
GENETIC ALGORITHMS AND THEIR

APPLICATIONS

TO

SYNTHETIC DATA GENERATION

THE THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY IN THE FACULTY OF HUMANITIES

YINGRUI CHEN

The University of Manchester
School of Social Science

Department of Social Statistics

2020

Contents

1 Introduction 12

1.1 Summary of Chapters . 15

1.2 Summary of Publications . 16

2 Statistical Disclosure Control 19

2.1 Data Masking . 21

2.2 Data Synthesis . 21

2.2.1 Synthesisers: Mechanisms and Models 23

2.3 The Assessment of Utility and Risk of Microdata 25

2.3.1 Data Utility . 25

2.3.2 Disclosure Risk . 26

2.3.3 Privacy Models . 28

2.3.4 Record linkage . 31

2.4 Chapter Summary . 31

3 Machine Learning, Natural Computation and Genetic Algorithms 33

3.1 Natural Computation and Biological Computing 35

3.2 Genetic Algorithms (GAs) . 37

3.3 Initial Population . 39

2

3.4 Selection . 40

3.4.1 Fitness Proportional Selection 43

3.4.2 Tournament Selection . 43

3.4.3 Truncation Selection . 44

3.4.4 Ranking Selection . 44

3.5 Schema Theory . 45

3.6 Crossover . 46

3.7 Mutation . 47

3.8 Adaptive GAs . 47

3.9 Multi-objective GAs . 48

3.9.1 Dominance-based Methods . 49

3.9.2 Indicator-based Methods . 50

3.9.3 Decomposition-based Methods 51

3.10 Matrix Real-Coded GAs . 51

3.11 Chapter Summary . 53

4 Model Design 55

4.1 Initial Population . 57

4.2 Selection Methods . 58

4.2.1 Theoretical Comparison of Selection Methods 58

4.2.2 Experimental Comparison of Selection Methods 61

4.3 Crossover Methods . 67

4.3.1 Matrix Crossover . 67

4.3.2 Parallelised Crossover . 68

4.3.3 Parametric Uniform Crossover (PUC) 71

3

4.4 Mutation Methods . 72

4.5 Positional Bias and Schema Theory . 72

4.6 Adaptive GAs . 73

4.6.1 Adaptive Crossover Rates . 73

4.6.2 Adaptive Mutation Rates . 74

4.7 Objectives and Evaluation Tests . 75

4.7.1 Data Utility Objectives . 76

4.7.2 Disclosure Risk Objectives . 78

4.7.3 Evaluation Tests . 79

4.8 Chapter Summary . 80

5 Experiments and Results 81

5.1 Genetic Algorithms in Matrix Representation and Its Application in Syn-
thetic Data . 82

5.2 The Application of Genetic Algorithms to Data Synthesis: A Comparison
of Three Crossover Methods . 93

5.3 Matrix GA: building blocks in data synthesis 108

5.4 Impact of Full Contingency Table in Data Synthesis 123

5.5 The Impact from Initial Population in GA Synthetic Data Generator . . . 136

5.6 Exploring the Impact of Adaptive Parameters on a Genetic Algorithm
Synthesiser . 150

5.7 Trade-off between Information Utility and Disclosure Risk in GA Syn-
thetic Data Generator . 161

6 Summary and Model Integration 176

6.1 Model Integration and Flowchart . 178

4

7 Impacts and Critical Analysis of the Model 182

7.1 Impacts . 182

7.1.1 Impacts on the SDC field . 182

7.1.2 Impacts on the GA field . 183

7.2 Critical Analysis of the Thesis . 184

7.2.1 Full Synthesis and Partial Synthesis 184

7.2.2 Model Stability . 184

7.2.3 The Application of GA Synthesisers in Continuous and Mixed
Datasets . 185

7.2.4 The Comparison between Single-objective and Pareto-Optimal
GA Synthesisers . 189

7.2.5 Jensen-Shannon Divergence in Full Contingency Table: Advan-
tages and Disadvantages . 191

7.3 Chapter Summary and Closing Remarks 194

5

List of Figures

2.1 SDC (Microdata Protection) Techniques [27] 20

3.1 Three facets of natural computation [14] 35

3.2 A flowchart of a GA . 39

3.3 Classification of multi-optimisation methods [32] 48

3.4 Multi-Matrix Candidate Representation I [112] 52

3.5 Vectors of candidates are represented as rings in annular crossover [92] . 52

3.6 Multi-Matrix Candidate Representation II [94] 53

3.7 An example of matrix crossover . 53

4.1 Selection probabilities of 10 candidates vs their ranks from 0 (the worst)
to 9 (the best) with different c values in exponential ranking 63

4.2 Selection probabilities over the (previous) 100 candidates between two
approaches . 65

4.3 X1 and X2 before and after matrix crossover 68

4.4 X1 and X2 before and after variable parallelised crossover 69

4.5 X1 and X2 before and after CPC . 69

4.6 X1 and X2 before and after round-CPC 70

4.7 X1 and X2 before and after whole-CPC 71

4.8 X1 and X2 before and after PUC . 71

6

4.9 X before and after mutation . 72

4.10 The impact of kc on pc for different fitness values 74

6.1 GA synthesiser flowchart part I: initialising synthesiser 179

6.2 GA synthesiser flowchart part II: main process 181

7.1 The histogram of LIMIT BAL . 187

7.2 Histograms of original LIMIT BAL and restored LIMIT BAL 189

7.3 Changing of the risk and utility from the best candidate in SOGA and
NPGA in 500 generations . 190

7.4 Divergence-Risk map for the last population in SOGA and NPGA after
500 generations . 191

7.5 ε in the solution space of a GA synthesiser 192

Word Count: 64450

7

ABSTRACT

Data synthesis is a statistical disclosure control technique that prevents the leakage of
personal information from survey data. Rubin, who originally proposed this technique,
treated the confidential data within a dataset as missing and then replaced those data
using multiple imputation [103]. Most methods in data synthesis were then developed
based on this principle. However, data synthesis is a multi-objective problem that aims to
maximise information utility as well as minimising disclosure risks, and these methods
have no explicit mechanism for balancing the objectives. This issue is the basis for the
line of enquiry embodied in this thesis.

The need to optimise competing objectives suggests the possible use of iterative ma-
chine learning techniques for data synthesis, but - to date - investigations of this possibility
have been limited. In the thesis, a new synthesis method using Genetic Algorithms (GAs)
is introduced. GAs are evolutionary computational methods that simulate natural evolu-
tion. They allow candidates (which in this thesis are datasets) to compete, reproduce and
mate in a pre-determined environment until one or more of them perfectly fits the environ-
ment (which is defined by a set of objectives). GAs were firstly used on binary strings and
now they have variants that deal with different problems and data forms. In this thesis,
a GA data synthesiser whose candidates are matrix and real-coded data is designed, and
most of its parameters and hyper-parameters tested. A new information utility function
to measure the overall divergence from synthetic data to the original data is used. The
results of running the synthesiser on a real dataset are presented, which show that the GA
approach successfully produced plausible synthetic data using a single utility objective
and they were proved to be able to seek for a trade-off between information utility and
disclosure risks during the process of synthesising. The overall conclusion is that GAs
represent a significant opportunity for the practice of data synthesis.

Keywords: Genetic Algorithms, Data Synthesis, Data Privacy, Machine Learning

8

DECLARATION

The paper Trade-off between Information Utility and Disclosure Risk in GA Synthetic
Data Generator [23] is jointly authored with another Manchester university student (Jen-
nifer Taub). I understand that the paper will also be included in a thesis submitted by
that student to this university. All the other work has not been submitted in support of
an application for another degree or qualification of this or any other university or other
institute of learning.

9

COPYRIGHT

The author of this thesis (including any appendices and/or schedules to this thesis) owns
certain copyright or related rights in it (the “Copyright”) and s/he has given The Uni-
versity of Manchester certain rights to use such Copyright, including for administrative
purposes.

Copies of this thesis, either in full or in extracts and whether in hard or electronic copy,
may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as
amended) and regulations issued under it or, where appropriate, in accordance with li-
censing agreements which the University has from time to time. This page must form
part of any such copies made.

The ownership of certain Copyright, patents, designs, trademarks and other intellectual
property (the “Intellectual Property”) and any reproductions of copyright works in the
thesis, for example graphs and tables (“Reproductions”), which may be described in
this thesis, may not be owned by the author and may be owned by third parties. Such
Intellectual Property and Reproductions cannot and must not be made available for use
without the prior written permission of the owner(s) of the relevant Intellectual Property
and/or Reproductions.

Further information on the conditions under which disclosure, publication and com-
mercialisation of this thesis, the Copyright and any Intellectual Property and/or Re-
productions described in it may take place is available in the University IP Policy (see
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420), in any
relevant Thesis restriction declarations deposited in the University Library, The Uni-
versity Librarys regulations (see http://www.library.manchester.ac.uk/about/
regulations/) and in The Universitys policy on Presentation of Theses.

10

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/
http://www.library.manchester.ac.uk/about/regulations/

ACKNOWLLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Prof. Mark Elliot: for his
continuous support of my Ph.D. study and related research, for his patience, motivation,
and immense knowledge. His guidance helped me in all the time of research and writing
of this thesis.

I would like to thank the rest of my thesis committee: Prof. Joseph Sakshaug, Prof. Na-
talie Shlomo, Dr Duncan Smith and Dr Julia Handl, thanks for your insightful comments
and encouragement, which widens my research from various perspectives.

Thanks to everyone in the department, especially Jennifer Taub. It was great to work and
party with all of you during the last four years.

Last but by no means least, I am eternally grateful to my wife Robyn, my mother Xingy-
ing, my father Jingsheng and all my great friends, with a special mention to Xinhuan,
Xiawei, Li Zhou, Pan and Maomao. Thank you for always being there, loving me and
supporting me when I needed you the most.

11

Chapter 1

Introduction

Since the advent of the Internet, people have been exchanging more information, and such
sharing has become easier. This raises the ever-present possibility that such information
would be shared beyond the original recipients and possibly with malevolent intent. Re-
cent scandals like the Facebook confidentiality breach (that leaked data relating to mil-
lions of users to Cambridge Analytica [67]) have raised public concerns about personal
data misuse.

Data controllers (such as Facebook) are organisations that make decisions about the
collection and/or processing of personal data. They may include trade bodies and public
services. Although the process by which such organisations collect and analyse personal
data might be legitimate, for good purposes and under regulatory control, the risk of
confidentiality breaches from sensitive information is always present when the data are
published, disseminated or shared. Take, for example, respondents whose information is
collected through surveys; this is perhaps the most general case in data protection. Leak-
age of their privacy usually happens on poorly anonymised data or through unauthorised
access to the database. The breaches of privacy will not only harm respondents but dis-
credit the reliability of data controllers with the public [87].

Data privacy controls act on two domains: regulatory and technological. The reg-
ular updating of data protection regulations seeks a balance between owner’s controllers
and respondents’ rights. For example, the updated Data Protection Act 2018 and GDPR
2016/679 set out principles, rights and obligations for most processing of personal data
for EU and EEA companies or other subjects that use personal data from the EU and
EEA zones [16]. Technically, data controllers are responsible for applying appropriate
technical processes and carrying out privacy impact assessments of data before process-
ing it. As article 23 of GDPR states: “the controller shall implement appropriate technical
and organisational measures in an effective way in order to meet the requirements of this

12

Regulation and protect the rights of data subjects [55].”

Anonymisation is one of the critical approaches to protect personal data that spans
technical, regulatory, and organisational measures. A key technical approach to anonymi-
sation is called statistical disclosure control (SDC). It protects respondents (data subjects)’
confidentiality by removing, aggregating, distorting or modifying the identifiers that allow
- either directly or in combination with other information - data subject re-identification
and the disclosure of sensitive information. Common mechanisms used in SDC methods
include:

1. Removing identifiers that are not necessary for research but confidential for respon-
dents like name, addresses, postcode and phone numbers;

2. Aggregating variables to reduce the precision of actual information. For example,
record the year of birth rather than the date of birth;

3. Hiding outliers; for example sensitive information like “annual salary” is often top-
or bottom- bounded to avoid identifying high or low paid individuals [122].

4. Perturbing sensitive records in the original dataset so they cannot reveal the true
information of respondents.

The SDC method that is the focus of this thesis is called data synthesis, which con-
trols the risk of data subject identification from datasets by substituting real information
from original data with artificial information but doing so in a manner that retains the
datasets’ statistical properties. It aims to provide publishable datasets derived from the
original data with near-zero risk of linkage or re-identification. The research reported
in this thesis studied data synthesis of microdata, which are matrix-format data whose
columns represent variables and rows represent cases (usually individual respondents).
Microdata is used as raw material for different kinds of data such as tables of counts,
summary statistics and graphical visualisations. The job of data synthesis in microdata
protection is to build a matrix similar to the original data but with very low disclosure
risk.

The similarity between two datasets can be considered as a set of multivariate statis-
tical properties, such as covariance, correlation and coefficients from regressions. Since
datasets contain many variables, the similarity of their relations to the dataset’s synthetic
version cannot be easily captured through a single model or equation. For most orthodox
approaches in data synthesis, data utility is not explicitly built into the generating mech-
anism and so whatever utility is produced is necessarily fully represented by the model
used to generate the data [109]. As the parameters of synthesising models are fixed, data

13

utility and risk are routinely assessed or measured through post hoc measures. An alterna-
tive would be to embed the measures directly into the synthetic data generating process,
which is core to the approach represented in this thesis. In principle, machine learning
algorithms have the potential because they can involve utilities and risks as objectives
in the model and are able to gradually optimise candidate solutions by interacting with
the objectives in the process. Machine learning is a system that automatically learns and
improves from experience without engaging in human decision making. The principle
of machine learning is that candidates in a natural system can interact with a changing
environment and evolve from feedback.

Genetic Algorithms (GAs) are machine learning algorithms that simulate evolution-
ary processes in biological systems. They have been successfully used in solving high-
dimensional and complex problems [14]. A traditional GA works on binary strings, se-
lection operators (broadly analogous to natural selection) and crossover and mutation op-
erators (broadly analogous to natural reproduction processes) [62]. Although the idea for
GAs was first inspired by natural evolution, the design of a GA does not necessarily follow
the natural ways. Users are allowed to design crossover and mutation methods, to change
parameters and implement hyper-parameters, to parallelise learning agents and to control
population features. Critically, as the field has developed, more complex structures than a
linear form for candidates has become supported. For example, matrix real-coded genetic
algorithms (MRCGAs) is a variant that operate on matrices rather than strings, and which
provides the potential for solving two-dimensional problems [124]. Since the format of
microdata is a matrix (usually two dimensional), it is a reasonable starting point assume
the MRCGAs are more suitable for data synthesis than binary GAs. How to practically
apply this approach to data synthesis will be investigated in this thesis.

The thesis aims to demonstrate that the application of GAs to data synthesis is a
promising development. The main objectives of the thesis include:

1. Design the framework for GA data synthesisers and produce application code using
Python.

2. Choose suitable formats for inputs and outputs.

3. Choose or design measurable objectives for information utility and disclosure risk.

4. Choose or design suitable methods for operators and their corresponding parame-
ters.

5. Evaluate the performance of the GA synthesiser and suggest routes to improving its
efficiency and effectiveness (if necessary).

14

1.1 Summary of Chapters

The thesis consists of 7 chapters. The first three chapters narrate the fundamental knowl-
edge that underpins the thesis. Chapter Statistical Disclosure Control introduces data
privacy and statistical disclosure control (SDC) techniques, which includes data mask-
ing and data synthesis. The chapter also summarises some common synthesising models
that fully and partially synthesise data, followed by statistical assessments of data utility
and disclosure risks. Chapter Machine Learning, Natural Computation and Genetic Al-
gorithms introduces machine learning algorithms and the relationship between machine
learning and GAs at the beginning. It then summarises the theoretical background of
GAs, including their operators, the common methods used in operators and the theories
underpinning both linear and matrix GAs. Since data synthesis is a multi-objective opti-
misation problem, this chapter also introduces some multi-objective GA models. Chapter
Model Design is the methodological core of the thesis, which describes how the GA syn-
thesiser was designed and implemented. It firstly justifies the choice of full synthesis and
MRCGA, followed by theoretical and experimental design which are necessary for the
construction of GA synthesisers. Each section focuses on one of the essential parame-
ter/operators (the initial population, selection mechanism, crossover and mutation), plus
some critical issues including positional bias, schema Theory and adaptive parameters.
Possible utility and disclosure measures are also formulated at the end of the chapter.

All experiments are in paper-format and are presented in Chapter Experiments and
Results. The main target of these experiments was to investigate the suitable operator
methods and parameters settings for GA synthesisers. The chapter also lists some ’bonus
findings’ on the relationship between data structure and utility. All experimental results
are presented in seven papers, where information on the authors, their contributions and
the destinations for each paper can be found in Section 1.2.

Chapter Summary and Model Integration delivers the summary of findings in the the-
sis. It combines all studies of components of GA synthesisers into a flowchart and gives
a full description of GA synthesisers. The final chapter Impacts and Critical Analysis
of the Model summarises the impacts and limitations of the research, including applying
GA synthesisers to continuous or mixed data (data that forms with both continuous and
categorical variables), the potential of use Pareto-GAs to explore the solution space, and
advantages and disadvantages of the current model. This chapter also provides sugges-
tions on future research for GA synthesisers.

15

1.2 Summary of Publications

The thesis contains eight papers/journal articles that have been published/are prepared for
publication (7 of them are in Chapter Experiments and Results and the other is in the
Appendix). Thanks to the contribution given by my supervisors and my colleague to the
development of ideas, analysis and editing. They are co-authors for each paper to which
they contributed. The following table (Table 1.1) provides briefs for each publication:

16

Pa
pe

rt
itl

e
A

ut
ho

rs
D

es
tin

at
io

n
St

at
e

A
G

en
et

ic
A

lg
or

ith
m

A
pp

ro
ac

h
to

Sy
n-

th
et

ic
D

at
a

Pr
od

uc
tio

n
Y

in
gr

ui
C

he
n,

M
ar

k
E

lli
ot

,
Jo

se
ph

Sa
ks

ha
ug

E
ur

op
ea

n
C

on
fe

re
nc

e
on

A
rt

ifi
ci

al
In

te
l-

lig
en

ce
,2

01
6

Pu
bl

is
he

d

G
en

et
ic

A
lg

or
ith

m
s

in
M

at
ri

x
R

ep
re

se
n-

ta
tio

n
an

d
It

s
A

pp
lic

at
io

n
in

Sy
nt

he
tic

D
at

a

Y
in

gr
ui

C
he

n,
M

ar
k

E
lli

ot
,

Jo
se

ph
Sa

ks
ha

ug
U

N
E

C
E

W
or

k
Se

ss
io

n
on

St
at

is
tic

al
D

at
a

C
on

fid
en

tia
lit

y,
20

17
Pu

bl
is

he
d

T
he

A
pp

lic
at

io
n

of
G

en
et

ic
A

lg
or

ith
m

st
o

D
at

a
Sy

nt
he

si
s:

A
C

om
pa

ri
so

n
of

T
hr

ee
C

ro
ss

ov
er

M
et

ho
ds

Y
in

gr
ui

C
he

n,
M

ar
k

E
lli

ot
,

D
un

ca
n

Sm
ith

Pr
iv

ac
y

in
St

at
is

tic
al

D
at

ab
as

e,
20

18
Pu

bl
is

he
d

M
at

ri
x

G
A

:
bu

ild
in

g
bl

oc
ks

in
da

ta
sy

n-
th

es
is

Y
in

gr
ui

C
he

n,
M

ar
k

E
lli

ot
A

C
M

Tr
an

sa
ct

io
ns

on
Pr

iv
ac

y
an

d
Se

cu
-

ri
ty

(T
O

PS
)

Su
bm

itt
ed

T
he

Im
pa

ct
fr

om
In

iti
al

Po
pu

la
tio

n
in

G
A

Sy
nt

he
tic

D
at

a
G

en
er

at
or

Y
in

gr
ui

C
he

n,
M

ar
k

E
lli

ot
W

or
ki

ng
pa

pe
r

C
om

pl
et

e

Im
pa

ct
of

Fu
ll

C
on

tin
ge

nc
y

Ta
bl

e
in

D
at

a
Sy

nt
he

si
s

Y
in

gr
ui

C
he

n,
M

ar
k

E
lli

ot
Tr

an
sa

ct
io

ns
on

D
at

a
Pr

iv
ac

y
In

Pr
ep

ar
at

io
n

E
xp

lo
ri

ng
th

e
Im

pa
ct

of
A

da
pt

iv
e

Pa
ra

m
-

et
er

s
on

a
G

en
et

ic
A

lg
or

ith
m

Sy
nt

he
si

se
r

Y
in

gr
ui

C
he

n
W

or
ki

ng
Pa

pe
r

C
om

pl
et

e

Tr
ad

e-
of

f
be

tw
ee

n
In

fo
rm

at
io

n
U

til
ity

an
d

D
is

cl
os

ur
e

R
is

k
in

G
A

Sy
nt

he
tic

D
at

a
G

en
er

at
or

Y
in

gr
ui

C
he

n,
M

ar
k

E
lli

ot
,

Je
nn

if
er

Ta
ub

Jo
in

t
U

N
E

C
E

/E
ur

os
ta

t
W

or
k

Se
ss

io
n

on
St

at
is

tic
al

D
at

a
C

on
fid

en
tia

lit
y,

20
19

Pu
bl

is
he

d

Ta
bl

e
1.

1:
Su

m
m

ar
y

of
pu

bl
ic

at
io

ns
(i

n
th

e
or

de
rt

ha
tt

he
y

ap
pe

ar
in

th
e

th
es

is
)

17

My contributions to all the publications listed above include exploring the theoretical
background of matrix GAs, proposing the idea of implementing them on data synthesis,
constructing and coding the initial model, designing experiments, recording experimental
results and drafting. Details of co-authors’ contributions are listed below:

• For paper A Genetic Algorithm Approach to Synthetic Data Production (see Ap-
pendix 7.3) and paper Genetic Algorithms in Matrix Representation and Its Appli-
cation in Synthetic Data, the idea of implementing of matrix GAs was discussed
together with Mark Elliot and Joseph Sakshaug, and all drafts were edited by them.

• Duncan Smith provided the idea and code of utility functions in The Application of
Genetic Algorithms to Data Synthesis: A Comparison of Three Crossover Method.
He and Mark also edited the draft of this paper.

• All experiment results in papers: Matrix GA: building blocks in data synthesis,
The Impact from Initial Population in GA Synthetic Data Generator, Impact of
Full Contingency Table in Data Synthesis and Exploring the Impact of Adaptive
Parameters on a Genetic Algorithm Synthesiser are discussed with Mark and he
shared his findings for the papers. He also provided editorial input on drafts of
these papers.

• Jennifer Taub designed and coded the risk function in paper Trade-off between In-
formation Utility and Disclosure Risk in GA Synthetic Data Generator and wrote
all the relevant parts. She carried a post-hoc utility test of data. Mark Elliot super-
vised the whole process, suggested changes in the experiment design, coding and
objective design, and edited the paper.

For all papers except paper The Application of Genetic Algorithms to Data Synthe-
sis: A Comparison of Three Crossover Methods and paper Trade-off between Information
Utility and Disclosure Risk in GA Synthetic Data Generator, I programmed and ran the
experiments, produced the drafts and prepared the publishable versions. The overall in-
tellectual architecture for the thesis is primarily mine with co-authors providing feedback
and a sounding board for ideas.

18

Chapter 2

Statistical Disclosure Control

Microdata contains information that is collected from or assembled for individual pop-
ulation units [27]. It is a matrix with each column representing a variable and each row
representing a data subject (a respondent or a case) and often underlies other data formats.
Within SDC, variables in microdata are classified as (1) formal (or direct) identifiers,
which are generally removed during the pre-processing of the original data (2) quasi (or
indirect) identifiers, which do not themselves uniquely identify respondents but may cre-
ate a unique identifier when combined with other quasi-identifiers, and (3) targets, which
contain the sensitive information of respondents and thus are the raison detre for privacy
protection [33].

A rational attacker can derive information that is explicitly contained in quasi-identifiers
by a homogeneity attack or background knowledge attack [76] [79], thus reveal confi-
dential information on one or more individuals. A homogeneity attack occurs when an
equivalence class does not have enough diversity on a sensitive variable so that intruders
can disclose sensitive information of a group of respondents in the dataset. An equiva-
lence class in a dataset is a set of records that have the same values for a given set of
variables (usually the quasi-identifiers). Even if exact values in sensitive variables are not
revealed, something close to the correct value can harm respondents. For example, if the
target information for an equivalence class is semantically similar then broad inferences
can be made if everyone in an equivalence class has either gastric ulcers, gastritis or stom-
ach cancer, the attacker can infer that all of the respondents in that equivalence class has
a stomach-related disease). A background knowledge attack occurs when intruders build
up a connection between the published quasi-identifiers and external information that may
come from his own knowledge or external data, which enhances the certainty about the
values of sensitive variables belonging to a group of records in the equivalence class of
an individual [79].

19

To process a dataset whilst preventing personal information leakage, data owners
have to anonymise the data they control before that processing takes place. However, a
poorly conducted anonymisation can result in information loss. According to Matwin et
al.. publishable data must be “very close” to the original data. Matwin does not define
“very close”, but we can reasonably interpret this as meaning that users should be able
to obtain similar results by analysing the data as they would with the original data [79].
On the other hand, the data need to be sufficiently divergent from the original data to
prevent attackers from obtaining sensitive information from it. The orthodox technology
for controlling the balance between data utility and disclosure risks is called statistical
disclosure control(SDC). In the SDC framework, disclosure risks are typically classified
into (1) identification disclosure (also known as re-identification) and (2) attribute disclo-
sure (also known as attribution or inference disclosure in [48]). Re-identification occurs
when attackers can identify a natural person within released data, for example, through a
background knowledge attack. Attribution occurs when attackers can determine the value
of one or more confidential attributes of a group of respondents from released data, for
example, through homogeneity attack [11].

SDC on microdata should be implemented in a way to prevent both re-identification
and attribution, but it can be applied to either quasi-identifiers to reduce the possibility of
re-identification or sensitive variables to reduce the possibility of correctly disclosing real
information1 [107]. [27] classified the methods used in SDC (which they called microdata
protection) into four categories (see Fig. 2.1).

Figure 2.1: SDC (Microdata Protection) Techniques [27]

As there are two types of data: continuous and categorical, Domingo-Ferrer and
Torra argued that there is no single SDC method that can be applied to both data types
in a straightforward manner [34]. The corresponding model needs to be re-designed in
order to be applied to different types of data. In the remainder of this chapter, some
common SDC techniques will be reviewed. Measures of utility and disclosure risks for
both re-identification and attribution on microdata will be introduced in the last section.

1This should be done very carefully because harm could happen even if inaccurate information is re-
vealed about the respondent (but the intruder believes it to be accurate)

20

2.1 Data Masking

Masking techniques change the microdata and come in two forms: non-perturbative and
perturbative. Non-perturbative masking techniques do not add noise to the original data.
Instead, they reduce the detail in some or all of the quasi-identifiers and/or target variables.
For example, they may withhold or remove sensitive information from quasi-identifiers
(data suppression). They may also aggregate extreme values in a single category usually
high or low (top/bottom recoding) or collapse all values into a smaller number of bands
(generalisation) [24].

Perturbative masking techniques distort original records. There are some conven-
tional ways to do this: adding noise to the original data, partitioning the data into k clusters
and publishing the clusters’ means, and rank swapping [36]. Rank swapping exchanges
individual records whilst maintaining the marginal counts in variables. It was designed
for ordinal and continuous variables. The target variable Vi is re-arranged in ascending
order. Then for p% of the records, data are swapped for the equivalent data within another
set of records usually chosen based on matching variables [24]. The idea of protecting
marginal values within a restricted range p% is regularly used in SDC, and p% is usually
chosen from 1 to 9 [34]. The post-randomisation method (PRAM) is an advance swap-
ping approach to mask categorical variables. It changes the values of the variables in the
original dataset using probabilities generated from a Markov matrix. This Markov matrix
A is a K×K matrix, where K is the number of categories in the variable. Every entry akl

in A, where k, l = 1, ...,K, indicates the probability of a record that originally was k but
was transformed to category l, and for any k, ∑

k
l=1 akl = 1[74][59].

2.2 Data Synthesis

Data synthesis is another branch of SDC. Instead of removing true information or adding
noise to the real data, data synthesis produces an artificial dataset that does not contain
the original records of respondents. It, therefore, aims to [2]:

• Preserve the same inferences as to the original data.

• Provide sufficient information include a reasonable number of records and variables
to allow for proper multivariate analyses.

Researchers often distinguish between full and partial data synthesis [39]. Fully synthetic
data aims to prevent actual values from being linked to any respondent, so, data owners

21

can focus on the quality of the published data instead of the re-identification risks [27].
Although there may still be attribution risks (as we will see later), the linkage of auxiliary
information to external files by a data intruder will not cause the re-identification of re-
spondents, since they cannot recognise if the information in the synthetic data corresponds
to a real individual [2].

Rubin was the first to present how fully synthetic datasets can be generated via mul-
tiple imputation. He represented microdata generated from a survey sample as consisting
of background variables Z and observed variables Yobs, respectively, where Z is available
for the entire population, but the observations of Yobs are only known within the sample.
Then all observations that included in the population but excluded from the Yobs were Ynobs

and therefore treated as missing data. He then imputed Ynobs through M multiple impu-
tations (usually 3 ≤M ≤ 10) from known observations of Z and Yobs, and drew samples
from the imputed population. This principle is applicable for both continuous and cate-
gorical variables as long as a suitable model is adopted [103]. There are non-negligible
disadvantages of full synthesis. Properties of the data that are not explicitly included
in the generating model cannot be represented in the synthesised dataset unless they are
dependent on the properties included in the generator. Thus, unforeseen analysis of the
synthetic data might lead to results that differ from those obtained using the original data
[78]. Synthesising a full dataset can be practically difficult as the generating model may
require all the variables as input (so that their relationship can be captured) which may be
computationally expensive.

Partially synthetic data, on the other hand, reduce model dependencies and compu-
tational workload because they do not attempt to synthesise every variable in the dataset.
Data controllers intend to publish partially synthetic data with limited information on
some quasi-identifiers in order to preserve respondents’ privacy with reduced alterations
to the collected survey data [73]. However, they have to control the risk of re-identification
as the published data retains the true values of some variables [39]. Multiple imputation
can also be implemented in partial synthesis based on the assumption that only some of
the observations Yrep from target variables need to be imputed. Reiter described how to
apply multiple imputation to synthesise a partial data D: Suppose I = (I1, ..., In) where n
is the size of Yobs. I j = 1 if observation j is selected to be replaced by a synthetic value
otherwise I j = 0. The values of Yrep,i could be generated by Bayesian posterior predictive
distribution with prior knowledge (Yrep,i|D,Z) [98] but in the later research the method
was proved to have less efficiency [100][120].

Multiple imputation produces multiple synthetic datasets, and it is necessary to have
combining rules to when carrying out analyses to increase the level of analytical valid-
ity [120]. The classic combining rules were introduced by [95] and have been used for
decades. In the rules, the inference of an estimand of interest Q (for example, a vari-

22

able’s population mean) is estimated with the following steps: Each synthetic dataset
Di, i = 1, , ,M, where M is the number of times of imputations, has qi as an estimator of
Q and vi as the estimator of the variance of qi. Analysts can obtain valid inferences for Q
through the following equations:

¯qM =
M

∑
i

qi

M

¯bM =
(qi− ¯qM)2

M−1

¯vM =
M

∑
i

vi

M

where ¯qM is the estimator of Q and T = bM
M+ ¯vM

is the estimator of the variance of ¯qM.

Multiple imputation was the original framework used for producing synthetic data,
but it has proved time-consuming in many cases [100][120]. Therefore some synthesising
models (synthesisers) deploy single imputation instead.

2.2.1 Synthesisers: Mechanisms and Models

This section briefly introduces some of the data synthesisers in use (for both continuous
and categorical data). It aims to explore the common mechanism in these models.

Ideally, drawing a similar sample by adequately tuning the parameters of the exact
distribution function of the actual data would be possible for continuous variables. How-
ever, this is not easy for multivariate situations. Work with classes of similar records
tends to be more practical than work with the whole dataset. Therefore clustering is com-
monly used for synthesising continuous data. Cano, Ladra and Torra proposed a fuzzy
c-regression model (FCRM) to synthesise continuous data. The model gives c regression
models to predict the value of yi (the synthetic version of xi).

yi = fi(xi,βi)+ εi,1≤ i≤ c.

The algorithm updates the constant coefficient βi in different regression models to min-
imise the error vector ε [18]. Other clustering techniques include Latin Hypercube sam-
pling, mixture model and quantile regression. Latin Hypercube sampling generates syn-
thetic data from only uncorrelated variables in the original data then use restricted pairing
algorithm to reproduces the rank correlation structure of the original data [30]. Mix-
ture model uses different parameters to produce synthetic data from different clusters and
modifies their covariance matrices to ensure there is no small cluster in the output to draw
attention from intruders [90]. As for continuous data with skewed distributions, Pistner et
al.. used quantile regression to generate a synthetic version [93].

23

Mateo-Sanz et al.., on the other hand, proposed a learning algorithm to to synthesise
a continuous dataset iteratively [80]. They believed that retaining univariate means and
the covariance matrix of a dataset can adequately preserve its other statistical qualities.
Their synthesiser gradually optimises the covariance matrix of the synthetic data until it
is equal that of the original data. The algorithm is not entirely stable because it produces
different synthetic versions, and the utility of its output is acceptable if only the initial
parameters of the algorithm were carefully selected [80].

To date, synthesisers for categorical data have been modelled based on Rubin’s cen-
tral idea [103]; they treat target variables as missing values and refill them using reason-
able distributions or prediction/classification models, for example, multiple imputations.
Reiter composed a CART model of synthetic data generation by estimating the value of
each variable given the partitions of a predictor space. The classification and regression
tree (CART) is a strong non-parametric prediction tool. It predicts outcomes by recur-
sively determining the explanatory power and variance from input variables. He demon-
strated that CART could generate synthetic data by estimating the conditional distribu-
tions of an outcome from multiple predictors and increases the synthesiser’s effective-
ness and accuracy in the fitting of non-linear relationships. However, Reiter only applied
CART in the context of partial data synthesis [99].

More recently, Caiola and Reiter suggested using random forest for partially synthe-
sising categorical data [17]. Random forest develops from CART, it grows a large number
of trees based on different samples and/or predictor variables. This work inspired Drech-
sler [38], who then used support vector machines (SVMs) to synthesise categorical data.
He stated that the multivariate predictors from CART models could form a hyperplane,
which is optimised by maximising the margins between separated classes, as well as by
reducing misclassification to an acceptable level. The SVM is trained with different mis-
classification levels, and its performance is measured based on how well the predicted
target variable is in the test dataset. On the whole, deploying a classification method
should start with binary variables from a set of predictors and then extend variables with
more than two categories.

By assuming that each individual in the microdata belongs to one of a set of latent
classes, Hu et al.. designed the DPMPM synthesiser for categorical data. The model
assumes that individuals from the dataset in the same class share the same multinomial
distribution over target variables [65]. Hu and Nobuaki then added a tuning parameter
to transform the multinomial distribution to quasi-multinomial distribution, which they
claim provides the model with agility in controlling utility and disclosure risk [66].

24

2.3 The Assessment of Utility and Risk of Microdata

2.3.1 Data Utility

There are two determinants to whether a synthetic dataset is useful. The dataset should
contain a sufficient number of variables and records so that it is analytically interesting to
users, and an acceptable level of accuracy across a reasonable range of analyses [81].

Information in census and social survey data are usually presented in a categorical
format, i.e. data that take a finite number of (or countable numbers as) values. For any
given set of categorical variables, the same information can - in principle at least - be
encoded in a contingency table, which captures the between-variate structure of the data.
For example, if we denote the jth column of a microdata set Y as Y:, j, then the bi-variate
contingency table constructed from distinct columns Y:, j and Y:,k is CT (Y:, j,Y:,k), and with
entries nr,c is

nr,c =
n

∑
i=1

[Yi, j = (I j)r∧Yi,k = (Ik)c] (2.1)

where the square brackets are Iverson brackets and the levels of I j and Ik are indexed
r ∈ [1..|I j|] and c ∈ [1..|Ik|], respectively. Meanwhile, the contingency table CT (Y:, j,Y:,k)

is illustrated in Table 2.1.

n1,1 n1,2 · · · n1,C

n2,1 n2,1 · · · n2,C
...

...
...

...
nR,1 nR,1 · · · nR,C

Table 2.1: An illustrative R×C contingency table

One important statistic obtained from the contingency table is the Chi-square (χ2).
It is used in hypothesis tests of a model’s goodness-of-fit and/or independence between
variables.

χ
2 = ∑

i
∑

j

(nr,c− er,c)
2

er,c
,

where er,c is the expected count for nr,c in Table 2.1. Aside from tests of goodness-of-fit
and independence, χ2 can also evaluate the homogeneity between two statistical datasets.
Shlomo indicated that Chi-square and Cramer’s V are two key statistics to measure infor-
mation loss by cross-classifications of pairs of categorical attributes [107]. Cramer’s V is
a measure of association between a pair of nominal variables derived from χ2 and can be

25

calculated from an R×C contingency table T ,

φC(T) =

√
χ2\n

min(R−1,C−1)
(2.2)

Modelling is another analytic tool used for categorical data analysis. Suppose a
dataset has n random variables X1,X2, · · · ,XN corresponding to n observed values x1,x2,
· · · ,xn. A model to estimate unknown parameter Θ with respect to the joint probability

P(X1 = x1)∩·· ·∩ (Xn = xn)

can be written as [5].
f (x1, · · · ,xn|θ),θ ∈Θ. (2.3)

The similarity between Θ in original and synthetic datasets is another measure for the
utility of the synthetic dataset.

A real dataset usually contains continuous variables. Thus, the utility of continu-
ous data is worth consideration when taking the application of GAs to the real world.
Mateo-Sanz et al. suggested that synthetic versions of continuous data should retain at
least the following properties of the original datasets in order to be analytically valid: (1)
the mean and covariance, (2) marginal values for tabulations and (3) at least one distribu-
tional characteristic of the original data [81]. Modelling is also important for continuous
data analysis. Besides keeping the high similarity of Θ in Equation 2.3 to the original
data, a usable synthetic dataset should have similar results as the original data after being
clustered by the same model [107].

2.3.2 Disclosure Risk

As indicated previously, here are two main types statistical disclosure risk in microdata:
re-identification, which refers to the exposure of population units through the linkage
of corresponding quasi-identifiers, and attribution, which refers to the leakage of target
variable values for one or more equivalence classes.

2.3.2.1 Re-identification

Ciriani et al. observe that a record of a highly visible and unusual population unit, for
example, respondents with high income, is more risky [27]. Duncan et al. indicated
that for aggregated forms of microdata that contain the summarised information of the
whole population in a table of counts, small cell counts in this table would draw more

26

attention from intruders [44]. Matwin also observed that skew in the distribution of an
attribute increases the chance of re-identification [79]. An example involving all the three
circumstances is called population unique

Definition 2.3.1 (Population Unique). A population unique is a population unit that has
unique values on a set of quasi-identifiers within that population [45].

Population unique has the highest risk in re-identification. Therefore, uniqueness is
an essential measure of disclosure risk in microdata, especially for a dataset that partially
synthesised or protected by non-perturbative techniques [27].

Re-identification becomes possible when small counts exist in the cross-tabulation
of quasi-identifiers. Shlomo summarised the factors for assessing the levels of disclosure
risks from social surveys [107]:

1. The probability that a sample unique is population unique (where re-identification
occurs on a multi-dimensional contingency table from a set of quasi-identifiers):
as quasi-identifiers usually are categorical, the identification risk amongst a set of
variables can be assessed from their contingency tables. She defined the disclosure
risk on a contingency table as a function of combinations of quasi-identifiers within
the sample and population [107].

2. The probability that records from a set of quasi-identifiers that link to auxiliary
information or an external file: the measurement of such a record linkage is based
on an essential assumption that there exist external files containing quasi-identifiers
that are the same as some of the variables presented in the released dataset and are
also available to intruders [35]. The following section gives more details regarding
the issues of record linkage.

3. How powerful the SDC model is: for example, does it consider all information
confidential, such as full synthesis, or only protect selective information, like partial
synthesis? Re-identification will be easier for intruders if the disclosure control
model does not mask the data sufficiently.

2.3.2.2 Attribution

Technically, data has more risk if there exist small frequencies in some contingency tables
derived from that data. The risk is higher if the table contains more cells with small values
like 0 or 1 and low counts in population tables are more dangerous than those in sample
tables [6][108]. Antal et al. [6] proposed the use of entropy and conditional entropy to

27

evaluate attribute risks contained in data. The entropy of a random variable X is:

H(X) =
KX

∑
j=1

Pr(X = k j) · logPr(X = k j) (2.4)

where KX is the range of X , entropy increases when the distribution of X converges to a
uniform distribution, meanwhile, the conditional entropy of two random variables X and
Y is:

H(X |Y) =−
KX∧Y

∑
j=1

Pr(Y = k j)∑Pr(X = k j|Y = k j) · lnPr(X = k j|Y = k j)

where KX∧Y is the common range of X and Y . Entropy enables the measurement of dis-
closure risk of variable X in population-based data. Suppose the corresponding frequency
table is F = (F1, ...,FK), the empirical distribution of X is (F1

N , ..., FK
N) where N = ∑

K
i=1 FK .

Let D be the set of zeros in F and |D| is size of D. Let w be a vector of weights: the
weighted average of disclosure risk in X is:

R(F,w) = w · (|D|
K

,1− H(X)

lnK
,

1√
N

ln
1

e
√

N
)

Suppose E is the set of zeros in the perturbated frequencies of some of variable X and
F is its original, population-based frequencies. The following equation 2.5 can access
the attribution risk in perturbative data no matter of whether it is population-based or
sample-based.

R(F,G,w) = w · (|D|
K

D∪E
D∩E

,(1− H(X)

logK
)(1− H(X |Y)

H(X)
),

1√
N

ln
1

e
√

N
) (2.5)

2.3.3 Privacy Models

Several privacy models attempt to provide a guarantee against privacy leakage, and such
leakage is essentially synonymous with attribution. A privacy model can give the prob-
ability of whether a respondent in the protected dataset has property P. If there are p
fraction of respondents having the property, then the intruder can estimate the fraction
of respondents who truthfully have property P in the real data [8]. Sweeney proposed k-
anonymity which provides a guarantee against smaller than acceptable counts in released
datasets [118].

Definition 2.3.2 (k-anonymity). Suppose Y (V1, ...,Vm) is the real data, and QI is the set
of quasi-identifiers for R. Y is k-anonymity if and only if each combination of values in
QI appears in at least k occurrences.

28

Machanavajjhala et al. argued that k-anonymity was flawed: it was still possible - in
some cases - to leak sensitive attribute information from a k-anonymous dataset because
of the possible lack of conditional diversity in a sensitive attribute. They then introduced
l-diversity to address this issue by determining the number of values (‘well-presented’ is
the word used in their paper) from target variables conditioning on a given combination
of quasi-identifiers [76].

Definition 2.3.3 (l-diversity). A set of quasi-identifiers is l-diverse if it contains at least l
diverse values for each sensitive variable. A dataset is l-diverse if every set of its quasi-
identifiers is l diverse.

Although l-diversity needs no knowledge of the full distribution of quasi-identifiers
and sensitive variables, and it allows privacy control when the dataset has linked, external
files, in practice, the calculation of l-diversity on a dataset is complicated, especially if
there are multiple sensitive variables. Moreover, its ability to prevent attribute disclosure
is still insufficient. Intruders can learn information from skewed distributions or from
equivalence classes that are categorically distinct but semantically similar. Therefore, the
t-closeness was proposed [71].

Definition 2.3.4 (t-closeness). An equivalence class has t-closeness if its distribution of
the sensitive variable in this class has less than t distance2 to the distribution of that vari-
able in the whole dataset.

Barak et al. argued that none of the above models could measure information leakage
derived from adversaries with arbitrary background knowledge, as they all assume the
completeness of a chosen set of quasi-identifiers and this is impossible to verify with
certainty in practice [8]. A more comprehensive risk measure is required to measure
attribution risk.

There are some advanced privacy models like γ-amplification [50], v-dispersion [90]
and differential privacy [46], with differential privacy being the most well-known and is
used by the U.S. Census Bureau, Apple and Microsoft [54]. It assumes first that a privacy
model M can be described as a mapping from a domain A to a range B over a probability
simplex ∆(B)3.

2The distance between distributions can be calculated using the Kullback-Leibler distance, the earth
mover’s distance, or any similar distance measures.

3 Given a discrete set B, the probability simplex ∆(B) is defined as

∆(B) = {x ∈ R|B| : xi ≥ 0∨ i and
|B|
∑
i=1

xi = 1}.

29

In differential privacy, data is defined as a histogram x ∈ N|χ| collected from a uni-
verse χ , where each entry xi is the number of elements in x of type i ∈ χ . Differential
privacy uses the l1 norm to measure how many records differ between two datasets x and
y. The distance between χ 3 xi and γ 3 yi by the l1 norm is

||x− y||1 =
χ,γ

∑
i=1
|xi− yi|.

Differential privacy guarantees that a privacy model, which involves randomness in its
process, behaves similarly on a similar input dataset.

Definition 2.3.5 ((ε,δ)-differentially private). The model M is (ε,δ)-differential private
if for all S⊆ Range(M) and for all x,y, such as ||x− y||1 ≤ 1,

Pr[M(x) ∈ S]≤ eεPr[M(y) ∈ S]+δ (2.6)

When a privacy model M is (ε,0)-differentially private (δ = 0), the output of a record
is equally likely to be the output in different runs of the model. By contrast, if δ 6= 0, then
the output of a record is very unlikely to be the output in different runs of the model.
Meanwhile, given an output ξ ∼ M(x), we could probably find a dataset X such that ξ

looks more like an output from M(Y) than from M(X).

Differential privacy guarantees little or no disclosure to individuals unless the pri-
vacy model M is released. Datasets can be protected from arbitrary risks and possible
linkage attacks, and the impact to individuals’ privacy is negligible regardless of their
presence in the dataset. Compared with other privacy-preserving models, differential pri-
vacy quantifies randomness impact and privacy loss. It allows any post-processing on the
data with no leakage of information of more than exp(ε) ≈ exp(ε + 1) factor [46]. One
criticism of differential privacy is that although they provide a guarantee they do not seem
to be able maintain the utility of the data at the same time. For example, it was confirmed
that when applying differential privacy to an analysis data server, it is difficult to produce
meaningful (statistical) inferences from the differentially private database [105].

The above privacy models allow data controllers to decide on a threshold of risk
for a single and isolated dataset. However, the guarantee may not hold anymore if there
is auxiliary information or external datasets available that have been collected from the
same population, that can be linked to the isolated dataset and disclose more information
of the respondents [118] (some of the linkages occur for analytical purposes). Once data
controllers discover such an auxiliary dataset, they may conduct linkage between it and
the single dataset they owned to assess if their dataset is still secure. The technique used
to connect datasets is record linkage.

30

2.3.4 Record linkage

Record linkage is a technique that has many uses, one of which is a mechanism for
simulating an attack on a dataset(also known as penetration test or a motivated intruder
test)[61]. It is specifically used to evaluate re-identification risks in microdata [35].

Record linkage brings information together from two records that are believed to
relate to the same entity. If the records perfectly match each other, then intruders would be
able to construct the relationship between the released data and the corresponding external
datasets [60]. Record linkage is not considered in data synthesis, especially full data
synthesis, because it is unlikely to conduct record linkage as every record is ‘synthetic’
theoretically. Therefore, it is also briefly introduced in this section.

Often, the linkage between two datasets cannot be conducted deterministically, and
we need to assess the probability that the two records belong to one entity. This is called
probabilistic linkage a methodology that was initially formulated by [51]. Assume that A
and B are the two populations to be compared. The records from A and B are denoted by
α(a) and β (b) that contain selected quasi-identifiers (e.g. name, age, sex, marital status)
and errors (e.g. errors of reporting or failure to report, errors of coding). The two records
can be compared using a comparison vector, which is defined as a function γ for A×B.
The set of all possible records of γ is the comparison space Γ.

