(−µ̂i)

−2κ̂ exp(−ν̂i)))

� Re(exp(iϕ)(δ̂ (cos(−µ̂)

+i sin(−µ̂))

−2κ̂ (cos(−ν̂) + i sin(−ν̂))))

� Re(exp(iϕ)(
[
δ̂ cos(−µ̂) − 2κ̂ cos(−ν̂)

]
+i

[
δ̂ sin(−µ̂) − 2κ̂ sin(−ν̂)

]
)

� Re(exp(iϕ) ×

(A exp(−Bi)))

� Re(A exp(i(ϕ − B)))

� A cos
(
ϕ − B

)
where

A �

√[
δ̂ cos(−µ̂) − 2κ̂ cos(−ν̂)

]2
+

[
δ̂ sin(−µ̂) − 2κ̂ sin(−ν̂)

]2

≈ 0.6158304744

B � arctan
(
δ̂ sin(−µ̂) − 2κ̂ sin(−ν̂)
δ̂ cos(−µ̂) − 2κ̂ cos(−ν̂)

)
≈ 5.541930711

Hence:
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K(d , ϕ) ∝ exp
(
δ̂ cos(ϕ − µ̂) − 2κ̂ cos(ϕ − ν̂)

)
× exp

{
−d

eκ̂ cos(ϕ−ν̂) κ
}

� exp
(
A cos

(
ϕ − B

) )
× exp

{
−d

eκ̂ cos(ϕ−ν̂) κ
}

Observe that there are two cosine terms in the kernel given here: the first

term controls how the maximum infectious force varies by angle, the second term

controls the tail length of the kernel in any given direction. These two components

have a phase difference between them of approximately π
2 .

To make the form of the anisotropic kernel easier to compare with the forms

of the isotropic kernels used in previous chapters, anisotropic kernels used in this

chapter will be expressed in this form. We choose as the first anisotropic kernel

the kernel above, without the phase shifts for simplicity:

K(d , φ) � exp
{
A cos

(
φ
)}

exp
{
−d

eκ̂ cos(φ)κ
}

(6.2.3)

where φ is the angle between the vector between the susceptible and infective

and the vector (1, 1).

This is shown in fig. 6.2.1. Compare this with the isotropic exponential kernel

in fig. 6.2.2.

An additional version of the anisotropic kernel was used which models a π
2

phase shift between the two cosine terms as referred to above.

K(d , φ) � exp
{
0.61583 cos

(
φ
)}

exp
{
−d

eκ̂ sin(φ) κ
}

(6.2.4)

This is plotted in fig. 6.2.3.

Simulated data produced using these two kernels are shown in fig. 6.2.4 and

fig. 6.2.5. Note the subtle difference between the epidemics produced by the
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Figure 6.2.1: Heat-Plot of the anisotropic kernel given by Equation 6.2.3

two different kernels, the second kernel produces anisotropy which seems more

difficult to detect with the naked eye.

6.2.1 Kuiper Test

The Kuiper test [106] tests the following hypotheses:

H0 :X1,X2, . . . ,Xn are i.i.d with distribution function F(x)

HA :X1,X2, . . . ,Xn are not i.i.d with distribution function F(x)

The test statistic used is:

V � max
i

[
i
n
− F(xi)

]
+ max

i

[
F(xi) −

i − 1
n

]
where the sample x1, x2, . . . , xn is sorted such that x1 ≤ x2 ≤ . . . ≤ xn . Note the

similarities between the Kuiper test statistic and Kolmogorov-Smirnov test.

The p-value of the test statistic [106, 149], as n →∞, tends to
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Figure 6.2.2: Heat-Plot of the isotropic kernel with the same κ as the anisotropic kernel
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Figure 6.2.3: Heat-Plot of the anisotropic kernel given by Equation 6.2.4
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Figure 6.2.4: Snapshots of the simulated epidemic generated with the anisotropic exponential
kernel in equation 6.2.3. Each point on the graph represents one host. Points are colour-coded to
represent the current state of the host. Susceptible points are not displayed to maintain clarity of
the graph. The colour of the points on the graph indicate the state of each host at the given time.
Red indicates the host is exposed, green indicates the host is infectious and blue indicates that the
host is removed.
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Figure 6.2.5: Snapshots of the simulated epidemic generated with the anisotropic exponential
kernel in equation 6.2.4. Each point on the graph represents one host. Points are colour-coded to
represent the current state of the host. Susceptible points are not displayed to maintain clarity of
the graph. The colour of the points on the graph indicate the state of each host at the given time.
Red indicates the host is exposed, green indicates the host is infectious and blue indicates that the
host is removed.
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Anisotropic kernel tested Residuals sorted by p-value (A-D) p-value (Kuiper) Parameter Updates Iterations
Mean SD Mean SD (MCMC) (Embedded Test)

Eq. 6.2.3 Cosine of Angle 1.104 × 10−6 1.342 × 10−5 1.339 × 10−6 1.335 × 10−5 6.6 × 107 804
Eq. 6.2.3 Angle 2.900 × 10−4 1.032 × 10−3 3.604 × 10−6 6.02 × 10−5 1.26 × 107 1135
Eq. 6.2.4 Cosine of Angle 0.049022 0.1071651 0.151480 0.1980555 1.36 × 107 1201
Eq. 6.2.4 Angle 8.347 × 10−7 5.828 × 10−6 1.718 × 10−8 3.599 × 10−7 1.4 × 107 1247

Table 6.1: Results of runs to determine the effectiveness of the directional ILR: details of anisotropic
kernel used to generate the data, method of sorting the infection link residual during the sorting
stage of the calculation, summary statistics of posterior latent p-values given by the Anderson-
Darling and Kuiper test and iterations performed.

Anisotropic kernel tested Residuals sorted by p-value percentile (A-D)
2.5% 25% 50% 75% 97.5%

Eq. 6.2.3 Cosine of Angle 6.16 × 10−7 6.205 × 10−7 6.224 × 10−7 6.250 × 10−7 6.316 × 10−7

Eq. 6.2.3 Angle 6.195 × 10−7 1.125 × 10−6 2.028 × 10−5 1.474 × 10−4 2.503 × 10−3

Eq. 6.2.4 Cosine of Angle 7.42 × 10−6 0.001112 0.008110 0.40948 0.399922
Eq. 6.2.4 Angle 6.304 × 10−7 6.349 × 10−7 6.376 × 10−7 6.410 × 10−7 6.478 × 10−7

Table 6.2: Results of runs to determine the effectiveness of the directional ILR: details of anisotropic
kernel used to generate the data, method of sorting the infection link residual during the sorting
stage of the calculation, percentiles of posterior latent p-values given by the Anderson-Darling
test.

p � Q
( [√

n + 0.155 +
0.24√

n

]
V

)
where

Q(λ) � 2
∞∑
j�1
(4 j2λ2 − 1)e−2 j2λ2

Q(0) � 1

Q(∞) � 0

This power series is used to calculate the p-value in the computer code.

