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Abstract: We report on self-propelled rotating liquid marbles fabricated using droplets of alcoholic
solution encapsulated in hollow microtetrapods of GaN with hydrophilic free ends of their arms and
hydrophobic lateral walls. Apart from stationary rotation, elongated-spheroid-like liquid marbles
were found, for the first time, to exhibit pulsed rotation on water surfaces characterized by a threshold
speed of rotation, which increased with the weight of the liquid marble while the frequency of pulses
proved to decrease. To throw light upon the unusual behavior of the developed self-propelled liquid
marbles, we propose a model which takes into account skimming of the liquid marbles over the
water surface similar to that inherent to flying water lily beetle and the so-called helicopter effect,
causing a liquid marble to rise above the level of the water surface when rotating.

Keywords: aerogalnite; aero-GaN; liquid marble; pulsed rotation

1. Introduction

Liquid marbles, discovered by Aussillous and Quéré in 2001 [1], represent aggregates
composed of a droplet of liquid encased in and stabilized by a shell of nano- and/or
microparticles which, in most cases, possess hydrophobic properties. Honeydew droplets
coated by powdery hydrophobic wax secreted by aphids are considered as natural analo-
gous of liquid marbles (LM) [2]. Among specific characteristics inherent to liquid marbles
which attracted increasing attention of the scientific community, one can mention perme-
ability of their shell to gases, elasticity, stability on solid and liquid surfaces, along with
non-wetting behavior and the ability to non-stick on solid surfaces. Liquid marbles,
also known as “dry waters”, demonstrated huge potential for use in microfluidics for con-
trolled transport and release of the small quantities of liquids as well as in sensorics [3,4],
microrobotics [5,6], biomedicine [7,8], etc. In particular, Han et al. [9,10] reported on precise
control over mass transportation and distribution in the droplet of the liquid marbles
synchronously rotating with an external magnetic field, thus opening opportunities for the
development of various micromagneto-mechanical devices for use in microfluidics.

In the last decade, research efforts have been undertaken to develop self-propelled liq-
uid marbles exhibiting translational motion, rotation or their combination, self-propulsion

Materials 2021, 14, 5086. https://doi.org/10.3390/ma14175086 https://www.mdpi.com/journal/materials

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/479417248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-6043-4642
https://orcid.org/0000-0002-4588-2866
https://orcid.org/0000-0003-2136-2396
https://orcid.org/0000-0003-0893-0854
https://doi.org/10.3390/ma14175086
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14175086
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14175086?type=check_update&version=1


Materials 2021, 14, 5086 2 of 7

being reached by adding volatile substances to the core liquid. In particular, self-propelled
liquid marbles have been fabricated using droplets of aqueous ethanol solutions encap-
sulated by loose polytetrafluoroethylene particles with 1 µm diameter [11] or by fumed
fluorosilica powder consisting of 20–30 nm diameter particles [12]. The occurrence of
self-propulsion is attributed to the Marangoni solutocapillary flow cropping up when a
gradient of surface tension of the fluid support is generated in the neighboring surrounding
area of the liquid marble. The gradient can be induced by simply breaking the spherical
symmetry of the marbles. In such a case, the evaporation of alcohol and its condensation
on the surrounding fluid surface as well as the resulting decrease in the surface tension
prove to be spherically asymmetric, thus giving rise to the solutocapillary effect.

Over the last years, we developed wide-band-gap-semiconductor-compound-based
aero-materials consisting of hollow microtetrapods, which prove to be promising for a vari-
ety of applications [13–19]. Furthermore, we demonstrated self-propelled, asymmetrically
shaped aero-GaN and aero-ZnS based liquid marbles with the liquid droplet composed of
alcoholic solution [13,14]. The liquid marbles manifested self-propelled rotational motion,
attaining speeds as high as 12.5 and 0.6 rot/s for aero-GaN and aero-ZnS, respectively. In
this work, we report in premiere on self-propelled aero-GaN liquid marbles exhibiting
pulsed rotation on the water surface. Results of analytical and numerical modeling are
presented to account for the observed phenomena.

2. Materials and Methods
2.1. Aero-GaN Preparation

The Aero-GaN nanomaterial was produced by depositing a thin GaN layer on sac-
rificial templates composed of highly porous ZnO networks of microtetrapods [13]. The
ZnO templates were obtained using the flame transport synthesis approach, as previ-
ously described in ref. [20]. For GaN growth, a hydride vapor phase epitaxy (HVPE)
system equipped with a horizontal reactor was used. At the first stage, metallic gallium
interacts with gaseous hydrogen chloride at 850 ◦C, resulting in the formation of gallium
chloride (GaCl). The GaCl and NH3 gas reacted with each other in the next reaction
zone, where at the beginning, the temperature was kept at 600 ◦C for 10 min to initi-
ate nucleation of GaN on the surface of ZnO microtetrapods, and then increased up to
Tg = 850 ◦C for other 10 min to produce the high quality GaN layer. The flow rates of
HCl (15 sml/min), NH3 (600 sml/min) and H2 (3600 sml/min) were maintained constant
during the growth process.

