
2021 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, OCT. 25–28, 2021, GOLD COAST, AUSTRALIA

DETECTING COVER SONGS WITH PITCH CLASS KEY-INVARIANT NETWORKS

Ken O’Hanlon, Emmanouil Benetos, Simon Dixon

Centre for Digital Music, Queen Mary University of London, UK

ABSTRACT
Deep Learning (DL) has recently been applied success-

fully to the task of Cover Song Identification (CSI). Mean-
while, neural networks that consider music signal data struc-
ture in their design have been developed. In this paper, we
propose a Pitch Class Key-Invariant Network, PiCKINet,
for CSI. Like some other CSI networks, PiCKINet inputs
a Constant-Q Transform (CQT) pitch feature. Unlike other
such networks, large multi-octave kernels produce a latent
representation with pitch class dimensions that are maintained
throughout PiCKINet by key-invariant convolutions. PiCK-
INet is seen to be more effective, and efficient, than other
CQT-based networks. We also propose an extended variant,
PiCKINet+, that employs a centre loss penalty, squeeze and
excite units, and octave swapping data augmentation. PiCK-
INet+ shows an improvement of ∼17% MAP relative to the
well-known CQTNet when tested on a set of ∼16K tracks.

1. INTRODUCTION

Given a query track, Cover Song Identification (CSI) seeks
to retrieve either a reference, or an alternative, version of the
same musical work [1]. CSI is important for attribution of
royalties to composers and detection of copyright infringe-
ment. The content of a query track and other versions of the
same work may differ in many ways, such as instrumentation,
tempo, key and lyrics [1], and CSI is therefore considered a
challenging task. Early CSI methods compared tracks by tak-
ing a measure of a Cross-Correlation Matrix (CCM) as likeli-
hood of tracks being versions of the same work. CCMs were
derived from chromagrams [1] or other features [2, 3], with
measures calculated using dynamic programming [1, 3, 4], or
quicker approaches [5]. An alternative CSI approach was to
compare trackwise embeddings that were formed from 2D
Fourier transform magnitudes of chromagrams, either directly
[6], or in a data-driven fashion [7]. While efficient, perfor-
mance of embedding methods lagged behind CCM methods.

Deep Learning (DL) methods have recently become the
focus of CSI research, with improved performance recorded.
While some DL-CSI methods have employed CCMs [8, 9],
embedding based approaches are more popular [10–16]. Pro-
posed embedding extraction networks have employed triplet

This work was supported by Innovate UK [grant number 30863].

loss functions [12, 13, 15], or classification based learning
with the embedding extracted from the penultimate network
layer at test time [10, 11, 14, 16].

Tonal input features are typically used in embedding
based DL-CSI. Hence, it is desirable that DL-CSI systems
are invariant to key shifts between versions of a work. To
this end, f0 features were aligned to an estimated centre
pitch in [12, 15]. Recently, musically structured networks
have been proposed [17–19], including key-invariant net-
works [20–22]. Key-invariant DL-CSI networks [10, 13]
exploit the circular key-shift-invariance of chroma features
representing the activity of 12 pitch classes. This is effected
by circular padding of the chroma before applying a pitch
class dimension filter, followed by octave-based pooling that
removes the pitch class dimension [10,13]. Hence, in order to
capture the tonal evolution over time, the filter used large tem-
poral dimensions which may be less robust to tempo variation
between versions. Semitone Constant-Q Transform (CQT)
features [23], from which chroma is often extracted, are also
used in DL-CSI. The earlier such networks [11, 14] con-
sider some pitch invariance by using filters of octave-based
dimensions in early layers, leading to receptive fields and
latent representations of several octaves range. Alternatively,
the state-of-the-art ByteCover [16] uses a structure-agnostic
ResNet-50, resulting in large frequency range receptive fields.
Improvements in ByteCover are sourced mostly from exten-
sions, including mixed cost functions and Instance Batch
Normalisation, rather than the network architecture.