γ[α(a),β (b)] = γ1[α(a),β (b)], ...,γk[α(a),β (b)]. (2.7)

The function γ[α(a),β (b)] computes three possible outcomes: (a,b) is matched, un-
matched or possibly linked.

2.4 Chapter Summary

This chapter has introduced the theoretical background of key SDC techniques, including
data synthesis. Unlike data masking, data synthesis produces a replacement for the origi-
nal data that aims to carry no risk from it. The mechanism used by most data synthesisers
is (multiply or singly) imputing the concerned records in the dataset. Since a particular
model imputes these records, the quality of synthetic data, especially fully synthetic data,
is highly dependent on this model. Measurements of that quality include data utility and
disclosure risk. Therefore, the last section summarised conventional measures of utility
and risks to synthetic data, including some privacy models.

Utility and risk are conflicting objectives so that improving one of them will worsen
the other. So far, there is no synthesiser can optimise both objectives simultaneously or

31

converge to an appropriate trade-off. Compared with the common synthesiser approach,
an iterative learning algorithm has the potential to explore the relationship between the
conflicting objectives and to find the trade-off. Such an algorithm and its theoretical
background will be introduced in the following chapter.

32

Chapter 3

Machine Learning, Natural
Computation and Genetic Algorithms

Algorithms are the core of machine learning as they are a set of instructions transforming
inputs into outputs. An algorithm can gradually train the machine learning model by
learning from training data. Sometimes even the size of training data is limited compared
to its entire information base. It still enables the model to explain parts of the base [4]. The
majority of machine learning problems can be regarded as optimisation problems as they
are finding the most suitable output through constraint and objective functions [49]. There
are two questions to be considered in designing algorithms for a specific problem: how
to compare the algorithm’s prediction with reality and how to prove that the algorithm
surpasses other algorithms on a given application. The first issue can be addressed by
looking at errors from the training dataset, but these errors cannot be used to compare
two algorithms because the more complex model with more parameters will always give
fewer errors than a simple one. These are reasons that we usually need another dataset to
validate the algorithm, namely the validating dataset. An algorithm generally run more
than once in the validation set in order to obtain a generalised level of the expected error.
From Ethem’s view, this can reduce the effect of misleading cases and random factors
[49].

Machine learning can be classified into three types: supervised learning, unsuper-
vised learning and reinforcement learning. A supervised learning model M is defined by
a set of parameters θ and optimised until the estimation error is minimised. Users label
the examples found in the dataset to obtain specific mappings from inputs x to outputs y.

y = M(x|θ)

Regression and classification are two typical problems in supervised learning. In these
techniques, users first label the classes or variables to be analysed in the training data,

33

and then they allow the model to automatically optimise corresponding parameters until
the estimation error reaches a minimum. An unsupervised learning model is designed
when there is no prior expectation about the relationship between the input and the output
and it is beyond the users’ ability to supervise the algorithm. Unsupervised learning is
used for finding hidden patterns and structures in unlabelled training data, but it is unable
to identify explicit errors or rewards when evaluating a potential solution. Clustering is a
typical unsupervised learning technique. When applying clustering, users give the criteria
to evaluate the distance between cases within and between clusters, but they cannot tell
which two cases share the same cluster before running the model [4].

With increasing system complexity, the model is unable to map the input to the output
through one action but instead uses a sequence of multiple operators. The development of
machine learning has inspired the development of more intelligent systems. An intelligent
learning system can adapt to a changing environment without the need for supervision or
manual adjustments, and the model learning is reinforced gradually from the goodness of
policies it adopts. This learning technique is called reinforcement learning.

Sutton and Barto characterised reinforcement learning as ‘any method that captures
the most important aspects of the real problem through a learning agent interacting with
its environment to achieve a goal’. This summarised the four key elements in a learning
system: an environment, a policy, a reward function and a value function. An environ-
ment is a world in which the agent operates. It may vary from a simple function to a
mathematical model. As the core of reinforcement learning, a policy maps the state of
the system in the current environment to the action that assists the learning agent to max-
imise its rewards. It may vary from a simple function to a complicated searching process.
A reward function evaluates the perceived state of the system after reacting to the envi-
ronment. Unlike supervised learning, reinforcement learning is unable to determine how
good an action is immediate. Instead, the rewards of a single action accumulate over time.
A long-running estimation, or a value function, is then required to calculate the expected
total rewards gained by a learning agent from a specific state. A state whose value is
yielded as low in a reward function may be marked high in a value function or vice versa.
A value function can be used as a prediction of rewards in the future, but it is a secondary
criterion in the learning system, compared with reward functions [114]. Formulating the
environment, identifying the policy and the value function is essential while constructing
a reinforcement learning model from scratch. As when the environment is opaque, or
the proper interaction with the environment can not be defined, it is common to simulate
natural systems when they design a reinforcement learning algorithm.

34

3.1 Natural Computation and Biological Computing

Natural computation is a computational system inspired by natural systems and use them
as 1) computational media, 2) simulators to explore potential knowledge and 3) references
of algorithm design (Fig 3.1) [14]. Thus, research on natural computation is more like an
investigation into different approaches to process information [102]. Examples of natural
computation include but are not limited to neural computation inspired by brain functions,
evolutionary methods inspired by Darwin’s evolution theory, artificial systems inspired by
natural life and cellular automata inspired by intercellular communication.

Figure 3.1: Three facets of natural computation [14]

Biological computing is a branch of natural computing. By simulating the process of
organisms surviving from limited resources and predators, the multiple levels in a biolog-
ical system suggest solutions to many problems, especially high-dimensional problems.
A good simulation of a biological system has the following three characteristics: 1) a
diverse population. Individuals in the population are not isolated but frequently exchange
information about their current state to better adapt to the environment during the process
of learning. Therefore diversity is considered the most important characteristic in setting
up the population for a biological system. A population that can maintain diversity has a
higher chance to survive in the environment, whereas a lack of diversity in the population
could result in termination in local optima. 2) Survival is the primary objective rather than
on optimisation. Individuals from the population can only be successful if they can adapt
to the environment by taking advantages from limited resources whilst refrain predators.
3) The existence of a multilevel processor, such as the use of multiple levels and perhaps
multi-timescales to stimulate individuals to evolve in multiple directions or adapt to a
more complex environment [14].

A branch that uses the principles of natural evolution and genotypic variation to solve
complicated optimisation problems in biological computing is called evolutionary com-
puting. Although Barto et al. once criticised evolutionary computing for “ignoring much

35

of the useful structures of the reinforcement learning, overlooking individuals actions in
their lifetime and neglecting the interaction with environments” in [9]. Recent research
has proved that, with its development over multiple decades, modern evolutionary com-
puting has improved its searching abilities and agility to meet different users’ demands.
It has become reliable and has even better exploration abilities than some popular rein-
forcement learning techniques, such as policy gradient methods. Moreover, evolutionary
computing highly parallelise-able. Their run time significantly reduces when involving
more agents to learn together [104][19]. Some algorithms in evolutionary computing are
self-adaptable, which allows different strategies to work on different individuals in one
generation simultaneously [102]. The relationship between evolutionary computing and
reinforcement learning remains ambiguous. Barto and Sutton underlined the importance
of policies on reinforcement learning. In their later work, the goal of reinforcement learn-
ing was sometimes identified as to solve sequential decision tasks by learning a policy
that maps environmental states to particular actions [114]. In [9] they excluded evolution-
ary computing from reinforcement learning as it search for the best individual instead of
the best policy of an individual to reach optima. However, they acknowledged that some
evolutionary-style algorithms were applicable to maintain and evaluate a population of
policies [114]. Discussing the relationship between evolutionary computing and rein-
forcement learning is beyond the scope of the thesis. If this issue is raised in the future,
we shall call it evolutionary algorithms reinforcement learning methods, as what Moriaty
et al. did in their paper [85].

Evolutionary computing can solve ill-structured global optimisation problems. Al-
though they involve randomness in searching solutions, their overall efficiency is better
than pure random search because they allow parameter control during the process and
maintain good properties from candidate solutions [29]. The properties of evolutionary
computing show potential as a solution to the problem of data synthesis. On the one
hand, machine learning does not require accurate prior knowledge for the information
base, which may not be available when dealing with a large and complex dataset. On the
other hand, it can automatically eliminate inferior candidates in the solution space with
user-determined objectives, which are also changeable during the procedure (also known
as dynamic optimisation [15]). In computer science, evolutionary computation is a term
used to describe a family of algorithms for global optimisation inspired by biological evo-
lution. Its main algorithms include evolutionary algorithms, evolution strategy, genetic
programming and genetic algorithms. This thesis applies a set of particular algorithms
in evolutionary computing to data synthesis - genetic algorithms (GAs), which I shall
now describe in more detail in the following sections. Compared with other algorithms
in evolutionary computing, genetic algorithms simulate both crossover and mutation as
reproduction strategies (whereas evolutionary algorithms and evolutionary strategies only
deploy mutation) [25]

36

3.2 Genetic Algorithms (GAs)

GAs were first proposed in [62]. The algorithms search for the best solution by the fol-
lowing principles from natural selection [63][56]:

• The better the candidates adapt to the environment, the higher the chance they could
survive and have offspring.

• The population becomes more adapted over time because only the fittest individuals
can survive.

Compared with other algorithms, GA has particular features including parallel searching
in the solution space, different selection method, random crossover and mutation oper-
ators, which offer more ways to increase the variation of candidates, thus resulting in a
higher chance to find the global optimum from the searching space. However, there are as
many failed applications in GAs as there are successful ones. Mitchell claimed that GAs
could not solve all optimisation problems. He gave two conditions to check if GAs likely
perform well in a specific problem. (1) The solution space of the problem must be large
and ideally disconnected, i.e. there is no certain path for a search engine to explore the
whole of the solution space in a limited time; otherwise, GAs will not be the most effi-
cient solution. (2) The objectives are calculable and clear of errors; otherwise, the errors
will be accumulated and be eventually irrecoverable [83] 1. From the previous chapter, it
is clear that data synthesis satisfies these conditions: (1) Even for a very modestly sized
dataset, the solution space would have a non-practically large number of possible datasets
as synthetic candidates. (2) The objectives in data synthesis are to minimise the diver-
gence of the synthetic data from the original data while minimising its disclosure risks,
both of which can be measured by precise functions.

A GA usually consists of the following components. They are briefly introduced
here and will be thoroughly studied in the remaining chapter.

Candidates
A candidate refers to a single entity in the searching space of GAs. It was presented as
binary strings, but a matrix format (to match the format of microdata) will be used in the
thesis.

Population
1Although the conceptual definitions and functions of the objectives in the data synthesis application are

clear, the operational choice of the objectives is complicated because there are many possibilities. There-
fore, this in itself is an interesting research question. Nevertheless, once the decision was made the objec-
tives are - in terms of their measurement properties - error-free.

37

GAs use the term ‘population’ to refer the set of candidates in the current generation.
For clear expression, the population in the context of statistics will be called statistical
population in this thesis instead. The initial population is the first N input solutions in the
GA. There is no requirement on the size of the initial population, but apparently, it should
be greater than 2 to make the following process operable.

Objectives/Fitness function
Objectives define the environment of a GA. The measurement of how close a candidate
to the algorithm’s objectives is known as fitness functions in GAs.

Selection
In a selection operator, fitter candidates have more chances to exchange (part of) informa-
tion with others and produce offspring, whereas inferior ones are eliminated. The selected
candidates form a temporary pool where the later process (crossover and mutation) occurs.
This step intends to increase the likelihood of candidates in current generation passing on
desired properties to the next generation.

Crossover
Candidates in the pool have a randomly chosen part of its information swapped with its
paired candidate under a pre-determined crossover rate pc in a crossover operator. This
step reinforces the exploration powers of GAs and increases variation in the population.

Mutation
After crossover, newborn candidates enter the mutation operator and mutate under a mu-
tation rate pm. The existence of mutation ensures that candidates do not develops from
a uniform population, but it does not always advance the search for optima. When can-
didates are sufficiently mature, a high rate of mutation will break up their goodness and
prevent further evolution. Therefore, the mutation rate is usually low, and most of the
variations in GAs are from crossover. 2.

Replacement
After crossover, the old population is replaced with the new generation. Parent candidates
usually do not take part in the next generation or compete with new candidates. Although
Wei suggested that involving the last generation in competition might lead to fast conver-
gence to the global optima [125], in this thesis, I shall follow the orthodox way which
replaces parents with their offspring.

GA is an iterative process amongst selection, crossover, mutation and replacement
(see Fig 3.2). The success of a GA algorithm depends on the details added to its op-

2Note that it is possible for mutation rates to change during the course of a GA process. With a common
approach is to lower the mutation rate as the optimal state nears. This is a complex decision-making process
itself. More detailed discussion of this topic will be presented in section 3.8 and chapter 4

38

erator/parameter settings. Thus, there is ideally a specific GA for every problem, and
constructing one by directly copying from others is not suggested [83]. The remainder of
this chapter will explore all operators/parameters introduced above, including its mecha-
nisms and conventional methods.

Initialisation

Initial
population

Any good
individual?

Selection

Crossover

Mutation

Replacement

Terminateno
yes

Figure 3.2: A flowchart of a GA

3.3 Initial Population

There are two characteristics which matter when designing the initial population for a
GA: size and diversity. Gotshall and Rylander concluded that an arbitrarily large initial
population might bring a large search space, but the impact becomes trivial once the pop-
ulation size exceeds a number. They clarified that the increase in population size also
leads to an increase in the number of generations that converged [58]. As for diversity,
most measures of population diversity are developed from binary-string GAs. For exam-
ple, [70] defined the level of diversity as the number of non-identical candidates in the

39

population. [64] suggested calculating the number of equivalence classes (a class that a
set of candidates in the population belongs to) as population diversity. Moreover, [126]
proposed to use metrics, such as city-block distance and Euclidean distance, to measure
distances between pairs of candidates in the population, which then enables to check the
overall diversity of the population. Since the thesis use microdata as candidates, a differ-
ent measure of population diversity should be applied and will be discussed later.

3.4 Selection

The selection operator aims to find fitter candidates and let them have offspring in the
later process so that the next generation can carry their properties. Many studies have
summarised selection methods in GAs, but I primarily refer to the technical report of
Blickle and Thiele [13]. They thoroughly described how different selection methods work
and how these affect the fitness distribution of the population in GAs. The framework of
how to perform a selection operator is called a ’selection schema’ in their work, but I
decided to use the word ‘method’ instead in order to distinguish from the word ‘schema’
in ‘schema theory’3.

Suppose the number of different fitness values n is finite f1, ..., fn, n ≤ N in a cur-
rent population of size N. Let s(fi) describe the number of frequencies in which the fit-
ness value fi appears. The fitness distribution of the current population and the selection
method can be mathematically described as:

Definition 3.4.1 (Fitness distribution). Suppose the function s :R−>Z+
0 maps the fitness

value f ∈ R to the number of candidates in the population that is under the same fitness
value; then, s is the fitness distribution of the population.

Definition 3.4.2 (Selection). A selection Ω is a function that transforms the fitness distri-
bution s in the current generation to a new fitness distribution s∗ with an optional list of
parameters θ k:

s∗ = Ω(s,θ k).

As most selection methods are probabilistic, their expected fitness distribution is
defined as:

Definition 3.4.3 (Expected fitness distribution). Let s∗ denote the fitness distribution after
applying Ω to the fitness distribution s; the expected fitness distribution E(s∗) is

E(s∗) = E[Ω(s,θ k)].

3The word ‘schema’ may still be used in some papers in Chapter Experiments and Results but it was
clearly justified there.

40

As the fitness distribution is a discrete and takes values from s(f1), ...,s(fn−1),s(fn),
n≤ N, the corresponding cumulative distribution is

Definition 3.4.4 (Cumulative (discrete) fitness distribution). Suppose there are n ≤ N
unique fitness values f1 < ... < fn−1 < fn arranged in ascending order. Let S(fi) be the
cumulative fitness distribution that outputs the number of candidates with a fitness value
≤ fi; then,

S(fi) =





0 if i < 1

∑
j=i
j=1 s(fi) if 1≤ i≤ n

N if i > n

S(f) can be alternatively described as a cumulative continuous distribution given the
range f0 < f ≤ fn. The notations of f1, ..., fn−1, fn are retained as in the original case;
S(f) is re-written to a new continuous function S′(f).

S′(f) =
∫ fn

f0
s(x)dx.

By these definitions, the mean and variance of population fitness can be calculated
through:

Definition 3.4.5 (Average fitness). Suppose the average fitness of the population is M:

M =
1
N

fn

∑
f0

fi

M =
1
N

S′(f)

Definition 3.4.6 (Fitness variance). Let σ2 denote the fitness variance of the fitness dis-
tribution s(f):

σ
2 =

1
N

fn

∑
f0

(fi−M)2

N

σ
2 =

1
N

∫ fn

f0
s(f)(f −M)2d f

Reproduction rate, loss of diversity, selection pressure and selection variance are
the four properties that Blickle and Thiele believed to sufficiently measure how powerful
a selection method is. These properties can be calculated through either a cumulative
discrete distribution S(f) or a cumulative continuous distribution S′(f) of fitness values
in the population. For most of the calculations, Blickle and Thiele provided both versions
[13]. This thesis mainly focuses on the discrete distribution because the populations used
for data synthesis will not be substantial (N ≤ 100) in the later experiments and whether
its fitness values can fit in any continuous distribution is unknown.

41

Reproduction rate computes the ratio of the number of candidates that have the same
fitness value before and after selection. A selection has a proper method if its reproduction
rate increases monotonically in f in maximisation problems and decreases monotonically
in f in minimisation problems.

Definition 3.4.7 (Reproduction rate). Suppose R(f) denotes the reproduction rate of a
particular fitness value f . Recall that s(f) is the discrete fitness distribution of the popu-
lation before selection, and s∗(f) is the one after.

R(f) =
s∗(f)
s(f)

if s(f) 6= 0

Loss of diversity L is the proportion of candidates in the population that is not se-
lected by the selection operator. L should be sufficiently low; otherwise, there is a risk of
premature convergence.

Definition 3.4.8 (Loss of Diversity). For a proper method, given fz as the fitness value
that has the reproduction rate R(fz) = 1,

L =
1
N
(S′(fz)−S′∗(fz)).

Selection pressure measures the degree to which a better candidate is acceptable.
It was confirmed that the higher the selection pressure, the operator chooses more good
candidates into the pool, and the quicker the GA converges [84].

Definition 3.4.9 (Selection Pressure). The selection pressure I of a particular selection
method Ω is defined as

I =
M∗−M

σ
,

, where M and M∗ are average fitness of populations before and after selection, and σ is
the standard deviation of the previous population.

Selection variance determines the change in variance in the population after selec-
tion, which is usually used for comparing methods together with selection pressure.

Definition 3.4.10 (Selection variance). The selection variance V is the ratio between the
variance σ∗ of the expected fitness distribution E(s∗(f)) of the population after selection
and the variance of the fitness distribution s(f) before selection.

V =
σ∗2

σ2

Selection controls the capability of a GA to retain good candidates and how efficient
that process can be. Elitism is a characteristic in selection operators which prompts GAs

42

to reach optima. It aims to retain as much goodness from the fittest candidates as possible
in the next generation. For example, Villalobos-Arias et al. used to moved a proportion
of fittest candidates into an extra set and isolated them from the evolution process. Then
they checked if there was a new candidate that dominates these candidates’ fitness after
each generation [123]. Wei proposed to involve all candidates that ever appeared into
the competition to ensure that fitter candidates have had a chance to revive during the
process [125]. However, elitism likely stuck the process into local optima due to the loss
of diversity. The impact of elitism to a GA’s efficiency is not yet clear. Thus I shall only
compare common selection methods through the previous four properties in the thesis.

3.4.1 Fitness Proportional Selection

The probability that a candidate is selected is proportional to its fitness value in this
method. Recall that M denotes the average fitness of the current population = 1

N ∑ fi.
The probability that an individual is selected is [26]:

pi =
fi

NM
, (3.1)

and the expected fitness distribution after selection is [13]:

E(ΩP(fi)) = s(f)
fi

M
.

Roulette wheel selection (RWS) and stochastic universal sampling (SUS) are two general
approaches in this method. RWS spreads the chance of selection to every candidate based
on their fitness values. It simulates a roulette wheel with one pointer and a plate that the
area of each candidate is given by dividing its fitness by the total fitness. SUS modifies
the RWS: instead of spinning the roulette wheel N times, it spins once with N evenly
distributed pointers [57].

3.4.2 Tournament Selection

In tournament selection, candidates are randomly selected with replacement and compete
in a tournament with other t candidates. They are compared in terms of fitness, and only
the winners will be selected [26]. According to Blickle and Thiele, the expected fitness
distribution ΩT (S, t) after tournament selection depends on the size of tournament t and
the cumulative fitness distribution S(f). Suppose fi−1 is the previous candidate of fi, the
expected fitness distribution is:

E(ΩT (S, t)(fi)) = N(
S(fi)

N

t

− s(fi−1)

N

t

)

43

3.4.3 Truncation Selection

Truncation selection only chooses a certain proportion of candidates in each generation.
Given a threshold value T , T ∈ (0,1), only T % best candidates from the current popula-
tion can participate in crossover. The expected fitness distribution of this selection method
is

E(Ωτ(s,T)) =
S(fi)− (1−T)N

T
, if S(fi−1)≤ (1−T)N ≤ S(fi).

With this selection method, the average fitness of the population increases while the previ-
ous fitness distribution S(f) (or S′(f) in the continuous version) is greater than (1−T)N.

3.4.4 Ranking Selection

In ranking selection, all candidates are first rearranged in ascending order by their fitness
values (they should be assigned to different ranks even though they have the same fitness
value) [3]. Mitchell believed that ranking selection could prevent premature convergence
by reducing selection pressure and increasing fitness variance [83]. There are two ways to
perform ranking selection: linear ranking selection and exponential ranking selection. In
linear ranking selection, users need to specify a reproduction rate for the candidate with
the highest rank (the best candidate) N as η+ and the rate for the worst candidate 1 as
η−4. The expected fitness value E(fi) of the i-th candidate is given by:

E(fi) = η
−+(η+−η

−)
i−1
N−1

Therefore, the probability of the best individual to be selected is η+

N , and for the worst
individual, it is η−

N . Let p(i) present the probability that the i-th candidate is selected; p(i)
is linearly assigned to their ranks [13].

p(fi) =
1
N

E(fi) (3.2)

When the population size is constant, η− ≥ 0 and η+ = 2− η− must be fulfilled to
guarantee that the sum of probabilities for all candidates is 1. Given that η− is pre-
determined, the expected fitness distribution after linear ranking selection is

E(ΩR(s,η−)(fi)) = s(fi)
(Nη−1)

N−1
+

1−η−

N−1
(S(fi)

2−S(fi−1)
2)

As for exponential ranking selection, the probabilities that candidates are selected expo-
nentially proportional to their ranks. A parameter called exponent 0 < c < 1 is required

4The numbers will be altered to N− 1 and 0 in program codes in order to adapt with Python, which is
0-indexed

44

and usually determined by the in-population variance. In a population with size N, the
probability that i-th candidate is selected is:

pi =
c−1

cN−1
cN−i (3.3)

The constant coefficient c−1
cN−1 guarantees ∑

N
i pi = 1. The corresponding expected fitness

distribution after exponential ranking selection is

E(ΩE(s,c,N)(fi)) = N
cN

cN−1
c−S(fi)(cs(fi)−1).

3.5 Schema Theory

When Holland first proposed the idea of GAs, he described the work of GAs as paral-
lel discovering, emphasising and recombining good building blocks of individuals in the
population. He then formalised the notions of such building blocks as schema [62] [83].
Schema theory is well applicable on GAs but its formula so far only works on primi-
tive settings that linear, binary and fixed-length candidates, fitness proportional selection,
single-point crossover and single-point mutation.

In the GA context, a schemata is a template consisting of ones, zeros and asterisks,
in which asterisks represent wildcards. For example, consider the schemata H = 1∗∗0∗:
any binary string that has 1 and 0 at the first and fourth positions is called an instance of
H. The number of fixed bits is the schemata’s order, o(H), and the distance between the
first and last fixed bits is the schemata’s distance, δ (H) (in the example, o(H) = 2 and
δ (H) = 4−1 = 3). By involving Schema Theory, the evaluation of the overall fitness of
a population can be re-considered to implicitly evaluate the average fitness values of any
instances of a schemata in it. Schema Theory demonstrates that the number of instances
from schema with low order and short length but whose average fitness is greater than the
mean fitness value increases exponentially during the process. Assume that the number
of instances of H at time t is m(H, t + 1), û(H, t) is the average fitness observed at time
t, f̄ (t) is the average fitness of the population at time t, and pc and pm are the crossover
probabilities of a single-point crossover and the mutation probability of a single-point
mutation, respectively. The expected number of instances of H of the next generation
E(m(H, t +1)) is [83]

E(m(H, t +1))≥ û(H, t)
f̄ (t)

m(H, t)(1− pc
δ (H)

l−1
[(1− pm)

o(H)]).

Schema theory was argued limited in usage as it is only valid in certain types of GAs, and
Goldberg and Jon also questioned if the formula is practical, as its application is based

45

on an infinite population, it might not always work on finite populations due to sampling
error from initial populations [56].

Inspired by Schema theory, Holland develop another hypothesis that GA works well
when instances of low-order, short schema with high fitness would be recombined to
instances of high-order, long schema that confers even higher fitness, which is called
the building block hypothesis [62]. However, this hypothesis was soon overturned by
Forrest and Mitchell, who indicated that building blocks have disruptive effects. They
highly likely cause premature convergence when two or more non-overlapping schema
appear simultaneously in the population [52]. Moreover, Baum et al. showed that building
blocks did not make GAs exceed other searching algorithms in some problem, which
confirms that there is no explicit connection between the hypothesis and the effectiveness
of GAs [10]. Forrest and Mitchell also stated that, although the hypothesis was proven
in later experiments to have no positive effects on GAs. GAs indeed learn or search
by building blocks as the process is to combine lower-order schema with higher-order
ones with higher fitness values and eventually take over the entire population. However,
the effectiveness of this process depends on the landscape of the solution space in the
particular problem [52]. There is no study that if building block hypothesis still holds
when candidates in GAs become multi-dimensional or in data synthesis, and this will be
investigated later this thesis.

3.6 Crossover

In binary GAs, crossover takes place on random strings with a user-determined probability
(crossover rate pc). It is the major operator that provides variation to the population
[111][83]. The simplest crossover method is a single-point crossover, which exchanges
(all) bits after a random position between two paired strings. Reeves concluded that a
single-point crossover likely broke higher-ordered schema [97]. Mitchell also confirmed
that a single-point crossover has limited ability to generate new schema. For example, it
is unable to combine 11 ∗ ∗ ∗ ∗ ∗ 1 and ∗ ∗ ∗ ∗ 11 ∗ ∗ to a new form of 11 ∗ ∗11 ∗ 1 [83].
The situation that the disruption and recombination of schema depends on the position of
the bit in the string is called positional bias. A single-point crossover has been proven to
have the maximum positional bias [116]. An alternative that reduces positional bias is a
two-point crossover, which is defined as [56]:

Definition 3.6.1 (two-point crossover). Suppose any 2 strings have length l; an integer
position k along the string is chosen randomly between [1, l− 1]. Then, two new strings
are created by swapping all characters between k+1 and l from the original strings.

Compared with a single-point crossover, a two-point crossover can disrupt and re-

46

combine higher-ordered schema, but it does not eliminate positional bias. Researchers
therefore proposed Parameterised uniform crossover (PUC) that contain no positional
bias. PUC exchanges each bit of the string by a user-determined probability p0, and it dis-
rupts all schema equally regardless of their order and length. Spear and De Jong praised
PUC for the following reasons: (1) It has no positional bias. (2) It has an adjustable pa-
rameter p0, so the force of disruption and recombination is under the user’s control; for
example, PUC can be less disruptive than a two-point crossover when p0 = 0.1. (3) PUC
explores the solution space more powerfully than a two-point crossover. However, Spear
and De Jong did not adequately discuss the shortage of PUC [111]. Sirivas and Patraik in-
dicated that although PUC has no positional bias, its disruption power to schema is higher
than those of the single and two-point crossovers [116]. Moreover, statement (2) is proved
based on an extreme case in which one parent has only 1s and another one has only 0s
[111]. Meanwhile, Mitchell indicated that the statement (3) does not hold if the solution
space in GA contains disconnected sub-spaces and PUC is no better than a two-point
crossover in this situation in [84]. Since GAs are parallel-able, both two-point crossover
and PUC can be adapted to a matrix-format candidate with parallel sub-processors, but
they are not the only two crossover methods considered in the thesis. A set of suitable
crossover methods for a GA data synthesiser will be described in the following chapter.

3.7 Mutation

Mutation can prevent the process of GAs from pre-mature convergence. It may perform
using the same mechanism as the crossover method like a single-point, two-point or para-
metric uniform crossover. Depending on the method the operator adopts, positional bias
also exists in mutation. However, since mutation is the secondary variation provider to
the population compared with crossover, its rates (pm), especially the adaptability in its
rates, are mainly studied in the thesis.

3.8 Adaptive GAs

GAs require pre-setting parameters like the population size, the crossover and mutation
rates. They can be fixed or adaptive depending on the complexity of the problem. GAs
with adaptive parameters are also known as adaptive GAs. Since GAs are sensitive to
parameters, controlling their values allows timely adjustments to the search process. [41]
confirmed that adaptive GAs can improve the performance - when compared with fixed-
parameter GAs - by:

47

• maintaining population diversity.

• improving the speed of convergence as well as preventing premature convergence.

Korejo et al. sorted adaptive GAs into deterministic adaption, adaptive adaption and self-
adaption. Deterministic adaption tunes the parameters according to some deterministic
rules. Adaptive adaption changes the parameters executing the model so that users can get
feedback from the searching space [69]. Since the searching space depends on the original
data in GAs, I shall only explore self-adaption in GA synthesisers in the thesis. Self-
adaption is a set of functions equipped in GAs to enable the model to change parameters
by itself. Thierens classified approaches of self-adaption into dynamic parameter control
and adaptive parameter control. The former tunes parameters according to the number
of generations or the convergence level of the current population, so the parameters for
all candidates in the same generation are equal. The later adapts parameters according to
individual fitness, in which candidates have different parameters in the same generation
[121]. As there is no research on adaptive GAs in data applications or on matrix GAs, the
optimum choice of adaptation method is not well defined for this application. Therefore,
in the thesis, I shall be exploring the potential of using self-adaptive parameters in GA
data synthesisers using simple self-adaptive functions.

3.9 Multi-objective GAs

Objectives define optimal solutions and how the solutions are measured (to qualify to
be optimal). For a real-world problem, there is invariably more than one objective to be
considered, and they sometimes contradict one another in that they have distinct optimisa-
tion goals and possess distinct search spaces (including in this application the utility and
risk objectives of data synthesis). Fig 3.3 summarises common method used in solving
MOOPs.

Multi-objective opti-
misation

Weighted-sum meth-
ods

Constraint methods

Evolutionary meth-
ods

Dominance-based
methods

Indicator-based
methods

Decomposition-based
methods

Figure 3.3: Classification of multi-optimisation methods [32]

48

One of the classical approaches is to compose these objectives into a single function
with determined weights (commonly, these objectives must be normalised before being
formulated into a single function to avoid an objective with a larger numerical variance
dominating the less-varied one). However, the selection of weights is easy to get wrong,
and even a small difference in weighting can lead to different outcomes. Alternatively, the
constraint method can be used to alleviate the difficulties in the weighted-sum method. It
suggests simplifying multi-objective optimisation problems (aka MOOPs) by optimising
one of the objectives while setting constraints to the others with pre-determined values
[32]. Similar to the weighted-sum method, it depends on users’ preference for the selec-
tion of constraints and objectives and could return different solutions to the same problem.

As simultaneous optimisation is usually unlikely in MOOPs, it is impossible to get
the ideal solution. Alternatively we may aim to look for a set of Pareto-optimal solutions
instead. Pareto solutions refer to a set of solutions that are non-dominated by (in other
words, no better or worse than) one another, and there is always a certain amount of
sacrifice in some objectives to achieve a certain level of the other objectives whilst moving
the Pareto solution from one solution to another [75][68]. The concept of ’dominance’ is
defined as:

Definition 3.9.1 (Dominance). In a MOOP, a solution x(1) is said to dominant the other
solution x(2) if:

1. x(1) is no worse than x(2) in all objectives.

2. x(1) is strictly better than x(2) in at least one objective.

Pareto solutions for a MOOP are usually part of the frontier of its solution space.
It is believed that evolutionary computing, known for its exploratory power, has great
potential in finding them. GAs, as an important branch in evolutionary computing, have
many algorithms developed for solving MOOPs (see [68][106][86][75]). Since many of
them were designed in 80s and 90s which might be obsolete, in this section I shall only
talk about those still used nowadays and related to the three methods.

3.9.1 Dominance-based Methods

The commonalities of dominance-based GAs are: (1) they follow the principle that fitter
candidates have more chance to survive and, (2) they use an explicit fitness function to
measure population diversity [32].

49

3.9.1.1 Niched Pareto GAs (NPGA)

Horn et al. proposed an alternative selection method and a fitness evaluation function
for GAs in order to search for Pareto-optimal solutions [64]. The selection operator in
NPGAs has two parts: Pareto domination tournaments and non-domination tournaments.
The first part helps find dominantly optimal candidates, and the second one maintains
diversity in the population during the process. Pareto domination tournaments compare
two randomly selected candidates with a comparison set of random individuals from the
same population; if one candidate dominates and the other does not, the dominant one
enters the following process. If none or both dominate the comparison set compared
with, then the two enter the non-dominant tournament. The winner in non-dominant
tournaments is the one that has the least number of individuals in its niche for diversity
purpose. This strategy is known as equivalence class sharing.

3.9.1.2 Non-dominated Sorting GAs-II (NSGA-II)

The idea of the original version of NSGA combined ranking selection method to em-
phasise good candidates and a niche method to maintain population diversity. The al-
gorithm first ranks (sorts) non-dominant candidates in the population then assigns them
dummy fitness to compete for [117]. Due to computational inefficiency in performing
non-dominated sorting to all candidates in the population, Deb et al. then adjusted the
sorting algorithm and involved parents into competition [31][32]. Once the sorting is
done, a niche strategy called crowding-sorting is deployed to select non-dominant candi-
dates with less surrounding neighbours [32], which resembles equivalence class sharing.

3.9.2 Indicator-based Methods

Indicator-based evolutionary algorithms (IBEA) - which are also implementable in GAs
- significantly alter the measurement of fitness in a MOOP. Ziztler and Künzli introduced
the concept of the indicator I, which is used to preserve dominance among candidates
while transferring their fitness to measurable values [129].

Definition 3.9.2 (Indicator). I : Ω×Ω : R is an indicator if for candidates x(1),x(2),x(3)

in the population:

1. x(1) � x(2) =⇒ I({x(1)},{x(2)})< I({x(2)},{x(1)})

2. x(1) � x(2) =⇒ I({x(3)},{x(1)})< I({x(3)},{x(2)})

50

For example, one way in [129] is to use a pre-determined parameter ε to give the
minimum distance by which a Pareto set approximation can be translated in each front
(for example, B) in the objective space such that another approximation in a front (for
example, A) is weakly dominated.

Iε(A,B) = min{∀x(2) ∈ B∃x(1) ∈ A : x(1)i − ε ≤ x(2)i for each objective i}

3.9.3 Decomposition-based Methods

The algorithm most representative of decomposition-based methods is MOEA/D (decomposition-
based multi-objective evolutionary algorithms). Thanks to the parallel-processing feature
in evolutionary algorithms, it decomposes a MOOP into a set of scalar-objective sub-
problems (with sub-populations) and solves them simultaneously. MOEA/D assumes that
for each Pareto solution there exists a weight vector such that: the solution is the opti-
mal solution of a sub-problem in the MOOP and optimal solutions of all sub-problems
are Pareto solutions of the MOOP [127]. Zhang introduced the Tchebycheff approach to
decompose a MOOP. This involves an external population which serves as the mid-transit
point where the selected candidates from sub-populations were preserved and returned
for reproducing. This mechanism enables information exchange between sub-populations
[127] [128].

3.10 Matrix Real-Coded GAs

Although GAs were initially designed to operate on binary-coded strings, they can be ap-
plied to higher-dimensional, real-coded problems. Matrix real-coded GAs (MRCGAs) are
believed to reflect more phoneme structures of problems. It has higher exploration power
and optimality in complex problems. The application of MRCGAs showed remarkable
agility in algorithm and operator design, and it can simplify a complicated problem to a
single-level optimisation problem [124][112][94].

Sun et al. adopted MRCGA to solve a thermal unit commitment problem: a mixed-
integer non-linear programming problem consisting of discrete and continuous variables.
They represented all information in a candidate as 3.4.

51

Figure 3.4: Multi-Matrix Candidate Representation I [112]

In their work crossover and mutation occurred on a random vector of parents and
that the portion of elements they swap is pre-determined [112]. MRCGA had shown an
improvement compared with results from other algorithms and it was therefore adjusted
(for this very problem later) by adapting operators [92] or amending the way to encode
candidates [7] [101]. For example, in [92] the authors noticed that ’the ends of the chro-
mosome tend to remain unaltered during crossover’ (aka positional bias) in the original
design. They therefore renewed the crossover method to ’annular crossover’, in where
each vector in the candidate is represented as a ring 3.5.

Figure 3.5: Vectors of candidates are represented as rings in annular crossover [92]

Moreover, a new ’random key’ used to generate candidates in the initial population
was proposed in [101]. It allows the algorithm works on only feasible solutions in order
to improve the effectiveness and efficiency of the whole process5.

Pongcharoen et al. used MRCGA to optimise the stage transportation problem in a
logistic chain [94]. In their research, the candidates in GA are represented as multiple ma-
trices (Fig 3.6). The crossover mechanism they adopted is less stochastic; it either swaps
the entire sub-matrix randomly selected between parents, or swaps selected elements be-
tween a randomly selected sub-matrix.

5The authors did not mention whether and how the new approach affects population diversity

52

Figure 3.6: Multi-Matrix Candidate Representation II [94]

Wallet et al. first proposed that instead of swapping elements in a linear structure,
parents could swap a rectangular sub-matrices (matrix crossover).

Figure 3.7: An example of matrix crossover

They also found that matrix crossover has more symmetry compared with a linear
crossover in the disruption power because a rotation of the matrix representation of the
candidates has no effects on the efficiency of the algorithms. In their experiments, matrix
crossover performs better than the other when the candidate matrix is small (10× 10).
However, their performances became similar when the candidates’ matrix size increased
to 20×20 [124].

3.11 Chapter Summary

This chapter narrated the relations between GAs, natural computing and machine learn-
ing. It gave background knowledge for GAs by exploring details in conventional settings
used in different components and introducing three methods of GAs to find solutions for
an MOOP. All will be used to support the model design of the GA synthesiser in the next
chapter.

53

The MRCGA is believed to be an adaptable variant in GAs for generating synthetic
data. The abundant literature only gives some outlines about the approach and its possible
applications in some problems. The applications of MRCGAs to data synthesis is not
investigated yet and their efficiency compared with orthodox synthesisers is not known. In
the next chapter, I shall discuss how to design a GA that is specifically used for generating
synthetic data.

54

Chapter 4

Model Design

Navarro-Arribas and Torra confirmed the potential of GAs for privacy protection. They
described data privacy as an optimisation problem with two opposing constraints: infor-
mation loss and disclosure risk; and proposed using GAs to improve privacy protection
of databases and/or divergence from the original data in parameters in statistical mod-
els [88]. Moreover, as stated in the previous chapter, the three conditions that Mitchell
described as an ideal solution space for GAs apply to this use case [83].

1. The solution space of the problem is sufficiently large. This condition applies to
data synthesis because there will be many comparable datasets generated in the
process.

2. The solution space is not smooth, and there is no possible way to evaluate the gradi-
ents or track the trace of optima. This is true for data synthesis because the solution
space contains practically infinite datasets that are measured by multiple fitness
functions that we are unable to picture its solution space.

3. The objectives can be calculated through clear and quantitative formulae. This also
holds because the original dataset provides very clear inferences to the synthetic
data and there are various privacy models available for measuring the risk.

Since a single SDC approach should only be used on one type of data [34] and
records in census and social survey data is usually presented in categorical format. The
type of data that will be used in the thesis is single-level, categorical microdata. However,
as GAs use a different mechanism from other synthesisers, there might be potentials of
using GAs in continuous and even mixed data synthesis. The issue will be discussed in
the last chapter: Impacts and Critical Analysis of the Model later.

The thesis will use full synthesis as the SDC approach. Although, as indicated in the

55

previous chapter, full synthesis cost more computational workload than partial synthesis,
there are reasons to choose it. First, since there exists no universal rule of personal privacy,
respondents may define their confidential variables differently from data controllers. For
example, some respondents may not want to disclose how many cars they owned but the
number of cars is usually treated as an innocuous variable in data protection [44]. Second,
full synthesis does not contain real values of any variable theoretically, which reduces
interest from data intruders because they are less likely to derive true information from the
released dataset. Adopting full synthesis simplifies the process of selecting variables for
synthetic data and allows more focus on utility and risk over the whole dataset. Although
full synthesis eliminates disclosure risk and reduces intruders’ interests to the dataset,
its utility more depends on the data generating model compared with partial synthesis.
Therefore the model ought to retain all possible statistical properties in all variables in
order to promise the validity of substantive analyses [37].

MRCGA is used to synthesise data in the thesis as its format of candidates can more
appropriately display the multivariate structure of microdata [124]. Although Holland
once argued that real-code candidates exhibit poorer performance than binary code, It is
unreal to expect that binary strings represent the complicated information contained in a
multivariate dataset, and Mitchell disproved his statement due to a lack of evidence [84].

Issues to be addressed in model design for the GA used for data synthesis (aka the
GA synthesiser in the following contents) include:

1. Although allowing users to set parameters increases a model’s agility, it may be not
user-friendly especially for users who have no background knowledge of GAs or
the problem the GA is used to deal with [110]. Therefore, selecting appropriate
operators and parameter tuning is important when designing a GA. In the sections
and the following chapter, I shall set up different trials to identify suitable settings
of operators and parameters for the synthesiser.

2. GA’s efficiency for a particular problem also depends on its operators/parameters,
which will be investigated in the following content.

3. The objectives of the GA for generating synthetic data will only take the minimal
set of all potential objectives. For example, the utility objectives of the GA can
be all the statistical properties of the original dataset. However, if two statistical
properties are highly related, then the model only takes one into account.

The four major components in GAs were introduced in the last chapter: the initial pop-
ulation, selection, crossover and mutation. The ideal process for GA synthesiser is; first,
users input a one-level, categorical microdata as the original data into the synthesiser and

56

give the size of the population N. The synthesiser then generates N synthetic datasets
(candidates) as the initial population using a simple method, for example, sampling from
univariate distributions of variables in the original data. These candidates are evaluated
in the selection operator by fitness functions. Selected candidates enter the pool where
crossover and mutation with a given crossover and mutation rates occur. They then form
the new generation, and their parents are eliminated. The GA synthesiser repeats the
above steps until there is at least one candidate in the population that reaches an accept-
able level of fitness.

4.1 Initial Population

Diversity is an important feature in populations in GAs. A population with higher di-
versity is more likely to jump out of local optima and to converge to an optimal solution
[14]. However, the challenge of applying GA in data synthesis is that no clear standard
can be adopted for measuring the diversity in sets of datasets. It is probably true that
populations generated from different statistical approaches will have a different level of
diversity. It may be the case that the initial population with the higher diversity will be
generated from a ‘freer’ model, like sampling from uniform or univariate distributions of
all variables from original data. On the contrary, a more strict model, like CART or other
known synthesisers, is likely to produce more similar candidates to the initial population.

On the other hand, the fitness of the initial population may also impact on the effi-
ciency of the whole GA process. The initial population can be generated from some ob-
served statistical properties of the original data such as means, frequencies, equivalence
class structures, covariance or Chi-squared statistics [38]. Generating initial populations
that have those properties will reduce the running time of the whole process compared
with pure random data because properties embedded in the initial population can be re-
tained during the process of the GA synthesiser unless it objectives are mistakenly set.

Although size is another main characteristic in populations, it is not easy to set a
proper value for it because there is no stable relationship found between the size and the
efficiency of GAs (not like selection or crossover). In [58] Gotshall and Rylander claimed
that a large initial population might bring a more extensive search space, but they also
indicated that a large initial population might lead to an increase in the number of gen-
erations that converged. Moreover, the impact from the population size to the efficiency
of GA synthesisers may vary from one dataset to another, or different operator/parameter
settings used (It can be checked from the following content of the thesis in which the
number of generations that converged decreased as the initial population size increased
when using a specific selection method in the GA synthesiser). Last but not least, the

57

GA synthesiser adopts datasets as candidates; it would massively increase the computa-
tional workload using a large population size. Therefore, in the later experiments, 100
will be the number set as the size of initial populations, in order to limit the cost of time
in running the synthesiser.

4.2 Selection Methods

In the previous chapter, I summarised some common selection methods used in GAs in
table 4.1. These methods are classified into two categories based on their mechanisms:
value-proportional methods and ranking-proportional methods. Value-proportional meth-
ods select candidates according to their fitness values; the chance that a candidate can
survive and has its offspring is proportional to its fitness. Ranking-proportional methods
select candidates based on the rank of their values; the one in higher rank is more likely
to survive1.

Value-proportional selection schemes Ranking-proportional selection schemes
Roulette Wheel Selection Tournament selection
Stochastic Universal Selection Linear ranking selection

Exponential ranking selection

Table 4.1: Common selection methods in GAs

As there is no decision in the previous chapter on which methods will work best
for this use case, I shall carry out both theoretical and experimental assessments of the
common selection methods in the remaining section.

4.2.1 Theoretical Comparison of Selection Methods

Reproduction rate (Def: 3.4.7), loss of diversity L (Def: 3.4.8), selection pressure I (Def: 3.4.9),
and selection variance V (Def: 3.4.10) are four properties used to examine selection meth-
ods in binary GAs. Reproduction rate tells whether a selection method is favouring fitter
candidates. Generally speaking, a reasonable method should have at least 1 as the re-
production rate of good candidates and at most 1 for bad ones. It is unable to tell how
much elitism the method has because there is no explicit boundary between good and bad
candidates in a generation. So it will not be used for comparison in this section. Loss

1Truncation selection belongs to none of these categories, and it is less probabilistic but more depends
on users’ setting on the proportion of selected candidates. Therefore it will not be discussed in the thesis
any more

58

of diversity gives the proportion of candidates that not selected by the selection opera-
tor, which is calculated by the corresponding reproduction rate. Selection pressure is the
most frequently used property [3] [26]. It measures the change in the average fitness of
the current generation before and after selection. Similar to selection pressure, selection
variance computes the ratio between fitness variance before and after selection. Compared
with loss of diversity, selection variance takes account fitness values of both emerging and
eliminated candidates into account, which is suitable for changing populations.

Blickle and Thiele assumed that fitness values of the population were sampled from
standardised Gaussian distribution G(0,1). They gave a comparison of the selection meth-
ods in [13] and some of the values of the three properties in different selection method
with a reasonable selection of parameters were recorded in Table 4.2.

Selection Method Loss of Diver-
sity L

Selection Pres-
sure I

Selection Vari-
ance V

Linear ranking
(η−1 = 0.0,η+ = 2.0)

0.25 0.5642 0.6817

Linear ranking
(η−1 = 0.3,η+ = 1.7)

0.175 0.3949 0.844

Exponential ranking
(c = 0.5,N = 100)

0.9244 N/A N/A

Exponential ranking
(c = 0.9,N = 100)

0.6816 N/A N/A

Tournament (t = 2) 0.25 0.5642 0.6817

Tournament (t = 3) 0.3849 0.8463 N/A

Roulette Wheel N/A N/A N/A

Stochastic Universal N/A N/A N/A

Table 4.2: L, I and V in different selection methods with a reasonable choice of their
parameters. N/A indicates that there is no analytic method to calculate the particular
property or not given in the work.