The Kuiper test is often used in circular statistics to test goodness of fit for a

sample of random angles, against a null hypothesised distribution as the Kuiper

test is rotation invariant, which is, any angular rotational shift of the data will

produce the same p-value. It is hoped that the Kuiper test will therefore be

sensitive to clustering of imputed infection link residuals at any section of the unit

interval, unlike the Anderson-Darling test.
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Anisotropic kernel tested Residuals sorted by p-value percentile (Kuiper)
2.5% 25% 50% 75% 97.5%

Eq. 6.2.3 Cosine of Angle 1.355 × 10−17 1.171 × 10−12 7.725 × 10−11 7.818 × 10−9 5.005 × 10−6

Eq. 6.2.3 Angle 5.880 × 10−17 9.282 × 10−13 1.076 × 10−10 7.636 × 10−9 7.455 × 10−6

Eq. 6.2.4 Cosine of Angle 2.753 × 10−4 0.016117 0.065929 0.202866 0.695858
Eq. 6.2.4 Angle 4.008 × 10−21 3.056 × 10−16 3.699 × 10−14 5.158 × 10−12 1.302 × 10−8

Table 6.3: Results of runs to determine the effectiveness of the directional ILR: details of anisotropic
kernel used to generate the data, method of sorting the infection link residual during the sorting
stage of the calculation, percentiles of posterior latent p-values given by the Kuiper test.

6.3 Results and discussion

See tables 6.1, 6.2, 6.3 for the results of the four runs performed. An over-

conservative burn-in was determined visually. The first run in the table shows

that the test is able to detect anisotropy in data generated using kernel 6.2.3. When

the kernel used for data generation is switched to kernel 6.2.4 there is an increase

in the expected posterior predictive p-value given by the test. An additional run

was performed using the angle of the SI links to sort the residuals (as opposed to

the cosine of the angle) yielding a lower mean latent p-value, suggesting that this

form of the test was more able to detect the anisotropy better. However, when this

version of the DILR test was applied to data generated from kernel 6.2.3, a larger

mean latent p-value was obtained. Further investigation is needed to determine

the circumstances in which sorting method outperforms the other.

Both p-values provided by the Anderson-Darling test (see Section 4.2.4.3.2)

and the Kuiper tests [106] (p-value calculated with approximate distribution for

large samples from [149]) were similar, however, readers should be reminded

that the p-values calculated are approximate, and from power series. The ap-

proximate Anderson-Darling test statistic distribution was obtained in [116]. The

approximate distribution consists of the partial evaluation of the power series (for

large sample sizes), with small sample corrections applied using splines that were

fitted to the approximate distributions of the test statistic via Monte-Carlo with

simulated data. The p-values obtained are thought to be accurate to 6 decimal

places. The Kuiper test uses a large sample approximation of the p-value, with

the partial evaluation of the power series used to obtain the approximate p-value.

It is thought that since the size of the host population is 1000, the large sample

approximation is justified.
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Success at this stage motivates the case study below on a real-world data-set.

The functional-model representation of the epidemic model can allow the cre-

ation of test statisticswhich focus on certain aspects of discrepancy. An interesting

question or extension to this analysis is the question of the derivation of optimal

test statistics for the testing of certain aspects of discrepancy. One potential area

which is worth examination is the use of utility-based methods to find optimal

test statistics. This can be used not only to focus tests on various areas of discrep-

ancy but for example determine the optimal times to observe the epidemic, or the

optimal hosts to include in the test.

The ease of adaption of the infection link residual test to directional infection

link residuals test shows the ability of the functional-model representation and

latent residuals approach to devise tests which are able to target various aspects

of model mis-specification.

The use of the angle as a method of ordering the infection links appears more

able to reveal discrepancy than the cosine of the angle. This is possibly because the

cosine of the angle is less informative than the angle – since cos(φ) � cos(2π − φ).

Consider as an extreme example: suppose that the actual kernel is such that

there is no force of infection to the right of an infected host and the test direction

vector is set to an unit vector pointing north. The epidemic will progress to

the left as time passes. When the infection links are imputed, there will be a

surplus of infection links to the right. Since cos(φ) does not differentiate between

angles clockwise or anticlockwise from the test direction vector there would be

no concentration of infection link residuals at any single interval in [0, 1]. If the

angle were used to order the infection links, there would be a concentration of

residuals close to 0. Thus, mis-specification would be a lot harder to detect with

the infection links ordered by the cosine of the angle instead of ordering by the

angle.

Thus, caremust be takenwhen specifying the latent residuals. mis-specification

of the latent residuals can lead to a lack of power in the test. Moreover, the implic-

ation of this finding for non-directional infection link residual tests is that tests
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which order the infection links by the order of a non-invertible transformation

may lead to a loss of power in tests. For example, suppose that the infection links

are ordered by the size of the difference from a fixed value, and this fixed value

happens to coincide with the median value of all the infection links. Since this

ordering does not take into account where the infection link is in the head of the

distribution or the tail of the distribution, the test would not be able to detect evid-

ence ofmisfit. Hence, whilst the choice of ordering can focus themis-specification

making the test more powerful in some circumstances, there is a danger that the

choice of ordering could obfuscate trends which indicate mis-specification.
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Chapter 7

Case study: the Foot and Mouth

Disease (FMD) outbreak of 2001

The foot andmouth disease (FMD) outbreak of 2001 involved approximately 2000

confirmed cases of FMD, where each “case” represents an infected premises.

In addition, approximately 6,000,000 sheep, cattle and pigs were slaughtered to

prevent the infection from spreading, with pyres and large burial pits (for the

disposal of culled animal carcasses) being seen across the British countryside.

This cost the UK public sector approximately £3 billion and the private sector

approximately £5 billion [13, 15, 6].

Thefirst cases of Foot andMouthdiseasewerediscoveredby routine inspection

at the Cheale Meats abattoir on February 19, 2001 in which 27 pigs were found

to have symptoms of FMD [13, 15, 6]. A movement ban on livestock from areas

affected by FMD (and business and other livestock linkedwith these areas) [37, 15]

and was put in place on 23 February 2001, and culling of infected animals was

started on 24th of February 2001 [13, 15, 6].

The last recorded case of the outbreak was found on September 30, 2001 and

by 14th of January 2002 the United Kingdomdeclared itself free of FMD [13, 15, 6].

There were several facets to the culling strategy, put in place as the existing

measures were found to be unable to stop the epidemic [182, 6]:

1. Susceptible animals on premises on which there were clinically confirmed

cases of foot-and-mouth disease were to be culled within 24 hours of report.
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2. All susceptible animals on premises contiguous to any of these infected

premises were to be culled within 48 hours.

3. In Cumbria, Dumfries and Galloway, sheep, pigs and goats that were within

3 kilometres of infected premises were culled.

4. Slaughter on suspicion – the culling of premises regardless of whether or not

there was clinical confirmation. If a vet suspected a premises was infected

with FMD but there was not enough evidence to clinically classify the case

as FMD, all susceptible animals on the premises were slaughtered [6]. If

serological testing confirmed that the case was indeed FMD, the premises

was reclassified as an infected premises [182].

