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Abstract

Nonlinear Optics has been a source of surprises for physicists for almost a century

comprising both fundamental physics and real-world applications. To access optical

nonlinearities, significant light intensities are required; thus nonlinear optics often

involves a resonant cavity to amplify the light intensity. Microresonators have proven

to be an ideal platform for this kind of experiment since the cavity mode area can be

as small as a few µm2 and their high Q-factor traps light for many round trips while

more light is coupled in. Also, light interacts with the nonlinear material, of which

the resonator is made, for the whole round trip. However, the interaction between

counter-propagating light in microresonators is still a relatively unexplored field.

This thesis reports on the first observation of Kerr-induced spontaneous symme-

try breaking in a microresonator, whereby light can circulate in only one direction

inside the resonator. I develop a theoretical model describing the steady-state solu-

tions and the dynamics of how the symmetry-broken regime responds to the input

changes. I show experimentally how the symmetry breaking can be used to re-

alise all-optical isolator, circulators, memories and logic gates. These devices, based

on the Kerr-nonreciprocity, represent a promising alternative for the realisation of

integrated all-optical passive photonics circuits.
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corresponding to a detuning of −1.2 GHz from the cold resonance.
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Chapter 1

Introduction

Nothing in life is to be feared, it is

only to be understood. Now is the

time to understand more, so that

we may fear less.

Maria Salomea Sk lodowska Curie

Life is nonlinear. Not just because events rarely follow a straight line, but because

we are surrounded by nonlinear phenomena. We experience a lot of them daily: the

wind flowing around trees, the fact that it is harder and harder to pedal your bike

to work the faster you go, the sound of a distorted electric guitar are all examples of

nonlinearities. To narrow down the definition, a nonlinear system has outputs that

are not simply proportional to the inputs but follow a more complicated functional

relation.

There are however forms of nonlinearity that we do not commonly experience

in daily life because the inputs never reach values high enough for us to notice the

deviation from a linear response. All of us are fascinated by the twin paradox where

the sibling travelling at the speed of light comes back from his trip through the

universe much younger than the other brother that stayed on Earth. But no twin

actually experienced that, not because special relativity is wrong but because the

effect is negligible at the speeds that current technology allows.
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1.1 The Kerr effect

This thesis deals with one of these nonlinearities: the optical Kerr effect [1, 2]. The

Kerr effect is a particular form of optical nonlinearity discovered by John Kerr in

1875, that describes a change in the refractive index of a medium proportional to

the intensity of light that propagates through it [3].

The reason why we do not see the light interacting with other light or changing

direction depending on its brightness is because the intensity needed for this effect

to become significant is extreme. It is not surprising that the first reports of this

effect were inside laser cavities or in optical fibres, where the intensity of light is

sufficiently high to make these changes of refractive index detectable [4]. In the

case of lasers, the intracavity light intensity can be orders of magnitude greater

than the laser output because the mirrors constituting the laser cavity recirculate

light multiple times. Optical fibres, instead, concentrate the light in a small mode

volume, less than 100µm2. Furthermore, fibres can be several kilometres long and

such an interaction length can enhances small effects.

When light intensity has a localised spatial or temporal profile, the change of

refractive index is stronger at the point of peak intensity. If light is propagating in a

spatially localised profile such as a Gaussian beam, the Kerr effect is manifestes as

Kerr lensing [5]. Usually the Kerr effect produces an increase of the refractive index

of the medium, increasing the optical path length proportionally to the intensity.

A converging lens has a similar path length profile, hence high intensity beams

propagating in a nonlinear medium tend to self-focus. The combination of a Kerr

lens followed by a pinhole transmits slightly less if the input consists of continuous

wave radiation rather than pulses. This happens because the higher intensity in

pulses focus them through the aperture better than low intensity cw light. This

effect is commonly used in mode locked lasers to promote pulsed operation. Light

pulses also have a temporal intensity profile, hence the middle of the pulse sees a

higher refractive index than the leading and trailing edges. This manifestation of

the Kerr effect is called self-phase modulation (SPM) [6, 7].

But the Kerr effect manifests itself even for continuous wave light: any ripple

in the time envelope of the intensity induces a corresponding modulation of the

refractive index that in turn affects the intensity profile. This phenomenon goes

under the name of modulation instability (MI) and, interestingly, was well studied
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in water waves as long ago as 1847 [8, 9, 10, 11], before being transported to the

field of nonlinear optics [12, 13, 14, 15].

1.2 Microresonators

The other key ingredient of this thesis is microresonators, but what are they? Let

us make a step back to 1910 when Lord Rayleigh coined the term “whispering

gallery” referring to the property of the dome of St. Paul’s cathedral [16]. A person

whispering close to the wall in the gallery at the base of the dome can be heard

clearly on the other side. Rayleigh theorised that the sound waves are guided by the

gallery, continuously bouncing at shallow angles on the wall. Hence, the wave travels

in a confined area reaching the other side with a higher intensity than propagating

in every direction across the dome.

The same principle applies to electromagnetic waves in circular dielectric struc-

tures. As long as the dielectric has a higher refractive index than the surrounding

medium, light is guided by total internal refraction in a closed loop. In 1938 Robert

Richtmyer [17] applied the concept of Rayleigh to electromagnetic radiation and, 31

years ago the first fused silica resonator working in the optical domain was realised

by melting the tip of an optical fibre [18].

These structures are called whispering gallery mode (WGM) resonators because

they use the same principle discovered by Lord Rayleigh. The term microresonator

is used when these kinds of cavities are not as large as a cathedral dome but their

diameter is from a few tens of microns up to a few centimetres and the mode of the

gallery, i.e. the cross-sectional area of the propagating light, is a few µm2. Also, to

be a resonator, the losses need to be small enough such that light can interfere with

itself roundtrip after roundtrip. The interference is constructive if the round trip

optical length is a multiple of the wavelength and destructive otherwise.

1.3 Kerr effect in microresonators

We can now see why microresonators are an ideal platform for the study of the

Kerr effect and nonlinear optics in general [19]: they combine a mode volume even

smaller than optical fibres, with the light recirculation of a cavity. In recent times

WGM resonators have been built with incredibly small losses [20, 21, 22, 23]. This
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means that resonant light can be trapped inside the ring structure for millions of

roundtrips allowing powers up to a megawatt to be concentrated in an area much

smaller than the cross-section of a human hair1.

One of the most notable discoveries was microcombs [24]. Modulation instability,

also called four wave mixing or hyperparametric oscillation, is the nonlinear optical

process that underpins frequency comb generation in microresonators [25]. The first

observations of MI in the optical domain were in 1966 in optical fibres [26, 27]. It was

observed in microresonators for the first time in 2004 [28, 29] and can be described

in quantum mechanical terms as the annihilation of two pump photons to generate

two other photons at different frequencies, generally called the signal and the idler

(inheriting their names from electronics). Energy conservation links the frequencies

of the four photons by the relation:

ωp1 + ωp2 = ωs + ωi. (1.1)

When ωp1 = ωp2 the effect is called degenerate four wave mixing, while in the non

degenerate case ωp1 6= ωp2

This is the mechanism that leads to the generation of the frequency comb. First,

degenerate FWM of the pump generates a couple of side bands, then cascaded non-

degenerate FWM between the various side bands fills the remaining gaps in the

comb as shown in Fig. 1.1.

Figure 1.1: Illustration of a microresonator based frequency comb.
(1) Degenerate four-wave mixing and (2) Non-degenerate four wave
mixing. Adapted from [30]

Analysing the comb formation from the temporal point of view, one can imagine

that the modulation instability tends to concentrate the propagating light in a series

1The hair of the author have an average diameter of 90µm corresponding to a cross sectional
area of 8100 µm2. Microresonator have cross-sectional areas in a range spanning from 1 µm2 to
500 µm2.
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of peaks and, under appropriate pumping conditions, is a single pulse in the cavity

called a soliton [31] as described by the Lugiato-Lefever equation (LLE) [32]. The

propagation of a soliton in the microresonator results in an output that can be

described as a pulsed laser with the repetition rate of the cavity round trip time.

The spectrum of this pulsed output corresponds to the one in Fig. 1.1.

The discovery of frequency combs has been a revolution in precision spectroscopy

[33]. For the first time, an accurate ruler in the frequency domain was available to

finally measure the absolute frequency of atomic transitions, paving the way to the

discovery and proof of many of the fundamental laws in atomic physics. Nowadays,

frequency combs are used for a wealth of applications in physics [34] but they are

still struggling to find their way in technology applications since they are expensive

and bulky pieces of equipment that often requires a high degree of control to work

properly. Microcombs, on the other hand, are astonishing simple and inexpensive

devices, composed of just a continuous wave laser and a circular resonator that could

make frequency combs finally available to a broader audience[35].

1.4 The unforeseen

This thesis was supposed to have a different title and describe Kerr frequency combs

in microresonators. The first experiment of my EngD aimed to exploit the Kerr effect

to generate two frequency combs in the same resonator by using counter propagating

light. Ideally, using the same resonator in opposite directions would cancel out most

of the differential noise with huge advantages for heterodyne detection [36], also part

of the electronics could be shared between the two combs.

When trying to couple light in both directions in a microresonator at low power

I observed the expected thermal triangle as shown in Fig. 3.2. However, as the

input power increases to reach the four wave mixing intensity, something unexpected

happens. I was able to couple just one direction in the resonator but not both (cf.

Fig. 3.13). The input power and frequency were symmetric in both directions but

the resulting light circulation was not. That was the first observation of spontaneous

symmetry breaking between counter-propagating light in microresonators.

The reason why this happens is that the light circulating in the two counter-

propagating directions interacts with each other via the Kerr effect, in particular

light travelling in each direction experiences a change in refractive index due to its
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own SPM but also twice as large as a change in n from the other direction because

of cross phase modulation (XPM) [6, 37, 38]. Light circulating in each direction

attempts to push away the resonance for light circulating in the other direction,

resulting in light only being able to circulate in one direction it the resonator at

high power. This effect was theorised at the beginning of the 1980s by Kaplan

and Meystre [39, 40, 41], however, it was never observed before because it was

not possible to reach the necessary continuous wave intensities. This discovery was

completely tangential to the original project but it led to a series of insights that I

will elaborate upon in the following chapters.

Was the original idea of generating counter-propagating frequency combs in sin-

gle microresonator even possible? It was indeed and it has been demonstrated one

year later by the Kerry Vahala group [42] and it is currently used [43, 44]. The rea-

son why they do not observe a symmetry breaking is that they initiate one frequency

comb at a time with a technique called power kicking [45]. With their procedure

there is never a situation with high power continuous wave light counter-propagating

in the cavity, instead they only have two counter-propagating light pulses that do

not interact for most of the round trip apart for the moment when they overlap.

This limited interaction between the two directions increases the threshold power

for symmetry breaking.

1.5 Why?

Was it worth changing the research direction of the whole group to chase a theory

developed in 1982? Kaplan and Meystre opened a research path with their paper [39]

but at the time the technology was not ready to prove their theory experimentally,

never mind the realization of commercial devices.

From the scientific point of view, spontaneous symmetry breaking is a fascinat-

ing phenomena widely studied for its interesting mathematical properties in many

fields from particle physics with the Higgs mechanism [46] to ferromagnetism, su-

perconductivity and superfluidity. It is the mechanism leading a symmetric system

into a state that violates that symmetry. In my case a circular resonator pumped

equally in both direction ends up coupling light just in one direction.

In particular, symmetry breaking in microresonators can be used in two differ-

ent regimes that present almost opposite characteristics. At the onset of symmetry
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breaking the system is very sensitive to any perturbation that creates differences be-

tween the circulating direction. The combination of the Kerr effect and the resonant

nature of microresonators amplifies these perturbations and enables the realisation

of different kind of sensors. As originally imagined by Kaplan and Meystre [40]

the system can amplify the small resonance shifts cased by the Sagnac effect [47,

48], enabling the realisation of compact optical gyroscopes [49]. Also the system

can be used to probe the refractive index in the vicinity of the resonator to make a

refractive index or particle sensor [50].

The other regime is well into the symmetry broken region where the system

shows almost opposite characteristics. Once the resonator is in a defined circulating

state, being resonant with the input laser in one direction but not in the other, it

tends to maintain the state despite the fluctuation of the inputs. Only large changes

in the input can overcome this hysteresis and cause a fast response of the resonator.

This regime results in non-reciprocal light propagation that can be used to realise

all-optical isolators and circulators [51], while the hysteresis opens the way to optical

memories , routing [52], and computing [53].

Non reciprocal propagation is one of the key components missing in photonics

circuits. Hence, compared to the eighties, Demand for chip integrated non-reciprocal

devices is growing: the photonic market is supposed to grow to over $ 1012 within

ten years [54] due to the shift from electronic to photonic technology for telecommu-

nications and on chip interconnects, not to mention the increasing use of photonics

for biological and medical applications. At the same time, the technology to realise

these device is maturing, as proven also by the proof of principle devices shown in

this thesis.

Personally I feel as a duty for a scientist to verify or add to the work of other

scientists, not because a lack of confidence but to reinforce their research and prepare

a solid basis for future work. Finding theoretical works on the effects that I was

observing for the first time was very motivational. Also, most of the discoveries that

turned out to be a breakthrough for humanity did not have that objective in mind

at the beginning and I still wonder if I am now following one of these branches, well

aware that for every breakthrough there are many dead ends.

The other reason why I wake up every morning to go to the lab is curiosity. It

is the thrill of finally measuring the results I hoped from the experiment I designed

and assembled in the last weeks, maybe months. And the even bigger thrill when
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results are unexpected and lead into a completely different direction opening new

challenges. That is what happened with this thesis!

1.6 Aim

This thesis aims to provide a theoretical basis for understanding the Kerr-effect-

mediated interaction between counter-propagating light in microresonators and the

consequent symmetry breaking between counter-propagating light states. Another

aim is to demonstrate the validity of this theory and to show proofs of principle

informing the possible applications through three main experiments.

1.7 Outline

The remainder of this thesis is structured as follows:

The objective of Chapter 2 is to introduce the common theoretical basis used in

the rest of the thesis. The coupling between a microresonator and a waveguide is

modelled in the linear regime. The theory is then adapted to the case of high-Q-

factor resonators and described in terms of measurable parameters. The fabrication

techniques for the two types of resonators used in this thesis and the coupling optical

fibres are described and alternative choices are evaluated.

In Chapter 3, I introduce the Kerr nonlinearity in the model and study the

effects, first from a theoretical point of view then experimentally. The mechanism

leading to spontaneous symmetry breaking is described

In the following chapters I analyse the possible applications of the symmetry

broken regime. Chapter 4 explains how the Kerr effect in microresonators can

be used to realise non-reciprocal devices such as optical isolators or circulators. I

analyse the requirements of an isolator and expand the coupling model from Chapter

2 to the case of coupling two waveguides simultaneously and discuss the optimisation

of the coupling parameters for this application. Finally, I present the results of two

experiments and discuss the results.

Chapter 5 analyses the switching between the two symmetry broken regimes. A

dynamical model is developed from the Lugiato-Lefever equation and I describe the

process to numerically solve the model. The design of the experimental setup is dis-

cussed with a particular focus on the light modulation technique. The experimental
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results show a hysteretical behaviour and a dependence of the switching charac-

teristics that are compared with the theoretical model. This chapter ends with

a discussion on the possible application of the bistability to all-optical memories,

switches, routers, and logic gates.

The conclusions presented in Chapter 6 summarise the thesis and briefly touch

on other applications of the symmetry breaking and the outlook for this research.
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Chapter 2

Microresonators

I am always amused by simplicity, in particular when complicated problems can

be solved with a simple and elegant solution. At first glance, microresonators are

simple tiny glass rings that make it possible to explore nonlinear optics thanks

to their incredibly high optical intensities. But, like most of the uncomplicated

solutions require effort and study to be implemented, there is a lot of effort and

technology behind the realisation of a microresonator.

In this chapter, I introduce the theoretical basis for the rest of the thesis. I

develop a model for the coupling between a microresonator and an optical fibre. I

then specialise the theory for the case of high-Q microresonators and express it in

a normalised form in term of experimentally measurable parameters. For now, the

theory deals with the linear regime. The Kerr nonlinearity will be introduced in

Chapter 3. Finally, I describe the fabrication methods for the microresonators used

in this thesis.

2.1 Coupling of light into the microresonator

Light in optical fibres is guided through total internal refraction exactly in the same

way it is trapped into the microresonator. In both cases, the optical mode has a

component of evanescent field i.e. an electromagnetic field exponentially decaying

over a distance of the order of the wavelength from the interface [55]. In the case of

the microresonator, this field lies in the air around the resonator and can be used

to couple light but also to probe the surrounding of the resonator [56, 57, 58, 59].

There are several techniques to create a phase matched evanescent field that can

couple with the resonator. In this thesis, only fused silica resonators coupled with
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tapered silica fibres are used.

In the case of an optical fibre, it is the interface between the core and the cladding

that confines the light and the evanescent field is entirely contained in the cladding

before the jacket area. For this reason, just removing the plastic coating of an

optical fibre it is not sufficient for accessing the evanescent field. To access the light

in the fibre it is possible to taper the fibre by heating it close to the melting point

of glass and pulling it. This process stretches the core and cladding of the fibre and

reduces the fibre diameter to the order of one micron until a single mode can travel

through the taper but now the guiding interface is air-glass, making the evanescent

field accessible (more on this topic appears in Section 2.10).

Alternatively, it is possible to polish the side of a fibre to remove the cladding

until the mode area is accessed [60]. Another solution is to use angle cleaved fibres.

This method is usually much resilient than tapered fibres, however, this allows the

coupling of light just in one direction. It is still possible to use multiple cleaved

fibres to couple light into and out of the resonator, but in this case the phase and

coupling factor between different points have to be taken into account.

Fibres are not the only way of producing an evanescent field. Total internal

reflection in a prism [61] also produces an evanescent field. Furthermore, it is possible

to choose the prism material to match the resonator so that the wave-vectors are

the same in both media which is critical to obtain phase matching (as described in

[62, 63]) and a higher coupling.

Placing the fibre close to the resonator with a precision translation stage makes

it possible to couple light in and out of the resonator. By close I mean that there

should be significant overlap between the evanescent field of the taper and the part

of the resonator mode that exists outside the interface between dielectric and air.

Let us now model the coupling between the ring resonator and the tapered fibre as

depicted in Fig. 2.1.

In developing the coupling model, I assume linear light propagation, meaning

that all the coupling parameters and the phase acquired during one round trip are

not affected by the light intensity. This allows us to consider just one direction

of propagation at the time. Also, I assume that the resonator has a single optical

mode and I do not consider the polarisation of light at the moment. This may seem

counter-intuitive in a thesis about nonlinear interaction between light propagating

in multiple directions, but the nonlinear effects will be later reintroduced as a change

42



Figure 2.1: A schematic of the coupling region and the parameters
used to describe the coupling of a resonator to a tapered fibre. t and
k are the transmission and coupling respectively. α is the round trip
transmission.

of the effective cavity length or, in other words, of the phase acquired per round

trip in each direction. The input powers used in these experiments are low enough

to neglect the Kerr effect in the optical fibres. Also, we consider the coupling point

zero-dimensional and lossless (in case you are interested in when the coupling is not

lossless I suggest [64, 65]). Despite being a wild approximation, it does not affect

the validity of the model because of the phase matching between waveguide and

resonator. Since the coupling is not adjusted during the experiment we can add any

phase acquired at the coupling point to the length of the resonator and the fibre

respectively.

The transmitted field through the fibre and the resonator can be described as

follows. This model is well known for resonators and a general description of it can

be found in [66]. However here I simplify it with the assumptions above and adapt

it to the scope of this thesis.

Et1 = t · Ei1 + k · Ei2 (2.1)

Et2 = −k∗ · Ei1 + t∗ · Ei2, (2.2)

where E is the electric field and the subscript i, t represent the input and transmis-

sion at the coupling point, while, in the context of this chapter, the subscripts 1, 2

indicate the tapered fibre and the resonator respectively. The coupling parameters t

and k, and their complex conjugate t∗ and k∗, are outlined in Fig. 2.1. For practical

reasons E is normalised such that |E|2 = P the optical power of the mode (more on

this choice in Section 2.3.1). This can be expressed also as a scattering matrix as
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follows: Et1
Et2

 =

 t k

−k∗ t∗

Ei1
Ei2

 (2.3)

The signs and complex conjugation make sure that under space inversion and

time reversal the matrix still describes the correct phase delay acquired by light

crossing the coupling region. In particular, the sign of k changes depending on

light coupling in or out of the resonator, this is analogous to the phase shift that

light experiences when scattered by an interface between two refractive index1 and

guarantee energy conservation at the coupling point. An eventual imaginary part

of t and k represent a phase acquired by crossing the coupler. The fact that the

resonator is closed on itself can be added with an additional equation:

Ei2 = Et2 · α eiθ (2.4)

where (1−α) is the electric field loss in a round-trip and θ is the phase acquired

by the field during the round trip that can be expressed as:

θ =
ωLn

c
=

2πr ωn

c
= 4π2 r

λ
n, (2.5)

by using the identity ω/c = k = 2π/λ. Where ω is the angular frequency of the

electric field, k is the wave vector, c is the speed of light, L = 2πr is the circumference

of the resonator, and λ is the wavelength of in vacuum. Note that the refractive

index of the resonator n appears just here, we have to keep it in mind for Chapter

3, where I will introduce the Kerr nonlinearity and its effect on the refractive index.

Let me introduce some approximations. First let us assume that the coupling

point is lossless which is equivalent of asking that the determinant of the scattering

matrix is 1:

|t|2 + |k|2 = 1 (2.6)

and also that I can normalise all the fields such that the only input field Ei1 = 1.

The remaining fields have the following expressions

1light refracted by a higher refractive index material is phase shifted by π while light refracted
by a lower refractive index is not phase shifted. This arises from the Maxwell equations and
particularly for the boundary conditions of the electric and magnetic fields.
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Ei1 = 1 (2.7)

Et2 =
−k∗

1− αt∗eiθ
(2.8)

Et1 =
te−iθ − α
e−iθ − αt∗

(2.9)

Ei2 =
αk∗

αt∗ − e−iθ
. (2.10)

We can now introduce the other assumption of a zero-dimensional coupling point.

We can reasonably assume that there is no phase shift for light crossing from the

resonator to the tapered fibre therefore we can assume k ∈ R. Also, since the fibre

and the resonator are made of the same material, any phase accumulated at the

coupling point can be added to the round trip phase delay of the tapered fibre so

also t ∈ R. Now the fields are:

Ei2 = 1 (2.11)

Et2 =
−k

1− αteiθ
(2.12)

Et1 =
te−iθ − α
e−iθ − αt

(2.13)

Ei2 =
αk

αt− e−iθ
. (2.14)

The corresponding powers are calculated as P = E · E∗:

Pi1 ≡ |Ei1|2 = 1 (2.15)

Pt1 ≡ |Et1|2 =
α2 + t2 − 2αt cos(θ)

1 + α2t2 − 2αt cos(θ)
(2.16)

Pi2 ≡ |Ei2|2 =
α2 (1− t2)

1 + α2t2 − 2αt cos(θ)
(2.17)
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Pt2 ≡ |Et2|2 =
(1− t2)

1 + α2t2 − 2αt cos(θ)
. (2.18)

From now on let us just use the expressions for the power. It is worth evaluating

these expressions in two special conditions. The first one is resonance, i.e. when

the phase delay accumulated in one round trip is a multiple of a full cycle θ = m ·2π,

Pt1 =
(α− t)2

(1− αt)2
(2.19)

Pi2 =
α2 (1− t2)

(1− αt)2
(2.20)

Pt2 =
(1− t2)

(1− αt)2
. (2.21)

The other condition is called critical coupling [67]. This happens when it is

possible to completely cancel the transmission of the input fibre when in resonance.

This condition is easily inferred from the equations above as α = t. For critical

coupling the fields have the following expressions:

Pt1 =
2α2 (1− cos(θ))

1 + α4 − 2α2 cos(θ)
(2.22)

Pi2 =
α2 (1− α2)

1 + α4 − 2α2 cos(θ)
(2.23)

Pt2 =
(1− α2)

1 + α4 − 2α2 cos(θ)
. (2.24)

2.1.1 Low-loss (Lorentzian) approximation

In many works on resonators, the line-shape is assumed to be Lorentzian however

the expressions in the previous section are not explicitly Lorentzian. It is worth

investigating why, and under which conditions, a Lorentzian is a good approximation

of this equation. This approximation for the resonance is generally taken because

a polynomial form is more manageable than a trigonometric one. Furthermore, in

most cases, we will be dealing with a single resonance and a single-peak decaying

function is preferred to the trigonometric form that correctly shows periodical peaks

every full rotation of θ, i.e. θ = 2πm with m ∈ N. For small resonator losses α ∼ 1
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it is possible to show that Pt1 = 1 and Pi2 = 0 unless also cos(θ) ∼ 1.

To demonstrate this I expand the circulating power and the transmitted power

substituting α2 = 1− `2 and expanding the Taylor series for `→ 0 up to the second

order. For the sake of simplicity let us use the critical coupling condition.

Out of resonance

At first, I will assume that (1− cos θ) is finite (not close to 0). We will see later that

this is the case of being out of resonance. The cavity power becomes

Pi2 =
(1− `2)`2

2(1− `2) (1− cos(θ)) + `4
(2.25)

=
`2

2 (1− cos(θ))
+O(`4) (2.26)

The approximation can be expressed as simply as

Pi2 ∼ 0 (2.27)

Applying the same approximation to the power transmitted through the input fibre:

Pt1 =
2(1− `2) (1− cos(θ))

2(1− `2) (1− cos(θ)) + `4
(2.28)

=
(1− cos(θ))

(1− cos(θ))
+O(`4) (2.29)

Again, the approximation can be expressed as

Pt1 ∼ 1 (2.30)

Since all the input power is transmitted through the waveguide and none is

coupled to the resonator the name of “out of resonance” is justified.

Close to resonance

One may be tempted to use use this approximation even when the denominator is

small but that is not how the Taylor expansion works. To analyse the second case

let us start the Taylor expansion from scratch. The interesting case is when the laser
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detuning from the resonance is small. In this case θ ∼ 0 so we can approximate the

cosine at the second order:

cos θ = 1− θ2/2, (2.31)

getting:

Pi1 = 1 (2.32)

Pt1 =
α2θ2

(α2 − 1)2 + α2θ2
(2.33)

Pi2 =
α2 (1− α2)

(α2 − 1)2 + α2θ2
(2.34)

Pt2 =
1− α2

(α2 − 1)2 + α2θ2
. (2.35)

These equations have now a Lorentzian form. Note how the assumption of small

angle also removed all the resonances at a different free spectral range leaving just

the peak at θ = 0 (see Figure 2.2). Usually, this is not a problem since the only

resonance contributing to the physics of the problem is the one closer to the laser

line. In practice, the mode used is never the one corresponding to zero frequency,

m = 0 → θ = 0 so we have to remember to bring back m in the equations when

the absolute frequency is important instead of just the frequency difference. Note

in Fig. 2.2 how the approximation holds even for a value of α significantly different

from one.
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Figure 2.2: Comparison between the exact model and the Lorentzian
approximation. In blue, the shape of a resonance without the small
angle approximation, and in orange, the same resonance in small angle
approximation. α = 0.8, t = 0.9.
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The algebra to get to the Lorentzian form is easier considering critical coupling

but I hope that the reader is convinced that this would be the case also when α 6= t.

Pi1 = 1 (2.36)

Pt1 =
(α− t)2 + αtθ2

(αt− 1)2 + αtθ2
(2.37)

Pi2 =
α2 (1− t2)

(αt− 1)2 + αtθ2
(2.38)

Pt2 =
1− t2

(αt− 1)2 + αtθ2
. (2.39)

To sum up, the resonance condition is given by θ = 02 and the critical coupling

condition is given by α = t. Also, note how the intrinsic properties of the resonator

are represented by α, the coupling parameters are t, k, and the laser characteristics

are represented through its detuning from the frequency of interest θ.

So far the power of the laser is not taken into account because the model is

linear. It will be introduced through its effect on the refractive index n thus in the

variable θ.

2.1.2 Light loss channels (bending, absorption, scattering)

Before proceeding to the description of the theory in therm of measurable parameters

let us dwell on the reason why there are losses in the resonator. The relation betwen

k, t and the coupling region is relatively straightforward: as the mode in the fibre

and the resonator overlap, energy can be exchanged between the two. Also, because

of energy conservation, if k increases, t has to decrease according to Eq. (2.6), so

these two parameters are not describing losses but power transfer. The losses are

represented in our model, by the fact that α differs from 1, and arise from different

phenomena that I will now briefly analyse. In literature there are other quantities

used to describe the losses. One of the most common is the quality factor of the

resonator or Q-factor Q; it is proportional to the ratio between the energy stored in

the resonator and the energy lost each wave cycle. I will introduce a more practical

2Remember that we approximated the cosine function for small angles so only the case of θ = 0
has to be considered insted of the usual the usual condition for resonance θ = 2mπ with m ∈ N.
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definition in Section 2.2.5.

Bending losses

As we all know, light likes to travel in a straight line. It is possible however to

confine light in waveguides that guide the light on curved paths. As the bend radius

gets smaller, it is more and more difficult to steer the light and some of it escapes

the waveguide and it is lost. Every ring resonator has to deal with this, being a

closed structure. A better insight on why the light escapes the waveguide can be

obtained by thinking that the light travelling at a larger radius needs to travel a

longer distance to reach the same point of the bend. It is possible to transfer this

difference in distance to a difference in refractive index [66], schematising a curved

waveguide made of uniform dielectric as a straight waveguide with a gradient in the

refractive index as shown in figure Fig. 2.3. The amount of losses depends on the

Figure 2.3: (a) Refractive index profile of a disk resonator, (b) Mod-
elling the curvature of the resonator as a gradient in the refractive
index. Adapted from [66].

radius of curvature and the refractive index step between the waveguide and the

cladding. I observed that, for glass-to-air refractive index contrast, bending losses

start to be a significant contributing factor to the losses for diameters below 40µm.

This transformation is also useful to understand why the light travels on the outer

boundary of the ring and not in the middle. Given that the electric field in a mode

tends to concentrate in the high refractive index area, in the right panel in Fig. 2.3,

it is clear how a “potential well” is located at the outer edge of the circular structure.

