Local topological moves determine global diffusion properties of
hyperbolic higher-order networks
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From social interactions to the human brain, higher-order networks are key to describe the un-
derlying network geometry and topology of many complex systems. While it is well known that
network structure strongly affects its function, the role that network topology and geometry has on
the emerging dynamical properties of higher-order networks is yet to be clarified. In this perspec-
tive, the spectral dimension plays a key role since it determines the effective dimension for diffusion
processes on a network. Despite its relevance, a theoretical understanding of which mechanisms lead
to a finite spectral dimension, and how this can be controlled, represents nowadays still a challenge
and is the object of intense research. Here, we introduce two non-equilibrium models of hyperbolic
higher-order networks and we characterize their network topology and geometry by investigating
the interwined appearance of small-world behavior, §-hyperbolicity and community structure. We
show that different topological moves, determining the non-equilibrium growth of the higher-order
hyperbolic network models, induce tuneable values of the spectral dimension, showing a rich phe-
nomenology which is not displayed in random graph ensembles. In particular, we observe that, if
the topological moves used to construct the higher-order network increase the area/volume ratio,
the spectral dimension continuously decreases, while the opposite effect is observed if the topologi-
cal moves decrease the area/volume ratio. Our work reveals a new link between the geometry of a
network and its diffusion properties, contributing to a better understanding of the complex interplay

between network structure and dynamics.

I. INTRODUCTION

Higher-order networks are generalized network struc-
tures that capture the many-body interaction of com-
plex systems [1-6]. In recent years, they have become
increasingly popular to represent different types of data
beyond the framework of pairwise interactions, including
the human brain [7-10], social interacting systems [11-
19], financial networks [20, 21], and complex materials
[22-24]. Interestingly, several studies on synchronization,
diffusion, epidemic spreading and evolutionary dynam-
ics have shown that taking into account the higher-order
organization of networks can lead to emergent behavior
remarkably different from that of graphs, where interac-
tions are limited to groups of two nodes only [25-37].
Therefore, establishing the relation between the structure
and the dynamics of higher-order networks is currently a
field of intense research activity [2].

A powerful tool to characterize higher-order network
data is Topological Data Analysis, which provides a gen-
eral mathematical and computational framework to an-
alyze data from their topological shape [7, 38-41]. In
a number of cases, these analyses have been able to ex-
tract relevant information from real networks that cannot
be detected by more traditional Network Science met-
rics. Moreover, topology can directly affect higher-order
network dynamics by determining the evolution of topo-

logical signals, i.e. dynamical signals defined not only
on nodes but also on links, triangles, and other higher-
order structures [25, 42-44]. A natural way to repre-
sent higher-order networks is by simplicial complexes,
which differently from graphs are not only formed by
nodes and links, but also include triangles, tetrahedra
and so on. Together with cell complexes — which allow
as building blocks also other regular polytopes such as
hypercubes and orthoplexes — simplicial complexes de-
scribe discrete topological spaces. Therefore, modelling
higher-order networks with simplicial and cell complexes
is often the first step for conducting a topological inves-
tigation of higher-order networks.

Models of dynamically evolving simplicial and cell
complexes built by simple local rules can affect the
higher-order network topology by causing the emer-
gence of a non-trivial meso-scale topological organiza-
tion. For instance, models of simplicial complexes im-
plementing triadic closure [45], or constructed by gluing
together simplices through the iteration of simple topo-
logical moves [23, 24, 46, 47] were found to generate
higher-order networks with emergent community struc-
ture. Moreover, simplicial complexes and cell complexes
have also an intrinsic geometrical nature, and for this rea-
son represent an ideal setting to investigate the proper-
ties of emergent hyperbolic network geometry in complex
systems [4, 23, 24, 46, 48, 49]. In particular, models of
emergent hyperbolic network geometry reveal the funda-



mental rules responsible for the wide-spread occurrence
of hyperbolicity in real network datasets and in the struc-
ture of knowledge graphs [50-54].

A characteristic feature of emergent geometries is re-
vealed by the spectral properties of their network skele-
ton, i.e. the network that is generated from the higher-
order system only retaining the pairwise interactions.
In particular, a fundamental indication that the higher-
order networks have a characteristic geometrical nature
is associated with the emergence of a finite spectral di-
mension of their graph Laplacian. Broadly speaking, the
spectral dimension dg of the graph Laplacian of a net-
work indicates the dimension of the network as perceived
by a random walker crawling on the network. As such,
on a regular Euclidean lattice the spectral dimension dg
coincides with the dimension of the lattice d.

Until recently, it was believed that the heterogeneous
degree distributions and the Fiedler eigenvalue of the
graph Laplacian were the main structural determinants
for dynamical processes in networked systems. These
considerations, however, reveal how the investigation of
higher-order networks has recently transformed the way
in which we look at the classical problem of the interplay
between structure and dynamics on complex networks
[65]. From the study of higher-order networks, it is now
becoming clear that both network topology and network
geometry can affect dynamics in unexpected ways that
go well beyond previous beliefs [2]. In particular, the
spectral dimension constitutes a fundamental quantity to
capture how geometry affects dynamics. For instance, it
is known to characterize the return time of random walk-
ers [56, 57], the stability of synchronised states [26, 27],
universal critical phenomena [58-64], quantum diffusion
[65, 66] or the universal properties of different quantum
gravity approaches [67-69]. Remarkably, the value of
the spectral dimension varies significantly from network
to network. Moreover, in random graphs and expanders
(i.e. sparse graphs with large Cheeger constant, which
cannot be divided in two macroscopic subgraphs without
cutting a large set of links [70, 71]) the spectral dimen-
sion is not even defined as their highly non-local nature of
their connections have the effect of introducing a spectral
gap in the spectrum of the graph Laplacian.