Unfortunately, their work is not sufficient to draw a conclusion on which selection
method is preferable in this thesis. Regardless that there are only a few data available
due to some of the properties of a certain method cannot be analytically calculated, the
GA they conducted their theories on is a maximisation GA whose average fitness of the
population is supposed to increase by generations. Moreover, sampling fitness values
from G(0,1) means negative fitness is allowed. Data synthesis is rather a minimisation
GA because there are at least two objectives from synthetic data to be minimised: 1) the
divergence to the original data, 2) disclosure risks. In order to carry a better theoreti-

59

cal comparison for the use case between these methods, some settings from Blickle and
Thieles work needs to be re-designed:

(a) In order to avoid non-analytic properties and give more relatable simulation to our
use case, the new comparison is carried out on a sample of values drawn from
the uniform distribution U(0,1), which gives normalised and non-negative fitness
values.

(b) The size of population for data synthesis is presumably small (100 is used in this
thesis). Therefore the comparison is applied on discrete distribution rather than
continuous distribution. The expected values of the interesting properties for all
selection methods are estimated from 1000 runs of selection on these methods.

(c) The GA synthesiser is a minimisation algorithm whose average fitness of the popu-
lation is supposed to decrease by generations. The formula of selection pressure is
changed to

I =
M−M∗

σ

, given M and M∗ are average fitness of the population before and after selection.

The table below (Table. 4.3) shows properties of selection methods with the same
parameters above from the renewed design. Exponential ranking selections have the low-
est figures in selection variance, and the one with c = 0.9 has also the highest loss of
diversity compared with others. Tournament selection with t = 3 has the most selection
pressure whereas most of ranking selections have unsatisfied values in these properties.
Tournament selection with t = 2, RWS and SUS have acceptable values among all the
properties.

60

Selection Method Loss of Diver-
sity

Selection
Pressure

Selection Vari-
ance

Linear ranking
(η−1 = 0.0,η+ = 2.0)

0.4323 0.0294 0.5832

Linear ranking
(η−1 = 0.3,η+ = 1.7)

0.3985 0.0206 0.7691

Exponential ranking (c = 0.5) 0.9283 0.2630 0.0010

Exponential ranking (c = 0.9) 0.7228 -0.1028 0.0580

Tournament (t=2) 0.4316 0.5820 0.5803

Tournament (t=3) 0.5089 0.8493 0.3296

Roulette Wheel 0.2654 0.5954 0.5262

Stochastic Universal 0.4375 0.5956 0.5203

Table 4.3: L, I and V in different selection methods with a reasonable choice of their
parameters on 1000 populations with 100 candidates whose fitness values are drawn from
U(0,1).

Compared with the previous table (Table 4.2), this table here provides more informa-
tion for the interesting properties in these selection methods. However, it cannot be strong
evidence for the final decision on which selection method will be used because uniform
distribution is a hypothetical condition in the GA synthesiser. A further investigation
should be carried on a real dataset.

4.2.2 Experimental Comparison of Selection Methods

Due to the complexity of mechanisms behind the selection methods, the initiator of im-
proper convergence is hard to be detected by only running the selection operator for once.
By running some trials on a toy dataset with various population sizes, I conjectured two
possible reasons for that selection operators cause early convergence.

First, The selection operator only senses better candidates, so it selects a small subset
of candidates. It happens under two conditions: either the population size is too small or
the probability of some candidates to be selected is much higher than others in the same
population. Second, The selection operator is insusceptible to good candidates, so it
selects only a limited amount of them into crossover. For example, in a linear ranking
selection, the increase of population size results in closer selection probabilities between
two neighbouring ranks. When setting the population size as 10, the probability of the
best candidate selected reduced to 0.2, followed by 0.1778, 0.1556..., where the fittest
candidate is likely to be abandoned in the selection operator.

61

In order to obtain more evidences for choosing the best selection method in this
thesis, a toy dataset with 100 cases and 4 variables is used to carry out an experimental
comparison of previously-introduced selection methods. The model that used to run these
methods is a simple GA synthesiser that adopts matrix crossover with a fixed crossover
rate 1.0 (see the illustration of this crossover in Fig 4.3) and has no mutation operator.
The fitness function to determine the fitness of each candidate in this synthesiser is the
mean divergence of pairwise Cramer’s V values to the original dataset (see the formula
of this objective in 4.7.1.1). For each method, I shall run the model 10 times with pop-
ulation sizes 10, 50, and 100 and record the average number of generations when the
process reaches convergence. Convergence is considered to have occurred on the genera-
tion since when the average fitness value no longer changes in next 20 generations. As the
model eliminates the impact from the mutation operator, the whole population will start
to converge to the fittest candidate once the convergence reached.

4.2.2.1 Linear Ranking Selection

In linear ranking selection, all candidates are assigned to different ranks even though they
may have the same fitness value. The best candidate is ranked as N, and the least fitted
one is ranked as 02. Let p(i) present the probability of candidate i being selected, p(i) is
proportional to their ranks [13].

p(i) =
1
N

E fi

η− is a pre-determined parameter in linear ranking that determines to what extent users
would like the worst candidate in each generation to survive. η+ is another parameter
that derived from η− by η+ = 2−η−. Theoretically, η− takes any value in [0.0,2.0],
but this allows the probability of the best and worst candidates share the same probability
when η− = 1.0. Actually, the selection probability distribution becomes uniform in this
situation as every candidate now has the same probability to be selected. While the value
of η− increases from 1.0 to 2.0, the worse candidates would have a higher chance to
survive than the fitter ones. Linear ranking selection is a mild method even the most strict
condition is applied (η− = 0,η+ = 2), and its selection pressure does not change much
as η+ or η− change(Table. 4.3). Therefore, the values η− = 0,η+ = 2 are used for
comparison in this section.

2Python is 0-indexed, therefore all formula in the thesis are altered to adapt this environment while
necessary

62

4.2.2.2 Exponential Ranking Selection

Candidates’ probabilities of being selected raises exponentially in exponential ranking
selection. The power of this method is determined by parameters 0 < c < 1. In N (N is
population size) ranks, the individual probability of being selected is:

pi =
c−1

cN−1
cN−i

Same as linear ranking selection, better candidates in exponential ranking have higher
ranks and the worst candidate is ranked as 1. The constant coefficient c−1

cN−1 guarantees

∑
N
i pi = 1.

The following figure (Fig 4.1) tells that c has to be reasonably large otherwise the
probability of the best candidate to be selected is much higher, and it will takeover the
population in no time. I took the value of c as 0.7 in the later experiments, which gives a
reasonable distribution to all candidates in the population.

Figure 4.1: Selection probabilities of 10 candidates vs their ranks from 0 (the worst) to 9
(the best) with different c values in exponential ranking

4.2.2.3 Tournament Selection

Tournament selection holds N tournaments for N candidates in the population, where only
the winner from each tournament is selected into crossover. The size of tournaments t is
the number of randomly chosen candidates that enter one tournament [26]. Since the
population size in the experiment is not large and tournament selection with t = 2 has
less loss of diversity and better selection variance (Table 4.3). I only compare tournament
selection with t = 2 here with others in this section.

63

4.2.2.4 Fitness-Proportional Selection

In fitness-proportional selection methods, the probability that a candidate is selected is
proportional to its fitness value. Recall that M denotes the average fitness of the current
population M = 1

N ∑ fi, the probability that an individual is selected is:

pi =
fi

NM
(4.1)

Fitness-proportional selection is designed for maximisation problems. Thus it requires a
proper transformation in a minimisation problem. The most common way is to subtract
the fitness value of a individual from the maximum value among them then the new values
are displayed in a reversed order.

f ′i = fmax− fi (4.2)

For example, suppose the fitness values of initial population with size 4 are [0.4730,
0.3613,0.5803,0.2381]. Their converted fitness values are [0.1100,0.2190 ,0.0000,0.3485]
that are subtracted from the maximal value 0.5803. As the method always eliminates the
worst candidate, there are two alternatives: (1) use the reverse values of current fitness
values; (2) assume that there is a maximum value ψ and take the differences between it
and original fitness values as the converted fitness values. (2) should be used with cautions
because, once the assumption of the maximum value fails, i.e. the generator generates a
candidate whose fitness value is higher than ψ , he converted fitness value of this candidate
would be negative, so does its selection probability.

According to Eq 4.1, the probability of candidates in a minimisation problem to be
selected in approach (1) is:

pi =
1

fiNM
, M =

1
N

N

∑
i=1

f−1
i (4.3)

, meanwhile in approach (2) the probablity is:

pi =
ψ− fi

NM
, M =

1
N

N

∑
i=1

(ψ− fi) (4.4)

After transformation, these formulas still holds the sum of pi as 1.0. The following figure
illustrates how the two transformation works. Suppose a set of 100 candidates whose
fitness values are randomly sampled from the uniform distribution U(0,1). The following
figure (Fig 4.2) shows probabilities calculated through the two approaches and the original
fitness values of these candidates.

64

Figure 4.2: Selection probabilities over the (previous) 100 candidates between two ap-
proaches

In the result, approach (1) gives much higher probabilities to better candidates, which
is likely to cause pre-mature convergence like exponential ranking selection. However,
it is not saying that approach (1) is ill-designed because, unlike ranking selection, the
probability from fitness-proportional selection depends on the value of fitness itself. In
exponential ranking selection, a candidate from a particular rank always has fixed prob-
ability to be selected no matter to what extent it is better than others. One whose diver-
gence to the original dataset is 0.02 may only have slightly higher chance to be selected
compared to one whose divergence is 0.3 in the same scale. Compared with ranking se-
lection, fitness-proportional selection methods using the two transformation approaches
may avoid unnecessary elimination of fitter candidates.

Probabilities given by transformation approach (2) are more evenly distributed, which
avoids generating more bias during the process of selection. The issue of approach (2)
is the choice of ψ , the the value is hard to be determined without any prior knowledge.
A small ψ results negative fitness values, but a large ψ attenuates differences between
candidates. It can be solved by normalising fitness values so they can take 1.0 as the up-
per bound. In the following experiment I adopt approach (2) and ψ = 1.0 to compare the
two fitness proportional selection methods: roulette wheel selection (RWS) and stochastic
universal selection (SUS). Most researches use RWS as the fitness-proportional selection
method, that simulates a roulette wheel with a single pointer and run it for N times to
obtain the right population size for the next generation. SUS is a roulette wheel with N

65

evenly distributed pointers, and it only runs once to get the desired population size.

4.2.2.5 Experimental Comparison Results

These selection methods were tested through a simple GA synthesiser with population
sizes 10, 50 and 100 on a tiny dataset (100× r). The following table (Table 4.4) records
the mean number generations taken to converge in 10 trials and the mean value of best
fitness values for every trial after converge. In the experiment, the performance of SUS is
found differently from the others, in where the best fitness value is kept for several gener-
ations then suddenly drops. SUS takes much longer to converge and caused unnecessary
uncertainties to the model so it will not be used or discussed any more.

Population size 10 50 100

Linear Ranking
Mean number of
generations

10 50 80

Mean value of fit-
ness

0.025 0.012 0.008

Exponential ranking
Mean number of
generations

6 2 N/A

Mean value of fit-
ness

0.04 0.018 N/A

Tournament
Mean number of
generations

10 48 77

Mean value of fit-
ness

0.024 0.016 0.007

RWS
Mean number of
generations

31 119 219

Mean value of fit-
ness

0.042 0.017 0.015

Table 4.4: Different selection methods and their mean numbers of generations taken to
converge and the mean fitness values of the best candidate in 10 trials with different
population sizes. (N/A indicates that the model took 1 generation to converge.)

When comparing the speed of convergence and the best candidates after conver-
gence, tournament selection and RWS are suitable selection methods for the GA synthe-
siser. The two give a higher chance to the best candidate in each generation to survive and
reasonably distribute selection probabilities to other candidates. As RWS was initially
designed for maximisation problems, all fitness values were converted using approach (2)

66

with ψ = 1.0 in the experiment. However, it is found that fitness values of candidates in
the later process were very close to 0.0 and their differences were indistinguishable when
setting ψ = 1.0, which may result in inefficiency and unnecessary cost of time. Therefore
the method is not yet practical in real-world data synthesis, and tournament selection with
t = 2 seems so far the most suitable selection method for the GA synthesiser.

4.3 Crossover Methods

Crossover is the main resource in GAs to provide variation, but there is a lack of investi-
gation on crossover for matrix GAs and GA synthesisers. In the thesis, I propose some of
the possible methods that can be applied to data synthesis. These methods are classified
into three categories: Matrix crossover, Parallelised crossover and Uniform crossover,
based on different levels of entity of a dataset they take and the shape of blocks that they
swap between paired candidates. It can be assumed that microdata has three levels of
entities. Level 1 regards the whole dataset as an entity without splitting its variables or
cases. Level 2 assumes that data is formed of a number of variables/cases, and they can
be independently processed in GAs. Level 3 has every single cell (element) in the dataset
as an entity. A series of experiments are carried out to compare some potential crossover
methods and find the most suitable crossover method for GA synthesisers. These meth-
ods are listed in this section and the results were presented in Chapter Experiments and
Results.

4.3.1 Matrix Crossover

Matrix crossover was first proposed in [124]. In this use case, it takes the whole dataset as
a single entity (level 1) where variables or cases are not considered. During the process,
the method chooses a rectangle shape sub-matrix with random sizes and swaps it with the
paired individual. Fig 4.3 shows how matrix crossover works.

67

x1
11 x1

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x1
31 x1

32 ... x1
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm







x2
11 x2

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x2
31 x2

32 ... x2
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm







x2
11 x2

12 ... x1
1m

x2
21 x2

22 ... x1
2m

x2
31 x2

32 ... x1
3m

x2
41 x2

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nk







x1
11 x1

12 ... x2
1m

x1
21 x1

22 ... x2
2m

x1
31 x1

32 ... x2
3m

x1
41 x1

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm







Figure 4.3: X1 and X2 before and after matrix crossover

4.3.2 Parallelised Crossover

By assuming that all level 2 entities (variables or cases) in the dataset are independent,
they can be allocated to parallel sub-processors that the total amount equals to the number
of level 2 entities. In other words, the model runs crossovers and mutations independently
to different entities at the same time in one generation.

4.3.2.1 Variable Parallelised Crossover

Variable parallelised crossover (it was once called parallelised crossover in some papers
in Chapter Experiments and Results) randomly chooses a sub-matrix within a variable
(column) then swaps it with the corresponding position in the same variable from the
paired dataset. Fig 4.4 illustrates parallelised crossover between a pair of candidates X1

and X2:

68

x1
11 x1

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x1
31 x1

32 ... x1
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm







x2
11 x2

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x2
31 x2

32 ... x2
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm







x1
11 x1

12 ... x1
1m

x2
21 x1

22 ... x1
2m

x1
31 x2

32 ... x2
3m

x1
41 x2

42 ... x2
4m

...
...

...
...

x1
n1 x1

n2 ... x2
nm







x2
11 x2

12 ... x2
1m

x1
21 x2

22 ... x2
2m

x2
31 x1

32 ... x1
3m

x2
41 x1

42 ... x1
4m

...
...

...
...

x2
n1 x2

n2 ... x1
nm







Figure 4.4: X1 and X2 before and after variable parallelised crossover

4.3.2.2 Case Parallelised Crossover (CPC)

Case parallelised crossover (CPC) is similar to variable parallelised crossover instead
takes rows as entities for a dataset (Fig 4.5).

x1
11 x1

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x1
31 x1

32 ... x1
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm







x2
11 x2

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x2
31 x2

32 ... x2
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm







x2
11 x2

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x1
31 x2

32 ... x2
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm







x1
11 x1

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x2
31 x1

32 ... x1
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm







Figure 4.5: X1 and X2 before and after CPC

69

4.3.2.3 Round-CPC

Round-CPC has a similar mechanism as annular crossover in [92]. It first selects two
random endpoints from a case, then it swaps elements either between or out of the two
endpoints by 50/50 chance, which gives the elements at the margin or centre of each row
(case) equal chance to be swapped (Fig 4.6).

x1
11 x1

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x1
31 x1

32 ... x1
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm







x2
11 x2

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x2
31 x2

32 ... x2
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm







x2
11 x2

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x2
31 x2

32 ... x2
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm







x1
11 x1

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x1
31 x1

32 ... x1
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm







Figure 4.6: X1 and X2 before and after round-CPC

4.3.2.4 Whole-CPC

Instead swaps elements between or out of two random end points, whole-CPC exchanges
the entire case (Fig 4.7).

70

x1
11 x1

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x1
31 x1

32 ... x1
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm







x2
11 x2

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x2
31 x2

32 ... x2
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm







x2
11 x2

12 ... x2
1m

x1
21 x1

22 ... x1
2m

x2
31 x2

32 ... x2
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm







x1
11 x1

12 ... x1
1m

x2
21 x2

22 ... x2
2m

x1
31 x1

32 ... x1
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm







Figure 4.7: X1 and X2 before and after whole-CPC

4.3.3 Parametric Uniform Crossover (PUC)

PUC is applied to each cell (level 3 entity) of the dataset with a pre-determined probability
p0. Fig 4.8 illustrates how PUC swaps elements between two datasets:

x1
11 x1

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x1
31 x1

32 ... x1
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm







x2
11 x2

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x2
31 x2

32 ... x2
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm







x2
11 x1

12 ... x1
1m

x1
21 x2

22 ... x2
2m

x2
31 x1

32 ... x1
3m

x1
41 x1

42 ... x2
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm







x1
11 x2

12 ... x2
1m

x2
21 x1

22 ... x1
2m

x1
31 x2

32 ... x2
3m

x2
41 x2

42 ... x1
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm







Figure 4.8: X1 and X2 before and after PUC

71

4.4 Mutation Methods

Mutation will not be mainly discussed in this thesis because 1) it usually contributes less
variation than crossover operators to the next generation and 2) Any features of crossover
(such as positional bias, cost of computational loads, impact to the synthesisers’ effi-
ciency) can also be found in the mutation with the same mechanism. The mutation oper-
ator used most in the thesis simulates PUC, and it is called uniform mutation (Fig 4.9).
It changes the value of a randomly selected cell with a mutation rate pm in the dataset
by uniformly sampled the values taken by the corresponding variable (column) where the
cell belongs to.

x j
11 x j

12 ... x j
1m

x j
21 x j

22 ... x j
2m

x j
31 x j

32 ... x j
3m

x j
41 x j

42 ... x j
4m

...
...

...
...

x j
n1 x j

n2 ... x j
nm







x j∗
11 x j

12 ... x j
1m

x j
21 x j∗

22 ... x j∗
2m

x j∗
31 x j

32 ... x j
3m

x j
41 x j

42 ... x j∗
4m

...
...

...
...

x j
n1 x j

n2 ... x j
nm







Figure 4.9: X before and after mutation

4.5 Positional Bias and Schema Theory

The experiments carried out in the next chapter not only compare the above crossover
methods but also help to determine the characteristics of a good crossover method for GA
synthesisers. The experiments aim to address two questions: (1) does positional bias in
crossover method impact the efficiency of GA synthesisers? And (2) what are schema and
how ‘blocks’ are building in GA synthesisers?

Both matrix crossover and parallelised crossover (except round-CPC and whole-
CPC, the purpose of designing both methods is for dropping positional bias in paral-
lelised crossover) are based on the idea of two-point crossover. For example, in variable-
parallelised crossover, the element with row index i will be swapped if, and only if, one
of the selection points has index not greater than i while the other has index greater than
i. Thus the swap probability is the hypergeometric probability:

P(min(a,b)≤ i < max(a,b)) = i(n− i+1)
(

n+1
2

)−1

(4.5)

, where a and b are the indices of a pair of (distinct) randomly chosen crossover points.

72

It is trivial to show that this is a monotonically increasing function of i where i < n
2

and a monotonically decreasing function of i where i > n
2 . For matrix crossover that

selects rectangle blocks (4 endpoints) the probability of an endpoint with index (i, j)
being swapped is a product of hypergeometric probabilities. PUC, round-CPC and whole-
CPC, on the other hand, contains no positional bias and can provide us with an implicit
evaluation of the effect of positional bias to GA synthesisers.

GAs were described as a process of discovering, emphasising and recombining good
‘schema’ or ’building blocks’ in individuals over generations (see section 3.5) and such
process was observed frequently in binary GAs [82][52][63]. Whether the process also
exists when synthesising data using matrix GAs is unknown yet, and it is worth exploring
by comparing the performance of crossover methods from different levels of entity.

4.6 Adaptive GAs

There are arguments on involving adaptive parameters in GAs. First, it might increase
computational workload unnecessarily, especially when using a fixed mutation rate in
GAs sometimes is sufficient to give satisfactory outputs. This was also confirmed by
Galaviz and Xuri, who observed that adaptive GAs did not always outperform fixed GAs
in some cases [53]. Second, Adaptive parameters, especially those determined by candi-
dates’ fitness, might make the whole process more unpredictable [121]. However, Libelli
and Alba described the disadvantages of not using adaptive parameters using an example:
taking mutation rate pm as an instance, a high, constant value of pm can break the good-
ness of near-optimal candidates whereas a low, constant value of pm retains unwanted
information in bad candidates [72]. There are three parameters in GAs can be adaptive:
the crossover rate, the mutation rate and the population size [69]. It showed that the pop-
ulation size has no stable effect to the efficiency of GAs [58]. Therefore, in the thesis, I
mainly study adaptive parameters in two operators: crossover and mutation, on their rates
pc and pm, and their impact to GA synthesisers.

4.6.1 Adaptive Crossover Rates

Srinivas and Patnaik proposed that pc can be adapted based on the fitness value of the
corresponding candidate [115]. They used the following formula to adjust crossover rates:
Suppose fc is the larger fitness value of the two paired candidates, pc of this pair of
candidates can be:

pc =
kc(fmax− fc)

fmax− f̄
, 0 < kc < 1.0 (4.6)

73

The formula is originally designed for maximisation problems, but fitness in data synthe-
sis is a proxy for the divergence from the original dataset which should be minimised.
Therefore, the formula therefore is converted to:

pc =
kc(dc−dmin)

d̄−dmin
, 0 < kc < 1.0

where d̄ is the mean of divergence in the pool, dmin is the minimum divergence in the
current generation and dc is the smaller divergence between the paired candidates. This
method is fairly practical as it assumes a linear dependence between pc and fitness values.
However, there is no clear rule to decide the value of kc. Fig 4.10 compares the impact
from different kc to pc over fitness values of 20 candidates and, as it presents, the value
of pc returned by the formula can be greater than 1.0 because pc is not a probability
that sums to unity over all candidates but is specific to each candidate and such a value
then needs to be adjusted to 1.0 heuristically (see the horizontal dash line in the figure).
Moreover, the formula prevents the best candidate from crossover, which may limits the

Figure 4.10: The impact of kc on pc for different fitness values

exploration power of GAs when the population is not sufficiently mature. Experiments
are required to decide whether to involve adaptive crossover rates and to determine the
impact of adaptive crossover rates.

4.6.2 Adaptive Mutation Rates

Suppose the fitness value of the candidate is fi, and the average fitness value in its gen-
eration is f̄ . pm can be defined by the following principles [72]: If fi is ‘better’ (higher
in maximisation problems and lower in minimisation problems) than f̄ , then pm should
keep low to keep the method from the good individual. If fi is ‘worse’ than f̄ , then pm

should be reasonably high to generate new species into the pool. Thierens introduced two

74

approaches to adjust pm during the GA process [121]. In the first approach, pm of a par-
ticular candidate is determined by its fitness at the current stage. For example, a simple
adaptive function for pm can be:

pm =





0 if fi ≤ f̄

λ | f̄ − fi| if fi > f̄
, λ ∈ [0, fmax− f̄]

, where f̄ is the mean value of fitness and λ is a pre-determined parameter to bound the
value of pm less than 1. The function forces the least fit candidate to mutate so it may
not performs well at the later process of GAs, where all candidates in the population
have well developed. Furthermore, it requires more computational workloads to calculate
fitness values one more time for all children in the pool. Since with a proper setting,
the population in GAs always becomes fitter over generations, the alternative approach in
adaptive pm is to let pm decreases by the number of generations t. A general formulae of
pm(t) is:

pm(t) = (2+
l−2
T −1

t)−1

, where T is the number of generations that the GA has run so far [121].

Self-adaptive pm is generally favourable because it offers users’ control over pm and
provides an evolutionary advantage to all individuals in the generation [72]. However,
Bingu argued that the relationship between fitness values and parameters were complex so
that it was better to be described linguistically [12]. Moreover, since there is no universal
rule of parameter control in self-adaptive GAs for either linear or matrix GAs, it is reckless
to apply a random adaptive function on pm and pc without experiments. Therefore, I shall
consider to only explore the effects of simple adaptive functions like linear functions in
the thesis.

4.7 Objectives and Evaluation Tests

Objective design is equivalent to fitness function design in GAs. It sets up the environment
and controls how candidates should evolve during the process. Objective design is also
important in data synthesis because it determines which statistical properties the synthetic
data will carry. There are two reasonable principles to follow while designing objectives
for a GA synthesiser: (1) the objective should be universally applicable to all categorical
data, and (2) the objective should be quantitatively measurable. This section gives a set
of objectives specifically designed and used for GA synthesisers in the thesis (please note
they are not used in every experiment).

75

4.7.1 Data Utility Objectives

There are some assumptions in this section and applied to the whole thesis. First, it
assumes that the synthetic data X has the same size as the original data Y so n is the
total number of cases, and m is the total number of variables in both datasets. Second, it
assumes that a variable in synthetic data X has the same categories as its corresponding
variable in the original dataset. Suppose that CT (Y, j,k) is an R×C contingency table
(see Table 2.1) between a pair of variables Yj, Yk and R,C are the numbers of categories
of Yj and Yk respectively (so does in synthetic data X but it has the same numbers of
categories in X j and Xk as Yj and Yk), r,c are a pair of indices that determines the position
in a contingency table CT , and CTr,c indicates the value of counts in that particular cell.

4.7.1.1 Objective 1: To minimise the mean absolute difference in Cramer’s V be-
tween the synthetic and the original datasets across all pairs of distinct vari-
ables

Respecting variable associations in the original data is essential to produce high-quality
synthetic data. A measure of association between categorical (nominal) variables is
Cramer’s V. Cramer’s V (see Equation 2.2) is calculated from the contingency table of
these variables. The first objective is to minimise the mean absolute difference in Cramer’s
V between the synthetic dataset X and the original dataset Y across all pairs of their dis-
tinct variables, and therefore the fitness function is:

F1(X ,Y) =
(

m
2

)−1 m−1

∑
j=1)

m

∑
k= j+1

|Φc(CT (X:, j,X:,k))−Φc(CT (Y:, j,Y:,k))| (4.7)

4.7.1.2 Objective 2: To minimise mean of the sum of differences between counts of
a bi-variate contingency table in the synthetic and the original datasets

Objective 1 is not sufficient because two datasets that are similar in terms of Cramer’s
V may contain different data structure. So the second objective is designed based on the
absolute difference between all distinct bi-variate contingency tables, which captures a
different element of the bi-variate structure to Cramer’s V (and is scalable to dimension-
ality beyond bi-variate). The divergence measure between two contingency tables is set
as the mean of the sum of the element-wise absolute differences.

∆CT (X ,Y, j,k) =
1
n

|I j|
∑
r

|Ik|
∑
c
|CT (X:, j,X:,k)r,c−CT (Y:, j,Y:,k)r,c|

Therefore, the fitness function of objective 2 is defined as the mean of absolute differ-
ences between the bi-variate contingency tables of the synthetic dataset X and the original

76

dataset Y across all pairs of their distinct variables.

F2(X ,Y) =
(

m
2

)−1 m−1

∑
j=1)

m

∑
k= j+1

∆CT (X ,Y, j,k) (4.8)

where the square brackets are Iverson brackets and the levels of I j and Ik are indexed
r ∈ [1..|I j|] and c ∈ [1..|Ik|], respectively.

4.7.1.3 Objective 3: To minimise Jensen-Shannon Divergence between counts of
ζ -dimensional contingency tables in the synthetic and the original datasets

As for higher dimensional contingency tables, Jensen-Shannon divergence DJS is used
to measure the divergence between them. DJS gives normalised outputs between from 0
(no divergence) to 1. It was initially designed to measure the divergence between two
multi-dimensional discrete probability distributions P and Q:

DKL(P||Q) = ∑
i

P(i)log
P(i)
Q(i)

where DJS symmetries KullbackLeibler divergence DKL. By given M = 1
2(P+Q),

DJS(P||Q) =
1
2

DKL(P||M)+
1
2

DKL(Q||M)

It takes the square root of right hand side from above equation for more observable outputs
in the thesis:

DJS(P||Q) = (
1
2

DKL(P||M)+
1
2

DKL(Q||M))
1
2

By introducing DJS, the divergence measure of a pair of bi-variate (2-dimensional) con-
tingency tables in the synthetic dataset X and the original dataset Y in Objective 2 is:

∆(X ,Y,{ j,k}) = DJS(
1
n

CT (X:, j,X:,k)||
1
n

CT (Y:, j,Y:,k))

Meanwhile, analogous measures in higher (ζ) dimensional contingency tables is:

F3(X ,Y) =
(

m
ζ

)−1

∑
S∈Pζ ([1..m])

∆(X ,Y,S) (4.9)

, where Pζ (Z) denotes the members of the power set of Z of size ζ .

In Chapter Experiments and Results, most experiments use full contingency table.
Assume that each variable in the dataset takes values from finite sets I j so that I =

�m
j=1 I j

denotes the possible configurations of all m variables, a full contingency table is an m-
dimensional table containing a count for each member of I. However, using a full contin-
gency table as the only utility objective increases the risk of re-identification because the
synthesiser will eventually stop at the original data. Therefore conflicting risk objectives
are required.

77

4.7.2 Disclosure Risk Objectives

4.7.2.1 Identification Disclosure Risk

A protecting model must prevent re-identification from intruders. This condition used to
be presumably satisfied in fully synthetic data that synthesises all original records, until
full contingency tables are used to measure the utility.

Re-identification occurs when small counts appear on a multi-dimensional contin-
gency table of a set of quasi-identifiers. Shlomo confirmed that re-identification risk is a
function of both the dataset’s statistical population and the sample [107]. Suppose N(r,c)

is the population size in cell (r,c) in a bi-variate contingency table and n(r,c) is the sample
size of the same cell. The disclosure risk is measured through:

r̂1 = ∑
(r,c)

I(n(r,c) = 1)P̂(N(r,c) = 1|n(r,c) = 1)

r̂2 = ∑
(r,c)

I(n(r,c) = 1)Ê(
1

Nc,r
|n(r,c) = 1)

For known N(r,c) from the population, the measurement of re-identification risk can
simply be reduced to:

r = ∑
(r,c)

I(f(r,c) = 1)
N(r,c)

(4.10)

Re-identification might also occur if there exist external datasets containing quasi-
identifiers that some of them are the same as the variables presented in the released dataset
that are also available to intruders [35]. Differential privacy is generally used to neutralise
such risks from data linkage. It tells to what extent the data controllers can promise the
indifference from an individual present or not present in a dataset. If outputs of a privacy
model are almost equally likely to be observed on every neighbouring dataset, the model
is (ε,0)-differentially private [46]. By engaging full contingency tables in the utility mea-
sure, outputs from a GA synthesiser (MGA) is (ε,0)-differentially private. Suppose neigh-
bouring datasets Y1 and Y2 that differ from only one record, it is impossible to distinguish
outputs from MGA(Y1) and MGA(Y2) unless the original datasets are revealed. However,
since GAs have different mechanisms from differential privacy, they can neither take ε as
a model parameter nor give its value after the execution. I shall not discuss the issue any
more in this thesis.

78

4.7.2.2 Attribute Disclosure Risk

Attribute disclosure risk assesses the sensitive association between variables. Taub et al.
introduced a privacy model for measuring disclosure risk in synthetic data called Differen-
tial Correct Attribution Probability (DCAP) [47][119]. DCAP measures the probability
if a specific value from a target variable can be learnt from the values of a set of quasi-
identifiers by calculating empirical probability:

CAPo, j = Pr(To, j|Ko, j) =
∑

n
i=1[To,i = To, j,Ko,i = Ko, j]

∑
n
i=1[Ko,i = Ko, j]

where the square brackets are Iverson brackets, n is the number of cases, Ko and To

as vectors for the quasi-identifiers and the target variable from the original data. Likewise,
Ks and Ts are from the synthetic data. The CAP for record j based on a corresponding syn-
thetic dataset is the same empirical, conditional probability but derived from the synthetic
data,

CAPs, j = Pr(To, j|Ko, j)s =
∑

n
i=1[Ts,i = To, j,Ks,i = Ko, j]

∑
n
i=1[Ks,i = Ko, j]

(4.11)

DCAP is a feasible risk objective in GA synthesisers for the following reasons. First,
it measures both re-identification and attribution risks if with proper modification. A sce-
nario in DCAP is that in which rather than using the whole dataset, only the statistical
uniques of the original dataset are deployed when calculating the CAP score (this method
corresponds to a common focus for National Statistical Institutes). The non-matches
(records on the original dataset which do not match any records in the synthetic dataset
on the quasi-identifiers) in this instance of DCAP were scored as 0, that allows candidates
with more non-matches to have lower scores but the one with matched uniques stands
out. Second, it requires neither weights nor pre-determined parameters compared with
information entropy measure (see Eq 2.5) or other privacy models in Sec 2.3.3. DCAP
determines the level of risks contained in a synthetic dataset by comparing with a base-
line DCAP score, which is derived by a dataset generated by uniformly sampling values
from every variable in the original data3. Last but not least, DCAP can also be calculated
through full contingency tables of both original and synthetic data (Eq 4.11), that reduces
the processing time of GA synthesisers.

4.7.3 Evaluation Tests

It is important to validate the information utility of fully synthetic data as some of the
statistical properties are not explicitly related to the full contingency table. The utility can

3Antal et al. also assumed in [6] that this kind of data contains no disclosure risk.

79

be evaluated from fundamental statistical analyses, including univariate histogram and
bi-variate joint-distribution charts [89]. Some statistical models like logistic regression
model and multiple correspondence analysis (MCA) can also be used to compare the
closeness of the synthetic data to the original data.

Logistic regression model predicts the log-odds of the probability of the categories
from the output variable. Its simplest form is binary logistic regression model that has
only two categories in the predictor variable. Suppose that y is the predictor variable in
original dataset Y that interests analysts. A logistic regression model of y can be expressed
as:

ln(
p(y = 1)

1− p(y = 1)
= β0 +β1y1 + ...βwyw, 1≤ w≤ m

Suppose that X is the synthetic version of Y and x is the synthetic version of x, the corre-
sponding logistic regression model in X is:

ln(
p(x = 1)

1− p(x = 1)
= β

′
0 +β

′
1x1 + ...β ′wxw, 1≤ w≤ m

The original and synthetic data can then be compared through the correlation ρ between
predicted logit probabilities. The closer ρ to 1, the similar the predictions from two
logistic regression model are.

ρ = corr((β0 +β1y1 + ...βwyw),(β0 +β1x1 + ...βwxw)), 1≤ w≤ m (4.12)

MCA, on the other hand, carries out a pattern analysis on nominal variables and ex-
plores their underlying structures. It requires a pre-determined number of factors (which
is usually small) and gives two sets of factor scores for all variables and cases. These
scores are usually visualised on bi-plots [1]. The difference factor scores between the
original and synthetic data can also be used to evaluate the latter’s utility.

4.8 Chapter Summary

In this chapter, I have described different focuses of designing GA synthesisers. For some
of those, I have been able to make design decisions on theoretical grounds or through the
use of pilot empirical tests. For the others, more detailed empirical work is needed. The
majority of the papers in Chapter Experiments and Results report on such experiments. In
each experiment, there will be trials on selected datasets to evaluate the impact from par-
ticular parameters or operator variants to the speed of convergence of the generator. The
capability of the GA synthesiser to generate a trade-off between utility and risk objectives
will also be tested in the chapter.

80

Chapter 5

Experiments and Results

There are 6 papers in this chapter. They summarise important findings in this thesis. The
publishing destinations and states of these papers can be checked in Table 1.1.

The first paper Genetic Algorithms in Matrix Representation and Its Application in
Synthetic Data shows the implementation of a simple GA on data synthesis on a small
dataset. It demonstrates the potential of GAs in synthetic data production.

The following papers discuss different focuses of GA synthesiser design. The Ap-
plication of Genetic Algorithms to Data Synthesis: A Comparison of Three Crossover
Methods compared three crossover methods that are commonly used in GAs: variable
parallelised crossover, matrix crossover and PUC. The comparison was based on their
efficiency on restoring relationships between variables in synthetic data. The findings of
this paper inspire the next paper: Matrix GA: building blocks in data synthesis, which
discusses newly arising issues in identifying appropriate crossover methods for GA syn-
thesisers when the efficiency of traditional crossover methods is not satisfactory. This
paper involves Schema Theory in order to answer the question: how the ‘blocks’ are
building when GAs synthesise data. The crossover method (CPC, see Fig 4.5) and its two
variants (round CPC, see Fig 4.6 and whole CPC, see Fig 4.7) were first introduced and
compared here, and whole CPC is demonstrated most suitable for GA synthesisers so far.

Impact of Full Contingency Table in Data Synthesis discusses the potential of using
a unique utility objective for GA synthesisers and demonstrates that the full-contingency
table is a reasonable choice for measuring the closeness of synthetic data to the corre-
sponding original data. A further exploration of objective design is in Trade-off between
Information Utility and Disclosure Risk in GA Synthetic Data Generator. Since the full-
contingency table comes with high disclosure risks due to it being close to the original
data by definition, we need to focus on finding the trade-off between information utility

81

and disclosure risks in the final output. This paper uses DCAP as the risk objective in the
GA synthesiser to contest with the full contingency table as the only utility objective.

The Impact from Initial Population in GA Synthetic Data Generator investigates the
impact of the diversity of initial populations on the efficiency of GA synthesisers. It
confirms that in GA synthesisers, initial populations with more diversity have more ex-
ploratory power.

All papers above adopt fixed GAs, and their performance is acceptable. However,
the advantage of fixed-rate operators is found not consistent in the process. Therefore, the
paper: Exploring the Impact of Adaptive Parameters on a Genetic Algorithm Synthesiser
explores whether adaptive parameters have a positive impact on the efficiency of GA
synthesisers.

Paper Trade-off between Information Utility and Disclosure Risk in GA Synthetic
Data Generator deploys a weighted-sum single objective GA to demonstrate the existence
of a trade-off between full-contingency-table-measured utility and DCAP-measured risk.
Implementing Pareto optimisation was the intuitive and obvious option while designing
multi-objective GA synthesisers. However, the experiment showed that the performance
of Pareto multi-objective GAs are no better (and sometimes worse) than the weighted-
sum GA. As the purpose of the thesis was a proof of concept for the use of GAs as data
synthesisers and this particular issue, whilst important, is a distraction from the primary
goal. Therefore, the experiment results from Pareto multi-objective GAs are moved to
Chapter 7 followed by a discussion of the underlying reasons for this unexpected lack of
performance.

5.1 Genetic Algorithms in Matrix Representation and Its
Application in Synthetic Data

This paper is the implementation of an earlier position paper [20] (see Appendix 7.3) and
explains how to use a new form of genetic algorithms (matrix GAs) to generate synthetic
data and provides a proof of concept using a small individual-level microdata set. The new
method is able to iteratively optimise synthetic data based on a set of utility parameters
until its closeness from the original data achieves an acceptable level. The paper describes
the advantages of this method and its potential in synthetic data production. It covers
both theoretical and computerised model design and specifies further development of this
study.

82

 1

Genetic Algorithms in Matrix Representation and Its

Application in Synthetic Data

Yingrui Chen*, Mark Elliot** and Joe Sakshaug***

* University of Manchester, yingrui.chen@manchester.ac.uk
** University of Manchester, mark.elliot@manchester.ac.uk
*** University of Manchester, joe.sakshaug@manchester.ac.uk

Abstract: This paper is the implementation of an earlier position paper (Chen, Elliot & Sakshaug,

2016) and explains how to use a new form of genetic algorithms (matrix GAs) to generate synthetic

data and provides a proof of concept using a small individual-level microdata set. The new method is

able to iteratively optimise synthetic data based on a set of utility parameters until its difference from

the original data achieves a desired level. The paper describes the advantages of this method and its

potential in synthetic data production. It covers theoretical and computerised model design and

specifies further development of this study.

1 Introduction

Algorithms are the core of machine learning (ML), which is designed for solving

problems with non-trivial solution spaces and where prior knowledge cannot be

completely specified. ML instantiates a series of instructions that transform input into

output; modern machine learning algorithms are increasingly designed for

unstructured global optimisation problems (Ethem, 2014). Notwithstanding this,

algorithmic methodology presupposes that most problems can be reduced to

optimisation problems with objectifiable constraints and objectives.

The properties of machine learning algorithms show significant potential for synthetic

data production. Firstly, ML does not require an accurate pre-assumed model to cover

all statistical properties that the synthetic data is supposed to have. Machine learning

algorithms are interruptible so users can set any statistic as the objective any time

during model processing. Secondly, it uses less human effort to find optimal

solutions, which is more efficient with big datasets.

The idea of using machine learning algorithms in data protection has been mentioned

by several researchers: Drechsler (2010) proposes modern optimisation tools as a

generator of synthetic data. Navarro-Arribas and Torra (2015) describe data

protection as an optimising problem with two opposite constraints: information loss

and disclosure risks and proposed using Genetic Algorithms (GAs) to improve the

protection of databases or to improve parameters in disclosure control models. More

recently the current authors established a framework for a GA approach to producing

synthetic data (Chen et al 2016).

1.1 Genetic Algorithms

Genetic algorithms (GAs) are one of the well-known machine learning algorithms.

Conceptually, they mimic the process of natural selection. GAs use a parallel search

to randomly select individuals from a population of candidates, apply crossover

(exchange information between candidates) and mutate the candidates (perturb

information) until the whole system reaches convergence (where all candidates are

identical) or the system meets some user defined criterion (Goldberg, 1989). Every

run of selection, crossover and mutation processes is called a generation. The number

of generations can be used to measure the speed of convergence of a GA model. In

GA, the set of candidates in the current generation is generally called “the

 2

population”, but in order to distinguish to the ‘population’ we generally use in

statistics, the population of candidate datasets will be called “the GA population”.

The most common representation of individuals in GA populations is in the form of

binary strings (effectively one-dimensional arrays). There is a relative lack of work on

what are called matrix-GAs (two-dimensional arrays). For the synthetic data

production use case, there are strong reasons to use a matrix representation. Firstly,

the matrix is the standard way to present microdata, which contains information

directly collected from individual population units (Ciriani et al, 2007). Secondly, as

Marchette and Solka (1996) observe, matrix GAs can most appropriately display data

structures of their candidates so they can not only optimise records but also their

relation to surrounding locations in a dataset.

2 The properties of GAs

2.1 Fitness Functions

As an optimisation problem, the objective of synthetic data production is to minimise

its difference in statistical inference of the synthetic datasets compared to the original

one (Abowd & Lane, 2004). In GAs, the measurement of how close an individual is

to the objective is called fitness. Hence, the fitness of a candidate dataset within the

GA population is measured by its analytical similarity to the original dataset – a

property that is often called utility in the statistical disclosure control literature (see

for example Duncan et al 2011). Practically, the similarity is evaluated by the

divergence of a certain statistical properties between the two datasets: the smaller the

divergence is the more similar they are and therefore the higher fitness of the

synthetic dataset.

2.2 Selection Schemes

Candidates from the GA population in the current generation are selected into a pool

before crossover. The purpose of selection is to eliminate worse candidates and give

higher chance to better candidates to survive and pass their good properties to the next

generation. Candidates are selected from the current GA population with replacement

so that one each candidate can crossover with others more than once (Melanie, 1998).

Standard selection schemes can be classified into two categories based on their

mechanisms: Fitness-proportional selection schemes and Ranking-based selection

schemes. Fitness-proportional schemes select candidates according to their fitness

values. The fitter a candidate is the more likely it is to survive. Ranking based

schemes select candidates based on the ranks of their fitness values; the candidate

with highest rank is the most likely to survive. The probability from fitness-

proportional selection depends on the value of fitness itself. In ranking-based

selection, the candidate of the given rank always has fixed probability to be selected

no matter how much it is better than others. One that is much better than the other

candidates may only have slightly higher chance to be selected compared to others in

the same generation. Fitness-proportional selection schemes avoid this issue and

cause less elimination of fitter candidates.

Fitness-proportional selection Ranking-based selection schemes

Roulette Wheel Selection

Stochastic Universal Selection

Tournament selection

Linear ranking selection

Exponential ranking selection

Truncation selection*

Table 1.1 Selection schemes

 3

This paper only compares stochastic universal selection (SUS) and linear ranking

selection that can be considered as representatives of the two categories. For more

details about other selection schemes please check Blickle and Thiele’s (1995) work.

SUS selects candidates according to the probability that is proportional to one’s

fitness value. In linear ranking selection, Candidates in the GA population are ranked

in ascending order of their fitness values from 1 to N, where N refers to the best and 1

refers to the worst. All candidates should be assigned into different ranks even though

they may have same fitness values. The probability of a candidate to be selected is

linearly proportional to its rank but not fitness (Chudasama et al, 2012). For each

selection scheme we ran 10 simulations over population sizes 10, 50, and 100 (using a

toy datasets described in section 3.0) and took the average number of generations

when the process reaches convergence. It is expected to take longer when the GA

population size increases. The process terminates after all candidates converge or

there appears any candidate whose divergence value is less than 0.02 (calculation of

divergence is described in 3.1). The average divergence values after convergence

were also compared and the less the value is the higher the optimality the result has.

 Stochastic Universal Selection Linear Ranking selection

Population

size

Average Number of

generations before

convergence

Average divergence

value after

convergence

Average Number

of generations

before

convergence

Average

divergence value

after convergence

10 31 0.042 10 0.025

50 119 0.017 50 0.012

100 219 0.015 80 0.008

Table 1.2 Comparison between SUS and linear ranking selection

The table shows that SUS took longer to reach convergence compared to linear

ranking selection and the optimality of its results is neither as satisfactory as the latter.

It does not indicate that SUS is a weak selection scheme since it explored more

possible solutions during the process.

2.3 Crossover

Crossover is a special operator of GAs that differs them from other algorithms. The

crossover operator in this paper is to exchange a selected random block between two

attributes in two candidates. Suppose there are N non-identical synthetic datasets
in the population of GA that are denoted as 𝑋𝑛, 𝑛 ∈ {1, … , 𝑁}. Each synthetic
dataset consists of K attributes and M cases, 𝑥𝑖𝑗 , 𝑖 ∈ {1, … , 𝐾}, 𝑗 ∈ [1, … , 𝑀].

Crossover that occurred between a random pair of synthetic datasets, for
example, 𝑋1 and 𝑋2 looks like:

Fig 1.1 Selected random block before crossover

 4

Fig 1.2 Selected random block after crossover

2.4 Mutation

Crossover was once considered as the main mechanism of variation to solution spaces

in GAs, but Melanie (1998) argued that researchers should pay the same attention to

mutation. Like crossover, there are at least two ways to perform mutation in matrix

and this paper only studies mutation on single attributes. The process of mutation is:

firstly, the model decides whether mutation happens on a single synthetic attribute

based on a given probability. If the decision is “Yes”, then the model replaces

randomly selected positions by new values that are chosen from a user-determined

distribution, which could be the univariate-distribution of the original attribute,

uniform distribution or something else. The probability of mutation is usually fixed

during the process.

3 Model and Simulations

3.0 Data

The toy dataset used here as a proof of concept a small dataset with 32 records and 4

attributes. There are three reasons to start small: 1) matrix GAs massively increase the

workload compared to string GAs, so using a small dataset accelerates the process of

programme development and testing; 2) the complexity of matrix GAs results in a

higher likelihood of errors and using a small dataset allows to check results line by

line; 3) matrix GAs are new in GAs so there are no previous cases to be referred to.

The process of optimisation starts from a set of datasets generated from the univariate

distributions of original attributes. The initial GA population size can be any amount

greater than 4. The larger the population is the slower the process is but the more

variation that exists and the higher chance of discovering the global optima.

3.1 GA model Specification

The approach is designed to generate synthetic datasets for non-hierarchical

categorical microdata. Users input a dataset and select the statistics that they wish to

preserve. The system will firstly calculate those statistics for the dataset. Then it will

generate the required number of synthetic versions using the univariate distributions.

