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Abstract

We use first principles of population genetics to model the evolution of proteins under persistent positive

selection (PPS). PPS may occur when organisms are subjected to persistent environmental change,

during adaptive radiations, or in host-pathogen interactions. Our mutation-selection model indicates

protein evolution under PPS is an irreversible Markov process, and thus proteins under PPS show a

strongly asymmetrical distribution of selection coefficients among amino acid substitutions. Our model

shows the criteria ω>1 (where ω is the ratio of non-synonymous over synonymous codon substitution

rates) to detect positive selection is conservative and indeed arbitrary, because in real proteins many

mutations are highly deleterious and are removed by selection even at positively-selected sites. We use

a penalized-likelihood implementation of the PPS model to successfully detect PPS in plant RuBisCO

and influenza HA proteins. By directly estimating selection coefficients at protein sites, our inference

procedure bypasses the need for using ω as a surrogate measure of selection and improves our ability to

detect molecular adaptation in proteins.

Key words: Positive selection, Distribution of fitness effects, Influenza, RuBisCO, Cytochrome B,
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Introduction

Understanding how natural selection acts on molecular sequences has long been a pursuit of evolutionary

biology. For example, Kimura (1983), using a model that assumes the genome has an infinite number of

sites, showed the relative rate of molecular evolution is approximately given by

u=
S

1−e−S
, (1)

where S is the selection coefficient acting on mutations. If new mutations in the genome are positively

selected (S>0) the relative rate of molecular evolution is accelerated (u>1), while the rate is the neutral
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mutation rate (u=1) if there is no selection (S=0), and the rate is decelerated (u<1) if mutations are

negatively selected (S<0).

Equation 1, which is the relative probability of fixation of selected over neutral mutations (Fisher, 1930;

Kimura, 1962; McCandlish et al., 2015; Wright, 1931), has important implications for understanding

molecular adaptation in proteins. For a sample of protein-coding sequences from various species, the

ratio between the number of substitutions at non-synonymous sites (which are under selection) and at

synonymous sites (which are under weak or no selection) should approximately follow the dynamics of

Eq. 1 (Nielsen and Yang, 2003). This ratio, commonly known as ω=dN/dS, is widely used as a test

of molecular adaptation in proteins, with ω>1, ω=1, and ω<1 interpreted as evidence of molecular

adaptation (positive selection), neutral evolution, and purifying selection respectively.

However, Kimura’s relative rate of molecular evolution (Eq. 1), based on the infinite-sites model

(Kimura, 1969; Sawyer and Hartl, 1992), assumes all new mutations appear at new sites in the genome.

This assumption appears unrealistic for proteins. Nielsen and Yang (2003) have argued that if amino acid

fitnesses are re-assigned every time a new mutation appears at a site in a protein (so that the selection

coefficient, S, is always the same at the site), then Eq. 1 gives the relationship of S and ω under a

finite-sites model. However, it is not clear in which condition this fitness reassignment should apply: If

an i to j mutation has selection coefficient S, then the reverse j to i mutation should have coefficient

−S, but Nielsen and Yang’s model assumes it reverts to S. Without this assumption it does not appear

possible to equate ω=S/(1−e−S).

Spielmann and Wilke (2015), and dos Reis (2015), used the Fisher-Wright mutation-selection model

(Fisher, 1930; Halpern and Bruno, 1998; Wright, 1931) to derive the relationship between ω and the

selection coefficients acting on codon sites within a finite-sites model. They showed that ω≤1 when

selection coefficients are constant over time, i.e. they are not reassigned, (dos Reis, 2015; Spielman and

Wilke, 2015); whereas ω>1 can be achieved for a short period of time after selection coefficients undergo

a single shift during an adaptive event, for example, when a virus adapts to a new host (dos Reis, 2015).