Most of the models displaying emergent spectral di-
mension evolve by the iteration of simple topological
moves that are also responsible for a non-trivial commu-
nity structure. Moreover, in the existing models of emer-
gent hyperbolic geometry that display a finite spectral
dimension, including the model Network Geometry with
Flavor [24, 26, 27, 47], the dependence of the spectral di-
mension on the model parameters has yet to be clarified.
Indeed, how a finite spectral dimension emerges is still an
open problem. Which are the general microscopic mech-
anisms giving rise to a finite spectral dimension? What
is its relation to hyperbolicity of the associated emergent
geometries?

In this work we address these questions by systemati-
cally investigating the relation between the simple topo-

logical moves determining the local evolution of higher-
order networks and their meso-scale and global proper-
ties. Our results are based on the analyses of two dis-
tinct classes of models — the Short-Range Triadic Closure
(STC) model and the Network Geometry with Flavor
(NGF) model- that generalize previous models enforcing
triadic closure [45] and displaying emergent hyperbolic
geometry [46] respectively. We illustrate how different
local topological moves can lead to important differences
in the large-scale structural and dynamical properties of
the higher-order networks. Specifically, we show how dif-
ferent topological moves can be used to increase or de-
crease the value of the spectral dimension and the modu-
larity of hyperbolic higher-order networks. Interestingly,
we directly link the emergence of a smaller spectral di-
mension to topological moves that enforce a larger ratio
between the area and the volume of the considered emer-
gent hyperbolic geometries.

The paper is structured as follows. In Sec. II we de-
fine the two classes of models: the STC and the NGF
model. In Sec. IIT we discuss the topological properties
of these models, including a detailed discussion of the role
of the topological moves on the evolution and emergence
of non-trivial community structure in both models. In
Sec. IV we characterize the emergent hyperbolic geome-
try of the STC and the NGF model. In Sec. V we show
how the emergent spectral dimension of both models is
modulated by the choice of topological moves adopted
for the evolution of the higher-order network models and
the implications for diffusion dynamics. Finally, in Sec.
VI we provide some concluding remarks.

II. HIGHER-ORDER NETWORK MODELS AND
THEIR UNDERLYING NETWORK SKELETON

A. DMathematical definition of cell complexes and
network skeleton

Higher-order networks allow to represent networked
systems which are not limited to only pairwise inter-
actions. A common way to describe such structures is
to introduce new higher-order building blocks known as
simplices. A d-dimensional simplex is formed by d + 1
nodes, each one interacting with all the other ones. Thus,
a d-dimensional simplex is a node when d = 0, a link
when d = 1, a triangle when d = 2, a tetrahedron when
d = 3, and so on. The underlying network skeleton of
a d-simplex, i.e. the network retaining only the pair-
wise interactions between the nodes, is a (d + 1)-clique.
Simplicial complexes — a collection of simplices which re-
spect a particular inclusion rule of their lower order faces
— provide a representation of higher-order networks. The
facets of a simplicial complex are the simplices that are
not faces of any other simplices of the simplicial complex.
The dimension of a simplicial complex is the maximum
dimension of its facets. The skeleton of a simplicial com-
plex is the network constructed from the simplicial com-



plex retaining only the information about its nodes and
links.

In a number of real-world scenarios, however, higher-
order networks may be constructed by buildind blocks
which are more loosely connected than simplices. For in-
stance, a protein interaction network is formed by a set of
proteins that might have a complex interaction pattern
involving more than two agents, but might not be bind-
ing to each other in an all-to-all small subgraphs. These
generalised building blocks are know as cells. Mathe-
matically, a d-dimensional cell is a d-dimensional convex
polytope, i.e. a topological space homeomorphic to a
d-dimensional open ball. Therefore, 0-dimensional cells
are nodes and 1-dimensional cells are links, and there-
fore do not differ from 0-dimensional and 1-dimensional
simplices. However, differences originate in higher di-
mensions. For instance, 2-dimensional cells include m-
polygouns such as triangles (2-dimensional simplices), but
also squares, pentagons, etc. Similarly, 3-dimensional
cells include the Platonic solids, such as tethrahedra
(3-dimensional simplices), cubes, octahedra, dodecahe-
dra, and icosahedra. Interestingly, whereas in dimension
d = 4 there are more regular polytopes than in dimension
d = 3 (being 6), for any dimension d > 4 there are only
three types of regular (convex) polytopes: the simplex,
the hypercube and the orthoplex.

Similarly to simplicial complexes, cells may be aggre-
gated into a cell complex. In particular, a cell complex
K has the following two properties:

(a) it is formed by a set of cells that is closure-finite,
meaning that every cell is covered by a finite union
of open cells;

(b) given two cells of the cell complex a € K and o/ €
K then either their intersection belongs to the cell
complex, i.e. aNa’ € K or their intersection is a
null set, i.e. anNa’ = 0.

The dimension d of a cell-complex is the maximum
dimension of its cells. Therefore, a d-dimensional Eu-
clidean square lattice can be seen as a cell-complex of
dimension d as it is formed by unit cells which are hyper-
cubes of dimension d. Similarly to simplicial complexes,
the skeleton of a cell-complex is the network generated
from the cell complex only retaining the pairwise inter-
actions between its nodes.

B. The building blocks of the proposed
higher-order models

In the following we consider two non-equilibrium mod-
els of higher-order networks. Each model is characterized
by the non-equilibrium dynamics describing the higher-
order network growth. At each time step one or more
nodes are added and connected to the rest of the net-
work through a specific higher-order interaction, repre-
senting the building blocks of our networked structures,

and taken to be either d-dimensional simplices or d-
dimensional orthoplexes. The d-dimensional simplexes
have been defined in the previous section as formed by
d + 1 nodes each one interacting with all the other ones.
The d-dimensional orthoplex is a regular polytope with
2d nodes and 2¢ faces formed by (d—1)- dimensional sim-
plices. For instance, in d = 2 the orthoplex is a square
having 4 nodes and 4 links, for d = 3 the orthoplex is
a bi-pyramid with a square basis having 6 nodes and
8 triangular faces. In general, the network skeleton of
a collection of a d-dimensional orthoplex is more sparse
than the one of d-dimensional simplices, which is a fully
connected clique.