As demonstrated recently [13], during the process of GaN growth, simultaneous
gradual decomposition and removal of the underneath ZnO template occurs due to harsh
reaction conditions and high temperatures, thus resulting in the formation of hollow micro-
tetrapods with the wall thickness of 10–15 nm. It is to be noted, however, that ZnO is
not completely removed and its traces, with the amount of 7 at%, are found on the inner
surface of GaN hollow micro-tetrapods. The ZnO traces can be reduced down to 0.7 at% by
subjecting the aero-GaN specimens to additional treatment in hydrogen atmosphere at a
temperature as high as 900 ◦C [13]. Thus, according to the results of previous investigations,
the aero-GaN consists of networks of interpenetrated GaN hollow micro-tetrapods, the
inner surface of which is covered by an ultrathin film of zinc oxide. Note that the outer
surface of tetrapod arms is superhydrophobic, with the exception of their free ends, which
exhibit superhydrophilicity (Figure 1), thus leading to the occurrence of dual hydropho-
bic/hydrophilic properties [13]. Figure 1 shows the morphology of the building blocks
(aero-tetrapods of GaN) forming the outer layer of the liquid marbles. The schematic
representation of a single tetrapod is presented in Figure 1a, which indicates the superhy-
drophobic and superhydrophilic parts. A network of interpenetrated microtetrapods is
presented in Figure 1b, where one can notice individual hollow microtetrapods. The broken
arm of a microtetrapod is presented in Figure 1c, demonstrating the tubular structure with
nanoscale thickness of the walls. The chemical composition of the structure is presented in
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Figure 1d, which highlights the presence of an ultrathin layer of ZnO on the inner side of
the GaN microtubes, as demonstrated previously [13].
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Figure 1. (a) Schematic representation of a single Aero-GaN microtetrapod exhibiting both hydrophobic and hydrophilic
properties; (b) an SEM picture taken from a network of Aero-GaN microtetrapods; (c) cross-sectional views of individual
microtubes, whose chemical compositions are presented in (d).

2.2. Aero-GaN Liquid Marbles Formation

Liquid marbles were fabricated by wrapping aqua solution droplets in aero-GaN
structures. First, the liquid microdroplets were strolled on the surface of GaN aerotetrapods,
which were randomly trapped on the droplet surface until a homogeneous porous mantle
was built. Next, a part of the liquid marble was subjected to mechanical deformation
with the aim to deviate from the spherical symmetry towards an elongated-spheroid-like
shape, which, according to previous investigations, is beneficial for the occurrence of self-
propelled rotations [13]. The solution used to propel the marbles consisted of commercially
available alcoholic solution with ingredients enabling to maintain the surface tension. The
pulsed rotation of the LM was investigated using a high-speed camera, Sony FDR-AX700.
The angular velocity was calculated by processing the video files.

3. Results and Discussions

Figure 2 illustrates the time dependence of the speed of uniform rotation for two
liquid marbles with weights of 2.5 and 59.5 mg. One can see that the speed of rotation
decreases in time in both cases; however, there are important differences in the behavior
of the two marbles. First, a lighter liquid marble shows at the beginning a more than two
times higher speed of rotation than the heavier one. Second, the rotation of a lighter liquid
marble practically ceases in about seven minutes, while the heavier marble is characterized
by a rotation with a much higher inertia, namely, the speed of rotation decreases by only
1.7 times in the same interval of time.

As explained in Ref. [13], the speed of rotation as high as 12.5 rot/s attained by the
aerogalnite-based liquid marbles is attributed to the specific architecture of the hollow
tetrapods enveloping the marble and to the lucky combination of the superhydrophobic
and superhydrophilic properties. Since only the free ends of the hollow tetrapod arms
pierce through the water surface, between the aero-GaN shell and the water surface, there is
a layer of air crossed by a superhydrophobic network. Under these conditions, the surface
tension pins the air–water interface to the free ends of the tetrapod arms. Upon rotation of
the liquid marble, the free arm ends touching the water glide over its surface, which results
in a negligible water drag, thus allowing highly energy efficient motion [13]. The lighter
liquid marble loses the speed of rotation faster than the heavier one due to the smaller
amount of the volatile compounds in the core droplet and their enhanced evaporation
under conditions of circular hydrodynamic flow and outward centrifugal force emerging
in the process of fast rotation [9].

Some of the relatively light liquid marbles with spheroid-like shape were found to
exhibit pulsed rotation, as illustrated in Figure 3 for liquid marbles with a weight of 6.5
and 14.5 mg. Careful analysis of the experimental results emphasized two important
features. First, the speed of rotation is oscillating periodically, the period of oscillation
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being smaller for the lighter liquid marble. Second, within a definite period of rotation, the
speed increases until it reaches a threshold value, followed by a relatively sharp decrease
in rotational speed. Note that the threshold speed is higher in the case of a heavier liquid
marble (Figure 3b).