Absorption

Another loss mechanism is absorption in the resonator. Fused silica is the material

of choice for telecommunication fibres, not only for the availability and ease of

manufacturing, but also for the low absorption in the C-band (1530 to 1565 nm).
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If accounted alone, the losses due to absorption would limit the Q-factor at about

1.5 × 1011 at 1550 nm [68, 69]. Then why do the resonators presented in this

thesis, and those in most of the literature, have lower Q? There are other sources of

absorption. It is possible that the material constituting the rods is not pure fused

silica but contains dopants or impurities. It is easy to notice when a batch of the

silica rod used to machine microresonators is defective: the Q-factor of the resonators

machined from that batch drops to 107 or below, despite all the fabrication process

stays identical. Another source of losses is the adsorption of water moisture from air

that create a layer of absorptive OH bonds on the surface of the glass. According

to [68] this process happens at room temperature and reduces the Q by an order of

magnitude in a few minutes after fabrication. Part of this adsorption may happen

also during the fabrication process since machining the resonators in a laminar flow

on N2 improves the Q from about 4× 108 to over 109 [58]. Absorption is the effect

responsible for the heating of the resonator and the thermal effect described below

in Section 2.4.

Scattering

The final source of losses worth mentioning is scattering. In this case, the light is

not absorbed but is scattered out of the optical mode of interest. Light can leave

the resonator or couple to different optical modes if they happen to have the same

resonance frequency. Alternatively, light can couple to the same mode but in the

opposite direction. This case is slightly different from the previous ones since it

creates coupling between two identical modes, resulting in a doublet that becomes

visible if the backscattering is strong enough [70].

There are various sources of scattering, and some of them also contribute to

the absorption. Physical sources of scattering comprise impurities in the glass or

dust deposited on the resonator. The latter can be prevented by ensuring that the

resonator is handled in a dustproof environment and enclosing the setup in a dust-

tight box as shown in Fig. 3.10. Scattering can arise also from the surface roughness

of the resonator, this kind of scattering is low when the fabrication process involves

melting the resonator surface because the surface tension is strong enough to level

most of the roughness below the µm level, but could be significant when the material

is etched or deposited.
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The final source of scattering is related to the crystalline structure of the glass;

despite using amorphous fused silica, the material still exhibits some periodic struc-

ture in the small scale. These kinds of scattering are called Raman scattering[71, 72,

73] when the optical phonon band is involved, or Brillouin scattering[74, 75] when

the acoustic band is involved.

2.2 Measurable parameters

Let us continue with the mathematical description of a lossy resonator coupled to a

waveguide. The model developed so far is very accurate despite its simplicity and can

easily be modified to account for other effects. However, there is a major drawback:

in the real world, it is almost impossible to measure directly the parameters involved

in the model. Hence, to apply this model to the prediction of experimental results,

it needs to be expressed in dimensionalised terms.

2.2.1 Linewidth

The linewidth is one of the most straightforward things to measure of a resonator.

In the case of microresonators, it is enough to scan the laser frequency keeping the

power constant and monitor the transmission through the taper. I can measure the

half width half maximum linewidth (HWHM) just with the oscilloscope cursors; the

only knowledge required is how much the frequency is changing per unit of time, i.e.

the scan rate of the laser. This can be calibrated by adding an electro optic modula-

tor (EOM) to the input to generate two sidebands at a known frequency difference

from the laser frequency. The sidebands will cross the resonance at different times

with respect to the main laser frequency and, from the time difference, it is possible

to calibrate the scan speed in frequency difference over time.

The same HWHM can be calculated from the expression for powers from the

theory. For convenience let’s use Pt2. This is equivalent to defining the θHWHM such

that Pt2(θHWHM) = Pt2(θ = 0)/2.

θHWHM : Pt2(θHWHM) = Pt2(θ = 0)/2 (2.40)

This results in

θHWHM =
1− αt√
αt

(2.41)
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We can also describe the intrinsic linewidth, i.e. the linewidth when there is no

coupling with the tapered fibre as the limit for this quantity for t→ 1:

θHWHM,0 =
1− α√
α

(2.42)

Similarly, under the condition for critical coupling α = t we get:

θHWHM,crit =
1− α2

α
(2.43)

To compare these values of θHWHM with the measurable linewidth in terms of

angular frequency γ, we need to recall the relation between θ and ω.

θ = m 2πr n
ω

c
(2.44)

In this case we are interested in small variations about the resonance, so we can use

the small angle approximations and calculate the variation around m = 0

γ = ∆ωHWHM =
c

2πr n
θHWHM (2.45)

Hence we can define all the relevant linewidths:

γ =
( c

πdn

) 1− αt√
αt

γ0 =
( c

πdn

) 1− α√
α

γcrit =
( c

πdn

) 1− α2

α

(2.46)

Where d is the diameter of the resonator.

This model is supposed to deal with real life scenarios and the resonators suitable

for the observation of nonlinear effects that are described in this thesis have a Q-

factor of at least 107. These Q-factors correspond to α ∼ 1 − 10−4, as shown

at the end of this section, hence we can safely approximate for α → 1. Under

this assumption the linewidth for critical coupling is twice the intrinsic linewidth:

α → 1, γcrit = 2γ0. This provides a method to measure the intrinsic linewidth of a

resonator, by simply measuring the linewidth at critical coupling and halving it. If

the coupling losses are much smaller than the losses in the resonator γ ' γ0. Hence,

an alternative way to determine the intrinsic linewidth is to measure the linewidth

in the regime of very low coupling.

Since α and t play an identical role in the transmission through the ring resonator,
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for consistency we can define accordingly a quantity κ that represents the coupling

linewidth (or coupling strength):

κ =
( c

πdn

) 1− t√
t

(2.47)

If the resonator is not strongly overcoupled we can assume the limit α, t→ 1. This

condition makes the various linewidths additive as in the case:

γ ' γ0 + κ (2.48)

Finally, the detuning between the laser and the resonance ∆ as an angular frequency

can be expressed in the small angle approximation as,

∆ =
c

πdn
θ (2.49)

2.2.2 Coupling efficiency

The parameters regarding the width of the resonance having been dealt with, let

us now focus on the ones describing the intensities. The coupling efficiency η rep-

resents how efficiently the power is transferred from the fibre to the resonator, it

is defined as the fraction of pump power that is subtracted from the input field at

resonance. We choose the resonance condition because this parameter represents

the efficiency arising from the optical coupling, independently from the frequency

mismatch between laser and resonator.

η ≡ Pi1 − Pt1
Pi1

∣∣∣∣
θ=0

(2.50)

Using Eqs. (2.36) and (2.37) we find that:

η =
(1− α2) (1− t2)

(1− αt)
(2.51)

It is possible to demonstrate that in the limit of α, t→ 1 this expression is equivalent

to the expression of the coupling efficiency in terms of the other representation:

η =
4κγ0

(κ+ γ0)2
(2.52)
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This can be demonstrated by writing Equation (2.51) and substituting Equations (2.46)

and (2.47) and using the approximation α, t→ 1:

η =
1− α2

α

1− t2

t

αt

(1− αt)2
(2.53)

'2
1− α√
α

2
1− t√
t

1

γ2

' 4κγ0

(κ+ γ0)2

2.2.3 Free spectral range

To define the free spectral range (FSR) we can refer back to our resonator model.

To be in resonance, The light have to fit an integer number of wavelength in the

circumference of the resonator so that it will interfere constructively every round

trip. This corresponds to set the phase acquired in a round trip θ as a integer

multiple of 2π:

θres = 2πm m ∈ N, (2.54)

There is a series of equally spaced values of θ that correspond to a resonance. The

FSR is defined as the difference between the resonance corresponding to the mode

number m and the next one. So in the units of the acquired phase, the FSR is

simply

∆θFSR = 2π. (2.55)

We can straightforwardly convert to angular frequency ω by using Eq. (2.5) since

the two are proportional to each other.

∆ωFSR = 2π
c

πdn
. (2.56)

We are not considering dispersion so n(ω) = constant. Thus, for any geometrical

mode, the possible resonant frequencies form an equally spaced set in the frequency

domain.

If we are interested in the FSR in terms of wavelength we have to remember that

there is a nonlinear relation between the two:

ω =
2πnc

λ
(2.57)
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We can convert to wavelength FSR by considering the relative increment between a

mode and the next to be equal in both cases.

∆ω

ω
=

∆λ

λ
→ ∆λ = ∆ω

λ2

2πnc
(2.58)

Hence:

∆λFSR =
λ2

Ln
(2.59)

The equally spaced lines in frequency do not correspond to equally spaced lines in

the wavelength domain. Note than n is made explicit in the equations, hence the

vacuum wavelength is the one that matters.

2.2.4 Finesse

The finesse of a resonator is defined as the ratio between the free spectral range and

the linewidth, which can be easily calculated from Eqs. (2.41) and (2.55) as

F =
∆θFSR

2∆θHWHM

= π

√
αt

(1− αt)
(2.60)

For low losses the finesse can be approximated as 2π over the round trip power

losses which can be used in all of the practical cases in this thesis. So the coupled

finesse and the intrinsic finesse are:

F ' 2π

1− α2t2
, F0 '

2π

1− α2
(2.61)

Finally, the finesse can be defined in terms of measurable parameters by using the

results for the FSR found above and the linewidth:

F =
2π
(

c
n πd

)
2γ

=
c

γnd
(2.62)

Note how the finesse of the cavity does not depend on the wavelength of the laser.

2.2.5 Q-factor

The quality factor or Q-factor Q of a resonant cavity is defined as 2π the stored

energy in the cavity at a certain resonance frequency ν over the losses in one wave
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cycle, in analogy to the electronic equivalent of a resonating circuit.

Q = 2π
Estored

Ploss/ν
≡ 2πντ (2.63)

This definition is not very agile in the case of microresonators; however when Q is

greater than unity, it is possible to define it in the easily measurable form: the ratio

between the operating frequency ω and the linewidth of the resonance ∆ωFWHM,

Q =
ω

∆ωFWHM

= F · ω

∆ωFSR

(2.64)

Or, using the measurable quantities above:

Q =
ω

2γ
(2.65)

It is very important to remember that with the small angle approximation we fixed

the angle θ ∼ 0. This means that we are effectively using the variables θ,∆ as

detunings from a resonance. We must, therefore, be careful when introducing back

the absolute resonance frequency ω.

Q = 2πm

√
αt

2(1− αt)
=

(
πdn

c

)
ω

√
αt

2(1− αt)
(2.66)

The mode order m cannot be measured, however it can be estimated as the closest

integer multiple of the vacuum wavelength to the effective cavity length:

m =
L

λ
=
πdn

λ
(2.67)

Note that, since the Q-factor depends on γ, the same property between the intrinsic

Q-factor and the critical coupling can be drawn:

Q0 = 2Qcrit (2.68)

2.3 Normalised theory

So far we developed a dimensionless version of the theory of coupling to a res-

onator. This is useful since it provides a simple approach to the maths and it is

more digestible by software. However, when comparing the simulation results to
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experiments, we need to relate the theory to measurable quantities. We did that

in the previous section but we lost some of the agility we had in the initial model.

To satisfy both conditions it would be ideal to express the equation with their di-

mensions but normalise them with characteristic units so that the mathematical

treatment and the programming remain agile. That is exactly what I am going to

do in this section. Also, we are aiming to keep the theory independent from the

coupling characteristics and the resonator characteristics so that one model suits all

the implementations. Finally, it would be nice to keep the expressions as short and

compact as possible.

2.3.1 Electric field, power and intensity

In the derivation of the equation so far I assumed the power being the

P = |E|2 and P = I · Aeff (2.69)

These two equations are important since the photodiodes used in the experiment

measure the power P and, as described later, the Kerr effect depends on the inten-

sity I of the field. This proportionality factor in Eq. (2.69) simplifies the theory

developed so far but results in uncommon units for the electric field; however, for

this application, the electric field is never measured and the only important char-

acteristic is just the proportionality between the intensity I and power P ; and the

modulus square of the field |E|2.

For the sake of completeness however let us remember than the Poynting vector

is defined as [76]:

~S = ~E × ~H (2.70)

This leads to an intensity for a wave propagating in a medium of

I =
vphaseε0εrµr

2
|E|2. (2.71)

In this thesis the meaning of intensity is the one used in general physics: the

optical energy flowing per unit of time and unit of area, and measure it in SI units

of [W/m2]. In both cases the power is related to the intensity through the effective

mode area Aeff
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2.3.2 Characteristic frequency

Let us recall the ring resonator mode in the lorentzian approximation described by

Eqs. (2.36) to (2.39) and express it in terms of measurable parameters. Let us start

with the circulating power Eq. (2.39) and express the powers with a more meaningful

notation of circulating power Pt2 → Pcirc and input power Pi1 → Pin:

Pcirc =
Pin(1− t2)

(1− αt)2 + αtθ2
(2.72)

Initially we will focus on expressing the frequency. A natural way of expressing

the detuning is to use the angular frequency difference between the laser and the

cavity resonance ∆. Since θ is dimensionless we have to divide this by another

angular frequency. There are several linewidths in the previous section to pick

from, but since I would like to have all the coupling characteristic included in the

normalisation and not explicitly appearing in the equations, I will use the coupled

linewidth γ. Let us recall their expressions.

∆ =
c

πdn
θ γ =

( c

πdn

) 1− αt√
αt

(2.73)

and substitute them into Eq. (2.72).

Pcirc =
Pin(1− t2)

(1− αt)2

1 +

∆

γ

2


(2.74)

There are still a few α and t left but the frequency component of the equation is now

normalised. We now know that we can use a dimensionless detuning in the theory

and convert it to real values by expressing it in units of the HWHM linewidth of

the resonator.

2.3.3 Coupled Power

The remaining factors have to be adsorbed in the definitions of power. First, we

have to consider that the circulating power depends on the coupling of the resonator

as flagged by the presence of t in the equation. By substituting Eq. (2.51) for the

coupling efficiency,

η =
(1− α2) (1− t2)

(1− αt)
(2.75)

59



we can absorb this dependence in a measurable ratio of powers

Pcirc =
ηPin

1 +

∆

γ

2

1

(1− α2)
(2.76)

In high-Q microresonators, the intracavity power is orders of magnitude higher

than the power propagating in the fibre; also there is now way to access that power

directly but only via external means such as the transmission of the tapered fibre.

To keep the intracavity power and the input power at the same order of magnitude

we can divide by the enhancement factor of the cavity. Since the detuning and

the coupling efficiency are already expressed in the equations, we define the power

enhancement E as the ratio between the input power (cf. Eq. (2.32)) and the cir-

culating power (cf. Eq. (2.35)) under both the resonance condition θ = 0 and the

critical coupling (α = t) condition:

E =
Pt2
Pi1

=

1− α2

(1− α2)2

1
=

1

1− α2
=
F
2π

(2.77)

Where in the last equality I used Eq. (2.61). We can now substitute this in Eq. (2.76)

and obtain

2π

F0

Pcirc =
ηPin

1 +

∆

γ

2 (2.78)

Allow me to define the left side of the equation as coupled power. The reason

why this quantity deserves a name is that it is easy to measure. Energy conservation

tells us that this is just the power missing from the transmission that went into the

resonator:

Pcoup = Pt,1 − Pi,1. (2.79)

It can be measured by monitoring the input power and the transmission of the taper

with photodiodes. Also, measuring the coupled power at resonance gives a direct

measurements of the coupling efficiency as the ration between coupled power and
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Figure 2.4: Definition of the coupled power. In blue, a schematized
transmission spectrum of a microresonator resonance when scanning
the laser towards lower frequency. The cold resonance is at ω0 but
it is deformed by the thermal and Kerr effect. The input power Pin

is equal to the transmitted power Ptrans outside the resonance. The
coupled power Pcoup is measured as the power missing from the out of
resonance transmission.

input power in resonance:

η =
Pcoup

Pin,1

∣∣∣∣
θ=0

(2.80)

Note that in Fig. 2.4 the condition of θ = 0 happens right before jumping out of

resonance and not at ω0.

So far, there is no need for a normalisation power because the system is linear. In

other words the circulating power is always proportional to the input power as can

be seen in Eq. (2.78). Hence no natural unit of power emerges from the equations.

In the next chapter we will introduce the Kerr effect as a power dependent detuning

hence we will need a normalisation power.

2.4 Thermal effects

I just mentioned that the thermal effect deform the resonance, let us analyse how.

When the light couples into the resonator, a part of it is absorbed by the glass and

impurities, resulting in a temperature increase. The temperature change is typically

slower than the energy build-up time of the cavity and characterised by different

time constants due to the different heat capacity and conductivity of the setup. At

the shortest timescale, there is the mode volume of the resonator that is responding

at the µs timescale. The whole rod resonator takes longer to respond, in the order

of the second timescale. Finally, heat is transmitted to the holding pillar and to the
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air in the enclosed box around the resonator with a thermalisation time of a few

minutes.

2.4.1 Thermoelasticity and thermorefractivity

Temperature affects the resonance frequency in two ways: thermoelastic and ther-

morefractive effects [77, 78]. A consequence of the change in temperature is the

thermal expansion of the glass also known as thermoelastic effect. This increases

the diameter of the resonator and hence reduce the resonance frequency.

ωres = m
c

nr
(2.81)

A less known effect is thermorefractivity, which is a change in the refractive index

of the resonator with the temperature. The material used in this thesis (SiO2) has

both the thermal contributions and the Kerr effect pointing in the same direction:

and increase in power or temperature reduce the resonance frequency. However,

some materials show a reduction of refractive index with increasing temperature,

this opposite sign and the different timescale between the Kerr and thermal effects

can lead to instability and oscillations [79]. A popular material in the field of

microresonators that shows this behaviour is CaF2.

To have an idea of the effect, a fused silica resonator with radius r = 0.5 mm

operating in the C-band has a mode number m ' 2000. The coefficients for fused

silica are: αl = 5.5× 10−7 K−1 for the thermoelastic and αn = 1.0× 10−5 K−1 for the

thermorefractive. Hence, a change of temperature of 1 °C correspond to a relative

change in frequency of

∆ν

ν
= αl∆T + αn∆T = 1.055× 10−5 (2.82)

this may not seem much, but microresonators have very high Q-factors, of the order

of 2× 108 corresponding to a linewidth of 2 MHz. The shift above corresponds to a

shift over 2 GHz: 1000 times the linewidth!

2.4.2 Passive thermal locking

Thermal effects are often much more significant than the Kerr effect in terms of

amplitude, but the effect on the locking works in the same direction, shifting the
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resonance to lower frequencies as the coupled power, hence the temperature in-

creases. It is possible to lock to a resonance only on the blue detuned side and this

is the situation where the microresonators are typically operated.

It is important to note that, when the resonator is used to produce a frequency

comb, the spatial distribution of light is not the same in every part of the resonator.

Indeed, a frequency comb is typically constituted by a soliton [31] i.e. a pulse of light

circulating into the cavity, thus the interplay between the global thermal effects and

the local Kerr effect complicates, however, several active locking techniques have

been developed to bring the resonator in the soliton state and keep it there indef-

initely [45, 80]. In this thesis, I assume that the circulating light has a continuous

wave profile (more on this in Chapter 5).

Laser frequency offset (MHz)

Tr
an

sm
is

si
on

 (
a.

u
.)

0 200 600400

0.1 THz/s

10 THz/s

Scan speed

(a) (b)

M
ax

 r
es

on
an

ce
 s

h
if
t 

(M
H

z)

Figure 2.5: Thermal effects. (a) the transmitted power through
the taper as a function of the laser frequency of a high-Q resonance.
The different traces have been acquired at different scanning speed and
aligned at the cold cavity resonance. (b) the thermal triangle ampli-
tude, measured as the difference between the resonance and the point
of jumping out, as a function of the laser scan speed.

To evaluate the capture range of the thermal locking, it is possible to measure

the tilt of the Lorentzian and its extension in frequency at different laser scanning

speeds Fig. 2.53 (this topic is discussed later in Section 3.1 in the context of the

Kerr effect). A theoretical model can be built by measuring or fitting the thermal

capacity and conductivity of the various parts of the resonator [81] however the

relevant information for this thesis are the lock range and the speed. To measure it

the resonator is pumped in a single direction while scanning the laser frequency at

different speeds. The tilted resonance width is measured for each different speed.

3These graphs originate from preliminary measurement. They are intended as a qualitative
demonstration of the thermal effect in microresonators more than as a quantitative measurement.
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Despite the low Q-factor (2× 107) of the resonator compared to the other ones used

in this thesis and the relatively low power of 30 mW, the resonance extends over

100 MHz for scanning speeds up to 1000 GHz/s. In higher Q-resonators, this can

stretch up to a few GHz locking range. The response and locking range is even faster

in smaller structures with less thermal inertia such as microtoroids and microdisks

described in Section 2.6. It is important to point out that there are techniques to

cancel the thermal effects either by engineering the resonator material [82, 83] or by

using an auxiliary laser in order to stabilise the total circulating power [23].

2.4.3 Neglecting the thermal effect

In the rest of the thesis, I will neglect the thermal effect by including it in the laser

detuning. This is valid because the thermal effect depends only on the total power

in the resonator but not on the direction of propagation. If the laser scan is slow

enough the resonator can be assumed to be in a thermalised steady state, hence the

thermal effect would just result in the detuning ∆ being proportional to the laser

frequency offset.

This assumption however is not perfect and introduces a few problems. First,

there are multiple time constants for the thermal relaxation of the resonator, so

the magnitude of the thermal effect will depend on the scanning speed, the input

power, the coupling to the resonator, and the thermal characteristics of the resonator

itself. The attempts at fitting the proportionality constant between ∆ and the laser

frequency are accompanied by a huge error hence most of the plots where the laser

is scanned just use the laser frequency as the axis. Also, as shown in the following

Chapter, when the bubble splits at high power, the total power in the resonator

change. This will cause a change of the proportionality constant between ∆ and the

laser frequency changes, deforming the profile of the curves in comparison to the

theory. Eventually, for even higher input power, the sudden change in circulating

power makes the thermal locking fail, so in these cases additional active locking

systems are needed. It is important to conclude by saying that the thermal effect

does not contribute to effect under study, i.e. to the resonance frequency splitting.

Thermal effects do not mask the Kerr effect, despite contributing to the resonance

frequency shift at least 100 times more.
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2.5 Why Microresonators?

Before discussing the fabrication techniques, let us elaborate on the reasons behind

the use of microresonators briefly introduced in Chapter 1. From a physical point of

view, it is important to have a closed loop waveguide to achieve interference between

subsequent round trips and consequently resonance. The structure cannot be a linear

cavity, such as Fabry-Perot interferometers because for the physics analysed in this

thesis, we need to differentiate between the two propagation directions clockwise

(CW) and counter-clockwise (CCW). This is not possible in a high-Q-factor Fabry-

Perot cavity because the field inside is a stationary wave, no matter if the light input

comes from one end or the other. It is still possible to identify other effects such as

polarisation.

Fibre loop structures, instead, support travelling waves where it is possible to

differentiate the propagation direction even if the two directions are degenerate in

the resonator, i.e. they show the same resonance frequency (polarisation effects can

be observed on top of this [84, 85]) it is still possible to observe them independently

just by detecting the power leaving the resonator in each direction. However, to

obtain sufficient intensity in a fibre loop, synchronous pulsed pumping is required

given the large mode volume.

In the case of whispering gallery mode resonators, the different circulation di-

rections are still degenerate but opposite polarisation modes are resolved because

they see different confinement at the surface interface of the bends. Therefore, they

show different resonant frequencies because their effective path length is different.

In other words, the resonator acts as a polariser at a specific frequency.

2.5.1 The quest for high-intensity

So why did I choose the title “microresonator” instead of “ring resonator”? The

reason is that this work focuses on nonlinear phenomena that depend on the light

intensity. In general, the intensity of a propagating electromagnetic field can be

described as the ratio between the propagating power and the cross-sectional area:

I =
P

Aeff

(2.83)
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Specifically, the effects I investigate are related to χ(3) that is a third order nonlin-

earity. Hence one can expect that really high intensities are needed to observe its

effect and that is indeed true. To achieve the highest intensity possible, I have to

optimise all the parameters in Eq. (2.83).

Increasing the launched power in the resonator is, of course, the first obvious

and, if you allow me, inelegant way of increasing the intensity. Let us try to figure

out some indicative values. Usually, narrow linewidth diode lasers can emit less

than 100 mW, with some sacrifice on linewidth and stability they can go up to a few

hundreds of mW. It is possible to amplify these laser sources without significantly

affecting the linewidth and stability characteristics. In our lab, we have erbium

doped fibre amplifiers (EDFA) up to 5 W output power; unfortunately, most of

the commonly used optical components are rated up to 100 mW even if they handle

300 mW with no problem and often survive long enough for a couple of measurements

at 500 mW but that is the limit4.

The connections between fibre and fibre are another weak point of the setup.

These are the point in the optical setup more vulnerable to power damage since

light is still confined in a cross-sectional area of the size of the fibre mode but it

goes through several interfaces that may have damages, scratches or dirt. Any of

these defects may cause absorption of light and consequently the release of heat in

a very confined region that may melt the glass locally and increase the effect of the

defect. The resulting chain effect may just ruin the connectors, weld them together,

or, in the worst case, start a burning point that travels along the fibre and stops

at the nearest expensive piece of equipment5. In the first two cases, it is usually

possible to recover the connector by polishing it with increasingly fine lapping paper

until a flat and shiny surface is recovered. One of the possible solutions to avoid

this is to splice the components of the optical setup together instead of connecting

them. Splicing consists in aligning the cleaved ends of two fibres and melting the

contact point with an electric arc in order to weld them together and create a

single fibre. Splicing produces almost lossless connections that are not subject to

absorption, hence are more reliable at high power. The drawback is that the only

way to disconnect two components is to cut the optical fibre limiting the re-usability

of the components itself and the flexibility of the setup for quick adjustments and

4Don’t ask me how I know this.
5Don’t ask me how I know this!
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tests.

A huge contribution to the quest for power comes from the use of resonant struc-

tures. This allows recycling (hence increasing) the power launched in the resonator

up to a million times depending on the finesse of the resonator. Also, this power

recycling does not create power-related damage because the absorption in the res-

onator is very low. In the case of this thesis, there is another benefit in having

high finesse and consequently high Q-factor. When measuring resonance frequency

differences or shifts, the smaller the linewidth of the resonance the easier it is to

detect these shifts as a change in circulating power.

Finally, to increase the intensity one would like to concentrate the light in the

smallest mode area. The world “micro” in microresonator refers to the mode cross-

sectional diameter, which is of the order of a few microns in size. Again the limitation

comes from the physics: light of a certain wavelength cannot generally be confined

in a dimension much shorter than its wavelength unless using plasmonic effects or

photonic crystals. As an example, the most common single mode fibre confine light

with a wavelength of 1.55µm with a core diameter of 8.2 µm. In this case, the actual

mode is extending outside the core with a mode field diameter6 of 10.4 µm. This is

due to the relatively small refractive index contrast between the core (n ' 1.442)

and the cladding (n ' 1.440). Guiding the light with a stronger refractive index

contrast allows it to be confined even more. Examples of this are rod resonators,

where the refractive index contrast is the one between air and the rod material, or

waveguide resonators where the low refractive index material can be air or cladding

made of different materials. The effective cross-sectional area varies with the plat-

forms. In rod resonators I calculate with Comsol Multiphysics Aeff in the range

between 400 µm2 and 10 000 µm2 depending on the geometry of the resonator. In

microtoroids the area is of the order of 50µm2 and in microdisks can be as low as

10µm2. In waveguide resonators the mode area mostly corresponds with the area

of the waveguide, generally of the order of 1µm2.

In the following section I analyse some of the most common platforms used to

realise microresonators.

6Data provided in the Corning Inc. datasheet for their SMF-28 Ultra Optical Fiber
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2.6 Platforms and microfabrication

In this section, I will describe the two most used platforms in our research group.

The platform used in the experiments presented in this thesis are SiO2 microrod

resonators but I contributed significantly to develop the process to fabricate SiO2

microdisks and microtoroids in the cleanroom.

All the techniques mentioned below use refractive index contrast to confine the

light in a circular path. This phenomenon can be described in the simple picture of

ray optics by using the Snell law for refraction:

nA
nB

sin θA = sin θB (2.84)

where A,B are the dielectric materials on either side of an interface and θA, θB are

the incidence angles to the normal vector. If the light is propagating towards the

interface between a higher refractive index material (A) and a lower one (B) at

an angle that is very oblique the left side of the equation may be greater than 1,

hence there is no possible refraction angle and the light is all reflected. This angle

is defined as critical angle:

θcrit = arcsin
nA
nB

(2.85)

and the phenomena is called total internal reflection. This is can be commonly

experienced in a swimming pool from underwater when, looking directly upwards,

is possible to see the ceiling; while looking sideways, the water surface reflects the

pool floor. If a tropical sea is available the reflected objects could be even more

amazing than a tiled floor (see Fig. 2.6).

Figure 2.6: A sea turtle skimming the sea surface and, above, the
total internal reflection from the water-to air interface.
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2.6.1 Modes inside the resonator

The mental picture of a ray of light bouncing inside a circle is misleading because it

transmits the idea that all the light is entirely confined in the ring and that it gets

closer and away from the surface at different points.

In the case of microresonators, the dimensions of the devices are not much larger

than the wavelength of light used therefore it is more appropriate to describe the

effect by solving the Maxwell equations at the interface [86]. The result of such

calculations, performed with COMSOL multiphysics reveal that the guided optical

modes are confined close to the surface of the optical ring resonator. Some of the

solutions are shown in Fig. 2.7 where the fundamental mode has the shape of a circle

“squished” on the outside edge of the glass by “centrifugal force”. The higher order

a b c

d e

Figure 2.7: Intensity of the optical modes inside a round resonator
calculated with COMSOL Multiphysics. Pictures show a radial section
of a resonator with 1 mm rod diameter and 50 µm radius of curvature
at a wavelength of 1550 nm. Panel (a) shows the fundamental mode,
the four panels (b-e) show some of the higher order modes.

modes present multiple lobes both vertically and in the depth direction. There is

always a zero of intensity between the lobes and the direction of the electric field is

swapped between each lobe and the neighbouring ones. Experimentally, it is possible

to identify the vertical order of a mode by moving the tapered fibre up and down

and counting the number of maxima and zeros of the coupling as the fibre passes

across each lobe. There is no simple way of identifying the depth order of the mode.