Since both d-simplices and d-orthoplexes admit as
(d—1)-faces exclusively (d—1)-dimensional simplices, or-
thoplexes and simplices can be easily glued to each other
and combined as coexisting building blocks of a higher-
order network (also called cell complex). For instance,
in our higher-order network models defined in dimension
d = 2, we will combine triangles and squares glued along
their links in higher-order discrete architectures. How-
ever, d-simplices and d-orthoplexes can be glued to each
other according to different topological moves. In order
to reveal the macroscopic consequences of the choice of
different local moves, here we consider two specific mod-
els: the Short-Range Triadic Closure (STC) model, and
a new variation of the Network Geometry with Flavour
(NGF) model proposed in Refs. [47, 49].

C. Short-Range Triadic Closure (STC) model

The Short-Range Triadic Closure (STC) model is a
higher-order network model that generalizes triadic clo-
sure models considering not only the introduction of tri-
angles but also of squares. The model is defined as fol-
lows. Initially (at ¢ = 1), the network is formed by an
(m + 1)-clique with all its triangles filled. At each time
step t > 1, a new node r is added to the network and
connected to the rest of the higher-order network by m
links and by m — 1 higher-order interactions. The first
link of the new node is connected to a randomly selected
node i. The remaining m — 1 links are chosen in such a
way to close triangles with the first link (r,4) with prob-
ability ¢, and to close squares with probability 1 — ¢q. If
the first event occurs, the new link is connected to a ran-
dom neighbour j of node ¢, forming the triangle (r,4, 7).
On the contrary, if the second event occurs, the new link
is connected to a random second neighbour j’ of node ¢,
and a fourth node k is selected among the common neigh-
bours of i and j’, and the square (r,i, k,j') is formed. If
q = 1 the higher-order network grows exclusively by the
addition of triangles, whereas for ¢ = 0 it grows by the
addition of squares. Therefore, the STC model generates
cell complexes that are (d = 2)-dimensional. The pro-
cess and the underlying network skeleton are illustrated
in Fig. 1 for m = 2.

A long-range version of the model, without the limi-
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FIG. 1. Illustrative sketch of the different topological moves used to grow higher-order networks (top panels) for the STC (with
m = 2) and NGF (with d = 2) models, and their corresponding network skeletons (bottom panels). In the case of the STC
model, at each time an existing node ¢ is randomly selected. Then, with probability ¢ a first neighbour of node i, let say node
7, is randomly chosen, and a new node r is linked to both i and j, thus forming a triangle. By contrast, with probability 1 — ¢
a second neighbour j’ of node i is selected and the new node r is linked to both i and j’, closing a square. The fourth node k
conforming the square is randomly selected among the shared neighbours of ¢ and j’. For the NGF model, at each time-step an
existing link [ is randomly selected according to Eq. (1) and either a square (with probably p) or a triangle (with probability

1 — p) is added to the cell complex.

tation to connecting only to 15 or 2" neighbours, was
extensively studied in [45]. It was shown to have a heavy-
tailed degree distribution, short paths, a strong commu-
nity structure and high clustering (for ¢ > 0). The STC
dynamics is only driven by an effective sublinear prefer-
ential attachment, i.e. new links are effectively attached
to a generic node ¢ with a probability proportional to
kf with 8 < 1, however as m increases the exponent 6
approaches one, leading to broader degree distribution.

D. The Network Geometry with Flavor (NGF)
model

The second model that we consider is a variation of the
Network Geometry with Flavor (NGF) model proposed
for cell complexes in Refs. [46, 49]. In its original formu-
lation, the NGF cell complexes evolved by the subsequent
addition of a single type of regular polytope (i.e. all the
polytopes of the cell complexes are the same). Here we
generalize this modelling framework by allowing the cell
complex to be formed by different types of d-dimensional
polytopes. In particular, the present version of the NGF
model generates d-dimensional higher-order networks by
subsequently gluing together d-dimensional simplices, or
d-dimensional orthoplexes, along their (d—1)-faces. Each
(d — 1)-face « of the higher-order network is character-
ized by its incidence number n,, indicating the number
of d-dimensional polytopes incident to the face, minus 1.

The higher-order network is constructed as follows.

Initially, (at ¢ = 1) the NGF is formed by a single d-
dimensional orthoplex. At every subsequent time step
t > 1, a new d-dimensional polytope is glued to a (d—1)-
face . The new polytope is a d-dimensional ortho-
plex with probability p and a d-dimensional simplex with
probability 1 — p. The face a to which the new polytope
is attached is chosen with probability

1+ sn,
Yoo (14 sn4)’

where s € {—1,0,1} is a parameter of the NGF model
called flavor. For p = 0, if we neglect the initial con-
dition, the NGF is formed exclusively by d-dimensional
simplices and reduces to the model treated in Ref.
[49]. For p = 1, the NGF is formed exclusively by d-
dimensional orthoplexes, and this limit has been studied
in detail in Ref. [47].

In general, NGFs comprise of d-dimensional cell com-
plexes. In the following, we will often refer to their net-
work skeleton as the underlying NGF network. NGF net-
works display interesting combinatorial properties that
have been well characterized in the case p =0 [49] and
p =1 [47]: the degree distribution is scale-free for a wide
range of values of s and d, and the resulting networks are
small-world and have an infinite Hausdorff dimension.
Despite the small-world property, NGFs have a finite
spectral dimension together with a strong hierarchical-
modular community structure [27, 47]. In this work we
fix the value of the flavor of the NGF model to s = 0,
leading to power-law networks as the result of an effec-

I, = (1)



tive preferential attachment mechanism for any dimen-
sion d > 2. A schematic illustration of this model is also
represented in Fig. 1 for d = 2.