Of particular note was the use of mathematical models to inform the policy

decisions to control the disease: these began with Sir John Krebs, chairman of

the Food Standards Agency meeting with epidemic modelling experts to obtain

predictions and analysis on the epidemic. This eventually led to the formation of

the FMD Science group which met 31 times from 26th March to the 1st October

[6]. This consisted of several groups of the modellers [100, 49, 48, 129] working

independently of each other. The results from these models were taken into

account when deciding whether to make changes to the control strategy [6].

In this thesis, we present as a case study of how ourmodel selection techniques

work in the setting of a real-world epidemic by analysing a data-set from DEFRA

of the 2001 FMD outbreak. This contains 188,361 plots of land, the coordinates of

the farmhouse belonging to each plot of land, the times of notification and removal

of infected animals, and the number of animals of each species at each site. This

was a collaboration with Chris Jewell of Lancaster University, who had fitted a

model (described below) to the data set using MCMC and who provided 3000

MCMC samples from the posterior distribution which was used in our analysis.

The model fitted by Jewell (in [150]) to the data consists of four states: suscept-

ible S, infected I, notified N , removed R. Farms which move onto the next stage

of infection cannot move backwards and recover. Farms which are in the notified

state and the infected state can infect farms in the susceptible state.
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There is a period in which farms are infected but not infective, which is as-

sumed to be fixed four days in Jewell’s model. Let λ(t) be the infectious pressure

on susceptible j at time t. Then

λ( j) � ε(t) +
∑

i∈I(t)
βi jh(t I

j − t I
i ) +

∑
i∈N(t)

β∗i j h(t
I
j − t I

i )

where

h(t) �


0 t < 4 days

1 otherwise

The “movement ban” is modelled by Jewell altering the primary infection rate

[150] such that

ε(t) �


ε1 t < 23 days

ε1ε2 otherwise

The transmission kernel used consists of a susceptibility term, an infectivity

term and a distance dependency term.

For i ∈ I(t), j ∈ S(t), the force of infection exerted on premises j from infected

premises i is modelled as:

βi j � γ1

[( ci

c̄

)ψ1
+ ξ2

(
pi

p̄

)ψ2

+ ξ3

( si

s̄

)ψ3

] [( c j

c̄

)φ1
+ ζ2

(
p j

p̄

)φ2

+ ζ3

( s j

s̄

)φ3
] [

δ

(δ2 + ρ2
i j)ω

]

where ci , si , pi are the numbers of cattle, pigs and sheep at site i, c̄ , s̄ , p̄ are the

mean numbers of cattle, pigs and sheep at each site.
For i ∈ N(t), j ∈ S(t), the force of infection exerted on premises j from infected

and notified premises i is modelled as:

β∗i j � γ2βi j
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Here the susceptibility β(S), infectivity β(I) and distance dependency terms β(D)

are:

β(I)i �

( ci

c̄

)ψ1
+ ξ2

(
pi

p̄

)ψ2

+ ξ3

( si

s̄

)ψ3

β(S)j �

( c j

c̄

)φ1
+ ζ2

(
p j

p̄

)φ2

+ ζ3

( s j

s̄

)φ3

β(D)i j �
δ

(δ2 + ρ2
i j)ω

and hence:

βi j � γ1β
(I)
i β
(S)
j β(D)i j

β∗i j � γ2βi j

As noted in Chapter 5, section 5.8, page 148, because of computer memory limita-

tions, a truncation was applied to the kernel, in effect changing the spatial kernel

to:

β(D)i j �


δ

(δ2+ρ2
i j)ω

ρi j < 25km

0 Otherwise.

The sojourn times in the I state were modelled as being independently gamma

distributed:

t(i)N − t(i)I ∼ Gamma(4, b)

7.1 Methodology

The MCMC for the parameter posterior distribution was carried out on the FMD

2001 epidemic data-set by Jewell [150]. TheMCMCwas run for 100,000 iterations,

40,000 iterations were discarded as burn-in and the output was thinned by 20
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iterations to yield 3,000 draws from the posterior distribution of the parameters.

These data were then provided to the project to be used as input to our model

assessment methods. The data was comprised of:

• The County-Parish-Holding (CPH) number of each farm, the coordinates of

each farm house (northing and easting), the number of cattle, sheep, pigs

and deer on each farm.

• The times of notification and removal for each CPH.

• The 3000 MCMC draws from the posterior distribution π(θ, z |y). The aug-

mented data z consists of the unobserved infection times t(1)I , t(2)I , . . . t(188361)
I .

Theparameters areθ � (ε1, ε2, γ1, γ2, ξ2, ξ3, ψ1, ψ2, ψ3, ζ2, ζ3, φ1, φ2, φ3, δ, ω, b).

Each draw consists of an MCMC sample of θ and z.

Code was written to read the data sent by Jewell [94] into the C++ program.

The data-set posed challenges regarding memory usage because of its large size.

Extensive modification was needed the code to adapt the routines to run on the

data-set. Eventually the infection link residuals routine, which was previously

written as a program for the CPU had to be ported to the GPU (see Chapter 5 for

details of the implementation and the challenges involved), as the CPU program

took one hour per p-value calculation and would often cause the computer to

crash. The GPU program takes approximately 1 minute to calculate the p-value

of the ILR test from a single draw from the posterior distribution that had been

read into the program (on a consumer grade NVIDIA GTX Titan graphics card)

and uses almost all of the available GPU memory and most of the CPU memory.

The ILR test was performed on the MCMC output supplied by Jewell. This

shows one of the advantages of the embedded testing methods which have been

developed: once the MCMC has been run, the process of model testing can be

done at a later time provided that the values of the parameters and unobserved

data from the MCMC have been saved. Two candidate models were fitted to the

data (results from run with Cauchy kernel were used in [150]). The first model

fitted used a Cauchy kernel for the distance dependency term [150]:
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Mean SD
ε1 1.443 × 10−6 1.472 × 10−7

ε2 1.052 × 10−7 7.748 × 10−8

γ1 6.367 × 10−3 1.018 × 10−3

γ2 3.446 × 10−1 5.675 × 10−2

ξ2 3.530 × 10−1 3.039 × 10−1

ξ3 8.812 × 10−1 2.460 × 10−1

ψ1 3.251 × 10−1 1.082 × 10−1

ψ2 4.246 × 10−1 2.051 × 10−1

ψ3 1.095 × 10−1 7.021 × 10−2

ζ2 6.842 × 10−2 3.580 × 10−2

ζ3 1.035 × 100 8.836 × 10−2

φ1 7.383 × 10−1 3.716 × 10−2

φ2 5.838 × 10−1 1.271 × 10−1

φ3 4.706 × 10−1 3.030 × 10−2

δ 1.266 × 100 6.077 × 10−2

ω 1.300 × 100 0.000 × 100

b 4.618 × 10−1 1.615 × 10−2

Table 7.1: Posterior summary statistics from FMD2001 run with the Cauchy kernel obtained by
Jewell [94].