However, some modes show high coupling even with a thick tapered fibre or the

fibre kept away from the resonator: these are likely to be zero order in the depth

direction. Lower order modes are not always to be preferred since their stronger

evanescent field they interact more with the surface where most of the absorbing

and scattering imperfections are, hence they may show lower Q-factor than higher
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orders modes. The ideal situation is a mode with enough evanescent field to achieve

critical coupling but not too much to spoil the Q-factor.

2.7 Glass rods

The experiments described in Chapters 3, 4 and 5 of this thesis are all based on glass

rod resonators [87]. These resonators consist of a bulging ring around the side of a

cylindrical bar of dielectric material as depicted in Fig. 2.8. The cylinder itself is

enough to confine light in the radial direction but confinement is needed also in the

axial direction, this confinement is provided by the convex shape of the resonator.

The fabrication of rod resonators is a subtractive manufacturing process, starting

with a cylindrical rod of material that is turned to the desired shape. Instead of a

mechanical tool, I use a laser to ablate the surface of the rod since this allows a fast

machining of a very smooth surface since the same laser can both ablate or anneal

the surface, depending on the power.

The choice of fused silica, or amorphous SiO2, as the resonator material is dic-

tated also by its broad transparency spectrum, hence to machine the resonator, a

laser emitting a frequency outside this broad spectrum is needed. Good absorption

can be achieved in the vacuum ultraviolet (VUV) region (wavelength below 200 nm)

but, as the name suggests, in that region the air absorption is relatively high so

the machining should happen in vacuum. Also, there are no high power sources

available at that wavelength, and VUV is an ionising radiation, which is not ideal

from a health and safety point of view.

On the other hand, glass also has high absorption above 6 µm and high power

CO2 lasers emitting at 10 µm are relatively inexpensive. Also, most of the materials

that are transparent in the visible spectrum, are opaque to the laser wavelength,

allowing the building of an enclosure for the machining setup that allows the operator

to see the ongoing process but keeps the setup eye-safe.

Our machining setup starts with a CO2 laser emitting up to 100 W of optical

power at the wavelength of 10.5 µm. The laser light is guided through a metal-

enclosed, 2 m long path to allow the laser mode to expand to 10 mm in diameter

and improve the M2 of the beam. Along this path, a green alignment laser pointer

is added coaxially to the CO2 beam via a wavelength selective mirror. A pair of

galvo mirrors steer the beam to trace the desired profile on the glass rod and a ZnSe
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Figure 2.8: Fabrication of glass rod microresonators. On the left,
a photograph of the CO2 machining setup. One of the galvo mirrors
and the focusing lens are visible in the foreground, the spindle is on
the left and the air extractor is on the right. On the background the
beam-block is visible and part of the enclosure and imaging camera are
on the top. Middle, a machined glass rod resonator. Right, a sketch
clarifying the geometry of the system. The three panels have the same
perspective.

lens with a focal length of 10 cm focuses the beam on a spot size of about 20µm. A

microscope camera observes the resonator from the top to monitor the process and

adjust the parameters.

The machining process is divided into two main steps. The first step prepares

the surface of the rod to be machined. A glass cylinder with a diameter slightly

larger than the desired final diameter is mounted in the spindle such that the end

of the rod is about 2 mm after the focal spot of the laser with the galvo mirrors in

the neutral position. The rod is then spun and the laser moves back and forth along

the axial direction while slowly reducing the z component. This step is necessary

because the spindle has some run-out both axial and radial, meaning that the axis

of rotation of the spindle is not aligned and has a small offset with the axis of the

chuck and the rod. Keep in mind that I am fabricating structures with an accuracy

of the order of a micron, so a small run-out at that level is always present even in the

best quality spindles. By removing some material from the rod before machining

the resonator itself, the axis of the glass rod is realigned to the axis of rotation.

This first part is the most time consuming because there is a limit to the speed

at which the rod can be milled down. The goal during the whole machining is to

keep the thermal stress to a minimum. Hence, the circumference where the laser

is acting should be at an almost constant temperature, therefore a rotation speed

of 2000 rpm or greater is required and the scanning in the x direction is limited to

about 0.5 mm/s. Also depositing too much energy in a section of glass may crack it

because of the thermal shock or the thermal expansion in different parts of the rod,

but another subtle effect takes place. A change in the glass structure is observed
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where too much power is applied, not just on the surface but even deeper in the

rod. This last effect limits the machining speed in the z direction to 1 mm every

10 minutes, being even slower for larger resonators because the amount of material

to be removed is proportional to the radius. As an indication, I found safe to remove

up to 2 mm3/min but having a microscope camera looking at the machining section

helps to adjust the parameters based on the brightness and the colour of the thermal

radiation emitted by the hot glass in the laser spot.

To improve the Q-factor, it is critical to avoid stress in the glass close to the

surface. Hence, the machining speed is slowed even more for the last 200µm of

reduction in the z direction and finally the laser is scanned on the x direction without

changing the z value for a few minutes. During this last phase, the spot of the laser

is likely outside of the surface and just the tail of the Gaussian beam is hitting the

surface, melting it instead of ablating giving it time to cool slowly.

Once the surface is ready, it is time to move to the second step and machine the

resonator itself. There are two main techniques for that: one is to move the laser

in the xz plane following the desired resonator profile, usually a cos2 function. This

can be used to produce resonators with a large radius of curvature. If a small mode

area is required, however, I carve the resonant structure by shining the laser just at

two spots for a limited amount of time and letting the tail of the Gaussian beam

overlap to create a bulge with a radius of curvature of the order of the diffraction

limit of the laser. In my experience the highest Q-factor is achieved with the two-

spots technique. The reason probably being that in this technique the volume of

glass where the resonant light travels is never exposed to high intensity of the CO2

laser, reducing the thermal stress and damage to the glass.

All the steps of the machining create a fine glass dust that evaporates from the

rod and immediately solidifies; part of this dust gets in contact with the hot surface

of the rod and sticks there. This deposition can be clearly seen by the microscope

objective as a milky surface scattering the illumination light and helps me to judge

the shape of the resonator, but sadly scattering does not go well with high Q-factor.

To remove the deposition, machining of the resonator is alternated to a scan of the

laser at low power in the x direction that melts the deposition back to the surface,

also laminar flow is established in the machining region to move away most of the

glass dust produced7.

7Amorphous glass dust is reported to not cause silicosis but to be on the safe side I connected
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With this method, I can reliably produce resonators with a Q-factor of 2 × 108

and Q-factors of 8 × 108 are possible with a few attempts. If a higher Q-factor is

required it is possible to enclose the machining region in a dry nitrogen laminar flow

that allows Q-factor up to 1.1× 109 [58] to be reached.

This method is one of the best for research purposes since it allows a microres-

onator to be fabricated in less than an hour. Furthermore, it is possible to reliably

achieve a Q factor over 108 in a large range of diameters up to 7 mm (cf. Table

2.1) and it is easy to install the resonator in a tapered fibre optic system. A major

drawback of this system is the size of the microresonator. Due to the fabrication

and the holding system, it is necessary to keep at least 15 mm of glass rod attached

to the microresonator, also I observed that it is difficult to achieve high Q factor for

resonators smaller than 400 µm diameter. Also, the mode area is of the order of the

curvature radius at the tip of the resonator, hence at least a few hundred of µm2.

Another technique for realising microrod resonators is to use a diamond turning

machine instead of a CO2 laser to shape the glass rod [88]. This method makes it

possible controlling the shape of the microring resonator on a much finer detail. It is

possible to realise a so called photonic belt that is a square protrusion on the surface

of the glass rod allowing single mode operation, geometrical control of the dispersion

and much smaller mode areas. However this technique requires machining times up

to a week for a single resonator.

2.8 Microdisks and Microtoroids

Rod resonators show their limitations when resonators with smaller diameters and

a compact design are required, such as integrated devices. In this case on-chip

fabrication is the preferred technique, since it allows accessing diameters down to

20µm while maintaining almost the same Q-factor accessible with rod resonators.

These kinds of resonators are realised in a wealth of different materials. Some

examples are lithium niobate LiNbO3 [89], gallium arsenide GaAs [90], silicon Si

[91], and silicon nitride Si3N4 [92]. But for the scope of this thesis I used fused silica

SiO2 starting from a silicon substrate with a top oxidised layer. The wafer is masked

in circular shape and the silicon oxide is etched away everywhere else. Then, the

silicon is etched from below the SiO2 disc with an isotropic etch in order to leave

the exhaust of the machining box to a fume extractor with HEPA filtering system.
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just a silicon pillar holding the structure. An optional step is to anneal the silica

disc with a high power laser to smooth the outer edge to reduce the roughness left

by the etching process and therefore increasing the Q factor.

This method however, requires a clean room facility and the production of etching

masks that makes every change in the design very time consuming. On the other

hand, several microresonators can be produced in a single batch and is it possible

to realise relatively small microresonators with really high yield and repeatability.

Coupling to this kind of resonator is usually obtained with tapered fibres but it

is also possible to realise a waveguide with the same technique [93].

Figure 2.9: Steps of the photolithographic process. a) Thermally
oxidised Si wafer. b) Spin coating. c) Exposure. d) Developement. e)
HF wet etching. f) Photoresist removal. g) XeF2 dry etching. h) CO2

laser reflowing.

2.8.1 Photolitography

I fabricate toroids and disks by photolithography and a combination of wet and dry

etching following the general technique developed in [94]. The process starts with

a silicon wafer with a thermal oxide layer grown on both sides of it. The oxidation

is performed by an external company. I use oxide layers of 2 or 6 µm; Thinner

than 2 microns it is difficult to achieve high Q-factors, probably because the optical

mode has a significant overlap with the surface and therefore more scattering losses.

Thicker layers, instead, require a very long oxidation time that increases the cost of

the wafer so thermal oxidation above about 8 µm is not practicable. The oxidation
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time for thick layers is well described by the Deal-Grove [95] model,

t =
X2

B

X

B/A
(2.86)

where the coefficients for wet oxidation at 1000 °C are A = 0.89 and B = 0.34. To

give an order of magnitude it takes 15 hours of wet thermal oxidation, i.e. baking

the wafers in water vapour at 1000 °C, to obtain a 2 µm oxide layer, while it takes 5

days to obtain 6µm.

I first cleave a 3 inch round wafer to a square and then I cleave the square in

half to get 2 rectangles of about 2.5 cm by 6 cm that are more manageable for the

rest of the process. I cleave the wafers by scratching the chip with a diamond scribe

to create a weakness in the crystal structure of the silicon and then gently bend the

chip. If the bending force is applied along the lattice direction the silicon breaks in a

straight line opposing no resistance. If too much force is applied in an even slightly

tilted direction the chip breaks in a curve or shatters. Furthermore, the silicon dust

generated by the cleaving process may stick electrostatically to the chip and it is

very difficult to remove. Once the chip is cleaved I proceed with a standard pho-

tolithographic etching process to remove the silica layer everywhere but on circular

structures that are going to for our microresonator. First, I spin-coat a photoresist

on the wafer surface. A photoresist is a polymer that changes its solubility in a

chemical solution called developer if exposed to UV light. I use Microposit S1813

that is a positive photoresist, meaning that the polymer is weakened by the UV

light, hence the exposed portion becomes soluble in the developer (Microposit MF-

319). The last 2 digits on the name S1813 indicate the viscosity of the polymer; in

particular, our photoresist will form a 1.3 µm thick layer if spun at 4000 RPM.

Once the wafer is coated, I bake it on a hot plate for a minute at 110 °C to solidify

the polymer and prevent it from sticking to the photomask. The photomask is a

soda lime glass with a chrome pattern deposited on one side containing the feature

that I want to etch on the surface. The chrome blocks the UV light from the mask

aligner protecting the photoresist underneath. Therefore, after the development,

the same pattern of photoresist will remain on the oxide layer. One of the masks I

designed is shown in Fig. 2.10. Several sizes of resonators fit in a single mask and

each microfabrication batch produces tens of resonators, however the time from the

design of the mask to the final resonator is much longer than rod resonators and
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can take up to a month.

Figure 2.10: Photomask used in the microdisks and microtoroids
fabrication. The black color correspond to the parts covered in Cr.
The top row contains disks with diameter of 20, 30 and 40 µm, there
are also some alignment features for the reflow CO2 laser. The mid
row contains larger resonators from 1 mm to 4 mm that do not need
alignment feature. The bottom row is a pattern of resonators slightly
tilted with respect to the lattice structure. Cleaving this pattern likely
results in having a disk on the edge of the chip for prism coupling.

The dose of UV radiation is critical. An over-exposure will result in stray light

also weakening the photoresist under the mask resulting in irregular edges on the

photoresist that propagate to the final resonator limiting the Q-factor drastically.

An under-exposure instead means that not all the thickness of the photoresist has

received enough UV light to become soluble so it either does not get removed from

the substrate, or very long developing times are required to remove it, causing the

problems described later on. It is possible to calculate the correct exposure time by

knowing the UV dose required by the photoresist and the irradiance of the mask

aligner however it is far more practical to experiment with different exposure times

and adjust to obtain the best result. I expose the mask for 20 to 25 seconds.

After the coated wafer has been exposed nothing is visible on the surface until

the exposed photoresist has been removed by the developer (MF-319). As for the

exposure time, the development time is crucial to obtain high Q-factor. Too short

and not all the exposed photoresist is removed leaving halos and marking. Too long
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and the developer starts to attack also the unexposed photoresist, especially the

perimeter of the circle that may have received some stray UV light during exposure;

this is particularly evident when trying to compensate an underexposure with a

long development time in order to remove all the photoresist from the empty area:

the result is often a jagged disk profiles. This problem can be easily spotted on a

microscope and up until this point in the process, it is possible to wash the wafer

with acetone and start over since nothing has been done to the oxide layer yet. I

usually develop for 40 to 45 s.

2.8.2 HF etching

After development I proceed to the wet etching phase to dissolve the silicon oxide

but not the silicon substrate. HF etches SiO2 with the reaction:

SiO2 + 4 HF SiF4(g) + 2 H2O

SiO2 + 6 HF H2SiF6 + 2 H2O

However, pure HF etches SiO2 too fast and irregularly and also attacks the photore-

sist. Therefore, I use buffered HF that is a solution of

NH4F NH3 + HF.

The chemical equilibrium between the two sides generates HF as it is consumed by

the etching process and keeps the concentration at 10 %. This solution etches silica

at the speed of about 1 nm/s therefore it takes about 1 hour and 40 minutes to

etch a 6 µm oxide layer or 30 minutes to etch a 2µm oxide layer. To verify that all

the oxide has been etched, one can use the fact that SiO2 is hydrophilic while Si is

hydrophobic. If deionised water (DI) does not stick on the surface, the etching is

done.

Now the disk resonator is ready, however I need to remove the silicon underneath

the outer portion of the disk because silica has a lower refractive index (n = 1.444)

than silicon (n = 3.45) therefore light would leak in the substrate instead of staying

in the ring. Also, it would be very difficult to couple light to a structure protruding

just 2 µm from a 5000µm wide chip.
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2.8.3 XeF2 etching

Figure 2.11: Schematic of the XeF2 etching machine as represented
on the control software. The red circles represent electro-actuated
valves.

To etch Si but not SiO2 there are different possible approaches. Wet etching,

as the name suggests, employs etchants in the liquid form. A common etchant

for silicon is potassium hydroxide (KOH) that is mostly used in electronics. This

is suitable for realising disk resonators, since at concentrations below 20 % and

temperatures below 50 °C it etches Si 1000 times faster than SiO2. However, KOH

etching rate is very dependent on the crystal orientation8 resulting in square pillars.

To realise microtoroids I need the pillar to be as round as possible, therefore I

need isotropic etching. This can be achieved with dry etching with XeF2, which is

a solid at atmospheric pressure but sublimates at about 4 Torr. It interacts with

silicon with the following reaction:

2 XeF2 + Si 2 Xe + SiF4 (2.87)

Unlike most dry etching processes that require ion bombardment, this is a spon-

taneous reaction that takes place on the surface of the Si; therefore the etching is

completely isotropic. Also, both the etchant and the by-product are gases therefore

there is no precipitation on the resonator surface.

8< 100 > and < 110 > planes are etched 400 times faster than the < 111 > plane
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I perform XeF2 etching in cycles. The etching machine can be described as a

system of two independent vacuum chambers connected with several valves between

themselves and to a source of dry nitrogen, a reservoir of XeF2 crystals and a vacuum

pump as shown in Fig. 2.11. The valves are software controlled to cyclically prepare

a mixture of the etchant in the expansion chamber, transfer it to the etching chamber

where the sample sits and remove the exhausted etchant.

Before starting the etching cycles, the etching chamber is purged with nitrogen

several times to remove all the humidity and oxygen, whereas the expansion chamber

is prepared a few times with the concentration used for the etching and then evac-

uated. For each etching cycle the procedure is the following. First, the expansion

chamber is filled with XeF2 up to the required pressure by opening the valves (1,5)

connecting to the XeF2 Reservoir. Then nitrogen is added (11,3) to reach the set

pressure, effectively diluting the etchant. This slows down the process but improves

uniformity and reduces roughness. Once the etching mixture is ready the expansion

chamber is connected to the etching chamber (6) for about a minute. During this

time the XeF2 reacts with the silicon. The reaction is exothermic hence, at the end

of the etching interval, nitrogen is added (8) to increase the pressure and promote

conductive cooling of the sample. After a short cooling delay, both chambers are

connected to the vacuum pump (4,10) and completely evacuated before a new cycle

starts. After the last cycle, the etching chamber is purged again with nitrogen to

remove all the by-products of the reaction before exposing the sample to air. A

typical etching recipe involves 20 to 200 cycles of 60 s etching with 3 Torr of XeF2

and 1.5 Torr of N2. The cooling process is performed adding 5 Torr of N2 and waiting

for 10 s. Each cycle etches a fixed quantity of silicon hence the number of cycles

needed depends on the surface of exposed silicon in the sample.

2.8.4 Reflowing

At the end of the XeF2 etching, I obtain a wedge-shaped disk on top of a silicon

pillar that already exhibits a Q-factor of the order of 1× 107 up to 2× 108. As

mentioned in Section 2.1.2, one of the main limitations to the Q-factor in our case

is the surface scattering. In these resonators, the optical mode is guided mostly by

the bottom surface and the diagonal side of the disk. Depending on the angle of

the wedge, the mode interacts more or less with the outer edge connecting the two.
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The quality of these surfaces depends mostly on the oxide growth process that is

out of our control and the HF part of the fabrication. The XeF2 is practically inert

for SiO2 [96, 97] so I expect no effect on the Q from this last processing step.

I have loose control on the angle of the wedge by using or not hexamethyldis-

ilazane (HMDS) on the SiO2 surface before spin-coating with photoresist. HMDS

is an adhesion promoter and it affects the speed at which HF attacks the contact

plane between photoresist and SiO2. Without HMDS, HF penetrates the interface

and lift the photoresist, producing a shallower edge and vice versa. I found out that

leaving the HF to etch just for the time needed to remove the oxide layer result in

a protrusion on the edge of the disk. I believe that this produces surface scattering

that lowers the Q factor of the resonator [98]. For shallow wedges, the mode “lives”

away from the edge so this problem is lessened. Alternatively, I can get rid of the

protrusion by extending the etching time. In this case, I can use a steeper edge.

When an high Q-factor is required, I perform an additional step on microdisks.

By using a CO2 laser it is possible to melt the silica disk to obtain a microtoroid

as shown in Fig. 2.12. I first defocus the laser so that the intensity is uniform on

Figure 2.12: Scanning electron microscope images. a) Microdisc
resonator not reflowed with the CO2 laser. b) Microtoroid resonator
after the CO2 laser reflowing. c) The same resonator as b) seen from
the side.

the surface of the microdisk, then I hit the resonator from above with a short burst

from the CO2 laser. A typical burst is 15 W of power for 0.2 s but this parameters

change with the diameter of the resonator and the spot size. Generally a couple of

resonators are sacrificed to calibrate the burst.

In this process, physics works for me. The silicon pillar is a good conductor,

with thermal conductivity of 130 Wm−1°C−1 similar to most metals, while silica is

a thermal insulator with a thermal conductivity of 1.3 Wm−1°C−1. This means that

the central part of the thin layer of SiO2 does not heats up because the silicon pillar

conducts heat away. The edge of the disk instead absorb the laser light and cannot
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dissipate heat being surrounded by air, so it melts. At this scale, surface tension

is much stronger than gravity so the molten glass forms a toroid around the pillar.

The process self terminates when the toroids reaches the pillar that cools the silica.

Having a round pillar is paramount in this case so only XeF2 etched resonators can

be reflown while this is not possible for the one fabricated with KOH etching. If

the pillar is perfectly round, the minor radius of the toroid is constant along the

circumference because there is the same amount of material protruding from the

pillar at each point. Also the major radius profile along the circumference now

depends on the shape of the pillar. Reflowing disks larger than 500µm is possible

by moving the laser spot along the surface ensuring spatial overlap between the

single pulses.

2.9 Alternative microresonator platforms

The two techniques mentioned above are the ones that I implemented and optimised

during my PhD. It is worth mentioning a few additional techniques that provide

different advantages or allow for different kind of experiments.

Microspheres

Microspheres are the first kind of microresonators used in optics [18]. They are

generally realised by melting the end of an optical fibre with a CO2 laser, and

hydrogen flame or an electric arc. And have a shape similar to a lollipop (see Fig. 2.13

(a)) These kind of resonators achieve a Q-factor comparable with micrordisks but

present a few drawbacks. The diameter of the resonator has to be larger than the

original fibre but not too large otherwise gravity starts to overcome the surface

tension and deforms the glass. Also, there is no defined plane in a sphere, hence

there could be modes travelling on several planes. This does not happens in the other

kinds of resonators because light that is not travelling in the symmetry defined plane

is not in a closed loop, hence does not resonate.

Microbottles

The generally high finesse of microresonators makes them an exceptional platform

for sensing. Having a narrow linewidth, well spaced from the neighbouring ones

makes it easy to detect any small loss related broadening or any frequency shift of
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Figure 2.13: Three kind of resonators. (a) Microsphere. (b) Mi-
crotoroid. (c) Microbottle. Adapted from [99].

the resonance. Such a frequency shift provides a straightforward method of mea-

suring the temperature of the resonator, hence the surrounding environment[56] as

described in Section 2.4. The evanescent field propagating outside the resonator in-

teracts with the refractive index of the surrounding material, whether it is a gas or a

liquid [100] or even molecules [101, 102] and solid particles [103]. Both the real part

and imaginary part of the refractive index can be measured: The real part changes

the effective refractive index seen by the optical mode, shifting its frequency, while

the imaginary part increases the absorption losses, broadening the linewidth.

Unfortunately, a flow of liquid or gas at the coupling point is likely to shake

the tapered optical fibre used for the light coupling hence producing a disturbance

much larger than the effect one attempts to measure. A way around this it to

use more stable coupling methods such as prisms. Microbottles provide another

clever solution to this problem. They are realised by locally heating a glass tube

while increasing the pressure inside [104]. Alternatively a polymer is deposited on

a rotating fibre [105]. This creates a bulge similar to a rod resonator (see Fig. 2.13

(c)) even if the radius of curvature is generally larger leading to a larger mode area

and the existence of transversal modes. However, the glass can be made so thin

that the guided optical mode leaks both outside and inside the bottle so that the

outside can be used to couple light into and out of the mode, while the liquid or gas

under investigation can be flown inside the glass tube where it interacts with the
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evanescent field. Also, the high field intensity can be used to trap particles close to

the surface of the bottles

Waveguides

As in the case of microbottles, it is not necessary to have the inside of the resonator

to be filled. The resonant optical mode travels close to the outer edge of the ring,

hence the resonator can be fabricated just as a ring instead of as a full disk.

This is mostly the case for waveguides where, using lithographic techniques, it

is possible to draw closed loops waveguides in almost any geometry including non-

circular patterns [106]. Furthermore, it is possible to replace the tapered fibres for

coupling with other waveguides fabricated with the same technique, solving also the

problem of phase matching. Fig. 2.14 shows a SEM image of a silicon nitride Si3N4

resonator laying on SiO2 with its coupling waveguide fabricated by my colleagues.

The lithographic techniques allow to realise ring or racetrack shaped waveguides

Figure 2.14: A Si3N4 waveguide resonator and waveguide on SiO2

substrate. Courtesy of Shuangyou Zhang.

with radii of curvature of the order of a few µm and widths of the order of the

wavelength or smaller, producing small mode volumes and, in principle, reducing

the characteristic power to observe nonlinear effects at the mW level [107] or below.

Furthermore, it would be possible to integrate the control electronics and even the

laser [108] on the same chip.

This method differs from the previous ones because the light is usually confined

by the refractive index contrast between the waveguide and the substrate at least on

one side of the waveguide. This requires the substrate to be optically transparent

at the wavelength of interest, limiting the possible choices. Furthermore, chemical
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processes of lithography often leave rough interfaces that scatter light reducing the

Q factor [21].

To summarise the common points of this technique, a general advantage is the

variety of materials that can be used to realise waveguides and cladding and this is

one of the most promising technique to integrate microresonators with electronics

circuits (the other one being wire bonding [109]). Waveguides show a much smaller

mode area, of the order of λ or less, that helps to observe nonlinear effects as we

found above. Squeezing the field, however, makes it interact much more with the

interface between the waveguide and the cladding that is generally not as smooth

as for the microrods or microtoroids; also the cladding may have some absorption

at the wavelength used. This is why waveguides usually show lower Q-factors than

the other techniques presented in this section.

2.10 Tapered optical fibres

As mentioned above, optical fibres are one of the devices that allow the guided

optical mode to produce evanescent field to couple to the microresonators. This is

particularly important when aiming for critical coupling, since if the field overlap is

not enough this condition cannot be reached [63, 67, 110].

The basic recipe to realise a tapered fibre is a source of heat and a mean of

holding and pulling an optical fibre as highlighted in Figure 2.15. In the work

Fibre clamp Fibre clampHeat

Figure 2.15: Schematic of the tapering setup. The fibre is clamped
on translation stages that are pulled apart while the fibre its heated to
the softening point. The source of heat could be either a electric oven
or an hydrogen flame.

presented in this thesis two techniques are used to realise tapered SMF-28 optical

fibres: a ceramic heater and a hydrogen flame.
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Figure 2.16: Tapering setups. On the left, the one based on a
ceramic heater that is the white cube in the centre of the picture. On
the right, the setup based on the H2 flame. The brass nozzle emitting
the flame is visible in the centre of the picture.

Ceramic heater

A ceramic heater, shown in Figure 2.16 (left), is constituted by a high temperature

resistant filament enclosed in a ceramic cube with a side of about 4 cm. A slit cut

in the cube makes it possible to lower a section of optical fibre into the heated area

and a thermocouple measures the temperature and provides the feedback to the

filament current driver. To taper a fibre a section of about 6 cm is stripped off the

coating and placed into two v-groove holders. The oven is then heated up to an

indicated temperature of 950 °C and the fibre is slowly pulled at a speed of about

1 mm/min up to a length of 60 mm. Then the oven is cooled down slowly and once

the temperature is below 600 °C the fibre is tensioned by an additional 0.03 mm.

The tensioning stage ensures that all the slack in the fibre is removed before glueing

it to the aluminium bracket that supports it. If the fibre is loose it is very difficult

to position it accurately in the evanescent field of the resonator mode. The fibre

is then glued to a 10 cm wide bracket with epoxy glue or UV curing glue. The

region where the glue is applied is part of the tapered part but the diameter at that

point is large enough that the mode does not leak into the glue. Two extensions

are applied to the bracket to support the remaining part of the stripped fibre and

to avoid breaking the taper by handling the rest of the fibre.

Hydrogen Flame

Despite being a very repeatable process, the ceramic heater method presents several

drawbacks. The solution to most of them is to replace the heat source with a

Hydrogen, flame as shown in Figure 2.16 (right).
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The flame is produced by burning H2 from a tank with the oxygen in the air

and is about 3 mm wide and 5 mm tall. To keep it stable and obtain reproducible

tapers, the surrounding of the H2 nozzle are protected from air gusts and the flow of

hydrogen is controlled by a mass flow controller. Also, the nozzle is mounted on a

precision translation stage to reproducibly adjust the position of the flame relatively

to the fibre.

The working principle is identical to the ceramic heater but there are a few

advantages. First is it possible to reduce the length of the taper from 10 cm (4 cm

is the length of the heater and an additional 6 cm are due to the pulling) down to

less than 3 cm. This is because the flame has a dimension of about 4 mm and since

the length to taper is less, it is generally enough to pull for 18.7 mm in total. Since

the dimension is smaller both the pulling speed (0.7 mm/min) and the tensioning

(0.015 mm) are reduced. Having a shorter tapered region allows one using a smaller

(36 mm wide) and lighter bracket to hold the fibre directly from the coated part,

hence it is possible to realise compact experiments. Also, the positioning of the taper

in the resonator evanescent field is greatly improved because the coupling point is

much closer to the holding tine, hence the slack due to the elasticity of the fibre is

minimised.

Another advantage is the much shorter cooling time of the hydrogen flame, in

the order of a few seconds. The ceramic heater and its support remains hot for a

long time after tapering and cannot be cooled or heated more than 50 °C/min. This

slow cooling is particularly annoying if multiple tapers have to be manufactured

sequentially of if a fibre breaks during fabrications because it takes almost an hour

to cool and re-heat the ceramic element.

There are alternative methods to heat the fibre for tapering. Some research

groups use an oxi-hydrogen flame [111] that has the advantage of not storing a

hydrogen cylinder in the lab or have a hydrogen line in the walls. However, this

kind of flame is sensible to small changes in the mixture between O2 and H2. Other

methods include oxi-butane flames or CO2 lasers. Our fibre splicer can produce

tapered fibres using the same electric arc used for splicing but with different setting.