III. TOPOLOGICAL PROPERTIES OF THE
STC AND THE NGF MODELS

The skeleton of the STC and NGF cell complexes —
made up by considering only the nodes and links — makes
up the STC and NGF networks, whose properties can be
evaluated through standard network science metrics. Ac-
cording to such type of analyses, the two models can be
considered remarkably similar. They both lead to net-
works with high clustering, heterogeneous degree distri-
butions, short paths and a strong community structure.
For instance, we note the case of m = 2 (STC model) and
d = 2 (NGF model). For ¢ = 1 and p = 0, the two net-
works are made up by gluing triangles together. Then,
as q decreases (STC) or p increases (NGF), triangles are
substituted by squares. Thus, in order to compare the
two models in the following, we define the complemen-
tary control parameter p = 1 — ¢ for the STC model,
so that increasing p leads in both models to a decrease
in the number of triangles (or, more generally, simplices)
and an increase in the number of squares (or orthoplexes)
conforming the high-order network.

Despite the aforementioned similarities from the net-
work science perspective, the two models are constructed
by adopting different topological moves, as we go on to
show in the following subsections.

A. Topological moves for the STC and NGF model

The most striking difference between the STC and the
NGF cell complexes is that, while the STC cell complex
is d = 2 dimensional for every value of m, the NGF cell
complex has varying dimension d > 2 given by the di-
mensionality of its building blocks. Besides, even if we
limit our considerations only to STC and NGF cell com-
plexes in dimension d = 2, the two models differ by the
dynamical rules used for their generation. These rules,
determining the way in which simplices and orthoplexes
are added to the cell complex, are called in topology topo-
logical mowes.

Both models share a remarkable feature, which is that
the topological moves leading the evolution of the cell
complexes do not change the topological invariants of
the cell complexes. In fact, simplices and orthoplexes
are added to the cell complex in such a way that neither
the Betti numbers (with the only non-zero Betti number
being Sy = 1) nor the Euler characteristic of the cell com-
plex x change [72, 73]. This latter property can be easily
checked for both the STC and the NGF models in d = 2
using the well known definition of the Euler characteris-
tic as alternating sum of the number sj of k-dimensional
cells of the cell complex, with 0 < k < d [72, 73] (leading,

Model Process +AV |—AE|+AF|Ax
Triangle 1 -2 1 0
m=2
STC Square 1 -2 1 0
m> 2 15 Tink 1 -2 1 0
following links| 0 -1 1
_ Simplex 1 -2 1 0
NGF| d =2 Orthoplex 2 -3 1 0

TABLE I. Changes in the number of nodes AV, number of
links AF and number of 2-dimensional cells AF' and corre-
sponding change in the Euler characteristic Ax for each topo-
logical move determining the evolution of the STC and NGF
high-order networks of dimension 2.

for d = 2, to the famous expression x = V — E+ F where
V, E and F' are respectively the number of nodes, links
and 2-dimensional cells of the cell complex). For the STC
model with m = 2, a single 2-dimensional cell is added
at each time, which can be either a triangle glued to
an existing link, or a square glued to two existing links.
In both cases, the cell complex increases by one node,
AV =1, two links, AE = 2, and one two dimensional
cell, AF =1, so the Euler characteristic changes by

AY=AV-AE+AF=1-2+1=0. (2)

For the STC model with m > 2, at each time, m — 1
cells of dimension d = 2 are added to the cell complex.
The first cell is glued to a link as for the case m = 2,
leading to Ax = 0. The subsequent cells share a link
with the first cell (the one between the new node and
the randomly chosen node) and add a new link, AF =1,
and a 2-dimensional cell, AF = 1, to the cell complex,
where the 2-dimensional cell can be either a triangle or a
square. Therefore, none of the subsequently added cells
change the Euler characteristic of the cell complex either,
ie.

A=AV -AE+AF=0-1+1=0. (3)

In the case of the NGF model, for d = 2 at each time
we add a single 2-dimensional cell glued to a single link.
If the added cell is a triangle, then this adds a single
node, AV = 1, two links, AE = 2, and one triangle,
AF =1, leading to

AY=AV-AE+AF=1-2+1=0. (4)

If, on the contrary, the added 2-dimensional cell is a
square, then it adds two new nodes, AV = 2, three links,
AFE = 3, and one square AF = 1, leading to

Ax=AV-AE+AF=2-3+1=0. (5

By similar direct inspection it can be easily shown that
also for dimensions d > 2 the topological moves that
define the NGF evolution do not change the Euler char-
acteristic. The changes of AV, AFE, AF and Ay for all
the discussed topological moves are summarized in Table
1.
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FIG. 2. Modularity @ of the STC (panel (a)) and NGF (panel
(b)) networks for different values of m and d. Results are
for N = 103. Shaded areas indicate margin errors and are
given by the standard deviation; results are averaged over
100 network realizations.

B. Emergent community structure

Triadic closure was recently proposed as a general, uni-
fying mechanism to generate a community structure [45].
Such a process is frequently observed in social networks,
where open triads are often closed over time, and the
density of triangles is remarkably high [74-76]. Models
of network growth based on simple triadic closure have
been shown [45] to naturally lead to the emergence of
community structure, provided that the network is suffi-
ciently sparse.