The number of synthetic versions is user-determined and will be set up as the size of

the initial GA population. These synthetic datasets will then enter the GA process and

become iteratively optimised until one or more of them reaches the desired level of

closeness to the original data according to the selected statistics.

For the test case used for in this proof of concept, Cramer’s V was employed as the

single objective to measure the closeness between the synthetic and original data.

Shlomo (2009) indicates that Chi-square and Cramer’s V (c) are two key statistics to

 5

measure relevance between pairs of categorical attributes. Cramer’s V is derived from

the Chi-square statistic and can evaluate the level of association between two

categorical attributes. So the objective is to minimise the mean of differences of

Cramer’s V (𝜙𝑐) between each of the attributes. Suppose the 4 original attributes are

𝑋1, 𝑋2, 𝑋3 and 𝑋4 and its corresponding synthetic versions are 𝑋’1, 𝑋’2, 𝑋’3 and 𝑋’4,

the objective can be expressed as a minimisation of the function F:

F= (4
2
)

−1
∑ ∑ |𝜙𝑐(𝑥𝑖

′, 𝑥𝑗
′)– 𝜙𝑐(𝑥𝑖

 , 𝑥𝑗
)4

𝑗=𝑖+1
3
𝑖=1 | (1)

Fig 2.1 Flowchart of the GA model

3.2 Simulations from a general GA approach

 6

The success of an algorithm depends on the details of its operators (Melanie, 1998).

Although it might be better in some cases to use a GA model that is specifically

designed based on prior knowledge of the particular problem, but general GA models

can also work efficiently. The following graphs show how the divergence values

(calculated using equation (1)) change over generations using a GA model with linear

ranking selection. They show three situations: a GA model with crossover only, a GA

model with mutation only and a GA model with both.

Fig 2.2 Mean fitness values by generation for Simulation with crossover only and toy

dataset

Fig 2.3 Mean divergence values by generation for simulation with mutation (mutation

rate=0.1) only

Fig 2.4 Mean divergence values by generation for simulation with crossover and

mutation rate=0.1

Comparison between these graphs clearly justifies how crossover and mutation

contributes variation to the searching space of optimal solutions and why a parallel

search engine has higher chance to find a near-optimum solution. The simulation with

crossover only (Fig 2.2) explored more solutions compared to the one with mutation

only (Fig 2.3) but it converged quickly and stopped searching new solutions once the

 7

convergence reached. The combination (Fig 2.4) apparently found more solutions

before convergence and still searched for more after the convergence reached. Graphs

2.5 to 2.7 compare the three situations above over a dataset with the same four

attributes as the toy dataset but with 1000 cases. They may not differ as much as the

smaller dataset but still show that the combination of crossover and mutation explore

more possible solutions and the convergence speed (in terms of number of

generations) is still fast. However, the convergent solution is further away from the

global optima.

Fig 2.5 Mean divergence values by generation for simulation with crossover only for

a larger dataset

Fig 2.6 Mean divergence values by generation for simulation with mutation (mutation

rate=0.1) only for a larger dataset

Fig 2.7 Mean divergence values by generation for simulation with crossover and

mutation rate=0.1 for a larger dataset

4. Discussion

 8

4.1 Selection

It is difficult to decide how “elitist” the selection schemes should be. A gentle

selection operator like SUS assigns probabilities to all candidates to be selected but

prolongs the time required for the whole GA population to mature. A restricted

operator kills less fit candidates in one shot but results in faster convergence to the

local optima. Identifying the appropriate selection operator for synthetic data

generation is a topic for future work.

4.2 Adaptive Crossover

At the beginning the trial was implemented on a small GA population; thus, all

selected candidates participated crossover to explore the solution space. For a larger

GA population like 1000 candidates), an adaptive crossover with adaptive probability

𝑝𝑐 is preferred to avoid uncontrollable growth from unordered crossover between

candidates. Srinivas and Patnaik (1994) proposed an adaptive crossover rate that

changes over generations. Suppose 𝑓𝑐 is the divergence value of the best candidate in

the generation. The existence of 𝑘𝑐 constrains 𝑝𝑐 in the range of [0.0, 1.0].

𝑝𝑐 =
𝑘𝑐(𝑓𝑐 − 𝑓𝑚𝑖𝑛)

𝑓̅ − 𝑓𝑚𝑖𝑛

, 𝑘𝑐 < 1.0

There exist some drawbacks of using adaptive crossover. Firstly, there is no clear rule

to tell when to change 𝑘𝑐 , or whether the population size is large enough to perform

adaptive crossover. Furthermore, the formula prevents the best candidate from

crossing over with others, which limits evolution if the process is not sufficiently

developed or the GA population size is small. In diagram 3.1 we compare the impact

from different 𝑘𝑐 to 𝑝𝑐 over a group of 20 candidates:

Fig 3.1 Comparison of the effect of difference 𝑘𝑐to 𝑝𝑐

It should be clarified that 𝑝𝑐 is not a probability that sums to unity over all candidates

but rather is specific to each candidate. The value of 𝑝𝑐 returned by the formula can

be greater than 1.0, and then needs to be adjusted to 1.0 heuristically. Future work

will determine whether to use adaptive crossover by comparing fixed and adaptive

crossover over the same GA population.

4.3 Adaptive Mutation

There are two common approaches to design mutation with adaptive probability 𝑝𝑚.

One assumes that 𝑝𝑚 is adaptive in favour of the difference between individual fitness

𝑓𝑖 and the average fitness 𝑓 ̅of the current generation. If 𝑓𝑖 > 𝑓 ̅ (better than the

average), then 𝑝𝑚 should be low to keep properties of the good individual. If 𝑓𝑖 < 𝑓 ̅

 9

(worse than the average), then 𝑝𝑚 should be reasonably high to explore a more

diverse range of new solutions (Libellin & Alba, 2000). An alternative is that 𝑝𝑚

empirically decreases over the number of generations but is independent to individual

fitness values. However, this reduces users’ control on values of 𝑝𝑚 (Thierens, 2002).

Previous research has shown that adaptive mutation is based on the fact that varying

probabilities perform better than fixed probabilities in GAs. (see for example

Thierens, 2002 for discussion) However, there are some downsides. First of all, it

increases computational workload unnecessarily if fixed mutation probability in GAs

can also give satisfactory outputs. Secondly, the involvement of adaptive mutation,

especially when 𝑝𝑚 depends on the individual fitness level, makes the whole process

less predictable and impacts the consistency of the whole model (Thierens, 2002). It

will require further research to decide whether - and which kind of - adaptive

mutation should be used in the GA model for producing synthetic data.

5 Conclusion

We present here GAs as an alternative method for the production of synthetic data.

GAs have the feature of being able to automatically optimise synthetic datasets based

on given statistical properties and users can update these properties when the model is

processing. The process of GAs is to select better candidates (synthetic datasets) and

to produce new candidates through crossover and mutation. Since these candidates

have higher chances to be selected and bear offspring, the process will eventually

converge to an optimal solution. In further study we will make adjustments to

different operators in the model and critically we will introduce disclosure control

metrics to guarantee the generated dataset provides the statistical properties of the

original dataset without duplicating it

References

Blickle, T. & Thiele, L. (1995). A Comparison of Selection Schemes used in Genetic

Algorithms. Computer Engineering and Communication Networks Lab. Swiss

Federal Institute of Technology.

Chen, Y., Elliot, M., Sakshaug, J. (2016). A Genetic Algorithm Approach to Synthetic

Data Production. Proceedings of the 1st International Workshop on AI for

Privacy and Security. Article No. 13.

Chudasama, C.; Shah, S.M. and Panchal, M. (2011) Comparison of Parents Selection

Methods of Genetic Algorithm for TSP. International Conference on Computer

Communication and Networks CSI- COMNET-2011.

Ciriani, V., di Vimercati, S.D.C., Foresti, S., Samarati, P., (2007). Microdata

Protection. In: Yu T., Jajodia S. (eds.) Secure Data Management in

Decentralized Systems, pp. 291–321, Springer, New York.

Cortez, P. (2014). Modern Optimization with R; Springer. p.v

Drechsler, J. (2010). Using support vector machines for generating synthetic datasets;

in Privacy in Statistical Databases; Springer Berlin Heidelberg; pp. 148-161.

Ethem, A. (2014). Introduction to Machine Learning. Third Edition, MIT Press.

Liberllin, S., and Alba, P., (2000). Adaptive mutation in genetic algorithms, Soft

computing. vol.4 pp.76-80.

Melanie, M. (1998). An Introduction to Genetic Algorithms. MIT press

 10

Navarro-Arribas, G. and Torra, V. (2015). Advanced Research in Data Privacy; Studies

in Computational Intelligence. Vol. 567. Springer Switzerland. pp.3-37.

Shlomo, N. (2009), Releasing Microdata: Disclosure Risk Estimation. Data Masking

and Assessing Utility. Working Paper M09/02. University of Southampton.

Srinivas, M. and Patnaik, L. M. (1994). Adaptive Probabilities of Crossover and

Mutation in Genetic Algorithms. IEEE Transactions on systems, Man and

Cybernetics; 24(4). pp.656-668.

Thierens, D. (2002) Adaptive mutation rate control schemes in genetic algorithms.

Evolutionary Computation, 2002. CEC '02. Proceedings of the 2002 Congress

on,vol.1, pp. 980 – 98

5.2 The Application of Genetic Algorithms to Data Syn-
thesis: A Comparison of Three Crossover Methods

This paper compares three crossover methods that commonly used in GAs: parallelised
crossover (namely variable parallelised crossover in the thesis), matrix crossover, and
parametric uniform crossover. It aims to find if traditional crossover methods are appli-
cable to data synthesis and if positional bias impacts the efficiency of a GA synthesiser.
These methods are applied to three different datasets and compared on the basis of how
well they reproduce the relationships between variables in the original datasets.

93

The Application of Genetic Algorithms to Data

Synthesis: A Comparison of Three Crossover

Methods

Yingrui Chen1, Mark Elliot2, and Duncan Smith3

1 University of Manchester, Manchester, M13 9PL, UK

Yingrui.chen@postgrad.manchester.ac.uk
2 University of Manchester, Manchester, M13 9PL, UK

Mark.Elliot@manchester.ac.uk
3 University of Manchester, Manchester, M13 9PL, UK

Duncan.G.Smith@manchester.ac.uk

Abstract. Data synthesis is a data confidentiality method which is ap-

plied to microdata to prevent leakage of sensitive information about re-

spondents. Instead of publishing real data, data synthesis produces an ar-

tificial dataset that does not contain the real records of respondents. This,

in particular, offers significant protection against reidentification attacks.

However, effective data synthesis requires retention of the key statistical

properties of (and respecting the multiple utilities of) the original data.

In previous work, we demonstrated the value of matrix genetic algo-

rithms in data synthesis [4]. The current paper compares three crossover

methods within a matrix GA: parallelised (two-point) crossover, matrix

crossover, and parametric uniform crossover. The crossover methods are

applied to three different datasets and are compared on the basis of how

well they reproduce the relationships between variables in the original

datasets.

Keywords: Genetic algorithms, Data synthesis, Data privacy

1 Introduction

Published data are provided in many formats, although the underlying data are

often microdata collected from some population [5]. Confidentiality protection

techniques for microdata attempt to camouflage sensitive information in the

original data while retaining its statistical properties for analysts. Data synthesis

is a protection technique that produces a synthetic dataset that is designed to

2 Y. Chen et al.

preserve the same statistical properties as the original data and provide sufficient

variables to allow proper multivariate analyses [1].

The quality of synthetic data is strongly dependent on the design of the

synthetic data generator [7]. Properties that are not explicitly included in the

generator will not be present in the synthetic dataset (unless they are structurally

or statistically related to properties that are, and therefore emerge from the

synthesis process). Unforeseen analysis on fully synthetic data may therefore

lead to different results from the same analysis on the original data [8].

In this paper we use Genetic Algorithms(GAs) to generate synthetic data.

GAs are iterative optimising algorithms that simulate the process of natural

evolution. They comprise of three main operators: selection, crossover and mu-

tation. A group of candidate solutions are specified (the initial population). The

fitnesses of these candidates are calculated and a selection operator selects a

subset of the fitter candidates which are used to generate a new population. In

crossover some pairs of these selected candidates are combined (using a variety

of methods) to produce new candidate solutions. Some candidates are then sub-

jected to mutation – random changes that will produce changes in fitness. After

crossover and mutation we have the new population / generation. The process is

repeated a number of times in order to (hopefully) generate fitter solutions than

those in the initial population. Crossover and mutation rates can be varied from

one iteration to the next, and tuning of these parameters can greatly influence

performance.

GAs have been proposed as a potential method to protect respondents’ from

disclosures from published data. For example, Navarro-Arribas and Torra [9]

mentioned that data protection could be treated as an optimisation problem with

conflicting objectives and cite GAs as one approach to delivering this. Reasons for

using GAs to produce synthetic data are: (i) they are designed to solve problems

that have no observable solution space. The a priori knowledge required for

setting up the initial population is minimal. (ii) GAs are interruptable so do not

require complete a priori knowledge to set up objectives and, most crucially, (iii)

GAs work well at optimising across competing constraints and therefore could, if

well designed, have advantages over orthodox statistical model based synthesizers

in: ameliorating overfitting, generating emergent properties and accommodating

unforeseen analyses.

Matrix GAs are believed to capable of representing and solving more com-

plex problem structures than the more orthodox bitstring GAs [12] [14] [15].

Although GAs have been used in various optimisation problems, the exploration

of applications for matrix GAs has been limited. However, given that micro-

GAs for Data Synthesis: A comparison of 3 Crossover Methods 3

data are essentially matrices the production of synthetic microdata seems an

obvious application. In previous work we have evaluated the potential for ma-

trix GAs with promising initial results [3] [4]. The current paper explores the

performance of three different crossover methods for matrix GAs in producing

synthetic data. We consider three datasets, with different data structures, and

sampled from different survey populations.

Note that in this initial phase of this research, we are concerned only with

optimising the utility of the synthesised data and not with the residual disclosure

risk. The rationale for this is twofold: (i) optimising the utility of a synthetic

dataset represents a difficult problem by itself and adding in the contrary con-

straint of disclosure control will introduce further complexity, and (ii) of the two

elements the utility problem is the more significant for synthetic data; if this

cannot be solved the efficiency of the risk optimisation will be irrelevant. Under-

standing the properties of the utility optimisation problem before introducing

the complexity disclosure control as an objective is therefore the appropriate

research strategy.

1.1 Microdata and Contingency Tables

A microdata set for n cases and m variables is usually represented as an n by

m matrix indexed i∈{1, . . ., n} and j∈{1, . . .,m}. Here we use Y to denote and

original dataset and its synthetic version is denoted as X. X shares the same

structure as Y as illustrated in Fig. 1.

y11 y12 ... y1m
y21 y22 ... y2m
y31 y32 ... y3m
y41 y42 ... y4m

...
...

...
...

yn1 yn2 ... ynm







x11 x12 ... x1m

x21 x22 ... x2m

x31 x32 ... x3m

x41 x42 ... x4m

...
...

...
...

xn1 xn2 ... xnm







Fig. 1. Microdata Y and its synthetic version X

For categorical variables the same information can be encoded in a con-

tingency table, which captures the between-variate structure of the candidate.

Assume our variables take values in finite sets Ij so that I = ×
j∈[1..m]

Ij denotes

the possible configurations of the variables. Then a contingency table is an m-

dimensional table containing a count for each member of I. For example, if we

4 Y. Chen et al.

denote the jth column of a microdata set Y as Y:,j , then the 2-dimensional con-

tingency table constructed from distinct columns Y:,j and Y:,k is CT (Y:,j , Y:,k)

with entries nr,c is,

nr,c =
n∑

i=1

[Yi,j = (Ij)r ∧ Yi,k = (Ik)c] (1)

where the square brackets are Iverson brackets and the levels of Ij and Ik are

indexed r ∈ [1..|Ij |] and c ∈ [1..|Ik|] respectively.

1.2 Objectives

Respecting variable associations in the original data is an important aspect of

producing high quality synthetic data. Thus, objective functions are designed

based on the differences between synthetic (contingency) tables and original ta-

bles in low dimensions. A measure of the difference between a pair of contingency

tables is the Jensen-Shannon distance DJS between their normalised (to sum to

1) counterparts4. Suppose P and Q are two discrete probability distributions,

then DJS(P ||Q) is given by:

DJS(P ||Q) = (
1

2
DKL(P ||M) +

1

2
DKL(Q||M))

1
2 (2)

where M = 1
2 (P +Q) and DKL is the well-known Kullback-Leibler divergence.

So our distance measure for a pair of 2-dimensional contingency tables is

defined as:

∆(X,Y, {j, k}) = DJS(
1

n
CT (X:,j , X:,k)|| 1

n
CT (Y:,j , Y:,k)) (3)

Our first objective function is the mean of these distances over all pairs of

variables:

F1(X,Y) =

(
m

2

)−1 m−1∑

j=1

m∑

k=j+1

∆(X,Y, {j, k}) (4)

4 Regarding the choice of divergence measure. The Kullback-Leibler divergence cannot

be used directly because of the requirement for absolute continuity. Aside from that

constraint there was no prior compelling reason for picking any specific measure, and

there is no specific empirical work to guide us. The Jensen-Shannon distance was

chosen mainly on the basis that it is a true metric, unlike e.g. the Jensen-Shannon

divergence. The impact of using alternative measures is another area which future

research could explore

GAs for Data Synthesis: A comparison of 3 Crossover Methods 5

Analogous measures are also considered for all 3-dimensional and all 4-

dimensional contingency tables. So our other two objectives are defined as:5

F2(X,Y) =

(
m

3

)−1 ∑

S∈P3([1..m])

∆(X,Y, S) (5)

F3(X,Y) =

(
m

4

)−1 ∑

S∈P4([1..m])

∆(X,Y, S) (6)

where Pk(Z) denotes the members of the powerset of Z of size K.

The fitness of each candidate is calculated by the Euclidean distance from

the synthetic to the original data in the space delineated by the three objective

functions. The fitness value is normalized to the range [0, 1] by dividing by
√

3.6

So our overall objective function is:

F =
√

3
−1√

(F1(X,Y)2 + F2(X,Y)2 + F3(X,Y)2 (7)

2 Crossover Methods

A crossover operator produces variation in a GA population. The operators

considered here will change a pair of individuals by swapping randomly selected

sub-matrices. In the case of uniform crossover these sub-matrices will necessarily

have dimension 1× 1 and we will essentially be swapping individual elements of

the matrices.

The three crossover methods presented here have been used previously in

various application areas, but not usually compared and certainly not in the con-

text of synthetic data generation. Two of them use the mechanism of two-point

crossover where not all sub-matrices (or elements) have an equal probability of

being swapped (positional bias). The third operator, uniform crossover, does

not suffer from positional bias and is included in order to examine the impact

of positional bias on the effectiveness of matrix GA data synthesizers.

Parallelised Crossover The design of parallelised crossover is based on a two-

point crossover method from linear GAs, which swaps the elements between two

randomly selected crossover points a and b between a pair of bitstrings. Since

5 Clearly this is not a complete set of possible objectives but these are probably

necessary to produce reasonable synthetic categorical data and provide sufficient

complexity for our crossover experiments
6 So on this scale 0 is the best fitness possible and 1 is the worst

6 Y. Chen et al.

solutions that GAs generate are operationally independent (in that a change in

one individual has no direct effect on another), crossover and mutation can be

parallelised [2]. Parallelised crossover occurs on a single variable and therefore

it is possible to have m sub-processors working separately on different variables

in the generator. The generator works by randomly choosing a sub-matrix from

within a single data column and swapping with the corresponding sub-matrix in

the paired candidate. Fig. 2 illustrates parallelised crossover between a pair of

candidates X1 and X2:

x1
11 x1

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x1
31 x1

32 ... x1
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm







x2
11 x2

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x2
31 x2

32 ... x2
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm







x1
11 x1

12 ... x1
1m

x2
21 x1

22 ... x1
2m

x1
31 x2

32 ... x2
3m

x1
41 x2

42 ... x2
4m

...
...

...
...

x1
n1 x1

n2 ... x2
nm







x2
11 x2

12 ... x2
1m

x1
21 x2

22 ... x2
2m

x2
31 x1

32 ... x1
3m

x2
41 x1

42 ... x1
4m

...
...

...
...

x2
n1 x2

n2 ... x1
nm







Fig. 2. X1 and X2 in parallelized crossover

GAs for Data Synthesis: A comparison of 3 Crossover Methods 7

x1
11 x1

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x1
31 x1

32 ... x1
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm







x2
11 x2

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x2
31 x2

32 ... x2
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm







x2
11 x2

12 ... x1
1m

x2
21 x2

22 ... x1
2m

x2
31 x2

32 ... x1
3m

x2
41 x2

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nk







x1
11 x1

12 ... x2
1m

x1
21 x1

22 ... x2
2m

x1
31 x1

32 ... x2
3m

x1
41 x1

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm







Fig. 3. X1 and X2 in Matrix crossover

Matrix Crossover Matrix crossover was first proposed by Wallet et al. [15].

Unlike parallelised crossover, matrix crossover generates crossover points for the

rows as well as columns. Thus it swaps elements from a randomly generated

sub-matrix (as opposed to the column vectors swapped in parallelised crossover).

Fig. 3 illustrates matrix crossover.

Parametric Uniform Crossover (PUC) In PUC, the probability of crossover

being applied to each element (1 × 1 sub-matrix) of the given candidate is de-

termined by a user-specified parameter P0. Fig. 4 illustrates PUC.

8 Y. Chen et al.

x1
11 x1

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x1
31 x1

32 ... x1
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm







x2
11 x2

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x2
31 x2

32 ... x2
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm







x2
11 x1

12 ... x1
1m

x1
21 x2

22 ... x2
2m

x2
31 x1

32 ... x1
3m

x1
41 x1

42 ... x2
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm







x1
11 x2

12 ... x2
1m

x2
21 x1

22 ... x1
2m

x1
31 x2

32 ... x2
3m

x2
41 x2

42 ... x1
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm







Fig. 4. X1 and X2 in PUC

2.1 Positional Bias

Both parallelised crossover and matrix crossover are based on the idea of two-

point crossover. In parallelised crossover, the element with row index i will be

swapped if, and only if, one of the selection points has index not greater than

i while the other has index greater than i. Thus the swap probability is the

hypergeometric probability:

P (min (a, b) ≤ i < max (a, b)) = i(n− i+ 1)

(
n+ 1

2

)−1
(8)

where a and b are the indices of a pair of (distinct) randomly chosen crossover

points.

It is trivial to show that this is a montone increasing function of i where

i < n
2 and a monotone decreasing function of i where i > n

2 .

For matrix crossover we also select a pair of crossover points for the columns

and the probability of an element with index (i, j) being swapped is a product of

hypergeometric probabilities. PUC, on the other hand contains no positional bias

and it is therefore useful to provide us with an implicit evaluation of the effect

of positional bias on the optimising ability of the matrix GA data synthesizer.

GAs for Data Synthesis: A comparison of 3 Crossover Methods 9

3 Empirical Study

3.1 Design

The three crossover methods were compared using three datasets that were each

sampled from a different social survey. All three datasets contain 10 variables

and 1000 cases. Dataset 1 was sampled from the Crime Survey for England and

Wales, 2015-2016 [10] and has 10 binary variables. Dataset 2 was sampled from

European Union Statistics on Income and Living Conditions, 2009 [11]. It has 6

binary variables, 1 three-category variable and 3 four-category variables. Dataset

3 was sampled from the Citizenship Survey, 2010-2011 [6]. It contains 1000 cases

and 10 variables including 4 binary variables, 2 four-category variables, 2 six-

category variables, 1 nine-category variable and 1 eleven-category variable.

For each dataset there was a fixed initial population of 100 candidates that

was generated by independently sampling (with replacement) from the univariate

distributions of the original data. Deterministic tournament selection7 was used

to select candidates with tournament size t = 2.

Synthetic data were generated using GAs with two distinct crossover rates.

Matrix crossover used rates of 1.0 and 0.7. The corresponding crossover rates for

parallelised crossover and PUC were chosen so that the probability of swapping

individual elements was similar.

The synthetic data generator used a low mutation rate (pm = 0.01) to reduce

the noise in the final results.8 Candidates chosen for mutation had a randomly

selected sub-matrix swapped with data independently sampled from the original

univariate distributions.

For each set of parameters we generated 10 synthetic populations. Each such

trial was run for 100 generations.

7 In generalised tournament selection, candidates are randomly selected into tourna-

ments of size t (with or without replacement). The probability that a candidate wins

the tournament and enters crossover is given by p(1 − p)r where p is a parameter

(such that 1/t < p ≤ 1) and r is the rank of the candidate’s fitness within the

tournament. In deterministic tournament selection p is set to 1.
8 Mutation is another important operator in GA that helps find more promising can-

didates from the solution space and reduces the risk of becoming caught in local

optima. However it can also reduce the fitness of a candidate. Here our focus is on

comparing crossover operators so we selected a low mutation rate to reduce the noise

in the final results. In future work will examine the relationship between the two

operators.

10 Y. Chen et al.

Table 1. Fitness values of the initial population of each of the three test dataset

Fitness of Fixed Population (size=100) for each Data

Best fitness Mean s.d.

Data 1 0.0734 0.0800 0.0034

Data 2 0.2176 0.2259 0.0031

Data 3 0.2544 0.2610 0.0027

3.2 Experimental Results

Table 2 shows the means and standard deviations of the fittest solutions in the

final (100th) populations. The rightmost column shows the fitness of the best

individual that was generated over the 10 trials.

The generator used the objective function in Equation 7. The number of

individual contingency tables compared depends on the number of variables and

would increase substantially if we extended the measure to, say, 5-dimensional

tables. Table 2 shows that the fitness of candidates for Dataset 1 is always closer

to the original data compared with the other two no matter which crossover

operator is used, followed by Dataset 2 and Dataset 3. This is monotonic with

the complexity of the data structures of the three datasets. This issue will need

further exploration to establish how the degree of complexity affects the viability

of GA generated synthesis.

The experimental results also indicate that positional bias does impact the

effectiveness of matrix GA generator. All the best means and individuals after

100 generations for the three datasets are generated by the synthesizer with the

PUC operator that has p0 = 0.3818. The second best mean and individuals are

generated by the same synthesizer with p0 = 0.1911.

Moreover, there was a significant improvement on the initial population no

matter which crossover method was used. The increase of fitness (decrease in

distance from the original data) indicates that matrix GA is efficient in generat-

ing synthetic data with real-coded data or even more complex data structures.

Table 3 shows the mean improvement of the fitness of the population from the

beginning to the 100th generation over all trials.

4 Conclusions

Our experimental results indicate that PUC performs better than matrix and

parallelised crossover in producing synthetic data for all three datasets. This

is likely to be due to the lack of positional bias. Results also indicate that the

GAs for Data Synthesis: A comparison of 3 Crossover Methods 11

Fig. 5. Box plots of final fitness values of the best individual for Dataset 1, 2 and 3 from

ten trials of matrix GA synthetic data generator using different crossover operators

12 Y. Chen et al.

Table 2. Summary statistics from ten trials of matrix GA data synthesizers equipped

with three different operators: matrix crossover (MGA), parallelized crossover (PGA)

and PUC.

Crossover Crossover Data Best Fitness Value Best

Type Rate Mean s.d. Individual

MGA 1 Data 1 0.0564 0.0026 0.0517

Data 2 0.1887 0.0030 0.1818

Data 3 0.2319 0.0020 0.2281

0.7 Data 1 0.0579 0.0022 0.0541

Data 2 0.1958 0.0034 0.1889

Data 3 0.2375 0.0032 0.2340

PGA 0.5455 Data 1 0.0497 0.0022 0.0472

Data 2 0.1936 0.0038 0.1885

Data 3 0.2259 0.0019 0.2213

0.273 Data 1 0.0561 0.0015 0.0533

Data 2 0.1929 0.0041 0.1867

Data 3 0.2363 0.0025 0.2315

PUC 0.3818 Data 1 0.0393 0.0021 0.0362

Data 2 0.1450 0.0025 0.1408

Data 3 0.2060 0.0009 0.2048

0.1911 Data 1 0.0429 0.0022 0.0397

Data 2 0.1576 0.0038 0.1521

Data 3 0.2112 0.0020 0.2092

performance of matrix GA on synthetic data generation strongly depends on

the structure of data and the number of cases. For example, the optimisation

of Dataset 1 is the most effective because it has the simplest data structure

(containing only binary variables) compared to Dataset 2 and Dataset 3.

Beyond the issue of positional bias, the overall performance for all three

crossover operators in producing synthetic data is reasonable. All approaches

significantly improved the fitness of the 100 candidates from the initial popula-

tion over 100 generations.

Our future research will focus on testing the effectiveness and practicality of

the matrix GA generator by introducing adaptive crossover rates, more objec-

tives and larger datasets. A key element missing from these initial experiments

has been the assessment of disclosure risk. As outlined in the introduction, this

was a rational approach to isolate the difficult problem of optinmising utility.

However, a full GA data synthesiser should incorporate risk. Therefore, in fu-

ture work we will bring measures of disclosure risk into the GA framework. In

GAs for Data Synthesis: A comparison of 3 Crossover Methods 13

Table 3. Mean fitness improvement over ten trials on the best fitness value of initial

population

On mean of the best fitness values over all trials

Data 1 0.0296

Data 2 0.0470

Data 3 0.0362

many ways this is when the GA approach will come into its own. The risk utility

trade-off is usually dealt with as a two step-process and optimisng both within

a single framework is likely to be more efficient.

Overall, these initial experiments using matrix GA generators to generate

synthetic data show that matrix GA is of interest for the problem of data syn-

thesis and for solving problems with higher-dimensional and complex structures

in general.

References

1. J. M. Abowd, and J. Lane, New approaches to confidentiality protection: Synthetic

da-ta, remote access and research data centers; In Privacy in statistical databases,

Springer Berlin Heidelberg, 282-289. (2004)

2. E. Cantu-Paz and D. Goldberg, Efficient Parallel Genetic Algorithms: Theory and

Prac-tice, Computer Methods in Applied Mechanics and Engineering, vol.186, 221-

238. (2000)

3. Y. Chen, M. Elliot and J. Sakshaug, A Genetic Algorithm Approach to Synthetic

Data Production, in Proceedings of the 1st International Workshop on AI for

Privacy and Se-curity. Article No. 13. (2016)

4. Y. Chen, M. Elliot and J. Sakshaug, 2017. Genetic Algorithms in Matrix

Representation and Its Application in Synthetic Data, UNECE Work Session

on Statistical Data Con-fidentiality. https://www.unece.org/fileadmin/DAM/

stats/documents/ece/ces/ge.46/2017/2_Genetic_algorithms.pdf. Last access

20/12/2017. (2017)

5. V. Ciriani, S. D. C. di Vimercati, S. Foresti and P. Samarati, Microdata protection,

in Se-cure Data Management in Decentralized Systems, T Yu, and S. Jajodia (edt.)

Springer, New York, 291321. (2007)

6. Department for Communities and Local Government, Ipsos MORI. Citizenship

Survey, 2010-2011. [data collection]. UK Data Service. SN: 7111, http://doi.org/

10.5255/UKDA-SN-7111-1, Last access: 20/12/2017. (2012)

7. J. Drechsler, Synthetic data, where do we come from? Where do we want to go?,

in Synthetic Data Workshop; Office of National. (2014)

14 Y. Chen et al.

8. O. Maimon and L. Rokach, Data Mining and Knowledge Discovery Handbook,

Springer Science and Business Media; p. 704. (2010)

9. G. Navarro-Arribas and V. Torra, Advanced Research on Data Privacy in the

ARES Pro-ject; Advanced Research in Data Privacy; Studies in Computational

Intelligence. Vol. 567. Springer Switzerland; 3-14. (2015)

10. Office for National Statistics. Crime Survey for England and Wales, 2015-

2016. [data collection]. UK Data Service. SN: 8140, http://doi.org/10.5255/

UKDA-SN-8140-1. Last access 11/01/2018. (2017)

11. Office for National Statistics. Social Survey Division, Northern Ireland Statistics

and Research Agency, Eurostat. (2011). European Union Statistics on Income and

Living Conditions, 2009. [data collection]. UK Data Service. SN: 6767, http://

doi.org/10.5255/UKDA-SN-6767-1. Last access 11/01/2018. (2009)

12. 3. P. Pongcharoen, A. Khadwilard, and A. Klakankhai, Multi-matrix Real-coded

Genetic Algorithm for Minimising Total Costs, in Logistics Chain Network, World

Academy of Science, Engineering and Technology International Journal of Eco-

nomics and Man-agement Engineering, Vol:1, No.11, 574-597. (2007)

13. M. Srinivas and L. M. Patnaik, Genetic algorithms: A Survey, Computer, vol. 27,

no. 6, 17-26. (1994)

14. L. Sun, Y. Zhang, and C. Jiang, A matrix real-coded genetic algorithm to the unit

commitment problem, in Electric Power Systems Research; 76; pp.716-728. (2006)

15. B. C. Wallet, D. J. Marchette and J. L. Solka, A matrix Representation for Ge-

netic Algorithms, in Proceedings of Automatic Object Recognition IV of SPIE

Aerosense, Na-val Surface Warfare Center Dahlgren; Virginia. (1996)

5.3 Matrix GA: building blocks in data synthesis

The efficiency of GA synthesisers was not satisfying using orthodox crossover methods
in The Application of Genetic Algorithms to Data Synthesis: A Comparison of Three
Crossover Methods. In order to find or design more suitable crossover methods, this
paper addresses a key question: how ‘blocks’ are building when GAs synthesise data.
Building blocks are a hypothesis within the GA field that asserts that optimum results are
from efficiently combining fit blocks of candidates and dismantling unfit ones. A new
crossover method and its two variants are introduced and compared in the paper, and the
one that is most suitable for data synthesis so far is identified.

108

Matrix GA: Building Blocks in Data Synthesis

YINGRUI CHEN∗ and MARK ELLIOT∗, Cathie Marsh Institute, University of Manchester

This paper discusses newly arisen issues of �nding appropriate crossover methods in genetic algorithm (GA)
data synthesisers. Synthetic data is a microdata protection technique. It aims to protect personal con�dential
information from record-level and prevent possible privacy leakage. The mechanism of synthetic data is to
produce new dataset with similar statistical properties but hides individual data subjects con�dential records.
The potential of using GA in data synthesis has been evaluated previously, but the e�ciency is currently
unsatisfactory using orthodox crossover parameters. In order to �nd or design more suitable crossover
parameters, this paper addresses a key question: what the building “blocks” of a good solution are when
synthesising data using GAs. Within the GA �eld the“Building blocks” hypothesis asserts that optimum results
are most e�ciently of combining and �t “blocks” of data and dismantling un�t ones. A new crossover method
and two variants are introduced and compared, and the one that is most suitable for data synthesis is identi�ed.
As a general conclusion, this example illustrates that the optimum size and shape for the elements (the smallest
units of crossover) may depend on the characteristics of the domain.

CCS Concepts: • Computing methodologies → Genetic algorithms; • Security and privacy → Data
anonymization and sanitization.

Additional Key Words and Phrases: data synthesis, data privacy, genetic algorithms, evolutionary computing

ACM Reference Format:
Yingrui Chen and Mark Elliot. 0. Matrix GA: Building Blocks in Data Synthesis. ACM Trans. Evol. Learn. 0, 0,
Article 0 (0), 14 pages. https://doi.org/0

1 INTRODUCTION
Microdata often underlies other data formats. It contains information that is collected straightfor-
ward from or assembled for individual population units [3]. The recent update of GDPR requires
data holders to apply appropriate technical processes on microdata before processing and publish-
ing it (in any format) to avoid individual’s con�dential information being revealed. The orthodox
technology for protecting privacy from microdata is called statistical disclosure control (SDC) and
data synthesis is one such approach. Instead of removing, aggregating, distorting or modifying
records from the original data, data synthesis produces a synthetic dataset that is designed to
preserve the statistical properties of the original data and provide su�cient variables to allow
proper multivariate analyses. Thus, the quality of synthetic data is strongly dependent on the
design of the synthetic data generator. Properties that are not explicitly included in the generator
will not be present in the synthetic dataset (unless they are structurally or statistically related to
properties that are, and therefore emerge from the synthesis process). Unforeseen analyses on fully
synthetic data may therefore lead to di�erent results from the same analysis on the original data.
∗Both authors contributed equally to this research.

Authors’ address: Yingrui Chen, yingrui.chen@postgrad.manchester.ac.uk; Mark Elliot, mark.elliot@manchester.ac.uk,
Cathie Marsh Institute, University of Manchester, Oxford Road, Manchester, M13 9PL.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 0 Association for Computing Machinery.
2688-3007/0/0-ART0 $15.00
https://doi.org/0

ACM Trans. Evol. Learn., Vol. 0, No. 0, Article 0. Publication date: 0.

0:2 Chen and Elliot

Presented mathematically, a microdata set for 𝑛 cases and𝑚 variables is usually represented
as an 𝑛 by𝑚 matrix indexed 𝑖∈{1, . . ., 𝑛} and 𝑗∈{1, . . .,𝑚}. Here we use 𝑌 to denote and original
dataset and its synthetic version is denoted as 𝑋 . 𝑋 shares the same structure as 𝑌 as illustrated in
Fig. 1.

𝑦11 𝑦12 ... 𝑦1𝑚
𝑦21 𝑦22 ... 𝑦2𝑚
𝑦31 𝑦32 ... 𝑦3𝑚
𝑦41 𝑦42 ... 𝑦4𝑚
...

...
...

...
𝑦𝑛1 𝑦𝑛2 ... 𝑦𝑛𝑚

©­­­­­­­«

ª®®®®®®®¬

𝑥11 𝑥12 ... 𝑥1𝑚
𝑥21 𝑥22 ... 𝑥2𝑚
𝑥31 𝑥32 ... 𝑥3𝑚
𝑥41 𝑥42 ... 𝑥4𝑚
...

...
...

...
𝑥𝑛1 𝑥𝑛2 ... 𝑥𝑛𝑚

©­­­­­­­«

ª®®®®®®®¬
Fig. 1. Microdata 𝑌 and its synthetic version 𝑋

The use of GAs to construct synthetic datasets has been examined in our previous work (see
for example [1] and [2]) and shows promise. Here we consider the optimum design of crossover
operators for a GA data synthesiser.

2 BACKGROUND
Investigating the potential of implementing a machine learning algorithm for data synthesis is
not completely new (see for example [14] and [5]) but these implement di�erent mechanism
to GAs. GAs are iterative optimising algorithms that simulate the process of natural evolution.
They comprise of three main operators: selection, crossover and mutation. A group of candidate
solutions are speci�ed (the initial population) while set up GAs. The �tness of these candidates
is then calculated and a selection operator selects a subset of the �tter candidates as “parents”.
In crossover, these parents are paired by a pre-determined method to produce new candidates.
Some of the new candidates are then subjected to mutation – random changes allows them to
carry di�erent information from their parents. After crossover and mutation we have the new
population / generation. The process is iterated until there is at least one candidate reaches the
desirable �tness level. Compared to existing machine learning methods in data synthesis, GAs
simulate more complicated aspects from real world problems through interaction between learning
agent and environments by given reward functions. Involving these features in data synthesis
can allow using both utility and risk objectives to determine whether individuals can survive and
reproduce. Moreover, it achieves dynamic monitoring on the trade-o� between utility and risks in
candidates during the whole process.

2.1 Matrix GAs
Although GAs were initially designed to operate on binary-coded strings, In this case I chose to used
matrix as the structure for candidates. Matrices can more appropriately display microdata and can
be well applied to multivariate control. It has greater exploration power than linear GAs in complex
problems like data synthesis. Matrix GAs were tested to be applicable on higher-dimensional,
real-coded problems like [17][15][13]. We demonstrated that Genetic Algorithms (GAs) can be
used for generating synthetic data in previous papers (for example [2]).

2.2 Crossover Operators in GAs
Operator design is a vital step for implementing GAs for a particular problem. Although it always
possible to use certain primitive schema for GA operators, their e�ciency may not be ideal for the

ACM Trans. Evol. Learn., Vol. 0, No. 0, Article 0. Publication date: 0.

Matrix GA: Building Blocks in Data Synthesis 0:3

any given problem and sometimes may prevent the whole process from optimising. Our previous
work [2] compared three primitive crossover methods for GA with matrix-format candidates: (i)
Matrix crossover, which is applied to a whole data matrix; (ii) Parallelised crossover, applied at the
level of individual variables within the data and (iii) Parametric uniform crossover (PUC), which
is applied to individual elements of the data. In the remainder of this paper we will refer to these
methods as the common crossover methods set. The �rst two on the set (Matrix crossover and
Parallelised crossover) were developed from two-point crossover, a traditional method in linear GA.
This is de�ned in de�nition 2.1.

De�nition 2.1 (Two-point Crossover). Suppose any two strings have length 𝑙 , an integer position
𝑘 along the string is chosen randomly between [1, 𝑙 − 1]. Then two new strings are created by
swapping all characters between 𝑘 + 1 and 𝑙 from the original strings [7].

A critical point for this domain is that two-point crossover carries positional bias, i.e. probabilities
of elements in a candidate to be swapped is biased and depends on its position in the candidate,
one that is closer to the centre has higher chance to be swapped with another individual. [2]
indicated that positional bias does a�ect the e�ciency of any GA synthesiser and concluded that
PUC performed the best of the three methods over three test datasets. However, this was not to
conclude that PUC is the best crossover operator for generating synthetic data as there are many
di�erent possible crossover methods that can used beyond those in the common crossover methods
set [16]. In order to �nd, or design the most suitable crossover operator for GA synthesiser, a
fundamental question must be answered: what should be the “building blocks” of a GA synthesiser?

2.3 Building Blocks
When Holland proposed the linear GAs, he described the work of GAs as discovering, emphasising
and recombining good “building blocks” of individuals in the GA population. "Blocks" are deter-
minants of the �tness of candidates that have changeable shapes during the crossover procedure
which was proposed have three stages in [6] . In stage 1, the algorithm searches for small blocks
that confer good �tness. In stage 2, these small blocks are combined to form larger blocks. These
larger blocks will eventually take over the population and lead to convergence at stage 3. The
initial framework of "building blocks" known as "Schema Theory" was only applicable to simple
GA, meaning, a GA with linear, binary and �xed-length candidates, using proportional selection,
single-point crossover and single-point mutation. In the linear GA context, a block, or schema, is a
template consisting of ones, zeros and asterisks, where asterisks represent wildcards. For example,
consider the schema 𝐻 = 1 ∗ ∗0∗: any binary string that has 1 and 0 at the �rst and fourth position
is called an instance of 𝐻 . The number of �xed bits is referred to as the schema’s order, 𝑜 (𝐻), and
the distance between the �rst and last �xed bits is referred to as the schema’s distance, 𝛿 (𝐻). In
this example, 𝑜 (𝐻) = 2 and 𝛿 (𝐻) = 4 − 1 = 3. With schema, the evaluation of �tness values of a
given generation in the GA process can be considered to implicitly be the evaluation of the average
�tness values of any instances of a schema. In Schema Theory, Holland con�rmed that the number
of instances from schemas with low order and short length but whose average �tness is greater
than the mean �tness value increases exponentially over the run time of the GA [9].

Schema Theory represents an advance in thinking about GAs but is limited in usage; in addition
to it only being valid in certain types of GAs, some (for example [7]) also questioned the practicality
of the formula as its application was based on an in�nite population thus it might not always work
on �nite populations due to sampling error.
Inspired from Schema Theory, Holland developed another hypothesis that GA works well

when instances of low-order, short schema with high �tness would be recombined to instances
of high-order, long schema that confer even higher �tness, which is the so called "Building Block

ACM Trans. Evol. Learn., Vol. 0, No. 0, Article 0. Publication date: 0.

0:4 Chen and Elliot

Hypothesis" [8]. “Building blocks” were observed frequently in linear and traditional GAs (see [6]
and [8]) but whether the same process happens in the matrix GA (and more speci�cally within a
GA data synthesiser) is unknown.
The reason for considering new crossover methods is that since [2] concluded that parametric

uniform crossover (PUC) - where the crossover is applied to a single element (1 × 1 matrix) in the
dataset - outperforms the other two crossover methods, subsequent experiments have shown that
when the population is well-evolved, PUCwill actually start to reduce the �tness. Fig 2 demonstrates
this showing the impact of PUC over 200 generations on the minimum divergence from original
data (which for current purposes we equate to the �tness of the best possible candidate) of a starting
population of �t candidates and for a population with less �t candidates.

Fig. 2. The impact of PUC on a population of inferior candidates and a population of fit candidates.

The reason for this is that PUC, which can a�ect every single element in the candidate, is
more likely to break up good data structures (compared to the other crossover methods). In the
terminology of schema theory, PUC is good at stage 1 where it is selecting small blocks but does not
perform well at stage 2 as it continues to select small blocks and breaks up large ones. Therefore,
for using GAs for data synthesis it is necessary to �nd a new crossover method that is capable to
do both jobs (and also is free from positional bias).
The goal of designing these was to increase the likelihood of building good blocks. Given that

data structures in microdata are based on the relationships within cases it is reasonable to assume it
is the relationships between variables (or �elds) within cases (or records) that we wish to optimise.
Therefore, a good crossover operator will respect within case structure and this, in turn, implies
that case orientated crossover methods are worth considering. There are three possibilities.

• Case-Oriented Parallelised Crossover (CPC): This is similar to the variable based parallelised
crossover but all exchanged units will be contained within a single case.

• Whole-CPC: in this method whole cases only would be swapped.
• Round-CPC: This variant allows selected units to wrap around the ends of the case.

In this paper, we report on experiments using each of these three methods.

3 EXPERIMENTS
We report on two experiments in this paper. First, we compared CPC with the common crossover
methods set. The experiment tries to address if using case as entity in crossover has better impact to

ACM Trans. Evol. Learn., Vol. 0, No. 0, Article 0. Publication date: 0.

Matrix GA: Building Blocks in Data Synthesis 0:5

the e�ciency of GA synthesiser than others. Once it was con�rmed, we run the second experiments
by comparing Whole-CPC, Round-CPC and PUC to assess if any of these method outperform PUC.

All crossover methods were compared using the same three datasets used in [2]. Each sampled
from a di�erent social surveys. The three datasets contain ten variables and a thousand cases.
Dataset1 was sampled from the [12] and has ten binary variables. Dataset2 was sampled from
[11]. It has six binary variables, one three-category variable and three four-category variables.
Dataset3 was sampled from [4]. It contains four binary variables, two four-category variables, two
six- category variables, one nine-category variable and one eleven-category variable.

3.1 Positional Bias and Crossover Rates
The parameters in the GA generator have the same design as those used in the experiments in [2].
We note that any crossover method that developed from two-point crossover carries positional
bias naturally so the probability of a single element to be swapped depends on its position in the
candidate and follows hypergeometric distribution:

𝑃 (𝑎 ≤ 𝑗 < 𝑏) = 𝑗 (𝑚 − 𝑗 + 1)
(
𝑚 + 1
2

)−1

, where 𝑎, 𝑏, 𝑗,𝑚 |𝑎 ≤ 𝑏, 𝑗 = 1, ...,𝑚 are two random crossover points, index of position and the total
number of elements in each case. As in the previous paper, two crossover rates were used for
each crossover operator. crossover rate of matrix crossover was set as standard rates of 1.0 and 0.7
(where 1.0 means that every candidate will be selected for crossover, since matrix crossover works
on the whole dataset, it is reasonable to put every candidate into competition at the beginning.) For
the other operators crossover rates were set at a level which means that the same expected number
of elements will be swapped. Therefore, the two crossover rates for CPC and its two variants was
0.5005 and 0.3505.

3.2 Objectives
The synthesiser used the same objectives as in [2]. The between-variates structure in a categorical
data can be captured in contingency tables. Assume 𝐼 = ×𝑗 ∈[1..𝑚]𝐼 𝑗 denotes the possible con�gura-
tions of the variables that take values from �nite sets, a full contingency table is an𝑚-dimensional
table containing a marginal for each member of 𝐼 . Jensen-Shannon distance 𝐷 𝐽 𝑆 is a method to give
the level of divergence between two multi-dimensional probability distributions, which in e�ect
measures the divergence between a pair of contingency tables. Suppose 𝑃 and 𝑄 are two discrete
probability distribution, 𝐷 𝐽 𝑆 (𝑃 ‖ 𝑄) is de�ned by:

𝐷 𝐽 𝑆 (𝑃 ‖ 𝑄) = (12𝐷𝐾𝐿 (𝑃 ‖ 𝑀) + 1
2𝐷𝐾𝐿 (𝑄 ‖ 𝑀)) 1

2 (1)

, where𝑀 = 1
2 (𝑃 +𝑄) and 𝐷𝐾𝐿 is Kullback-Leibler divergence.