However, the relationship between ω and selection coefficients under the more general case of persistent

changes in selection over time appears unclear. This case, which we term persistent positive selection

(PPS), is important because selection coefficients acting at codon sites may change repeatedly during

persistent environmental changes, during adaptive radiations, and in host-pathogen interactions (such

as in a virus evading herd immunity in a host population). Thus, understanding how PPS affects ω in

proteins can inform the development of methods to detect positive selection and give us insight onto the

mechanisms of adaptive evolution in general.
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Here we develop a mutation-selection model of codon substitution under PPS. The new model can

be used to study the mechanistic relationship between the scaled selection coefficients and ω, providing

insight into the evolutionary dynamics of proteins under PPS. Furthermore, we develop a penalised-

likelihood implementation of the model and successfully use it to detect PPS directly in real proteins

bypassing the need to use ω as a surrogate measure of selection. Analysis under the new model indicates

codon substitution is an irreversible Markov process, leading to a highly asymmetrical distribution of

selection coefficients among substitutions in proteins under PPS. More strikingly, the PPS model shows

the criteria ω>1 to detect molecular adaptation in proteins is conservative and indeed arbitrary, as we

find evidence of PPS at codon sites where ω<1.

New Approaches
The PPS codon substitution model

We develop the new model by integrating the non-homogeneous selection model of Kimura and Ohta

(1970) with the mutation-selection codon substitution model of Halpern and Bruno (1998). Consider a

population of organisms with haploid genome number N . That is, the number of copies of the genome

in the population is N (i.e., the population size is N if the organism is haploid and N/2 if it is diploid).

Suppose a site k in a protein-coding gene is fixed for codon i in the population, and the scaled Malthusian

fitness of i is Fi,k. A new mutant codon j appears at the site and has initial selective advantage S∗ij,k=

F ∗j,k−Fi,k, F ∗j,k>Fi,k. The selective advantage then decays exponentially as a function of time (Kimura

and Ohta, 1970), for example, due to gradual environmental change. Kimura and Ohta (1970) showed

that the fixation probability of j is approximately Sij,k/(1−e−Sij,k)×N−1 where Sij,k is constant and 0<

Sij,k<S
∗
ij,k. In other words, the fixation probability of j is the same as that of an allele with intermediate,

but constant, selective advantage Sij,k.

It appears that other types of decay function lead to the same fixation probability. For example, the

same result is obtained in the case of frequency-dependent selection (FDS) when the fitness of j decays

exponentially as a function of the frequency of j in the population (dos Reis, 2013). In the case of FDS,

once j becomes fixed, any new mutant alleles may have high fitnesses because they would be rare. We

expect this type of dynamics in, for example, viruses escaping the herd immunity of a host population.

Similarly, if the environment gradually shifts between two states, then the selective advantage of j or i

would be continuously reset depending on the particular environment. This would then lead to re-setting

(or re-assignment) of the fitnesses of i and j. This persistent change in the selection coefficient is what

we term persistent positive selection (PPS). We formalize codon substitution under the PPS model next.
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Let the selection coefficient for the i→j mutation be Sij,k=Fj,k−Fi,k+Zk, where Fj,k, Fi,k and Zk(≥0)

are constant. Let the selection coefficient for the reverse mutant, j→ i, be Sji,k=Fi,k−Fj,k+Zk. In other

words, we have partitioned the fitnesses of j and i into two components: A constant component, Fj,k and

Fi,k, representing structural constrains of the protein on the amino acid encoded by the codon; and Zk,

the PPS component. Thus, when Zk>0, the selection coefficient is persistently reset with new mutations.

The substitution rate from i to j at location k, qij,k, is equal to the neutral mutation rate, µij, times

the number of i alleles in the population, N , times the fixation probability of the j mutant (Halpern and

Bruno, 1998; Kimura, 1983). Assuming synonymous substitutions are neutral, this gives

qij,k=


µij

Sij,k

1−e−Sij,k
, if the substitution is non-synonymous,

µij otherwise.