Interestingly, the non-equilibrium mechanisms leading
to the emergence of a community structure are at work
both in the STC and NGF models via the local topolog-
ical moves. Consequently, both models lead to network
skeletons with a strong community structure, as indi-
cated by the high values of the modularity coefficient @
(see Fig.2). However, as p increases the models display
radically different behaviors: for STC networks @ de-
cays almost linearly with p = 1 — g, whereas for NGF
networks with d = 3, 4 it grows. In the STC model,
as longer-range connections become more prominent, in-
terconnections between regions also grow, decreasing the
modularity. By contrast, orthoplexes in the NGF model
are less interconnected with the rest of the network, as
they only share one face with it, but have more faces than
the simplices, leading to an increase in the modularity.
In this perspective, the NGF model with d = 2 stands
out as its behavior is more complex: the modularity is
relatively high for all p, following an inverse U-shape. In
any case, the value of the modularity of the NGF model
remains always significantly high, in contrast to the STC
model.
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FIG. 3. We represent the mean minimum path £ for the STC
(panel (a)) and NGF (panel (b)) networks as a function of
the network size NV for p = 0.5. £ grows logarithmically with
N, which is indicative of the small-world property. Panels (c)
and (d) show ¢ for different values of m and d, respectively
for the STC and NGF models, for networks with N = 103
nodes. Results in all panels have been averaged over a set of
100 network realizations, and the shaded areas indicate the
error margins as given by the standard deviation.

IV. EMERGENT GEOMETRICAL NETWORK
PROPERTIES

A. Infinite Hausdorff dimension

In this section we discuss the emergent geometrical
properties of the STC and the NGF networks. An impor-
tant geometrical notion that applies to network models
with variable number of nodes, including regular lattices,
is that of the Hausdorff dimension. The Hausforff dimen-
sion describes how the mean distance of the network ¢
scales with the total number of nodes (or network size)
N as N goes to infinity. £ is defined as

1
Ezmzzdm (6)

i jFEi

where d;; is the length of the minimum path between
nodes ¢ and j. For regular lattices, the mean distance
on the network scales as a power of the network size for
N>1,

L~ NV, (7)

where dy is the Hausdorff dimension. In most random
graphs, like Erdds-Rényi ones, ¢ scales logarithmically
with the size N, i.e. ¢ ~ log N, meaning that distances
on the network are short, and it is possible to go from
one node to any other passing through a small number
of intermediate nodes. This is the so-called small-world
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FIG. 4. Schematic representation of d-hyperbolicity. (a)
Schematic representation of a §-thin triangle formed by three
nodes of the network and the shortest paths between the
nodes. (b) Hyperbolic tree with § = 0. To calculate the
0-hyperbolicity, we select a triad of nodes (red) and calculate
the shortest paths among them. For a tree, these intersect
(at least) in one node, and so the distance is always § = 0.
(¢) NGF network (d = 2, p = 0) with 6 = 1. For the NGF
network, the three paths do not intersect in general, but they
are at a maximum distance 6 = 1. Note that in this case all
the paths intersect in one triangle, and so the NGF networks
can be seen as trees of polytopes.

property, which corresponds to an infinite Hausdorff di-
mension

dH = Q. (8)

Both the STC and NGF models are small-world and
have an infinite Hausdorff dimension, as shown in Fig.
3a,b. However, for a fixed value of N, the characteristic
distance ¢ = ¢(N) behaves remarkably differently in the
STC and NGF models as a function respectively of ¢ and
p as it is shown in Fig. 3c,d. In fact, in the STC model,
as p = 1—q increases and we add more squares, distances
in the network decrease as longer distance links become
more common. This is evidenced by the decrease in the
characteristic distance £ with p = 1 — ¢ (see Fig. 3¢). On
the contrary, distances on the NGFs networks increase
as more orthoplexes are added (with increasing p), for
any dimension d (see Fig. 3d). In order to better in-
terpret this finding, we note that orthoplexes have more
faces than simplices, and they are only glued to the ex-
isting network through one of them, de facto increasing
distances on the network.

B. J-hyperbolicity of the STC and the NGF models

Hyperbolicity is an important geometrical aspect of
real-world networks, and it is know to affects the effi-
ciency of search [78], the efficacy of embedding algo-
rithms [53, 54] and the behavior of dynamical processes
such as percolation [79].

An important principle to test the hyperbolicity of real
networks was proposed by Gromov [50], who formulated

0.25
(b)
01 [ ol e ]
0.2
0.08
2015 £0.06 \/\/\—\/
0.04
0.1 ——m =2 —d—2
m=3 0.02 d=3
——m =4 ——d =4
0.05 0
0.5 1 0 0.5 1
1-¢ P
3 2
() (d)
2.5 1.5
S 2 / < 1
15 0.5
1 0
0 0.5 1 0 0.5 1
1-¢q P

FIG. 5. é-hyperbolicity as given by the average dq. for STC
(panel (a)) and NGF (panel (b)) networks and by the worst
value 6, (panel (c) for the STC networks and (d) for the
NGF networks). In panel (c) the curve for m = 3 overlays
with the one for m = 4, whereas in panel (d) all the curves
(d=2, 3, 4) overlay.

the concept of §-hyperbolicity of networks [23, 24, 51,
52]. The §-hyperbolicity measures how far a network
is from a hyperbolic tree by comparing the structure of
shortest paths of triads of nodes on the network. On a
tree these paths always share at least one vertex, i.e. they
are at distance 0 = 0 and the tree is § = 0 hyperbolic
[77]. However, more in general the paths need not touch
and it the finite distance among them may be finite. This
defines the fatness of the triad. Hyperbolic spaces are
characterized by having thin triangles (small § < N).
These concepts are illustrated in figure 4. Interestingly,
in a number of real networks § remains always small, and
in particular much smaller than the network diameter,
indicating the hyperbolic geometry of the network.
Here, in order to characterize the d-hyperbolicity
of the STC and the NGF model we adopt the so-
called four-point criterion [51]. We consider any
quadruple of distinct nodes (i1,i2,i3,74) of the net-
works, and we choose their permutation (uy, ug, us, ug) =
(1) b (2)5 b (3)> Z'Tr(4)) such that the following inequalities
old,

Sul1u2au37u4 S Mu17u2vu31u4’

Mul,ug,ug,U4 S Lu1,u2,U3,u4’ (9)

where d, , is the distance between the node pair
(u,v), as defined above, and Sy, us,us,uas Mus isus,u, a0d
Lul,iz,ug,u4 are deﬁned as