Mean SD
ε1 2.184 × 10−6 2.268 × 10−7

ε2 1.0 0.0
γ1 1.733 × 10−3 3.012 × 10−4

γ2 1.0 0.0
ξ2 3.443 × 10−1 3.154 × 10−1

ξ3 9.197 × 10−1 2.657 × 10−1

ψ1 2.954 × 10−1 1.177 × 10−1

ψ2 3.948 × 10−1 2.036 × 10−1

ψ3 6.909 × 10−2 5.051 × 10−2

ζ2 6.429 × 10−2 3.359 × 10−2

ζ3 1.007 8.622 × 10−2

φ1 7.229 × 10−1 3.746 × 10−2

φ2 5.742 × 10−1 1.273 × 10−1

φ3 4.673 × 10−1 3.091 × 10−2

δ 4.504 × 10−1 1.415 × 10−2

ω 1.330 0.0
b 4.965 × 10−1 1.646 × 10−2

Table 7.2: Posterior summary statistics from FMD2001 run with the Exponential kernel obtained
by Jewell [94].
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β(D) �
δ

(δ2 + ρ2
i j)ω

After truncation has been applied to the kernel (see section 5.8, page 148 for

motivation), this is effectively:

β(D)i j �


δ

(δ2+ρ2
i j)ω

ρi j < 25km

0 Otherwise

The second model is one which uses an Exponential kernel for the distance

dependency term:

β(D) � exp(−δρi j)

After truncation has been applied to the kernel (see section 5.8, page 148 for

motivation), this is effectively:

β(D)i j �


exp(−δρi j) ρi j < 25km

0 Otherwise

Both these kernels were evaluated for goodness of fit using the ILR and DILR

test statistics. The ILR and the DILR test statistic were calculated as before in

previous chapters, with slight modifications for the different model involved:

7.1.1 Calculation of Test Statistics and Posterior Latent p-values

As introduced in Section 3.3.2 on page 73, and the paper [111], recall that the

definition of the infection link residuals (ILR) test is:
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Definition 29 (Infection Link Residual). Let

pmn ∝


βnm h(t I

m − t I
n) if m ∈ S(tk) and n ∈ I(tk)

β∗nm h(t I
m − t I

n) if m ∈ S(tk) and n ∈ N(tk)

for all m ∈ S(tk) and n ∈ I(tk) ∪ N(tk).

Order the pmn such that p(1) ≤ p(2) ≤ p(3) ≤ p(4) ≤ . . . .

Let p(s′) � pi j .

The infection link residual of the kth exposure r̃2k satisfies the following equa-

tion:

inf

{
s | r̃2k <

s∑
l�1

p(l)

}
� s′

The infection link residual test is calculated by the following algorithm (as

mentioned in Section 3.3.2 on page 75, from [111]):

1. The infection link for the kth exposure between individuals i and j is chosen

with probability pi j from the possible links at time tk . Primary infection

is treated as being an infection caused by a notional infector with force of

infection α.

2. The infection links are then ordered and the ranking s′ of pi j is determined.

3. Generate a random deviate from Unif(∑s′−1
l�1 p(l),

∑s′
l�1 p(l)). This is the im-

puted infection link residual for the kth exposure.

Definition (Directional Infection link residuals). Suppose that host j is infected

by infectious host i and that this is the kth exposure event. The infection link

residual for this infection time is defined by the following:

Let

pmn ∝


βnm h(t I

m − t I
n) if m ∈ S(tk) and n ∈ I(tk)

β∗nm h(t I
m − t I

n) if m ∈ S(tk) and n ∈ N(tk)

for all m ∈ S(tk) and n ∈ I(tk) ∪ N(tk).
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Order the pmn such that p(1), p(2), p(3), p(4), . . . is ordered by the cosine of the

angle between the infection link and the vector (1, 1).

Let p(s′) � pi j .

The infection link residual of the kth exposure r̃2k satisfies the following equa-

tion:

inf

{
s | r̃2k <

s∑
l�1

p(l)

}
� s′

We also used an alternative version where p(1), p(2), p(3), p(4), . . . is ordered by

the angle between the infection link and the vector (1, 1).

1. The infection link for the kth exposure between individuals i and j is chosen

with probability pi j from the possible links at time tk . Primary infection

is treated as being an infection caused by a notional infector with force of

infection α. The S-I link with this notional infector has a random angle with

the vector (1, 1)with distribution Unif(0, 2π).

2. The infection links are then ordered and the ranking s′ of pi j is determined.

3. Generate a random deviate from Unif(∑s′−1
l�1 p(l),

∑s′
l�1 p(l)). This is the im-

puted infection link residual for the kth exposure.

7.1.1.1 Calculation of Imputed P-Value

The p-value is calculated using the Anderson-Darling test [7]. This is a frequentist

test of the hypotheses:

H0 :The data has cumulative distribution function F(x)

HA :The data does not have cumulative distribution function F(x)

The data for this test is a random sample denoted {X1,X2, . . . ,Xn}

Let the empirical distribution function be defined as:

197



Chapter 7: Case study: the Foot and Mouth Disease (FMD) outbreak of 2001

Fn(x) �
number of X1,X2 . . . ,Xn that are ≤ x

n

The test statistic is defined as:

An � −n − 1
n

n∑
i�1
(2i − 1) [ln F(Xi) + ln(1 − F(Xn+1−i))] (7.1.1)

The Anderson-Darling test statistic can be expressed in another form, which

shows that it is the integral of theweighted squared difference between the empir-

ical distribution function and the hypothesised distribution function, multiplied

by a weighting with weight concentrated towards the tails of the distribution.

An � n
∫ 1

0

[Fn(x) − F(x)]2

F(x)(1 − F(x)) dF(x) (7.1.2)

This makes the Anderson-Darling test more able to detect discrepancy between

the hypothesised distribution and the data and the tails of the distribution than

the Kolmogorov-Smirnov test which is more commonly used.

To obtain the test statistic in Equation 7.1.1, use partial fractions on Equation

7.1.2:

An � n
(∫ 1

0

[Fn(x) − F(x)]2

F(x) dF(x) +
∫ 1

0

[Fn(x) − F(x)]2

(1 − F(x)) dF(x)
)

(7.1.3)

Since the empirical CDF Fn(x) is a step function, it is straightforward to obtain

the test statistic given in Equation 7.1.1.

In this case F(x) is an uniform cdf between 0 and 1, the hypotheses and test

statistics are:

H0 :The data has cumulative distribution function F(x)

HA :The data does not have cumulative distribution function F(x)

The test statistic is simplified to:
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An � −n − 1
n

n∑
i�1
(2i − 1) [ln Xi + ln(1 − Xn+1−i)] (7.1.4)

Regarding the derivation of the test statistic, start with:

An � n
∫ 1

0

[Fn(x) − x]2

x(1 − x) dx

Use partial fractions on the integral to obtain:

An � n
(∫ 1

0

[Fn(x) − x]2
x

dx +

∫ 1

0

[Fn(x) − x]2

(1 − x) dx
)

Since the empirical distribution function Fn(x) of the data is a step function, it

is straightforward to integrate and simplify to obtain the test statistic in Equation

7.1.4.