In this paper we propose a Pitch Class Key-Invariant
Network (PiCKINet) for CSI. PiCKINet affords use of the
better-performing CQT input features [14, 16], which are
transformed to a pitch class dimension activation map by a
key-invariant multi-octave filter. As PiCKINet does not em-
ploy octave-based pooling as in [10, 13], there is no need to
employ filters with large temporal dimensions; key-invariant
convolutions are applied to pitch class dimension activa-
tion maps throughout the network. We describe PiCKINet
in Section 2 before introducing network extensions that are
employed in PiCKINet+ in Section 3. Section 4 describes
experiments that show PiCKINet to be an effective network
for CSI, while PiCKINET+ compares favourably with the
state-of-the-art. We find an approximate harmonic subspace
is learnt by the multi-octave key-invariant filter.

2. PICKINET

Our proposed network employs a feature extraction module to
convert an input CQT spectrogram of a track to a fixed length
embedding, similar to [14]. PiCKINet, outlined graphically
in Fig. 1, first employs a CQT2PC module to transform the
CQT to a pitch class dimension representation. The latent rep-
resentation is then processed by sequential Pitch Class Blocks
(PCBs) that maintain key-invariance throughout. Channel-
wise pooling than extracts a feature, that is itself transformed
to derive the embedding.

The CQT2PC unit, outlined in Table 1, inputs a magni-
tude CQT, X ∈ R84×T , spanning 7 octaves at 12 bins per
octave with T temporal frames. This CQT can be considered
a pitch feature, as each dimension is related to a fundamental
frequency on the semitone scale. Large 2D kernels of dimen-
sion 73 × 1 reduce the CQT pitch dimension to a pitch class
dimension in the first convolution layer. While such large ker-
nels have previously been used in music processing [24, 25],
we are not aware of them being used in this key-invariant fash-
ion. This leads to a tensor, Y ∈ R12×T×i, where i is the
number of channels and 12 is the pitch class dimension. Con-
volution is then performed with a 3 × 3 filter, before which
circular padding of Y is performed to effect key invariance:

Ŷ ← [Y12, , Y1:12, , Y1, ,] (1)

where [] represents a tensor concatenation in one dimension
that is indicated by numbered indices while other dimensions
display underscored indices, and Ya:b, , represents a slice of
Y containing the elements indexed by the ordered set of in-
teger indices (a, . . . , b). The resultant Ŷ is also zero padded
in the time dimension, such that Ŷ ∈ R14×(T+2)×i, which
is reduced to the same dimensions as Y by convolution with
the 3× 3 filter. A further pointwise 1× 1 convolution is per-
formed in the module. All convolutions are followed by batch
normalisation and a ReLU activation. In the work presented
here, we set the parameter values i = 32 and o = 64.

Table 1. CQT2PC and PCB units with optional Squeeze-and-
Excite module (SE). Input parameters i and o relate the num-
ber of kernels in the initial and further layers, respectively,
with c denoting the number of channels in PCB input. T and
T refer to the input, and downsampled, temporal dimension,
respectively. Shaded rows are shared by both units.

CQT2PC PCB
Layer Filter Outputs Filter Outputs
Input - (84, T, 1) - (12, T , c)

Pad(2) - - - (24, T + 2, c)
Conv 73× 1 (12, T, i) 13× 3 (12, T , o)

Pad(1) (14, T + 2, i) (14, T + 2, o)
Conv 3× 3 (12, T, o) 3× 3 (12, T , o)
SE - (12, T, o) - (12, T , o)

Conv 1× 1 (12, T, o) 1× 1 (12, T , o)

Fig. 1. Schematic of PICKiNet(+) with optional centre loss
module.

The PCB unit, also outlined in Table 1, is similar to
CQT2PC, apart from the first convolutional layer and prior
circular padding for key-invariance. In particular, the convo-
lutional layer employs a kernel of dimensions 13 × 3, that
spans all pitch classes. Given the larger kernel dimensions, a
larger padding is required to effect key-invariance:

Ŷ ← [Y1:12, , Y1:12, ,] (2)

which is used alongside zero-padding in the time direction.
Previous key-invariant convolutions across pitch class fea-
tures [10, 13, 20, 22] used filters with pitch dimension 12 and
circular padding such that Ŷ ∈ R23×T ×i, where T is the size
of the downsampled temporal dimension. Here, we employ
a slightly different formulation, with filters of pitch dimen-
sion 13 applied to a representation padded to a similarly
incremented size, Ŷ ∈ R24×T ×i. This results in a similar
output size as the former setup, while coefficients repeated
in the padded representation are accessed twice by the 1st
and 13th coefficients of the filter. Similar to CQT2PC, the
module is completed by 2 convolutional layers; the first using
a 3 × 3 filter, after circular (1) and temporal zero padding,
and the second using a pointwise 1× 1 filter. Likewise, batch
normalisation and ReLU activations follow each convolution.