(2)

Irreversibility of codon substitution under PPS

Eq. 2 describes codon substitution as a continuous Markov process. Polymorphisms are ignored and

the population is assumed to switch from i to j instantaneously. This assumption appears reasonable if

Nµij�1, for all µij (e.g. Bulmer 1991). The proportion of time location k remains fixed for j (i.e. the

stationary frequency of j) is πj,k. A Markov process is said to be reversible in equilibrium if it satisfies the

detailed-balance condition πi,kqij,k=πj,kqji,k (Grimmet and Stirzaker, 2004). When Zk=0, the model of

Eq. 2 is reversible (Yang and Nielsen, 2008). However, when Zk>0 the process is, in general, irreversible

because the detailed balance condition does not hold. When Zk>0, the stationary frequencies are found

by solving the system of equations
∑
πj,kqji,k−

∑
πi,kqij,k=0 with the constraint

∑
πi,k=1. We calculate

the irreversibility index for site k as Ik= |πi,kqij,k−πj,kqji,k|, where Ik>0 indicates evolution at site k is

irreversible, and Ik=0 otherwise (Huelsenbeck et al., 2002).

Identifying protein locations under PPS

Given an alignment of protein-coding genes with corresponding phylogeny, the model of Eq. 2 can be

used to estimate the Fi,k and Zk using maximum penalised likelihood. To estimate the Fi,k, we use the

Dirichlet-based penalty of Tamuri et al. (2014) and for Zk we use an exponential penalty with parameter

λ (see Methods). For each site in the alignment, we compare the null model Zk=0 (no PPS) against

Zk>0 (PPS) using a likelihood-ratio test. Because of the boundary condition (Zk>0) in the test and the

use of penalised likelihood, the distribution of the likelihood-ratio statistic does not follow the typical χ2

distribution. Thus, we use Cox (1962) simulation approach as used in phylogenetics (Goldman, 1993) to

obtain the appropriate null distribution (see Methods).
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The relationship between selection coefficients and ω

The average substitution rate of codon site k, averaged over time is

ρk=
∑
i6=j

πi,kqij,k.

This rate can be separated into its non-synonymous and synonymous components, ρk=ρN,k+ρS,k, where

ρN,k=
∑
i 6=j

πi,kqij,kIN and ρS,k=
∑
i 6=j

πi,kqij,k(1−IN),

and where the indicator function IN =1 if the i to j substitution is non-synonymous, and =0 otherwise.

For a neutrally evolving sequence (e.g. a pseudogene) the corresponding rates are

ρ
(0)
N =

∑
i 6=j

π
(0)
i µijIN and ρ

(0)
S =

∑
i6=j

π
(0)
i µij(1−IN),

where π
(0)
i is the stationary frequency of i without selection, which is the same for all sites. Thus, the

relative non-synonymous rate is

ωk=
ρN,k

ρ
(0)
N

. (3)

See dos Reis (2015) for the full derivation. Spielman and Wilke (2015) give a slightly different definition

of ωk (see also Jones et al. 2016; Youssef et al. 2020).

We note the PPS model is general and has other models as special cases. For example, when Zk 6=0

and Fi,j =Fj,i for all i,j, we have

ωk=
Zk

1−e−Zk
,

and the model of Eq. 2 can be written as qi,j =µijωk if the substitution is non-synonymous and qi,j =µij

otherwise. In other words, the classic codon models (Muse and Gaut, 1994; Yang and Nielsen, 1998) are

a special case of Eq. 2 when all codons are assumed to have the same fitness. On the other hand, when

Zk=0 and Fi,j 6=Fj,i, the model of Eq. 2 reduces to the mutation-selection model of Halpern and Bruno

(1998).

Results
Detection of PPS in simulated data

Extensive simulations on the estimation of Fi,k are available in Tamuri et al. (2012; 2014). Here our

focus is on using simulations to assert whether sites under PPS (Zk>0) can be identified using Cox’s

method. We simulate codon alignments (1,000 codons in length) on a 512-taxa phylogeny, under various

strengths of PPS, with Zk=0,2,5, and 10. The values of Fi,j,k are drawn from random distributions to

produce sharp amino acid profiles as in real proteins (see Methods). These Fi,k and Zk values result

in ωk values roughly between 0.05 and 6 (Eq. 3). When Zk=0, 6.6% of sites are incorrectly detected
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Table 1. Performance of the LRT for detecting PPS sites in simulated data after FDR correction (5%)