The tapers produce with this methods are mainly for dispersion control. The electric

arc tapers tend to be too abrupt and generally the diameter is above 10 µm , hence

they are not suitable for evanescent field coupling.
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Single mode tapered fibre

To verify that the tapered fibre is again single mode it is enough to check in real time

the transmission of the fibre itself. When the core becomes too small to sustain even

the fundamental mode, the light is guided by the refractive index contrast between

the cladding and the air. Since the original cladding diameter is of the order of

125µm, the fibre is multimode during the first stages of tapering. As the tapering

continues the number of modes changes and their relative effective pathlength varies

because the geometry is changing. All the different modes interfere with each other

during the tapering making the transmitted power fluctuate over time during the

tapering. Initially, the fluctuation is small in amplitude and slow because the number

of modes is higher and the relative change in diameter is slow. As the tapering

progress, the oscillation frequency increases up to a point where the oscillation

amplitude increases momentarily because of the reduced number of modes and then

suddenly stops. This is the sign that the tapered fibre is single mode again but now

the guiding refractive index contrast is the one between the cladding and air. The

fibre can be tapered further after this point to further reduce the diameter hence

increase the amount of the mode travelling in the air without significant losses in

the transmission. Fibres tapered with this method are surprisingly robust to tension

but tremendously weak against shear forces to the point that it is possible to break

the fibre just going through it with a finger or tool and not noticing the break. Also

the fibre is very elastic at this diameter and, even if broken, tends to go back to

straight, making it difficult to identify a broken taper.

2.11 Beyond fused silica

The major requirements for the material used to fabricate the microresonator are

to be easily machinable into the desired shape, to be transparent in the optical

region of interest and to show a high nonlinear refractive index n2. As highlighted

in Section 2.5 the power required to observe nonlinear effects depends also on the

Q factor and the mode volume.

One of the most commonly used material is fused silica (SiO2 in its amorphous

form). It is a particular kind of glass without impurities or other dopants. It is a

very popular material in optics but can also be obtained by oxidation of a Si wafer
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therefore it can be used in any of the aforementioned fabrication techniques.

MgF2 has a crystalline structure. Its characteristics are similar to fused sil-

ica, with a slight lower nonlinearity, however, it is transparent in the mid-infrared

allowing to explore other spectral regions [112, 113].

CaF2 is another crystal worth mentioning because it shows one of the highest

Q factors ever achieved in microresonators [114], however, it has thermoelastic and

thermorefractive coefficients of opposite signs making very difficult to lock the res-

onator to the laser frequency.

Si3N4 is one of the most popular materials for the realisation of waveguide-type

microresonator given its nonlinear refractive index is ten times higher than fused

silica. One of the main obstacles with this material is to obtain a Q factor as

high as fused silica, since the etching processes leave the material surface rougher,

producing a consistent amount of scattering. Recently, this kind of resonators has

closed the gap with the other fabrication methods [92].

Material SiO2 MgF2 CaF2 Si3N4

n 1.44 [115] 1.37 [116] 1.43 [117] 2.00 [118]
n2(10−16 cm2/W) 2.7 [37] 0.9 1.9 24
Q ∼ 5 · 108 ∼ 2 · 108 3 · 1011 1.7 · 107

Table 2.1: List of refractive index, non linear refractive index and
achieved Q factor for some of the most common materials used for
microresonators.

To conclude this non-exhaustive list of materials9 it is worth mentioning lithium

niobate (LiNbO3) [119]. Besides reaching the remarkable Q of 108, it is a non-

centrosymmetric material, meaning that it also shows a second order susceptivity

χ(2) and an electro-optic effect, paving the way for the study of several interesting

nonlinear phenomena and a new method of resonator tuning with an electric field.

2.12 Conclusions

In this chapter, I presented a linear-coupling mathematical model for one optical

tapered fibre with a ring resonator. I then adapted the model to the specific case

9This is the first table in this thesis that introduces typical values for Q and n2. It must be
said that Q varies greatly with the fabrication, even more than an order of magnitude. The same
goes for the nonlinear refractive index n2 that depends on the material, in particular for Si3N4 the
ratio between the two atoms significantly changes the optical properties.
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of high-Q-factor resonators and extracted the expressions for measurable quantities.

Finally, I normalised the model to the characteristic dimensions of the system so

that it can be used in simulations and analytically to derive general results.

I then analysed the advantages of microresonators for the study of nonlinear

optics, specifically their small mode volume and high Q-factor.

I compared the two microresonators platforms used in this thesis with the al-

ternatives and described the fabrication method I use to realise them. Glass-rod

resonators are fast to fabricate and can be rapidly prototyped to meet the experi-

mental needs. However, their large size and mode volume, when compared to the

alternatives, makes them suitable just for proof of principle devices and not for final

products. On the other hand, microtoroids and microdisks are a step towards on-

chip integration and present a much smaller mode volume than rod resonators with

a similar Q-factor. these platforms are ideal to observe nonlinearity at low power

but require a longer design and fabrication time.

Finally, I presented two methods of fabricating tapered fibres: from the initial

approach with a ceramic heater, I improved the fabrication time, the compactness

of the setup and the coupling strength by changing the heating mechanism to a

hydrogen flame.
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Chapter 3

Symmetry breaking

As mentioned in the introduction, this thesis was supposed to be on the “Kerr

frequency combs generation in microresonators”. I wanted to exploit the Kerr effect

to generate pulsed light from a continuous laser or, in the frequency domain, to

generate multiple wavelengths from a single one. In particular, my first idea was

to generate two frequency combs in the same resonator but in opposite directions.

Ideally, using only one resonator would have cancelled most of the differential noise

with huge advantages for spectroscopy applications.

What I was about to find out that it is not possible to couple light in two direc-

tions simultaneously if the power of the input and its detuning from the resonance

frequency falls in a specific range. This discovery was completely tangential to the

original project but it led to a series of insights that I will elaborate upon in the

following chapters.

But let us start from the beginning and do this in an orderly fashion. In this

chapter I describe how the thermal effect and the Kerr nonlinearity affect the res-

onance shape, or in other words, why all the Lorentzian resonances in this thesis

look like triangles and the light propagation in the resonator. Then I will describe

the key physical reason of symmetry breaking: the fact that XPM is twice as strong

than SPM. Once these fundamental concepts are dealt with, I will implement them

in the theory developed in Chapter 2 and re-normalise it to characteristic units. We

will then be ready to demonstrate theoretically the spontaneous symmetry breaking

and discuss some interesting features.

Since I call myself an experimental physicist, it is finally time to describe the

experimental setup used to demonstrate spontaneous symmetry breaking in mi-
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croresonators, and test the theoretical model by analysing the results.

3.1 The Kerr effect

The Kerr effect describes the variation of the refractive index of a material as a

function of the optical intensity I. In particular, the change in refractive index in

the material is linear with the circulating light intensity. The intensity is a difficult

quantity to access experimentally. Also, the intensity is not constant in the cross-

section plane perpendicular to the propagation direction but we can consider the

average intensity in the mode described as the ratio between the circulating power

Pcirc and the effective mode cross-section area Aeff , which is conveniently defined as

the area necessary to produce the observed Kerr shift. In practice, Aeff is similar to

the 1/e area of the quasi-Gaussian mode propagating in the resonator. It is possible

to write the refractive index n as:

n = n0 + n2I (3.1)

Where n0 is the linear refractive index at the frequency of interest and n2 is the

nonlinear refractive index. This is the case when considering a single propagation

direction in a dielectric. But what happens when there are counter-propagating

directions and the dielectric is a closed loop? Let us focus on one part at a time.

3.1.1 XPM is twice as much as SPM

So far we considered light propagating in one direction. However, when light propa-

gates in opposite directions the Kerr effect becomes even more interesting. Indeed,

the effect of counter-propagating light on the refractive index is twice as much the

light propagating in the direction of interest. This is the case in dielectric media

with both directions having the same frequency, polarization and being in the same

spatial mode. The part of the Kerr effect arising from the mode of interest on itself

is called self phase modulation in contrast the to effect of other light on the mode

of interest, which is cross phase modulation. The combination of the two can be

expressed as

∆nA = n2
(PA + 2PB)

Aeff

∆nB = n2
(PB + 2PA)

Aeff

(3.2)
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where A and B are the two directions and Aeff is the effective mode area.

Different circulating powers P lead to different refractive indices in the two di-

rections. Figure 3.1 shows the limit case where the power in one direction is much

greater than the other. The direction labelled as PA has significantly more power

Figure 3.1: Illustration of the Kerr interaction between counter-
propagating light in the case of one direction being significantly more
powerful than the other. Adapted from [87].

than the other direction. Thus, we can neglect the weak direction and find out that

the Kerr shift is twice as much in one direction than the other.

∆nA ∝ PAn2; ∆nB ∝ 2PAn2; (3.3)

Now, we already know that a different refractive index leads to a different resonance

frequency and a different coupled power for the same input power. This is a signif-

icant hint that the Kerr effect may be the explanation for the symmetry breaking

that I observed in my first experiment.

Before describing how the Kerr effect can result in different coupled powers even

with the same input power in the two directions, let me first linger on a justification

for the factor of 2 between SPM and XPM. Most of the publications about the

topic (including ours) use the phrase “it is well known” but it would be interesting

to justify this statement for once. There are several approaches to show that this

factor exists and the one I chose, is to start from equation describing the polarisation

of a dielectric material and expand it for the case of two counter-propagating fields

in a material with χ(3) nonlinearity. It is an expansion of 64 polynomial terms +c.c.

and there is not much more in it than algebra but at the end, it results in the

contribution of the counterpropagating mode being twice the mode itself.

Nonlinear optics refer to the nonlinear response of the optical material, or specif-

ically its polarisation, to the electric field applied. We can write the case of linear

optics as:

P (t) = ε0χE(t), (3.4)
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where P and E are the polarization of the dielectric material and the electric field,

ε0 is the electric permittivity of vacuum and χ is the susceptibility. For the sake of

this demonstration, we will use scalar fields and assume that χ is a scalar.

If the response is nonlinear we can write the polarisation as a Taylor expansion:

P (t) =
∞∑
n=1

ε0χ
(n)En(t) (3.5)

= ε0χ
(1)E(t) +ε0χ

(2)E2(t) +ε0χ
(3)E3(t) + . . . (3.6)

= P (1)(t) +P (2)(t) +P (3)(t) + . . . (3.7)

Here the first column after the equal sign represent the linear response. The sec-

ond column is the second order nonlinearity, generally responsible for phenomena

such as second harmonic generation (SHG) or sum and difference frequency gener-

ation (SFG, DFG). In centro-symmetric materials like the ones used in this thesis,

it is generally possible to neglect second order processes because, for geometrical

reasons, χ(2) ' 0. The third column represents the third order nonlinearity, which

includes one of the topics of this thesis: the Kerr effect. Let us now calculate the

third order term,

P (3)(t) = ε0χ
(3)E3(t), (3.8)

in the case of counter-propagating light. The field can be written as two components

having the same frequency but opposite wavevector k

E(t) = EAe
i(ωt+kx) + EBe

i(ωt−kx) + c.c. (3.9)

Note that, in principle, it is possible to generate other frequencies than the

original input via processes such as FWM [3, 91], but in this section our goal is only

to verify the twofold contribution of the Kerr effect to the change in refractive index.

Hence, let us calculate Eq. (3.8) for the field in Eq. (3.9). This results in 64 terms

but, in this case, we are interested only in the ones oscillating at the frequency ω,

i.e. the ones that describe no frequency change. Let us write these terms,

P (3)
ω (t) = ε0χ

(3)[(3EAE
∗
A + 6EBE

∗
B)EAe

i(ωt+kx)+ (3.10)

(6EAE
∗
A + 3EBE

∗
B)EBe

i(ωt−kx)] + c.c. (3.11)
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Note that the terms in round parenthesis are proportional to the power in each

direction and they are multiplying the electric field at the fist power. However, the

counter-propagating field appears with the factor 6 while the field itself has a factor

3. We can then interpret these terms as an additional nonlinear refractive index n2

defined as

n2 =
3

2n2
0ε0c

χ(3), (3.12)

assuming that the intensity is defined as I = 1
2
n0ε0cE

2.

This results in an intensity dependent change in refractive index of

∆nA,B = n2IA,B + 2n2IB,A (3.13)

It is now evident that counter-propagating light induces twice as much refractive

index change than co-propagating light at the same frequency. In other words, the

XPM is twice as strong than SPM. The same reasoning can be used to demonstrate

that co-propagating but at different frequencies experiences the same ratios between

XPM and SPM.

n = n0 + n2I = n0 +
3χ(3)

8n0

|E|2 (3.14)

Where n0 is the linear refractive index at the frequency of interest and n2 is the

nonlinear refractive index that is directly related to the third order susceptibility

χ(3) as shown in Eq. (3.14).

3.1.2 Kerr effect in a ring resonator

In the previous chapter we analysed how the refractive index affects the resonance

frequency (see Eqs. (2.5) and (2.54)). Then, in a Kerr nonlinear resonator, the

circulating power affects the resonance frequency. This is because an increase in

the refractive index slows the light in the resonator or, in other words, increase the

effective length of the resonator. The Kerr effect creates a coupling between the

circulating power and the resonance frequency. Since the circulating power depends

on both the input power and the laser detuning from the cavity resonance, this

introduces nonlinearity in the response of the resonator and a feedback effect that

will be discussed in the rest of this thesis.

Tuning the frequency of the laser down into a resonance from blue detuned the
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light starts to circulate within the resonator, increasing its refractive index since n2

is typically positive. The increase of refractive index moves the resonance to lower

frequencies, away from the laser. The more the laser moves towards low frequencies

the more light couples into the resonator, moving the resonance frequency down with

the laser. This results in the frequency offset between the laser and the resonance

being stable for small fluctuation, thus it provides an effective frequency locking

mechanism. This lock behaves as a simple proportional feedback without and inte-

gral or derivative component, in other words, there is no preferred point on the side

of the resonance and the coupled power will drift over long periods of time as the

ambient temperature or the laser frequency drift. When the laser frequency passes

over the resonance to the red detuned side, the coupled power decreases, moving the

resonance back towards its low-power value, therefore reducing the coupled power

even more. This results in the resonator abruptly jumping out of resonance with

the laser. It is possible to lock to a resonance only on the blue detuned side and

this is the situation where the microresonators are typically operated.

It is worth clarifying the concept of detuning and resonance since these two words

are critical to the whole thesis. By resonance frequency ωres I mean the frequency

of the laser that would produce the maximum intensity in the cavity at that instant

in time, all other parameters being unchanged. The meaning of resonance can be

extended to describe the profile of the power coupled in the resonator for every

frequency that the laser could have. Since we are dealing with nonlinear effects,

the resonance frequency changes continuously under the influence of the thermal

and Kerr effects. The only measurable parameter is the amount of power that is

coupled into the resonator and the amount that continues straight in the coupling

fibre. However, a mental picture of the whole resonance helps to understand the

physics of our system.

Following from the definition above, the difference between the unperturbed

resonance frequency ω0 and the laser frequency is defined as detuning ∆. Since the

resonance moves around, another useful quantity to be defined is the effective laser

detuning ∆eff , which represents the frequency difference between the laser frequency

and the effective resonance frequency. It is given by the laser detuning from the

low power limit resonance frequency plus the Kerr frequency shift1, as illustrated in

1Eventually the thermal shift can be added to the model as a time and power-dependent de-
tuning

95



Fig. 3.2.
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Figure 3.2: Definition of the detuning. A plot of the normalised
coupled power as the laser (black) is scanned across the resonance
towards lower frequencies. The 0 for the x axis is arbitrarily set to
the cold cavity resonance frequency (in grey), i.e. the resonance as
it appears when the power is too low to observe any nonlinearity. At
higher power, the resonance is tilted by the thermal and Kerr effect
(blue). The detuning is represented as an orange arrow. The effective
resonance (red) moves with the laser (black). The effective detuning,
i.e. the difference between the laser frequency and the effective reso-
nance is indicated in green. The frequency axis is reversed to match
the experimental measurements shown later.

Note that changing the laser frequency by the effective detuning does not result

in getting the laser in resonance. It is important to remember that any variation in

the laser frequency corresponds to a change in the coupled power, which influence

the Kerr shift, thus the effective detuning.

In this notation, a positive effective detuning corresponds to the laser oscillating

at a higher frequency than the resonance frequency, and it is thus being blue detuned.

Conversely, a negative effective detuning means that the laser is on the red side of the

resonance. Note how, in Fig. 3.2, ∆ is negative by several times the half linewidth

γ, corresponding to the laser being red detuned from the ‘cold’ resonance. However,

the Kerr effect is shifting the resonance and the effective detuning ∆eff is positive,

in other words, the laser is on the blue side of the effective resonance. This is

the typical regime in which we operate since the Kerr and thermal effects provide

negative feedback to the detuning resulting in a stable state [81]. The thermal

effect does not play a role in the symmetry breaking because the temperature of the

material only depends on the total power in the resonator and does not differentiate

between the directions of propagation.

This interaction between coupled power and resonance frequency results in a

characteristic resonance shape of a tilted Lorentzian represented in light blue in
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Fig. 3.2, however once the laser pass over to the red side of the resonance the

resonance quickly returns to its cold value resulting in the blue shape in Fig. 3.2.

3.1.3 Power dependency of the refractive index

It is time to derive a quantitative value for the Kerr shift described so far. We can

use Eq. (3.1) to write the effect of an infinitesimal increment of the circulating power

on the refractive index in the case of SPM,

∂n = n2
∂Pcirc

Aeff

(3.15)

If we recall the condition for resonance from Eqs. (2.5) and (2.54) describing the

resonance frequency we can express it in terms of angular frequency as:

ωres = m
c

rn
m ∈ N (3.16)

And then we get the relation between resonance frequency and circulating power:

∂ωres

∂P
=
∂ωres

∂n

∂n

∂P
= −ω

n
× n2

Aeff

(3.17)

For XPM, of course, we just need to multiply this power depended resonance

shift by 2.
∂ωres

∂P
= −2

ω

n
× n2

Aeff

(3.18)

Cross phase modulation is not limited to the case of counter-propagating light.

Having a different frequency propagating in either direction still induces XPM.

3.1.4 Characteristic power for the Kerr Effect

Let us now introduce the Kerr effect as a shift in resonance frequency in the linear

Eq. (2.78) we found in the linear case:

2π

F0

Pcirc =
ηPin

1 +

∆

γ

2 (3.19)
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We already have a quantity describing the difference between the laser and the

resonance frequency, the detuning between the laser and the resonance frequency,

which is defined in its normalised form as δ = ∆/γ. So δ = 1 corresponds to being

a HWHM away from the resonance.

We already saw that the Kerr effect produces a shift linearly proportional to the

circulating intensity so we can add it as an additional detuning component. Since

we measure power and not intensity, I will express the Kerr detuning in the form,

2π

F0

Pcirc,A,B =
ηPin,A,B

1 +

∆

γ
+
PA,B

P0

+ 2
PB,A

P0

2 (3.20)

where PA,B is the power coupled in each direction and P0 is the characteristic power

that we use to normalise.

It would be wise to define P0 such that a normalised power p = P/P0 of one

would produce the same shift as a detuning of one, δ = 1. So the question is: Which

is the input power that produces a frequency shift of γ? Or in mathematical terms:

P0,circ

∣∣∣∣ ∂ω∂P
∣∣∣∣ = γ, (3.21)

P0,circ = γ
n0Aeff

ωn2

(3.22)

where I used the circulating power because it is the one that drives the Kerr effect

(see Eq. (3.17)). However the rest of the theory is expressed in units of the external

power or coupled power so I will divide by the cavity enhancement factor defined in

Equation (2.77).

P0 =
2π

F0

γ
n0Aeff

ωn2

(3.23)

We can use the formula for the Q-factor, Q = ω/2γ, to obtain:

P0 =
πn0Aeff

QF0n2

(3.24)

In the presence of multiple resonant modes it may not be easy to identify the

same mode one FSR away hence it may be difficult to measure the finesse. We can

98



express the finesse in terms of Eqs. (2.56), (2.57) and (2.64)

F0 = Q0
2π(

πn0d
c

)
ω

Hence:

P0 =
πn0Aeff

QF0n2

πdn0ω

2πc
. (3.25)

If we identify the mode volume as Veff = Aeffπd, and use the relation λ = 2πc/ω we

find

P0 =
πn2

0Veff

λn2QQ0

(3.26)

P0 is one of the main figure of merit of a microresonator. It represents the char-

acteristic input power needed to observe nonlinear effects and it allows comparing

different platforms. As an example Si3N4 resonators generally have a Q two orders of

magnitude lower than fused silica rod resonators, however they have a much smaller

mode volume and higher nonlinearity. Calculating P0 allows to decide which plat-

form is better to observe nonlinear effects at low power and also demonstrate that

microresonators are an excellent platform to observe nonlinear effects compared to

other resonant structures. Free space cavities usually have mode volumes that are

far larger than the ones achievable in microresonators because the mode area is far

larger. Similarly, fibre-loop cavities have a much longer circumference hence P0 is

higher than in microresonators.

Of all the parameters appearing in P0, I can measure directly in the experiment

the Q-factors and the wavelength of the laser. The refractive index n0 and the

nonlinear refractive index n2 are known from the literature But I cannot measure Aeff

accurately, the only way is a Comsol Multiphysics simulation but even this approach

is limited by the limited knowledge of the precise geometry of the resonator. These

large errors in the calculation leave two possible ways open: leaving P0 as a free

parameter in the fittings or estimate it indirectly as described in Section 3.4.1. The

frequency detuning is normalised naturally by the HWHM linewidth since it is the

same parameter that characterises a Lorentzian. In particular, we choose the coupled

linewidth since this allows absorbing the coupling parameter in the normalisation

and develop the theory without dealing with it continuously. Let me remember the
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definition for the normalised detuning

δ =
∆

γ
. (3.27)

The circulating power is normalised according to Eqs. (3.24) and (3.26) as follows

p =
2π

F
Pcirc

P0

, (3.28)

Finally, the normalised input power is defined as:

p̃ =
ηP̃

P0

(3.29)

With these ingredients, I can finally write the equations for the Kerr symmetry

breaking in a normalised form

pA,B =
p̃A,B

1 + (δ + pA,B + 2pB,A)
, (3.30)

where A,B represent the two possible directions of circulation of light.

This definition has the advantage of bringing the normalised circulating power

to values that can be directly compared with the normalised input power. Indeed,

with this normalisation, p never exceed p̃, and the two are equal just for resonant

critical coupling. This condition helps to better visualise how efficiently the power

is transferred into the cavity. When reporting the values calculated with this nor-

malisation to physical units, it is important to remember that the circulating power

needs to be multiplied by the cavity build-up factor F/2π that in a practical case

could be of the order of 106.

Now you may ask: wait a minute! Isn’t the thermal effect another source of

nonlinearity? It is indeed. The main difference between the Kerr and thermal effect

is that the latter does not differentiate between the directions of propagation. Hence,

the thermal effect plays no role in splitting the resonance frequency between the two

directions. The only effect is to extend the frequency scale and deform the shape of

the resonance. We corrected for this by rescaling the frequency axis accordingly in

Fig. 3.15 (b).
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3.2 Symmetry breaking

I will now explain how the coupled equations that we just found can describe sym-

metry breaking. When equal amounts of light from both directions couple into the

resonator, there is a standing wave as the result of two counter-propagating travel-

ling waves. The symmetry breaking phenomenon is described in 3.3. When sending

equal light power in both directions, the resulting field in the microresonator is

a standing wave pattern created by the interference of between the two counter-

propagating waves. As the laser is tuned towards the resonance, or the input power

Figure 3.3: Illustration of the symmetry breaking. At low power,
both directions couple equally into the resonator resulting in a standing
wave in the resonator. Increasing the input power splits the resonance
frequency so that only one random direction couples into the resonator.
Adapted from [87].

is increased, the power in the resonator increases. For high enough coupled power,

suddenly the field inside the resonator becomes a travelling wave in one direction.

This is because the symmetry of the system breaks and one direction couples more

light into the resonator than the other. The less coupled direction still shows a

reduction in transmission. This can be explained with a resonance frequency split.

But where does this frequency split comes from?

3.2.1 Qualitative description

Before digging in the mathematical explanation of why this happens let me describe

the symmetry breaking in a more physical way. In case of a completely symmetric

situation with laser light propagating in both direction with identical characteristics

such as power, polarization, and frequency, light will couple identically into the
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resonator in both directions and create a standing wave. Due to the thermal effect

in fused silica, there is a stable condition where the laser is blue detuned from

the cavity resonance. However, this perfect symmetry is not possible in the real

world. There is going to be a slight difference in polarization, power, or any other

characteristic that will imbalance the coupled power of the two laser beams as shown

in Figure 3.4 (a,b). If the CW direction temporarily couples a bit more power in

the resonator while the coupled power in the CCW direction stays the same, the

resonance frequency is red-shifted by ∆nCW ∝ ∆PCW while the CCW resonance

∆nCCW ∝ 2∆PCW. This is the beginning of a runaway effect because now the CCW

detuning increases and the CCW power decreases (Figure 3.4 (c)). Hence, the CCW

push on the CW resonance also reduces, increasing the CW coupling and circulating

power (Figure 3.4 (d)). This runaway effect continues making a significant difference

appear between the circulating powers in the two directions despite the pump powers

being equal.

Figure 3.4: Step by step description of the symmetry breaking. The
laser frequency is represented in black. Coupled powers in each direc-
tion are represented by the red and blue dots while the resonance is
shown in the same colour. (a) The initial symmetric state with light
from both direction equally coupled into the resonator on the high-
frequency side of the resonance. Small perturbations increase the light
coupled in the red direction (b), this causes a greater shift away from
the resonance in the blue direction (c) resulting in less power coupled.
Hence, the red direction is now less shifted by the XPM and moves
closer to the resonance (d).
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The coupled powers can change following a variation in the input powers, the

frequency of the inputs or a difference in the Kerr shift. I will use this representation

in various part of the thesis because I find it helpful to describe what is happening in

the resonator. However, it is important to highlight that this is just a representation.

The Lorentzian resonance is not a physical entity, only the intersection point between

the laser frequency and the Lorentzian response, representing the coupled power is

a physical quantity. However, drawing the instantaneous lineshape helps to better

visualise the detuning. Also, the drawn lineshape is not accessible by scanning the

inputs since coupling additional light in the resonator would shift the resonances

due to the Kerr effect. However it is possible to verify that this lineshape exists

by using a independent weak probe [120]. The height of the Lorentzian should be

normalised to 1 since it represents the response of the resonator to the input power

nevertheless I prefer to scale the height of the Lorentzian such that it represents the

maximum power that could be coupled in the resonator.

3.2.2 Theory

Let us extract this behaviour from the coupled equations (Eq. (3.30)):

p1,2 =
p̃1,2

1 + (δ1,2 + p1,2 + 2p2,1)2 (3.31)

The goal is to find all the pairs of coupled powers (p1, p2) that solve the equation

given the free parameters that we can control in the experiment, namely the input

powers p̃1,2 and the laser detunings δ1,2 in the 2 directions. To unravel the 2 equations

we can solve for p2 in the first equation and find:

p2± =
−δ1 − p1 ±

√
p̃1
p1
− 1

2
(3.32)

Note that this expression is actually composed of two equations with either sign of

the square root. Substituting this in the equation for p2 I find:

p2±

p̃2

[
1 + (δ2 + p2± + 2p1)2

]
= 1 (3.33)

From here I can define a solving function:
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s±(δ1,2, p̃1,2, p1,2) = sδ1,2,p̃1,2(p1) =
p2±

p̃2

[
1 + (δ2 + p2± + 2p1)2

]
− 1 (3.34)

The input power p̃ and detuning δ in the two directions are fixed parameters

and the circulating powers are related by Eq. (3.32). So all the zeros of the solving

function correspond to a pair of circulating powers that solve the problem.

A more formal and analytical treatment of this equation can be found in [121].

For the purpose of this thesis, I will describe a numerical approach to the steady-

state solution of the symmetry-breaking problem. Note that equal input power and

detuning are required in the first place to have a symmetry to be broken. This will

be the case for this chapter. But the equation discussed in this section does not

require symmetry to be valid and can be applied to any combination of asymmetric

input powers and detunings. Let us test the predictions from this equation. To find

the zero-crossings, the s function is evaluated for a sufficiently fine list of values in

the interval of allowed circulating powers p1 = (0, p1,in], excluding the value of 0 to

avoid poles. A first guess of the zero-crossing point is provided by the change of

sign of s. This guess is then used as the starting point for a root finder algorithm

scipy.optimize.fsolve2. For each p1 that solves Eq. (3.34) the corresponding p2

is calculated from Eq. (3.32).

In Fig. 3.5 all the 3 solutions arise from the positive branch of Eq. (3.34). The

middle one is a symmetric solution with p1 = p2 while the other two correspond to

broken symmetry. Here, when p1 is in the upper branch, p2 is in the lower and vice

versa. Looking at the resonance, it can be described as a tilted Lorentzian with a

bubble-shaped solution on top. In Fig. 3.6 there are 5 solutions, 3 from s− and 2

from s+. Only the highest of the s− solutions and the lowest of the s+ are symmetry

broken. Note how the upper part of the bubble presents a concave region and now

corresponds to a symmetry broken solution from the negative branch s−. In Fig. 3.7

we analyse the region where the maximum number of 9 solutions is present. The

symmetry broken bubble is now folding over at the chosen detuning. This results

in 3 solutions in the upper branch and 3 in the lower branch. Each p1 corresponds

pairwise with a p2 in the other branch.

2SciPy (pronounced “Sigh Pie”) is a Python-based ecosystem of open-source software for mathe-
matics, science, and engineering. It is usually installed with most python distributions and availabe
at scipy.org
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s+
s

Figure 3.5: On the left, plot of the solving function s for input power
p̃ = 1.9 and detuning of δ = −3. On the right, the bubble with the
detuning of interest highlighted.

Figure 3.6: Same as in Fig. 3.5 for p̃ = 3 and δ = −5.

s+
s

Figure 3.7: Same as in Fig. 3.5 for p̃ = 5.5 and δ = −5.8. (The
2 solutions for low p1 are overlapped. One arise from the negative
branch and one from the positive one)
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Figure 3.8 shows the solutions of Eq. (3.31) for symmetrical pumping and several

values of the input powers p̃. Let us take a look at the possible type of resonance

profiles that can arise for different input power.