Pooling is performed after CQT2PC and PCB modules. In
each case, apart from the final PCB module, average pooling
is used. This pooling is effected only in the time direction,
with a filter of dimension 1 × 3, and using a stride of 1 × 2,

thereby halving the temporal dimension. The final pooling
layer extracts the feature vector, f ∈ RC , from the feature
map Y ∈ R12×T ×C , using Global Average Pooling (GAP):

fc = (12× T)−1
∑
p,t

Yp,t,c. (3)

Here, the feature dimension, C = 512, and a learnable linear
layer transforms this to an embedding, e ∈ R300, similar to
[14]. At training time, e is output to a classification layer,
with one neural unit per work, that uses a softmax activation.
At test time, e is emitted by the network and is compared to
other stored embeddings using the cosine distance.

An extra advantage of using the pitch class representa-
tions throughout is the reduced size of the representations.
The kernels employed in the convolutions at the start of each
PCB are large, and lead to a increased number of parameters
being used in the network. However the smaller representa-
tions result in smaller numbers of multiplications being em-
ployed in the network, which may be more efficient.

3. PICKINET+

3.1. Centre Loss Penalty

Categorical Cross Entropy (CCE) and triplet losses are pop-
ular cost functions for classification and embedding losses
respectively, and have been used almost exclusively in DL-
CSI for their respective loss type [10–15]. These two losses
have also been successfully employed in tandem for CSI [16].
Embedding losses, such as triplet loss, seek to cluster embed-
dings of similar class. Triplet loss, in particular, seeks to move
a given embedding closer to an embedding of a similar class
relative to an embedding of a different class. Such approaches
require extra sophistication in training, such as mining strate-
gies, and hence are considered slower to train.

Centre loss [26] provides an alternative embedding loss
that does not require mining strategies. Unlike contrastive
losses, centre loss does not explicitly consider embeddings
from other classes. Rather, a centre embedding is stored for
each class and the centre loss is given by

Lcentre = ‖e−mk(e)‖22 (4)

where mk(e) is a centre embedding related to the kth class,
to which e belongs. As often, centre loss is not employed
as a lone loss function [26]. Instead, centre loss is used in
tandem with CCE [26], as seen in Fig. 1, and is considered as
a penalty term added to the classification loss:

Ltotal = LCCE + λLcentre (5)

where λ is a weighting term used to balance the two loss func-
tions. At training time, the loss (4) is estimated and backprop-
agated through the network. The centre embedding is updated
accordingly. After training, the centre embeddings are dis-
carded and the output embeddings for tracks are compared
directly at test time using cosine loss, as before.

Layer Outputs
Input : Y (12, T , C)
GAP (3) C

FC / ReLU C/s
FC / sigmoid C
Output : w C

Table 2. Extracting the weighting vector, w, from a Squeeze
& Excite module with scale parameter, s.

3.2. Squeeze and Excite Units

Squeeze and Excite (SE) modules [27] are a channelwise
attention mechanism which emphasise the focus of the net-
work on channels deemed important through a data-adaptive
weighting system. Squeeze refers to the initial operation
reducing each channel to a single number, with the partic-
ular case of global mean pooling (3) employed [27]. This
squeezed vector is passed through an encoder-decoder of 2
fully connected (FC) layers, outlined in Table 2. A scaling
factor, s, determines the downsampling in the encoding FC
layer which is followed by a ReLU activation. The decoding
layer is followed by a sigmoid activation outputting a channel
weighting vector, w ∈ RC , which is applied to the input, Y:

Yp,t,c ← Yp,t,c × wc. (6)

In PiCKINet(+), a SE unit is applied to the outputs of the 3×3
convolutions in CQT2PC and PCB, as seen in Table 1.