True model λ=0.01 λ=0.5 λ=1.0

FPR at 0.05 significance

swMutSel (Z=0) 0.066 0.066 0.066

TPR at 0.05 significance

swMutSel+PPS (Z=2) 0.441 0.452 0.449

(Z=5) 0.952 0.952 0.947

(Z=10) 0.965 0.963 0.960

FPR: False positive rate, TPR: True positive rate.

to be under PPS, which is slightly higher than the 5% error I threshold (Table 1). When the selective

advantage is slight (Zk=2), the method roughly identifies 44% of sites under PPS (Table 1). The power

of the method is excellent and roughly over 95% when the selective advantage is strong (Zk≥5). We

note the exponential penalty on Zk has a noticeable, albeit slight, effect on the power of the test. When

the penalty parameter, λ is small, the resulting penalty is diffuse and the penalty is weak. However, as

λ increases, the penalty becomes stronger with probability density in the exponential moving towards

zero. In this case, estimates of Zk�0 are more strongly penalised and this translates in a small reduction

in the power of the test (Table 1). We note the penalised likelihood method used here is essentially the

same as posterior mode finding giving our penalties are proper probability densities (Cox and O’Sullivan,

1990; Tamuri et al., 2014), and thus the penalties on Zk and Fi,k act as prior densities which regularise

the parameter estimates (Cox and O’Sullivan, 1990).

Detection of PPS in real proteins

We tested for PPS sites in three real sequence datasets: the haemagglutinin protein (HA) from human

influenza H1N1 virus, the rbcL protein subunit from flowering plants, and the mitochondrial cytochrome

b (CYTB) protein from mammals (Table 2). Given the multiple sequence alignment, phylogeny, and

mutational parameters, we estimated the Fi,k and Zk using two penalty strengths, λ=0.001, and 0.05.

We then performed the LRT of PPS vs no PPS and used false discovery rate (FDR) at the 5% level to

identify sites under PPS. Using the weak penalty, λ=0.001, we detected PPS (Zk>0) at 65 sites in the

plant rbcL and 18 sites in the influenza HA, but we found no PPS sites in mammal CYTB (Table 2).

Interestingly, only 55 out 65 of PPS sites in rbcL have ω>1. For HA, all 18 PPS sites also have ω>1. The
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Table 2. Number of sites estimated to be under PPS in three real datasets.

Dataset # taxa # sites # Z>0 (ω>1)

λ=0.001 λ=0.05

Plant rbcL 478 466 65 (55) 50 (40)

Influenza HA 466 589 18 (18) 17 (14)

Mammal CYTB 418 407 0 (0) - (-)

location of PPS sites and estimated ωk values are shown in Fig. 1A-A”. When using the stronger penalty,

λ=0.05, the number of sites detected in rbcL and HA are reduced to 50 and 17 sites respectively (Table

2). This is not unexpected because, as noted above, stronger penalties push estimates of Zk towards zero

affecting the likelihood ratio test.

The distribution of selection coefficients at sites under PPS is asymmetrical

We estimated the distribution of selection coefficients among non-synonymous substitutions (Tamuri

et al., 2014) in the three protein-coding genes analysed (Fig. 1B-B”). For non-PPS sites (i.e. sites where

Zk=0), the distribution of selection coefficients is symmetrical, with a mode at S=0, because in this case

codon substitution is reversible and the detailed balance condition guarantees the proportions of slightly

advantageous and deleterious mutations fixed in the population will be equal over time (Yang and Nielsen,

2008). However, among PPS sites in plant rbcL and influenza HA, the distribution is highly skewed with

a mode at S>10 because irreversibility of the substitution process means the detailed balance condition

does not apply, and hence there is a persistent excess of advantageous mutations being substituted into

the population. For example, for sites with Zk≥10, the irreversibility index indicates a deviation of up

to 12% of substitutions from detailed balance, which is a strong deviation (Fig. 2a). Larger values of Zk

are also associated with faster substitution rates (Fig. 2b) and larger ωk values (Fig. 2c). For example,

for sites with Zk≥10, the corresponding ωk values range from about 1 to 4 (Fig. 2c).