14121086420
Pump detuning

0

1

2

3

4

5

Co
up

le
d 

po
we

r i
n 

CW
 d

ire
ct

io
n

5.0
3.9
2.8
2.0
1.6
0.9

Figure 3.8: Solutions of equation Eq. (3.31) for different input power
p̃. Coloured lines represent stable solutions, faint lines represent un-
stable solutions, and dashed lines represent oscillatory solutions.

First, it is evident the appearence of a “bubble” in the coupled power profile,

by finely adjusting the parameters I observe that the threshold input powers to

observe this effect is p̃th ' 1.54. For powers below the threshold (p̃ = 0.9) the

only effect of nonlinearity is a tilting of the resonance. Just above the threshold

(p̃ = 1.6) the characteristic bubble-shaped solution appears. The upper and lower

branches are stable solutions and corresponding to different coupled powers [121]. In

other words, if p1 is in the upper branch, p2 is in the lower branch. The symmetric

solution in between is now unstable. The solution for p̃ = 2 is the limiting solution

for which the bubble is convex. It is characterised by the flat-top shape where the

circulating power p is equal to the input power p̃ in the coupled direction. This

is discussed in detail below. Past this point the solution is concave (p̃ = 2.8)

and there are values of the detuning for which one of the resonances is red shifted

from the laser and the other is blue shifted. A further increase in powers lead to

instability appearing on both branches (p̃ = 3.9) where a growing oscillatory solution

is expected (see [122] for more details). Experimentally, this situation usually results

in jumping out of resonance. The high nonlinearity of the system and the thermal

effect prevent us from observing diverging oscillations. However, by carefully tuning

the experimental parameters and according to numerical simulations it is possible

to observe oscillations in this region of the parameter space. A detailed explanation
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of this regime falls outside the scope of this thesis but a detailed analysis of the

phenomenon can be found in [121]. At even higher power (p̃ = 5) the bubble folds

over, resulting in two unstable but non-oscillatory regions on each symmetry broken

branch. No other qualitative changes are observed at higher input power.

3.2.3 Special points

There are a few properties that can be identified from the model.

The switch from a negative to positive solution always happens at maximum

coupling where p1 = p̃1. This follows from the structure of Eq. (3.32), since the

square root is defined as real valued and the two solutions connect where the argu-

ment is 0. The case of maximum coupling at symmetric pumping deserves a closer

look.

p̃1 = p̃2 = p1 = p̃, δ1 = δ2 = δ (3.35)

The solving equation and the expression for p2 become respectively:

−δ − p̃
2p̃

[
1 +

(
δ +
−δ − p̃

2
+ 2p̃

)2
]

= 1. (3.36)

p2 =
−δ − p̃

2
(3.37)

This gives a relation between the detuning of the input power at which one of the

directions if fully coupled into the resonator as shown in Fig. 3.9. The first one is

simply

δ = −3p̃ (p̃ > 0) (3.38)

It represents the solution with the most negative detuning at which the resonance

jumps out. This is not a symmetry-broken solution because the power in the other

direction is also fully coupled (this can be verified by using Eq. (3.37) and it is shown

in blue in Fig. 3.9). The other 2 solutions are:

δ =
√
p̃2 − 4− 2p̃; p2 =

√
p̃2 − 4 + p̃

2
(p̃ > 2) (3.39)

δ = −
√
p̃2 − 4− 2p̃ p2 =

−
√
p̃2 − 4 + p̃

2
(p̃ > 2) (3.40)
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They appear for input power above p̃ = 2 and represent symmetry broken solutions.

Equation (3.40) in the limit of very high input power tends to the first solution

(green in Fig. 3.9). This reinforces the intuition that at higher power the bubble

closes just before jumping out of resonance. Equation (3.39) appears at the smallest

detuning of the three solutions and corresponds to the lowest value of the power

coupled in the other direction (orange in Fig. 3.9). In particular, for increasing

input power in either direction, p2 still tends to 0 as:

p2 '
1

p̃
+

1

p̃3
+

2

p̃3
+

5

p̃7
+O(

1

p̃9
)
p̃→∞−−−→ 0 (3.41)

hence, in the limit of high input power, the two solutions are one the reciprocal of

the other in normalised power units, i.e. The coupled power is p1 = p̃ and p2 = 1/p̃.

1086420
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Figure 3.9: Circulating power in the resonator when one direction
is fully coupled. In blue, the solution corresponding to the tip of the
tilted Lorentzian, Eq. (3.38), the circulating power is the same in both
directions. The other two solutions appear for p̃ ≥ 2. In the graph
the fully coupled direction is plotted with a line while the power in
the other direction is plotted dashed. Orange is Eq. (3.39), green is
Eq. (3.40)

Let us now analyse how the negative branch solution implies that one direction

has to be red detuned from the resonance.
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It is possible to arrange Eq. (3.32) to highlight the effective detuning:

δ1,2,eff = δ1,2 + p1,2 + 2p2,1 = ±

√
p̃

p1,2

− 1 (3.42)

Since the square root is positive, it is clear how the solutions corresponding to the

− sign have a negative effective detuning for one of the directions. Equation (3.42)

also reinforce the fact that full coupling (p1 = p̃) corresponds to effective detuning

equal 0.

The minimum input power in each direction to obtain symmetry breaking is:

p̃th =
8

3
√

3
' 1.54, (3.43)

and the minimum detuning to obtain symmetry breaking is:

δ = −
√

3 ' −1.73, (3.44)

as demonstrated in [121]. The threshold power is the same for modulation instability

(MI) in microresonators [13, 29] in the case of no dispersion. However, some disper-

sion is always present hence the symmetry breaking effect kicks in before observing

MI.

3.3 Methods

The fabrication of tapered fibres and resonator is described in Chapter 2. In this

section, I will describe the mechanical part of the setup that allows coupling light

into the microresonator and the optical setup before the resonator.

The major requirement for our setups is the capability of positioning the ta-

pered fibre in the vicinity of the resonator so that there is overlap between the

two evanescent fields. Since the typical evanescent field extension is the same order

of magnitude than the wavelength, I need a position accuracy of a few nanome-

tres. This is achieved with the combination of a 3D piezoelectric translation stage

mounted on top of a 3D precision translation stage for extended travel range that

can be seen inside the acrylic box in Fig. 3.10. I use different combinations of this

system.
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Figure 3.10: Picture of the experimental setup used in Chapters 4
and 5 of this thesis. The microresonator, tapered optical fibres, trans-
lation stages and alignment cameras are protected from dust and air-
flow by an acrylic enclosure. The black optical breadboard is separated
from the pneumatically-suspended optical table by sorbothane feet.

A PI Nanocube (120µm travel range with 1 nm accuracy) mounted on top of

a 3 axis micrometric stage (25 mmx × 25 mmy × 15 mmz travel range) is the most

accurate system I use that simultaneously allows for ease of access when replacing

the fibre or the resonator. An alternative system is the Thorlabs NanoMax stage

MAX312D/M, which combine 20 µm travel range with 20 nm accuracy on the piezo,

4 mm travel range on the micrometric stages. The accuracy is still sufficient for

the coupling, however, the limited travel range is sometimes a problem. To solve

this, I use an additional XY translation stage on top of the NanoMax to extend the

range. The more compact dimensions allow for the reduction of the height of the

resonator support, improving vibration isolation. The toroid and disk resonators are

laid on a mild adhesive on top of a fixed aluminium pillar, while the rod resonators

are secured to a v-groove holder. Generally, all the translation stages move the

taper support, but in a few setups the tapered fibre is fixed and the resonator is

mounted on translation stages with no drawbacks. The design of the setup allows

replacing just a tapered fibre or the resonator without damaging the other. A set

of microscope cameras is needed for positioning the taper in the near field region

of the resonator mode instead of breaking it by pushing it against the resonator

pillar or the silicon chip as shown in Fig. 3.11. In the case of rod resonators, a side

camera is enough for accurate positioning since the reduced focal length can be used
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Figure 3.11: Detail of the coupling region. Two USB microscope
cameras are used to align the fibres to the resonator on each side and
to illuminate the area. Two aluminium brackets hold the tapered fibres
(highlighted in red by the background illumination) in the evanescent
field of the rod microresonator that can be seen in the middle.

to judge distance. For on-chip toroid resonators, both a side and top camera are

needed given the smaller size and the different geometry.

The whole assembly is enclosed in an acrylic box with removable windows to

protect the resonator from dust and airflow. The box is fixed on the bottom on a

portable optical breadboard with the holes closed by tape, again to prevent air and

dust flowing into the box. The breadboard itself is supported by sorbothane feet

on a pneumatic optical table to isolate the experiment from vibrations coming from

the building or other researchers working on the same optical table.

Figure 3.12 shows a scheme of optical setup used to measure the symmetry

breaking. Laser light is provided by a continuously tunable external cavity diode

laser (ECDL) model CTL by Toptica. The laser can be continuously tuned in a

wavelength range of 10 nm around 1550 nm. Since I am studying a power-dependent

phenomenon, the maximum output power of 50 mW would be limiting for this ex-

periment. Therefore, the light is amplified with an erbium-doped fibre amplifier

(EDFA) by IPG with a maximum output power of 1.5 W.

The light is then equally split into 2 branches with a 50:50 directional coupler.

A manually controlled attenuator on each branch allows me to accurately balance

the power in the two directions.

To couple light in opposite directions in the tapered fibre and simultaneously
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Figure 3.12: Scheme of the optical setup used to measure the sym-
metry breaking. The laser light is amplified and equally split in two
branches. An attenuator on each branch allows to precisely balance
the power in the two directions. A pair of circulators allow to send
light in counter-propagating directions into the tapered fibre coupled to
the resonator and observe the transmission in each direction. Adapted
from [87].

observe the transmission I use circulators. Two photodiodes monitor the transmis-

sion in each direction (ThorLABS InGaAs amplified detector PDA05CF2 or the

equivalent PDA10CF-EC. Bandwidth: 150 MHz. Response: 1 A/W).

3.4 Results and discussion

As mentioned at the beginning of this chapter we were attempting to generate

counter-propagating frequency combs in a microresonator. Instead we observed the

results in Fig. 3.13. The plot shows the transmission of the tapered fibre while

scanning the laser frequency across the resonance from higher to lower frequency.

This kind of scan allows me to search for suitable optical modes to generate frequency

combs or to observe non-reciprocal light propagation. During the scan, I adjust the

polarisation of light in both directions and the coupling position of the taper trying to

optimise each resonance. I specifically look for a thermal triangle that is significantly

extended in frequency and resonances that can reach zero transmission, i.e. critical

coupling. The transmission in Fig. 3.13 is normalised to its value out of resonance for

both directions. The laser frequency is scanned by supplying a triangular waveform

voltage to the piezo input of the laser controller. The conversion factor between

frequency and voltage is calculated by measuring the frequency with an optical

spectrum analyser (OSA) at two different voltages and assuming a linear relation.

Alternatively, a more accurate way to calibrate is to connect an EOM to the input to

generate sidebands at a known frequency. The value of 0 frequency offset is assigned
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to the beginning of the resonance.

Figure 3.13: One of the first observed instances of symmetry break-
ing. The transmitted power through the tapered fibre in both directions
is plotted as a function of the laser frequency for two consecutive scans.
Adapted from [87].

.

Clearly, one of the two directions is coupling in the resonator, therefore the

transmission reduces, while the other almost doesn’t couple in. The light in both

directions comes from the same laser, so the detuning is the same in both direction

and the power is roughly the same. However, the amount of power coupled into

the resonator in both directions is significantly different. Furthermore, the direction

that couples into the resonator is apparently random when the power in the two

directions is equal.

The observed effect is called spontaneous symmetry breaking. It describes a

system where the equations of motion show a particular symmetry but the state

of the system violates that symmetry. In this case, the symmetry is the chirality.

In other words the system is exactly the same for both circulation directions: light

entering the tapered fibre in either direction has the same polarization, power and

frequency. However, in a specific range of detuning and powers, the light circulates

in the resonator just in one direction.

This behaviour is present in many fields of physics, from superconductivity to

ferromagnetism, including also the Higgs mechanism [46]. One of the most intu-

itive and popular representations is the so-called “Mexican hat” potential shown in

Section 3.4. It can be imagined as a rigid well holding a ball subject to gravity

oriented towards the bottom of the page. The potential is symmetric in each case,

however, in panel (a) the system will stay in the position x = 0, the ground state

of the system. In the next panel (b) the state x = 0 is still the ground state but it

is now ill-defined being an indifferent equilibrium. In panel (c), x = 0 is a point of
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Figure 3.14: An example of a tunable potential that leads to spon-
taneous symmetry breaking. (a) the potential has a single minimum
at the point of symmetry with positive second derivative. The ground
state is the bottom of the well. (b) There still a single minimum but
the second derivative is 0. This is the limit situation before symme-
try breaking. (c) The potential is still symmetric and the point of
symmetry is a stationary point. However, there are now two possible
ground states, each of them does not follow the same symmetry as the
potential.

unstable equilibrium. What is more important is that there are lower energy states

at x > 0 or x < 0. Under a minimum perturbation, the system will choose one

of them and, despite the fact that the potential is symmetric around x = 0, the

ground state is not. Since the gravitational potential of an object is proportional to

the height of that object it is very useful for creating a simple mental picture. How-

ever, the potential in Section 3.4 can represent any kind of potential that exhibits

symmetry-breaking behaviour.

To be fair, in a mathematical world the ball will stay in the centre of the potential

indefinitely, but in the real world, there is always noise that will perturb the system

out of unstable equilibrium. In the specific case of this thesis, we can imagine the x

axis in Section 3.4 as the power imbalance between the two circulating directions.

The evolution through panels (a) to (c) correspond to the increase of input power

of detuning.

A first step to verify the theory we developed is to test how the symmetry

breaking and the amplification of the power imbalance behave with power. The

experimental data in Fig. 3.15 (a) show how the coupled power in each direction

is roughly the same at low power. As the power increases, the difference between

p in the two directions is amplified. This enhancement is greater at intermediate

detunings and tends to reduce as the detuning approaches the point of jumping out

of resonance. The data in Fig. 3.15 are measured (a) and calculated (b) with a

power imbalance of 10%, i.e. the input power is 10% higher in the CW direction to

prevent random switching and simplify the data analysis.

The scaling of the frequency axis and the fit of experimental data deserve a

114



Figure 3.15: (a) Experiment and (b) simulation of the coupled power
in the resonator as a function of the laser frequency. The colour red
and blue correspond to the direction of light and the brightness of the
trace indicate the input power. In both (a) and (b) the input power is
10% higher in the CW direction to prevent random switching. (c) The
maximum difference between the power coupled in the two directions.
The black dots are calculated from the measurements in (a) and the
green line is the theoretical prediction. Adapted from [87].

detailed description. The first step is to measure the characteristic power P0 and

the resonance half-linewidth γ as described in Section 3.4.1. This defines the scale

of the vertical axis, however the horizontal axis requires an additional step. As

mentioned before, the thermal effect is not included in the theory but it can be

implemented as a detuning dependent on the total power as follows.

p1,2 =
p̃1,2

1 + (δ1,2 + (1 + T )p1,2 + (2 + T )p2,1)2 . (3.45)

The parameter T does not distinguish the direction of propagation and is used as a

free parameter in the fit. In practice the presence of T only has the effect of rescaling

the horizontal axis.

Input powers balance

The method for balancing the input power in the two directions requires a few

words. What matters for the symmetry breaking direction is the input power at

the coupling point, however, this cannot be measured directly. The condition of

equal power in both directions at the coupling point can be inferred by ensuring

that the resonator randomly picks the circulating direction. However, the coupled

power can be influenced by other factors such as the polarisation. The resonator

acts like a polariser and each mode has one of the two orthogonal linear polarisa-

tions. The polarisation of the input light can be aligned to the mode by using a

polarisation controller and checking both that the transmission dip is maximised in

the resonance of interest and, simultaneously, all the resonances with perpendicular
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polarisation are cancelled. Once this operation is performed I can assume that the

input power is the same. I then record the photodiodes voltage out of resonance

in both directions, corrected for the offset voltage measured with no laser input.

This voltage corresponds to equal input power in both directions. This holds true

for several minutes. The main drift is caused by polarization drift that has multi-

ple sources. Moving the fibres change their curvature radius and the temperature

affects the length. Both these effects modify the birefringence of the fibre, hence

the polarisation state reaching the microresonator. To minimise this effect we work

in a thermally controlled lab and we tape all the optical fibres to the table to pre-

vent them from moving. Changes in the EDFA power also affect the polarization,

hence the EDFA is always set at the maximum power of interest and the power is

controlled with variable attenuators. The calibration of the photodiodes is verified

before and after every measurement to prevent systematic errors.

The method described above also corrects for the different losses that may be

present on each side of the tapered fibre with respect to the resonator. These losses

cannot be measured from the taper connectors. Also, the two photodiodes may

have slightly different sensitivity and the losses in the optical circuit that leads to

the photodiodes may be different. But since we are normalising the measured voltage

to the value for which we observe equally probable switching all these factors are

accounted for.

Once the photodiodes are calibrated, it is possible to induce a specific imbalance

in the input power as in the case of Fig. 3.15.

3.4.1 Measuring the resonator parameters

The simulations in Fig. 3.15 (b) are calculated for the same parameters of the ex-

periment.

Power imbalance

The power imbalance is measured from the transmitted power of the tapered fibre

out of resonance. The photodiodes are first calibrated by scaling the output voltage

measuring to a power meter (Thorlabs PM20CH) reading for the same optical power.
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Half linewidth and Q-factor

The half linewidth of the resonance γ can be measured at very low power, where the

thermal and Kerr effect are negligible, by scanning the laser through the resonance;

this also allows calculating the Q from Eq. (2.64) since the laser driver indicates

the wavelength. The intrinsic Q-factor Q0 cannot be measured directly because it

requires the condition of no coupling between the taper and the resonator. There

are however two techniques that provide very accurate estimates both through the

measure of the linewidth 2γ. First, it is possible to measure Q for critical coupling

and double that value since γcrit = 2γ0 (see Eq. (2.46)). Alternatively, the taper can

be moved away from the resonator to reduce the coupling efficiency η at or below

5 %, depending on the noise of the photodiode. For such a low coupling Q ' Q0.

Characteristic power

The last free parameter in the theory is the characteristic power P0. This could

be calculated knowing the characteristics of the material but some of the quantities

involved have a very large error. The biggest source of error is the mode area; it

cannot be measured directly and can only be estimated from the geometry of the

resonator through a Comsol Multiphysics simulation. One of the approaches is to

use P0 as a free parameter and fit it by measuring the variation of the maximum

power imbalance with the input power (cf. Fig. 3.15 (c)).

There are, however, a few techniques that allow estimating P0. The most im-

mediate method is to slowly increase the input power until the symmetry breaking

is observed. The power where this happens corresponds to 1.54 P0. The drawback

of this method is that, if there is a power imbalance between the two directions

this may be amplified in the vicinity of the symmetry breaking condition and be

misinterpreted as symmetry breaking. Checking that the resonator picks a random

state each time helps to avoid the confusion.

We saw in Fig. 3.8 that the shape of the bubble changes with the input power. In

particular the difference in the shape is very pronounced between p̃ = 1.5 and p̃ = 3.

It is possible to compare the observed shape with the theoretical one to determine

the ballpark of p̃. Note however that, especially at higher power, the thermal effect

distorts the bubble.

At high input power the most reliable method to determine p̃ is to use the
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property that we found above: when one direction is fully coupled, e.g. p1 = p̃, the

other direction has a coupling of p2 = 1/p̃. Hence it is possible to estimate the input

power from the ratio between the two:

p̃ =

√
p1

p2

. (3.46)

In the same time-frame as this experiment, another group observed the same

effect in a microresonator with strong backscattering. In their case the system was

not symmetric at the beginning because they were pumping the resonator in just

one direction. However, the scattering inside the resonator transfers power from the

stronger direction to the weaker until the counter-propagating powers are balanced

[123].
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Chapter 4

Microresonator-based

implementation of isolators and

circulators

In the previous chapter, I discussed how the light in the resonator resonator ran-

domly picks a circulating direction when the intensity or the detuning reaches the

symmetry breaking threshold value. The first application that comes to mind for

a device allowing unidirectional light circulation is to make an optical isolator as

illustrated in Fig. 4.1.

 
 

ωres,cw ωres,ccw

In

Out

P

ω

ωres,cw ωres,ccw
ωlaser

𝜒(3)

Figure 4.1: Scheme of the idea behind the isolator: once the sym-
metry is broken, light of a given frequency can circulate just in one
direction in the resonator. It would be out of resonance in the other
direction. Adapted from [51].

However, a random choice in the direction of propagation is not the best selling

characteristic for an isolator. Fortunately, the resonator shows this randomness only

when pumped symmetrically in both directions. If the inputs are imbalanced, the
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direction that couples into the resonator is always the one with the highest input

power. Once the resonator is set in one direction, it shows a certain amount of

hysteresis, i.e. it resists the changes in circulating direction. I will discuss the

hysteresis in the next chapter. In the case of an isolator, the input laser is likely

to be the strongest input. However, to ensure that the direction of working will

not change during operation, the light reflected back into the resonator has to never

exceed the power at the input. This is always the case for linear and passive optical

circuits but could not hold true if the optics after the isolator comprise amplifiers

or something that causes a wavelength shift.

Once reassured that the propagating direction coupling into the resonator is

the one with the highest input power, to make an isolator, we would like to take

advantage of the non-reciprocity by accessing the light from the forward direction

(defined by the input laser) but preventing light in the opposite direction from

reaching the laser itself. This cannot be achieved with a single tapered fibre because

the end of the fibre opposite to the input laser behaves in exactly the opposite way:

any input at the same frequency of the laser cannot couple to the resonator because

it sees a Kerr shifted resonance. At the same time, most of the light from the laser

goes into the resonator and not to the other end of the taper. To realise an isolator

we need a way of extracting the light from the resonator and the easiest way to do

so is to introduce an additional taper that couples light out from the other side of

the resonator as shown in Fig. 4.1.

Before analysing in detail how to realise a microresonator-based isolator let us

discuss the current technology for isolation, a clear definition of isolation and the

alternatives that exist for miniaturisation.

4.0.1 The Faraday isolator

Nowadays the main way of realising optical isolators is to exploit the Faraday effect

[124, Chapter 6], which consist of a phase shift between the two circular polarisation

components of light propagating through a medium in presence of a magnetic field.

In case of linearly polarised light, this corresponds to a rotation of the polarisation

axis in the direction defined by the magnetic field. In the simple case of propagation
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in the same direction of the magnetic field B the rotation θ can be expressed as:

θ = νBL (4.1)

where ν is the Verdet constant of the material that is not really a constant but

depends on the wavelength of the light, while L is the length of the medium in the

magnetic field. An isolator based on this effect consists of a Faraday rotator designed

to produce a rotation of 45° for the wavelength of interest sandwiched between 2

polarisers oriented 45° away from each other. This way any light in the forward

direction that passes through the input polarizer will also go through the output

one because the polarisers orientations are matched. While any light travelling in the

return direction will be first filtered by the output polariser into linear polarisation,

and then rotated by 45° such that it reaches the input polariser with perpendicular

polarisation, thus it is completely blocked.

Commercial free space polarisers typically work in a range of a few percent change

in λ around the design wavelength with input loss of 1 dB or less and isolation of

about 30 dB. Unfortunately, they also weight up to 1 kg and they are surrounded

by a strong magnetic field1. Optical isolators exist also in fibre-coupled form factor.

They come as metal rods with the size of a pen cap2 with slightly lower performances

of about 2 dB insertion loss and 25 dB isolation.

Getting to smaller dimensions is problematic because of the nature of the effect

used: magnets generally produce a magnetic field that is proportional to their vol-

ume. Looking back at Eq. (4.1) it is clear how the polarisation rotation decreases

as the fourth power of the size: the volume of the magnet decreases as L3 and the

interaction length as L.

4.0.2 What is an isolator?

The Faraday isolator is commonly accepted to be an isolator. But different tech-

nologies for non-reciprocal light propagation have different requirements and behave

differently so, before introducing the various alternatives, it is worth dwelling on the

definition of what is an isolator.

Wave propagation is assumed to be reciprocal [125] and that is generally true.

1I had the screwdriver or tweezers ripped off my fingers while trying to do precision work near
them a few times.

2about 8 mm ∅× 40 mm if you are a reader from the future and have never seen a pen.
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If light propagates in one direction in a system it can propagate backwards. There

are plenty of practical examples around us. A lens concentrates the parallel sunlight

on a tiny ant and, in the opposite direction, collimates the light of a tiny LED

into a parallel beam. However, there are cases where this is not true and these are

generally called isolators.

Are Venetian blinds an isolator? In brief, they prevent the sunlight from entering

a room, but a light in the room ceiling will shine on the pavement outside. The

answer is no, the Venetian blind only limits the angle at which light can pass through

it. A test that an isolator should pass is time reversal, which in the case of light

corresponds to inverting the direction of propagation. A person laying down on

the front porch can still see the light bulb inside and any any light pointed at the

sun from inside will not leave the room. In the case of the Faraday isolator, light

cannot travel backwards through it and the same is true for the microresonator-based

isolator presented in this chapter.

The definition of “isolator” is very debated in the field of optics and there have

been attempts to summarise it. The origin of this debate is that for some applications

not all the requirements of a proper isolator need to be fulfilled for the specific case

(as in the example of the Venetian blind illustrated earlier). Unfortunately, this

has stretched the isolator blanket a bit too much, producing (in-)famous retractions

and corrections such in the cases discussed below. To avoid to see my research

invalidated in such way, I rely on a very clear definition of isolator by Jalas et al.

[126]. In particular, they state that an isolator has to have at least 2 ports that can

sustain one or more optical modes. The scattering matrix of the isolator needs to

be non-symmetric, which involves breaking the Lorentz reciprocity. There has to be

at least a linear combination of modes that is transmitted from port 1 to port 2.

Also, any combination of modes has to be blocked from port 2 to port 1.

This second part is critical because it is relatively easy to create an interface in

a multimode waveguide that couples a single mode in the forward direction into a

combination of modes, and that can prevent a single mode in the backwards direction

from continuing [127]. However, under time reversal, i.e. if the same combination of

modes, with the same amplitude and phase relation, travels backwards it will couple

back into the original mode.

As another example, the device presented in [128] uses the thermal shift intro-

duced in Chapter 2 to tune two resonators used as filters in resonance with each
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other. Light in the forward direction redshifts the resonance frequency of the input

resonator and matches it with the output one. Light from the output would shift

the output resonator away from the input one. Unfortunately, when the device is

open in the forward direction it also allows light to travel backwards making a very

poor isolator in real-life conditions as proven by [129].

4.0.3 Miniaturising isolators

Lorentz reciprocity can be broken by several effects, mainly magnetic field and non-

linearity. All these effects are neglected in the derivation of Lorentz reciprocity from

the Maxwell equations, hence if one of them is introduced the theorem does not hold

any more [126].

Integrating the Faraday effect

At a closer look, the situation is not so dramatic for miniaturised Faraday isolators.

To begin with, moving from free space propagation to waveguides confines the light

in a much thinner region hence the magnetic field source can be moved closer to

the light [130, 131]. A common solution is also to increase the path length of

light in the magnetic field by folding the optical path or using a resonator [132,

133, 134]. Also, electromagnets become a viable source of magnetic field given the

very confined region [135, 134]. The drawback of these solutions is that integrating

magnetic materials requires complex fabrication processes. Alternatively, in the

case of electromagnets, the integration is easily achieved with common fabrication

methods but the resulting device requires electrical power to work.

Nonlinearity

The magnetic field is not the only way to break the Lorentz nonreciprocity. The

derivation of the theorem is base on a linear response to the field so any kind of

directional nonlinearity can be exploited to realise an isolator. There are plenty of

methods to achieve nonlinearity, what follows is a non-exhaustive list of method that

proofed to be successful in the field of isolation. Second-harmonic generation (SHG)

[136] is a second-order nonlinearity while the Kerr nonlinearity is a third order one.

Optomechanichanical coupling is often nonlinear and several paths to non-reciprocal

light propagation have been demonstrated [137, 138, 139, 140, 141]. A similar
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approach can be found in [142, 143], but parity-time-symmetry is broken with the

use of gain and multiple resonators again forfeit the advantages of a passive device

and requiring a complex tuning of coupling between waveguides and resonators. To

mention a few other sources of nonlinear response, it is worth citing the introduction

of photonic bands [144, 145] or the use of stimulated Brillouin scattering [146, 147].

The microresonator approach

The proposed Kerr-induced nonreciprocity is a form of nonlinearity. In this specific

case, it is the resonance frequency difference between the two circulating directions

that depend on the circulating power in each direction. The following sections of

this chapter describe the theoretical model of a resonator coupled to two waveguides

and a simulation of the expected response of the microresonator-based isolator,

Particular focus will be on the optimisation of the isolation and the transmission

of the device. Then I report on the experimental setup used to test this idea and

discuss the results both for an isolator configuration and circulator configuration.

Finally, the integration aspects of this technology are considered and compared to

the alternatives highlighted above.

4.1 Coupling two fibres to a microresonator

To describe the coupling to the resonator in the case of two tapered fibres we need

to generalise the model described in Section 2.1.

This configuration is often called “add-drop” referring to the second taper that

is used to add a wave to the resonator or extract (drop) it from the resonator in a

single direction [66, 148, 149, 150]. I will use a different nomenclature since in this

case, the resonator receives inputs in both directions. The bottom fibre in Fig. 4.2

is the input taper since, without loss of generality, we can decide that the input

to the isolator is going to be port 1. The tapered fibre on the opposite side of

the resonator is consequently the output taper. Similarly to Chapters 2 and 3, the

coupling is treated linearly. The nonlinearity is added to the model as a resonance

frequency shift governed by the Kerr effect.

In Fig. 4.2 I am making the same assumption of t, k ∈ R. Also, I use the subscript

A for the coupling point with the input fibre and B for the coupling point with the

output fibre. The four ends of the fibres are called ports and they are numbered
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Figure 4.2: Schematic of the coupling region and the parameters
used to describe the coupling of a resonator to a tapered fibre. In this
chapter the input port will be the one in the bottom left of the figure.

as shown in Fig. 4.2. Port 1 is used as the input and port 2 is the output of the

isolator, hence we expect optical power travelling in both directions through these

ports. Ports 3 and 4 are not used in the isolator configuration so optical power will

only leave the setup through these ports.