3.3. Data Representation and Augmentation

As we consider the CQTNet [14] as our baseline, we em-
ploy a similar data representation. Inputs are CQT spectro-
grams with 12 frequency bins per octave, calculated using li-
brosa [28] with 93ms frames, prior to downsampling by a fac-
tor of 5 through averaging. Likewise, two augmentations em-
ployed in [14] are also used here. The first simulates a tempo
change through interpolation in the temporal direction of the
downsampled CQT. The second considers samples of vary-
ing temporal sizes during training, with T ∈ {200, 300, 400}
samples. As the lengths of tracks differ, samples are selected
starting at any point in a given track.

We also propose a new octave switching augmentation as
an extension. Two indices, i ∈ (1, ..., 60) and a ∈ (1, ..., 12)
are selected from uniform distributions, to relate a point in the
first 5 CQT octaves, and how many frequency bins to shift.
The augmentation is then effected by swapping CQT chunks

Xi:i+a, � Xi+12:i+12+a, (7)

where a frequency bins, starting from i, are shifted up one
octave, while the corresponding pitch coefficients one octave
higher are shifted downwards one octave.

4. EXPERIMENTS

In order to evaluate the proposed approaches, several experi-
ments were run. We first compared the plain networks; PiCK-
INet & CQTNet, alongside a PiCKINet variant, PNet12, in
which the large convolutions in PCBs employ 12 × 3 filters,
rather than 13 × 3 filters as in PiCKINet, with padding ad-
justed accordingly. We also tried to train ResNet50, the basic
network behind ByteCover [16]. However, the network did
not train successfully, perhaps due to implementation details
not provided in the paper [16]. We then considered exten-
sions to PiCKINet, including the octave switching (OS) aug-
mentation, SE units, and the centre loss penalty (CL). The ex-
tensions were evaluated individually, and compared to PiCK-
INet+, which employs all extensions. For CL, we found λ =
0.001 to be a good weighting parameter (5), after initial ex-
periments. We also compared CQTNet+, an extended variant
of CQTNet with the same extensions as PiCKINet+.

A private dataset of ∼95K tracks, representing ∼9K dif-
ferent musical works, was employed. The distribution of
tracks per work was not uniform, with several works account-
ing for more than 50 tracks, while a median of 8 tracks per
work was seen. A 5/1 training / test split was used, resulting
in a test set of around 16.2K tracks, and a training set of∼79K
tracks, with a similar normalised distribution of numbers of
covers per track. The validation dataset comprised Cov-
ers80 [29], YouTubeCovers (YTC) [30], and Covers1000 [3]
datasets. For all tracks an 84D CQT was extracted, covering 7
octaves from pitch A0 with fundamental frequency 27.5Hz.

After training, an embedding was extracted for each track
in the test set. All pairs of embeddings were compared using
cosine distance. For each given embedding, all other embed-
dings were ranked according to proximity. From these collec-
tive rankings several metrics were calculated. Mean Average
Precision (MAP), for each track, records the precision at ev-
ery other version of the same work and takes the average of
these precisions, before finally taking the mean of these aver-
age precisions over all tracks. MAP is expressed as a percent-
age, and is a measure that considers all versions of a track.
Other metrics here only use the highest ranked correct hits,
denoted rk for the kth track. Mean Reciprocal Rank (MRR),
given by 1

K

∑K
k=1

1
rk

, where K is the number of tracks, is a
general purpose metric that is robust to outliers. Top1 denotes
the percentage of queries for which the top ranked track, or
nearest neighbour, from the test set is a correct hit. Similarly,
Top10 measures the percentage of times that the top ranked
correct hit is in the top 10 nearest neighbours of the query.

CQTNet was run using code by its authors [14], available
online. All other algorithms were implemented by ourselves,
using PyTorch. All networks were trained using the Adam
optimiser with default parameters, and set to run for 300 iter-
ations, with the learning rate reduced when the training loss
did not decrease for 3 epochs. The final network was selected
according to the best MAP metric on the validation set.