PPS sites are under strong purifying constraints

At equilibrium, the average selection coefficient of new mutations at site k is

S̄k=
∑
i 6=j

πi,kPijSij,k,

where Pij =µij/
∑

jµij is the probability that the next mutation is j given the site is currently fixed for

i (dos Reis, 2015). If most new mutations are very deleterious, then the site is under purifying selection

and S̄k<0, while if most new mutations are advantageous the site is under diversifying selection and

S̄k>0. Historically, ωk has been used as a proxy for S̄k, based on the approximation of Eq. 1 (Yang and
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Nielsen, 2002). Thus calculating S̄k should provide insight into the relationship between the strength of

selection at a site and ωk.

Fig. 1C-C” shows the estimated S̄k for the three datasets plotted against ωk. For 43 PPS sites in rbcL

and one PPS site in HA, we find that S̄k<0. This shows PPS sites are effectively under a mixture of

purifying selection against deleterious amino acid substitutions, and diversifying selection in favor of a

few amino acids that substitute rapidly among each other. This trend is evidenced when studying the

pattern of PPS substitution in the influenza HA protein. The H1N1 influenza virus entered the human

population sometime prior to the 1918 influenza pandemic (dos Reis et al., 2009; Taubenberger et al.,

2005) and has remained largely as a single lineage since then, except from the introduction of a separate

lineage of reassortant H1N1 swine virus in the 2009 pandemic (Smith et al., 2009). Fig. 3 shows the

pattern of amino acid substitution for the 18 PPS sites in influenza HA between 1918 and 2009. For

example, site 3 remained virtually fixed for alanine between 1918 and the late 1990’s, and then suffered

several back and forth substitutions between alanine and valine between the late 1990’s and 2009, while

site 142 has been characterised by shifts between lysine and asparagine between 1918 and 2009. It’s

clear from Fig. 3 that the majority of PPS sites in the HA protein are characterised by back-and-forth

substitutions among a fairly reduced set of amino acids.

Discussion

Mutation-selection models of codon substitution have been successfully used to study the distribution

of selection coefficients in proteins (Rodrigue et al., 2010; Tamuri et al., 2014), to detect selection

shifts during adaptation (Parto and Lartillot, 2017), shifting balance (Jones et al., 2016), and to

understand protein evolution given structural constraints (Youssef et al., 2020). Previous works have

also accommodated a ω parameter within the mutation-selection model to detect adaptation at amino

acid sites (Rodrigue and Lartillot, 2017; Rodrigue et al., 2021; Yang and Nielsen, 2008). However in these

works ω is a separate parameter and not a function of the selection coefficients and thus its population

genetics interpretation is not clear (Rodrigue and Lartillot, 2017). Here we extended the mutation-

selection framework to the case of PPS without the need for the additional ω parameter. Instead, in the

new model, ω is a function of the selection coefficients and we believe this modelling approach can help

gain insight on the nature of protein adaptation.

The new PPS model is flexible as it appears to have performed well for the different modes of selection

studied here. For example, rbcL is the major subunit of the RuBisCo enzyme responsible for the fixation of

carbon during photosynthesis. The efficiency of RuBisCo is affected by environmental factors and rbcL
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FIG. 1. Analysis of proteins under the PPS mutation-selection model. (A-A”) Estimates of ω at protein sites. (B-B”)
Distribution of selection coefficients among non-synonymous substitutions. (C-C”) Relationship between ω and average

selection (S̄) at protein sites. Sites under PPS (Zk>0) are indicated in red in A-A” and C-C”, and their contribution to the
distribution of selection coefficients indicated in red in B-B”. In C-C’ the solid line is Eq. 1. The penalty on Zk is λ=0.001.

has been under persistent adaptive pressures during the successful adaptive radiation of angiosperms

around the ecoregions of the world (Kapralov and Filatov, 2007; Parto and Lartillot, 2018). This is

akin to the environment change model envisaged by Kimura and Ohta (1970). On the other hand, the

influenza HA protein is the classic example of positive selection on a pathogen evading its hosts’ herd

immunity (Fitch et al., 1997), and we showed here the PPS model performed well in detecting this

mode of adaptation. We believe the new PPS model, together with previous mutation-selection models

that relaxed the assumption of constant fitnesses (Parto and Lartillot, 2017; Tamuri et al., 2012), now

encompass the major modes of selection in proteins.