The Anderson-Darling test is performed upon the infection link residuals

that are obtained through the algorithm described on page 196. The algorithm

used to calculate the p-value is the algorithm described in [116], which is an

approximation accurate up to 6 decimal places.

7.2 Results

Tables 7.3 on page 201 and 7.4 show the posterior means and percentiles for the

posterior distribution for the p-value of the infection link residuals test statistic

using the Anderson-Darling test for uniformity. As can be seen from the tables,

tests of both kernels produced small posteriors means and percentiles, indicating

that there is some significant discrepancy between the data andbothfittedmodels,

as almost all of both posterior distributions have most of their mass below 0.01.

There appears to be smaller p-values for the exponential distribution but this is

only because the distribution appears to be longer tailed to right, perhaps because

some of the infections can be explained by the larger mean posterior primary

infection rate in the fitted exponential kernel model (see Table 7.1 and Table 7.2).

Readers should recall that the primary infections are treated as being infected by
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a notional infector with force of infection equal to the force of primary infection.

Further insight can be gained by looking at the infection links for each RJMCMC

iteration. Fig. 7.2.1 and Fig. 7.2.2 show two-dimensional histograms of the

residuals for each MCMC iterations with the iteration number on the y-axis, the

x-axis showing the intervals of each bin in the histogramwhere the colour of each

cell indicates the numbers of infection link residuals that fall within these bins.

For both plots there appears to be disproportionately many of residuals at the

lower end. This implies the size of the force of infection along the infection links

are less than would be expected under the null hypothesis, and hence implies

that the distance dependency term is too small (it is unlikely that such a bias in

the infection link residuals is due to mis-specification of the susceptibility and

infectivity terms, as this would produce different patterns of nonuniformity), and

hence evidence that the kernel is too short tailed. This bias to smaller values is

less apparent for the exponential kernel, perhaps because a larger mean posterior

primary infection rate (see Table 7.1 and Table7.2) can explain some of the longer

range interactions.

Likewise, the posterior means and percentiles can be found in tables 7.5 and

7.6 for the directional infection link residuals (DILR) test. Here the links have been

sorted by the angle between the infection link and the vector (1, 1)T . The primary

infections are treated as having an infection link with a uniformly distributed

random value for an angle between the vector (1, 1)T between 0 and 2π. Again,

both of themodels produce small p-values; there is a large amount of the posterior

distribution of the latent p-value below10% for theCauchykernel and themajority

of the distribution is below 10 to 5%. Again, the calculations of the p-values are

only approximate, the approximation being accurate to 6 decimal places, thus,

not too much should be read into the very small values apart from that the

very small values of p-value that have been calculated indicate the p-value is

very small. Looking at the two-dimensional histograms, there appears to be

some sort of systematic pattern, indicating there is a surplus of the links at certain

angles. Ordering the links by the cosine of the angle yields the posterior summary
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Kernel Mean SD
Cauchy 2.63 × 10−7 2.26 × 10−9

Exponential 1.63 × 10−6 1.62 × 10−5

Table 7.3: Infection link residuals test: posterior means and standard deviation of p-value

Kernel 2.5% 25% 50% 75% 97.5%
Cauchy 2.59 × 10−7 2.62 × 10−7 2.63 × 10−7 2.65 × 10−7 2.68 × 10−7

Exponential 2.72 × 10−7 2.75 × 10−7 2.76 × 10−7 2.78 × 10−7 1.13 × 10−5

Table 7.4: Infection link residuals test: posterior percentiles of p-value

statistics in tables 7.7 and 7.8. Both posterior distributions obtained have a lot of

their mass below 10−6. A similar systematic pattern can be observed in figures

7.2.5 and 7.2.6. Further discussion will be found on this systematic pattern below

7.3 Conclusions and Discussion

The findings of this analysis of the data show the importance of using tests which

are orientated towards discrepancy relevant to the purposes of prediction. In

this case, in previous work [97] testing of model adequacy was performed a

similar model by considering a non-centred parametrisation on the sojourn times

t(i)N − t(i)I . The difference between the model tested in this paper versus model

tested here in this thesis is that the paper does not include pigs in the model as

transmitters of the disease, since the authors of the paper considered the FMD

2001 to be mainly between cows and sheep (an assumption that may be justifiable

given the susceptibility parameter for pigs, ζ2 is substantially smaller than that

for the other species). Using the non-centered parameterisation Ui �
t(i)N −t(i)I

b ,

Ui ∼ Gamma(4, 1), the fit of the Ui to the Gamma(4, 1) was assessed graphically,

showing no evidence of misfit. In addition, fitting Gamma(a , 1) with a as an

unknown parameter yielded a posterior mode of 3.76 showing no evidence of

Kernel Mean SD
Cauchy 1.98 × 10−1 2.20 × 10−1

Exponential 5.71 × 10−2 1.08 × 10−1

Table 7.5: Directional Infection link residuals test (angle-based): posterior means and standard
deviation of p-value
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Figure 7.2.1: Infection link residuals test: 2 dimensional histogram of the infection link residuals
at eachMCMC iteration, with iteration number on the y-axis and interval on the x-axis. The kernel
fitted to the data is the Cauchy kernel

Kernel 2.5% 25% 50% 75% 97.5%
Cauchy 1.14 × 10−3 3.07 × 10−2 1.09 × 10−1 3.00 × 10−1 7.84 × 10−1

Exponential 2.89 × 10−5 2.33 × 10−3 1.29 × 10−2 5.519 × 10−2 3.89 × 10−1

Table 7.6: Directional Infection link residuals test (angle based): posterior percentiles of p-value

Kernel Mean SD
Cauchy 2.82 × 10−7 2.83 × 10−9

Exponential 2.90 × 10−7 2.15 × 10−9

Table 7.7: Directional Infection link residuals test (cosine-of-angle-based): posterior means and
standard deviation of p-value

Kernel 2.5% 25% 50% 75% 97.5%
Cauchy 2.76 × 10−7 2.80 × 10−7 2.82 × 10−7 2.84 × 10−7 2.87 × 10−7