Network Top10 Top1 MRR MAP
CQTNet 89.3 78.4 0.823 53.7
PNet12 89.5 79.5 0.829 57.5

PiCKINet 90.5 81.0 0.840 59.1

Table 3. CSI results for various plain networks in terms of
Top10 and Top1 metrics, mean reciprocal rank (MRR) and
mean average precision (MAP).

Results for the plain networks are given in Table 3, with
PiCKINet seen to improve on CQTNet for all metrics. The
difference is largest for MAP, with an improvement of 5.4%,
while Top1 increases by ∼2.6%. It is worth noting the simi-
larity between these two networks which share the same input
temporal resolution, number of poolings, and dimensions of
extracted features and embeddings. The baseline ResNet50
employed in ByteCover [16] produced a smaller improvement
2.8% MAP relative to CQTNet. This may suggest PiCKINet
is a superior base network than ResNet50, although results
were on different datasets. A smaller difference was seen
between PiCKINet and PNet12. This difference was consis-
tently observed, suggesting that the larger filter is useful.

In Table 4, results are given for PiCKINet using individ-
ual extensions, OS, SE & CL and for PiCKINet+ and CQT-
Net+. It is seen that OS improves MAP by almost 3%, with
other metrics improving slightly. The SE units bring slightly
smaller improvements than OS. Using CL a larger jump in
the metrics is seen, with over 6% MAP and 2.5% Top1. For
PiCKINet+, improvements of 11.8% MAP and 5.5% Top1 are
seen relative to the baseline PiCKINet, and 17.2% MAP and
8.1% Top1 relative to CQTNet. Interestingly, a complemen-
tarity is observed, whereby improvements for the collabora-
tive extensions are similar to, and even slightly larger than, the
sum of improvements for the individual extensions. The dif-
ference between PiCKINet+ and CQTNet+ is very similar to
that between PiCKINet and CQTNet, as the extensions afford
similar improvements for both networks, again demonstrating
the importance of apt network design.

We then compare PiCKINet+ to the best published results
for the Covers80, Covers1000 and YTC datasets. In this case,
we use the same training set and employ the previous test set
as the validation set. For YTC, results were calculated us-
ing 2 versions of each work as references, and 5 versions as

Extensions Top10 Top1 MRR MAP
OS 91.0 82.6 0.857 61.9
SE 90.9 82.3 0.853 61.4
CL 91.3 83.5 0.863 65.3

PiCKINet+ 93.5 86.5 0.888 70.9
CQTNet+ 92.0 84.3 0.871 65.6

Table 4. CSI results for PiCKINet with individual extensions,
and for PiCKInet+ and CQTNet+ that both use all extensions.

Network MAP MR P@10 MRR Top1
Covers80

PiCKINet+ 95.3 2.0 0.106 - -
ByteCover [16] 90.6 1.6 0.093 - -

YTC
PiCKINet+ 94.3 2.2 0.194 - -

ByteCover [16] 95.5 3.5 0.196 - -
Covers1000

PiCKINet+ − 5.3 − 0.925 90.7
Tralie [3] − 14 − 0.904 88.4

Table 5. Table comparing PiCKINet+, with all extensions
OS, SE, CL, with state of the art on different datasets.

queries [5] [16]. We tabulate results from ByteCover [16] for
Covers80 and YTC, and from Tralie’s multi-CCM method [3]
for Covers1000. Extra metrics are used to afford comparabil-
ity. Mean Rank (MR) takes the mean of the ranks of the top
hits for all tracks 1

K

∑K
k=1 rk , while Precision @10 (P@10)

describes the ratio of times a correct hit is found in the 10
nearest neighbours. The comparison is displayed in Table 5,
which shows that PiCKINet+ improves over the state-of-the-
art on both Covers80 and Covers1000 by reasonable margins.
On YTC, PiCKINet+ approaches the results of ByteCover,
while we note that ByteCover employed a larger training set.
Compared to other metrics, relative performance is inverted
for PiCKINet and ByteCove for MR. However, we consider
MR a poor metric for DL-CSI methods, as it is less stable
from epoch to epoch than other metrics.

Table 6 compares PiCKINet and CQTNet in terms of the
numbers of network parameters, and Multiply-ACCumulate
operations (MACCs) used for a 3 minute track. PiCKINet
requires more network parameters than CQTNet due to us-
ing larger pitch class kernels, but uses substantially fewer
MACCs due to smaller pitch class latent representations.