ACM Trans. Evol. Learn., Vol. 0, No. 0, Article 0. Publication date: 0.

0:6 Chen and Elliot

In this paper, the set of objectives of GA is to minimise mean of 𝐷 𝐽 𝑆 between every equivalent
pair of 2, 3 and 4-dimensional contingency tables drawn from the synthetic and original data.

𝐹1 (𝑋,𝑌) =
(
𝑚

2

)−1𝑚−1∑
𝑗=1

𝑚∑
𝑘=𝑗+1

Δ(𝑋,𝑌, { 𝑗, 𝑘}) (2)

𝐹2 (𝑋,𝑌) =
(
𝑚

3

)−1 ∑
𝑆 ∈𝑃3 ([1..𝑚])

Δ(𝑋,𝑌, 𝑆) (3)

𝐹3 (𝑋,𝑌) =
(
𝑚

4

)−1 ∑
𝑆 ∈𝑃4 ([1..𝑚])

Δ(𝑋,𝑌, 𝑆) (4)

, where 𝑃𝑘 (𝑍) denotes the members of powerset of 𝑍 of size 𝐾 .

3.3 Experiment 1
In this experiment case-oriented parallelised crossover (CPC) is introduced and compared with the
common crossover method set, especially with the variable-oriented parallelised crossover that
was introduced in the previous paper (Chen et al, 2018). CPC has parallel operation on every case
in the dataset as illustrated in Fig 3.

𝑥111 𝑥
1
12 ... 𝑥

1
1𝑚

𝑥121 𝑥
1
22 ... 𝑥

1
2𝑚

𝑥131 𝑥
1
32 ... 𝑥

1
3𝑚

𝑥141 𝑥
1
42 ... 𝑥

1
4𝑚

...
...

...
...

𝑥1𝑛1 𝑥
1
𝑛2 ... 𝑥

1
𝑛𝑚

©­­­­­­­­­­­«

ª®®®®®®®®®®®¬

𝑥211 𝑥
2
12 ... 𝑥

2
1𝑚

𝑥221 𝑥
2
22 ... 𝑥

2
2𝑚

𝑥231 𝑥
2
32 ... 𝑥

2
3𝑚

𝑥241 𝑥
2
42 ... 𝑥

2
4𝑚

...
...

...
...

𝑥2𝑛1 𝑥
2
𝑛2 ... 𝑥

2
𝑛𝑚

©­­­­­­­­­­­«

ª®®®®®®®®®®®¬
𝑥211 𝑥

2
12 ... 𝑥

1
1𝑚

𝑥121 𝑥
1
22 ... 𝑥

1
2𝑚

𝑥131 𝑥
2
32 ... 𝑥

2
3𝑚

𝑥141 𝑥
1
42 ... 𝑥

1
4𝑚

...
...

...
...

𝑥1𝑛1 𝑥
1
𝑛2 ... 𝑥

1
𝑛𝑚

©­­­­­­­­­­­«

ª®®®®®®®®®®®¬

𝑥111 𝑥
1
12 ... 𝑥

2
1𝑚

𝑥221 𝑥
2
22 ... 𝑥

2
2𝑚

𝑥231 𝑥
1
32 ... 𝑥

1
3𝑚

𝑥241 𝑥
2
42 ... 𝑥

2
4𝑚

...
...

...
...

𝑥2𝑛1 𝑥
2
𝑛2 ... 𝑥

2
𝑛𝑚

©­­­­­­­­­­­«

ª®®®®®®®®®®®¬
Fig. 3. Two datasets before and a�er CPC

Fig 4, 5, 6 show box-plots capturing the mean (over ten trials) of the best individuals after 100
generations. MGA, PGA, PUC and CP represent Matrix crossover, Parallelised crossover, Parametric
uniform crossover and CPC respectively. They indicate that CPC, was outperformed by PUC. On
the basis of previous work this is likely to be due to its positional bias. However, CPC outperformed
the other two crossover methods. This demonstrates that positional bias may not be the only factor
that in�uences the e�ciency of GA synthesiser. It is reasonable to say that an unknown factor also
plays critical role, we might hypothesise that this is related to how the operator is a�ecting good
quality "blocks".

ACM Trans. Evol. Learn., Vol. 0, No. 0, Article 0. Publication date: 0.

Matrix GA: Building Blocks in Data Synthesis 0:7

Fig. 4. Box plots of the average final fitness values of the best individual for Dataset1 from ten trials of
matrix GA synthetic data generator using di�erent crossover operators. NB (Fitness scales are measures of
divergence so 0 is optimum)

Fig. 5. Box plots of the average final fitness values of the best individual for Dataset2 from ten trials of
matrix GA synthetic data generator using di�erent crossover operators. NB (Fitness scales are measures of
divergence so 0 is optimum)

ACM Trans. Evol. Learn., Vol. 0, No. 0, Article 0. Publication date: 0.

0:8 Chen and Elliot

Fig. 6. Box plots of the average final fitness values of the best individual for Dataset3 from ten trials of
matrix GA synthetic data generator using di�erent crossover operators. NB (Fitness scales are measures of
divergence so 0 is optimum)

3.4 Experiment 2
We designed two new crossover methods based on CPC. They involve the same mechanism as CPC
but are free from positional bias. Round-CPC (Fig 7) uses the same method as CPC to select the
two endpoints from a case �rstly. Then it decides to swap the elements between or out of the two
endpoints with equal probability; this gives an equal chance of selection to all elements in a row
(case) regardless of position.

𝑥111 𝑥
1
12 ... 𝑥

1
1𝑚

𝑥121 𝑥
1
22 ... 𝑥

1
2𝑚

𝑥131 𝑥
1
32 ... 𝑥

1
3𝑚

𝑥141 𝑥
1
42 ... 𝑥

1
4𝑚

...
...

...
...

𝑥1𝑛1 𝑥
1
𝑛2 ... 𝑥

1
𝑛𝑚

©­­­­­­­­­­­«

ª®®®®®®®®®®®¬

𝑥211 𝑥
2
12 ... 𝑥

2
1𝑚

𝑥221 𝑥
2
22 ... 𝑥

2
2𝑚

𝑥231 𝑥
2
32 ... 𝑥

2
3𝑚

𝑥241 𝑥
2
42 ... 𝑥

2
4𝑚

...
...

...
...

𝑥2𝑛1 𝑥
2
𝑛2 ... 𝑥

2
𝑛𝑚

©­­­­­­­­­­­«

ª®®®®®®®®®®®¬
𝑥211 𝑥

2
12 ... 𝑥

1
1𝑚

𝑥121 𝑥
1
22 ... 𝑥

1
2𝑚

𝑥231 𝑥
2
32 ... 𝑥

2
3𝑚

𝑥141 𝑥
1
42 ... 𝑥

1
4𝑚

...
...

...
...

𝑥1𝑛1 𝑥
1
𝑛2 ... 𝑥

1
𝑛𝑚

©­­­­­­­­­­­«

ª®®®®®®®®®®®¬

𝑥111 𝑥
1
12 ... 𝑥

2
1𝑚

𝑥221 𝑥
2
22 ... 𝑥

2
2𝑚

𝑥131 𝑥
1
32 ... 𝑥

1
3𝑚

𝑥241 𝑥
2
42 ... 𝑥

2
4𝑚

...
...

...
...

𝑥2𝑛1 𝑥
2
𝑛2 ... 𝑥

2
𝑛𝑚

©­­­­­­­­­­­«

ª®®®®®®®®®®®¬
Fig. 7. Two datasets before and a�er round-CPC

ACM Trans. Evol. Learn., Vol. 0, No. 0, Article 0. Publication date: 0.

Matrix GA: Building Blocks in Data Synthesis 0:9

Instead of swapping elements between or out of two random end points, whole-CPC (Fig 8)
exchanges the entire case based on pre-determined probability. Since each case in the dataset is
selected independently, this crossover method also has no positional bias.

𝑥111 𝑥
1
12 ... 𝑥

1
1𝑚

𝑥121 𝑥
1
22 ... 𝑥

1
2𝑚

𝑥131 𝑥
1
32 ... 𝑥

1
3𝑚

𝑥141 𝑥
1
42 ... 𝑥

1
4𝑚

...
...

...
...

𝑥1𝑛1 𝑥
1
𝑛2 ... 𝑥

1
𝑛𝑚

©­­­­­­­­­­­«

ª®®®®®®®®®®®¬

𝑥211 𝑥
2
12 ... 𝑥

2
1𝑚

𝑥221 𝑥
2
22 ... 𝑥

2
2𝑚

𝑥231 𝑥
2
32 ... 𝑥

2
3𝑚

𝑥241 𝑥
2
42 ... 𝑥

2
4𝑚

...
...

...
...

𝑥2𝑛1 𝑥
2
𝑛2 ... 𝑥

2
𝑛𝑚

©­­­­­­­­­­­«

ª®®®®®®®®®®®¬
𝑥211 𝑥

2
12 ... 𝑥

2
1𝑚

𝑥121 𝑥
1
22 ... 𝑥

1
2𝑚

𝑥231 𝑥
2
32 ... 𝑥

2
3𝑚

𝑥141 𝑥
1
42 ... 𝑥

1
4𝑚

...
...

...
...

𝑥1𝑛1 𝑥
1
𝑛2 ... 𝑥

1
𝑛𝑚

©­­­­­­­­­­­«

ª®®®®®®®®®®®¬

𝑥111 𝑥
1
12 ... 𝑥

1
1𝑚

𝑥221 𝑥
2
22 ... 𝑥

2
2𝑚

𝑥131 𝑥
1
32 ... 𝑥

1
3𝑚

𝑥241 𝑥
2
42 ... 𝑥

2
4𝑚

...
...

...
...

𝑥2𝑛1 𝑥
2
𝑛2 ... 𝑥

2
𝑛𝑚

©­­­­­­­­­­­«

ª®®®®®®®®®®®¬
Fig. 8. Two datasets before and a�er whole-CPC

In this experiment, we compared the two new case-based crossover methods with PUC and
CPC. Both Round-CPC and whole-CPC outperform CPC over all the three datasets, their impact
on the e�ciency of the GA generator is similar to PUC, (which still produces the best results
among all crossover operators in Dataset2). We have found that, compared with matrix-based and
variable-based crossover methods, case-based crossover show greater e�ciency in optimising the
population. One conjecture is that the �tness functions assess the divergence from original data by
the number of cases in multi-dimensional contingency table, where cases have more straightforward
in�uence than variables.

ACM Trans. Evol. Learn., Vol. 0, No. 0, Article 0. Publication date: 0.

0:10 Chen and Elliot

Fig. 9. Box plots with di�erent scales of final fitness values of the best individual for Dataset1 from ten trials
of matrix GA synthetic data generator using di�erent crossover operators. NB (Fitness scales are measures of
divergence so 0 is optimum)

Fig. 10. Box plots with di�erent scales of final fitness values of the best individual for Dataset2 from ten trials
of matrix GA synthetic data generator using di�erent crossover operators. NB (Fitness scales are measures of
divergence so 0 is optimum)

ACM Trans. Evol. Learn., Vol. 0, No. 0, Article 0. Publication date: 0.

Matrix GA: Building Blocks in Data Synthesis 0:11

Fig. 11. Box plots with di�erent scales of final fitness values of the best individual for Dataset3 from ten trials
of matrix GA synthetic data generator using di�erent crossover operators. NB (Fitness scales are measures of
divergence so 0 is optimum)

Since we used the same setting as the experiment carried out by [2], we can only conclude that
there is no signi�cant improvement of the e�ciency in the GA generator when using round-CPC or
whole-CPC compared to PUC. One conjecture is that the experiment was terminated after the 100th
generation, when the population was not well developed. In other words, the generator was in the
stage of searching for good "blocks" that had not yet joined into a larger one that confer higher
�tness. In order to deal with this issue we carried out a third experiment on a mature population.

3.5 Additional experiment: Comparison of Sustainability
A further experiment is carried out to test whether the impact of the three crossover methods is
sustainable when the population is closer to optimal. This ensures that the advantage of a certain
crossover method persistent. We used the same three datasets in this section, but changed the
initial population of each dataset compared to experiment 2. Each initial population now consists
of candidates generated using a CART synthesiser[10]. These candidates are closer to the original
data and are therefore believed to carry large blocks that confer good �tness. We compared the
performance of all three crossover methods optimising these populations in the 100th generation
(See Figs 12, 13 and 14).

ACM Trans. Evol. Learn., Vol. 0, No. 0, Article 0. Publication date: 0.

0:12 Chen and Elliot

(a) PUC (b) Round-CPC (c) Whole-CPC

Fig. 12. Performance of PUC, Round-CPC and Whole-CPC on a su�iciently optimal population for Dataset1.
NB (Fitness scales are measures of divergence so 0 is optimum)

(a) PUC (b) Round-CPC (c) Whole-CPC

Fig. 13. Performance of PUC, Round-CPC and Whole-CPC on a su�iciently optimal population for Dataset2.
NB (Fitness scales are measures of divergence so 0 is optimum)

(a) PUC (b) Round-CPC (c) Whole-CPC

Fig. 14. Performance of PUC, Round-CPC and Whole-CPC on a su�iciently optimal population for Dataset3.
NB (Fitness scales are measures of divergence so 0 is optimum)

The results indicate that, except for whole-CPC that continues to reduce the divergence fo the
�tter population from the original dataset, the other two present undesirable trends of reducing
the best �tness in the population for the �rst 10-20 generations. It seems as if, although the three

ACM Trans. Evol. Learn., Vol. 0, No. 0, Article 0. Publication date: 0.

Matrix GA: Building Blocks in Data Synthesis 0:13

crossover methods have similar impact to the e�ciency of GA generator in the �rst 100 generations,
not all of them can sustain it when the population is well developed. In these experiments, PUC and
round-CPC show less capacity to retain good structures from candidates, which causes them to be
less likely to reach the optima than whole-CPC. the most likely explanation for this is that, in a �tter
population, candidates are formed by large “blocks” and a crossover operator that swaps blocks of
any size smaller than those large blocks will break up the good data structure and diminish the
candidate’s �tness.

3.6 Illustration of Building Block Process in GA synthesiser
Combined with the experimental results from [2], it is reasonable to conjecture that building blocks
in GA synthesiser are produced in one of two stages.

• In the �rst stage, the process of building blocks happens with each element (1 × 1 matrix)
simultaneously at �rst and here the process is similar to linear GA as summarised by [6]. This
explains why PUC has the best performance among all crossover operators in the �rst 100
generations (given an initial population where the multivariate relationships in the original
data are not respected). Blocks that confer higher �tness are combined with others and
gradually at the later stage they merge to larger blocks that may become the whole row (a
case) or even have higher dimensions (two dimensions in our case), and at this point the
e�ect from PUC becomes negative.

• The second way to simply set the minimum shape of blocks as a row (a case) and reduces the
dimension in candidates to one in order to follow the process in linear GA. This also explains
why the whole-CPC also appears to work well in the �rst 100 generations without mutation
(Fig 15).

(a) Dataset1 (b) Dataset2 (c) Dataset3

Fig. 15. Performance of Whole-CPC on a non-optimal population for Dataset1, 2 and 3 without mutation
operator.

4 CONCLUSION
In this paper, we reran the experiments from [2] using three new, case-level, crossover operators
and illustrated the process of building blocks in GA synthesiser in microdata. We concluded that,
case-level crossover methods are suitable in building good blocks and their performances are similar
to PUC and better than matrix crossover or variable-oriented parallelised crossover. The �tness
levels from PUC, CPC and round-CPC are not sustainable. They are therefore unsuitable for use on
developed populations. However, whole case crossover continues to produce increased performance
with mature populations.

ACM Trans. Evol. Learn., Vol. 0, No. 0, Article 0. Publication date: 0.

0:14 Chen and Elliot

Combining the experimental results from our previous and this paper, we gave two hypothesises
about how “building blocks” happen in GA synthesiser and concluded that whole-CPC is the most
appropriate method for this problem.

REFERENCES
[1] Yingrui Chen, Mark Elliot, and Joseph Sakshaug. 2017. Genetic Algorithms in Matrix Representation and Its Application

in Synthetic Data. Retrieved February 28, 2018 from https://www.unece.org/�leadmin/DAM/stats/documents/ece/ces/
ge.46/2017/2_Genetic_algorithms.pdf.Lastaccess20/12/2017

[2] Yingrui Chen, Mark Elliot, and Duncan Smith. 2018. The Application of Genetic Algorithms to Data Synthesis: A
Comparison of Three Crossover Methods. In Proceedings of Privacy in Statistical Database 2018. Springer.

[3] Valentina Ciriani, S. Vimercati, S. Foresti, and P. Samarati. 2007. Microdata Protection. Vol. 33. 291–321. https:
//doi.org/10.1007/978-0-387-27696-0_9

[4] Communities and Local Government. 2012. Citizenship Survey. Retrieved December 12, 2017 from http://doi.org/10.
5255/UKDA-SN-7111-1

[5] Jörg Drechsler. 2010. Using Support Vector Machines for Generating Synthetic Datasets. In Proceedings of the 2010
International Conference on Privacy in Statistical Databases (PSD’10). Springer-Verlag, Berlin, Heidelberg, 148–161.
http://dl.acm.org/citation.cfm?id=1888848.1888865

[6] Stephanie Forrest and Melanie Mitchell. 1993. Relative Building-Block Fitness and the Building-Block Hypothesis. In
Foundations of Genetic Algorithms, L. DARRELL WHITLEY (Ed.). Foundations of Genetic Algorithms, Vol. 2. Elsevier,
109 – 126. https://doi.org/10.1016/B978-0-08-094832-4.50013-1

[7] David E. Goldberg and Jon Richardson. 1987. Genetic Algorithms with Sharing for Multimodal Function Optimization.
In Proceedings of the Second International Conference on Genetic Algorithms on Genetic Algorithms and Their Application.
L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 41–49. http://dl.acm.org/citation.cfm?id=42512.42519

[8] John H. Holland. 1992. Adaptation in Natural and Arti�cial Systems: An Introductory Analysis with Applications to
Biology, Control and Arti�cial Intelligence. MIT Press, Cambridge, MA, USA.

[9] Melanie Mitchell. 1998. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, USA. 124–131 pages.
[10] Beata Nowok, Gillian Raab, and Chris Dibben. 2016. synthpop: Bespoke Creation of Synthetic Data in R. Journal of

Statistical Software, Articles 74, 11 (2016), 1–26. https://doi.org/10.18637/jss.v074.i11
[11] ONS. 2009. European Union Statistics on Income and Living Conditions. Retrieved November 11, 2018 from

http://doi.org/10.5255/UKDA-SN-6767-1
[12] ONS. 2017. Crime Survey for England and Wales. Retrieved November 11, 2018 from http://doi.org/10.5255/UKDA-

SN-8140-1
[13] Pupong Pongcharoen, Aphirak Khadwilard, and Anothai Klakankhai. 2007. Multi-matrix Real-coded Genetic Algorithm

for Minimising Total Costs in Logistics Chain Network. International Journal of Economics and Management Engineering
1, 11 (2007). https://publications.waset.org/15279/pdf

[14] Jerome P. Reiter. 2005. Using CART to Generate Partially Synthetic, Public Use Microdata. Journal of O�cial Statistics
21 (01 2005).

[15] Liyong Sun, Yan Zhang, and Chuanwen Jiang. 2006. A matrix real-coded genetic algorithm to the unit commitment
problem. Electric Power Systems Research 76, 9 (2006), 716 – 728. https://doi.org/10.1016/j.epsr.2005.10.005

[16] Anantkumar Umbarkar and Pranali Sheth. 2015. CROSSOVER OPERATORS IN GENETIC ALGORITHMS: A REVIEW.
ICTACT Journal on Soft Computing (Volume: 6 , Issue: 1) 6 (10 2015). https://doi.org/10.21917/ijsc.2015.0150

[17] Bradley C. Wallet, David J. Marchette, and Je�ery L. Solka. 1996. Matrix representation for genetic algorithms. In
Automatic Object Recognition VI, F. A. Sadjadi (Ed.), Vol. 2756. 206–214. https://doi.org/10.1117/12.241153

ACM Trans. Evol. Learn., Vol. 0, No. 0, Article 0. Publication date: 0.

5.4 Impact of Full Contingency Table in Data Synthesis

This paper discusses the potential of using only full contingency table as the utility ob-
jective in GA synthesisers to optimising data utility. The final output is compared with
synthetic data generated by CART. The finding shows that GA-synthetic data has bet-
ter utility than CART synthetic-data with taking full contingency table as the only utility
objective. Moreover, since this property measures divergence between two datasets, the
potential of use it as risk measure is also discussed in the last section.

123

 1

The Impact of using the Full Contingency Table as an Objective for

Data Synthesis
Yingrui Chen

Mark Elliot

University of Manchester

Abstract: Data synthesis allows the publication of an artificial copy of a dataset that maitains the statistical

properties to the original but contains no sensitive records. It has been understood that synthetic data only

carries statistical properties specified by the generating model or properties derived from ones that accounted in

that generating model. This issue creates challenges in designing synthesisers (Criani et al, 2007). This paper

discusses the potential of using only the full contingency table as the unique objective of a data synthesiser in

order to optimise data utility. Our final output is compared with synthetic data generated by CART synthesiser

in the R package synthpop (Nowok et al, 2006). The finding shows that GA-synthetic data has better utility than

CART synthetic-data with taking full contingency table as the only utility objective. Moreover, since this

property measures divergence between two datasets, the potential of use it as risk measure will be discussed in

the last section.

1 Introduction
Data synthesis provides significant protection against reidentification attacks and therefore is

a potentially valuable tool in data protection. An effective data synthesiser requires retention

of as many key statistical properties of (and respecting the multiple utilities of) the original

data as possible. Orthodox methods of data synthesis require the building a model of the

original data and then draw from that model to build the synthetic data. This implies that only

structure that is specified by the generation model is captured in the synthetic data.

Genetic algorithms (GAs) are a branch of natural computing that simulate evolutionary

processes therefore they deploy three operators: selection, crossover and mutation. Starting

with group of candidate solutions (the initial population). The fitness of these candidates is

firstly evaluated. Fitter candidates are randomly paired using a crossover operator to generate

new candidate solutions. These candidates are then passed to mutation operator and given a

probability to mutate. The offspring form the new population and the process is repeated until

a desired optimality achieved. The standard process of GAs is illustrated in Figure 1.1.

The general efficiency in generating synthetic data has been evaluated in previous works

(Chen et al, 2017, 2019). Objective design is a vital part of building GAs and this is

particularly true in the application to data synthesis because it specifies the extent to which

the final output is similar to the original dataset. In any data synthesis process, statistical

properties that are not explicitly included in the synthesising model will not be present in the

synthetic dataset, unless they are structurally or statistically related to properties that are and

therefore emerge from the synthesis process (see Drechsler, 2014, Chen et al, 2018).

 2

Fig 1.1 The flowchart of GA process

The contingency table is a table of counts (or proportions) of categories in a set of categorical

variables, which is an essential measure of the utility of the synthetic data (Barak et al, 2007).

In this paper, we aims to use a full contingency table contingency table to capture the

variation of all variables in a categorical dataset and compare its divergence between original

and synthetic data . We will also examine if full contingency table might be used as the only

objective to measure the utility of synthetic data in GA synthesisers as we assume that if two

datasets have similar full contingency tables then they also have similar statistical properties.

The utility of synthetic datasets will then be evaluated by several tests, and be compared with

CART-generated synthetic data. CART is a strong, non-parametric prediction tool generally

used to synthesise data (Reiter, 2005) and it is capable to produce high-utility synthetic data.

2 Utility Objective and Evaluation Test

2.1 Utility Objective

The between-variates structure in a categorical data can be captured by a contingency table.

Assume I = ×
j∈[1..m]

Ij denotes the possible configurations of the variables that take values from

finite sets, a full contingency table is an 𝑚-dimensional table containing a marginal for each

member of I. Jensen-Shannon distance DJS is a method to give the level of divergence

between two multi-dimensional probability distribution, which is capable measure the

divergence between a pair of contingency tables. Suppose 𝑃 and 𝑄 are two discrete

probability distribution, DJS(𝑃||𝑄) is defined by:

DJS(𝑃||𝑄) = (
1

2
𝐷𝐾𝐿(𝑃||𝑀) +

1

2
𝐷𝐾𝐿(𝑄||𝑀))

1
2

, where 𝑀 =
1

2
(𝑃 + 𝑄) and 𝐷𝐾𝐿 is Kullback-Leibler divergence.

In this paper, the single objective of GA is to minimise DJS between full contingency tables

𝐶𝑇𝐹𝑈𝐿𝐿 from the synthetic and original data.

𝐹(𝑋, 𝑌) = 𝐷𝐽𝑆 (
𝐶𝑇𝐹𝑈𝐿𝐿(𝑋)

𝑁
| |

𝐶𝑇𝐹𝑈𝐿𝐿(𝑌)

𝑁
)

2.2 Evaluation Test

Visualisation comparison to original data is commonly used in evaluating synthetic data. In

order to demonstrate our hypothesis that full contingency table can be used as the single

utility objective in data synthesis modelling, utility of synthetic data will also be evaluated by

 3

several statistical properties that are not explicitly related to full contingency table (there is

no theoretical proof). Logistic regression is a form of regression modelling that has a

categorical variable as the response. The simplest form of logistic regression model is the

binary logistic regression model, which has a two-category output variable. Logistic

regression models predict the log-odds of the probability of the categories from output

variable. Suppose 𝑌𝑏𝑖𝑛𝑎𝑟𝑦 is a binary variable in original dataset 𝒀 that interests analysts. A

logistic regression model that has some of the other variables in 𝒀 as the explanatory

variables of 𝑌𝑏𝑖𝑛𝑎𝑟𝑦 can be expressed as:

ln (
𝑝(𝑌𝑏𝑖𝑛𝑎𝑟𝑦 = 1)

1 − 𝑝(𝑌𝑏𝑖𝑛𝑎𝑟𝑦 = 1)
) = 𝛽0 + 𝛽1 𝑌1 + ⋯ + 𝛽𝑤𝑌𝑤 , 1 ≤ 𝑤 ≤ 𝑚

Suppose 𝑿 is the synthetic version of 𝒀 and 𝑋𝑏𝑖𝑛𝑎𝑟𝑦 is the synthetic version of 𝑌𝑏𝑖𝑛𝑎𝑟𝑦, the

corresponding logistic regression model in 𝑿 is:

ln (
𝑝(𝑋𝑏𝑖𝑛𝑎𝑟𝑦 = 1)

1 − 𝑝(𝑋𝑏𝑖𝑛𝑎𝑟𝑦 = 1)
) = 𝛽0′ + 𝑋1 + 𝛽2′𝑋2 + ⋯ + 𝛽𝑤′𝑋𝑤 , 1 ≤ 𝑤 ≤ 𝑚

the logistic regression models can be compared by the correlation 𝑈1 between predicted logit

probability from the same training dataset. In this case, the training dataset can be simply set

as the all cases from explanatory variables in the original dataset. The closer 𝑈1 to 1, the

similar the predictions from two logistic regression model are.

𝑈1 = 𝐶𝑜𝑟𝑟 ((𝛽0 + 𝛽1 𝑌1 + ⋯ + 𝛽𝑤𝑌𝑤 ,), (𝛽0

′
+ 𝛽1

′
𝑌1 + ⋯ + 𝛽𝑤

′
𝑌𝑤)) , 1 ≤ 𝑤 ≤ 𝑚

Multiple correspondence analysis (MCA) is another post hoc test which carries out a pattern

analysis on categorical variables. It explores underlying structures of a set of nominal

variables. By applying correspondence analysis (CA) on the data matrix X that has only

nominal variables, MCA will give two sets of factor scores on variables and cases. These

factor scores scaled their variance to equal to their eigenvalues. Since MCA can also work on

dimension reduction, it is a convention to set the number of factors in MCA small. This paper

will compare factor scores from two factors of original data and its synthetic versions. These

scores will be visualised on projection maps for comparison (Abdi & Valentin, 2007).

3 Experiments
The experiment was carried in a trial dataset that has 4 variables shown as the table below.

The output synthetic data will be generated by GA synthesiser with full contingency table as

the only objective (GA-synthetic data). It will be compared with the synthetic version

generated by the CART (CART-synthetic data).

‘coalmine’ Categorical: “0”, “1”, “2”

‘nucar’ Categorical: “0”, “1”, “2”

‘agegrp’ Categorical: “0”, “1”, “2”, “3”, “4”, “5”

‘ltillr’ Categorical: “0”, “1”,

Table 3.1 variables and their corresponding levels in the trial data

 4

3.1 Utility Test

The GA synthesiser destined when its population has evolved into an acceptable level. The

output data has 0.08 in DJS in the full-contingency table objective 𝐹(𝑋, 𝑌). The histogram

confirms that the synthetic data has very similar univariate distribution in each variable

compared with the original data (Fig 3.2 and Fig 3.3).

 5

Fig 3.2 comparison of histogram between original, GA-synthetic and CART-synthetic dataset.

 6

Fig 3.3 comparison of bivariate bar charts between original, GA-synthetic dataset and

CART-synthetic dataset.

In logistic regression evaluation test, ‘ltillr’ was selected as the dependent variable and the

other variables are its explanatory variables. The following table records coefficients and

intercepts of explanatory variables and corresponding dummy variables from logistic

regression models generated from the three datasets: original dataset, GA-synthetic dataset

and CART-synthetic dataset. It shows that GA-synthetic dataset has closer values to the

original dataset than CART-synthetic data in almost all coefficients except “agegrp_5”.

Data Model Summary

Original Data Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.4674 0.4064 -8.532 < 2e-16 ***

coalmine1 1.3807 0.3271 4.221 2.44e-05 ***

coalmine2 2.0674 0.2584 8.001 1.23e-15 ***

agegrp1 1.0254 0.4546 2.256 0.02410 *

agegrp2 1.2922 0.4388 2.944 0.00323 **

agegrp3 1.8140 0.4312 4.207 2.59e-05 ***

agegrp4 2.9712 0.4222 7.038 1.95e-12 ***

agegrp5 3.1594 0.6050 5.222 1.77e-07 ***

nucar1 0.2182 0.2245 0.972 0.33122

nucar2 -0.4997 0.2499 -2.000 0.04552 *

GA-synthetic Estimate Std. Error z value Pr(>|z|)

 7

Data (Intercept) -3.1524 0.3679 -8.568 < 2e-16 ***

coalmine1 0.9371 0.3578 2.619 0.008818 **

coalmine2 1.9871 0.2593 7.662 1.83e-14 ***

agegrp1 0.7508 0.4187 1.793 0.072934 .

agegrp2 0.9479 0.4050 2.341 0.019249 *

agegrp3 1.4885 0.3961 3.757 0.000172 ***

agegrp4 2.6561 0.3890 6.827 8.65e-12 ***

agegrp5 1.7580 0.6920 2.540 0.011073 *

nucar1 0.2013 0.2263 0.890 0.373589

nucar2 -0.4582 0.2483 -1.846 0.064956 .

CART-synthetic

Data

 Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.6022 0.4356 -8.270 < 2e-16 ***

coalmine1 1.4167 0.3260 4.345 1.39e-05 ***

coalmine2 2.0300 0.2525 8.040 9.00e-16 ***

agegrp1 1.4599 0.4696 3.109 0.00188 **

agegrp2 1.4598 0.4718 3.094 0.00198 **

agegrp3 2.1500 0.4533 4.743 2.11e-06 ***

agegrp4 2.9362 0.4516 6.502 7.94e-11 ***

agegrp5 3.2711 0.5881 5.562 2.67e-08 ***

nucar1 0.2673 0.2112 1.266 0.20562

nucar2 -0.8620 0.2730 -3.158 0.00159 **

Table. X comparison of logistic regression model coefficients and intercepts generated by

GA-synthetic dataset and CART-synthetic dataset

Moreover, the predicted logit probability correlation indicates that the logistic model

generated by GA-synthetic data also outperforms the model from CART-synthetic data. It has

1000 same prediction outputs as the original model for the 1000 cases compared with the 984

same outputs from the latter.

GA_synthetic data Ltillr=”0” 0.9999

Ltillr=”1” 0.9999

CART_synthetic data Ltillr=”0” 0.9860

Ltillr=”1” 0.9823

Table 3.4 comparison of predicted logit probability correlation to the original model

generated by GA-synthetic dataset and CART-synthetic dataset

In MCA evaluation test, we set the number of factors as 2. The table below shows factor

scores of different variables and their dummy variables, where the highlighted cells indicate

that the score of this variable in GA synthetic dataset is more similar to its value in the

original dataset than CART-synthetic dataset. By looking at the score-plots in Fig. X, we can

conclude that although the two synthetic datasets have similar performance in MCA, GA-

synthetic dataset is more similar to the original dataset in some of the variables.

 Original Data GA-Synthetic Data CART-Synthetic Data

Factors 1 2 1 2 1 2

coalmine.0 -3.73E-03 8.64E-04 -3.62E-03 8.22E-04 -3.50E-03 7.13E-04

coalmine.1 1.46E-02 1.72E-02 1.41E-02 1.87E-02 1.58E-02 1.86E-02

coalmine.2 2.06E-02 -1.42E-02 2.12E-02 -1.48E-02 2.09E-02 -1.51E-02

nucar.0 9.21E-05 8.98E-03 9.34E-05 8.83E-03 -1.25E-04 9.36E-03

nucar.1 8.73E-03 -6.64E-03 8.91E-03 -6.86E-03 9.39E-03 -7.40E-03

nucar.2 -6.93E-03 -1.11E-02 -6.89E-03 -1.06E-02 -7.61E-03 -1.27E-02

agegrp.0 -5.61E-03 -2.27E-02 -5.48E-03 -2.32E-02 -6.15E-03 -2.01E-02

 8

agegrp.1 -4.67E-03 1.15E-02 -4.56E-03 1.04E-02 -5.04E-03 1.10E-02

agegrp.2 -4.57E-03 6.00E-03 -4.46E-03 5.88E-03 -2.91E-03 6.24E-03

agegrp.3 -3.54E-04 -4.21E-03 -6.14E-04 -2.31E-03 -1.19E-03 -4.51E-03

agegrp.4 1.45E-02 3.55E-03 1.51E-02 4.31E-03 1.37E-02 -2.90E-04

agegrp.5 2.38E-02 -4.17E-03 2.36E-02 -1.08E-02 2.16E-02 8.55E-03

ltillr.0 -4.61E-03 -2.62E-04 -4.53E-03 -3.60E-04 -4.74E-03 -7.14E-05

ltillr.1 1.82E-02 1.04E-03 1.86E-02 1.48E-03 1.85E-02 2.78E-04

Table 3.5 Factor score of MCA (number of factors=2) from different datasets

 9

Fig 3.6 Factor scores plots of original dataset, GA synthetic dataset and CART-synthetic

dataset

It is reasonable to say that 0.08 in DJS in the full-contingency table preserves a quite good

level of information from the original data and it is better than CART-synthetic data. Since

GA is a dynamic generator, the final output is more controllable than CART. It is important

because when utility is increasing, the dataset carries more risk in disclosure sensitive

information from the original dataset.

4 Disclosure Risk Assessment
Using full contingency table as objective can measure both the utility and disclosure risk of

the synthetic data. Compared with other utility measurements, it gives a more straightforward

view of the divergence between original data and its synthetic version in marginals. Such

information can help to measure other utility or disclosure objectives for example, differential

privacy, which tests how two datasets differ by removing or adding particular cases (Work &

Roth, 2014) (Barak et al, 2007), and differential correct attribute probability (DCAP), which

measures attribute disclosure risks for synthetic data (Taub et al, 2018). Moreover, the

experimental results show a strong proof that full contingency table can maintain other

statistical properties without including them into the generator, which breaks the rule that

synthetic data can only holds statistical properties that contains in its generator (Drechsler,

2014).

It is confirmed that utility and disclosure risk are conflict objectives in data synthesis. Duncan

et al (2001) illustrated the utility-risk maps for some of known synthesiser and concluded that

the higher the utility is the riskier the output data or vice versa. The risk of GA synthesiser

with only utility objective is also higher because using full contingency table as the only

objective will eventually end up to the original data. The following sections illustrates some

scenarios happened in evaluation disclosure risks for a real-world dataset.

4.1 Re-identification Risks

Since our data is a small sample and there is no clear perspective to the population, we only

use risk assessment as a post hoc test to the synthetic data. Theoretically fully synthetic data

does not require re-identification risk assessment because it masks all real-records from

 10

original data. However, this needs to be re-considered when using full contingency table.

During the process of evolution in GA generator, the synthetic data is likely to have sensitive

individuals from the original data. Shlomo (2010) confirmed that re-identification risk is a

function of both population and sample. Suppose 𝑁(𝑟,𝑐) is the population size in cell (𝑟, 𝑐) in

the contingency table (𝑟, 𝑐 are indices of row and column) and 𝑁(𝑟,𝑐) is the sample size of the

same cell. The disclosure risk can be measured by

𝜏 = ∑ 𝐼(𝑛(𝑟,𝑐) = 1)/𝑁(𝑟,𝑐)

𝑟,𝑐

Due to the absence of original population, it is impossible to derive the value of 𝜏 for the

synthetic data. If we only compare the two datasets, what we can tell is that synthetic data

releases 13 of 16 unique records from original data. The other unique records have 𝜏′ = 0.5,

𝜏′ = 0.25 and an unidentified one due to no corresponding record in the original data. It is

not evident to say that the synthetic data is dangerous because the dataset is a small sample

with unknown population, but it would be dangerous in realistic case if 13 of 16 unique

individuals were exposed in a published dataset.

4.2 Attribute Disclosure Risks

DCAP works on the assumption that the intruder knows the values of a set of key variables

for a given unit and is seeking to learn the specific value of a target variable. The Correct

Attribution Probability (CAP) for the record indexed 𝑗 is the empirical probability of its target

variables given its key variables

𝐶𝐴𝑃𝑜,𝑗 = Pr(𝑇𝑜,𝑗|𝐾𝑜,𝑗) =
∑𝐼(𝑇𝑜,𝑗 = 𝑇𝑜,𝑗|𝐾𝑜,𝑗 = 𝐾𝑜,𝑗)

𝐼(𝐾𝑜,𝑗 = 𝐾𝑜,𝑗)

𝑑𝑜 is the original data and 𝐾𝑜 and 𝑇𝑜 as vectors for the key and target information

respectively. Likewise, 𝑑𝑠 is the synthetic dataset, with the vectors 𝐾𝑠 and 𝑇𝑠. The CAP for

record 𝑗 based on a corresponding synthetic dataset 𝑑𝑠 is the same empirical, conditional

probability but derived from 𝑑𝑠,

𝐶𝐴𝑃𝑠,𝑗 = Pr(𝑇𝑠,𝑗|𝐾𝑠,𝑗) =
∑𝐼(𝑇𝑠,𝑗 = 𝑇𝑜,𝑗|𝐾𝑠,𝑗 = 𝐾𝑜,𝑗)

𝐼(𝐾𝑠,𝑗 = 𝐾𝑜,𝑗)

Suppose ‘Ltillr’ is the target variable and the others are key variables in DCAP test, the CAP

score of the GA-synthetic dataset is only 0.0045 less than the original dataset, which seems to

put the data in a vulnerable place in attribute disclosure.

4.3 Differential Privacy

Differential privacy intuitively guarantees that a privacy model, which involves randomness

in its process, behaves similarly on similar input dataset. Although it is a pre-setting of model

rather than a post hoc assessment, the principle can be analogised in synthetic data if full

contingency table is used.

Suppose the model used to generate synthetic data is 𝑀, The model 𝑀 is (𝜀, 𝛿)-differential

privacy if for all 𝑆 ⊆ 𝑟𝑎𝑛𝑔𝑒(𝑀) and for all 𝑥, 𝑦 such as ||𝑥 − 𝑦||
1

≤ 1:

Pr[𝑀(𝑥) ∈ 𝑆] ≤ 𝑒𝜀 Pr[𝑀(𝑦) ∈ 𝑆] + 𝛿

When a privacy model 𝑀 is (𝜀, 0)-differential privacy (𝛿 = 0), the output of a record is

equally likely to be output in different runs of the model. In contrast, if 𝛿 ≠ 0, then the output

of a record is very unlikely to be output in different runs of the model. Meanwhile, given an

 11

output 𝜉~𝑀(𝑥), probably we could find a dataset 𝑦 such that 𝜉 looks more like an output

from 𝑀(𝑦) than from 𝑀(𝑥). By setting full contingency table as the objective, outputs from

GA synthetic data generator is naturally (𝜀, 0)-differential privacy before a certain level of

optimality. For example, suppose 𝑋1 and 𝑋2 are neighbouring outputs from GA generator

𝑀𝐺𝐴 that differs from only one record, it is very unlikely to distinguish 𝑀𝐺𝐴(𝑋1) and

𝑀𝐺𝐴(𝑋2) before they eventually turn to original datasets. In another word, the output of GA

generator is almost equally likely to be observed on every neighbouring datasets.

5 Conclusion
The paper shows that using full contingency table as the only objective in GA synthetic data

generator is capable to produce an acceptable result. As a fundamental property for

categorical data, it sufficiently retains other statistical properties at the same time. However,

this objective comes with high disclosure risks due to the closeness to the original data.

Fortunately, most of the known disclosure risk assessments like re-identification assessment,

differential privacy and DCAP measures the data from case-level, which can be derived from

full contingency table directly. In order to achieve dynamic control to the synthetic data in

GA synthesiser, or any other potential learning algorithms, we should focus on finding the

trade-off between data utility and disclosure risks.

Reference
[1] Drechsler, J., 2014; Synthetic data, where do we come from? Where do we want to go?,

in Synthetic Data Workshop; Office of National Statistics.,

https://www.ons.gov.uk/ons/guide- method/method-quality/general-methodology/statistical-

disclosure-control/ons-workshops-on-synthetic- data/synthetic-data--where-do-we-come-

from--where-do-we- want-to-go-.pdf+&cd=1&hl=en&ct=clnk&gl=uk

[2] Duncan, G.T., Keller-McNulty, S. A., and Strokes, S. L., 2001, Disclosure Risk vs. Data

Utility: The R-U Confidentiality Map, National institute of Statistical Science, NISS.

[3] Dwork, C., and Roth, A., 2014, The Algorithmic Foundations of Differential Privacy,

Foundations and Trends in Theoretical Computer Science, vol.9 3-4.

[4] Maimon, O., and Rokach, L., 2010, Data Mining and Knowledge Discovery Handbook,

Springer Science and Business Media; p. 704

[5] Taub, J., Elliot, M., Pampaka, M., and Smith, D., 2018, Differential Correct Attribution

Probability for Synthetic Data: An Exploration, Privacy in Statistical Database, 2018

[6] Abdi, H. and Valentin, D., 2007, Multiple Correspondence Analysis, Encyclopedia of

Measurement and Statistics, Neil Salkind (Ed.), Thousand Oaks (CA): Sage.

[7] Shlomo, N., (2010), Releasing Microdata: Disclosure Risk Estimation, Data Masking and

Assessing Utility' Journal of Privacy and Confidentiality, vol. 2, no. 1, pp. 73-91

[8] Ciriani, V., di Vimercati, S.D.C., Foresti, S., Samarati, P., (2007) Microdata protection. In:

Yu T., Jajodia S. (eds.) Secure Data Management in Decentralized Systems, 291–321.

Springer, New York

 12

[9] Barak, B., Chaudhurim, K., et al (2007) Privacy, Accuracy, and Consistency Too: A

Holistic Solution to Contingency Table Release, PODS’ 07, Beijing, China

[10] Chen, Y., Elliot, M., and Sakshaug, J., (2016), A Genetic Algorithm Approach to

Synthetic Data Production, in Proceedings of the 1st International Workshop on AI for

Privacy and Se-curity. Article No. 13.

[11] Chen, Y., Elliot, M., and Sakshaug, J., (2017), Genetic Algorithms in Matrix

Representation and Its Application in Synthetic Data, UNECE Work Session on Statistical

Data Confidentiality,

https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2017/2_Genetic_algor

ithms.pdf. Last access 20/12/2017.

[12] Chen, Y., Elliot, M., and Smith, D., (2018), The Application of Genetic Algorithms to

Data Synthesis: A Comparison of Three Crossover Methods, Privacy in Statistical Database

2018, Springer.

[13] Reiter, J.P., (2005) Using CART to generate partially synthetic, public use microdata,

Journal of Official Statistics 21, 441–462  

[14] Nowok, B., Raab., M. G., and Dibben, C., (2016), synthpop: Bespoke Creation of

Synthetic Data in R, Journal of Statistical Software, 74(11), DOI: 10.18637/jss.v074.i11

5.5 The Impact from Initial Population in GA Synthetic
Data Generator

The initial population is considered as an important parameter in GAs, so does in a GA
synthesiser. As information utility is first concerned when I designed the GA synthesiser,
Most experiments used a good initial population (very similar to the original data) for
quicker and better results. This contradicts with traditional fashions of GAs, where di-
versity is considered as the most important characteristic in an initial population since it
expands the solution space and prevents converging to local optima. This paper inves-
tigates the performance of GA synthesisers with initial populations that carry different
levels of diversity and, based on the findings.

136

The Impact from Initial Population in
GA Synthetic Data Generator

Yingrui Chen∗, Mark Elliot∗

∗ Cathie Marsh Institute, The University of Manchester, Manchester, UK,

{yingrui.chen, mark.elliot}@manchester.ac.uk

Abstract. The initial population is considered as an important parameter in the design

of genetic algorithms (GAs). It is widely accepted that a the initial population should be

specifically designed for the problem it is designed to solve. As information utility is cen-

tral to functional data synthesis, in most of our experiments we use an initial population

concentrated on good utility candidates for quicker and better results [6]. This contradicts

with orthodox view of GAs, where diversity is considered as the most important character-

istic in setting up a population since it expands the solution space prevents converging to

local optima [2]. This paper investigates the performance of GA synthetic data generator

(aka GA synthesiser) with initial populations with its overall fitness and different levels of

diversity and fitness.

1 Introduction

Data synthesis is a statistical disclosure control technique for preventing leakage

of confidential information from data. Its main feature is to preserve analytical

properties of the original data whilst protecting the true information of data subjects.

A microdata set of n cases and m variables is usually represented as an n by m matrix

indexed i∈{1, . . ., n} and j∈{1, . . .,m}. Here we use Y to denote and original dataset

and its synthetic version is denoted as X. X shares the same structure as Y as

illustrated in Fig 1.

y11 y12 ... y1m
y21 y22 ... y2m
y31 y32 ... y3m
y41 y42 ... y4m

...
...

...
...

yn1 yn2 ... ynm







x11 x12 ... x1m
x21 x22 ... x2m
x31 x32 ... x3m
x41 x42 ... x4m

...
...

...
...

xn1 xn2 ... xnm







Figure 1: Microdata Y and its synthetic version X

The potential of synthetic data is tremendous because, in principle, it allows

the publication of data without concerns about privacy leakage. Hence many more

1

sensitive datasets with significant potential economic and social value can be opened

to public. However, the utility of synthetic data strongly relies on the design of

synthetic data generator [10]. Properties can only be present in the synthetic dataset

if they are structurally or statistically related to properties that included in the

generator. Unforeseen analysis on fully synthetic data may therefore lead to different

results from the same analysis on the original data [12].

GAs are learning optimisation algorithms that simulate natural evolution. They

were first proposed to solve linear problems. Subsequent research showed its suitabil-

ity for solving higher-dimensional and more complex problems [13, 14, 15]. Starting

with an initial population consisting of a group of candidates, the process of GAs is

presented below (Fig 2).

initialize

model

initial

population

is good

enough?
selection

crossover

mutation

terminateno

yes

Figure 2: Flowchart of Genetic Algorithms

We have investigated GA data synthesisers in the past of our research [7, 3, 4,

5, 6]. We have demonstrated the efficiency and effectiveness of this new method in

synthesising data and finding the trade-off between information utility and disclosure

risks. We demonstrated that the efficiency of a GA synthesiser can be increased if

the parameters are aligned to the specific data.