Su11u27u37u4 = dul;”? + du3au47

Mu1)u27u37u4 = dul)u3 + du2xu4’

Lu1,u2,u3,u4 = dul,u4 + duz,u3' (10)
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FIG. 6. Relation between d,, and the network diameter D,
as given by dqv/(D/2), as function of the number of edges in
the network, E. Panels (a), (¢) and (e) correspond to STC
networks with m = 2, 3, 4, respectively, and ¢ as indicated
by the legend. Panels (b), (d) and (f) correspond to NGF
networks with d = 2, 3, 4, respectively, and p as indicated
by the legend. Each data-point indicates the average over
20 network realizations, with the shaded errorbars indicating
the standard deviation. For each network, 04, is estimated
by randomly sampling over 107 node quadruplets [77].
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FIG. 7. Relation between 6, and the network diameter as
given by d.,/(D/2) as function of the number of edges in the
network, E, for STC (panels (a), (c¢) and (e)) and NGF (pan-
els (b), (d) and (f)) networks with m,d = 2, 3, 4 from top to
bottom and ¢ and p as indicated by the legends [77]. Curves
for STC networks with ¢ < 1 (particularly for m = 3 and
4) display a non-trivial transient behavior due to 7) the small
network sizes and 4i) the initial condition for the network con-
sisting in one simplex without any second-neighbours, which
leads to transient fluctuations on the effective value of ¢, no-
ticeable for the small network sizes considered here. After
this transient, d,,/(D/2) decreases again in all cases.

For any quadruple of nodes (i1,1i2,13,%4), once we have
found their permutation (u1,us,us,us) satisfying Eqs.
(9) we put

+ —

11,12,13,04 Mul,ug,ug,u4] . (11)

[Luhuzﬂlsﬂm -

N —

In order to evaluate the d-hyperbolicity of the network,
we consider two metrics: the §,, or worst (largest) value
of 6T, and the average value of 5T, &4, which are defined
as

_ +
O = (11,1321%2(,24) 5i1,i27i37i4’
-1
N
o E +
doo = |:( 4 61’1’1'2,1'3,2'4' (12)
91,12,13,14

Both the STC and the NGF networks are §-hyperbolic,
as shown in Fig. 5. In particular, the NGF has a constant
value of §,, = 1, which implies that the short-paths are
either at distance 0 or 1, i.e. they always share at least
one polytope. Thus, NGFs can be interpreted as “trees
of polytopes” as exemplified in Figure 4(c). For STC
networks, on the contrary, J,, can be greater than one.
In order to determine the §-hyperbolic structure of STC
networks, we follow Ref. [77], where it was proposed
to characterize the §-hyperbolicity of finite networks by
comparing it to the network diameter D, as a function
of the number of edges in the network E. This is de-
picted in Figures 6 and 7, respectively for the average
value d,, and for the worst value d,,. The results indi-
cate that, in the large network limit, both d,,,/(D/2) and
dw/(D/2) decrease with the network size, illustrating the
0-hyperbolicity of these HO network models. We note
that an exact calculation of d,, and d,, is highly compu-
tationally demanding (since all network quadruplets need
to be examined) which prohibits the examination of very
large network sizes. Thus, results in Figure 6 for d,, are
obtained by subsampling the space possible quadruplets
[77], whereas results in Figure 7 for d,, (the maximum
value which cannot be accurately estimated by subsam-
pling) correspond to small network sizes which can be
fully explored.

Moreover, for both models we found that 4, < 6y, in-
dicating that in general the distance between the shortest
paths is much smaller than the maximum given by &,,.
These results confirm that both the STC and NGF (with
flavor s = 0) models define emergent hyperbolic network
geometries, even tough these are not discrete manifolds
(since in general the incidence number of the (d — 1)-
dimensional faces (d = 2 always for the STC model) can
be greater than 1, in which case different d-dimensional
cells associated with a face intersect). Note that, while
the STC remains §-hyperbolic for any value of the param-
eter ¢, the model in Ref. [45] allowing each new node to
connect with non-zero probability to two or more nodes
chosen randomly in the network is not d-hyperbolic.
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FIG. 8. The area A = €4 of a unit ball in d dimension is
plotted versus d and is shown to display a non-monotonous
behavior with a maximum for d' ~ 7.25.

C. Area and Volume of STC and NGF models

The ratio between the area A and the volume V of the
cell-complexes generated by the STC and NGF models is
also a very notable geometrical property of the considered
models which is a further indication of their hyperbolic-
ity. For reference, it is useful to refer to known results
valid for Euclidean and hyperbolic manifolds (even tough
the considered STC and NGF models do not define man-
ifolds). For Euclidean balls of radius R, the area A and
the volume V are given by [80]

Q
A=QR"Y, V= 7de, (13)
where
271_d/2
¢ T(d/2) (14)

Therefore, the area and volume of a ball with unitary
radius, A = Q4 and V = Q4/d, depend non-trivially on
the dimension of the ball d. In particular, they have a
non-monotonic behavior, with the volume having a max-
imum for d* ~ 5.25 and the area having a maximum for
d" ~ 7.25 (see Fig. 8). Therefore, for high dimension d
both the area and the volume of the unit ball decrease
with d. More in general, the area-volume ratio of a ball
of radius R is given by
A d
V R
Therefore, the ratio A/V vanishes to zero in the limit of
a ball of large radius, i.e. A/V — 0 for R — oo.
A different behavior is observed for hyperbolic mani-
folds. For H¢ hyperbolic manifolds in dimension d [81],
a ball of radius R in H¢ has area and volume given by

A = Qgsinh® (R)

(15)

R
V= Qd/ sinh®~ ! (z)dx (16)
0
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FIG. 9. We illustrate the convergence of A/V during network
growth for the STC (panel (a) ) and NGF (panel (b)) models,
for different values of m and d, and for ¢ = p = 0.5. In all
panels, results are averaged over 100 network realizations, and
the shaded areas indicate the error margins as given by the
standard deviation.

with Qg given always by Eq. (14). Thus, the scaling with
R changes and in this case the area-volume ratio remains
finite in the R — oo limit, i.e.