Exponential 2.86 × 10−7 2.89 × 10−7 2.90 × 10−7 2.92 × 10−7 2.946 × 10−7

Table 7.8: Directional Infection link residuals test (cosine-of-angle-based): posterior percentiles of
p-value
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Figure 7.2.2: Infection link residuals test: 2 dimensional histogram of the infection link residuals at
each MCMC iteration, with iteration number on the y-axis and interval on the x-axis. The kernel
fitted to the data is the Exponential kernel
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Figure 7.2.3: Directional Infection link residuals test (angle-based): 2-dimensional histogram of
the infection link residuals at each MCMC iteration, with iteration number on the y-axis and
interval on the x-axis. The kernel fitted to the data is the Cauchy kernel
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Figure 7.2.4: Directional Infection link residuals test (angle-based): 2-dimensional histogram of
the infection link residuals at each MCMC iteration, with iteration number on the y-axis and
interval on the x-axis. The kernel fitted to the data is the Exponential kernel
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Figure 7.2.5: Directional Infection link residuals test (cosine-of-angle-based): 2-dimensional histo-
gram of the infection link residuals at each MCMC iteration, with iteration number on the y-axis
and interval on the x-axis. The kernel fitted to the data is the Cauchy kernel
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Figure 7.2.6: Directional Infection link residuals test (cosine-of-angle-based): 2-dimensional histo-
gram of the infection link residuals at each MCMC iteration, with iteration number on the y-axis
and interval on the x-axis. The kernel fitted to the data is the Exponential kernel
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Figure 7.2.7: A plot of the angles between all farms in the FMD 2001 dataset and the vector (1, 1)T
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Figure 7.2.8: A plot of the position of the farms in the FMD 2001 dataset, with each point in the
plot representing each farm in the dataset. These points are plotted by the northern and easting
of the coordinates given in the dataset.
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misfit. However, this did not test the adequacy of the tailedness of the spatial

kernel, nor if there were any presence of mis-specification which would suggest

the presence of anisotropy or some other mechanism which is angle based which

is not explained by the model. Test that are orientated towards pertinent aspects

of the model given insight into aspects of model fit which are most pertinent to

the purposes of the model.

In this case study, there was significant evidence that the spatial kernel (a

Cauchy kernelwhichwas used in the original study)wasmis-specified. Reference

[97], when stating the reason for the choice of Cauchy kernel gives the justification

“For reasons of robustness, it is prudent to adopt a heavy-tailed transmission

kernel”. However, the model tests performed here in this thesis, show that there

is evidence to suggest that this kernel does not adequately explain the pattern of

infections in the data.

Of particular interest is the fact that the tests show that neither the Cauchy

kernel nor the exponential kernel appear to adequately explain the data.

This misfit may be caused by the method by which the locations of each farm

have been recorded in the data-set. In the data, the locations of each farm have

been recorded as the location of the farmhouse of that farm, instead of the location

of the centroid of the parcel of land that constitutes that farm. Because of this,

the recorded coordinates in the data are not at the centroid of each farm, leading

to unintuitive items in the data, such as farms being situated at the same spatial

coordinates, and therefore having zero distance between them.

Nevertheless, attempts have been made to assess how mis-specification of the

coordinates affects posterior estimates. If each farmhouse is located at a random

point relative to the centroid of the farmland, then the reported coordinates in the

dataset can be considered to be equal to the actual coordinates of the centroid of

the farmland plus some random perturbation. Hola Kwame Adrakey has been

performing computer simulations on datasets of this kind [2], unpublished at the

time of writing, and the results are worth mentioning here:

Simulated data were generated with known coordinates based on the Flor-
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ida citrus canker data-set, which simulated data was generated with the known

coordinates from the Florida citrus canker data-set, and known model and para-

meters. The model used was an SIR (Susceptible-Infectious-Removed) model,

where the hosts in the infection are individual trees. The form of the model is

effectively that of Section 2.1 on page 11, with sojourn time in the E state set to 0.

The data was “observed” at snapshots 30 days apart starting at t � 130 days. The

infection starts at t � 0. The hosts in the I compartment are unobserved, but are

detected and removed as they enter the R compartment. The first infection was

set to be that in [134].

Hosts in state S at time t, S(t) experience infectious challenge from two sources:

primary infectious challenge, from sources/sites external to the system under

study, and secondary infectious challenge, from infectious individuals within the

system. Let ε and β be the primary and secondary infection rates. Then the

probability of exposure (for an arbitrary host j ∈ S(t)) can be modelled by the

following equation:

Pr( j exposed during [t , t+dt]) � C(x j , t) dt � ©­«ε + β
∑

i∈I(t)
K(x j , x i , α)

ª®¬ dt (7.3.1)

An exponential kernel was used to generate the data:

K(d , α) � 1
2πd

1
α

exp(− d
α
)

The dataset was generatedwith parameters β � 8×10−6days−1km2,α � 0.8km.

Therewas no primary infection for the simulated data. A perturbationwith distri-

bution N(0, σ2)was added to each of the actual coordinates after data generation,

such that the “observed” coordinates were not the actual coordinates. This was

repeated several times with σ equal to 0, 0.001, 0.005, 0.01, 0.015, 0.016, 0.02, 0.03

km to generate several data-sets.

Data augmented MCMC was performed on the data to obtain parameter es-

timates for each of these data sets. In each computer run, the data was first

generated with the known parameters and model, as stated earlier. The coordin-
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ates were then perturbed. The chain was run for 510000 iterations, with 10000

discarded as burn-in. This was then thinned to 100000 draws from the parameter

posterior distribution. The posterior distribution was then estimated from this

perturbed data, and then the posterior marginal distributions were then plotted

to determine the effect of the perturbation variance on the posterior distributions.

Figure 7.3.1 shows the posterior marginal distribution of the kernel parameter α.

As the variance of the perturbation increases, the spatial kernel a posteriori is

more longer-tailed.

Themisfit detected in this thesiswith the kernels for the FMD2001 datasetmay

be caused by the following. Since all the spatial kernels fitted on the FMD 2001

data-set were truncated at 25 km, these kernels cannot fit the apparent increase (a

posteriori) of long-distance interactions. Hence, there is discrepancy between the

fitted model and the data, which is picked up by the infection link residuals tests.

This truncation was used to make the model fitting computationally feasible:

even with modern computing power and parallel programming techniques, the

data-set contains approximately 189,000 parcels of land. This creates a distance

matrixwithmore entries thanwould be feasible to store in randomaccessmemory,

if every entry in the matrix would be stored with an acceptable level of precision.

This shows the power of the approach used in code for the earlier parts of the

thesis, in which the matrix of the spatial kernel between hosts is calculated and

stored, rather than the distance matrix. This allows an approach in the same

vein as [29] where the spatial kernel matrix can be calculated and the entries

below a certain pre-specified threshold are discarded and only entries within that

thresholds are stored. This "intelligent truncation" may allow more flexibility

than a plain 25 km truncation distance, allowing the kernel to be fit to the data

with less discrepancy.

Another explanation is that themodel does not take into account themovement

of animals between the parcels of land. In the UK animals move between different

areas, but this effect was not included in the model in order to lower model

complexity. The lack of model fit may indicate that in order to accurately predict
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Figure 7.3.1: Posterior marginal distributions of α |y, for data-sets in which the coordinates were
perturbed after data generation with a perturbation with distribution N(0, σ2) . The different
lines plot the marginal posterior distribution density estimates for the data sets perturbed by a
perturbation with standard deviation σ equal to 0, 0.001, 0.005, 0.01, 0.015, 0.016, 0.02, 0.03 km.
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the spread of foot-and-mouth disease, these animal movements need to be taken

into account. A possibility for further work to be performed is to discern whether

there is an effect from the movement of animals. In addition, they may be an

illegal movement of animals, or areas where there is an influx of illegal animals.