We would like to note here two features of coding-sequence evolution that are ignored in our formulation

of the PPS mutation selection model. First, the model assumes amino acid sites within the protein evolve

independently. This is unrealistic because amino acids are linked and their substitution pattern is affected

by interactions with other amino acids within the folded protein (Pollock et al., 2012; Youssef et al., 2020).

In particular, substitutions toward suboptimal amino acids can be compensated by rapid substitution

in another interacting amino acid, so as to reduce contact energies in the folded protein (Pollock et al.,

2012). How these rapid substitutions affect evolutionary dynamics within PPS and how they should be
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FIG. 2. Relationship between Zk and evolutionary parameters for PPS sites in HA and rbcL. A: Irreversibility index, Ik, v
Zk. The index is normalised to give the expected excess number of substitutions from detailed balance. B: Site substitution

rate, rk =−
∑
πkqii,k, v Zk. Note the qij,k are scaled so that they give the relative rate with respect to a neutral sequence

(Tamuri et al., 2014). Thus, if rk =1, then the site evolves at the same rate as, say, a pseudogene. C: Non-synonymous rate,
ωk v Zk. The penalty on Zk is λ=0.001 in all cases.

accommodated within the inference model will require further research (Youssef et al., 2020). Second, the

model assumes polymorphism is absent and new mutations either become fixed or lost instantaneously.

This assumption appears reasonable for most populations of plants and animals because, in these, the

scaled mutation rates, Nµ, are much less than one (Lynch and Conery, 2003). Even for influenza, a fast-

evolving RNA virus, estimates ofNµ are in the order of 10−3 (Zhao and Illingworth, 2019). However, levels

of standing polymorphism can be substantial in many microorganisms (Lynch and Conery, 2003) or for

some loci under certain forms of selection (e.g. selection in favour heterozygotes, Hughes and Nei 1988).

Incorporating polymorphism within the mutation-selection inference machinery will be challenging, but

recent polymorphism-aware phylogenetic approaches may provide a way forward (De Maio et al., 2015).

Perhaps the most important insight from the application of the PPS model to real data is that the

criteria ω>1 to detect positive selection in proteins is conservative. As we show here, sites under PPS are

also under strong purifying constraints, and, at equilibrium, produce many deleterious mutations that

are removed by selection. Because ωk is the weighted average over the rate of all possible synonymous

substitutions at a site, it follows that ωk will be reduced if there are many deleterious mutations at the

site even if the site is shifting rapidly among a few positively selection amino acids. We believe this insight

should be incorporated into the much faster codon substitution models used in phylogenomic analyses,

such as the branch-site model (Yang and Nielsen, 2002), to improve power in detecting adaptation in

proteins.
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FIG. 3. Pattern of amino acid substitution in PPS sites of human influenza (H1N1) HA protein between 1918 and 2009.
The penalty on Zk is λ=0.001. Each colored dot represents a particular amino acid as indicated in the legend.

Methods
Maximum penalised likelihood estimation and likelihood ratio test of PPS

The swMutSel model (Tamuri et al., 2012, 2014) is the special case of swMutSel-PPS when Zk=0. We

use swMutSel as a null model (H0 :Zk=0) and swMutSel-PPS as the alternative model (H1 :Zk>0) in

a likelihood-ratio test. The vector of fitnesses at site k, Fk=(Fi,k) and the PPS component, Zk are

estimated by maximising a penalised likelihood. The penalty on Fk is the Dirichlet-based penalty of

(Tamuri et al., 2014), while for Zk we use an exponential penalty P (Zk)=e−λZk , where the regularization

parameter, λ, controls the strength of the penalty. When λ=0 there is no penalty while λ>0 leads to

increasingly stronger penalties on the estimation of Zk. During inference, the qij,k (Eq. 2) are scaled in

terms of the expected number of neutral substitutions per site (see Tamuri et al. 2012). This guarantees

all sites are normalised to the same timescale. To speed up computation, the mutational parameters,

required to construct µij, and the branch lengths on the phylogeny are estimated under the FMutSel0

model (Yang and Nielsen, 2008) as explained in Tamuri et al. (2014). We note only the differences of

the Fi,k enter Eq. 2, thus, the fitness for the most common amino acid at site k is set to zero. Large

negative Fi,k values are capped to −10 during numerical optimisation. We recommend the optimisation

routine is repeated three times using different parameter start values to ensure convergence to the correct

estimates.