2

1.1 Initial Population

Diversity and fitness are considered as two influential features in GA populations.

A population with higher diversity is more likely to jump out of local optima [2] 1.

However, there is no general standard for measuring the diversity of datasets, and

in common with other features of GAs, diversity needs to be tied to the specific

problem.

In the data synthesis domain, We can hypothesise that population diversity will

depend on the amount of structure implied in the generating model. On the other

hand, the fitness of initial population may also impact on the efficiency of the whole

GA process. The initial population can be generated from some observed descriptive

properties of the original data such as means, frequencies, equivalence class struc-

tures, covariance or Chi-squared statistics [9]. Generating initial populations that

have those properties will reduce the running time of the whole process compared

with pure random data because properties embedded in the initial population need

not to be re-gained from the GA process. Meanwhile, the initial population can still

carry a certain level variation between candidates because simple properties are not

sufficient to describe the original data.

2 Experiment Design

This paper considers three models that can be used to build the initial population

of the GA synthesiser. They are the uniform distribution model, the univariate

distribution model and a synthesiser model. Individuals in uniform model are cre-

ated by independently sampling (with replacement) from the uniform distributions

of each variable within the original data. The univariate distribution model creates

individuals by independently sampling (with replacement) from the univariate dis-

tributions of each variable in the original data. As for the synthesiser model, we use

a well known synthesising method CART. 2. The reason for comparing these three

generation models for initial population is to check:

1. The impact of fitness level from initial population on the efficiency of a GA

synthesiser: Populations generated by the three models vary arbitrary distribu-

tions to feasible solutions and therefore they contain different levels of utility

(U) and risk (R): with the expecation that U(uniform) < U(univariate) <

U(CART) and R(uniform) < R(univariate) < R(CART). In the first set of

1Brabazon, et al (2015) prefer the word “dispersion” as being more descriptive of the feature in

question, but we use the more common “diversity” here as dispersion has a particular meaning in

statistics.
2Specifically we use the software synthpop.R created [20]

3

experiments the paper aims to find which initial population produces the most

fit solutions.

2. The impact of diversity from the initial population on the efficiency and ef-

fectiveness of GA synthesiser: we would expect that a freer model, like the

uniform model will produce Initial populations that carry higher diversity.

Candidates in this population are more like a random noise has which in the

expectation maximises distance between any two generated candidates. How-

ever, a more restricted model, like the CART model, is likely to produce similar

candidates to the initial population and to each other.

In this paper, we will use the same GA parameter values that we used in [6]:

the fixed initial population size: 100, tournament selection with tournament size

t = 2 3, (whole-case) parallelised crossover with crossover rate 0.5 4, and uniform

mutation with mutation rate pm = 0.01 5. With the same settings to all parame-

ters, we are now able to investigate how different features of the initial population

impact the efficiency and effectiveness of the GA synthesiser. The experiment will

be implemented on three datasets with different levels of complexity in their struc-

tures [17, 18, 19]: Data 1 has 4 binary variables, Data 2 has 1 binary variables, 1

six-category variable, 1 nine-category variables and 1 eleven-category variables and

Data 3 contains 2 binary variables, 1 nine-category variables and 1 ten-category

variable. All of the experiments will be carried on the following objective settings

for the synthesiser.

2.1 Objectives

The synthesiser used a set of two opposite objectives: Utility and Risk. The util-

ity measure is carried by Jensen-Shannon distance DJS in full contingency tables

from synthetic data CTFULL(X) to the original data CTFULL(Y). Since the over-

all structure in a categorical data can be captured by a full contingency table and

many statistical analysis methods are based on this statistic, it is undoubted that a

synthetic data that is close enough to the original data retains most - if not all - of

its statistical properties.

Jensen-Shannon distance DJS is a method to measure the level of divergence

between two probability distributions, and specifically can measure the divergence

3In tournament selection, candidates are randomly selected into tournaments of size t (with

replacement). only the winning candidate in the tournament can enters crossover.
4Whole-case parallelised crossover occurs on every case in the candidate, the case was chosen

by determined crossover rate pr in this paper and it is then switched with the corresponding case

in paired candidate.
5uniform mutation gives every single element in the candidate a chance pm to mutate.

4

between a pair of high-dimensional contingency tables while their values are nor-

malised. Suppose P and Q are two discrete probability distribution, DJS(P ||Q) is

defined by:

DJS(P ||Q) = (
1

2
DKL(P ||M) +

1

2
DKL(Q||M))

1
2 (1)

, where M = 1
2
(P + Q) and DKL is Kullback-Leibler divergence, which cannot be

used directly because of the requirement for absolute continuity. The objective is to

minimise U(X, Y), which is the divergence of full contingency tables CTFULL from

the synthetic and original data.

U(X, Y) = DJS(CTFULL(X)||CTFULL(Y)) (2)

As for risk measure, [11] and [16] introduced a measure for disclosure risk of

synthetic data called the Differential Correct Attribution Probability (DCAP), which

consists of a Correct Attribution Probability (CAP) score. DCAP was originally

used as a post-hoc test to assess attribution risk. DCAP works on the assumption

that the intruder knows the values of a set of key variables for a given unit and

is seeking to learn the specific value of a target variable. The Correct Attribution

Probability (CAP) for the record indexed j is the empirical probability of its target

variables given its key variables,

CAP o,j = Pr(To,j|Ko,j) =

∑n
i=1[To,i = To,j, Ko,i = Ko,j]∑n

i=1[Ko,i = Ko,j]
(3)

where the square brackets are Iverson brackets, n is the number of records, and

do is the original data and Ko and To as vectors for the key and target information.

Likewise, ds is the synthetic dataset, with the vectors Ks and Ts. The CAP for record

j based on a corresponding synthetic dataset ds is the same empirical, conditional

probability but derived from ds,

CAP s,j = Pr(To,j|Ko,j)s =

∑n
i=1[Ts,i = To,j, Ks,i = Ko,j]∑n

i=1[Ks,i = Ko,j]
(4)

[6] introduce a scenario in DCAP in which rather than using the whole dataset,

only the statistical uniques of the original dataset are used in calculating the CAP

score (this method corresponds to a common focus for National Statistical Insti-

tutes). The non-matches (records on the original dataset which do not match any

records in synthetic dataset on the key) in this instance of DCAP were scored as 0,

this allowed for candidates with more non-matches to have lower scores on the risk

measure, which is intuitive.

As [6], the paper will take the normalised Euclidean distance of the two objectives

as a single fitness function:

F (X, Y) =
√

2
−1√

U(X, Y)2 +R(X, Y)2 (5)

5

3 Experimental Results

Firstly the hypothesis that population generated from freer models has more diver-

sity needs to be verified. The diversity of a pair of candidates can also be evaluated

by Jensen-Shannon divergences DJS as the method is capable of measuring the de-

gree of similarity between two high-dimensional probability distributions. In this

paper we evaluate diversity in a population DP by the standard deviation of DJS

between full contingency tables of each pair of candidates.

DP (Xi, Xj ∈ P, i 6= j) = σ(DJS(CTFULL(Xi)||CTFULL(Xj))) (6)

The standard deviation verified our assumption that the population generated from

uniform model has greater diversity than the one from univariate model and CART

model (Table 1).

Population Diversity DP

uniform univariate CART

data1 0.0766 0.0772 0.0744

data2 0.2653 0.1589 0.0067

data3 0.1540 0.1314 0.0951

Table 1: Population diversity of initial populations generated from different models

for the three datasets

3.1 The Impact of Fitness Level of the Initial Population to

the Efficiency of GA Synthesisers

The following table (Table 2 recorded performances of population generated by the

three models during 200 generations. It compares the best candidate in the initial

population and the best candidate in the last generation. The differences between

them indicated how much the population has been improved.

The result indicated that a more optimal population (generated by CART) can-

not lead to better results (Fig 3). The synthesiser indeed produced satisfactory

results for the inital population but its fitness deteriorated after 200 generations. A

reasonable conjecture is that the crossover rate was too high (0.5) to stop mature

candidates swapped cases with its paired individual, therefore its structures were

broken during the process. Initial populations generated from uniform model had

the best improvement except in Data 2 and the population generated by univariate

model had the best final outputs.

6

(a) Data1 (b) Data2

(c) Data3

Figure 3: Performances of populations generated from the CART model by original

data of Data1, Data2 and Data3 over 200 generations

7

R
is

k
a
n

d
u

ti
li

ty
v
a
lu

es
b

ef
o
re

a
n

d
a
ft

er
2
0
0

g
en

er
a
ti

o
n

s

u
n

if
o
rm

u
n

iv
a
ri

a
te

C
A

R
T

B
ef

o
re

A
ft

er
D

iff
er

en
ce

B
ef

o
re

A
ft

er
D

iff
er

en
ce

B
ef

o
re

A
ft

er
D

iff
er

en
ce

D
a
ta

1
(0

.6
1
3
5

,0
.3

9
0
3
)

(0
.2

3
9
8

,0
.0

0
0
0
)

(0
.2

2
3
2
,

0
.3

9
0
3
)

(0
.2

9
5
8

,0
.0

0
0
0
)

(0
.1

4
5
5

,0
.0

0
0
0
)

(0
.1

5
0
3
,

0
.0

0
0
0
)

(0
.3

7
2
4

,0
.0

0
0
0
)

(0
.4

0
0
2

,0
.0

0
0
0
)

(-
0
.0

2
7
8
,

0
.0

0
0
0
)

D
a
ta

2
(0

.9
2
3
1

,0
.0

7
6
2
)

(0
.7

5
2
6

,0
.0

5
4
5
)

(0
.1

7
0
5
,

0
.0

2
1
7
)

(0
.7

6
3
3

,0
.0

2
8
7
)

(0
.5

6
5
8

,0
.0

1
8
8
)

(0
.3

8
9
5

,0
.1

8
1
8
)

(0
.3

8
9
5

,0
.1

8
1
8
)

(0
.7

7
9
6

,0
.0

4
1
6
)

(-
0
.3

9
0
1
,

0
.1

4
0
2
)

D
a
ta

3
(0

.7
3
8
3

,0
.0

4
1
7
)

(0
.5

0
1
4

,0
.0

0
0
0
)

(0
.2

3
6
9
,

0
.0

4
1
7
)

(0
.6

2
6
9

,0
.0

0
0
0
)

(0
.4

6
4
0

,0
.0

0
0
0
)

(0
.1

6
2
9
,

0
.0

0
0
0
)

(0
.3

8
6
3

,0
.0

0
0
0
)

(0
.6

6
5
8

,0
.0

0
0
0
)

(-
0
.2

7
9
5
,

0
.0

0
0
0
)

S
in

g
le

o
b

je
ct

iv
e

fi
tn

es
s

v
a
lu

es
b

ef
o
re

a
n

d
a
ft

er
2
0
0

g
en

er
a
ti

o
n

s
(n

o
rm

a
li

se
d

)

u
n

if
o
rm

u
n

iv
a
ri

a
te

ca
rt

B
ef

o
re

A
ft

er
D

iff
er

en
ce

B
ef

o
re

A
ft

er
D

iff
er

en
ce

B
ef

o
re

A
ft

er
D

iff
er

en
ce

D
a
ta

1
0
.5

1
4
2

0
.1

6
9
6

0
.3

4
4
6

0
.2

0
9
2

0
.1

0
2
9

0
.1

0
6
3

0
.2

6
3
3

0
.2

8
3

-0
.0

1
9
7

D
a
ta

2
0
.6

5
5

0
.5

3
3
6

0
.1

2
1
4

0
.5

4
0
1

0
.4

0
0
3

0
.1

3
9
8

0
.3

0
3
9

0
.5

5
2
0

-0
.2

4
8
1

D
a
ta

3
0
.5

2
2
9

0
.3

5
4
5

0
.1

6
8
4

0
.4

4
3
3

0
.3

2
8

0
.1

1
5
3

0
.2

7
3
1

0
.4

7
0
8

-0
.1

9
7
7

T
ab

le
2:

T
h
e

d
iff

er
en

ce
of

b
es

t
ca

n
d
id

at
es

in
th

e
fi
rs

t
an

d
20

0-
th

ge
n
er

at
io

n
s

in
G

A
sy

n
th

es
is

er
,

w
h
os

e
in

it
ia

l
p

op
u
la

ti
on

s
ge

n
er

at
ed

fr
om

u
n
if

or
m

,
u
n
iv

ar
ia

te
an

d
C

A
R

T
m

o
d
el

s,
in

D
at

a1
,

D
at

a2
an

d
D

at
a3

.

8

3.2 The Impact of Diversity of the Initial Population to the

Efficiency of GA Synthesisers

In order to eliminate the impact from fitness from the initial population. In this

set of experiments we introduced a reference data for each dataset. A reference

data is sampled from uniform distribution from each data and we generate initial

populations by the three models from the reference data. Compared with popu-

lations generated from the original data, populations generated by reference data

presumably has more closeness in their overall fitness values. However, this cannot

eliminate the difference in overall fitness between the population generated by the

uniform model and populations generated by the other two models, as the former

carried less utility naturally. The diversity of populations calculated by Eq 6 (see

Table 3).

Population Diversity DP

uniform univariate CART

data1 0.0782 0.0767 0.0727

data2 0.2659 0.1598 0.0787

data3 0.2648 0.1590 0.0771

Table 3: Population diversity of initial populations generated from different models

by reference datasets of the three datasets

Table 4 recorded the performance of different populations after 200 generations.

Result shows that populations generated from univariate model have the best out-

come among the three models in 200 generations and populations generated from

uniform model have the most significant improvement (Table 4).

9

R
is

k
a
n

d
u

ti
li

ty
v
a
lu

es
b

ef
o
re

a
n

d
a
ft

er
2
0
0

g
en

er
a
ti

o
n

s

U
n

if
o
rm

U
n

iv
a
ri

a
te

C
A

R
T

B
ef

o
re

A
ft

er
D

iff
er

en
ce

B
ef

o
re

A
ft

er
D

iff
er

en
ce

B
ef

o
re

A
ft

er
D

iff
er

en
ce

D
a
ta

1
(0

.6
2
4
0
,

0
.3

1
2
1
)

(0
.2

4
3
0
,

0
.0

0
0
0
)

(0
.3

8
1
0
,

0
.3

1
2
1
)

(0
.2

8
9
9
,

0
.0

0
0
0
)

(0
.1

5
4
0
,

0
.0

0
0
0
)

(0
.1

3
5
9
,

0
.0

0
0
0
)

(0
.3

1
6
0
,

0
.0

0
0
0
)

(0
.1

5
8
2
,

0
.0

0
0
0
)

(0
.1

5
7
8
,

0
.0

0
0
0
)

D
a
ta

2
(0

.9
2
5
3
,

0
.0

7
4
9
)

(0
.7

3
7
2
,

0
.0

4
1
2
)

(0
.1

8
8
1
,

0
.0

3
3
7
)

(0
.7

6
6
2
,

0
.0

3
5
9
)

(0
.5

5
2
1
,

0
.0

2
1
2
)

(0
.2

1
4
7
,

0
.0

1
4
7
)

(0
.7

7
2
0
,

0
.1

0
2
3
)

(0
.5

5
8
0
,

0
.0

2
5
3
)

(0
.2

1
4
0
,

0
.0

7
7
0
)

D
a
ta

3
(0

.7
3
8
0
,

0
.0

4
1
7
)

(0
.5

0
4
5
,

0
.0

0
0
0
)

(0
.2

3
3
5
,

0
.0

4
1
7
)

(0
.6

4
1
5
,

0
.0

0
0
0

)
(0

.4
5
7
8
,

0
.0

0
0
0

)
(0

.1
8
3
7
,

0
.0

0
0
0
)

(0
.6

5
3
5
,

0
.0

0
0
0

)
(0

.4
6
3
1
,

0
.0

0
0
0

)
(0

.1
9
0
4
,

0
.0

0
0
0
)

F
it

n
es

s
v
a
lu

es
b

ef
o
re

a
n

d
a
ft

er
(n

o
rm

a
li

se
d

)

U
n

if
o
rm

U
n

iv
a
ri

a
te

C
A

R
T

B
ef

o
re

A
ft

er
D

iff
er

en
ce

B
ef

o
re

A
ft

er
D

iff
er

en
ce

B
ef

o
re

A
ft

er
D

iff
er

en
ce

D
a
ta

1
0
.4

9
3
3

0
.1

7
1
9

0
.3

2
1
4

0
.2

0
4
9

0
.1

0
8
9

0
.0

9
6
0

0
.2

2
3
4

0
.1

1
1
9

0
.1

1
1
5

D
a
ta

2
0
.6

5
6
4

0
.5

2
2
1

0
.1

3
4
3

0
.5

4
2
4

0
.3

9
0
7

0
.1

5
1
7

0
.5

5
0
7

0
.3

9
5
0

0
.1

5
5
7

D
a
ta

3
0
.5

2
2
7

0
.3

5
6
7

0
.1

6
6
0

0
.4

5
3
6

0
.3

2
3
7

0
.1

2
9
9

0
.4

6
2
1

0
.3

2
7
5

0
.1

3
4
6

T
ab

le
4:

T
h
e

d
iff

er
en

ce
of

b
es

t
ca

n
d
id

at
es

in
th

e
fi
rs

t
an

d
20

0-
th

ge
n
er

at
io

n
s

in
G

A
sy

n
th

es
is

er
,

w
h
os

e
in

it
ia

l
p

op
u
la

ti
on

s
ge

n
er

at
ed

fr
om

u
n
if

or
m

,
u
n
iv

ar
ia

te
an

d
C

A
R

T
m

o
d
el

s
b
y

re
fe

re
n
ce

d
at

a,
in

D
at

a1
,

D
at

a2
an

d
D

at
a3

.

10

4 Discussion

The two sets of experiments demonstrate that: (1) it is not always true that GAs

with fitter initial populations are more efficient in searching for optima. (2) in GAs,

populations with more diversity have more exploratory powers. They validate that

diversity is truly the vital feature in the initial population in GAs but a population

with high diversity but low fitness level may not outperform a population with

moderate diversity and moderate fitness in the same number of generations (see the

performance of populations from uniform and univariate models).

An interesting phenomenon in the first set of experiments is the performance

of the population generated by CART using the original data, which developed

towards an unwanted direction. It is possibly caused by high crossover rates which

may destroy data structures in well-developed candidates. Another likely reason is

that population with less diversity is unlikely to escape from local optima.

References

[1] Abdi, H., and Valentin, D., (2007) Multiple Correspondence Analysis, Neil

Salkind (Ed.), Encyclopedia of Measurement and Statistics, The University of

Texas at Dallas, Richardson, TX 75083–0688, USA

[2] Brabazon, A., O’Neill, Michae.l, and McGarraghy, Seán., (2015). Natural com-

puting algorithms, Springer.

[3] Chen, Y., Elliot, M., and Sakshaug, J., (2016), A Genetic Algorithm Approach

to Synthetic Data Production, in Proceedings of the 1st International Workshop

on AI for Privacy and Se-curity. Article No. 13.

[4] Chen, Y., Elliot, M., and Sakshaug, J., (2017), Genetic Algorithms in Matrix

Representation and Its Application in Synthetic Data, UNECE Work Session

on Statistical Data Confidentiality, https://www.unece.org/fileadmin/DAM/

stats/documents/ece/ces/ge.46/2017/2_Genetic_algorithms.pdf, Last

access 20/12/2017.

[5] Chen, Y., Elliot, M., and Smith, D., (2018), The Application of Genetic Algo-

rithms to Data Synthesis: A Comparison of Three Crossover Methods, Privacy

in Statistical Database, 2018, Springer.

[6] Chen, Y., Taub, J., and Elliot, M (2019) Trade-off between Information Utility

and Disclosure Risk in GA Synthetic Data Generator, UNECE 2019.

11

[7] Chen, Y. and Elliot, M, (in preparation), Matrix GA: building blocks in data

synthesis.

[8] Department for Communities and Local Government, Ipsos MORI. (2012). Cit-

izenship Survey, 2010-2011, UK Data Service. SN: 7111, http://doi.org/10.

5255/UKDA-SN-7111-1

[9] Drechsler, J. (2010). Using support vector machines for generating synthetic

datasets, Privacy in Statistical Databases, Springer Berlin Heidelberg, 148-161.

[10] Drechsler, J. (2014), Synthetic data, where do we come from? Where do we

want to go?, Synthetic Data Workshop, Office of National Statistics.

[11] Elliot, M. (2014). Final Report on the Disclosure Risk Associated with the

Synthetic Data Produced by the SYLLS Team. [online] CMIST. Available at:

https://tinyurl.com/syllsDR

[12] Maimon, O. and Rokach, L. (2010) Data Mining and Knowledge Discovery

Handbook, Springer Science and Business Media, p. 704

[13] Pongcharoen, P., Khadwilard, A., and Klakankhai, A., (2007) Multi-matrix

Real-coded Genetic Algorithm for Minimising Total Costs in Logistics Chain

Network, World Academy of Science, Engineering and Technology International

Journal of Economics and Management Engineering, 1(11), 574-597

[14] Wallet, B. C., Marchette, D. J. and Solka, J. L., (1996), A matrix Representa-

tion for Genetic Algorithms, Proceedings of Automatic Object Recognition IV

of SPIE Aerosense, Naval Surface Warfare Center Dahlgren, Virginia.

[15] Sun, L. Zhang, Y and Jiang, C (2006) A matrix real-coded genetic algorithm to

the unit commitment problem, Electric Power Systems Research, 76, 716-728

[16] Taub, J., Elliot, M., Pampaka, M. and Smith, D. (2018). Differential Correct

Attribution Probability for Synthetic Data: An Exploration. J. Domingo-Ferrer

and F. Montes (Eds.): PSD 2018, LNCS 11126. pp. 122-137

[17] Department for Communities and Local Government, 2012, Ipsos MORI. Cit-

izenship Survey, 2010-2011. [data collection]. UK Data Service. SN: 7111,

http://doi.org/10.5255/UKDA-SN-7111-1, Last access: 20/12/2017.

[18] NatCen Social Research. (2017). British Social Attitudes Survey, 2016.

[data collection]. UK Data Service. SN: 8252, http://doi.org/10.5255/

UKDA-SN-8252-1

12

[19] Office for National Statistics. Crime Survey for England and Wales, 2015-

2016. [data collection]. UK Data Service. SN: 8140, http://doi.org/10.5255/

UKDA-SN-8140-1. Last access 11/01/2018. (2017)

[20] Nowok, B., Raab., M. G., and Dibben, C., (2016), synthpop: Bespoke Creation

of Synthetic Data in R, Journal of Statistical Software, 74(11), DOI: 10.18637/

jss.v074.i11

13

5.6 Exploring the Impact of Adaptive Parameters on a
Genetic Algorithm Synthesiser

The exploration power of GA synthesiser is not consistent with fixed parameters, like
fixed crossover rate and fixed mutation rate, during the process. This paper explores
the impact of adaptive parameters in a GA synthesiser and describes the possible influ-
ence of the power of the parameters on the efficiency and effectiveness of the synthe-
siser.

150

Exploring the Impact of Adaptive Parameters on a Genetic Algorithm

Synthesiser

Abstract: Data synthesis is a statistical disclosure control method used to protect data subjects’ privacy by

replacing real records with artificial ones while maintain statistical features from the original data. We designed

Genetic Algorithm data synthesiser (GA synthesiser) and demonstrated that GAs can an efficient approach used

in data synthesis. The exploration power of genetic algorithms (GAs) increased when operators that specifically

designed for this problem are equipped. Unfortunately, the advantage of these operators is not consistent with

fixed parameters (crossover rate and mutation rate) during the process. This paper explores the impact from

adaptive and dynamic parameters in a GA synthesiser and describes the possible influence of the power of the

parameters on the efficiency and effectiveness of the synthesiser.

1 Introduction
Data synthesis offers significant protection against reidentification attacks. However, an

effective data synthesiser requires retention of as many key statistical properties of (and

respecting the multiple utilities of) the original data as possible. The potential of GAs in

producing synthetic data is clearly stated (Chen et al, 2016)(Chen et al, 2017). GAs are

iterative optimising algorithms that simulate the process of natural evolution. They comprise

of three main operators: selection, crossover and mutation. Begin with a group of candidates

(the initial population), fitness of these candidates is calculated and a selection operator

selects a subset of the fitter candidates which are used to generate a new population. In

crossover some pairs of these selected candidates are combined (using a variety of methods)

to produce new candidate solutions. Some candidates are then subjected to mutation –

random changes that will produce changes in fitness. After crossover and mutation, we have

the new population / generation. The process is repeated a number of times in order to

(hopefully) generate fitter solutions than those in the initial population. Crossover and

mutation rates can be varied from one iteration to the next and tuning of these parameters

may greatly influence performance.

The model of GAs in the application of data synthesis has been well constructed in the past.

we have demonstrated that the model of GAs in the application to data synthesis is feasible

(Chen et al, 2018)(Chen et al 2019). This work shows the effectiveness of GAs in searching

solutions, however the efficiency is not satisfying yet. Our current state of the art model

shows the lack of ability topass the best candidates to following generations, which results

fluctuation in the development of the population’s fittest members. Figure 1 is an example of

the change of population’s minimum divergence to the original data during 1000 generations.

Figure 1.1 An example of change of population’s fittest value vs number of generations in a

state of the art using fixed-parameter model.

1.1 Adaptive and Dynamic Parameters

Adaptive parameters are suggested in order to improve efficiency of GAs in the later stage of

the process. The consideration of using dynamic parameters is based on that non-constant

parameters perform better than fixed parameters in evolutionary studies. However, there are

drawbacks if the parameters are used inappropriately. Firstly, it probably increases

computational workload unnecessarily; sometimes using fixed parameters in GAs is

sufficient to give satisfactory outputs. Secondly, the involvement of dynamic parameters

makes the whole process more unpredictable (Thierens, 2002). Thierens also classified

parameters in adaptive GA into dynamic parameter control and adaptive parameter control.

The former tunes parameters dependent upon the number of generations or the convergence

level of current population whereas the later adapts parameters according to individual fitness.

Either type can be applied to any of three operators; this paper mainly discusses the potential

of using adaptive parameters in crossover and mutation.

Adaptive or dynamic parameters normally applied on crossover and mutation operators. The

Crossover rate 𝑝𝑐 is a parameter to moderates the power of the crossover operator, it can stop

all candidates are peremptorily swapped with others and retain the goodness to compete in

the next generation. Meanwhile, adaptive mutation rate 𝑝𝑚 , assumes that 𝑝𝑚 of a particular

candidate is determined by the optimality of the candidate. Suppose the fitness value of the

candidate is 𝑓𝑖 and the average fitness value in its generation is 𝑓 ̅. 𝑝𝑚 is determined as the

following principles (Libellin & Alba, 2000): If 𝑓𝑖 is better than 𝑓 ̅, then 𝑝𝑚 should be low to

keep the schema from the good individual. If 𝑓𝑖 is worse than 𝑓 ̅ , then 𝑝𝑚 should be

reasonably high to generate new species into the pool.

2 Model Design
In this paper we will use the same settings that used in (Chen et al, 2019): the fixed initial

population size 100, tournament selection1 with tournament size 𝑡 = 2, (whole-case)

parallelised crossover 2and uniform mutation3.

Minimising Jensen-Shannon divergence between full contingency tables of candidate and the

original data is the only objective of this synthesiser. The Full contingency table is fully

capable to be the only objective in the GA generator. It captures the between-variate structure

among categorical variables by counting the number of cases by possible configurations of

related variables. We used Jenson-Shannon divergence 𝐷𝐽𝑆 to transform the divergence

between two datasets in full contingency table scalar. Suppose 𝑃 and 𝑄 are two full

contingency tables for data 𝑌 and its synthetic version 𝑋 in the format of probability

distribution, i.e.

𝑃 =
𝐶𝑇𝐹𝑈𝐿𝐿(𝑋)

𝑁

𝑄 =
𝐶𝑇𝐹𝑈𝐿𝐿(𝑌)

𝑁

The 𝐷𝐽𝑆 between 𝑃 and 𝑄 is defined by:

1 In tournament selection, candidates are randomly selected into tournaments of size 𝑡 (with replacement). only

the winning candidate in the tournament can enters crossover.

2 Whole-case parallelised crossover occurs on every case in the candidate, the case was chosen by determined 𝑝𝑟

and it is then switched with the corresponding case in paired candidate.

3 uniform mutation gives every single element in the candidate a chance 𝑝𝑚 to mutate.

DJS(𝑃||𝑄) = (
1

2
𝐷𝐾𝐿(𝑃||𝑀) +

1

2
𝐷𝐾𝐿(𝑄||𝑀))

1
2

, where 𝑀 =
1

2
(𝑃 + 𝑄) and 𝐷𝐾𝐿 is Kullback-Leibler divergence.

Thus, the fitness function is 𝑓(𝑋) = DJS(𝑃||𝑄) and the objective is to minimise 𝑓(𝑋) for 𝑋 in

the population.

2.1 Algorithm Design for Adaptive Parameters

Suppose 𝐹𝑐(𝑓(𝑋)) and 𝐹𝑚(𝑓(𝑋)) in the range of [0,1] are formula to determine adaptive

rates of crossover and mutation. The algorithm can generally be written as:

{

Initialise population;

Evaluate fitness 𝑓(𝑋) of each individual 𝑋 in the population;

Evaluate 𝑝𝑐 = 𝐹𝑐(𝑓(𝑋)) and 𝑝𝑚 = 𝐹𝑚(𝑓(𝑋)) for each individual 𝑋;
While stopping condition:

{

Do selection;

Do crossover and mutation;

Evaluate fitness 𝑓(𝑋) of each individual 𝑋 in the population;

Evaluate 𝑝𝑐 = 𝐹𝑐(𝑓(𝑋)) and 𝑝𝑚 = 𝐹𝑚(𝑓(𝑋)) for each individual 𝑋;
}

}

Algorithm 2.1 Algorithm of adaptive GA

Previous work has discussed many designs of 𝐹𝑐(𝑓(𝑋)) and 𝐹𝑚(𝑓(𝑋)) in traditional GAs [2,

6, 7] and they are all based on the principle that the rate should stay low for fitter candidates

to pass their goodness into the new generation but be reasonably high for worse candidates to

create more variation for the population. We decided not to use any the pre-designed formula

because 1) they only proved to be applicable in traditional GAs, which have different

problem structures and candidates to ours. 2) they are overspecified for the problem that we

worked on and may create problems in exploring the search space effectively.

As our problem is a minimisation program and the objective function is normalised, the value

of fitness of a candidate can naturally be proportional to its rates.

𝐹𝑐(𝑓(𝑋)) = 𝑘𝑐𝑓(𝑋)

𝐹𝑚(𝑓(𝑋)) = 𝑘𝑚𝑓(𝑋)

, where 𝑘𝑐 and 𝑘𝑚 are arbitrary non-negative constants and 𝑘𝑐𝑓(𝑋), 𝑘𝑚𝑓(𝑋) ⊆ [0, 1].

2.2 Algorithm Design for Dynamic Parameters

Binguil (2007) argued that the relationship between population fitness and parameters were

complex so that it is better to be described linguistically [8]. Since there is no universal rule

of parameter control in GAs and the problem is more complex in either candidate structures

or reproduction process. Therefore, in this paper we decided to tune the parameters by

piecewise tuning functions (conditions) empirically rather than applying hyper-parameters on

the generator. Based on the above algorithm of adaptive parameters, the new design that

involves in dynamic parameters is shown below.

{

Initialise population;

Evaluate fitness 𝑓(𝑋) of each individual 𝑋 in the population;

Evaluate 𝑝𝑐 = 𝐹𝑐(𝑓(𝑋)) and 𝑝𝑚 = 𝐹𝑚(𝑓(𝑋)) for each individual 𝑋;
While stopping condition:

 While tuning condition 1:

{

Do selection;

Do crossover and mutation;

Evaluate fitness 𝑓(𝑋) of each individual 𝑋 in the population;

Evaluate 𝑝𝑐 = 𝐹𝑐(𝑓(𝑋)) and 𝑝𝑚 = 𝐹𝑚(𝑓(𝑋)) for each individual 𝑋;
}

While tuning condition 2:

{

Do selection;

Do crossover and mutation;

Evaluate fitness 𝑓(𝑋) of each individual 𝑋 in the population;

Evaluate 𝑝𝑐 = 𝐹𝑐(𝑓(𝑋)) and 𝑝𝑚 = 𝐹𝑚(𝑓(𝑋)) for each individual 𝑋;
}

…

}

Algorithm 2.2 Algorithm of dynamic GA with tuning conditions

3 Experiment Design

3.1 Experiment Design for Exploring Adaptive Parameters

This exploration of the impact of adaptive parameters uses survey data from Citizenship

survey 2010-2011 (Department for Communities and Local Government, 2012). This paper

run trials on GA generators equipped with different 𝑘𝑐, 𝑘𝑚 values for both crossover and

mutation operators. The initial population is randomly and independently sampled from

univariate distributions from original data. We empirically picked a set of values for 𝑘𝑐 and

𝑘𝑚 in this experiment and recorded the minimum fitness value of the 200th generations from

corresponding generator.

3.2 Experiment Design for Exploring Dynamic Parameters

This paper will neither compare the methods nor give deterministic tuning conditions. Its

goal is to demonstrate the benefits of using dynamic parameters as a part of GA generators.

The design of tuning conditions can be flexible and based on the user’s preference.

We summarise three feasible methods to adjust adaptive parameters during the process of GA

synthetic data generator: 1) Adjusting parameters by the level of dominance of the best

candidate in current generation. Parameters are adjusted by monitoring the proportion of

current population that are exact copies of the best candidate. Since the whole population will

eventually be taken over by some fitter candidates in GAs, this method helps prevent

premature convergence of the generator. 2) Adjusting parameters by the level of monopoly of

the best candidate in a set of consecutive generations, for example, the most recent 10. Once

a good candidate rises, it spends several generations to take over the whole population unless

a fitter candidate appears during the process. This method customises parameters by checking

the number of generations that a candidate outperforms other competitors to stop it

consuming the whole population. And 3) adjusting parameters by the optimality level of

current generation. Determining dynamic parameters for GA synthetic data generator totally

depends on users’ knowledge of the dataset and it is not limited to choosing only one method.

We give an example in the next section about how to adjust parameters using method 3).

4 Experiment Results

We picked a set of values 𝑘𝑐 = {0.0, 0.25, 0.5, 0.75, 1.0, 1.25} and 𝑘𝑚 =
{0, 0.001, 0.0025, 0.0050, 0.0075, 0.01,0.0025, 0.05} for Algorithm 2.1 and compared

fitness of the best candidate in 200th generation.

Clearly, generators with lower mutation rates have smoother and gentle trends in 200th

generations (see Appendix 1 and 2). A sharp increase in fitness (decrease in divergence) in

early stage is not always helpful to the generator in exploring the solution space in following

generations. No matter how small the value of 𝑘𝑚 is, mutation performed a vital role in

pushing the generator to reach places in the search space that cannot be reached by using

crossover operator only. However, a larger 𝑘𝑚 can also disrupt the goodness of developed

candidates, which was shown by fluctuations in the graphs. As for 𝑘𝑐 , a larger value will

result quick improvement in fitness from the beginning but also a quicker and premature

convergence without involving mutation. The good news is that the adequate values of 𝑘𝑐

and 𝑘𝑚 is not in a restricted range. Although 𝑘𝑐 = 0.75, 𝑘𝑚 = 0.005 best output in Fig 4.l,

the surrounding values also give acceptable results.

Fig 4.1 Heatmap of the capability of adaptive GA synthetic data generator with different

values of 𝑘𝑐 and 𝑘𝑚

Although we may deduct the acceptable range 𝑘𝑐 and 𝑘𝑚 with this particular dataset, it is

hard to say this conclusion can be applied universally to all other datasets. However, since

our objective limit of the fitness value is [0,1], there might be only slight deviation in using

the similar pairs of values to optimise synthetic data for other datasets. We tested the same

sets of 𝑘𝑐 and 𝑘𝑚 on other four datasets (ONS 2011) (ONS 2017) (National Records of

Scotland, 1901), that have different structures and the result indicates that, the impact of 𝑘𝑐

and 𝑘𝑚 depend on the level of optimality over the initial population. An initial population

that already consists of better candidates needs higher 𝑘𝑐 and 𝑘𝑚 values to boost the

performance (see the 1st and 2nd datasets in Fig 4.2). As for a weaker initial population, its

candidates need a mild pair of 𝑘𝑐 and 𝑘𝑚 to discover better solutions.

Fig 4.2 Heatmap of the capability of adaptive GA synthetic data generator with different

values of 𝑘𝑐 and 𝑘𝑚 for other four datasets

The conclusion is only applicable in early stage of the GA process. According to our

experience, a high mutation rate has no does not help a developed population. Fig 4.4 draws

the change of minimum divergence in 1500th to 2500th generations from the same generator

that gives the optimal output for the trial dataset. The fluctuation indicates that the generator

loses its capability to explore the solution space when the population evolved into a certain

level. Parameters must be adjusted to escape from this situation. We designed a set of tuning

conditions for dynamic GA synthesiser for the citizenship dataset (Algorithm. 4.3).

{

Initialise population;

Evaluate fitness 𝑓(𝑋) of each individual 𝑋 in the population;

Evaluate 𝑝𝑐 = 𝐹𝑐(𝑓(𝑋)) and 𝑝𝑚 = 𝐹𝑚(𝑓(𝑋)) for each individual 𝑋;
While stopping condition:

 if 𝑓(𝑋) ≤ 0.25:

{

𝑘𝑐 = 0.75 and 𝑘𝑚 = 0.001 for each individual 𝑋;
}

elIf 𝑓(𝑋) ≤ 0.20:

{

𝑘𝑐 = 0.5 and 𝑘𝑚 = 0.0005 for each individual 𝑋;
}

else:

{

𝑘𝑐 = 0.75 and 𝑘𝑚 = 0.005 for each individual 𝑋;
}

Do selection;

Do crossover and mutation;

Evaluate fitness 𝑓(𝑋) of each individual 𝑋 in the population;

Evaluate 𝑝𝑐 = 𝐹𝑐(𝑓(𝑋)) and 𝑝𝑚 = 𝐹𝑚(𝑓(𝑋)) for each individual 𝑋;
}

}

Algorithm 4.3 Algorithm of dynamic GA with tuning conditions for trial dataset

Fig 4.4 Comparing performance from adaptive GA generator (left) and dynamic GA

generator (right) between 1500th and 2500th generations

The comparison of the performance between two generators is evidence of the positive effect

from using dynamic parameters in GA. Despite the lack of theoretical proof , the above

conclusion illustrates the potential of using the level of optimality as a tuning condition in a

GA synthetic data generator.

5 Conclusion
This paper explores the impact from using adaptive parameters and tuning conditions to

improve the performance of GA synthetic data generator. Results show distinct influence on

efficiency of generators by different settings of adaptive functions. Dynamic parameter will

be helpful to retain good candidates in the latter process of GA. It is not necessary but can

definitely accelerate the speed in finding optima. However, this paper cannot give a universal

theory about the impact from adaptive or dynamic parameters to GA synthesiser. These two

cannot be determined unless users have good understanding of the dataset and the relation

between its structure and optimality in the generation. The complex relation between

parameters and dataset itself creates questions like: Does it depend on the design of objective?

How does the landscape of the solution space influence the tuning conditions? What is the

mathematical relation between the convergence level of population and the adaptive function?

Reference
[1] Bingul, Z., (2007) Adaptive Genetic Algorithms Applied to Dynamic Multi-

objective Problems, Applied Soft Computing, 7, 891-799

[2] Chen, Y., Elliot, M., and Sakshaug, J., (2016), A Genetic Algorithm Approach to

Synthetic Data Production, in Proceedings of the 1st International Workshop on AI

for Privacy and Se-curity. Article No. 13.

[3] Chen, Y., Elliot, M., and Sakshaug, J., (2017), Genetic Algorithms in Matrix

Representation and Its Application in Synthetic Data, UNECE Work Session on

Statistical Data Confidentiality,

https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2017/2_Gene

tic_algorithms.pdf. Last access 20/12/2017.

[4] Chen, Y., Elliot, M., and Smith, D., (2018), The Application of Genetic Algorithms

to Data Syn- thesis: A Comparison of Three Crossover Methods. In Proceedings of

Privacy in Statistical Database 2018. Springer.

[5] Chen, Y., (in preparation). Genetic Algorithms and their Application to Synthetic

Data Generation. PhD Thesis to be submitted to the University of Manchester.

Expected submission date December 2019.

[6] Department for Communities and Local Government, Ipsos MORI.

(2012). Citizenship Survey, 2010-2011. [data collection]. UK Data Service. SN:

7111, http://doi.org/10.5255/UKDA-SN-7111-1

[7] Liberllin, S., and Alba, P., (2000) Adaptive mutation in genetic algorithms, Soft

computing, vol.4 pp.76-80.

[8] Srinivas, M. and Patnaik, L. M. (1994a) Adaptive Probabilities of Crossover and

Mutation in Genetic Algorithms; IEEE Transactions on systems, Man and

Cybernetics; 24(4); pp.656-668

[9] Thierens, D. (2002) Adaptive mutation rate control schemes in genetic algorithms,

Evolutionary Computation, 2002. CEC '02. P roceedings of the 2002 Congress on,

vol.1, pp. 980 – 985

[10] Office for National Statistics, (2017), Crime Survey for England and Wales, 2015-

2016. [data collection]. UK Data Service. SN: 8140, http://doi.org/10.5255/ UKDA-

SN-8140-1. Last access 11/01/2018.

[11] Office for National Statistics. Social Survey Division, Northern Ireland Statistics

and Research Agency, Eurostat. (2011). European Union Statistics on Income and

Living Conditions, 2009. [data collection]. UK Data Service. SN: 6767, http://

doi.org/10.5255/UKDA-SN-6767-1. Last access 11/01/2018. (2009)

[12] National Records of Scotland, (1901), 1901 Scottish Census.

Appendices

𝑘𝑚

𝑘𝑐
0.0000 0.0010 0.0025 0.0050

0.0

0

0.2

5

0.5

0

0.7

5

1.0

0

1.2

5

Appendix 1 Divergence change of the best candidate in 200 generations from the generator

equipped by different values of 𝑘𝑐 and 𝑘𝑚 (1)

𝑘𝑚

𝑘𝑐
0.0075 0.0100 0.0250 0.0500

1.2

5

1.0

0

0.7

5

0.5

0

0.2

5

0.0

0

Appendix 2 Divergence change of the best candidate in 200 generations from the generator

equipped by different values of 𝑘𝑐 and 𝑘𝑚 (2)

5.7 Trade-off between Information Utility and Disclosure
Risk in GA Synthetic Data Generator

Impact of Full Contingency Table in Data Synthesis has shown that GAs are capable
of producing good synthetic data using the full contingency table as the only objective,
however, this implies higher disclosure risks (which are by definition one such statistical
property). This paper uses DCAP as the risk objective in GA synthesiser to contest with
the full contingency table and looks for the trade-off between the two objectives.

161

Trade-off between Information Utility
and Disclosure Risk in GA Synthetic
Data Generator

Yingrui Chen∗, Jennifer Taub∗, Mark Elliot∗

∗ Cathie Marsh Institute, The University of Manchester, Manchester, UK,

{yingrui.chen, jennifer.taub, mark.elliot}@manchester.ac.uk

Abstract. Data synthesis is a data confidentiality method which is applied to microdata

to prevent leakage of sensitive information about respondents. Instead of publishing real

data, data synthesis produces an artificial dataset that does not contain the original records

of respondents. This, in particular, offers significant protection against re-identification

attacks. Previous work has shown that Genetic algorithms (GAs) are capable of producing

good synthetic data using the full contingency table as the only objective, because it

completely specifies the frequencies of equivalence class structure; using this objective

could in theory lead to the original data as the solution; although the search space for

any non trivial dataset appears be fractal and therefore convergence to the original data

is improbable in polynomial time [3].

As a fundamental property for categorical data, the full table necessarily retains all

statistical properties present in the original data. However, this implies higher disclosure

risks (which are by definition one such statistical property).

This technique therefore presents precisely the same issue of managing the trade-

off between disclosure risks and data utility as orthodox SDC. However, GAs have a

big advantage. A GA is an iterative learning algorithm that used to solve complicated

problems and critically supports multiple contrary objectives by allowing the dynamically

monitoring of the relationship between them.

This paper uses the differential correct attribute probability (DCAP), which measures

attribute disclosure risks for synthetic data, as the risk objective in GA synthesiser to

contest with the full contingency table as the only utility objective. .

1 Introduction

Disclosure control for microdata attempts to protect sensitive information in an

original dataset whilst retaining that datasets statistical properties for analysts.

1

Data synthesis can be regarded a statistical disclosure control (SDC) technique that

produces a synthetic dataset that is designed to preserve the statistical properties

of the original data and provide sufficient variables to allow proper multivariate

analyses (Abowd and Lane, 2004). Therefore, data synthesis can be treated as

an optimisation problem with two opposite constraints: data utility and disclosure

risks.

In this paper, we use a genetic algorithm (GA) to generate synthetic data. GA’s

form a branch of evolutionary computing which aims to solve optimisation problems.

There are three main operators within GAs: selection, crossover and mutation.

Starting with group of candidate solutions (the initial population). The fitness

of these candidates are evaluated. Fitter candidates are randomly paired using a

crossover operator to generate new candidate solutions. These candidates are then

passed to mutation operator and given a probability to mutate. The offspring form

the new population and the process is repeated until a desired optimality achieved.

2 Objectives

Objectives within GAs are user defined values for a set of (usually latent) attributes

which will hold for any optimal solution and so define a standard against which

the fitness of a candidate should be measured. When designing a GA for a real-

world problem, there is invariably more than one objective to be considered. These

objectives are often opposed to one another, and this situation holds for data utility

and disclosure risk in the synthetic data problem [7]. in general, as utility decreases,

disclosure risk rises. When dealing with multi-objective problems, we can adopt

one of two solutions; the first is to simultaneously optimise all objectives using a

method such as Pareto optimisation. However, Chen’s work suggests that it is very

difficult to arrive at a stable optimal solution using this method[3]. This leads to the

second alternative which is to simply compose the objectives into a single function

with determined weights (referred as SOGA in this paper). The objectives must be

normalised to avoid an objective with a larger numerical variance dominating the

less varied one, otherwise the selection of weights is easy to get wrong and even a

small difference in weighting can lead to different solutions.

2

initialize

model

initial

population

is good

enough?
selection

crossover

mutation

terminateno

yes

Figure 1: Flowchart of Genetic Algorithms

3

2.1 The Utility Measure

The between-variate structure in a categorical data can be captured by contingency

table. Assume I = ×j∈[1,,m]I denotes the possible configurations of the variables that

take values from finite sets, a contingency table is an m-dimensional table containing

a count for each member of I. Since many statistical analysis methods are based on

contingency tables, it is undoubted that a synthetic data that is close enough to the

original data retains most - if not all - of its statistical properties.

Jensen-Shannon distance DJS is a method to measure the level of divergence

between two probability distributions, and specifically can measure the divergence

between a pair of contingency tables. Suppose P and Q are two discrete probability

distribution, DJS(P ||Q) is defined by:

DJS(P ||Q) = (
1

2
DKL(P ||M) +

1

2
DKL(Q||M))

1
2 (1)

, where M = 1
2
(P + Q) and DKL is Kullback-Leibler divergence, which cannot be

used directly because of the requirement for absolute continuity.

The objective is to minimise U(X, Y), which is the divergence of full contingency

tables CTFULL from the synthetic and original data.

U(X, Y) = DJS(CTFULL(X)||CTFULL(Y)) (2)

Compared with other utility measurements, the full contingency table gives a

more straightforward view of the divergence between original data and its synthetic

version in a case-level. The disadvantage is that the synthesiser may overfit to

the original data.This may not be immediately obvious, but there maybe structure

within the data that is not useful. That is although the fitter output carries more

sufficient information, it has highly chance of exposing sensitive information.

2.2 The disclosure risk measure

Most of the functions that are used to evaluate disclosure risks from released datasets

are based on post-hoc measurements. Although there exists an inverse relationship

between utility and disclosure risks in data privacy [4], involving risk in fitness eval-

uation the early stage of process may eliminate candidates with good properties.