There may be geographical reasons to the lack of fit: the data-set contains

all parcels of land within the British Isles (see fig. 7.2.8), which has a complex

geography, and it may be that FMD spreads in a complexmanner over distance, as

this distance may include various geographical barriers for example, hills, rivers,

seas.

It is interesting to compare and contrast these findings with the findings of

the paper [150], in which the authors fit the same model to the same data, the

FMD 2001 dataset. In the paper, the authors use forward projection to assess the

adequacy of control measures used against the disease. To do so, they obtain the

posterior distributions for the parameters of the epidemic, having only observed

data up to a certain time, and project forward to evaluate the effect of each control

measure upon the epidemic. They compared the rankings of the controlmeasures

for partially observed data up to a certain time with the observed data up to the

end of the epidemic. They conclude that, after five weeks of data, the rankings of

the control strategies using data collected only up to that time stabilised towards

that of the rankings of the control strategies using all observed data until the

end of the epidemic. As a result, in the discussion they conclude that policy

recommendations from data obtained during the early stages of an epidemic

outbreak can be "correct". However, this is under the assumption that the model

used to obtain the control strategy rankings using all available observed data

up to the end of the epidemic can give adequately accurate predictions about

the trajectory of the epidemic. Increased observed amounts of data may lead

to stabilised rankings of control strategies but this does not validate the rankings

obtained as there is no attempt to evaluate the predictive ability of themodel. This

shows the importance of model criticism – examining the amount of discrepancy

found between the data and the model predictions.
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With regards to the results of the DILR test on the foot-and-mouth data set

of 2001, with both the Cauchy and exponential kernel, the DILR test detected

evidence of misfit with each of these kernels, with the DILR which was obtained

with each MCMC iteration appearing to show a pattern. If the DILR was sorted

by the angle between the infection link and the vector (1, 1)T , then the DILR

appeared to show a periodic pattern. If the DILR was sorted by the cosine of

the angle between the infection link and the vector (1, 1)T , there was a band in

which there was a high concentration of directional infection link residuals which

would not be expected under the null hypothesis of the DILR being uniformly

distributed. It is difficult to draw conclusions from these patterns, as the bands of

high concentrations of residuals do not correspond to individual angles.

It can be concluded, however, that there appears to be a phenomenon which

is angle based which cannot be explained by the model for secondary infections

only. Themost straightforwardexplanation is that there is anisotropy in the spread

of the foot-and-mouth disease. This may be due to unmodelled movements of

animals or vehicles which have been infected or contaminated with foot-and-

mouth disease. Wind could be a possible cause of anisotropy in the spread

of the pathogen. Contamination of pathogens may be spread by streams or

rivers. However, since neither the Cauchy nor the exponential kernel were found

to be adequate using the ILR test, it is important not to put too much weight

upon the conclusions of the DILR test as the apparent anisotropy may be due to

inappropriate selection of the spatial kernel.

Inappropriate selection of the spatial kernel would lead to the imputation

of incorrect infection links during the imputation phase of the DILR, leading to

distorted values of the DILR, which could potentially lead to apparent detected

anisotropy. Another possible cause for this apparent anisotropy which has been

detected could be due to data quality.

As stated earlier, the data contain locations of each farm which is recorded

as the location of each farmhouse, not the centroid of the parcel of land which

constitutes each farm. This is in effect a perturbation upon the actual coordinates
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of the centroid of each parcel of land, which has been shown to affect the posterior

distributions for the parameters in the model. Since the posterior distributions

for the parameters are used to impute infection links in the DILR test, and since

perturbation to the actual coordinates leads to inflated perception of the tail length

of the spatial kernel, thismay lead to infections being attributed to infectors further

away than in reality. The distortion of SI links may lead to the distortion of the

DILR, leading to the apparent anisotropy.

It is quite possible that there was an anisotropic perturbation: a possible cause

is that if a map is being used to determine the coordinates of the farmhouse, the

estimates of the northern and easting of each farmhouse could be rounded up

to the nearest grid coordinate, leading to anisotropic perturbation in the X and

Y axis. To determine whether this was the case, a plot of all the possible links

from farm to farm against the vector (1, 1)T were plotted (see figure 7.2.7). As

can be seen in this figure, the does not appear to be a "clumping" of links at any

angle, which might be seen if an anisotropic perturbation with the be applied to

the coordinates. Hence, the possibility of an anisotropic perturbation affecting

the results is unlikely. This also rules out the possibility of there being possible

links naturally clustered around certain angles, due to geography etc.

In conclusion, the analyses in this chapter appear detectmisfit in themodel that

was fitted to the foot-and-mouth disease data of 2001. There are many possible

causes of misfit, and it is not known to what extent each of these potential causes

are contributing to the detected misfit. Further investigation is required on this

topic.
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Conclusion

In this thesis, we have devised methods to assess model fit for stochastic com-

partmental spatio-temporal epidemic models. Many of the challenges in spatio-

temporal modelling of epidemics arise from the fact that the spatial kernel, im-

portant in determining the control strategy for such epidemics, models a process

that is unobserved (Chapters 1 and 2), and integrating out this unobserved data

is often not analytically possible. Because of this, one of the most common

ways of fitting models is through data augmented Markov chain Monte Carlo

[65, 143, 64, 27, 172, 171] (Chapter 2). In this method, the missing data is treated

as a nuisance parameter.

This unobserved data creates problems in devising methods for assessing

model fit (Chapter 3). Bayes factors are an intuitive method of model assessment,

but suffer from the drawback that it is difficult to devise algorithms to calculate

the Bayes factor [91], and also suffer from other unintuitive drawbacks such as

Lindley’s paradox and the fact that the Bayes factor is often more sensitive to the

parameter priors then the posterior distribution is sensitive to the parameter pri-

ors. Other purely Bayesian model assessment methods (for example [47]) suffer

from similar drawbacks. In addition, in using Bayes factors, one must specify

an alternative model or set of models to compare against. Deviance information

criterion (DIC) [164] methods use the idea of parsimony to determine the best

model out of several competing models. Unfortunately, there are many possible

ways to deal with the unobserved data which lead to different rankings of models
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[34]. It is unclear which of these model rankings should be used. The DIC for

each fitted model is calculated conditioning on the fitted model, so there is no

unified “viewpoint” from which to compare models. In addition, one must not

lose sight of the original goal, which is to determine whether the model was fit

for its purposes (for example, determining whether a control strategy would be

adequate), not whether a model is parsimonious. The third set of approaches are

posterior predictive checking approaches [78, 157, 158], which use a discrepancy

measure to quantify discrepancy [125, 60]. Such methods can be easily incorpor-

ated into the data augmented Markov chain Monte Carlo algorithms used to fit

spatio-temporal epidemic models, and do not require an alternative model or set

of models to compare against. Thus, model assessment is possible with this ap-

proach, as well as model comparison. Posterior predictive checking approaches

range from simple visual checks to posterior predictive tests, which can embed

frequentist tests within the Bayesian framework. More complicated, multidimen-

sional test statistics can be devised for posterior predictive testingwhich can target

important components of models, in order to assess their fit (Chapter 3).