In this chapter, I use α2 as the round trip transmission instead of α as used in

Section 2.1. This allows a cleaner derivation with fewer square roots appearing. Let

us first focus on the transmission in the forward direction (CCW in Fig. 4.2). The

input is just at port 1 and no other light enters the setup at the moment. The field

circulating inside the resonator in the steady-state can be described as the field that

survives inside the resonator after a round trip, with its accumulated phase, plus

the field that is added through the coupling point A.

E4 = E4 · α2tAtB e
jθ − kA −→ E4 =

−kA
1− α2tAtB ejθ

(4.2)

E3 =
−kAα ejφ

1− α2tAtB ejθ
(4.3)

E2 =
−kAαtB ejφ

1− α2tAtB ejθ
(4.4)

E1 =
−kAα2tB e

jθ

1− α2tAtB ejθ
(4.5)

All the fields are normalised to the input field Ẽ1 = 1. The field that leaves the

resonator at port 2 can be described following all the losses and phase accumulation

that the intracavity field E4 encounters before exiting the resonator:
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Ẽ2 = E4 · αkBejφ =
−kAkBejφ

1− α2tAtBejθ
(4.6)

Where φ is the phase accumulated from the coupling point A to B. This quantity

is crucial if other electric fields with frequencies similar to the input one are reaching

port 2 in the same direction but in this specific case, it is not really important. We

can get rid of it by calculating the transmitted power from port 1 to 2. Also, let

us remember the small angle approximation cos θ = 1 − θ2/2, as introduced in

Section 2.1.1 and the following approximation:

∣∣1−B · ejθ∣∣2 = 1+B2−2B cos θ ' 1+B2−2B(1− θ
2

2
) = (1−B)2 +Bθ2, B ∈ R

(4.7)

P̃2 =
∣∣∣Ẽ2

∣∣∣2 =
α2k2

Ak
2
B

(1− α2tAtB)2 + α2tAtBθ2
(4.8)

As expected it is easy to see that the transmission T is maximised for θ = 0

which is the resonance condition. In this case the transmitted power can be written

as:

P̃2,res =
α2k2

Ak
2
B

(1− α2tAtB)2
= T (4.9)

We can express the transmission by substituting the definitions of κA, κB, γ0

from Eqs. (2.45) and (2.47) as:

T =
4κAκB

(γ0 + κA + κB)2
(4.10)

Remember that in this chapter the resonator transmission for the electric field

in one round trip is α2 so Eq. (2.46) now yields:

γ0 =
( c

πdn

) 1− α2

α
(4.11)

Let us keep the assumption of resonance in the forward direction for the rest of this

analysis. This is justified by the fact that we want to operate the resonator in a

condition of high transmission. The thermal locking will maintain this condition

and compensate for small resonance shifts.
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As previously done in Chapter 2, I will define the coupling efficiency for both

coupling point. But in this case I will make a distinction between coupling light

into the resonator and out of it. This allows me to split the transmission into

two quantities, namely the in-coupling ηin and out-coupling efficiency ηout. The in-

coupling efficiency is defined in analogy with Eq. (2.51) as the fraction of the input

power that does not continue straight through the input taper but is instead coupled

into the resonator at resonance:

ηin,A =
P1,in − P2,out

P1,in

(4.12)

We can write this as 1−
∣∣∣Ẽ4

∣∣∣2, since we normalised Ẽ1,in = 1, obtaining:

ηin,A =
k2
A (1− α4t2B)

(1− α2tAtB)2 (4.13)

We can express this in the linewidth notation again in the analogy with Chapter 2

by substituting the intrinsic linewidth of the resonator with the combined linewidth

of the resonator and the output taper

ηin,A =
4κA(γ0 + κB)

(γ0 + κA + κB)2 (4.14)

These two expressions are not exactly the same but they converge in the limit of

high Q resonators (α, t→ 1) as shown in Fig. 4.3.

We define the out-coupling efficiency such that T = ηin,Aηout,B = ηin,Bηout,A. In

other words, the out-coupling efficiency is the fraction of power coupled into the

resonator that leaves the resonator on the other side.

ηout =
|Ẽ2|2

1− |Ẽ4|2
, (4.15)

where the normalisation ˜E1,in = 1 is still in place, |Ẽ2|2 is described in Eq. (4.9) and

we just need to square Ẽ4 defined in Eq. (4.27). Wrangling the maths a bit, all the

contributions from the coupling point A cancel out and we find:

ηout =
k2
Bα

2

1− α4t2B
(4.16)
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Or, in the linewidth notation:

ηout =
κB

γ0 + κB
(4.17)

Again, the two definitions converge in the limit α, t→ 1, however the transmission T

consisting of the product of the two coupling efficiencies is exactly the same in both

cases for every value of the parameters. Figure 4.3 shows a comparison between the

exact picture and the approximation of the measurable parameters.

0.0 0.2 0.4 0.6 0.8 1.0
tB

0.0

0.2

0.4

0.6

0.8

1.0

ou
t,

B

(a)

Exact
approximation

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

in
,A

(b)Exact
approximation

Figure 4.3: (a) Plot of ηout,B as a function of tB for the value
of α = 0.95. (b) Plot of ηin,A as a function of α for tA = 0.9 and
tA = 0.97. The exact value from the alpha model is plotted in blue,
the approximated model is in orange. Note that the two models diverge
just when one of tA, tB, α are significantly less than 1.

Note how the two models diverge only when the parameters significantly differ

from 1, but let us remember that for the resonators used in this thesis α is of the

order of 0.9999 or (1−10−4) and tA, tB are of similar magnitude. Indeed, to highlight

the differences, the graphs are plotted for an unrealistically low Q-factor resonator

in (a) or unrealistically strong coupling (b). Note that in panel (b) the incoupling

efficiency reaches 1 when the condition of critical coupling (Eq. (4.28)) is achieved

and is less than 1 otherwise.

Introducing reflected light

So far our isolator model has had an easy life: no light is coming back from port 2 in

the attempt to damage or just perturb the fragile laser connected to port 1. Let us

now introduce a reflection at port 2 to test the isolation of the device. We will work

under the assumption that the reflected light has an intensity always lower than or

equal to the output. This is an important difference compared to the other kinds of

isolators as discussed later.
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To describe the light propagation in the backwards direction we will use the

coupling efficiency picture because it is easier to relate to the experimental measures

Let me recall Eq. (3.30) describing the Kerr induced symmetry breaking but this

time I am keeping the coupling efficiency explicit since I am going to use it in the

model. The light circulating in the resonator can be expressed as:

pCCW =
ηin
A p̃CCW

1 + (δ + pCCW + 2pCW)2 (4.18)

pCW =
ηin
B p̃CW

1 + (δ + pCW + 2pCCW)2 (4.19)

Where ηin
A is defined in Eq. (4.14), δ is the laser detuning from the resonance ∆

normalised as usual by the half linewidth γ, pCCW and pCW are the coupled powers

in each direction normalised as

p =
2π

F
Pcirc

P0

, (4.20)

and the input powers into port 1 and 2 respectively are now normalised just by the

characteristic power,

p̃ =
P̃

P0

, (4.21)

. while the appropriate ηin for each direction is explicitly written in the equation.

We can assume that the cavity is locked in resonance in the forward direction by

the thermal effect (δ = −pCCW − 2pCW) hence the equations above become:

pCCW = ηin
A p̃CCW (4.22)

pCW =
ηin
B p̃CW

1 + (pCCW − pCW)2 (4.23)

So far we assumed ideal optical fibres. However, to use this model to fit ex-

perimental data, we need to account for the losses of the tapered fibres and the

amount of reflections at port 2. We define the power transmission of each tapered

fibre as T 2
A,B, i.e. we will assume that each half of the fibre has a transmission TA,B.

Introducing this in Eqs. (4.22) and (4.23):

pout
CCW = ηout

B TBpCCW = TATBη
in
Aη

out
B pin

CCW (4.24)
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Defining the reflections in the same linear polarisation at the output port as R, the

power circulating in the CW direction is:

pCW = pout
CCW RTB

ηin
B

1 + (pCCW − pCW)2 (4.25)

This a cubic equation in pCW that has an analytical solution, however the explicit

expression easily fills half a page, so we will keep it implicit. The power reaching

back to port 1 is:

pback
CCW = ηout

A TA × pCW (4.26)

4.2 Isolator

We now have all the elements to describe the isolator. Before moving to the exper-

iment let me discuss what are the coupling parameters to extract the best perfor-

mances from this device and why there is a trade-off between isolation and insertion

losses.

4.2.1 Optimising the parameters

Let us now focus on optimising the isolator characteristics, specifically the trans-

mission in the forward direction and the extinction, or isolation, in the backwards

direction. First, we will focus on maximising the transmission through the resonator.

We already discussed tuning the laser to the resonant condition, a further step is to

ensure critical coupling at the input. To calculate this condition we require no power

to be transmitted to port 4. The field at port 4 is the field transmitted through

the taper plus the field leaking from the resonator (that has the opposite phase at

resonance, represented by the minus sign that naturally arises from the model):

Ẽ,out = tA + E1kA = tA + E4α
2tBkA = tA −

−k2
Aα

2tB
1− α2tAtB

=
tA − α2tB
1− α2tAtB

(4.27)

So the condition for critical coupling at the input of the resonator is:

tA = α2tB (4.28)
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This is analogous to the condition found for a single taper: the coupling losses should

match the losses in the rest of the resonator. From the point of view A, it makes no

difference if the losses come from the intrinsic losses or from an additional coupling

point. Let us rewrite the transmitted power under this condition.

P̃2,res,crit =
α2k2

B

1− α4t2B
=
α2(1− t2B)

1− α4t2B
=

α2k2
B

1− α4(1− k2
B)

(4.29)

From the plot of this equation in Fig. 4.4 we can see that for kB = 0, obviously

no power is coupled out of the resonator. The maximum transmission is achieved for

kB = 1 which corresponds to coupling everything out the resonator and it is limited

by the power transmission of half resonator α2. Unfortunately this second condition

is also unreasonable: given the condition of critical coupling at the input, choosing

kB = 1 also implies kA = 1. This represents more a fibre bent back than something

deserving the name of resonator. This is especially true for a nonlinear isolator that

requires a high intensity to work at its best. Let’s consider the intracavity power.

For α, tA, tB ∼ 1 the power is roughly the same in any point of the resonator. If the

round trip losses or coupling losses are significant the power will be different in the

various point. We can arbitrarily take the already calculated E1 that corresponds to

the point of lowest power in the CCW direction since the circulating field experienced

all the losses and has yet to reach the coupling point where more power is added.

P1,res =
α4k2

At
2
B

(1− α2tBtA)2
(4.30)

For critical coupling at the input this becomes:

P1,res,crit =
α4t2B

1− α4t2B
(4.31)

As we suspected this value miserably falls to 0 for the ideal transmission case.

Instead, it shoots up to a maximum of:

max (P1,res,crit) = P1,res,crit

∣∣∣∣
kB=0

=
α4

1− α4
(4.32)

but this value corresponds to removing the second taper, so again not very useful.

Figure Fig. 4.4 shows the intracavity power and the transmitted power as a

function of the coupling kB. The two extremes are unrealistic for a practical device,
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Figure 4.4: Plot of the circulating power P1 in blue and the trans-
mitted power P̃2,out in orange, for the conditions of resonance and
critical coupling at the input κA = γ0 +κB and for resonator losses of
α = 0.95.

but there is space for compromise especially for α ∼ 1 i.e. high Q-factor resonators.

The other key parameter is the isolation. In our configuration we can define it as

the amount of power emitted by the laser that reaches back into the laser itself:

I =
Pback

Pin,ccw

(4.33)

The isolation I can be calculated by using Eq. (4.26) for the power returning back

into the isolator. A mathematical analysis of this parameter would require solving

Eq. (4.26), however, we can provide some physical considerations on how to maximise

isolation. The transmission through the resonator T = ηin
Aη

out
B appears twice in the

equations, together with the fibre losses and the reflections at the output: all these

parameters contribute to reducing the power going back to the laser but also reducing

the power reaching the output. Hence we would like this to stay as low as possible

for a real-life application. The important contribution is the power circulating in

each direction in the denominator of Eq. (4.25). This describes the Kerr resonance

splitting between the two directions that is the foundation of this approach. To

increase isolation we would like to maximise the circulating power in the forward

direction PCCW and minimise the one in the backwards direction PCW.

The tunable parameters are the incoupling efficiency, that can be measured

through the photodiode at the end of the first fibre; the outcoupling efficiency,

that can be measured from T at the transmission photodiode, and ηin
A .
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Figure 4.5: (a) Simulation of the transmission through the isolator
in the condition of equal coupling (yellow) and critical coupling at the
input (red) (higher is better). All the coupling strengths are normalised
to γ0 = 1. (b-c) Return power to the input and isolation as a function
of the input power for different transmissions (lower is better). The
continuous curves are obtained for T = 25 % → κA = 4

3
, κB = 1

3
;

T = 50 % → κA = 2, κB = 1; T = 75 % → κA = 4, κB = 3. The
dotted line represents T = 50 % with equal coupling (κA = κB = 1.21).
The dashed line represents T = 50 % with critical coupling at the
output (κB = 2, κA = 1).

In Fig. 4.5 (a) we analyse the transmission as a function of the coupling constants.

The coupling linewidth κA and κB, are expressed in units of γ0. Also, instead of

considering the two variables κA and κB independently we impose two different

conditions between them and vary independently only κB. The case of equal coupling

on both sides is plotted in yellow and the case of critical coupling on the input side is

plotted in red. As discussed above, we can see that for low coupling the transmission

is really low. The two curves differ in this region because in the yellow curve both

κ become small, while in the red curve κA never goes below γ0. As discussed before

the best transmission is achieved for κA and κB of the order of the intrinsic linewidth

or greater. However, high coupling reduces the loaded Q-factor and the circulating

power hence the isolation.

Figure 4.5 (b) shows the power returning to the laser as a function of the input

power for 3 values of transmission highlighted in panel (a). The input power is

normalised to the value of P0 for the resonator with no coupling3 and perfect fibres

and mirrors are assumed. It is interesting to note how different values of the two

coupling constants make it possible to achieve the same transmission but produce

different values of isolation. All the blue curves correspond to a transmission of 50 %

but they are obtained with different combinations of coupling. The continuous lines

3The expression of P0 depends on the loaded Q, therefore it changes with changing coupling
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correspond to critical coupling at the input:

κA = γ0 + κB, κB = γ0 (4.34)

where all the power is transferred into the resonator in the desired direction while

the output is under-coupled. This means out-coupling less light to the output, but

at the same time maintaining more power circulating in the resonator that splits

the resonances more and produces better isolation.

The dashed line is for critical coupling at the output:

κA = γ0, κB = γ0 + κA (4.35)

An under-coupling of the resonator on the input side means that less of the forward

direction light, the one responsible for splitting the resonances is coupled into the

resonator. The isolation kicks in at higher power and consequently, the maximum

power reaching the input is higher.

The dotted line represents the case of equal coupling on both sides:

κA = κB = 1.21 γ0 (4.36)

This configuration is not as good as critical coupling at the input.

The same data are presented in panel (c) that shows the isolation. It is clearer

how at low power, well below P0, the only isolation is provided by the losses through

the resonator. For powers above P0 instead the Kerr non-reciprocity kicks in and

the isolation improves with the input power.

Panels (b,c) also show that the threshold power at which the isolator starts

working is higher for higher transmission. This arises from the equations and can

be intuitively explained in two ways. The increased coupling lowers the loaded Q-

factor the increase the characteristic power to observe symmetry breaking effects

(cf. Eqs. (3.24) and (3.26)). Alternatively, the linewidth of the resonator is larger,

thus a larger Kerr shift is needed to remove the overlap between the two and larger

Kerr shift requires more circulating power. Again the trade-off situation between

isolation and transmission is highlighted.

Figure 4.5 and Eqs. (4.29) and (4.33) also give a general rule that, for equal

transmission, is better to have more coupling at the input and less coupling at the
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output to achieve better isolation. The actual optimal value for isolation for each

transmission value is not exactly critical coupling at the input. However, numerical

calculations show that only a marginal gain in isolation can be obtained, and this

small improvement requires a control of the coupling parameters that is beyond

the experimental accuracy. Hence, the condition in Eq. (4.34) represents a simple

approximation that is still valid.

4.2.2 Methods

The experimental demonstration of non-reciprocal light propagation was realised

one year later than the symmetry breaking. Initially, I was able to fabricate mi-

croresonators reaching Q-factors of the order of 108 just for diameter larger than 2

or 3 mm. In the meantime, the fabrication of silica-rods resonators has improved:

at the time of this experiment I had increased the Q-factor 2 fold and extended the

diameter range in which that Q-factor is achieved, down to 0.5 mm. However, for

this experiment the diameter is limited by the need to couple two tapered fibres

simultaneously hence a 1 mm diameter resonator is used with an intrinsic Q-factor

of 1.5× 108.

The optical setup is shown in Fig. 4.6. The input laser was an amplified ECDL

Laser

Beam block

Mirror 
 

Transmission PD

Return PD
Input PD

Oscilloscope

Circ

 
resonator

Micro-

Attenuator

Figure 4.6: Optical setup for the isolator experiment. Adapted from
[51].

emitting at 1550 nm. An attenuator allowed testing the isolator at different input

powers avoiding changes in the current of the laser amplifier, that may cause a

slow polarisation drift of the amplifier itself. The light that would go back into the

laser was redirected to a photodiode labelled as “return” by an optical circulator to

measure the return power P back. The input photodiode at the other end of the input

taper was used to measure the incoupling efficiency ηin and to tune the laser near

the resonance frequency where the passive thermal locking stabilised the resonator.
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At the output of the other tapered fibre, a directional coupler sampled 1 % of the

light to be measured by the transmission photodiode while most of the power was

back-reflected by a fibre mirror. The two polarization controllers in the setup were

used to maximise the transmission and the return through the resonator.

This configuration is designed to test the worst-case scenario for an isolator.

First, there is an almost complete reflection on the output branch of our isolator;

the exact reflection value cannot be measured directly without adding the additional

losses of a circulator but it can be estimated around 95 % in power, since the di-

rectional coupler taps 1 % two times and the optical losses of the other components

sum up to a few percent. Also, the polarisation of the reflected light matches the

one of the resonator since the output polarizer is adjusted to maximise the power

on the return photodiode.

Photodiode calibration and error

Most of the results of this experiment are ratios between powers measured by dif-

ferent photodiodes, hence their calibration becomes important. The photodiodes

are assumed to have a linear response, i.e. they output a voltage proportional to

the power they are illuminated with, however, the constant of proportionality is

different for each photodiode.

I calibrated the photodiodes by setting the amplifier to different currents, mea-

suring the voltages on the photodiodes and then disconnecting the fibre from the

photodiode and measuring the power with a power meter (Thorlabs PM20CH). The

photodiodes used in the experiment are free space photodiodes with an FC-APC

adapter. The sensitive area is very small, less than 1 mm2 to maintain a high band-

width, hence every time the fibre is disconnected and reconnected to the photodiode

the sensitivity (V/W) is slightly different. Also, the photodiodes are working in a

high dynamic range and the electrical noise affects the measurement, in particular

at low power. The error on the measures is estimated as 10 % + 0.1 mW4 and it is

propagated linearly.

4The photodiodes are connected to the setup via 20 dB attenuators. Since the output of a
photodiodes is 1 V per 100 µW, hence a 10 mV noise corresponds to 0.1 mW.
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Fitting the data

The experimental data are fitted with the theory developed in Section 4.1. It is

useful to rearrange the expression for the characteristic power P0 (cf. Eqs. (3.24)

and (3.26)) such that all the variables that cannot be measured accurately are iso-

lated in a parameter C.

P0 =
π2n2

0dAeff

n2λQLQ0

=
C

λQLQ0

where C =
π2n2

0dAeff

n2

(4.37)

By doing so I can use C as a fitting parameter for our model using an estimate as

starting point.

The other parameters used in the fit are the coupling and intrinsic linewidth (κA,

κB and γ0), and the transmission of the two tapered fibres (TA and TB). γ0 and the

intrinsic Q-factor are measured by removing both tapered fibres from the resonator

and then placing just one taper in a very undercoupled condition so that Q ' Q0 and

γ ' γ0. κA is derived from the measure of ηin,A using the input photodiode, while

κB is calculated from the transmission. The transmission of the tapered fibres is

measured with a power meter independently. Apart from C that is not constrained,

all the other parameters are left free to change in a small range around the measured

value.

All the three parameters shown in Fig. 4.7 (a,b) are fitted simultaneously, Mean-

ing that the fit parameters are the same for all the 3 curves and the fitting algorithm

attempts to minimise the sum of the three χ2.

4.2.3 Results and discussion

Figure 4.7(a) is measured by setting different power inputs to the isolator, scanning

the laser frequency across the resonance and sampling the voltage of all the pho-

todiodes at the moment of resonance. The working condition of the isolator would

be different, with the resonator locked to the laser thanks to the thermal effect.

This measurement technique removes the uncertainty due to the fluctuation of the

locking point.

The return power for varying input powers is plotted in Fig. 4.7(a). It is clear

how, at low power, the return power increases linearly, but as the power approaches

10 mW the line starts to bend down. Above 25 mW the light returning to the laser
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Figure 4.7: Characterisation of the isolator. The data-points and
error-bars are from the experimental measurements while the line is
the theoretical fit. (a) Power measured at the return photodiode as
a function of the input power. Note how for increasing input power,
the return power actually decreases. (b) Isolation improves with the
input power while insertion loss is roughly constant. (c) The isolation
fitted with our model and the extension to different materials with the
parameters found in the literature. Adapted from [51].

decreases as the input power increases.

Two parameters generally characterise isolators: insertion losses L and isolation

I. The insertion losses are what we so fare called transmission T , defined as:

T =
Pout

Pin

(4.38)

Where in this case Pout is the output power at port 2 and Pin is the input power at

port 1. T is always a negative number, usually expressed in dB. Since the - sign is

implicit, it is often dropped and this number is called insertion losses.

The other key parameter is the isolation that I defined as:

I =
Pback

Pin

(4.39)

where Pback is the power going back into port 1 after being reflected by the mirror.

These two quantities are shown in Fig. 4.7(b) together with a theoretical fit that

works on both the dataset using P0 and the coupling efficiencies as fitting parameters.

The fit in Fig. 4.7 provides the following results. The transmission of the tapered

fibres are T 2
A = 90 % and T 2

B = 95 %. The reflectivity of the mirror is R = 95 %.

The intrinsic linewidth of the resonator is 2γ0 = 4 MHz corresponding to Q0 =

1.5× 108. The incoupling efficiency ηin = 0.363 and the transmission is T = 0.346.

Unfortunately, the similarity between incoupling and transmission was not spotted
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at the time of measurements but only when the setup was not available anymore for

further measurements. The fact that almost all the power that enters the resonator

leaves it on the other side is an indicator of strong overcoupling at the output.

Indeed the calculated value for the outcoupling linewidth is κB = 85 MHz = 21γ0

with an incoupling linewidth of just κA = 10 MHz = 2.5γ0. This results in the

output coupling reducing the effective Q factor to QL = 6 × 106 corresponding to

a characteristic power of P0 = 5.35 mW. Since the input is not critically coupled,

part of the light continues in the input fibre instead on coupling into the resonator

and it is wasted. Hence, the insertion losses are a non-exciting 5 dB.

Despite this measurement not representing the best performance possible for the

rod resonator used, the achieved isolation was in excess of 24 dB at 125 mW input

power. This value is comparable with the commercially available isolators based on

the faraday effect. As an example the Thorlabs isolator IO-H-1550 is rated for an

isolation of 29 dB.

4.2.4 Simulations for other materials

The isolation performances do not depend only on choice of coupling but also from

the resonator material and platform. To demonstrate how the isolator would perform

in different materials I used the same parameter from the fit above, including the

poor choice of coupling parameters but changed the characteristics of the resonator

as per Table 4.1. These data are extracted from recent literature on each platform.

I used a default mode area Aeff = 4 µm2 since it is a parameter rarely specified in

the literature, and a diameter of 100µm to even out the comparison. The results of

Table 4.1: Parameters used to calculate how different materials and
platforms would perform as isolators

Material Aeff n [151] n2 Q0

SiO2 rod 10µm2 1.444 [115] 2.7× 10−16 cm2/W [37] 1.5× 108

SiO2 4 µm2 1.444 [115] 2.7× 10−16 cm2/W [37] 5× 108

Si3N4 [92] 4 µm2 2.463 [152] 2.4× 10−15 cm2/W 5× 107 [92]
CaF2 [153] 4µm2 1.426 [117] 1.9× 10−16 cm2/W 1× 109 [72]
MgF2 [31] 4 µm2 1.37 [116] 9× 10−17 cm2/W 1× 109 [112]

these simulations are plotted in Fig. 4.7(c) together with the data points measured

in my proof of principle experiment. Note that the x scale is now logarithmic since

the fluorides, having such a high Q-factor, show threshold powers of the order of
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10µW. This is to be expected since the isolation threshold is proportional to P0 so

it scales as Q−2
0 . However, it is not only the Q factor that improves the isolation.

as an example Si3N4 resonators still see a ten-fold improvement in the isolation

threshold compared to the silica rod despite their lower Q. This is because they

have a smaller mode area and a higher nonlinear refractive index n2. The isolation

for power below the threshold power and the transmission for any power do not

depend on the resonator characteristic but only on the coupling.

4.3 Circulator

In the configuration used so far, the light reflected at port 2 is mainly continuing

straight through the tapered fibre to port 3 where is absorbed by a beam dump.

This light can still transport useful information depending on what it is connected

to port 2. So, instead of operating the microresonator as a simple isolator, I can

measure the output from port 3 to access the reflection from port 2, making the

device behave like a circulator.

For the device to work, the microresonator has to be polarized in one direction

so the condition requested for the isolator is still valid: the input power at port 1

has to be higher than the input at port 2 at all times.

4.3.1 Methods

Figure 4.8 (a) shows a simplified scheme of the setup used to test this application.

The setup is similar to the one used for the isolator with two main alterations. First,

the amplified ECDL laser is now split by a 7 db directional coupler into two branches.

The higher power branch is connected to port 1 representing the input laser, the

lower power branch is instead connected to port 2 instead of the fibre mirror. Second,

the beam dump at port 3 has been replaced with an additional photodiode (with

appropriate attenuation to avoid saturation) to measure the transmission between

ports 2→ 3.

4.3.2 Results and discussion

Figure 4.8 (a) shows the response of the circulator as a function of the laser frequency.

The origin of the frequency axis is set to the cold cavity resonance where there is no
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Figure 4.8: (a) Scheme and simplified setup of the circulator con-
figuration. (b) Measurement of transmission through different ports
of the circulator as a function of the frequency of the laser. The ideal
working point for the circulator is at the resonance point on the right
of the graph corresponding to a detuning of −1.2 GHz from the cold
resonance. Adapted from [51].

thermal or Kerr shift. In this case, the measurement is performed at a single value of

input power to show the response of the device to different input frequencies. Each

of the measurements in Fig. 4.7 in the isolator section corresponds to the values of

transmission and isolation at the peak of the yellow trace.

The yellow trace represents the transmission in the forward direction between

ports 1 → 2 calculated as the ratio between the output power at port 2 and the

input power at port 1. In this experiment, the coupling is optimised for critical

coupling at the input and 50 % transmission as in the blue trace in Fig. 4.5. The

transmission increases as the laser gets closer to resonance up to about the desired

value in resonance, reaching −3.3 dB.

The red trace represents the transmission in the backwards direction between

ports 2 → 1 calculated as the ratio between the output power at port 1 and the

input power at port 2. After an initial increase, when small light intensity is coupled

to the resonator due to the detuning, the transmission remains flat and instead

decreases when the laser approaches resonance reaching an isolation of over 19 dB.

The green trace represents the forward transmission of the output tapered fibre

2 → 3 that is almost constant at 1. At a closer look, there is a reduction in T23

when the laser is not yet resonant and the circulating light is not splitting the two

resonances enough to prevent light from coupling backwards into the resonator; but

as soon as the forward circulating power increases, no light can couple into the

resonator from port 2 and T23 goes back to unitary values.
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The noise on T23 appears to be somehow proportional to T12. I interpret it as

the interference between the light input at port 2 and the backscattering of the

transmitted light either at the coupling point or at some fibre connection in the

port 2 branches. These two waves propagate in the same direction and have the

same frequency but they travel through different paths with different lengths, hence

their relative phase changes with the frequency scan. The resulting interference goes

from constructive to destructive several times during the scan and the amplitude of

this pattern can be used to measure an unwanted transmission from port 1 to port

3 of −33 dB.

Throughout the chapter, we assumed that the resonator is held in resonance

by the thermal locking. Figure 4.8 (b) shows that even if the laser is slightly blue

detuned from the resonance, the performances are not affected in a significant way.

In a small region to the left of the resonance T23 and T21 are roughly constant; only

T12 decreases linearly.

One could be tempted to make a further extension to the number of ports. In

principle any input into port 3 at the laser frequency will couple into the resonator

because it is in the CCW direction and reach port 4, such as any input from port

4 will be off-resonance and continue through the tapered fibre to port 1. In theory,

the device could be used as a four-port circulator. This is indeed possible, but the

performances of the device will not be as good as for 3 ports for several reasons.

It is far more difficult to guarantee isolation through a taper than through the

resonator. In order to remove all the light from the taper, the resonator has to be

perfectly resonant with that light frequency and there needs to be critical coupling.

We already discussed how it is impossible to critically couple on both sides of the

resonator unless both sides are strongly overcoupled. But overcoupling will reduce

the circulating light intensity, hence the Kerr splitting, hence the isolation through

the resonator. Finally, there will be interference between light coming from different

paths that may be undesirable.

4.4 Conclusions

In this chapter, I described that it is possible to use the Kerr effect in a ring resonator

to enforce non-reciprocal light propagation and realise an isolator or circulator. At

low power, the device just works as a resonant attenuator since the transmission T
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is symmetrical under direction reversal A↔ B but as the power increases, the Kerr

nonlinearity kicks in and the device turns non-reciprocal.