A
lim —=d-1. 1
im_ = (17)

R—o0

Let us now explore the area-to-volume ration in the
STC and the NGF models. We define the area A of a d-
dimensional cell complex which is pure, (i.e. whose facets
are all polytopes of dimension d) as given by the number
of (d—1)-dimensional faces « that are incident to a single
polytope (or equivalently with incidence number n,, = 0).
Similarly, we define the volume V of a d-dimensional cell
complex which is pure, as the total number its (d — 1)-
dimensional faces.

Since the STC model is a d = 2 dimensional cell com-
plex for every value of m, its area A is given by the num-
ber of links which are incident either to a single triangle
or to a single square. The volume V of STC is given by
the total number of links. For the NGF model in dimen-
sion d, the area A is the number of (d—1)-simplices of the
cell complex that are incident to a single d-dimensional
cell (either a d-dimensional orthoplex or a d-dimensional
simplex). The volume V of the NGF is given by the total
number of (d — 1)-simplices.

We are now in place to study the dependence with the
network size of the ratio A/V for the STC and NGF
models. As it can be seen from Fig. 9, the ratio A/V
reaches a constant value in the large network limit, con-
firming the hyperbolic nature of the models. As shown
in Fig. 13c,d, the limiting value of the ratio A/V de-
pends on the value of ¢ (for the STC model) and p (for
the NGF model), even tough the dimension d of the cell
complex is independent of ¢ and p. Therefore, the ratio
A/V does not give an indication of the dimension d. In
the next section we will show how the value of A/V can
be related instead to a different notion of dimension, the
spectral dimension of the network.



10

10° @) 10° ©) 10° o
= = =
< 4072 By < 102 < 102
——gq = 0.00
102 10° 102 102 10° 102 102 10° 102

10° 10°
)
S S
3] 0
S ——p=001f] < 6 .2
10 —p=o010ff 10
——p =1.00

102  10° 102 102 10° 102 102  10° 102
A A A

FIG. 10. The cumulative density p.(X) of eigenvalues ), is shown for the STC (panels (a),(b),(c), respectively for m = 2, 3, 4)
and the NGF models (panels (d),(e),(f), respectively for d = 2, 3, 4). We have used networks with N = 10* and parameters p
and ¢ shown in the legend. The data has been averaged over 100 network realizations. The error margins as indicated by the
standard deviation are shown with shaded areas (although in most cases the error area overlaps with the data-points).

10°
10°]
S 10"
\\ < <
(=00 +-¢q=06 I 10"
—e—q =0.1 q=0.7 : 10_2
all——e¢=02 q=038 1
10 —o—q=0.3 q=09 i
—o—q =04 qg=1.0 |
—o—q = 0.5 ﬂ
10 : : 1073 : : 1072 : :
102 10° 10* 102 10° 10* 102 10° 10*
N N N

FIG. 11. Spectral gap of STC networks for m = 2, 3 and 4, respectively in panels (a)-(c), and ¢ values as indicated in the
legend. Results correspond to N = 10° and have been averaged over 20 network realizations. The shaded regions indicate the
error as given by the standard deviation.

V. SPECTRAL DIMENSION AND DIFFUSION inition), and in such case the network is said to display

DYNAMICS a spectral gap. On the contrary, if the spectral gap closes

as the system size grows, the network is said to have a

Much information on the structure of a network is finite spectral dimension when the scaling of the cumu-

given by the properties of its associated Laplacian ma-  1ative density of eigenvalues of the Laplacian follows a
trix [56, 82]. For many complex networks, the Fiedler power-law [56, 83, 84].

(second smallest) eigenvalue remains finite in the ther-
modynamic limit (the smallest eigenvalue is zero by def- Here we consider the normalized Laplacian L with el-
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FIG. 12. Analysis of the ds estimation for the STC model.
We compare the dg fits obtained from p.(A), dg], as in figure
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Data corresponds to STC HO networks with m = 2 (red), 3
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the difference is compatible with 0.

ements
G,ij

Lij = 05 — T
j

(18)
where a;; is the adjacency matrix of the network and 4;;
is the Kronecker’s delta. L has real non-negative eigen-
values 0 = A1 < Ay < ... < Ay. The spectral density
p()) indicating the density of eigenvalues is defined as

1 N
=1

where §(z,y) indicates the delta function. If the second
smallest eigenvalue Ay goes to zero in the large network
limit, i.e. Ay — 0 for N — oo, and the density of eigen-
values p(A) for A < 1 scales as

p(A) = CN¥s/2, (20)

with C' indicating a constant, we say that the network has
spectral dimension dg. dg also characterizes the scaling
of the spectral gap (given by Ay) with the network size
as

Ao(N) ~ C'N~2/ds, (21)

The spectral dimension can be interpreted as the di-
mension of the network as perceived by a random walker
(RW) diffusing on it, and it is a notable feature of net-
works with a distinct geometrical nature. For Euclidean

11

lattices in dimension d, the spectral dimension coincides
with the Hausdorff dimension, i.e. dg = dgy = d. How-
ever, in general networks the spectral dimension can
strongly differ from the Hausdorff dimension [85, 86].

As we go on to show, both the STC model and the
NGF model display a finite spectral dimension dg > 2
for most of their parameter values, which coexists with
their infinite Hausdorff dimension dg = co. This spectral
dimension can be tuned by changing the control param-
eters ¢ and p, respectively in the STC and in the NGF
model. In particular, the spectral dimension of STC net-
works increases for larger values of p = 1 — ¢, while dg
decreases for NGF networks with larger values of p.