Therefore, we replace the starting point of the generator from a set of inferior can-

didates by a set of near optimal candidates (on the utility function) generated by

4

modest mutation if the original data, which makes the bi-objectives model more rea-

sonable. We note in passing here that this makes the process more like a traditional

SDC approach than an traditional data synthesis, but as we will discuss later within

an optimisation framework, we consider the distinction between SDC and synthesis

to be entirely arbitrary.

Solution Space

Boundary

Original Data

Figure 2: Illustration of Solution Space in Data Synthesis

Elliot (2014) and Taub et al (2018) introduced a measure for disclosure risk of

synthetic data called the Differential Correct Attribution Probability (DCAP), which

consists of a Correct Attribution Probability (CAP) score. DCAP was originally

used as a post-hoc test to assess attribution risk [5, 14].

It is considered differential in that the score is to be compared to that of both

the original dataset and that of a baseline (based on the univariate distribution of a

given sensitive variable). DCAP works on the assumption that the intruder knows

the values of a set of key variables for a given unit and is seeking to learn the specific

value of a target variable. The Correct Attribution Probability (CAP) for the record

indexed j is the empirical probability of its target variables given its key variables,

CAP o,j = Pr(To,j|Ko,j) =

∑n
i=1[To,i = To,j, Ko,i = Ko,j]∑n

i=1[Ko,i = Ko,j]
(3)

where the square brackets are Iverson brackets, n is the number of records, and

do is the original data and Ko and To as vectors for the key and target information.

Likewise, ds is the synthetic dataset, with the vectors Ks and Ts.

The CAP for record j based on a corresponding synthetic dataset ds is the same

empirical, conditional probability but derived from ds,

5

CAP s,j = Pr(To,j|Ko,j)s =

∑n
i=1[Ts,i = To,j, Ks,i = Ko,j]∑n

i=1[Ks,i = Ko,j]
(4)

However, a test run on 9,000 datasets mutated from the original dataset in with

different levels mutation showed an unexpected near perfect correlation between

DCAP and U(X, Y) (−0.9920). A linear model with multiple R2 = 0.9839 confirmed

the linear relationship between the two objectives. In another words, using this

measure there will not be an ideal solution with high utility but low disclosure risk.

In effect this mean that the pure DCAP measure is a measure of utility rather

than risk1. This actually makes sense since this full DCAP measure captures the

capability of user to make inferences about based on the conditional distribution of

the target variable. On the other hand drawing from the posterior distribution for

any arbitrary record regardless of it really makes non sense for an intruder.

As one method of circumnavigating this, Taub et al (2018) introduce a scenario

in which rather than using the whole dataset, only the statistical uniques of the

original dataset are used in calculating the CAP score [14] (this method corresponds

to a common focus for National Statistical Institutes). Correlation between DCAP-

Statistical Uniques and U(X, Y) dropped to −0.58. The non-matches (records on

the original dataset which do not match any records in synthetic dataset on the key)

in this instance of DCAP were scored as 0, this allowed for candidates with more

non-matches to have lower scores on the risk measure, which is intuitive.

3 Experiments

3.1 Model Design in GA Synthesiser

The GA synthesiser in our previous work [2] was equipped with Deterministic tour-

nament selection operator with tournament size t = 2, Candidates are randomly

selected into tournaments of size t (with replacement). The probability that a can-

didate wins the tournament and enters crossover is given by p(1− p)r where p is a

parameter (such that 1/t < p1) and r is the rank of the candidates fitness within the

tournament. In deterministic tournament selection p is set to 1. And the same mech-

anism applies to this problem by combining the two objectives using the Euclidean

distance from the origin (0, 0):

1We are thankful to Gillian Raab [10]for drawing attention to this general problem which led

to us running the above experiment

6

Minimise F (X, Y)

F (X, Y) =
1√
2

√
U(X, Y)2 + R(X, Y)2

s.j.t U(X, Y) ∈ [0, 1]

R(X, Y) ∈ [0, 1]

Crossover and mutation are the main operators used in GA to provide variation

within the next generation. We used whole-case crossover and uniform mutation,

which has been shown to be efficient in generating synthetic data. The following

figures illustrate how the crossover and mutation operators work.

x1
11 x1

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x1
31 x1

32 ... x1
3m

x1
41 x1

42 ... x1
4m

x1
51 x1

52 ... x1
5m

x1
61 x1

62 ... x1
6m

...
...

...
...

x1
n1 x

1
n2 ... x

1
nm







x2
11 x2

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x2
31 x2

32 ... x2
3m

x2
41 x2

42 ... x2
4m

x2
51 x2

52 ... x2
5m

x2
61 x2

62 ... x2
6m

...
...

...
...

x2
n1 x

2
n2 ... x

2
nm







Figure 3: X1 and X2 before whole-case crossover

x2
11 x2

12 ... x2
1m

x1
21 x1

22 ... x1
2m

x2
31 x2

32 ... x2
3m

x1
41 x1

42 ... x1
4m

x2
51 x2

52 ... x2
5m

x1
61 x1

62 ... x1
6m

...
...

...
...

x1
n1 x

1
n2 ... x

1
nm







x1
11 x1

12 ... x1
1m

x2
21 x2

22 ... x2
2m

x1
31 x1

32 ... x1
3m

x2
41 x2

42 ... x2
4m

x1
51 x1

52 ... x1
5m

x2
61 x2

62 ... x2
6m

...
...

...
...

x2
n1 x

2
n2 ... x

2
nm







Figure 4: X1 and X2 after whole-case crossover

7

xj
11 xj

12 ... xj
1m

xj
21 xj

22 ... xj
2m

xj
31 xj

32 ... xj
3m

xj
41 xj

42 ... xj
4m

xj
51 xj

52 ... xj
5m

xj
61 xj

62 ... xj
6m

...
...

...
...

xj
n1 x

j
n2 ... x

j
nm







xj∗
11 xj

12 ... xj
1m

xj
21 xj∗

22 ... xj∗
2m

xj∗
31 xj

32 ... xj
3m

xj
41 xj

42 ... xj∗
4m

xj
51 xj

52 ... xj
5m

xj
61 xj∗

62 ... xj
6m

...
...

...
...

xj
n1 x

j
n2 ... x

j
nm







Figure 5: Xj before and after uniform mutation

3.2 Experiment design

The dataset is from the 1901 Scottish Census[9] and consists of 82,851 records. It was

subsetted to of 5 variables; parish, sex, marital status, age(recoded into agegroup),

and employment status. The employment variable was used as the target variable,

with the other variables serving as as the key. We are comparing solutions from a GA

with different level of elitism2, followed by testing if it is possible to find a synthetic

data with both of the opposite objectives acceptable. The initial population was

formed by 100 datasets that are mutated from the original data, thus they are

sufficiently high in utility at the beginning. The generator takes 0.1 and 0.001 as

crossover and mutation rates respectively.

3.3 Experiment Results and Discussion

As an output we synthesised a single synthetic dataset which has CAP-U= 0.3964

and U = 0.1257. The process took 57 generations to converge to a solution.

2Elitism is a concept which indicates the degree to which an GA focuses on the best candidates

- it is equivalent to the term ”greedy” used in other algorithmic contexts

8

Figure 6: Changing of risk and utility from the best candidates in every generation

during optimising process: 2D

3.4 Comparisons to Other Synthesis Methods

As well as the GA synthesised dataset, we also generated a CART and parametric

synthetic datasets3. Figure 7 shows histograms comparing the counts for the five

variables the the original and the synthetic datasets.

The CART synthetic dataset has DCAP= 0.4186 and the parametric synthetic

dataset has DCAP= 0.3278. Given that the baseline DCAP score for the univariate

is 0.4154, the GA and parametric dataset would be considered no risk since they are

below the baseline and the CART synthetic dataset would have minimal risk since it

is very close to the baseline. While visually Figure 7 shows that all three synthetic

datasets closely follow the univariate distributions of the original we tested this with

a series of chi square tables where:

H0: original=synthetic

HA: original 6= synthetic

The results shown in Table 1 show that for all variables for all synthetic datasets

that the null hypothesis is not rejected, implying that the synthetic dataset have

the same univariate distributions for their variables.

3We used synthpop using the generic precepts with synthesising order parish, sex, marstat,

agegroup, employ.
4Wherein the baseline CAP for record j is the marginal probability of its target variables

estimated from the original dataset,

CAPb,j = Pr(To,j) =
1

n

n∑

i=1

[To,i = To,j] (5)

9

Synthetic Variable Marital Sex Age Parish Employment

Dataset Status Group

GA Chi2 0.2251 0.0604 1.083 1.6138 0.3425

P-Value 0.9411 0.8059 0.9992 1.00 0.8426

CART Chi2 2.0766 1.4065 5.2701 14.621 2.343

P-Value 0.7217 0.2356 0.8102 0.9822 0.3099

Parametric Chi2 2.4702 0.2878 7.8011 8.7484 1.0358

P-Value 0.65 0.5916 0.5543 0.9998 0.5958

DF 4 1 9 28 2

Table 1: Chi Square Comparison Between Original and Synthetic Datasets

We also ran two sets of alternative utility tests. Table 2 shows the propensity

mean square error (pMSE) score (Woo et al, 2009) for the three synthetic datasets5.

Table 2 also includes the standard pMSE and the pMSE ratio. Both introduced by

Snoke et al (2018)[12]. The closer the pMSE is to 0 the better the data performs.

In this instance all synthetic datasets have quite low pMSE scores, however the GA

performs slightly better than the CART and parametric datasets. The GA does not

perform as well on the standardised pMSE and pMSE ratio. According to Snoke et

al, the standardised pMSE has an expectation of 0 and the pMSE ratio of 1. Hence

the CART and the parametric synthetic datasets do perform better in this respect.

5To calculate the propensity scores we used a logistic regression consisting of k = 45 parameters

with no interaction variables.

10

Figure 7: Histogram Comparing Original Data to GA, CART, and Parametric Syn-

thetic Data

Synthetic Dataset pMSE Standardized pMSE pMSE ratio

GA 5.44E-06 -3.9221 0.1638

CART 3.397e-05 0.1106 1.0236

Parametric 3.17e-05 7.077e-06 0.9553

Table 2: Propensity Scores for Synthetic Datasets

While the pMSE is a good broad measure of data utility, we also wanted to test

the synthetic datasets in terms of narrow measures. To that end, we also ran a ratio

11

of estimates (ROE) (see Taub et al, 2016) over a series of bi-variate cross-tabulations,

shown in Table 3. Table 3 shows that all three synthetic datasets average high

ROE scores, wherein a score of 1 would be a replica of the original datasets. The GA

average is slightly less than that of the CART and parametric synthetic datasets.

Variable 1 Variable 2 GA CART Parametric

Marital Status6 Sex 0.7891 0.9486 0.9454

Marital Status Age Group 0.8582 0.9218 0.8742

Marital Status Parish 0.9051 0.8864 0.8487

Marital Status Employment 0.8858 0.9426 0.9469

Sex Age Group 0.8988 0.9661 0.9031

Sex Parish 0.9529 0.9215 0.9462

Sex Employment 0.8931 0.9886 0.9818

Age Group Parish 0.9262 0.8548 0.8798

Age Group Employment 0.8665 0.8693 0.9324

Parish Employment 0.9485 0.8985 0.9106

Average 0.8924 0.9198 0.9169

Table 3: ROE Scores for Two Variables Cross-Tabulations

4 Conclusion

In this paper, we have reported on the use of GAs to produce synthetic data and in

particular of embodying the risk utility trade-off within a single algorithm.

Our experiments indicate that GAs are viable alternative to standard synthesis-

ing methods. The GA produced synthetic data was below the baseline CAP score

indicating that it had low disclosure risk. The GA synthetic data performed simi-

larly to the CART and parametric synthetic datasets (two established forms of data

synthesis) on the utility tests.

Further experiments testing different parameter settings and then implementa-

tions with larger (more realistic) datasets are needed. GA unlike previous methods

for data synthesis could prove a very useful tool in that it’s disclosure risk level can

be pre-set, instead of being left as a post-hoc question.

12

References

[1] Abowd, J. M., and Lane, J. (2004). New approaches to confidentiality protection:

Synthetic data, remote access and research data centres, In Privacy in statistical

databases, Springer, Berlin Heidelberg, 282-289

[2] Chen,Y., Elliot M., and Sakshaug, J. (2017). Genetic Algorithms in

Matrix Representation and Its Application in Synthetic Data, UN-

ECE Work Session on Statistical Data Confidentiality. Ljubljana, Oc-

tober 2018. https://www.unece.org/fileadmin/DAM/stats/documents/ece/

ces/ge.46/2017/2_Genetic_algorithms.pdf.Lastaccess20/12/2017.

[3] Chen, Y.(in preparation). Genetic Algorithms and their Application to Synthetic

Data Generation. PhD Thesis to be submitted to the University of Manchester.

Expected submission date December 2019.

[4] Duncan, G. T., Keller-McNulty, S. A. and Stokes, S. L. (2004). Database

security and confidentiality: Examining disclosure risk vs. data utility

through the R-U confidentiality map, Technical report. Downloaded from

https://tinyurl.com/Duncanetal04 [accessed 12/09/2019]

[5] Elliot, M. (2014). Final Report on the Disclosure Risk Associated with the

Synthetic Data Produced by the SYLLS Team. [online] CMIST. Available at:

https://tinyurl.com/syllsDR

[6] Konak, A., Coit, D. W., and Smith, A. E., (2006). Multi-objective optimization

using genetic algorithms: A tutorial, Reliability Engineering and System Safety,

91(9), 992-1007.

[7] Lu, H., and Yen, G., (2002), Rank-Density-Based Multiobjective Genetic Al-

gorithm, Proceedings of the 2002 Congress on Evolutionary Computation 2002,

944-949

[8] Navarro-Arribas, G. and Torra, V. (2015). Data Privacy: A Survey of Results,

Advanced Research in Data Privacy, Studies in Computational Intelligence. Vol.

567. Springer Switzerland, 27-37

[9] National Records of Scotland, (1901), 1901 Scottish Census.

13

[10] Raab, G. (2018). Personal correspondence.

[11] Shlomo, N., (2010). Releasing Microdata: Disclosure Risk Estimation, Data

Masking and Assessing Utility’, Journal of Privacy and Confidentiality, vol. 2,

no. 1, 73-91.

[12] Snoke, J., Raab, G., Nowok, B., Dibben, C. and Slavkovic, A. (2018). General

and specific utility measures for synthetic data. Journal of the Royal Statistical

Society Series A (Statistics in Society).

[13] Taub, J., Elliot, M., and Saukshaug, J. (2017) A Study of the Impact of Syn-

thetic Data Generation Techniques on Data Utility using the 1991 UK Samples of

Anonymised Records. In proceedings of UNECE Statistical Data Confidentiality

Work Session.

[14] Taub, J., Elliot, M., Pampaka, M. and Smith, D. (2018). Differential Correct

Attribution Probability for Synthetic Data: An Exploration. J. Domingo-Ferrer

and F. Montes (Eds.): PSD 2018, LNCS 11126. pp. 122-137

14

Chapter 6

Summary and Model Integration

The thesis demonstrates that imputation is not the only applicable method in data synthe-
sis. With reasonable settings of utility and disclosure objectives, GAs are also capable of
producing satisfying outputs. The GA synthesiser designed in the thesis has shown the
ability to produce promising results for different datasets (see chapter 5)

Data synthesis, as an SDC technique, aims to generate a new, full or partial synthetic
data that have a measurable closeness to the original data but hide individual respondent’s
confidential information. The background of SDC was summarised in the chapter Statis-
tical Disclosure Control, including several common techniques for SDC like perturbative
and non-perturbative masking. Data synthesis, one of the SDC approaches, was specifi-
cally reviewed in the remainder of the chapter. Starting from the initial conceptualisation
by Rubin [103], the chapter introduces most of common data synthesisers now in use,
such as multiple imputation [103][98], CART [99][17] and DPMPM [65][66], and com-
mon measurements of information utility and disclosure risk. The whole chapter outlines
the theoretical basis for designing GA synthesisers.

Chapter: Machine Learning, Natural Computation and Genetic Algorithms intro-
duced the fundamental theories of GAs, including different methods for operators and
settings for parameters in traditional GAs, common frames for multi-objective GAs and
Matrix Real Coded GAs (MRCGAs), which provided the practical basis for the design of
GA synthesisers. It also raised issues to be considered in later chapters, such as which
method for each operator the GA synthesiser should adopt, how to implement multi-
objective GA synthesisers and whether to use Pareto GAs here.

The idea of implementing GAs in data synthesis was expanded and developed in
the next chapter: Model Design. It explored the potential of GAs in data synthesis by
describing almost all possible methods for the different operators in the GA synthesiser.

176

Since parameter design is a key to improve the efficiency of a GA for a particular problem,
this chapter assists in making decisions on what and how operator methods would be
compared. Moreover, it also discussed how to adapt information utility and disclosure
risks measures to objectives in a GA synthesiser.

Chapter Experiments and Results consists of seven papers that have been or are likely
to be published. The experiments as a group aim to identify suitable operators/parameters
settings for a GA synthesiser. The paper The Impact from Initial Population in GA Syn-
thetic Data Generator tested two characteristics, fitness and diversity, in the initial popula-
tion and summarised their impacts on the efficiency and effectiveness in GA synthesisers.
The paper defined the diversity in the population of a GA synthesiser as the standard de-
viation of Jensen-Shannon divergences between all pairs of candidates. It concludes that
it is not always true that a fitter initial population performs better in searching and diver-
sity also matters. Papers The Application of Genetic Algorithms to Data Synthesis: A
Comparison of Three Crossover Methods [22] and Matrix GA: Building Blocks in Data
Synthesis concentrated on crossover operator design. Besides finding that whole-case par-
allelised crossover (illustration of this method is in Fig 4.7) is the most suitable for GA
synthesisers compared with all six methods in section 4.3, it also conjectures how syn-
thetic data are optimised in a GA synthesiser by illustrating the process of building blocks.
The paper Exploring the Impact of Adaptive Parameters on a Genetic Algorithm Synthe-
siser shows that a plain and fixed operator may not deliver the best candidates to next
generation at all points in the process and claims that endurance of power from suitable
operators can last by using adaptive parameters or dynamic control to the whole process.
Nevertheless, there are no definite rules about how to set up self-adaptive parameters in a
GA synthesiser due to the lack of any theory with which to evaluate the impact of adap-
tive or dynamic parameters on a GA synthesiser. So far, adaptive functions and dynamic
control points can only be defined with a good understanding of the input data. The pa-
per, Impact of Full Contingency Table in Data Synthesis, explored the potential of using
only the full contingency table when measuring utility and compared synthetic datasets
generated by GA and CART. The paper demonstrates that, while using full contingency
table as the only objective in data synthesiser will eventually terminate on the original
data, GA synthesiser still outperform CART. Paper Trade-off between Information Utility
and Disclosure Risk in GA Synthetic Data Generator involves DCAP as a risk objective
in GA synthesisers to contest with full contingency tables and shows that GA is capable
of finding the trade-off between conflicting objectives and therefore produces satisfying
synthetic data.

177

6.1 Model Integration and Flowchart

As most of the previous contents studied only a component (either an operator or parame-
ters) in GA synthesiser, in this section, I shall integrate them and deliver a full view of the
whole model. The synthesiser equips all operator methods that were tested in previous
chapters. It is agile on operator and parameter settings.

GA synthesisers require initialisation (Fig 6.1). i.e. to select particular operator
methods and parameters for the model before running. The first two inputs are the orig-
inal dataset and the population size. For most experiments in this thesis, the population
size is set to 100. The initial population can be generated from a selected generator. Op-
tions in the synthesiser include uniform model, univariate model and mutation model.
Uniform and univariate models generate candidates by independently sampling (with re-
placement) from the uniform and univariate distributions of each variable from the orig-
inal data. Mutation model generates candidates by mutating each cell in the dataset with
a pre-determined mutation rate. Alternatively, users can choose to load the initial popula-
tions generated by other synthesisers (like CART) from a .csv file. In the next step, there
are two boolean questions to be answered: ‘Is the synthesiser adaptive? and ‘Is the synthe-
siser dynamic?. If the answer of the first question is ‘Yes then the model includes adaptive
functions for crossover and mutation rates F(pc),F(pm) (the synthesiser uses linear func-
tions with pre-determined coefficients so far, see paper: Exploring the Impact of Adaptive
Parameters on a Genetic Algorithm Synthesiser), otherwise users are required to inputs
fixed crossover and mutation rates pc, pm. As for the second question, if the answer is
‘Yes then a pre-determined turning condition will be active (also see paper: Exploring the
Impact of Adaptive Parameters on a Genetic Algorithm Synthesiser).

178

Figure 6.1: GA synthesiser flowchart part I: initialising synthesiser

179

In the next step, users make a decision on which methods are used in the selection
operator, the crossover operator and the mutation operator in the synthesiser. Methods
included in the thesis are listed in Table 6.1. Tournament selection (t = 2) and Whole-CPC
are demonstrated to be the most suitable methods for this synthesiser. Other methods can
also be used depending on users’ preference or for any interesting research in the future.

Selection methods Crossover methods Mutation methods
Linear ranking Case Parallelised Uniform*
Tournament* Round-CPC
Roulette wheel Whole-CPC*

Variable Parallelised
Matrix
PUC

Table 6.1: List of methods of selection, crossover and mutation, * indicates the method is
proved to be the most suitable one for the synthesiser so far.

In the main process, the synthesiser (Fig 6.2) starts from evaluating fitness values of
candidates the initial population. The model uses a full contingency table and DCAP in
measuring utility and risk objectives. The whole process iteratively optimises the popu-
lation until terminating conditions satisfied. There are two terminating conditions (1) at
least one candidate in current generation reaches the trade-off of the risk and utility, and
(2) the whole population converges to one candidate for a specific number (the default
value is 20) of generations.

180

Figure 6.2: GA synthesiser flowchart part II: main process

181

Chapter 7

Impacts and Critical Analysis of the
Model

7.1 Impacts

This thesis investigates the potential of implementing a genetic algorithm to data synthe-
sis. Although machine learning is not new to synthetic data production (see [99][38]), the
thesis represents the first attempt to tackle this problem using GAs. GAs have different
properties to other machine-learning data synthesisers to date. GAs simulate more com-
plicated aspects of real-world problems through the interaction between learning agents
and environments by given reward functions. Candidates gain rewards (chance to sur-
vive) from interacting with the environment (objectives). Building these features into the
design of a data synthesiser enables the use of both utility and risk objectives to deter-
mine whether individuals can survive and reproduce. Specifically, it allows us dynamic
monitoring on the change of utility and risks in candidates during the whole process.

7.1.1 Impacts on the SDC field

The GA synthesiser successfully produced synthetic data by using the full contingency ta-
ble as the unique utility objective. It confirms that synthetic data that has better utility also
has less divergence from the full contingency table of the original data and demonstrates
the possibility of producing sufficiently similar synthetic data with a limited set of statisti-
cal properties. Full contingency tables are capable of measuring both the utility and some
disclosure risks of the synthetic data and, compared with other utility measurements, they
give a more straightforward view of the divergence to the original data. Therefore, using
only this measurement can help to capture the change of risk and utility in synthetic data

182

during the process of GA synthesisers.

Paper Trade-off between Information Utility and Disclosure Risk in GA Synthetic
Data Generator demonstrates the existence of a trade-off between disclosure risk and
information utility in data synthesis even though they were proved to conflict with each
other [42][43]. The success of GA synthesiser in this paper also indicated that utility and
risk measures, which used to be post-hoc tests, now can be parts of synthesising models.

Using a full contingency table as the only objective in GA synthesisers will eventu-
ally end up to the original data. Therefore, on the other hand, it proves that there is no
actual gap between data synthesis and data masking in categorical data. First, crossover
in GAs has a similar mechanism to data swapping. Instead of swapping records with
the equivalent data within another set of records chosen based on matching variables,
crossover swaps records in the same position from two synthetic datasets. Depend on
which crossover method is adopted, the number of records swapped can vary from a sin-
gle cell (PUC) to a sub-matrix (matrix crossover). Secondly, it unlikely to have another
dataset that has completely different records as the original data has the same statistical
utility. The better the utility the synthetic data is, the closer it to the original data. GA syn-
thesisers illustrate the solution space of data synthesis by recording how risk and utility
change during its optimising process, and it will be discussed later in the chapter.

7.1.2 Impacts on the GA field

The thesis connects the two fields: GAs and data science and confirms that the algorithm
works well in protecting data confidentiality in a multi-objective environment.

The thesis systematically studied how MRCGA is applied to data synthesis. It inves-
tigated whether operator methods in binary GAs like two-point crossover and PUC can be
adapted to MRCGAs. After finding that the common crossover methods are not efficient,
two new crossover methods (round-CPC and whole-CPC) were designed. Round-CPC
and whole-CPC retain the relationships between variables better than some of the com-
mon crossover methods and have no positional bias. They might have future applications
of GAs in other data science problems. The thesis also explained how building blocks
and self-adaption from binary GAs changed in MRCGAs by investigating how building
blocks and adaptive parameters work in GA synthesisers: Paper Matrix GA: building
blocks in data synthesis illustrates two processes that a GA synthesiser combines lower-
order schema from inferior candidates to higher-order schema to improve the population’s
overall fitness. Meanwhile, paper Exploring the Impact of Adaptive Parameters on a Ge-
netic Algorithm Synthesiser discusses whether adaptive parameters can be applied to ma-
trix GAs or GA synthesisers, and how they impact on the efficiency and effectiveness of

183

the model.

7.2 Critical Analysis of the Thesis

7.2.1 Full Synthesis and Partial Synthesis

Full synthesis produces synthetic versions for all of the records within the original data. It
presumably contains lower disclosure risks than partially synthetic data. It was declared
at the beginning of the thesis that the GA synthesiser is designed for synthesising full,
categorical, single-level data because (1) there is no need to decide target variables and
(2) I only considered the utility of synthetic data at that time and the utility function ought
to be designed over the whole dataset. However, in paper Trade-off between Information
Utility and Disclosure Risk in GA Synthetic Data Generator we used utility function over
the whole dataset but risk function over one target variable. It is then unable to tell, in
this circumstance, if the data produced is fully synthetic data or partially synthetic data.
Moreover, using full contingency tables in the utility objective loses the advantages in full
synthesis (because it will eventually stop at the original data). Therefore risk should also
be concerned while using GA synthesisers.

7.2.2 Model Stability

Even though GA synthesisers produced good-quality synthetic data in many of the cases,
the stability of the model is not measured yet, i.e. whether the model outputs are ho-
mogeneous. Stability of a data synthesiser can be evaluated through the variance of the
estimators of interesting properties from their outputs [95] [40]. Ideally, the smaller the
variance is the stable the synthesiser is and the more homogeneous result it produces.
This is also observed in GA synthesisers from where experiment results in papers The
Application of Genetic Algorithms to Data Synthesis: A Comparison of Three Crossover
Methods and Matrix GA: building blocks in data synthesis, the standard deviation of a set
of outputs from one dataset is sufficiently small. However, there is no mathematical proof
yet for this hypothesis, and it might be an interesting matter for future research.

184

7.2.3 The Application of GA Synthesisers in Continuous and Mixed
Datasets

The whole thesis focused on synthesising categorical data because they are commonly
used in social survey and census data. Working on only categorical data also obeys the
convention of data confidentiality protection, which asks one model to be applied to one
type of variables [27]. Nevertheless, since GAs use a different mechanism from other syn-
thesisers, the synthesiser has potentials to work on continuous data and data that forms
with both continuous and categorical variables (mixed data). Theoretically, as long as
the format of microdata stays the same, all operator methods in the categorical GA syn-
thesiser apply to continuous/mixed datasets. The main obstacles of adapting current GA
synthesisers in continuous or mixed data is the design of fitness function, which has two
possible solutions: (1) to re-design fitness functions for continuous/mixed datasets and
(2) to discrete-lise continuous variables in the datasets.

7.2.3.1 Fitness Function Design for Continuous Datasets

Mateo-Sanz et al. used to suggest that the utility of continuous synthetic data should retain
at least mean and covariance matrix [81]. These were used as the only two properties in
their synthesising model [80]. However, mean and covariance only capture bi-variate
structures, which is not sufficient in multivariate data. Partial correlation coefficients are
commonly used in determining relations between multiple continuous variables. Given a
set of controlling variables x = x1,x2, ..., the partial correlation between variable ρx1x2,x

is the correlation between residuals ex1 and ex2 from linear regression of x1 and of x2

with b f x. Alternatively, the relation in multiple continuous variables can be assessed
by coefficients from their analysis models, like multiple correlation R2 from their linear
regression models.

7.2.3.2 Fitness Function Design for Mixed Datasets

Fitness function design is more complicated in a mixed dataset. Olkin and Tate ever sug-
gested a multivariate correlation model for mixed data [91]. Suppose x = (x1,x2, ...xm)

and y be a set of independent random categorical and a continuous variable. Also suppose
x is multinomially distributed and every variable in (x1,x2, ...xm) has binomial distribu-

185

tion.

f (x1,x2, ...xm) =
m

∏
k=1

pxk
k , xk = 0,1;

m

∑
k=0

xk = 1,

0 < pxk
k < 1,

m

∑
k=0

pxk
k = 1

For given xk = 1, the conditional distribution of y is multivariate normal ∼ N(µ(k),Σ)

where µ(k) = (µ1k, ...,µpk), where k = 0, ...,m and Σ is a positive definite covariance
matrix. Results from multivariate correlation models can then be assembled to the full
contingency table by adding extra dimension. The following table illustrates situation for
x = (x1,x2) and y:

x2 = 0 x2 = 1
x1 = 0 n(0,0) n(0,1)
x1 = 1 n(1,0) n(1,1)

Table 7.1: A contingency table for x = (x1,x2)

x2 = 0,y x2 = 1,y
x1 = 0,y y|(x1 = 0,x2 = 0) y|(x1 = 0,x2 = 1)
x1 = 0,y y|(x1 = 1,x2 = 0) y|(x1 = 1,x2 = 1)

Table 7.2: Adding extra dimension for the conditional distribution of y to table 7.1

The model assumes every categorical variable in the dataset to be binary, otherwise
it requires extra dummy variables, which massively increases the workload to the synthe-
siser. A more efficient model is required for evaluating the utility of mixed datasets, and
it will be an interesting topic for future research. Without such a feasible measure to the
dataset’s fitness, an alternative approach is to discrete-lise continuous variables in mixed
datasets, so they are usable in the current (GA synthesiser) model.

7.2.3.3 Discrete-lising Continuous Variable in Mixed Datasets: an Example

This section gives an example of how to discrete-lise a continuous variable step by step.
One possible way to discrete-lise a continuous variable is to convert its records according
to its histogram bins. For example, LIMIT BAL is a continuous variable recording a
bank’s monthly credits given to its clients. The value varies from £10000 to £800000.

186

CLIENT ID LIMIT BAL

1 210000
2 330000
3 50000
4 180000

...
...

22500 750000

Table 7.3: LIMIT BAL

Its default histogram generated by numpy.histogram in Python 3.7 contains 8 bins,
and each can be assigned a position index, which is integer in [0,7].

Figure 7.1: The histogram of LIMIT BAL

Bin [10000,
108750)

[108750,
207500)

[207500,
306250)

[306250,
405000)

[405000,
503750)

[503750,
602500)

[602500,
701250)

[701250,
800000)

Index 0 1 2 3 4 5 6 7

Counts 9414 5865 3760 2099 1220 84 42 16

Table 7.4: Explanation of the histogram of LIMIT BAL, including boundaries of bins,
position indices and counts of client

Using information from Table 7.4, LIMIT BAL now can be discrete-lised to an 8-
categories variable by replacing its true records with their corresponding position index.

187

CLIENT ID LIMIT BAL

1 2
2 3
3 0
4 1

...
...

22500 7

Table 7.5: Discrete-lised LIMIT BAL

It should be aware that discrete-lising continuous variables always sacrifices some
information utility because the variable will not be perfectly restored. Therefore, select-
ing an appropriate approach to restore the records in discrete-lised variables is important
in controlling information loss under a certain level. These records can be restored by
randomly sampling values within the range of their corresponding bins using a chosen
distribution. Uniform distribution U(a,b) was used in this case, of those parameters
(a,b) are determined by the boundaries of bins, for example, if the record in discrete-
lised LIMIT BAL is 2, then it will be restored by sampling from U(207500,306250),
where [207500,306250] is the range of the corresponding bin with position index 2. The
restored version of LIMIT BAL is:

CLIENT ID LIMIT BAL

1 225925
2 332914
3 93020
4 175166

...
...

22500 752882

Table 7.6: Restored LIMIT BAL by randomly sampling values from their corresponding
bins using its uniform distribution

Pearsons correlation between the original and restored LIMIT BAL is 0.9984, which
confirms that the two variables have very similar trends. Their histograms also prove
the similarity between these two variables and verify that uniformly sampling values
from its corresponding bin is a feasible approach to restore the discrete-lised version of
LIMIT BAL thus, discrete-lising by its histogram works for this variable.

188

Figure 7.2: Histograms of original LIMIT BAL and restored LIMIT BAL

Discrete-lising is so far the most feasible approach to synthesise mixed datasets in
GA synthesisers. However, as the method always sacrifices information utility and some-
times the modified variables may not be restored. It should be used with cautions. Finding
proper fitness functions for mixed datasets is still desirable and will be an interesting re-
search question.

7.2.4 The Comparison between Single-objective and Pareto-Optimal
GA Synthesisers

When designing a GA for a real-world problem, there is invariably more than one objec-
tive to be considered. These objectives are sometimes opposed to one another, and this
applies to information loss and disclosure risk in synthetic data. One general approach
to deal with these objectives is to compose them into a single function with determined
weights (single-objective GAs). We used this method in paper Trade-off between In-
formation Utility and Disclosure Risk in GA Synthetic Data Generator by given equal
weights to utility and risk objectives. However, the selection of weights is easy to get
wrong and even a small difference in weighting can lead to different solutions. An al-
ternative method is to compute a Pareto optimal solution set in where no candidate is
dominated by one another (see Def 3.9.1. Common frameworks of Pareto-optimal GAs
were introduced and compared previously (section 3.9). In this section, I shall discuss
the potential of using Pareto-optimal GA in data synthesis by using Niched-Pareto GA
(NPGA).

Horn et al. proposed NPGA in searching for Pareto-optimal solutions. Its selection
operator consists of two parts: Pareto domination tournaments and non-dominant tour-
nament. The first part helps to find dominantly optimal candidates, and the second one
keeps diversity in the population during the process [64]. Details of NPGA was given in
section 3.9.1.1.

189

7.2.4.1 Experimental Results for an NPGA and a SOGA models

NPGA is run with the same settings as in paper: Trade-off between Information Utility
and Disclosure Risk in GA Synthetic Data Generator. Recall the data and experiment
design in this paper: the dataset consists of 82,851 records. It was subsetted to consist of
5 variables; parish, sex, maristal status, agegroup, and employ. The employ variable was
used as the target variable, with the other variables serving as the key. Initial populations
for both GAs contain 100 datasets that slightly mutated from the original data. They are
sufficiently high in utility at the beginning so low rates for crossover and mutation, 0.1
and 0.001 respectively, are used. Selection method is the only difference between the two
models: SOGA was equipped with tournament selection with tournament size t = 2 and
NPGA used Pareto tournament with mi = 5 and di, j = 0.05.

The two GAs were ran for 500 generations and the best candidate in every gener-
ation was recorded. As shown in Fig 7.3, SOGA showed a sharper trend then NPGA;
it instantly reduced the risk at the beginning then the whole population converging after
approximately 200 generations. Meanwhile, SOGA did not explore much in the solution
space. NPGA, on the other hand, intended to find more solutions during its process. Both
models went to a very low-risk level after 500 generations.

(a) SOGA (b) NPGA

Figure 7.3: Changing of the risk and utility from the best candidate in SOGA and NPGA
in 500 generations

Initial populations for both models were formed by datasets that slightly mutate from
the original data so they had high utility (low divergence to the original data) and all
candidates were similar at the beginning. However, after 500 generations, populations in
SOGA and NPGA showed different distributions (Fig 7.4).

190

(a) SOGA (b) NPGA

Figure 7.4: Divergence-Risk map for the last population in SOGA and NPGA after 500
generations

The experiment confirms the capability of either SOGA or NPGA in optimising syn-
thetic data with contrast objectives. SOGA is more efficient in finding optimal (trade-off)
solutions. However, more diversity appeared in solutions found during the process of
NPGA as well as its last population, which considerably takes cares of different prefer-
ence from users.

7.2.5 Jensen-Shannon Divergence in Full Contingency Table: Ad-
vantages and Disadvantages

Jensen Shannon divergence DJS in full contingency table is an important statistic the
thesis: it was used as the only measure of information utility in most experiments. Pa-
per Impact of Full Contingency Table in Data Synthesis demonstrated that synthetic data
with smaller DJS in the full contingency table to the original data would maintain more
statistical properties. Full contingency tables were also used to determine disclosure risk
(DCAP) in paper Trade-off between Information Utility and Disclosure Risk in GA Syn-
thetic Data Generator. Barak et al. confirmed that contingency table could evaluate not
only the accuracy of a synthetic dataset by comparing synthetic and original records but
also privacy and consistency of the synthetic dataset by checking the presence or absence
of any single record that may or may not substantially contain disclosure risks. Thus,
besides of DCAP, full contingency table enables any independent and post-hoc privacy
model to serve as a risk objective for GA synthesisers, for example, differential privacy.
Given the definition of differential privacy (Def 2.3.5), the relationship between ε,δ and
contingency table is defined as [8]:

Definition 7.2.1. Let C be a set of marginals of the contingency table for at most j bi-

191

nary variables. Marginals from C′, a positive, integral contingency table, preserves ε-
differential privacy, such that with probability 1−δ for any marginal c ∈C:

||c− c′||1 ≤ 2 j+3|C| log
|C|
δ

/ε + |C|

Moreover, paper Impact of Full Contingency Table in Data Synthesis indicates that
GA synthesiser is (ε,0)-differentially private, where outputs from this model are equally
likely to be observed on every neighbouring dataset of the original dataset (neighbouring
datasets are defined as datasets that only has one record different from each other [46]).
Meanwhile, in the solution space of GA synthesiser, ε is equivalent to the boundary of
candidates whose risk exceed the maximum tolerable value (see Fig 7.5).

Solution Space

Boundary
Original Dataε

Figure 7.5: ε in the solution space of a GA synthesiser

Although DJS in full contingency tables enabled the GA synthesiser to successfully
produced many synthetic datasets in this thesis. I noticed that the calculation of the statis-
tic is less efficient when the number of variables increases as the function creates more
sparsity in the contingency table. Sparsity describes a matrix or dataset in which most of
the elements are zero. It costs more storage space and operational time and undesirably
diminishes the difference between two datasets or matrices when the volume of zeros
overwhelms non-zeros. There are several solutions. For example, Connor et al. proposed
an algebraic deduction to reduce the similarity in sparse data [28]. Recall the definition
of DJS: DJS is designed from Kullback-Leibler divergence DKL, which measures the di-
vergence between two probability distributions. For two discrete probability distributions
P and Q:

DKL(P||Q) = ∑
i

P(i) log
P(i)
Q(i)

By given M = 1
2(P+Q),

DJS(P||Q) =
1
2

DKL(P||M)+
1
2

DKL(Q||M)

Connor et al. introduced a kernel function F (x,y):

F (x,y) = h(x)+h(y)−h(x+ y)

192

, where h(x) =−x log2(x), to transfer the formulae of DJS to:

D′JS(P||Q) = 1− 1
2 ∑

i
F (P(i),Q(i)) (7.1)

Now the divergence only takes values in P(i) and Q(i) that are non-zeros. F can be
regarded as a similarity ‘accumulator’ with threshold value r, where r = 2 means perfect
similarity: √

1− 1
2 ∑

i
F (P(i),Q(i))< r

Other solutions that can be adopted by GA synthesisers to solve sparsity in DJS include
[113] and [77]. Solving sparsity in high-dimensional statistics like full contingency table
is an interesting topic, and I shall leave it for future research.

Besides of sparsity, another disadvantage of DJS is that the divergence is not a metric.
A metric d is a distance measure between every pair of points x,y in a metric space M. It is
used in measuring the diversity of populations in GAs [70] or similarity between datasets
[126]. M must satisfy three properties:

1. d(x,y)≥ 0 and d(x,y) = 0 iff x = y.

2. (symmetry) d(x,y) = d(y,x)

3. (triangle inequality) d(x,y)≤ d(x,z)+d(z,x)

Mathematically, these properties express intuitive notions about the concept of distance
but DJS indeed does not obey the two of them (triangle inequality and symmetry). It
prevents us from thinking about the solution space using common senses that we usually
used in Euclidean geometry. Therefore, although we attempted to illustrate solution space
and divergence-risk map for data synthesis in the thesis like Fig 7.5 and Fig 7.4, they did
not accurately present the real information of the solution space. So does in paper The
Impact from Initial Population in GA Synthetic Data Generator, where DJS was used to
measure population diversity, but the diversity is not in a metric space. Moreover, using
a non-metric distance measure may be the primary cause of failure in the NPGA model,
which requires to calculate the distance between candidates in niches. It is foreseeable
that other Pareto-GAs may fail due to this reason and research on how to metricise the
divergence between two datasets should be conducted.

This section suggests two topics for future research: an efficient way to ameliorate
the effect of sparsity in Jenson-Shannon divergence and a metricised distance measure
between synthetic datasets. The former can enable GA synthesisers to work on larger
datasets and improve its computational efficiency. The latter provides not only the real
representation of the solution space of GA synthesisers or other privacy models but also
might enable multi-objective GAs to find Pareto-optimal solutions.

193

7.3 Chapter Summary and Closing Remarks

In this chapter, I gave some critical analysis to the thesis and proposed potential research
topics for future study of the GA synthesiser. Although the implementation of GAs in data
synthesis was demonstrated successful, there are still many under-investigated potentials.

GAs showed agility during the process of synthesising and efficiency in producing
acceptable synthetic data by monitoring both utility and risk objectives. The success of
generating synthetic data using GAs give the idea that imputation is not the only way to
synthesise microdata and it can be achieved by reinforcement learning algorithms as long
as the definitions and functions of objectives are clear and universal.

194

Appendix

A Genetic Algorithm Approach to Synthetic Data Produc-
tion

The paper explained the initial framework to synthetic data generation using genetic algo-
rithms. This framework was believed applicable because its evolutionary and competitive
process allows to comparing different synthetic versions of the original data and inheriting
their advantages into the optimal solution.

195

A Genetic Algorithm Approach to Synthetic Data
Production

Yingrui Chen
University of Manchester

Oxford Road
Manchester M13 9PL
+44 (0)161-275-4257

yingrui.chen@manchester.ac.u
k

Mark Elliot
University of Manchester

Oxford Road
Manchester M13

+44 (0)161-275-4257

mark.elliot@manchester.ac.uk

Joseph Sakshaug
University of Manchester

Oxford Road
Manchester M13 9PL
+44 (0)161-275-0271

joe.sakshaug@manchester.ac.
uk

ABSTRACT

This paper explains a potential approach to synthetic data

generation using genetic algorithms. It based on the principle that

optimisation can be strong, accurate and efficient if there is

sufficient prior knowledge of solution space. This approach is

applicable because its evolutionary and competitive process

compares different synthetic versions of the original data and

combines their fitness in the finalised dataset.

Key words: Synthetic Data; Data Privacy; Genetic Algorithms;

Modern Optimisation

CCS Concepts

Security and privacy➝ Database and storage security➝
Data anonymization and sanitization

Keywords

Synthetic Data; Data Privacy; Genetic Algorithms; Modern

Optimisation;

1. INTRODUCTION
A key question in data privacy is whether anonymised versions of

data can be created so that sharing or dissemination for re-use is

possible. Orthodox approaches to anonymisation are largely based

on statistical disclosure control. Residual risk is always present in

disclosure controlled datasets as through linkage processes,

statistical disclosure can still occur as units are re-identified.

Synthetic data generation is a strong method for controlling the

risk of statistical disclosure. The goal is to preserve the analytical

properties of the original data so that the utility of the original data

is retained but privacy is protected. The methods in generating

synthetic data are classified into full synthesis and partial

synthesis. With partially synthetic dataset residual re-

identification risk will still be present in the non-synthesised

variables although this can be minimised through careful selection

of the variables to be synthesised. In a fully synthetic dataset re-

identification risk is effectively negligible even though all

variables are retained. Privacy risks are therefore minimised and

because of this, the potential of usable synthetic data is huge. For

example, it would be possible to publish open data versions of

sensitive datasets without concern for a confidential breach and

this in turn would mean that much of the economic and social

value of data currently hidden behind firewalls could be unlocked.

The key problem is retaining sufficient analytical value in the

synthetic version of the data. With orthodox methods of synthetic

data production this entirely depends on the comprehensiveness of

the data generation model used [12]. Properties that are not

explicitly captured in the model used to generate synthetic data

will not usually be retained in the dataset. Thus, unforeseen

analyses might lead to results rather different to the same analysis

on the original data [16]; this is the problem of analytical

invalidity which does also beset orthodox disclosure controlled

data [20]. So in essence, synthetic data has not – at present –

fulfilled its undoubted potential as safe mechanism for releasing

useful data because analysts do not trust its utility.

A key issue is that because most synthetic data methods are model

driven; optimisation of solutions is essentially post hoc; an

alternative approach is to make optimisation the core of the

process and indeed Drechsler (2010) has proved that modern

optimisation tools have some potential in synthetic data

generation [11]. Although Mateo-Sanz et al (2004) commented

that iterated data generation processes will prolong running time

and increase method complexity [17], iteration can also optimise

an object globally and its operation is – in principle - flexible and

controllable.

Genetic algorithms are a form of optimization that use random

processes to search a solution space. The unique combination of

reproduction and crossover procedures means that their overall

efficiency exceeds that of random search (Cortez, 2014) [6].

This paper will discuss the potential for genetic algorithms (GA)

in synthetic data production. In short, we believe that GA has the

potential to solve the synthetic data utility problem. With a well

specified set of analytical properties extracted from the original

data acting as a fitness function the GA would search the space of

possible datasets for a good solution. A priori we know that there

exists at least one solution - the original data - which will

perfectly meet the criteria. There will also be a very large but

finite set of possible datasets which are a close approximation to

the original dataset. Our initial task is to specify a methodology

for finding one of those datasets. Once we have achieved that then

we can also add into our fitness function the additional constraint

of protecting privacy (preventing re-identification and/or attribute

disclosure). The impact of the utility constraints will be to attract

the search towards the original dataset; the impact of the privacy

constraint will be to repel the search away from the original data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

PrAISe '16, August 29 - 30, 2016, The Hague, Netherlands Copyright is

held by the owner/author(s). Publication rights licensed to ACM. 

ACM 978-1-4503-4304-6/16/08...$15.00 

DOI: http://dx.doi.org/10.1145/2970030.2970034

In the remainder of paper we talk trough the elements of the

standard GA approach and demonstrate how they apply to the

synthetic data generation use case.

2. A GENETIC ALGORITHM APPROACH

2.1 Preliminaries
Genetic Algorithms (GA) are bio-inspired optimisation methods.

They start with an initial population1 with N > 2 candidates. These

candidates generate new generations by exchanging information

with each other and/or mutating. Under a fitness test a “good”

candidate will be more likely to bear offspring that bring its

properties whereas a “bad” one will die off. The fitness tests

(which are essentially a set of optimization criteria) mean that the

pool of candidates will tend to converge on the optima with each

generation. The success of an algorithm greatly depends on the

quality of its fitness function. A general GA contains initialization

and recombination in its process. It is usually made up of 5 steps:

initial population selection, reproduction, crossover, mutation and

replacement [18].

2.2 Initial Selection of Candidates
The initial selection of candidates does not need to preserve any

properties from the original data and can be any same sized

dataset filled by any data usually with the constraint that the

metadata is respected. Although research suggests that diversity of

the initial population is vital for efficiently reaching global

optima, we will add to the computational workload by introducing

randomly generated datasets in this problem. Based on Mateo-

Sanz, Martínez-Ballesté and Domingo-Ferrer (2004) work on

utility parameters for synthetic data, the initial population of

candidate datasets could be composed of N datasets that preserve

variable mean and the covariance matrix of original data [17].

However, this would increase the difficulty in setting up the

candidates in the initial population (which would itself become an

optimization problem) and so we will only preserve one or other

of the conditions in any given candidate.