The top of Fig. 2 shows the filter learnt at the first con-
volutional layer of PiCKINet+. It is seen that basis kernels
that contain much information across the spectrum are gener-
ally not learnt. Rather, many kernels contain either a single,
or two proximal harmonics that possess local structure sim-
ilar to a mexican hat wavelet. Other kernels are relatively
flat, and such a mixture of high and low information kernels
might go some way to explain why the SE modules are useful
in this context. Although full spectrum kernels have not been
learnt, any point of the feature map emitted from such a filter
does contain full spectrum information through the channels.

Network #Params MACCs
PiCKINet 12.74M 4.25G
CQTNet 7.29M 9.15G

Table 6. Table showing computational expense metrics for
CQTNet and PiCKINet.

Fig. 2. Top: kernels learnt by best PiCKINet. Bottom: vari-
ance in each pitch dimension of the kernels.

The bottom of Fig. 2 shows the variance in the individual
pitch dimensions across these kernels. Harmonicity can be
more clearly observed here, although there appears to be evi-
dence of two harmonic patterns. In the mid-pitch ranges, four
strong harmonics are seen that correspond to a fundamental
frequency in the first pitch dimension of the kernel. In the
bass range two harmonics, of lower variance, corresponding
to a different fundamental frequency are seen. Such emer-
gence of harmonicity is useful as responses to harmonics are
localised in feature maps emitted by the filter.

5. CONCLUSION

We have proposed a novel network for DL-CSI using CQT in-
puts that outperforms other plain networks for the task, while
being more efficient. PiCKINet employs key-invariant con-
volutions throughout the network, and we proposed a varia-
tion of these key-invariant convolutions using extended ker-
nels and padding. We think that this may have helped to an-
chor kernels in the large multi-octave filter towards a simi-
lar root, thereby encouraging the emergence of harmonicity
across the filter. This harmonic aspect may be worth further
investigation in future work, while we think that elements of
PiCKINet may be applicable to other tasks. We then intro-
duced PiCKINet+, extending the proposed network using a
centre loss penalty, octave swapping data augmentation and
SE modules. This resulted in a large performance jump on
a large test set, and results comparable to the state-of-the-
art on other datasets, while we noticed a complementarity
amongst the proposed extensions. Further investigations will
seek other such compatible extensions.

6. REFERENCES

[1] J. Serra, E. Gomez, P. Herrera, and X. Serra, “Chroma binary
similarity and local alignment applied to cover song identifi-
cation,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 16, no. 6, pp. 1138–1151, 2008.

[2] Z. Rafii, B. Coover, and J. Han, “An audio fingerprinting sys-
tem for live version identification using image processing tech-
niques,” in Proceedings of the International Conference on
Audio, Speech and Signal Processing (ICASSP), 2014.

[3] C. J. Tralie, “Early MFCC and HPCP fusion for robust cover
song identification,” in Proceedings of the International Soci-
ety for Music Information Retrieval Conference (ISMIR), 2017.

[4] J. Serra, X. Serra, and R. G. Andrzejak, “Cross recurrence
quantification for cover song identification,” New Journal of
Physics, vol. 11, no. 9, 2009.

[5] D. F. Silva, C.-C. M. Yeh, Y. Zhu, G. E. Batista, and E. Keogh,
“Fast similarity matrix profile for music analysis and explo-
ration,” IEEE Transactions on Multimedia, vol. 21, no. 1, pp.
29–38, 2019.

[6] T. Bertin-Mahieux and D. Ellis, “Large-scale cover song
recognition using the 2D Fourier transform magnitude,” in
Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR), 2012.

[7] E. J. Humphrey, O. Nieto, and J. P. Bello, “Data-driven and
discriminative projections for large-scale cover song identifi-
cation,” in Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), 2013.

[8] J. Lee, S. Chang, S. K. Choe, and K. Lee, “Cover song iden-
tification using song-to-song cross-similarity matrix with con-
volutional neural network,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2018.