In order to provide evidence for this effect, in Fig. 10
we show the cumulative spectral density p.(A) for STC
and NGF networks for a choice of the values ¢ and p,
respectively. In presence of a finite spectral dimension
ds, pc(A) should scale as a power-law for A < 1, i.e.

pe(N) ~ C" N\ /2, (22)

where C” is a constant. For NGF networks dg is well-
defined V (d,p) pairs [47], as confirmed by the power-
law scaling of p.(A) in Fig.10(d-f). In particular, dg
decreases (i.e. the slope of p.(\) is less pronounced) in a
non-linear manner as p is increases (see below). Notably,
NGF networks also present some degenerate eigenvalues
in the high portion of the spectrum, due to the underlying
network symmetries.

For the STC model, the scaling of p.(\), Fig. 10(a-c),
indicates that the spectral dimension increases as ¢ de-
creases (see below). Notably, it also shows that the spec-
tral gap increases with d and with decreasing q. Thus, we
have measured A2(N,d, q), as shown in Fig. 11. We have
found that a power-law decay of Ao, Ao ~ N77, v > 0,
is compatible with the observed data for all (m, ¢), indi-
cating that the spectral gap closes in the infinite network
limit, and that the spectral dimension is well defined.
In order to further validate these results, in Fig.12 we
have compared the two estimations of the spectral di-
mension: dg] as given by the scaling of p.()), and dg]
as given by the scaling of A2(N), by measuring the dif-
ference Adg(m,q) = d[Sl] (m,q) — dg} (m,q). As shown in
the figure, both procedures yield very similar results as
long as ds < 6. For larger dg values the error in the es-
timation of dg grows, due to the finite network size, and
the two measures may differ, but their difference remains
within errorbars.

In summary, we have found that the spectral dimen-
sion of STC and NGF networks behaves in opposite ways
with p: it grows (in an approximately linear manner for
ds < 6) for STC networks, whereas it decreases (in a
non-linear manner) for NGF networks (see Fig. 13a,b.
This result shows that, by changing the local topologi-
cal moves by which the HO network skeleton evolves, it
is possible to tune the corresponding value of the spec-
tral dimension. In particular, our results show that, in
the considered hyperbolic higher-order network models, a
smaller dg corresponds to a larger ratio A/V between the
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values of dg, as the cut-off for the power-law fit becomes more pronounced. Panels (c¢) and (d) show the area-volume ratio A/V
respectively for the STC and NGF models, for m and d as indicated in the legends.

area and the volume of the cell complex (see Fig. 13c,d).
Therefore, the ratio A/V of the STC and NGF mod-
els is not indicative of their topological dimension, but
rather it correlates with the spectral dimension dg. This
indicates that the different choice of topological moves
used to generate the higher-order networks can at the
same time change the area/volume ratio of the hyper-
bolic STC and NGF model and tune the value of their
spectral dimension.

In order to illustrate how a different network structure
and geometry affect the dynamical properties of the net-
works, we have explicitly considered the diffusion dynam-
ics of random walkers on the STC and NGF networks.
Given a set of random walkers diffusing on a network,
the return-time probability Py(t) is defined as the prob-
ability that a walker is back at its initial position at time
t. This is directly linked to the spectral density by the

equation [87]

o0
Po(t) = / e (). (23)
0
As a consequence, for networks with a finite spectral di-
mension, the return-time probability distribution decays
as a power-law for t < 1, t < tcu, where t < tey is
the cut-off time due to finite-size effects, with power-law,
exponent determined by the spectral dimension, i.e.

Py(t) oc t—9s/2, (24)

This relation reveals the role of the spectral dimension as
a key spectral property, explicitly linking the structural
and dynamical properties of a network.

By performing explicit simulation of the random walk
dynamics, we have measured the return-time probability
Py(t) for STC and NGF networks (see Fig. 14). These re-
sults confirm that the spectral dimension of the STC and
the NGF models can be tuned by varying the parameter
¢ (for the STC model) and p (for the NGF) model.
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FIG. 14. Return-time probability Py(t) of the random walk for STC networks with m = 4 (panel (a)) and NGFs with d = 4,
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, Nrw. At each time step, each walker jumps with uniform probability to

one of the neighbors of n;, independently of the other walkers’ positions. This process is iterated for Trw = 10* steps, and the
return-time probability Po(t) that a walker returns to its starting point after ¢ steps is measured.

VI. CONCLUSIONS

Higher-order networks allow us to properly encode and
investigate complex systems where interactions are not
limited to two nodes at a time. In particular, their char-
acterization beyond traditional metrics from statistical
mechanics and network science reveals new features of
the complex interplay between network structure and dy-
namics.

In this work we proposed a general non-equilibrium
framework which makes possible to obtain tunable emer-
gent hyperbolic network geometries, and provide new in-
sights on how topology and geometry affect diffusion dy-
namics. We introduced two models, namely the STC
and NGF higher-order models, which are generated by
iteration of simple, local, topological moves. We investi-
gated how variations in these local rules are reflected in
the geometrical properties of the higher-order networks.
In particular, despite leaving the topological invariants
of the higher-order network unchanged, we showed that
local moves have the ability to modify the emerging ge-
ometrical and diffusion properties, see Sec. III. We mea-
sured the diffusion properties of the considered models in
terms of their spectral dimension, a remarkable geomet-
rical property of their network skeleton that determines
the return-time probability distribution of a random walk

crawling on it. We found that the spectral dimension can
be tuned continuously on the considered models by mod-
ulating the ratio between the area and the volume of the
higher-order models, explicitly governed by the choice of
the topological moves. In particular, as the area-volume
ratio grows, the spectral dimension of the model increases
as well. The considered models of emergent network ge-
ometries are also found to show other non-trivial features
of real-world systems, including the small-world property,
d-hyperbolicity and significant community structure. We
believe that our work reveals a new link between the ge-
ometry of a network and the properties of diffusion pro-
cesses taking place on top of it, contributing at a fun-
damental level to a better understanding of the complex
interplay between network structure and dynamics.
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