To throw light upon the observed fascinating behavior of liquid marbles rotating on a
liquid surface, we propose the so-called helicopter-like mechanism of self-propulsion [21].
It takes into account the specific architecture of the GaN hollow tetrapods constituting
the shell of the liquid marble. Imagine that the aerogalnite-based shell consists of one
monolayer of GaN hollow microtetrapods. In this case three arms of each tetrapod will
keep the microtetrapod floating on the core liquid surface, while the fourth one will be
among the arms of tetrapods that touch the external water surface, thus ensuring an energy-
efficient rotational motion, or among arms positioned totally in air. A floating liquid marble
on a water surface is presented in Figure 4a. When the liquid marble rotates, the arms
positioned totally in air may play the role of helicopter blades, leading to the generation
of the lift force. However, breaking from the water surface is not possible because the
ends of free tetrapod arms are hydrophilic and attract water. Under these conditions, the
liquid marbles are able to skim over the water surface, similar to the flying water lily
beetle [22,23], while any attempt of breaking liquid marble from the water surface will lead
to the formation of water microcolumns attached to the ends of free tetrapod arms which,
in its turn, will sharply inhibit the rotational process. A schematic representation of a water
column under a rotating liquid marble is shown in Figure 4c, which is correlated to the
previously reported observations of the water pillars formed when an Aero-GaN sample
is being lifted up with a charged amber stick (Figure 5 from the ref. [13]). From general
considerations, the lift force will be generated at a definite speed of rotation, which in our
experiments is the threshold speed. Obviously, the threshold speed should depend upon
the weight of the marble: the lighter the marble, the lower the threshold speed.
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Figure 4. (a) Liquid marble floating on water, where the inset represents a digital picture of an elongated liquid marble.
(b) Schematic interpretation of the liquid marble on the water surface; (c) the same liquid marble when rotating at high
velocities, leading to the formation of a water column.

This behavior can be better understood using a simple analytical model. The liquid
marble is assumed as cylindrical with a radius r and height h. The resistant torque during
rotation in air is Cr = 2πrhrτ, where τ = µdv/dr = µω is the shear stress acting on its
lateral surface, µ is the air viscosity, v andω are the linear and angular velocity and, thus,
Cr = 2πr2hµω = cω. The driving torque Cm can be modeled according to the discussed
helicopter effect, assuming dCm/dt = k(ω0 − ω), so as to have a linear decrement of its
rate, where k andω0 are two constants. Imposing the dynamic equilibrium of the marble,
we find Qd2ω/dt2 + cdω/dt + kω = kω0, where Q is the moment of inertia of the marble.
In the experiments, no significant viscosity/damping effects are observed. Accordingly,
the solution for c ≈ 0 is ω ≈ ω0 + AcosΩt + BsinΩt, where the fundamental angular
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frequency of the oscillations is predicted to be Ω = (k/Q)1/2. The moment of inertia Q
scales as M5/3, where M is the marble mass (the moment of inertia scales as R5, with R
being the characteristic size, while M scales as R3). The constant k does not have a clear
scaling, but two limiting conditions could be envisioned: a negligible scaling, i.e., M0, or as
proportional to c/t (i.e., Cr scales, such as Cm) and, thus, as M1. As a result, a scaling of
the period T = 2π/Ω∝M5/12–5/6 = M0.42–0.83 is theoretically predicted, whereas we observe
experimentally (from only the two available experiments; thus, this comparison has to be
considered with caution) T∝M0.60, in agreement with this simple model. Fixing the origin
of the time reference system at the stationary point forω implies dω/dt(0) = 0, and thus,
B = 0; accordingly,ω0 represents the mean value of the angular velocity and A = ∆ω the
amplitude of its oscillation, i.e.,ω ≈ ω0 + ∆ω·cosΩt.

4. Conclusions

Self-propelled elongated spheroid-like liquid marbles were found for the first time
to exhibit pulsed rotation. The maximum speed of rotation attained in each pulse or, in
other words, the threshold speed of rotation, increases with the weight of the elongated
aero-GaN based liquid marbles. At the same time, the period of pulsed rotation decreases
with the weight of the marbles, which is explained using a simple analytical model. For
the stationary rotation, we found that both the braking speed and the maximum rotational
speed inherent to the beginning of the process decrease with the liquid marble weight.
The obtained results pave the way to the development of various self-propelled rotating
liquid marbles, in particular for the advancement of micro biological reactors that are
capable to host living cells, which are separated by the outer media through an ultra-
porous membrane with controlled properties, allowing further advancements in the study
of living cells in specific spatially-confined conditions [24].
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