[9] C. Jiang, D. Yang, and X. Chen, “Similarity learning for cover
song identification using cross-similarity matrices of multi-
level deep sequences,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2020.

[10] X. Xu, X. Chen, and D. Yang, “Key-invariant convolutional
neural network toward efficient cover song identification,” in
Proceedings of the IEEE International Conference on Multi-
media and Expo (ICME), 2018.

[11] Z. Yu, X.Xu, X. Chen, and D. Yang, “Temporal pyramid
poolling convolutional neural network for cover song identi-
fication,” in Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), 2019.

[12] G. Doras and G. Peeters, “Cover detection using dominant
melody embeddings,” in Proceedings of the International Soci-
ety for Music Information Retrieval Conference (ISMIR), 2019.

[13] F. Yesiler, J. Serra, and E. Gomez, “Accurate and scalable ver-
sion identification using musically-motivated embeddings,” in
Proceedings of the International Conference on Audio, Speech
and Signal Processing (ICASSP), 2020.

[14] Z. Yu, X.Xu, X. Chen, and D. Yang, “Learning a represen-
tation for cover song identification using convolutional neural
network,” in Proceedings of the International Conference on
Audio, Speech and Signal Processing (ICASSP), 2020.

[15] G. Doras and G. Peeters, “A prototypical triplet loss for cover
detection,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020.

[16] X. Du, Z. Yu, B. Zhu, X. Chen, and Z. Ma, “Bytecover: Cover
song identification via multi-loss training,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2021, pp. 551–555.

[17] R. M. Bittner, B. McFee, J. Salamon, P. Li, and J. P. Bello,
“Deep salience representations for f0 estimation in polyphonic
music,” in Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR), 2017.

[18] V. Lostanlen and C.-E. Cella, “Deep convolutional networks
on the pitch spiral for musical instrument recognition,” in Pro-
ceedings of the International Society for Music Information Re-
trieval Conference (ISMIR), 2016.

[19] K. O’ Hanlon and M. B. Sandler, “The fifthnet chroma extrac-
tor,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2020.

[20] A. Elowsson and A. Friberg, “Modeling music modality with a
key-class invariant pitch chroma CNN,” in Proceedings of the
International Society for Music Information Retrieval Confer-
ence (ISMIR), 2019.

[21] J. F. Ducher and P.Esling, “Folded CQT RCNN for real-time
recognition of instrument playing techniques,” in Proceedings
of the International Society for Music Information Retrieval
Conference (ISMIR), 2019.

[22] K. O’Hanlon and M. B. Sandler, “Fifthnet: Structured compact
neural networks for automatic chord recognition,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, pp.
2671–2682, 2021.

[23] J. C. Brown, “Calculation of a constant q spectral transform,”
Journal of the Acoustic Society of America, vol. 89, pp. 425–
434, 1991.

[24] B. McFee and J. P. Bello, “Structured training for large-
vocabulary chord recognition,” in Proceedings of the Inter-
national Society for Music Information Retrieval, 2017.

[25] S. Venkataramani, C. Subakan, and P. Smaragdis, “Neural net-
work alternatives toconvolutive audio models for source sepa-
ration,” in IEEE International Workshop on Machine Learning
for Signal Processing (MLSP), 2017.

[26] Y. Wen, K. Zhang, and Z. Li amd Y. Qiao, “A discriminative
feature learning approach for deep face recognition,” in Com-
puter Vision – ECCV 2016, 2016, pp. 499–515.

[27] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation net-
works,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[28] B. McFee, C. Raffel, D. Liang, D. P. W. Ellis, M. McVicar,
E. Battenberg, and O. Nieto, “Librosa: Audio and music sig-
nal analysis in Python,” in Proceedings of the Python Science
Conference, 2015, pp. 18–25.

[29] D. P. W. Ellis and G. E. Poliner, “Identifying ’cover songs’ with
chroma features and dynamic programming beat tracking,” in
Proceedings of the International Conference on Audio, Speech
and Signal Processing (ICASSP), 2007.

[30] D. F. Silva, V. de Souza, and G. E. Batista, “Music shapelets
for fast cover song recognition,” in Proceedings of the Inter-
national Society for Music Information Retrieval Conference
(ISMIR), 2015.