Let the maximum penalised log-likelihood for site k be `0,k and `1,k, under the H0 and H1 hypotheses

respectively. The test statistic is the difference in log-likelihoods δk=`1,k−`0,k. If the test statistic is

significantly different from zero, this is evidence site k is evolving under PPS. The distribution of the 2δk

statistic, when the null hypothesis is true, does not follow a χ2 distribution. There are two reasons for this.

First, because Zk=0 is at the boundary of parameter space, the test statistic would be, asymptotically,

distributed as a 50:50 mixture of a χ2 distribution and a 0.5 point probability mass at 0 (Goldman
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and Whelan, 2000; Self and Liang, 1987). The second reason is that the penalty on Zk affects the 50:50

proportion because the penalty forces the estimates of Zk towards zero.

Because we do not know what the asymptotic distribution of δk should be, we use Cox’s (1962) Monte

Carlo simulation to obtain the null distribution of δk. For a given site k in the alignment, we simulate

N replicate sites on the phylogeny using the maximum penalised likelihood estimates (MPLEs) of Fk

under H0. The distribution, ∆k, is determined by the difference in log-likelihood between the two models

for each simulated site: ∆k=(δ
(1)
k ,δ

(2)
k ,...,δ

(N)
k ) where δik=`

(i)
1,k−`

(i)
0,k is the log-likelihood difference for the

i-th simulation. If the test statistic from the real data (δk) is larger than, say, 95% of ∆k, we reject the

null hypothesis H0 (no PPS) and accept the alternative hypothesis H1 (PPS) at the α=0.05 significance

level. Cox’s approach has been shown to work well in phylogenetic datasets (Goldman, 1993). When

analysing an ensemble of sites in a multiple sequence alignment, we correct for multiple testing using a

false discovery rate procedure to select candidate PPS sites (Benjamini and Hochberg, 1995).

Padé approximation to calculate the matrix exponential

Calculation of the likelihood along a branch of length t in the phylogeny requires calculation of

P(t)=exptQk, where Qk=(qij,k) is the substitution matrix (Eq. 2). However, because the PPS model is

irreversible, the usual Eigen decomposition algorithm used to calculate P(t) is not stable (Yang, 2014).

Here we use the Padé approximation (Moler and Van Loan, 2003)

expA≈Rqq(A)=[Dqq(A)]−1Nqq(A),

where Nqq(A)=
∑q

i=0cq(i)A
i, Dqq(A)=

∑q
i=0cq(i)(−1)iAi, and cq(i)=(2q−i)!q!/(2q)!i!(q−i)!. Note

expA=(expA/m)m, with m=2j for some integer j. Accuracy is improved considerably by choosing

a suitable j such that the Padé approximation works well for expA/m. Then

expA≈ [Rqq(A/2
j)]2

j

.

Appropriate values for q and j are chosen according to the size of A and the desired accuracy in the

calculation of expA (Moler and Van Loan 2003: Table 1).

In our model, the calculation of the likelihood at a site involves multiple computations of exptQ for

every branch in the phylogeny. We choose q and j according to the largest branch length t. Because

(tQ/m)i=(t/m)iQi, we calculate all necessary cq(i) and Qi once and cache these in memory throughout

the likelihood calculation. Calculating Qi once is more efficient than setting A=Qt and applying the

Padé approximation directly. Instead, we compute Bi=(t/m)iQi, Rqq(B), and finally [Rqq(B)]2
j

for each

value of t. We found this matrix exponentiation algorithm is approximately 1.5 times faster than the
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Taylor series approximation suggested in phylogenetics (Yang, 2014), albeit using more memory to store

the precalculated matrix powers.