2.3 Fitness Functions
A good synthetic dataset will preserve inferences drawn from the

original observed data. So, the fitness of an individual dataset

should be tested against the inference parameters. The fitness

function is formed by multiple constraints, which are referred to

as objectives in GA. Multi-objective problems normally prevent

simultaneous optimization. Generally we combine these

objectives into a single function with empirically or theoretically

derived weights. For example, we take variable means and

covariance as two parameters to evaluate data utility. As proved

by Drechsler (2010) [10], they sufficiently cover basic features of

a dataset. The objectives of the process are expressed as:

(1) Minimise the sum of squared error of variable means.

(2) Minimise the sum of squared error of variable covariance.

The fitness values of candidates can be calculated as the scalar

product of the two sums of squared error. However, selection of

1 The term “population” has a meaning within the dataset milieu

that refers to the set of entities that the data represents (or is

drawn from). So that a reader fram that community is clear, here

we mean the set of all datasets currently in the pool of

candidates to reproduce.

weights can be critical and small differences can lead to different

solutions. Moreover, a single function will return a single solution

thus the trade-off between objectives cannot be examined. The

second way to deal with this problem is to compute a Pareto

optimal solution set. This is a set of solutions that are non-

dominated with respect of each other and there is always a certain

amount of sacrifice in some objectives to achieve a desired level

of other objectives while moving from one Pareto solution to

another [14].

When using similarity between two datasets as the optimal

strategy, the optimal solution will tend to be the original dataset;

this implies that disclosure risks (which are also a de facto

analytical property) will also re-emerge. Therefore, new

objectives will be employed to minimise disclosure risk once the

average fitness of the population reaches an acceptable level.

2.4 Reproduction
Reproduction, or selection, increases the likelihood of datasets

passing on good properties to the next generation. Selection

schemes are described based on the fitness distribution of the

population before and after selection, thus only two factors are

involved in this step: fitness values and candidates [4]. The fitness

of each candidate dataset is evaluated by user-determined fitness

functions, as described in the previous section. Higher-scoring

datasets will (be more likely to) mate with others and generate

offspring datasets, whereas lower-scoring ones are eliminated.

Parents are selected with replacement so that one candidate can

mate more than once [18]. Selection methods should be designed

for particular problems but they all follow the principle that a

better-fitted individual can be assigned a higher reproduction

probability. The selection method can also kill less fit candidates

to shrink population size and improve average performance of this

generation and guarantees that no “bad” datasets pass to the next

generation [3, 19]. Following Blickle and Thiele (1995), a

selection method is a function to change the way that candidates

allocated to each fitness value, also known as fitness distribution.

The change between two fitness distributions over the population

can be measured by the difference between average fitness in

every generation, also known as selection pressure. High selection

pressure is ideal. However, it is difficult so say which selection

method provide the greatest pressure best because their selection

pressure partly depends on how the methods themselves are

operationalised [4]. For example, the selection pressure in

tournament selection depends on the sample size drawn from the

population. In truncation selection it depends on the proportion of

best candidates in the population 𝑇. In the very beginning of the

process we can use truncation selection because we have a dataset

population generated from different conditions and the method

gives the fraction 𝑇 best candidates the same selection probability.

The reproduction rate denotes the ratio of the number of

individuals with a certain fitness value before and after selection.

It helps control the size of gene pool. A selection method should

preserve datasets with the best fitness by assigning them a higher

reproduction rate. According to Blickle and Thiele (1995), the

reproduction rates should be greater than 1 for good candidates

but less than 1 for bad candidates [4]. However, there is no clear

boundary between good and bad individuals, so an adaptive

reproduction rate will be preferable for this problem. For example,

reproduction rates in one generation might be exponential or

proportional to the ranks of fitness of individuals in the

generation. Similarly to selection pressure, the reproduction rate

also depends on the embedded features of selection methods so

we cannot say if there is a best method. However, since the

process is dynamic, we could switch to different selection

methods anytime to control the balance between utility and

disclosure parameters.

2.5 Crossover
Selected datasets mate on randomly chosen positions with

crossover probability 𝑝𝑐, normally drawn from a parameterised

range [21]. Although since Goldberg (1989), GA has normally

been processed using encoded strings and there are examples

using real-coded matrices [19, 22] and this is the appropriate

formulation for the synthetic data problem. Matrix GA can display

more appropriate phenomena structures and has proved useful for

multivariate adaptive control. It not only optimises the fitness of

individual values but their relationship with surrounding locations.

The fitness of candidate is evaluated by comparing all

chromosome matrices to a reference matrix (also known as key

matrix) obtaining fitness values from the degree of convergence

[23]. Suppose a set of synthetic datasets 𝑌𝑖 is displayed in matrix

format with entries 𝑦𝑖𝑗𝑘
. In the crossover step, a “rectangle” is

randomly positioned in any two selected 𝑌𝑖 and their records

would be exchanged:

Figure 1. Matrices and selected “rectangle” before crossover

Figure 2. Matrices and selected “rectangle” after crossover

A high crossover probability can result in population explosion in

the pool whereas a low probability may lose the chance to pass

good properties to the new generation. Considerations of

computational capacity, suggest using small initial population to

avoid the growth of population outpacing the increase of average

fitness. Srinivas and Patnaik (1994) indicated that crossover

probability 𝑝𝑐 could be adaptive. In fact, the value of 𝑝𝑐 should be

negatively related to the level of convergence. The convergence of

the current population can be observed from the difference

between the maximum fitness value 𝑓max and the average fitness

value of current population 𝑓̅. Therefore,

𝑝𝑐 = 𝑘𝑐/(𝑓max − 𝑓̅)

where the existence of 𝑘𝑐 ≤ 1.0 constrains the value of 𝑝𝑐 to the

range of [0.0, 1.0] [22].

2.6 Mutation
Mutation ensures that the database is not developed from a

uniform population. However, it does not always advance the

search optimally. Alba and Marsili Libelli (2000) suggest that the

mutation rate should be adaptive and inversely proportional to the

individual’s fitness value [2]. Srinivas and Patnaik (1994) claimed

that mutation probability should be inversely proportional to the

level of convergence of current population just like the crossover

case.

𝑝𝑚 =
𝑘𝑚

𝑓max − 𝑓̅
, 𝑘𝑚 ≤ 1.0

The use of mutation reduces the likelihood of the pool of

candidate solutions becoming stuck in local optima, especially

when we intend to use a small population at the beginning [22].

One approach that we will explore is to implement mutation for

only part of the GA process.

2.7 Replacement
Traditionally, new datasets after crossover will replace old

datasets and from the new generation. In order to preserve the

good performance, Wei (2003) proposed preserving the whole of

previous generations in the gene pool. Allowing parents to

compete does reduce the risk of cycling around within local

optima but also increases running time [24]. Therefore, we will

explore a variety of mechanisms for including the most fit parents

from the previous generations.

3. SUMMARY
In this paper we have outlined a new approach to synthetic data

generation based on genetic algorithms. Implementing GA for

synthetic data generation involves random searching in a solution

space of possible datasets based on optimisation criteria (which

are properties of the original dataset) expressed as a fitness

function. This randomness breaks with the traditional approach to

fully synthetic data based on predictive distributions, and

especially those using the multiple imputation approach.

Generating synthetic data through GA has potential value because

its evolutionary and competitive process compares different

synthetic versions and combines their fitness in the finalised

dataset. This means that we can explore different fitness function

permutations to establish which are sufficient for a full set of

analytical properties to emerge. This will move us away from the

core problem of the model based approach that it arbitrarily

constrains the solution.

In order to have a fast-converging GA approach, datasets in the

initial population are designed to share at least one property with

the original dataset. These properties could include (but are not

limited to): mean vectors, covariance matrices, univariate

distributions and equivalence class structures. A selection of these

properties will form the initial suite of fitness indicators that will

be combined into a single fitness measure. Assessing the

appropriate mix of indicators and their weights will be a

significant element of the research programme.

Once we have established whether it is possible to produce high

utility synthetic datasets using this approach we will then consider

the issue of residual disclosure risk. Although, as we have

asserted, the risk of re-identification is negligible their remains the

possibility that an unconstrained synthetic data generator may

reproduce the original dataset or something very close to it and

therefore we will need to consider the disclosure risk as a

competing constraint.

One advantage in GA is real-time parameter control. Thus our

process will be flexible. We will add in parameters to the fitness

function in later stages of the process to balance information

utility and disclosure risks. We set up crossover probability and

mutation probability changes by the state of convergence of the

current population to avoid pool explosion or pre-converging to

local optima.

4. ACKNOWLEDGMENTS
Our thanks to ACM SIGCHI for allowing us to modify templates

they had developed.

5. REFERENCES
[1] Abowd, J. M., and Lane, J. 2004. New approaches to

confidentiality protection: Synthetic data, remote access and

research data centres. In J. Doming-Ferrer, and V. Torra

(eds), Privacy in statistical databases, Berlin Heidelberg:

Springer. 282-289.

[2] Alba, P., and Marsili Libelli, S. 2000. Adaptive Mutation in

Genetic algorithms. Soft computing, 4, 2, 76-78.

[3] Alabsi, F., and Naoum, R. 2012. Comparison of Selection

Methods and Crossover Operations using Steady State

Genetic Based Intrusion Detection System. Journal of

Emerging Trends in Computing and Information Sciences, 3,

7, 1053-1058.

[4] Blickle, T., and Thiele, L. 1995. A Comparison of Selection

Schemes used in Genetic Algorithms, TIK Report 11, 2

(December, 1995).

DOI=ftp://129.132.2.212/pub/publications/TIK-Report11.pdf

[5] Bolboaca, S. D., Jantschi, L., Sestras, A. F., Sestras, R. E.,

and Pamfil, D. C. 2011. Pearson-Fisher Chi-Square Statistic

Revisited. Information, 2, 3. 528-545.

[6] Chang, W. A., and Ramakrishna, R. S. 2003. Elitism-based

compact genetic algorithms. IEEE Transactions on

Evolutionary Computation, 7, 4. 367-386.

[7] Chudasama, C., Shah, S.M., and Panchal, M. 2011

Comparison of Parents Selection Methods of Genetic

Algorithm for TSP. In International Conference on

Computer Communication and Networks CSI-COMNET-

2011. 85-87.

[8] Cortez, P. 2014. Modern Optimization with R. New York:

Springer. v.

[9] Dillard, B. L., and Gibson, H. R. 2016. Elementary Statistics;

4th Edition. Dubuque, IA: Kendall Hunt Publishing

Company.

[10] Domingo-Ferrer, J., and Rebollo-Monedero, D. 2009.

Measuring risk and utility of anonymized data using

information theory. In Proceedings of the 2009 EDBT/ICDT

Workshops, ACM. 126-130.

[11] Drechsler, J. 2010. Using support vector machines for

generating synthetic datasets. Privacy in Statistical

Databases, Berlin Heidelberg: Springer: 148-161.

[12] Drechsler, J. 2014. Synthetic data, where do we come from?

Where do we want to go? Presentation at Synthetic Data

Workshop, Office of National Statistics (Titchfield, UK,

December, 2014).

[13] Duncan, G., Elliot, M. and Salazar-Gonzalez, J. 2011.

Statistical Confidentiality: Principles and Practice. New

York: Springer.

[14] Konaka, A., Coitb, D., and Smith, A. 2006. Multi-objective

optimization using genetic algorithms: A tutorial. Reliability

Engineering and System Safety, 91, 9. 992-1007.

[15] Little, R. 1993. Statistical Analysis of Masked Data; Journal

of Official Statistics, 9, 2. 407-426.

[16] Torra, V. 2010. Privacy in Data Mining. In O. Maimon and

L. Rokach (eds). Data Mining and Knowledge Discovery

Handbook. New York: Springer Science & Business Media,

687-716.

[17] Mateo-Sanz, J. M., Martınez-Balleste, A., and Domingo-

Ferrer, J. 2004. Fast generation of accurate synthetic

microdata. In J. Domingo-Ferrer and V. Torra (eds.) Privacy

in Statistical Databases. Berlin Heidelberg: Springer. 298-

306.

[18] Mitchell, M. 1998. An Introduction to Genetic Algorithms.

Cambridge MA: MIT Press.

[19] Miller, B., and Goldberg, D. 1995. Genetic Algorithms,

Tournament Selection, and the Effects of Noise, Complex

Systems, 9, 3. 193-212.

[20] Purdam, K., and Elliot, M. 2007. A case study of the impact

of statistical disclosure control on data quality in the

individual UK Samples of Anonymised Records.

Environment and Planning A, 39, 5. 1101-1118.

[21] Sun, L., Zhang, Y., and Jiang, C. A. 2006. Matrix real-coded

genetic algorithm to the unit commitment problem. Electric

Power Systems Research, 76, 9. 716-728.

[22] Srinivas, M., and Patnaik, L. M. 1994. Adaptive Probabilities

of Crossover and Mutation in Genetic Algorithms. IEEE

Transactions on systems, Management and Cybernetics, 24,

4. 656-668.

[23] Wallet, B. C., Marchette, D. J., and Solka, J. L. 1996. A

matrix Representation for Genetic Algorithms. In

Proceedings of Automatic Object Recognition IV of SPIE

Aerosense; Naval Surface Warfare Center Dahlgren

(Virginia. May, 1996). 206-214.

[24] Wei, G. 2003. An Improved Fast-convergent Genetic

Algorithm. In Proceedings of 2003 IEEE International

Conference on, Robotics, Intelligent Systems and Signal

Processing, 2: 1197-1202.

Glossary

• Adaptive GAs are GAs those parameters (crossover rates, muta-
tion rates and population sizes) depend on the current stage of the
process.

• Attribution or attribute disclosure refers to disclosure of target
variable values from one or more equivalence classes.

• Background knowledge attack occurs when intruders build up a
connection between published quasi-identifiers and auxiliary in-
formation that may come from their knowledge or external data.

• Building block hypothesis GAs optimise a population through
the juxtaposition of short, low-order, high-performance building
blocks (schema).

• Candidates refer to an individual in the searching space of GAs.

• CPC stands for ‘case-oriented parallelised crossover’ that has par-
allel crossover operations on every case (row) between paired can-
didates.

• Crossover allows candidates in the pool have a randomly chosen
part of its information swapped with its paired candidate under a
pre-determined crossover rate pc.

• Equivalence class (in a dataset) is a set of records that have same
values for a given set of variables (normally the quasi-identifiers).

• Fitness distribution is the function s : R−> Z+
0 that maps a fit-

ness value f ∈ R to the number of candidates in the population
that has the same fitness value.

• Full synthesis/Fully synthetic data is artificial data that contains
no actual information of respondents.

200

• Homogeneity attacks occurs when an equivalence class in a dataset
does not have enough diversity therefore intruders can find values
of sensitive variables in the class.

• Loss of diversity is the proportion of candidates in the population
that is not selected by a selection operator.

• MOOPs stand for multi-objective optimisation problems.

• Microdata is a dataset that can represent in a matrix format in
which columns are variables and rows are cases.

• MRCGAs are matrix real-coded GAs.

• Mutation enables a newborn candidate to change a piece of its
information under a certain mutation rate.

• Partial synthesis/Partially synthetic data synthesises only se-
lected records, for example quasi-identifiers, in the original data.

• Pool is where selected candidates stored and where the later pro-
cess (crossover and mutation) occurs during the process of GAs.

• Positional bias occur when the disruption and recombination of
a schemata depend on its position in the candidate.

• Population (in GAs) refer to all candidates in the current genera-
tion.

• Population unique is a population unit that has unique values on
a set of quasi-identifiers within that population.

• PUC stands for ’parametric uniform crossover’, namely the crossover
occurs on each cell of the dataset in a pre-determined probability
p0.

• Quasi-identifiers are not themselves uniquely identify respon-
dents but may create a unique identifier when combined with
other quasi-identifiers.

• Ranking selection is a selection method in GAs in where all can-
didates are first rearranged in ascending order according to their
fitness values and their chance to be selected is either linearly or
exponentially proportional to the ranks.

• Replacement occurs after crossover and mutation, where the old
population is replaced by new candidates.

201

• Reproduction rate calculates the ratio of the number of candi-
dates with a certain fitness value before and after selection.

• Re-identification or identification disclosure occurs when at-
tackers can identify a natural person within released data.

• Roulette wheel selection is a selection method in GAs that spreads
the chance of selection to every candidate according to its fitness
value. It simulates a roulette wheel with one pointer and plate that
the area of each candidate is given by dividing its fitness by the
total fitness.

• Round-CPC uses the same method as CPC to select the two end-
points from a case, then it decides to swap the elements between
or out of the two endpoints by equal probability, which gives equal
chance to the elements at the margin or centre of each row (case).

• Schema are the formal notions of building blocks that are discov-
ered, emphasised and recombined during the process of GAs.

• SDC is the orthodox technology for controlling the balance be-
tween data utility and disclosure risks.

• Selection is an operator in GAs that selects candidates to enter
crossover and mutation operators.

• Selection pressure measures to what extent that a better candi-
date is selected in a selection operator.

• Selection variance determines the change of variance in the pop-
ulation after selection, which is usually used for comparing meth-
ods together with selection pressure.

• Stochastic universal selection (SUS) is a selection method in
GAs that modifies the roulette wheel selection by spinning the
roulette wheel once with N evenly distributed pointers.

• Targets or target variables contain sensitive information of re-
spondents and thus are the raison detre for privacy protection.

• Tournament selection is a selection method in where candidates
are randomly selected with replacement and compete in a tourna-
ment with other t candidates and only the winner will be selected.

• Whole-CPC is a variant of CPC that exchanges the entire case
between paired candidates.

202

Reference

[1] Abdi, H., and Valentin, D., (2007) Multiple Correspondence Analysis, Neil Salkind
(Ed.), Encyclopedia of Measurement and Statistics, The University of Texas at
Dallas, Richardson, TX 750830688, USA

[2] Abowd, J. M., and Lane, J. (2004). New approaches to confidentiality protection:
Synthetic data, remote access and research data centres, In Privacy in statistical
databases, Springer, Berlin Heidelberg, 282-289

[3] Alabsi, F. and Naoum, R. (2012) Comparison of Selection Methods and Crossover
Operations using Steady State Genetic Based Intrusion Detection System, Journal
of Emerging Trends in Computing and Information Sciences, 3(7), 1053-1058.

[4] Alpaydin, E. (2010) Introduction to Machine Learning, 2nd edition, The MIT
Press, 1-9

[5] Andersen, E. B. (1990) The Statistical Analysis of Categorical Data, Springer-
Verlag, Berlin

[6] Antal, L., Shlomo, N., and Elliot, M. (2014). Measuring disclosure risk with en-
tropy in population based frequency tables. In International Conference on Privacy
in Statistical Databases (pp. 62-78). Springer, Cham.

[7] Amjady, N., and Shirzadi, A., (2009), Unit commitment using a new integer coded
genetic algorithm. Euro. Trans. Electr. Power, 19: 1161-1176. doi:10.1002/etep.
297

[8] Barak, B., Chaudhurim, K., et al. (2007) Privacy, Accuracy, and Consistency Too:
A Holistic Solution to Contingency Table Release, PODS’07, Beijing, China

[9] Barto, G., Sutton, S., Watkins, H. (1990), Learning and sequential decision making,
Learning and Computational Neroscience, Gabriel, M., Moore, W., (Eds.), MIT
press, Cambridge, MA

[10] Baum, E. B., Boneh, D., and Garrett, C., (2001), Where Genetic Algorithms Excel,
Evolutionary Computation, vol:9(1), 93-124

203

10.1002/etep.297
10.1002/etep.297

[11] Benschop, T., Machingauta, C., and Welch, M., (2018), Statistical Disclosure Con-
trol: A Practice Guide, Avaliable at https://buildmedia.readthedocs.org/
media/pdf/sdcpractice/latest/sdcpractice.pdf, [10/05/2019]

[12] Bingul, Z., (2007) Adaptive Genetic Algorithms Applied to Dynamic Multi-
objective Problems, Applied Soft Computing, 7, 891-799

[13] Blickle, T. and Thiele, L. (1995) A Comparison of Selection Schemes used in
Genetic Algorithms, Computer Engineering and Communication Networks Lab,
Swiss Federal Institute of Technology.

[14] Brabazon, A., O’Neill, Michae.l, and McGarraghy, Sean., (2015). Natural comput-
ing algorithms, Springer

[15] Branke, J., (2012), Evolutionary optimisation in dynamic environments, Vol. 3.
Springer Science & Business Media

[16] Burgees, M. (2019), What is GDPR? The summary guide
to GDPR compliance in the UK, WIRED magazine, January,
21, 2019, Available at https://www.wired.co.uk/article/

what-is-gdpr-uk-eu-legislation-compliance-summary-fines-2018

[09/04/2019]

[17] Caiola, G., and Reiter, J. P., (2010). Random Forests for Generating Partially Syn-
thetic, Categorical Data. Trans. Data Privacy 3, 1 (April 2010), 27-42.

[18] Cano, I., Ladra, S., and Torra, V., (2010), Evaluation of Information Loss for Pri-
vacy Preserving Data Mining through comparison of Fuzzy Partitions, Proceedings
of FUZZ-IEEE 2010/WCCI.

[19] Cantù-Paz, E., and Goldberg, D., (2000), Efficient Parallel Genetic Algorithms:
Theory and Practice, Computer Methods in Applied Mechanics and Engineering,
vol.186, 221-238

[20] Chen, Y., Elliot, M., and Sakshaug, J., (2016), A Genetic Algorithm Approach to
Synthetic Data Production, in Proceedings of the 1st International Workshop on AI
for Privacy and Se-curity. Article No. 13.

[21] Chen, Y., Elliot, M., and Sakshaug, J., (2017), Genetic Algorithms in Matrix
Representation and Its Application in Synthetic Data, UNECE Work Session on
Statistical Data Confidentiality, 2017, https://www.unece.org/fileadmin/

DAM/stats/documents/ece/ces/ge.46/2017/2_Genetic_algorithms.pdf,
[20/12/2017].

204

https://buildmedia.readthedocs.org/media/pdf/sdcpractice/latest/sdcpractice.pdf
https://buildmedia.readthedocs.org/media/pdf/sdcpractice/latest/sdcpractice.pdf
https://www.wired.co.uk/article/what-is-gdpr-uk-eu-legislation-compliance-summary-fines-2018
https://www.wired.co.uk/article/what-is-gdpr-uk-eu-legislation-compliance-summary-fines-2018
https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2017/2_Genetic_algorithms.pdf
https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2017/2_Genetic_algorithms.pdf

[22] Chen, Y., Elliot, M., and Smith, D., (2018), The Application of Genetic Algorithms
to Data Synthesis: A Comparison of Three Crossover Methods, Privacy in Statis-
tical Database, 2018, Springer.

[23] Chen, Y., Taub, J., and Elliot, M, (2019) Trade-off between Information Utility and
Disclosure Risk in GA Synthetic Data Generator, UNECE Work Session on Sta-
tistical Data Confidentiality 2019, https://statswiki.unece.org/display/
confid/Work+Session+on+Statistical+Data+Confidentiality+2019,
[01/12/2019].

[24] Chertov, O., and Pilipyuk, A., (2009), Statistical Disclosure Control Methods for
Microdata, 2009 International Symposium on Computing, Communication, and
Control, Proceeding of CSIT, vol.1, (2011), IACSIT Press, Singapore

[25] Chiong, R., Weise, T., and Michalewicz, Z., (Editors), (2012), Variants of
Evolutionary Algorithms for Real-World Applications, Springer, 2012, ISBN
3642234232

[26] Chudasama, C., Shah, S.M. and Panchal, M. (2011) Comparison of Parents Selec-
tion Methods of Genetic Algorithm for TSP, International Conference on Computer
Communication and Networks CSI- COMNET-2011

[27] Ciriani, V., di Vimercati, S.D.C., Foresti, S., Samarati, P., (2007) Microdata pro-
tection. In: Yu T., Jajodia S. (eds.) Secure Data Management in Decentralized
Systems, Springer, New York, 291321

[28] Connor, R., Cardillo, F., A., Moss, R., and Fausto, R., (2013) Evaluation of
Jensen-Shannon distance over sparse data. In: Similarity Search and Applica-
tions. Lecture Notes in Computer Science, 8199. Springer, Berlin, pp. 163-168.
ISBN 9783642410611, http://dx.doi.org/10.1007/978-3-642-41062-8_

16, [01/03/2017]

[29] Cortez, P. (2014) Modern optimisation with R, Springer, v

[30] Dandekar, R. A., Cohen, M., and Kirkendall, N., (2001), Applicability of Latin
Hypercube Sampling to create multi variate synthetic micro data, ETK-NTTS 2001
Pre-proceedings of the Conference, 839–847.

[31] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., (2002), A fast and elitist
multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary
Computation, vol. 6, no. 2, 182-197

[32] Deb. K., (2014) Multi-objective optimisation, Search Methodologies: Introductory
Tutorials 403 in optimisation and Decision Support Techniques, Burke, E. K., and
Kendall, G., (eds.), Springer New York, Boston, MA, 2014, 403-449

205

https://statswiki.unece.org/display/confid/Work+Session+on+Statistical+Data+Confidentiality+2019
https://statswiki.unece.org/display/confid/Work+Session+on+Statistical+Data+Confidentiality+2019
http://dx.doi.org/10.1007/978-3-642-41062-8_16
http://dx.doi.org/10.1007/978-3-642-41062-8_16

[33] Domingo-Ferrer, J. and Rebollo-Monedero, D. (2009). Measuring risk and util-
ity of anonymized data using information theory. Proceedings of the 2009
EDBT/ICDT Workshops, ACM, 126-130

[34] Domingo-Ferrer, J. Mateo-Sanz, J. M. and Torra. V. (2001): Comparing SDC
methods for microdata on the basis of information loss and disclosure risk, Pre-
proceedings of ETK-NTTS2001 (vol. 2):, 807826, Luxemburg, Eurostat.

[35] Domingo-Ferrer, J., and Torra, V, (2001) Disclosure control methods and informa-
tion loss for microdata, Confidentiality, disclosure, and data access, Theory and
practical applications for statistical agencies, 91-110

[36] Domingo-Ferrer, J., (2014), Data Anonymisation: a tutorial, Universitat Rovira i
Virgili, Tarragona, Catalonia.

[37] Drechsler, J., Bender, S., and Rassler, S. (2008) Comparing fully and partially syn-
thetic datasets for statistical disclosure control in the German IAB Establishment
Panel, Transactions in Data Privacy, 1, 105-130.

[38] Drechsler, J. (2010). Using support vector machines for generating synthetic
datasets, Privacy in Statistical Databases, Springer Berlin Heidelberg, 148-161.

[39] Drechsler, J. (2014), Synthetic data, where do we come from? Where do we want
to go?, Synthetic Data Workshop, Office of National Statistics

[40] Drechsler, J. (2018) Some Clarifications Regarding Fully Synthetic Data, Privacy
in Statistical Databases, Springer, Spain, 2018.

[41] Dumitrescu, D., Lazzerini, B., Jain, L. C., and Dumitrescu, A., (2000), Evolution-
ary Computation, CRC Press, N. W. corporate Blvd, Boca Raton, Florida, 33431,
218-225

[42] Duncan, G. T., Keller-McNulty, S, A., and Stokes, S. L., (2001), Disclosure Risk
vs. Data Utility: The R-U Confidentiality Map, National Institute of Statistical
Sciences, Report Number 121.

[43] Duncan, G. T., and Stokes, S. L., (2004), Disclosure Risk vs. Data Utility: The
R-U Confidentiality Map as Applied to Topcoding, CHANCE 17:3, 16-20

[44] Duncan, G. T., Elliot, M. and Salazar-Gonzalez, J. (2011) Statistical Confidential-
ity: Principles and Practice, Springer New York, 23

[45] Duncan, G. T., Elliot, M. and Salazar-Gonzalez, J. (2011) Statistical Confidential-
ity: Principles and Practice, Springer New York, 42

206

[46] Dwork, C., and Roth, A., 2014, The Algorithmic Foundations of Differential Pri-
vacy, Foundations and Trends in Theoretical Computer Science, vol.9 3-4.

[47] Elliot, M. (2014). Final Report on the Disclosure Risk Associated with the Syn-
thetic Data Produced by the SYLLS Team. [online] CMIST. Available at: https:
//tinyurl.com/syllsDR, [12/9/2016]

[48] Elliot, M., and Domingo-Ferrer, J., (2018), The future of statistical disclosure con-
trol, Paper published as part of The National Statistician’s Quality Review. Lon-
don, December 2018, Available at: https://arxiv.org/pdf/1812.09204.pdf,
[30/11/2019]

[49] Ethem, A., (2014), Introduction to Machine Learning, The MIT Press

[50] Evfimievski, A., Gehrke, J., and Srikant, R., (2003) Limiting privacy breaches in
privacy preserving data mining, PODS, 2003.

[51] Fellegi, I., Sunter, A. (1969).A Theory for Record Linkage.Journal of the American
Statistica Association, 64(328):.11831210.

[52] Forrest, S. and Mitchell, M. (1993), Relative building-block fitness and the
building- block hypothesis. In D. Whitley (ed.), Foundations of Genetic Algorithms
2, 109- 126. San Mateo, CA: Morgan Kaufmann.

[53] Galaviz J., and Xuri, A., (1996) A self-adaptive genetic algorithm for function
optimisation, Proceedings Mexico-USA Collaboration in Intelligent Systems Tech-
nologies, Cancun, Mexico, 1996, 156-161.

[54] Garfinkel, S. L., Abowd, J.M., and Powazek, S., (2018), Issues Encountered De-
ploying Differential Privacy, arXiv e-prints, arXiv:1809.02201

[55] General Data Protection Regulation 2016/679 (GDPR), The EU, GDPR Key
Changes, Avaliable at https://eugdpr.org/the-regulation/, [06/05/2019]

[56] Goldberg, D., Jon, R., (1987). Genetic algorithms with sharing for multimodal
function optimisation. 2nd Int’l Conf. on Genetic Algorithms and their applica-
tions, 41-49

[57] Goldberg, D. E. (1989) Genetic Algorithms in search, optimisation, and Machine
Learning, The University of Alabama.

[58] Gotshall, S. and Rylander, B., (2002), Optimal Population Size and the Genetic
Algorithm, Proceedings of the 2002 WSEAS International Conferences, Mexico.

[59] Gouweleeuw, J., Kooiman, P., Willenborg, L., and De Wolf. P., (1998) , The Post
Randomisation Method for Protecting Microdata, QUETIIO, 22(1), .145-156

207

https://tinyurl.com/syllsDR
https://tinyurl.com/syllsDR
https://arxiv.org/pdf/1812.09204.pdf
https://eugdpr.org/the-regulation/

[60] Herzog, T. N., Scheuren, F. J., Winkler, W. E., (2007), Data Quality and Record
Linkage Techniques, Springer, Science+Business Media, LLC, New York.

[61] Henry, K. M., (2012). Penetration Testing: Protecting Networks and Systems. IT
Governance Ltd. ISBN 978-1-849-28371-7.

[62] Holland, J. (1992). Genetic Algorithms, Scientific American, 267(1), 66-73. www.
jstor.org/stable/24939139, [23/04/2020]

[63] Holland, J. H., (1992). Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge, MA, USA.

[64] Horn, J., Nafpliotis, N., and Goldberg, E., (1994), A Niched Pareto Genetic Algo-
rithm for Multiobjective optimisation, Proceedings of the First IEEE Conference
on Evolutionary Computation, 1994.

[65] Hu, J., Reiter, J. P. and Wang, Q. (2014) Disclosure Risk Evaluation for Fully
Synthetic Categorical Data, Proceedings of Privacy in Statistical Database 2016,
Domingo-Ferrer, J., and Montes, F., (Eds.), 185-199.

[66] Hu, J., and Hoshino, N. (2018). The Quasi-Multinomial Synthesizer for Categori-
cal Data. Proceedings of Privacy in Statistical Database 2018, Domingo-Ferrer, J.,
and Montes, F., (Eds.), 7591

[67] Isaac, M., and Frenkel, S. (2018) Facebooks Woes Rise as Hackers
Expose Data of 50 Million Users, The New York Times, Sept. 29,
2018. Available at https://www.nytimes.com/2018/09/28/technology/

facebook-hack-data-breach.html [09/04/2019].

[68] Konak, A., Coit, D. W., and Smith, A. E., (2006), Multi-objective optimisation us-
ing genetic algorithms: A tutorial, Reliability Engineering & System Safety, 91(9),
992-1007, https://doi.org/10.1016/j.ress.2005.11.018., [01/07/2018]

[69] Korejo, I., Yang, S., and Li, C., (2009) A Comparative Study of Adaptive Mutation
Operators for Genetic Algorithms, MIC 2009: The VIII Metaheuristics Interna-
tional Conference, Hamburg, Germany

[70] Leung, Y., Gao, Y., and Xu, Z., (1997), Degree of population diversitya perspective
on premature convergence in genetic algorithms and its Markov chain analysis,
IEEE Transactions on Neural Networks, vol. 8, no. 5, 11651176

[71] Li, N., Li, T., and Venkatasubramanian, S., (2007), t-closeness: Privacy beyond
k-anonymity and l-diversity, in ICDE

208

www.jstor.org/stable/24939139
www.jstor.org/stable/24939139
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://doi.org/10.1016/j.ress.2005.11.018.

[72] Libelli, S., and Alba, P., (2000) Adaptive mutation in genetic algorithms, Soft com-
puting, vol.4 76-80.

[73] Little, R., (1993) Statistical Analysis of Masked Data, Journal of Official Statistics,
9, 407-426.

[74] Liu, F. and Little, R. (2003) SMILKe. Vs Data Swapping and PRAM for Statis-
tical Disclosure Control in Microdata: a Simulated Study, 2003 Joint Statistical
Meeting, San Francisco, California.

[75] Lu, H., and Yen, G., (2002), Rank-Density-Based Multiobjective Genetic Algo-
rithm, Proceedings of the 2002 Congress on Evolutionary Computation 2002, 944-
949

[76] Machanavajjhala, A., et al., (2007) l-diversity: Privacy beyond k-anonymity, ACM
Transactions on Knowledge Discovery from Data, 1(1), 2007.

[77] Matthews, A., Hensman, J., et al., (2015), On Sparse Variational Methods and
the Kullback-Leibler Divergence between Stochastic Processes, https://arxiv.
org/abs/1504.07027, [01/06/2017]

[78] Maimon, O. and Rokach, L. (2010) Data Mining and Knowledge Discovery Hand-
book, Springer Science and Business Media, p. 704

[79] Matwin, S., Nin, J., Sehatkar, M. and Szapiro, T. (2015) A Review of Attribute
Disclosure Control, Advanced Research in Data Privacy, Studies in Computational
Intelligence. Vol. 567. Springer Switzerland, 41-62

[80] Mateo-Sanz, J. M., Martnez-Ballest, A., and Domingo-Ferrer, J. (2004), Fast
generation of accurate synthetic microdata, In Privacy in Statistical Databases,
Springer Berlin Heidelberg, 298-306

[81] Mateo-Sanz, J. M., Domingo-Ferrer, J., and Sebé, F., (2005) Probabilistic Infor-
mation Loss Measures, Confidentiality Protection of Continuous Microdata, Data
Mining and Knowledge Discovery, Vol.11, 181-193

[82] Mitchell, M., Holland, J. H., and Forrest, S., 1993. When will a genetic algorithm
outperform hill climbing?. In Proceedings of the 6th International Conference on
Neural Information Processing Systems (NIPS’93), J. D. Cowan, G. Tesauro, and
J. Alspector (Eds.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
51-58.

[83] Mitchell, M. (1998a) An Introduction to Genetic Algorithms, Massachusetts Insti-
tute of Technology, 7-23

209

https://arxiv.org/abs/1504.07027
https://arxiv.org/abs/1504.07027

[84] Mitchell, M. (1998b) An Introduction to Genetic Algorithms, Massachusetts Insti-
tute of Technology, 124-131

[85] Moriarty, D., Schultz, A., and Grefenstette, J., (1999), Evolutionary Algorithms
for Reinforcement Learning, Journal of Artificial Intelligence Research, vol.11,
241-276

[86] Murata, T., Ishibuchi, H., (1995), MOGA: multi-objective genetic algorithms. Pro-
ceedings of the 1995 IEEE international conference on evolutionary computation
1995, Perth, WA, Australia: IEEE; 1995.

[87] Navarro-Arribas, G. and Torra, V. (2015a) Advanced Research on Data Privacy in
the ARES Project, Advanced Research in Data Privacy. Vol. 567. Springer Switzer-
land, 3-14

[88] Navarro-Arribas, G. and Torra, V. (2015b), Data Privacy: A Survey of Results,
Advanced Research in Data Privacy, Studies in Computational Intelligence. Vol.
567. Springer Switzerland, 27-37

[89] Nowok, B., Raab., M. G., and Dibben, C., (2016), synthpop: Bespoke Creation of
Synthetic Data in R, Journal of Statistical Software, 74(11), DOI: 10.18637/jss.
v074.i11

[90] Oganian, A., (2014) V-Dispersed Synthetic Data Based on a Mixture Model with
Constraints, Privacy in Statistical Databases, Springer International Publishing,
200-212

[91] Olkin, B., I., and Tate, R., F., (1960), Multivariate Correlation Models with Mixed
Discrete and Continuous Variables, The Annuals of Mathematical Statistics.

[92] Pavez-Lazo, B., and Soto-Cartes, Jessica., (2010), A deterministic annular
crossover genetic algorithm optimisation for the unit commitment problem, Ex-
pert Systems with Applications, Volume 38, Issue 6, 2011, 6523-6529, https:
//doi.org/10.1016/j.eswa.2010.11.089., [23/04/2020]

[93] Pistner, M., Slavkovic, A. B., and Vilhuber, L. (2018). Synthetic data via quantile
regression for heavy-tailed and heteroskedastic data. In F. Montes, and J. Domingo-
Ferrer (Eds.), Privacy in Statistical Databases 2018, Proceedings, Springer, Verlag,
92-108, https://doi.org/10.1007/978-3-319-99771-1_7, [22/12/2018]

[94] Pongcharoen, P., Khadwilard, A., and Klakankhai, A., (2007) Multi-matrix Real-
coded Genetic Algorithm for Minimising Total Costs in Logistics Chain Network,
World Academy of Science, Engineering and Technology International Journal of
Economics and Management Engineering, 1(11), 574-597

210

10.18637/jss.v074.i11
10.18637/jss.v074.i11
https://doi.org/10.1016/j.eswa.2010.11.089.
https://doi.org/10.1016/j.eswa.2010.11.089.
https://doi.org/10.1007/978-3-319-99771-1_7

[95] Raghunathan, T.E., Reiter, J.P., and Rubin, D.B. (2003), Multiple Imputation for
Statistical Disclosure Limitation, Journal of Official Statistics, 19

[96] Raab, G, M., Nowok, B., and Dibben, c., (2016), Practical data synthesis for large
samples, Journal of Privacy and Confidentiality (2016-2017), 7, no.3, 6797

[97] Reeves, C.R. (2010). Genetic Algorithms, Handbook of metaheuristics, Vol. 2, ed-
itors: Gendreau, M. and Potvin, J.Y., New York: Springer. 124-125

[98] Reiter, J. P., (2003), Inference for partially synthetic, public use microdata sets,
Survey Methodology 29, 181189.

[99] Reiter, J.P., (2005) Using CART to generate partially synthetic, public use micro-
data, Journal of Official Statistics, 21, 441462

[100] Reiter, J. P. and Kinney, S. K. (2012) Inferentially Valid, Partially Synthetic Data:
Generating from Posterior Predictive Distributions Not Necessary, Journal of Offi-
cial Statistics, 28(4), 583-590

[101] Roque, L.A.C., Fontes, D.B.M.M. and Fontes, F.A.C.C. (2014), A hybrid biased
random key genetic algorithm approach for the unit commitment problem. J Comb
Optim 28, 140166, https://doi.org/10.1007/s10878-014-9710-8

[102] Rozenberg, G. (2012) Handbook of Natural Computing, Bäck,Thomas. Kok, Joost
N. editor, SpringerLink.

[103] Rubin, B. D., (1993), Discussion Statistical Disclosure Limitation, Journal of Offi-
cial Statistics, vol.9, no.2, 461-468

[104] Salimans, T., Ho, J., Chen, X., and Sutskever, I., (2017), Evolution Strate-
gies as a Scalable Alternative to Reinforcement Learning, arXiv preprint,
arXiv:1703.03864.

[105] Sarathy, R., and Muralidhar, K., (2011) Evaluating Laplace Noise Addition to Sat-
isfy Differential Privacy for Numeric Data, Transactions on Data Privacy, 4(1),
1-17.

[106] Schaffer, J., D., (1985), Multiple Objective Optimisation with Vector Evaluated
Genetic Algorithms, Proceedings of the 1st International Conference on GAs,
1985, 93-100

[107] Shlomo, N., (2010), Releasing Microdata: Disclosure Risk Estimation, Data Mask-
ing and Assessing Utility, Journal of Privacy and Confidentiality, 2(1), 73-91.

[108] Smith, D., and Elliot, M. (2008). A Measure of Disclosure Risk for Tables of
Counts. Trans. Data Privacy, 1(1), 34-52.

211

https://doi.org/10.1007/s10878-014-9710-8

[109] Snoke, J. , Raab, G. M., Nowok, B. , Dibben, C. and Slavkovic, A. (2018), General
and specific utility measures for synthetic data. J. R. Stat. Soc. A, 181: 663-688.
doi:10.1111/rssa.12358

[110] Si, Y. and Reiter, J. p. (2013) Nonparametric Bayesian Multiple Imputation for
Incomplete Categorical Attributes in Large-Scale Assessment Surveys, Journal of
Educational and Behavioral Statistics, 38(5), 499-521

[111] Spear, W. M., and De Jong, K. A., (1991), On the Virtues of Parameterized Uni-
form Crossover, Proceedings of the Fourth International Conference on Genetic
Algorithms, 230-236

[112] Sun, L. Zhang, Y and Jiang, C (2006) A matrix real-coded genetic algorithm to the
unit commitment problem, Electric Power Systems Research, 76, 716-728

[113] Surya, K., and Mahara, T., (2016), A New Similarity Measure Based on Mean
Measure of Divergence for Collaborative Filtering in Sparse Environment, 12th
International Multi-Conference on Information Processing-2016, Procedia Com-
puter Science, 89, 450 456

[114] Sutton, R., and Barto, A., (2012), Reinforcement Learning: An Introduction, 2nd
edition, the MIT press

[115] Srinivas, M. and Patnaik, L. M. (1994a) Adaptive Probabilities of Crossover and
Mutation in Genetic Algorithms, IEEE Transactions on systems, Man and Cyber-
netics, 24(4), 656-668

[116] Srinivas, M., and Patnaik, L. M., (1994b), Genetic algorithms: A Survey, Com-
puter, 27(6), 17-26,.

[117] Srinivas, M., Deb, K., (1994) Multiobjective optimisation using nondominated
sorting in genetic algorithms. J Evol Comput 1994, 2(3), 22148.

[118] Sweeney, L., (2002) k-anonymity: a model for protecting privacy, International
Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5), 557570

[119] Taub, J., Elliot, M., Pampaka, M., and Smith, D., (2018), Differential Correct
Attribution Probability for Synthetic Data: An Exploration, Privacy in Statistical
Database, 2018

[120] Taub, J., Elliot, M., and Sakshaug, J. (2017). The Impact of Synthetic Data Gen-
eration on Data Utility with Application to the 1991 UK Samples of Anonymised
Records. In TRANSACTIONS ON DATA PRIVACY, 12, 123

212

[121] Thierens, D. (2002) Adaptive mutation rate control schemes in genetic algorithms,
Evolutionary Computation, 2002. CEC ’02. Proceedings of the 2002 Congress on,
1, 980 985

[122] Anonymisation, UK data service, viewed 21/03/2019, https://www.

ukdataservice.ac.uk/manage-data/legal-ethical/anonymisation,
[03/12/2016]

[123] Villalobos-Arias, Mario and Coello, Carlos A. Coello and Hernández-Lerma,
(2005), Asymptotic Convergence of Some Metaheuristics Used for Multiobjective
optimisation, Proceedings of the 8th International Conference on Foundations of
Genetic Algorithms, 95-111

[124] Wallet, B. C., Marchette, D. J. and Solka, J. L., (1996), A matrix Representation
for Genetic Algorithms, Proceedings of Automatic Object Recognition IV of SPIE
Aerosense, Naval Surface Warfare Center Dahlgren, Virginia.

[125] Wei, G. (2003) An Improved Fast-convergent Genetic Algorithm, Intemational
Conference on Robotics, Intelligent Systems and Signal Processing Changsha,
China

[126] Zezula, P., Amato, G., Dohnal, V., and Batko, M., (2006), Similarity Search. The
Metric Space Approach. USA: Springer, 2006.

[127] Zhang, Q., and Li, H., (2008). MOEA/D: A Multiobjective Evolutionary Algorithm
Based on Decomposition. Evolutionary Computation, IEEE Transactions, 11. 712
- 731

[128] Zhu, X., Gao,Z., Du, Y., Cheng, S., and Xu, F., (2018) A decomposition-
based multi-objective optimisation approach considering multiple preferences
with robust performance, Applied Soft Computing, Volume 73, 2018, 263-282,
DOI:https://doi.org/10.1016/j.asoc.2018.08.029.

[129] Ziztler, E., and Künzil, S., (2004), Indicator-Based Selection in Multiobjective
Search, Proceedings of the 8th International Conference on Parallel Problem Solv-
ing from Nature (PPSN VIII), September 2004, Birmingham, UK, Available at
https://www.simonkuenzli.ch/docs/ZK04.pdf [31/03/2020]

213

https://www.ukdataservice.ac.uk/manage-data/legal-ethical/anonymisation
https://www.ukdataservice.ac.uk/manage-data/legal-ethical/anonymisation
https://doi.org/10.1016/j.asoc.2018.08.029.
https://www.simonkuenzli.ch/docs/ZK04.pdf

	Introduction
	Summary of Chapters
	Summary of Publications

	Statistical Disclosure Control
	Data Masking
	Data Synthesis
	Synthesisers: Mechanisms and Models

	The Assessment of Utility and Risk of Microdata
	Data Utility
	Disclosure Risk
	Privacy Models
	Record linkage

	Chapter Summary

	Machine Learning, Natural Computation and Genetic Algorithms
	Natural Computation and Biological Computing
	Genetic Algorithms (GAs)
	Initial Population
	Selection
	Fitness Proportional Selection
	Tournament Selection
	Truncation Selection
	Ranking Selection

	Schema Theory
	Crossover
	Mutation
	Adaptive GAs
	Multi-objective GAs
	Dominance-based Methods
	Indicator-based Methods
	Decomposition-based Methods

	Matrix Real-Coded GAs
	Chapter Summary

	Model Design
	Initial Population
	Selection Methods
	Theoretical Comparison of Selection Methods
	Experimental Comparison of Selection Methods

	Crossover Methods
	Matrix Crossover
	Parallelised Crossover
	Parametric Uniform Crossover (PUC)

	Mutation Methods
	Positional Bias and Schema Theory
	Adaptive GAs
	Adaptive Crossover Rates
	Adaptive Mutation Rates

	Objectives and Evaluation Tests
	Data Utility Objectives
	Disclosure Risk Objectives
	Evaluation Tests

	Chapter Summary

	Experiments and Results
	Genetic Algorithms in Matrix Representation and Its Application in Synthetic Data
	The Application of Genetic Algorithms to Data Synthesis: A Comparison of Three Crossover Methods
	Matrix GA: building blocks in data synthesis
	Impact of Full Contingency Table in Data Synthesis
	The Impact from Initial Population in GA Synthetic Data Generator
	Exploring the Impact of Adaptive Parameters on a Genetic Algorithm Synthesiser
	Trade-off between Information Utility and Disclosure Risk in GA Synthetic Data Generator

	Summary and Model Integration
	Model Integration and Flowchart

	Impacts and Critical Analysis of the Model
	Impacts
	Impacts on the SDC field
	Impacts on the GA field

	Critical Analysis of the Thesis
	Full Synthesis and Partial Synthesis
	Model Stability
	The Application of GA Synthesisers in Continuous and Mixed Datasets
	The Comparison between Single-objective and Pareto-Optimal GA Synthesisers
	Jensen-Shannon Divergence in Full Contingency Table: Advantages and Disadvantages

	Chapter Summary and Closing Remarks