The power at which this happens is of the order of 10 mW in the proof of principle

experiment reported but this can be lowered by several orders of magnitude by

utilising integrated resonators and different materials. The main limitation is the

requirement that the input light has to be always at a higher power that the return

light at the power on. During operation it is enough that the coupled power in the

forward direction stays higher than in the backwards direction. This is usually the

case in the applications requiring an isolator. As an example the microring isolator

could replace the electrically controlled microring filters in [154].

In terms of integration, the device does not present particular challenges since it

is composed simply by two waveguides coupled to a ring resonator. The main chal-

lenge is obtaining high Q-factor resonators and the control of the coupling strength

between the resonator and the waveguides. Otherwise, this approach has none of

the disadvantages of active devices that are important to consider for integration.

The energy consumption is often not their main drawback because the power re-

quirements are, in most cases, negligible compared to the rest of the system where

the nonreciprocity is used. However, distributing energy to the device increases

the fabrication complexity in case of electricity or requires additional light sources

in case of optical energy. Thermal dissipation is an additional problem, especially

when the temperature may produce unwanted effects such as changes in resonance

frequencies. In the case of thermal locking instead, the temperature change is part

of a negative feedback loop that extends the operating range of the device in the

presence of laser frequency drift.

A final advantage over most of the competing technologies, including the Fara-

day isolator, is that the device presented here works at any wavelength in the trans-

parency range of the material used to fabricate it; in the case of fused silica this

range spans from 300 nm to 2µm. The laser just needs to be operated in the vicinity

of a resonance to exploit thermal locking.
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Chapter 5

All-optical memory and switching

dynamics

5.1 Introduction

In the previous chapter, we discussed how the Kerr effect allows light to travel in the

microresonator just in one direction and how this can be used to realise an isolator.

In the context of the isolator, we required a condition: the input laser has to be the

highest power reaching the resonator1. But what happens when the input power

change while the resonator is in the symmetry broken region? In the isolator and

circulator, I avoided a detailed study of this phenomenon since it is not necessary as

long as we are dealing with passive linear devices. But let us now focus our attention

to the case when the input power coming from the two opposite directions swings

significantly.

I show in this chapter that by changing the inputs it is possible to switch the

circulating direction of light in the resonator. If the laser is scanned across the

resonance, with the same laser frequency in both directions, the dominating power

at the point of symmetry breaking (let us call this direction A) is the one that will

be coupled into the resonator. If the laser detuning is held in the symmetry broken

region and the power in the initially weaker direction (called B) is increased to be

equal to the other one nothing will change. But what happens when B overcomes

A?

1In practice this condition is required only at the power on of the laser, then the precise
requirement is that the circulating power in the forward direction has to be higher than in the
backwards direction.
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Initially, nothing will change because the higher input B sees just the tail of the

resonance that has been Kerr-shifted by A, hence the circulating power for B will

stay smaller than A for a while. Eventually though, the power arriving in the B

direction will start pushing A out of resonance until the cascade effect described

in Chapter 3 takes place and B becomes the dominating direction in the resonator

and A is out of resonance because of the Kerr effect. At this point, the roles are

swapped. If A is brought back to equal or slightly higher than B, it will not couple

into the resonator. Only if A overcomes B by a sufficient amount, the circulating

direction will switch again.

This particular behaviour is called hysteresis, i.e. the tendency of the system

to remain in one of the two symmetry broken states. Hysteresis is an important

property for a digital device since it is one of the ways of achieving noise resilience.

Fluctuations of input powers or detuning cannot make the resonator switch the

circulation direction, only considerable input imbalances can change the state of the

system.

In this chapter, I introduce a dynamic model for the Kerr effect suitable for

describing the switching process. I also discuss how to numerically integrate the

model in order to generate simulations. I then describe the setup used to measure

these dynamics and compare the results with the simulations. Finally, I discuss

possible applications of this bistable behaviour to several digital devices with some

examples of implementation.

5.2 Theory

The coupled equations presented in Eq. (3.30) describe the steady-state. How is it

possible to extend the theory to describe the dynamics of the system? We need an

equation that has the same steady-state as Eq. (3.31). But how to formulate it?

Some of the research on microresonators explores the generation of frequency

combs or the generation of different wavelengths from the pump via four-wave mixing

(FWM), another phenomenon related to the third-order nonlinearity χ(3). In the

context of this thesis, I actively avoid FWM by keeping the power not much higher

than Pth and using resonators with the unfavourable geometrical dispersion such

that FWM is suppressed for intermediate power. If some hints of FWM appear in

the measurement, I check the transmission spectrum of the resonator with an optical

145



spectrum analyser (OSA) to verify if that is the case. FWM can be described, in a

quantum approach, as the annihilation of two photons to generate two other photons

at a different wavelength from the original ones. To obey energy conservation the

mean frequency must be conserved and, because of momentum conservation, also

the wavevector must be conserved, hence the dispersion has to be appropriate. In

other words, the modes of the resonator have to be spaced correctly to be resonant

with the new frequencies generated.

In the time domain this effect can be described by a driven damped nonlinear

Schrödinger equation (NLSE), the Lugiato-Lefever equation (LLE) [32]:

ė = ẽ− [1 + iδ] e+ i|e|2e+ i∂2
τe (5.1)

Where ė represents the temporal derivative of the circulating field, ẽ is the input

field, the factor of 1 represent the normalised losses, δ is the detuning between the

input and the cavity resonance. |e|2 is the detuning induced by the Kerr effect and

the last part i∂2
τe is often called the fast time component, i.e. represents the dynam-

ics happening within a round trip. This last component is sometimes represented as

a spatial derivative instead of a time derivative since the two dimensions are related

by the speed of light in the medium.

This is a nonlinear equation, and it is complex-valued since the fields are repre-

sented in the complex notation. Without loss of generality we can take ẽ ∈ R and

the detuning δ is a real number.

The LLE has no analytical solution apart for specific assumptions or sets of

solutions. One of these sets describes the steady-states solutions where ė = 0. We

can separate two sub-sets: the patterns, where the solution is still dependent on the

fast time τ and describes a field pattern inside the resonator that circulates around

but is constant over time. The generation of frequency combs in microresonators

and the study of solitons are part of this set of solutions [155, 156, 157, 158].

In this thesis, I focus only on the case when the dynamics happen much slower

than the round trip time, in other words, the dynamics that take place over sev-

eral round trips where only infinitesimal variation of the field takes place during a

roundtrip time. Another subset of solutions called homogeneous steady-state (HSSs)

where also ∂τe = 0. This is the regime we discussed in the previous chapters.

Let us now focus on what happens when the fast time is still negligible (∂τe = 0)
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but there are still dynamics happening in the slow time (ė 6= 0). We also need

to consider that light also circulates in a second direction. We can implement this

by adding the subscripts 1, 2 with the notation that one equation is for the first

subscript and another one holds for the second subscript instead of writing explicitly

two coupled equations.

At this point in the thesis, you should be convinced that the contribution of the

cross-phase modulation between the two directions is twice as much as the self phase

modulation of the single direction. So we can add this to the equation as another

term (2|e2,1|2). To sum up, we can write:

ė1,2 = ẽ1,2 −
[
1 + i

(
|e1,2|2 + 2|e2,1|2 + δ

)]
e1,2 (5.2)

Note that setting the time derivative to zero and multiplying by the c.c. this equa-

tion, we find the Eq. (3.31) for the symmetry breaking.

It is also possible to build this equation from a different perspective, starting

with the case of a simple resonator that can store energy where the driving electric

field is resonant:

ė1,2 = ẽ1,2 − e1,2 (5.3)

In this case, it is clear than the circulating power is constant if the field entering

the cavity ẽ is equal to the one leaking out of the cavity e1,2 (note that in this

equation the losses are 1 for how e and δ are normalised). This is the simple case of

a resonator with a finite cavity lifetime adapting to the changes in the input. If we

add the detuning this corresponds to a de-phasing of the field in the resonator with

respect of the input that gives us the Lorentzian line-shape in the steady-state case.

ė1,2 = ẽ1,2 − e1,2 + iδe1,2 (5.4)

By introducing the Kerr effect as a power dependent detuning, we reconstruct

Eq. (5.2).
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5.3 Time-step simulation

In the end, only the comparison with experimental data can prove the correctness of

the model. But first, we need a way of integrating Eq. (5.2) to obtain the field as a

function of time. I will not attempt to solve this equation, as in the case of Chapter

3, despite the fact that the behaviour can be extracted analytically in specific cases

[159, 121, 122]. Instead, in this chapter, I will rely on finite element simulations.

A basic approach would be to just calculate the increment k as the time derivative

at any step multiplied by the time-step h and calculate the next step as the previous

one plus the increment.

e(t+ h) = e(t) + k; k = h ė(t) (5.5)

This method is known as “Forward Euler” and has the drawback of diverging from

the actual solution if this one has a constant sign second derivative. As an example,

let us assume that the solution has a positive second derivative. For every step the

first derivative calculation is performed at the beginning of the interval, hence the

actual step in the interval would be always greater than the calculated one, leading

to a divergence from the actual solution. This approach however just requires to

know the initial condition and the first-order time derivative function:

e(t = 0); ė(t, e) (5.6)

Even with just these informations, it is possible to get better results. To simulate

the time evolution of the fields I will use the Runge-Kutta[160] RK4 time-step

integration. It consists of evaluating the increment in 4 points:

k1 = h ė(tn, en) (5.7)

k2 = h ė(tn +
h

2
, en +

k1

2
)

k3 = h ė(tn +
h

2
, en +

k2

2
)

k4 = h ė(tn + h, en + k3)

And finally calculating the step as:
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e(t+ h) = e(t) +
k1 + 2 k2 + 2 k3 + k4

6
(5.8)

Looking at Eq. (5.7) we can see that k1 is the same as the increment typical of the

forward Euler method. However, three more increments are calculated: k2 and k3 are

evaluated in the middle on the interval and k4 is evaluated at the end of the interval.

Each calculation is based on the previous, this improves the accuracy but prevents

computational parallelisation of this method. The final increment is calculated in

Eq. (5.8) as a weighted average of the 4 increments with a bigger weight assigned

to the increments in the middle of the time-step. This approach prevents the drifts

from the real function of the simple forward Euler method without adding too much

computational effort. It also allows a longer time-step without compromising the

accuracy of the results.

I optimise the length of the time-step by reducing it until the reduction provides

no difference in the results. The most sensitive simulations are the ones at high

power that require from 20 to 50 steps per unit of time defined as the inverse of the

resonator half linewidth 1/γ. The simulations in this thesis are all performed with

100 steps per 1/γ as a margin of safety.

Initial conditions for the numerical integration

There are two approaches to finding the initial conditions. First, it is possible to

use the mathematical approach presented in Chapter 3 to obtain the initial power

if it corresponds to a steady-state. The main problem of this approach is that the

solution provides the power, i.e. the magnitude of the electric field but not the

phase, that matters for the simulation. Also, the mathematical approach produces

more than one solution if the parameters lie in the symmetry broken or multistable

region, including the unstable solutions, hence it is not always easy to identify the

solution of interest.

An alternative approach is to use the properties described in Section 3.2.3 to

set the fields close to the solution of interest and let the simulation evolve with

constant input fields until it stabilises. This simulation can be performed with

coarse discretization to reduce the computational effort. The steady-state is found

by checking the difference of the phase and amplitude of the circulating field between

an iteration and the next one. Once the difference is below an arbitrary threshold,
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I assume that the steady-state has been reached and I use it as the initial condition

of the time-dependent simulation.

What can be simulated

The main input parameter for this simulation is the forcing field ẽ and the laser

detuning δ as a function of time. These parameters can be provided as functions

of time or as a look-up table, allowing to simulate the response to any imaginable

input. A few examples include sudden changes in power or power ramps for constant

detuning while the laser frequency is scanned across the resonance. Also power,

frequency and phase noise can be added.

Thermal effects are generally not included in the model since they do not produce

any resonance frequency splitting. Still, they can be added to the simulation as a

power and time-dependent change in detuning. However, the difficulty in obtaining

realistic and accurate parameters for modelling the thermal effects, specifically the

thermal capacities and conductivities of the system, makes it very difficult to build

a reliable model.

5.4 Methods

The optical setup used to test the switching characteristics, shown in Fig. 5.1, is

an improved version of the one used in the first symmetry breaking experiment.

Light from an amplified external cavity diode laser (ECDL) laser is split equally

into two branches that are connected to the two ends of the resonator input taper.

There is, however, an extra component: since fast and accurate modulation of the

Figure 5.1: Scheme of the experimental setup used in the switching
experiment.

light is needed to test the time response of the resonator, an optical modulator is

150



implemented on each branch. Initially, an acousto-optic modulator (AOM) was used

but it was then replaced with an electro-optic modulator (EOM) for the reasons

discussed in the following session. After each EOM an optical isolator protects

the laser from return light, and a 20 dB directional coupler taps a small fraction

of the light in both directions to measure the light input on the branch and the

transmission from the other branch. The coupling setup used for the experiment

is the same as the isolator experiment that allows coupling a second taper. As I

will show in Section 5.5.3, this is not critical for the experiment but significantly

simplifies the data analysis and makes the results clearer.

5.4.1 Square waves: AOM vs EOM

One of the key requirements of this experiment is to generate sharp step changes

in the input power. Matching an ideal step function is necessary to observe the

pure response of the resonator instead of a convolution between the input signal

and the response. The timescale of the system response is the cavity lifetime of the

resonator. As a reference value a loaded Q-factor of 108 corresponds to a cavity

lifetime of τc = 165 ns (the definition of τc can be found in Section 5.5.2).

In considering the possible modulator I aim to have transitions much faster than

this timescale. Mechanical modulators such as shutters or choppers are excluded

because the typical transition time is orders of magnitude too long. As an example,

the Thorlabs SH05 shutter requires 750 µs to switch and the are no intermediate

levels between fully open and fully closed. Choppers are marginally faster but,

in addition, they impose limitations on the modulation waveform. MEMS-based

electronic variable attenuators such as the Thorlabs V1550PA provide intermediate

attenuation levels but the bandwidth is still limited to 1 kHz. Two devices can

provide a fast enough modulation: acousto-optic modulators (AOMs) and electro-

optic modulators (EOMs). Let us quickly analyse the differences between the two.

A telecom grade AOM has a modulation frequency in the range between 80 MHz

to 200 MHz. The switching time is not directly related to this frequency but it is

the time it takes the acoustic wave to travel across the laser beam and steer it to the

output fibre plus some transient for the wave to reach the final amplitude. I measured

this time in to be of the order of 30 ns in the AOM used in the experiment. However,

this fast transition covers only about 80% of the total response, the remaining 20%

151



is probably due to the AOM heating up because of the acoustic wave power being

dissipated in the device. This second part of the response is of the order of 3µs

thus too slow for our purpose. Another drawback of an AOM is the amount of

driving equipment needed. The AOM I used requires a high power RF input (2 W

at 200 MHz). To generate such a carrier I need an RF generator, a splitter and two

amplifiers. However, the generator cannot modulate the amplitude of the carrier RF

frequency fast enough, hence I used a mixer on each branch to modulate the carrier

(hence the AOM transmission) another 2 channel arbitrary waveform generator.

Such a complex system makes the troubleshooting of every issue relatively time-

consuming, involving a check of all the chain of components.

The other device considered for the modulation is an EOM. The EOM in its

simple form is a waveguide interferometer comprising electro-optic materials such

as LiNbO3, where the phase delay in one arm is controlled by the voltage applied

to the electro-optic material. Generally, the input losses are worse in an EOM than

in an AOM (-5 db vs -3 dB) but the driving electronics is just a voltage generator

connected to it and the switching is generally much faster. The EOMs used in the

setup take 8 ns to switch, just 3 ns slower than the transition of the signal generator,

probably because of an impedance mismatch between the two. This makes sense

given that the bandwidth of the EOM is 10 GHz. However, EOMs have a major

problem that is the reason why they were not used in the first place. The fast

response is only a third of the total response of the EOM followed by two thirds

that takes place in a few microseconds. The slow component of the response is

likely to be some spurious capacity of the EOM plates that slowly polarises the

electro-optic medium. But there is a way around this effect.

5.4.2 EOM overdrive

The slow charging affects the phase delay accumulated in the interferometer arm,

but this can be compensated by an additional voltage applied across the material. In

other words, it is possible to overdrive the EOM for the charge not yet accumulated

to change the transmission immediately to the final state and then lower the input

voltage gradually as the slow charging completes.

A first way of implementing this is to drive the EOM with the desired profile and

measure the resulting optical power. The measured optical power is then compared
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with the desired one and the output of the arbitrary waveform generator is re-

programmed adding the difference between the two signals to the original one. The

process is then repeated a few times, modifying the signal generator output by the

discrepancy between the last optical signal and the ideal one. This approach does

not converge on the desired signal but instead oscillates around it. The simple

solution is to correct the electrical signal by half of the error, this slows down the

convergence but removes the oscillations.

Since programming a new waveform in both channels of the function generator

requires almost a minute, I developed a quicker approach: The response to a step

input is fitted with an instantaneous component and 3 exponentials components with

their time constant bound to the range of interest. This binding is necessary to avoid

that some component drifts to very short time to compete with the instantaneous

part, or overlap with the others. An example of this fit is shown in Fig. 5.2.
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Figure 5.2: Fit of the EOM response to a step function. The traces
for the fit (green) and the measure (blue) are almost indistinguishable.
The red trace is the difference between the two multiplied by a factor
of 100.

I use two different fitting functions for the falling slope:

P (t− t0) = Θ(t0 − t) + Θ(t− t0)
[
a1e
−(t−t0)/τ1 + a2e

−(t−t0)/τ2 + a3e
−(t−t0)/τ3

]
(5.9)

And for the rising slope:

P (t− t0) = Θ(t− t0)
[
1− a1e

−(t−t0)/τ1 − a2e
−(t−t0)/τ2 − a3e

−(t−t0)/τ3
]

(5.10)
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Where Θ is the Heaviside function2, τ1,2,3 are the 3 time constants for the 3 expo-

nential decays, and a1,2,3 are their relative weights. The initial sharp transition is

modelled as instantaneous and having an amplitude of a0. Since the fitted signal is

normalised between 0 and 1, by definition:

a0 ≡ 1− (a1 − a2 − a3) 0 ≤ a0,1,2,3 ≤ 1 (5.11)

The fitting function also includes t0 which is the time where the switching begins.

Note how, in Fig. 5.2, the fit curve overlaps almost perfectly with the transmitted

power. The fit is repeated for different modulation amplitudes and for both slopes

resulting in values for the amplitudes and the time constants within 5 %. The values,

however, are different for the different EOM used. Also, note how the amplitude of

the longer time constant is very low compared to the others, nevertheless, including

the third exponential, helps the fit to converge to a lower error on the two principal

components.

Once the EOM response is fitted it is possible to iterate the algorithm to calculate

the input waveform in a simulated way and use the resulting waveform to drive

the EOMs. As you can see in Fig. 5.3, the result is a huge improvement in the

shape of the optical signal. This iterative technique to calculate the appropriate

Figure 5.3: The response of the EOM to a square wave input without
modifications (a), with a single component exponential fit overdrive
(b), and with three components overdrive (c). Pink → the output
voltage of the function generator on a high impedence load. Yellow
→ the voltage at the EOM input. Green → optical power transmitted
through the EOM. The graphs represent a time span of 200 µs.

electrical input to achieve the desired output proves particularly useful when several

transitions of different amplitude happen in rapid succession before the charging of

2One needs to be careful in defining the discontinuity point at t = 0 because it can affect the
fitting. I defined the two functions differently such that one of the two includes the t = 0 point
and the other doesn’t. However a simpler approach could be to define Θ(0) ≡ 0.5. This solution
avoids spikes in this case even if it does not solve the discontinuity.
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the EOM plates completes. See, for example, how an amplitude-modulated square

wave signal improves once the algorithm is applied in Fig. 5.4.

Figure 5.4: The EOM response without overdrive (left) and with
overdrive(right). Pink → the output of the function generator on a
high impedance load. Yellow → the voltage at the EOM input. Green
→ optical power transmitted through the EOM.

5.5 Results and discussion

5.5.1 Hysteresis

I mentioned so far the Hysteresis in a qualitative manner. It is finally the time

to discuss it more quantitatively. The procedure to solve the coupled equations

described in Section 3.2.2 can be adapted to solve for imbalanced input powers. If

the two power are imbalanced this corresponds to solving for s = 1 − p̃CCW/p̃CW

instead of s = 0. This is the method used to obtain Fig. 5.5(a). The solutions for

different imbalances are colour coded in red and blue for the two possible directions

of the imbalance. In the regime called “enhancement” in the figure, if the imbalance

is swept from red to blue, also the solution sweep continuously but, close to the

symmetry breaking points this imbalance is amplified in the circulating powers.

In the “bistability” regime instead, this continuous sweep is not possible. Let us

start with the resonator at the bottom of the bubble for δ = −3 and with equal

input power. The CCW direction is fully coupled in the resonator, while CW, the

one plotted in the graph, is only marginally coupled. The first thing we can observe

from the graph is that a small imbalance in either direction, i.e. faint colours, now do

not cause a transition to the opposite side of the bubble but just a minor oscillation

around the same side. Instead, if the imbalance drifts significantly towards the
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Figure 5.5: Different regimes of symmetry breaking and hysteretical
behaviour. (a) A contour plot of the solution of the symmetry breaking
equations as a function of the detuning. The black thick line is the
solution for equal input power in both directions as already seen in
Chapter 3. The case of imbalanced input is colour coded in red and blue
and the three regimes are highlighted. (b) A measure of the different
regimes. The laser is scanned through the resonance while the power
imbalance oscillates. The inset shows the same resonance with equal
powers in both directions. Adapted from [87].

CW direction, we can see that there are no solutions on the bottom side of the

bubble but only on the upper branch. Hence the resonator will abruptly switch to

the opposite branch. This is the signature of hysteresis: small modulations cannot

start a transition, while a large one causes a sharp switching. The same can be

seen experimentally in Fig. 5.5(b) where the laser is scanned through the resonance

while the imbalance between the input powers in the two directions oscillates3.

Before the symmetry breaking point, the oscillation is amplified more and more

as the frequency approaches the symmetry breaking point. After the symmetry

breaking point, the resonator keeps switching between the two branches but now

the profile is not sinusoidal. Instead, we can see a sharp transition. In the middle

3this oscillation is obtained by “introducing” a dirty connector on the tapered fibre. This creates
an interferometer that goes from constructive to destructive interference as the frequency changes.
It is a poor-man amplitude modulator.
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of the bistable regime, the modulation is too small to induce a transition and the

resonator oscillates around the current solution. This has to be compared with the

inset in Fig. 5.5(b) where the power in both directions is perfectly balanced and

corresponds to the black curve in panel (a).

Let us now test how the hysteresis amplitude depends on the circulating power.

For each panel in Fig. 5.6, the input power in both directions is modulated by

a triangular wave at 4 kHz with opposite phase. By doing so the total power

sent to the resonator is constant while the imbalance changes smoothly. Both the

input powers in each direction and the corresponding transmission are measured.

However, plotting these values over time does not show the hysteretical behaviour

of the resonator in a readable manner. Hence I plotted these data as the coupled

power in each direction as a function of the power imbalance.

Figure 5.6: Panels (a-f) Hysteresis profile for increasing circulating
power in the resonator. Panel (g) Amplitude of the hysteresis, a com-
parison between the theoretical model and the experiment. Adapted
from [52].

The horizontal axis of each panel is calculated as:

Pin,CW − Pin,CCW

(Pin,CW + Pin,CCW)/2
=

∆Pin

Pin,AVG

(5.12)

so that the value of 0 corresponds to both inputs having the same power, and

positive values to the CW direction being stronger than the CCW direction. To

obtain comparable results for different values of the circulating power, I change the

detuning between one panel and the other. We have seen in Chapter 2 that both a
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change in detuning or launched power can have an effect on the circulating power

but using the detuning allows taking measurements in rapid succession, ensuring

that no long term drift takes place. The vertical axis of each panel is the coupled

power (i.e. the transmitted power out of resonance minus the actual transmitted

power) normalised by the input power so that an increase in Pcoup proportional

to the input appears as a horizontal line. The configuration of the setup and the

resonance under investigation has a coupling efficiency η = 0.55 so no value higher

than this can be reached on the vertical axis. In the absence of nonlinearity, the

two coupled powers would appear as a horizontal line at the corresponding coupling

level.

We can see that already at low power the Kerr effect reduces Pcoup for the weaker

input but the two traces follow the same path, no matter if the power imbalance

is swinging in one direction or the other. As the total power increases, the coupled

power starts to follow two different paths while the imbalance is scanned in the two

directions, with the resonator that tends to stay in the previous state even after the

0 imbalance point as indicated by the arrows. Note how the width of the hysteresis

pattern increases with increasing circulating power. This is shown in the recap graph

in Fig. 5.6(g). The vertical axis of this panel reports the width of the hysteresis from

panel (a) to (f) measured at half maximum. The horizontal scale has been converted

to circulating power in units of the characteristic power P0 to allow comparison with

a theoretical simulation that uses the same parameters for the resonator and also

uses the detuning as a mean of controlling the coupled power. We can see how no

hysteresis is expected at low power and how the increase in amplitude is described

by the model. Note also how the hysteresis sharply drops in the model after a

certain detuning is reached. This is caused by the laser passing on the blue side of

the resonance, therefore losing the thermal lock. The same effect is observed in the

experiment.

5.5.2 Effect of the input parameters on the switching profile

Once the existence of the hysteresis is proved, let us analyse how the switching

dynamics is affected by the different parameters of the input. Since we are also

interested in the speed of the switching process, let me define the notation I will

be using for the timescale. I am interested in drawing a parallel between the mi-
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croresonator based optical devices and the electronic devices I will assume that the

microresonator behaves like an LC resonator. Hence, the achievable bitrate R can

be defined as the inverse of the rise time τr. The rise time itself represents the time

that a cavity takes to go from 10% to 90% of the transition. If we write the relation

between the cavity lifetime τc and the rise time is:

τr = 2.197 τc (5.13)

Finally the cavity lifetime is related to the loaded Q factor by the relation:

τc =
Q

ω
(5.14)

Hence the achievable bitrate is inversely proportional to the loaded Q-factor of the

cavity:

R =
ω

2.197Q
(5.15)

To isolate the dependence of the switching speed and profile from each parameter

independently, the total input amplitude sent to the resonator is kept constant.

Every time the input power in one direction is increased, the other direction is

attenuated by the same amount. By doing so we can expect that if the switching

happens and the resonator ends in the opposite state, the circulating power in the

initial and final state will be the same hence we can neglect the thermal effects.

I would like to highlight that our model is symmetric for exchange in 1 ↔ 2 or

CW↔CCW, but since it is also nonlinear, it is not guaranteed that the switching

will happen or what is the final states, just that the same state for 1↔ 2 exist.

Modulation amplitude

Let us define the modulation amplitude around a certain offset or average power. In

this case by average power Pavg of a square wave or a signal that switches between 2

states, I do not mean the average over time of the power, but the value in between

the high and the low states as shown in Fig. 5.7:

Pavg =
Phigh + Plow

2
(5.16)
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The modulation amplitude M is defined as half of the power difference between the

high and low states, normalised by the average power:

M =
Phigh − Plow

2

1

Pavg

=
Phigh − Plow

Phigh + Plow

(5.17)

A modulation of 0 corresponds to a constant power at Pavg. A modulation of 100 %

corresponds to the power going between 0 and twice the average power. A modula-

tion of 42 % corresponds to Phigh = 1.42Pavg and Plow = 0.58Pavg.

Figure 5.7: Definition of the modulation amplitude for a signal
around its average power as used in this chapter. In this example
Pavg = 2.5P0 and M = 60%

If not specified differently, I am considering the case where the two directions

are in opposite states or, if the power change is gradual, that the total input power

remains constant, i.e. if the input power in one direction increases, the input power

in the opposite direction decreases by the same amount. By doing so we can separate

the effects related to the change in total power from the ones related to the imbalance

in power between the two directions.

To measure how the switching profile changes with different modulation ampli-

tudes, the resonator needs to be set in an initial state and then different power

modulations are applied while recording the power in the resonator through the

drop fibre. The two input powers are opposite in sign around a common offset. I

performed an initial test with a 50 kHz square wave, amplitude modulated by a

sawtooth wave at 1 kHz in order to produce increasingly higher power steps.

This initial approach highlighted two problems. At small amplitudes the mod-

160



ulation is not enough to reset the resonator always in the same state because it

cannot overcome the hysteresis, resulting in the first part of each measurement be-

ing affected by the initial random choice of the circulating direction. Even when the

modulation becomes sufficient to overcome the hysteresis, the initial state is different

for every cycle of the square wave because the initial conditions are different.

To overcome these problems I designed the test waveform shown in Fig. 5.8.

Initially, a power imbalance large enough to overcome the hysteresis is applied to

Figure 5.8: The input signal in each direction (blue → CW, red →
CCW) used to measure the response to different modulation amplitude.
A cycle of the signal is highlighted: part (a) and (b) of the signal are
constant while (c) changes slightly every cycle. Adapted from [52].

reliably set the resonator in the CW state (a). Then the power imbalance is reduced

to 10% of the average power (b): This constitutes the initial state for the experiment.

Finally, the powers are switched to an imbalance that gradually increases every

cycle for 200 cycles, starting from 0 up to switching off completely one direction

and doubling the power in the other one (c). The time between the transitions is

long enough to let the resonator settle to the steady-state before switching the input

powers.

The input power and the output at the drop fibre are recorded with a fast

oscilloscope (500 MHz bandwidth, 2 GSps sampling rate) and the resulting traces

are analysed in Python.

All the measurements in this section are taken as follows. First, the analysis

script identifies the steady-state and normalise the signals from 0 to 1. There is not

a trigger for each cycle but I use one of the input traces to identify the start of the

transitions and plot each one at the zero of the time scale. This small complication

in the data analysis allows us to take all the measurements in a burst of 4 ms,

preventing any long term drift of the system from affecting the measurements.
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The results of this measurement are reported in Fig. 5.9 and compared with a

simulation calculated for a resonator with the same Q-factor and a reasonable guess

for the value of P/P0 and δ/γ. Only a part of the 200 cycles is plotted for clarity

Figure 5.9: Switching profile as a function of the modulation am-
plitude. On the left, a simulation of the switching profile for the input
in Fig. 5.8 and the following parameters: Pavg = 3.7P0, δ = −3.5γ,
Q = 1.6 × 108, modulation amplitude ranging from 0 % to 70 %. On
the right, the measurement of the switching profile with the same Q
and the same input as the simulation. Adapted from [52].

but there is no abrupt behaviour as the modulation amplitude changes.