Simulated data

To test the specificity and sensitivity of the LRT for PPS, we simulated sites on a balanced 512-taxa tree

with branch lengths equal to 0.0125 neutral substitutions per site (Tamuri et al., 2014). We simulated

sites under a null model with no PPS (H0 :Zk=0), and under the alternative model with PPS (H1 :Zk>0)

with three strengths of selection Zk={2,5,10}, and with 1,000 sites simulated under each model setup.

Following Tamuri et al. (2014), amino acid fitnesses for each site were sampled from a bimodal normal

distribution with ten randomly-selected amino acids chosen to have F ∼N(0,1) and the remaining amino

acids to have F ∼N(−10,1). This simulation setup was chosen because it leads to simulated data that

captures two important features seen in real data: (1) A bimodal distribution of selection coefficients

among mutations, and (2) a sharp distribution of amino acid preferences among sites (Tamuri et al.,

2012, 2014).

Simulated data were then analysed with the swMutSel software to estimate model parameters. The

branch lengths and mutation parameters were fixed to their true values (k=2, π∗=0.25) throughout the

analysis and only the sitewise fitnesses (Fk) and diversifying selection (Zk) parameters were estimated.

For each simulation setup, we calculated the MPLE and the LRT as described above, using N=100

replicates in Cox’s procedure. In all analyses the Dirichlet penalty on Fk has α=0.01, and three strengths

of penalty on Zk were tested, λ={0.01, 0.5, 1.0}.

Using the LRT results, we determined the false positive and false negative rates. The false positive rate

is calculated by determining the number of tests that incorrectly rejected the null hypothesis (Zk=0).

The true positive rate is calculated from the number of tests that correctly rejected the null hypothesis

(Zk>0).

Real sequence data

We downloaded 3,120 HA protein-coding sequences of human influenza H1 viruses (excluding 2009

pandemic-H1N1 and partial sequences) from the NIAID Influenza Research Database (Squires et al.,

2012); we downloaded 3,490 RuBisCO eudicotyledon sequences from a previous study (Stamatakis et al.,

2010); and we downloaded CYTB genes of placental mammals from NCBI RefSeq (O’Leary et al., 2016)

mitochondria genomes. We reduced the HA and RuBisCO datasets to 466 and 478 sequences respectively

by using CD-HIT (Fu et al., 2012) with clustering thresholds of 99.3% and 96% of amino acid sequence

identity. The CYTB data was reduced to 418 sequences by keeping one sequence per mammal genus.

Sequences were aligned using PRANK (Loytynoja and Goldman, 2005), and the alignments used to
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estimate tree topologies with RAxML under the GTRCAT model (Stamatakis, 2014). Because the

swMutSel-PPS model is irreversible, trees must be rooted. Thus, outgroups were used to root the trees:

Avian influenza (HA), monocotyledons (RuBisCO) and monotremes (CYTB). Outgroups were removed

and analyses carried out on the rooted ingroup tree (for the PPS model), and the unrooted ingroup tree

(for the no PPS model). Sites with residues in fewer than 50 taxa were not analysed. This corresponds

to 31, 23 and 27 sites in the rbcL, HA and CYTB alignments respectively. We note Zk is not identifiable

if a site is conserved for a single amino acid. Such conserved sites have the same likelihood under the H0

and H1 hypotheses. MPLE and LRT were carried out as described above using α=0.01 in the Dirichlet

penalty. We note estimates of Fi,k are different between the two models (Zk=0 v Zk ¿ 0, Fig. S1).

Before carrying out the FDR correction to select candidates sites under PPS, we verify the distribution

of p-values is uniform (Fig. S2).

Supplementary data and software

Alignments, phylogenies and analysis output are available in FigShare, doi:

10.6084/m9.figshare.14637765.v1. The mutation-selection PPS codon substitution model is implemented

in the swMutSel computer program available at github.com/tamuri. Supplementary Information is

available at Molecular Biology and Evolution online.
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