This thesis has presented an approach to testing that uses multidimensional

test statistics, in which the idea of functional-models has been used to create test

statistics which can determine whether substantial anisotropy is present (Chapter

3). This test will allow modellers to test the common assumption in models

that the spatial kernel is isotropic, and allow them to determine whether there is

some phenomena which causes the epidemic to spread in an anisotropic manner.

Runs with simulated data showed that the proposed DILR test can detect model

mis-specification, where the kernel has been specified in the fitted model as

isotropic, but there is anisotropy present in the infection process (Chapter 6). This

demonstrates the power of the functional-model approach in creating generalised

residuals for epidemic models, which allows the creation of test statistics which

target important aspects of model fit, whilst minimising the use of information

from the unobserved data imputed during the model fitting stage in the model

assessment stage. The discrepancy measures of anisotropy put forward in this
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thesis are constructed to avoid the reinforcement inherent in posterior predictive

checking methods, where if too much information is reused from the model

fitting stage in the model checking stage, the test will be unable to determine

mis-specification.

Other test statistics can be created by embedding other tests within the pos-

terior predictive testing framework (Chapter 3). In this thesis, the generalised

likelihood ratio test was embedded within the posterior predictive testing frame-

work, creating latent likelihood ratio tests for spatial stochastic epidemic models

(Chapter 3). These methods require an alternative model to be specified and,

therefore, can be viewed as model comparison techniques, as well as being ways

to assess model fit. However, these requirements in specifying an alternative

model allows these tests to detect mis-specification with greater ease from the

alternative model in some cases. This especially seems to be the case where

competing models are very similar to each other, where the full latent likelihood

ratio test seems to outperform the infection link residuals test (Chapter 4). A

partial LLR test was developed to determine if the test could be strengthened

further (Chapter 3). Since the ILR test used information about infection order, it

was thought that perhaps only the use of the infection order and not the actual

infection times in a partial latent likelihood ratio test would reduce the level of

reinforcement and therefore strengthen the tests. In most cases, the full LLR test

still outperformed the partial LLR (Chapter 4), indicating that there may be in-

formation in the infection times that is not in the infection order that is useful in

determining discrepancy between the fitted model and the actual model.

Such embedded tests are calculated at regular intervals during the data aug-

mentedMCMCalgorithm and thus can be embedded in themodel fitting process.

An advantage of this is that MCMC iterations can be saved from the model fitting

process, and processed later off-line (demonstrated in Chapter 7).

Since such tests are performed at regular intervals, and rely on nested Monte

Carlo to obtain a p-value estimate when models are non-nested, these estimates

require a lot of MCMC iterations to obtain high accuracy. In this thesis, we have
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devised GPU friendly algorithms which allow epidemic modellers to parallelise

the RJMCMC and posterior predictive checks put forward in this thesis (Chapter

5). These methods will allow epidemic modellers who may typically face time

pressure when performing analyses during an ongoing epidemic to have faster

turnaround times. Before the year 2004, such computational techniqueswould not

have been necessary as clock speeds of processors have risen rapidly over the pre-

vious decade allowing the same algorithms to run on a new computer a lot faster

with no change to coding or computational techniques [177, 160]. Unfortunately,

clock speeds have now plateaued, but instead the number of parallel processing

cores on each processor has risen dramatically. This necessitates the development

of the parallel computational techniques for MCMC. The structure of the GPU

is built for the intensive mathematical calculations needed for the rendering of

3D graphics, and thus, such a computational processor is uniquely suited for

numerical applications such as scientific, numeric and statistical programming,

and the GPU algorithms in this thesis will give researchers the ability to access

high-performance computation on consumer-grade desktop computers (Chapter

5). The algorithms detailed in this thesis use parallel programming patterns, and

therefore can use the highly optimised code of parallel libraries with optimised

routines for these parallel programming patterns to obtain portable performance

(Chapter 5).

This research opens up opportunities for further study. Whilst being powerful

and practical, latent likelihood ratio tests require the use of numerical algorithms

to optimise the likelihood. The main drawback with this method is that it is

difficult to prove that the maximum obtained in each of the several thousand

iterations of the embedded test is indeed a global maximum and not a local

maximum. It would be of great utility to be able to derive analytical expressions

for the maximum-likelihood estimates, as this will make it certain the maximum

obtained is the MLE. Such analytical methods will also lower the significant

computational load of such tests.

The calculation of the latent p-value in the embedded latent likelihood ratio
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test depends upon Monte Carlo simulation for the case where the models that

are to be compared are non-nested. When comparing different spatial kernels,

this situation can be encountered frequently. An useful development would be

to have an analytical expression for the distribution of the test statistic under the

null hypothesis, or at least a computational method which is able to converge to

high accuracy within relatively few iterations.

An additional development which would be of great benefit would be the

derivation of analytical expressions of approximations for the power of latent

tests based on posterior predictive checking. There are currently results that give

an upper bound on the power of the latent likelihood tests but there are no results

for lower bounds or estimates of the power, or under what circumstances can a

minimal distance to this upper bound be obtained (Chapter 4).

The model assessment comparison and assessment methods presented here

have been implemented within data augmentedMCMC, but can be implemented

within other algorithms such as particle filters. Such developments would be

useful for the purposes ofmodel comparisonwithin real-time analysis of epidemic

data of an ongoing epidemic, and further investigation of the pros and cons of

doing so would be beneficial.

The case study on the FMD 2001 data-set (Chapter 7) shows that the methods

shownhere can be performed offline, and onmassive data-sets. The investigations

showed that there was substantial discrepancy between the fitted models and

the data (Chapter 7), but it is unclear whether this is due to the quality of the

data, the model or the approximations used in implementing the model and/or

representation of the data. The results of the case study on the FMD epidemic of

2001 raises questions about the adequacy of the representation of hosts within an

epidemic as points on the X-Y grid, when such points represent farms, or areas of

land rather than individual hosts. To what extent can this approach be pursued

until the approximation breaks down? Is there a point within the area at which

the area of land is best represented, for example, the centre of mass or the centroid

of the area?
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One of the advantages of the latent likelihood ratio test is that as long as

there is an expression for the likelihood, the test can be used over a large range

of circumstances and applications. There are very many real-world scenarios in

which two models need to be compared and there is missing or unobserved data

involved. Even within the general idea of infection or infectiousness, the ideas

of contact based infection may be extended to many other fields, for example

the monitoring of trends in social media, such as viral tweets and memes, or

prediction and control of computer viruses. The approach of designing partial

likelihood or full likelihood-based tests, in which minimal information is reused

from the fitting stage in the model testing stage, is applicable in all these fields,

with the same benefits as in epidemic modelling. It is quite possible that the

methods described in this thesis can be applied in fields which seem to be quite

unconnected to epidemic modelling, for example, signal processing of LIDAR or

radar data.
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