For small modulation, the resonator cannot overcome the hysteresis. Still, since

the launched power changes, a small difference in the low level can be observed. At

20% imbalance the modulation amplitude is enough to overcome the hysteresis and

the resonator switches to the opposite circulating direction slowly. As the amplitude

increases further, so does the switching speed up to saturation.

For high modulation amplitude, an overshoot and ring-down start to appear.

This can be explained by remembering that the thermal locking is on the side of

the resonance. As the switching happens the resonance frequency wobbles due to

the Kerr dynamics of the system and the resonator temporarily access a smaller

effective detuning than in the steady-state resulting in this overshoot. Locking the

resonator closer to the peak of the resonance results in a smaller oscillation but also

makes the thermal locking less stable because it may happen to end up on the red

side of the resonance and lose the lock.

Note that the resonator used in this measurement has a Q = 1.6 × 108 corre-

sponding to a cavity lifetime τc = 130 ns and a rise time τr = 290 ns. The measured

rise time of 570 ns for the highest modulation amplitude of 70 % is still a bit slower

than expected from the Q-factor. This is probably because the interaction between
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the two directions is driven by nonlinear effects, while in the definition of cavity life-

time a linear model is assumed. A quick test of the time step algorithm, performed

by removing the Kerr effect from the model, shows a transition time that agrees with

the definition. This suggests that the Kerr interaction between counter-propagating

light slightly increases the build-up time compared to the linear case.

Total power

Quite surprisingly the total power has a minor effect on the switching. It only affects

the ring-down amplitude and frequency, and changes the intensity profile. However,

the switching time is only marginally faster for higher input power.

The total power in Fig. 5.10 ranges from 1.7 P0 to 8 P0. The modulation ampli-

tude used in the figure is from 1.7 to 0.3 of the Pavg and the detuning is appropriately

changed to be just before the maximum coupling in the high state.
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Figure 5.10: Switching profile as a function of the total power in the
resonator, for a modulation amplitude of 70 % and a Q-factor of 108.
Adapted from [52].

Power offset

The power offset picture does not provide additional insight in the dynamics. If the

average power is offset, the switching in one direction will see a larger modulation

amplitude and switch faster while the other direction will see a smaller modulation

amplitude and switch slower. As an example, the darkest curve in Fig. 5.11 sees

a power difference of 1P0 at t = 0 (modulation amplitude of 20 %) while it sees a

power difference of 5P0 at t =2 µs (modulation amplitude of 100 %). This difference

is switching speed between the rising and falling edge, can actually be used to ensure

that input powers are indeed symmetric in the experiment.
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Figure 5.11: Switching profile as a function of the average power
offset between the two input directions. In the yellow curve the levels
are equal for both directions Phigh = 4P0 and Plow = 1P0. This is
gradually changed maintaining the absolute modulation amplitude to
PCCW = 0 ∼ 3 and PCW = 2 ∼ 5. The other parameters are: γ =
1 MHz, δ = −3.5γ.
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Figure 5.12: Switching profile as a function of the detuning. The
detuning varies from -1 (yellow) to -4 (black). The simulation param-
eters are: Pavg = 2.5P0, modulation amplitude of 60 %, γ = 1 MHz
corresponding to Q = 108.

Not much changes in the switching profile with the laser detuning from the

resonance, as long as the power is enough to observe symmetry breaking and the

detuning is in range (cf. Fig. 5.12). The only difference, for small values of the

detuning, is that the final state is not well coupled in because the resonator is

operating far from the Kerr shifted resonance.

5.5.3 Speed and Eye diagram

Figure 5.9 already provides an idea of the switching speed of the resonator. However

to better characterize the device I measured its eye diagram. The eye diagram is a
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representation of the switching characteristics of a digital device commonly used in

electronics. It shows the response of the device to a random bit sequence input such

as the one shown in Fig. 5.13. The input signal randomly switches or stays constant

every clock cycle, marked by the vertical lines in the plot. The bitrate of the signal

is the frequency of the clock.
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Figure 5.13: An example of a random bit input sequence.

The eye diagram consists of the output of the device over time, but instead of

using a constantly increasing timescale, the trace is overlaid multiple times, each one

translated by an integer multiple of the clock period. This allows us to zoom in on

the time span of a single clock period comparing in details the responses to all the

possible input sequences. An infinitely fast device facing a perfect step input should

present a square-shaped eye diagram. In the real world, the transition takes time

to happen so the square morphs into a plot that vaguely resembles a human eye,

hence the name eye diagram. An “open” eye means that the device under test is

responding correctly to the input signal. A “closed” eye indicates that the response

to the signal is too slow and eventually the device does not reach the steady-state

levels high and low.

Figure 5.14 shows the eye diagram for the experiment. The Q-factor has been

reduced compared to the previous measurements to 1×108 by increasing the coupling

with the second taper to improve the speed.
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Figure 5.14: Eye diagram of the microresonator used as optical
memory for different input bitrates. (a) 75 kbps, (b) 1.8 Mbps, (c)
3.8 Mbps, and (d) 4.9 Mbps. Adapted from [52].

At a clock period much longer than the calculated rise time (τr = 180 ns) results

in the diagram looking almost like a perfect square (a), just a small overshoot can

be seen after the transitions. In panel (b) the resonator can follow the input at a

bitrate of 1.8 Mbps. There is still a clear region in between the clock transitions

where it is possible to discern if the resonator is in the high or low state. Panel (c)

shows the limit situation where the eye starts to close at 3.8 Mbps. Despite this, it

is still possible to draw a separation line between the high and low states, but the

signal at the top and the bottom of the eye does not reach the steady-state level.

Also, it starts to be clear how the switching profile depends on the previous states.

If the resonator was in the initial state for more the one clock cycle, the profile differs

from the one that happens when the resonator was in the initial state for more than

one clock periods. Finally, in panel (d), the output of the device under test cannot

follow any more the input bitrate of 4.9 Mbps. The eye is completely closed and the

device cannot complete the switching when two transitions follow consecutively.
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Consideration on the use of a second tapered fibre

All the measurements of the dynamics presented so far in this chapter are measured

from the drop taper. Having a second taper coupled to the resonator not only

makes it possible to monitor the switching speed, but it can also be used as a

mean to change the effective Q-factor of a resonator without physically replacing or

irreversibly damaging it. Also, the output of the second taper is always proportional

to the circulating power. Instead, in a transient situation, the definition of coupled

power is not proportional any more to the intracavity power so the single taper setup

may not be the most suitable to study the transient situation.

Nevertheless, we will see how an optical memory can be built with a single

taper if the transient profile is not crucial. Figure 5.15 shows one of the preliminary

measurements of the eye diagram. Let us overlook the fact that these measurements

Figure 5.15: One of the preliminary measurements of the eye di-
agram for a modulation amplitude of 50 % performed with a single
tapered fibre coupled to the resonator. (Top) the input signal, (bot-
tom) the coupled power calculated from the transmission.

were performed with an AOM and the algorithm to identify and fold at the transition

was not optimised, causing jitter in the data. I would like to highlight the curious

switching pattern. The coupled power is calculated as the high level input power

minus the transmitted power in the same direction. This however, does not reflect

the circulating power in the resonator since we cannot assume anymore that the

intracavity power is proportional to the power missing from the transmission: the

resonator is not in the steady-state. In the transition from high to low, the first
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sharp step is due to the reduction in the input power in that direction. Then the

frequency detuning starts to change due to the exchanging roles of the two directions.

As the light field leaks out of the resonator, also the relative phases of the circulating

power with respect to the pump change, causing the peculiar bounce in the observed

coupled power. The same effect is visible in the transition low→ high but it is less

accentuated since the power increase is masked by a far detuned resonance. Note

that the duration of the switching process is the same if observed by the input or

output taper, just the shape is different.

5.5.4 Different materials and platforms

As the reader may have noticed the bitrate of 3.8 Mbps is not competitive with the

current electronic or even optical alternatives. This is because the resonator under

test has a high Q-factor to reduce the modulation and threshold power requirements.

We are mostly interested in 2 parameters: the switching speed and the threshold

power, i.e. the minimum working power for the device. We already know from

chapter 3, that the threshold power for the symmetry breaking is

Pth =
1.54

η

πn2
0V

n2λQQ0

, (5.18)

where I kept η explicit because it is a parameter that I can use to optimise the speed.

I defined the time parameters in Section 5.5.2. Here I will just remember that:

R =
ω

2.197Q
. (5.19)

As discussed in Chapter 2, the intrinsic Q-factor depends on the losses in the res-

onator itself. Adding losses to the resonator via coating, scratches or an additional

tapered fibre would increase the switching speed but also require more power to

access the hysteresis regime. The loaded Q-factor instead can be tuned through the

coupling of the input taper. Figure 5.16 is a map of the possible performances that

can be achieved with different materials. Instead of plotting a single point for each

material, the tunability given by the coupling strength is highlighted. For each curve,

κ has been left free to change between 1/30γ0 and 30γ0, a realistic range of values.

The Qeff scale on top of the graph is obtained through Eq. (5.15) by assuming the

operational wavelength of 1550 nm. This scale does not apply to silicon resonators
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Figure 5.16: Expected bitrate and threshold power for different ma-
terials. *Only for silicon a wavelength of 3.1 µm is used instead of
1.55 µm. Adapted from [52].

Table 5.1: Parameters used for the simulation in Fig. 5.16. Aeff is
the effective mode area, n is the refractive index, n2 is the nonlinear
refractive index, and Q0 is the intrinsic Q-factor. The values for
silicon are reported at 3.1 µm, since it is not transparent at 1.55 µm
Adapted from [52].

Material diam. Aeff n [151] n2 [cm2/W] Q0

SiO2 rod 2 mm 50 µm2 1.444 [115] 2.7× 10−16 [37] 4× 108

SiO2 toroid 100µm 4µm2 1.444 [115] 2.7× 10−16 7× 107

Si3N4 [92] 600 µm 1µm2 2.463 [152] 2.4× 10−15 1.7× 107

CaF2 [153] 6 mm 20µm2 1.426 [117] 1.9× 10−16 3× 109

MgF2 [153] 2 mm 20µm2 1.37 [116] 9× 10−17 1× 109

Si* [161] 100 µm 1µm2 3.43 [162] 1.7× 10−14 [163] 7× 105

because the material is not transparent at this wavelength. The parameters used to

plot Fig. 5.16 are reported in Table 5.1.

Note how each curve presents the same shape in a log-log plot. The bottom of

the curve represents the optimal coupling for energy efficiency, which is very close to

critical coupling. As the coupling is reduced, a smaller fraction of the input light gets

into the resonator increasing the required input power. This happens because the

Q-factor cannot increase past the intrinsic Q factor. On the other side, if the input

waveguide is strongly over-coupled the Q factor is reduced and the bitrate increases

since light can get into or leak out of the resonator faster. However, the same leaks

prevent the power build-up in the resonator requiring again more input power. It is
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unrealistic to extend the curves on the right for too long because achieving strong

over-coupling with tapered fibres requires strong overlap between the resonator and

the taper evanescent fields, but this is possible just up to a certain extent. With

waveguides instead, it would be possible to physically overlap the two.

Materials that can be fabricated with really high intrinsic Q-factors, such as

CaF2 and MgF2 can extend the minimum working power down to less than 100 µW

but they do not provide significant performances in terms of bitrate. On the other

hand, materials with higher nonlinearity and can be fabricated with techniques that

allow smaller mode volume show promising results in terms of bitrate, potentially

reaching 10 Gbps.

5.6 Alternative technologies

Now that the mechanism of switching has been analysed in-depth let us move on

the alternative technologies to realise bistable optical devices. As mentioned in the

introduction, photonic circuits are an active topic of research. The main drive of

this field is to overcome some of the limitations of the electronics circuits, propose an

alternative technology for information transfer and processing, and finally to realise

new kind of devices such as lab-on-a-chip. In this section I do not focus on the

electronic devices but only on the data processing with optical means.

The control of light in waveguides is usually performed through devices that

require an input different from light. As an example, in this experiment, I use

EOMs and tested AOMs to modulate the amplitude of light. The working principle

is different but both can reach modulation speeds of the order of hundreds of MHz

in the case of AOMs and tens of GHz for EOMs. In the case of an EOM, different

configurations can modulate not only the amplitude but also the frequency, phase

and polarization of the light. An example is the quadrature phase-shift keying

(QPSK) modulator that I used improperly in [120] to directly measure the Kerr

shift in microresonators.

Another approach is to mechanically control the waveguide through micro-electro-

mechanical systems (MEMS). These devices are easily integrated on-chip by using

a microfabrication procedure similar to the one described in Chapter 2 for the mi-

crotoroid resonators. Oxidation of silicon is used to create the moving parts, then

HF etching cut the geometry to shape and XeF2 removes completely the silicon
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from underneath the mechanism to make it free to move. In addition, conductive

layers are applied to drive the motion with the application of potential differences.

MEMS are used in a plethora of different geometries [164], and they can cover some

of the application I showed for our device such as switches, by misaligning part of

a waveguide, or tuning a racetrack resonator [165]. The driving of these structures

does not need to be electric: as an example, thermal solutions have been proposed

[166] but they result in a slower response.

All the devices mentioned so far require some form of electric input to work, let

us move to all-optical devices. Even restricting the field to devices controlled only

by light, the possible solutions are several [167]. Most of them are based on some

form of nonlinear response of the optical media. Some examples consist of bistable

changes in the material deposited on top of the waveguide [168]. Already in 1987,

[169] used nonlinear coupling in a dual-core fibre to selectively couple light between

the two cures depending on the optical power. Most of these applications require a

configuration with two different laser frequencies to be used in a pump and probe

configuration [170, 171]. An advantage of the solution presented in this chapter is

that it requires a single wavelength for programming and reading the state of the

device. The use of third-order Kerr nonlinearity, in general, allows fast switching

because the response time of the device is almost instantaneous [172]. However, the

light needs to be concentrated enough.

Encoding the state in the mode selection of multimode laser is used to generate

extremely fast transition due to the gain of the system [173]. In particular ring

lasers, with their two directions of lasing proved to be an ideal candidate for band-

width above the GHZ [174, 175, 176, 177]. The ring laser concept is similar to the

experiment in this chapter: a nudge to the ring resonator sets the circulation direc-

tion to the corresponding direction. The physics, however, is completely different.

In ring lasers, the direction with higher intensity takes over because of gain satura-

tion for the other direction and the device is not passive since it requires pumping

either electrically through carrier injection or optically through an additional laser

at a different wavelength.

So far I mentioned active devices. Moving to the passive solution, photonic

crystal cavities are the natural alternative to microresonators to concentrate the light

and exploit nonlinear effects [178, 179, 180, 181, 182, 183]. Their mode volume can

be smaller than whispering gallery modes resonators and waveguide resonator. As
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we saw earlier, reducing the mode volume gives flexibility in terms of performance,

either by reducing the threshold power for the same bitrate or by increasing the

bitrate for the same input power. However, the thermal effects tend to detune the

cavities making them unable to retain the state for a long time and affecting the

stability in general.

Semiconductor resonators add yet another nonlinear effect to the mix; on top of

the Kerr effect and the thermal effects, semiconductors show two-photon absorption

(TPA), i.e. the conversion of two circulating photons in a carrier pair [184, 185, 178].

This is not only a nonlinear losses mechanism but also the carrier concentration

contributes to the change in refractive index. This effect is also used to achieve

bistability in nonresonant devices [186, 187]. The interplay between the three sources

of nonlinearity, namely thermal [185], Kerr [188], and TPA leads to instabilities due

to their different timescale. Hence, most of the work using semiconductors aims to

exploit just one of the three effects, mitigating the contributions from the other two.

Most of the work using nonlinearities exploits the s-shape response of the intra-cavity

power with respect to the input power [189, 190]. This is a characteristic of frequency

shifting nonlinearities in resonant structures and it is observable also in the device

presented in this chapter. However, our device is used at higher power compared to

the s-shaped region. This is surely a disadvantage for the power requirements but

the symmetry-broken region extends in a much broader range of input power and

detuning, improving the usage envelope and the resilience to noise.

5.7 Applications

5.7.1 Memory

The resonator maintains the state if the input power is equal and the average power

and detuning are in the symmetry-broken region. If we assign the value of 1 and 0

to the two directions of circulation, it is clear how information can be stored as the

circulation direction of light. The information is stored as long as the resonator is

held in the symmetry broken region, i.e. as long as it is “powered”.

To modify the information one can act on both the input taper by changing

the power imbalance but this is not necessary. An alternative is to have the two

inputs with equal power in the resting state and modulate just one of them by
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A B A&B

0 0 0
0 1 0
1 0 0
1 1 1

Table 5.2: Truth table of the logic operation A and B

increasing and decreasing its power. Sending a power surge will set the resonator in

the corresponding direction, a power decrease will set the opposite direction.

The information stored in the resonator can be read continuously, without de-

stroying the stored information, by looking at the power coming back from the input

taper or alternatively using a second taper to monitor the circulating power.

5.7.2 Router or switch

The device configured with two tapers can be used also to route light in different

directions. Let us recall the two tapers configuration in Section 4.1. A resonant

light input at port 1 it will reach port 2 if it is the only light in the system. To use

the device as a switch we can connect the control input to port 2. If there is no

control input, the signal will not continue in the input taper but, if the control light

is switched on at a power higher than the signal, the resonator will not allow light

in from port 1 and transmit it to port 4 instead.

The same situation can be imagines as a router. The device at port 2 will be

outputting power at idle, letting the signal go through the bus 1 → 3. If the device

wants to receive the information it switches off its output and the bus is redirected

to port 2. This approach could be used to realise devices such as [191] but with

optical inputs instead of electrical.

5.7.3 Logic gate

This idea of switching can be pushed forward to realise a logic gate. By appropriately

driving the inputs, the output at one port is a logic combination of the inputs.

The A and B gate

An A & B gate outputs low unless both the inputs are high. This can be realised
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A B A&B
0 0 0
0 1 0
1 0 1
1 1 0

Table 5.3: Truth table of the logic operation A AND (NOT B)

with the dual taper configuration by using ports 1 and 4 as the A and B inputs and

connecting ports 2 and 3 on the same side of a directional coupler.

The logic levels are encoded as follows. The low state corresponds to 0 optical

power and the high state is an input power high enough to access the symmetry

broken region. If both the inputs are low, there is no light in the setup so the

output is low. If only one of the two input is high, the light will couple in the

resonator and leave it from the other input without reaching the output. Finally,

when both inputs are high, only one of the two will couple to the resonator due to

the symmetry breaking, while the other will stay in the taper and reach the output.

The A & B gate

The A & B gate is not universal. This means that it is not possible to realise any

logic function combining a series of these logic gates with additional fixed inputs

[192]. The typical example of a universal logic gate is the NAND (i.e. an AND gate

followed by a NOT gate), probably because the transistor-based electronics uses this

gate to build all the other ones. Other universal logic gates are the NOR and the

far less known AND NOT. Why am I citing a forgotten universal gate? Because it

is the one that is easily implemented with a microresonator. Let us have a look at

the truth table:

This idea has been formalised into a paper [53] by my colleague Niall Moroney

and myself. The setup for the experiment is the same used for the switching. I

mainly outlined the setup, performed the simulations and prepared the test signals

while Niall took the experimental measures analysed the data and wrote the paper.

Working principle

Let us analyse how to realise the truth table 5.3 above in the two taper configuration.

From line 3 we understand that A alone should propagate through the device hence

referring to the port naming we adopted, port 1 is going to be the input A and port
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2 is going to be the output. Lines 2 and 4 tell us that the input B should never

reach the output and switch the output low even if A is high. This suggests that

B has to be counter-propagating to A and have a higher high level to overcome the

hysteresis. Since port 2 is already used as the output we will use port 4 as the B

input.

In this case the logic levels are encoded as:

p̃A = PmA (5.20)

p̃B = PmB + ξ

Where A,B represent the logic state 0 and 1, Pm is the modulation power and ξ is

the offset in units of Pm.

An intuitive representation of why an offset is needed. One can think of the

light inputs competing to get control of the resonator. However, we do not want the

inputs to behave symmetrically: B should be able to overcome the hysteresis and

“kick out” A from the resonator while the opposite should not be true. Let us now

prepare a test for this device.

Analysis of all the possible switching combinations

In designing the test routine it is important to remember that an increase in the

input power in one direction causes a different change in the circulating power if

the resonance for that direction is shifted or not by the cross-phase modulation. In

other words, looking back at Chapter 3 we saw that for the same combination of

input power and detuning there are multiple possible states of the resonator hence,

to verify that the device is working, one needs to test not only all the 4 possible

combinations of the inputs but all the possible transition to those combinations. At

each transition, the signal in each direction can stay high or stay low, go high, or

go low.

I designed the test signal shown in Fig. 5.17 that makes it possible to analyse all

16 possible types of transitions. Panel (a) shows why this test is important. The

logic gate output is supposed to be high only when A is high and B is low but

this is not the case between t = 30 µs and t = 40 µs. This happens because direction

A is coupled into the resonator and the power increase in the B direction is not

enough to cause a switching due to the hysteresis. The same state accessed from
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both directions being low or from B staying in the high state produces the correct

output of low. To ensure the functionality of the logic gate, the B input power

levels need an offset by the intermediate power of direction A. If the offset is too

low, the particular transition analysed above does not produce the correct output

(Fig. 5.17(a)). If the offset is too high, the output will never go high (Fig. 5.17(c)).

(a) (b) (c)

Figure 5.17: Simulation of the logic gate A & B. The lower part of
each panel shown the inputs A and B, while the upper part shows the
output Q and the other circulating direction, not used in the logic gate
x. The value of ξ for each panel is 0.2(a), 0.5(b), 0.8(c).

Increasing the input power or detuning the laser deeper into the symmetry broken

region may prevent switching due to the too high hysteresis. Indeed, it is not even

needed to set the resonator in the symmetry broken region because the Kerr effect

is present even at lower circulating power, the only drawback of operating at low

power is the significant reduction of the contrast between the high and low power

levels. We experimentally tested this logic gate as shown in Fig. 5.18.

Note that the output correctly rises only when the inputs are A = 1 and B = 0.

When B is high, the transmission of the input A to the output is attenuated by

11 dB.
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Figure 5.18: Experimental results of the logic gate setup. Panel (a)
shows the input powers A in red and B in blue, panel (b) shows the
output. Adapted from [53].

5.8 Conclusions

In this chapter, I showed how the direction of light circulating in a microresonator

can be controlled via the input powers in each direction. Once the microresonator is

set in the symmetry-broken regime by applying light input with power and detuning,

it behaves as a bistable device. Multi-stability is the key feature of any digital

device. In particular, I showed that it is possible to use the microresonator for

information storage and processing by encoding the digital values 0 and 1 to the

circulating directions CW and CCW. The resonator holds the state as long as the

input light is on and the “optical memory” can be programmed by the light input.

Furthermore, it is possible to implement digital signal processing by connecting the

inputs appropriately. This method provides a passive, all-optical technique for the

realisation of several elements at the foundations of optical computing.

The theoretical and experimental study of the dynamics of the symmetry broken

state also led to the observations of two other effects. The critical slowing down of the

system close to the symmetry breaking point [159], and the onset of a spontaneous

dynamics [121, 122].
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Chapter 6

Conclusions and outlook

6.1 Summary

In this thesis, I described the Kerr effect for counter-propagating light in a microres-

onator. Specifically, I described a theoretical model for the propagation of light in

microresonators and the Kerr interaction both in the stationary and dynamic case.

Then I presented the fabrication techniques for the experimental setup and three

main experiments that exploit this effect. The first experiment showed how the Kerr

interaction leads to symmetry breaking in the resonator, the second one exploited

the symmetry-broken states to achieve non-reciprocal optical propagation and the

third analysed how it is possible to switch between the states and the dynamics of

the process.

6.2 Outcomes

The following points outline the main findings and results of this thesis.

I developed a complete mathematical model for the Kerr-mediated interaction

between counter-propagating light in a ring resonator starting from a linear model

of a ring resonator [66]. The model has been tailored to describe high-Q-factor

microresonators in the steady-state as follows. First, an exact model is derived

from the resonator and coupling characteristics and successively approximated for

the conditions of high Q-factor. Then the model is expressed in terms of measur-

able quantities, by applying their definitions. Finally, after adding the Kerr effect

as a power-dependent detuning, a suitable normalisation is implemented to obtain
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dimensionless quantities that are both agile to use in computer simulations and pro-

vide a general description independent from the specific properties of the resonator

used in the experiment.

I developed an additional model for the dynamic state as a special case of the

Lugiato-Lefever equation that describes the dynamics of the light of the resonator

during the transients and converges to the stationary model in the steady-state.

The symmetry breaking and the related applications are not affected by the

thermal effects. Despite contributing to the resonance detuning about two orders

of magnitude more than the Kerr effect, the thermal effects are equal for both

directions hence they do not cause any resonance splitting. Therefore it is possible

to exploit the thermal effects as a proportional feedback loop to lock the frequency

of the resonator to the laser with a capture range of several GHz and a bandwidth

over several tens of kHz 1

I showed symmetry breaking of counter-propagating light in microresonators for

the first time.

I demonstrated an all-optical isolator and circulator based on the Kerr nonre-

ciprocity with an isolation up to 25 dB and insertion losses as low as 3 dB.

I have shown fabrication techniques for all the key components in the setup.

The tapered optical fibres are fabricated by pulling a single-mode optical fibre using

either a ceramic heater or a hydrogen flame. The fused silica resonators used in this

thesis are fabricated from a glass rod ablated by a CO2 laser. The microtoroids and

microdisks are fabricated through photolithographic techniques.

I developed a new technique (to the best of my knowledge) to repurpose EOMs,

designed for side-band generation, for arbitrary waveform amplitude modulation

overcoming the intrinsic slow time constant of the device. This is achieved by

analysing the response of the EOM and producing an over-driven input signal that

compensates for the slow part of the response. This technique reduced the rise time

of the EOMs from several µs to 8 ns (with a driving signal rise time of 5 ns).

I demonstrated how the bistability induced by the Kerr interaction between

counter-propagating light constitutes a new approach to bistable photonic devices

such as optical memories, switches, routers and logic gates. It is possible to switch

between the symmetry-broken states by an appropriate control of the inputs. The

1These are typical values. Depending on the geometry and type of the resonator these may
change by an order of magnitude.
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intrinsic resonant structure imposes a trade-off between the switching speed and the

power required. This technique has the advantage of being all-optical and completely

passive, furthermore, the devices realised with this technique are noise resilient and

do not suffer from limited holding time since they holds the state as long as the

input light is on.

6.3 Outlook

In the experiments presented in this thesis and others performed in my research

group, we used external lasers to pump the microresonators. An interesting avenue

to pursue is to introduce gain via erbium doping either in the tapered fibre or

in the microresonator. This would provide a new ground for the study of non-

hermitian PT-symmetric systems. The introduction of gain also provides technical

advantages such as increased Q-factor due to the compensation of losses in the

resonator or the possibility to use the resonator as the laser cavity, eliminating the

need for any form of frequency locking. A first experiment in this direction produced

interesting effects as we found out in a collaboration with the University of Sussex

[193]. The experiment consisted in coupling the resonator inside an erbium-doped

fibre laser operating in continuous wave. The paper presents the dynamics caused

by the interplay of the thermal effect with the two cavity resonances that deserve

further investigation together with the case where the thermal effect contribution is

minimised.

Another planned experiment involves the case where the fibre laser is constituted

by a laser cavity where the gain medium is enclosed on one side by a standard

mirror and, on the other, by a microresonator that provides injection locking through

backscattering. This configuration could, in principle, replace the ECDL tunable

laser with a much simpler and cheaper 980 nm diode laser pump. The resonant

radiation would be intrinsically resonant with the microresonator because the laser

cavity would be closed just at that frequency.

Finally, doping the resonator itself to introduce gain, would provide a mecha-

nism to compensate for losses when multiple resonators are chained together, not to

mention also the possibility of studying the physics of gain (α > 1 as described in

Chapter 2).

As presented in Chapters 4 and 5, the fused silica rod resonators provide an
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exceptional platform for proof-of-principle experiments thanks to fast fabrication

turnaround and their high Q factor that allows testing the dynamic characteristics

without using equipment that may not be present in a photonics laboratory. How-

ever, it is undeniable that a commercial device would require much higher speed

and lower power thresholds than the ones demonstrated in this thesis. Hence, one

of my future works is continuing the development of micro-fabrication techniques

for microresonators. The latest results with fused silica toroids that I fabricated

with my colleagues [120] showed a reduction of the characteristic power of a factor

of 100 compared to silica rods. This mostly arises from the smaller mode area and

the smaller diameter since the Q-factor is of the same order of magnitude and the

material is the same. To further reduce the power requirements and footprint im-

prove the switching speed, I will investigate the use of other materials. The choice

of materials is fundamentally limited by their transparency at the wavelength of

interest and their nonlinear refractive index. But in practice, the scattering intro-

duced by surface roughness is currently the limiting factor preventing the use of

several materials. The availability of suitable machinery for fabrication and growth

in the cleanroom, and the development of procedures to obtain a smooth surface

are crucial to proceed in this direction. Silicon nitride (Si3N4) is an ideal candidate

for non-reciprocity application given that its n2 is 10 times higher than fused silica

and the fabrication of high-Q ring cavities has already been demonstrated [194].

Another challenge in the microfabrication would be to integrate the waveguides

on the same chip as the resonator. This is an existing technique [92, 134] that

would greatly reduce the size of the setup allowing integration [195] not to mention

the reduction in the phase noise coming from thermal expansion and the mechanical

forces on the optical fibres as observed in [196]. An alternative solutions is presented

in [197, 154], where instead of building all the setup on the same chip, they realise

optical interconnects between different chips.

The results in this thesis are all based on a single laser input. Using an addi-

tional laser, we obtained promising results for the stabilization of frequency combs in

microresonators [23]. The same technique can be used as a means of tuning the res-

onator in the case of counter-propagating light since an auxiliary beam at a different

frequency interacts via XPM with both directions. But it also opens new avenues

where the Kerr interaction involves more than just two propagating directions.
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