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Abstract

This thesis presents advances in theory and applications of mixture autoregressive (MAR) mod-

els in both Bayesian and frequentist frameworks.

We improve the Bayesian analysis of mixture autoregressive models in the case of Gaussian

components, by use of a sampling algorithm that allows to sample from the complete space of

the posterior distribution of the parameters. In addition, we introduce a relabelling algorithm to

deal with label switching, and propose density forecasts based on simulated Bayesian samples.

We generalise the methodology to MAR models with Student-t mixture components, which

includes Gaussian MAR as a limit case. We tackle the challenge of treating the number of

degrees of freedom of the Student-t distribution as parameters whose posterior distribution has

to be estimated.

We propose using mixture vector autoregressive (MVAR) models for optimisation of port-

folios of assets. The properties of MVAR models, combined with modern portfolio theory,

allow in fact to analytically derive predictive distributions for portfolio returns at any time

horizon. We also compare forecasting performance of MVAR models with other commonly

used models in this context.

We introduce an uncorrelated version of MAR models. By applying a set of linear con-

straints on the autoregressive parameters, the resulting model represents a direct alternative to

GARCH models, as they both assume an uncorrelated but dependent structure for the data. We

also propose an application of the uncorrelated MAR to residuals of an econometric model.

All the data analysis is implemented in R, the majority of which is available in the package

mixAR.
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Chapter 1

Introduction

Statistician strive to keep models as simple as possible. We do so by attempting to

model our data under simple assumptions, such as thinking that all observations in a

dataset come from a single, homogeneous population. Undoubtedly, simple models

have some advantages, in that they have few parameters that can be estimated accu-

rately and directly, with estimators that are simple to derive in closed form and which

properties are well understood. In addition, the interpretation of the fitted model is

straightforward in such cases. However, the assumption of data being generated from

a single, simple distribution is often utopian in the real world. Data is instead asym-

metric, multimodal and variable, as if it was generated from several heterogeneuous

subgroups which exist, but cannot be observed.

The choice of a mixture of distributions comes naturally when the data shows signs

of heterogeneity, multimodality or skewness. Finite mixture models (McLachlan and

Peel, 2000) provide a theoretical base to approach a wide range of application in statis-

tics, when data present this characteristic. Mixture autoregressive (MAR) models, first

introduced by Wong and Li (2000), belong to this class. The flexibility of a mixture

of distributions makes mixture autoregressive models attractive and suitable for non-

linear, nonstationary time series. Furthermore, thanks to conditional distributions that

16



CHAPTER 1. INTRODUCTION 17

depend on the recent past of the process, mixture autoregressive models can capture

heteroskedasticity, multimodality and skewness in the data. Furthermore, they can

inherently account for uncorrelatedness in the series of interest. This makes them par-

ticularly interesting for modelling financial time series, which is also the main focus of

this thesis. However, their application is not limited to the financial field, as they have

been used, for instance, in medicine or with environamental time series data.

Mixture autoregressive models may be seen as a particular case of regime switching

models (or Markov switching models, Goldfeld and Quandt, 1973; Hamilton, 1989), a

class of probabilistic models widely used in financial time series. In brief, regime

switching models assume the underpinning presence of two or more processes, or

regimes, that govern the data generating process, which alternate over time with prob-

abilities that evolve according to a first-order discrete Markov chain. Thanks to this

assumption, they can identify abrupt changes that may occur in the mean, variance,

or other features of a time series of interest. In general, regime switching models are

aimed to identify unobserved heterogeneity and overdispersion of a phenomenon over

time, usually with a low number of change points. For example, they may be used

to model periods of fast growth and low growth in the economy. In addition to this,

mixture autoregressive models add the possibility of detecting outliers accurately by

allowing for several change points in time. This makes MAR models attractive towards

financial returns, in which sudden bursts may occur at any time point. However, a mix-

ture of distributions can in practice approximate any distribution, a property that makes

MAR models potentially useful to any time series for which the Normality assumption

appears to be violated.
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1.1 Main contributions

The main contributions of this thesis may find application in various fields within the

framework of time series. Throughout this thesis, our main focus is in financial time

series, which features very well serve the purpose of illustrating the features of mixture

autoregressive models. However, they may be effectively generalised and applied to

different types of time series data (as shown in the example of Canadian Lynx data in

Chapter 3).

For the purpose of modelling financial returns, time series literature suggests that

the assumption of a Normal distribution for the innovations is typically not appropriate.

This type of data often presents heavy tails, meaning ”extreme” observations are more

likely to occur than those suggested by Normal distribution. Mixtures of distributions

provide a flexible way to account for heavy-tailed or skewed data, making them a

suitable modelling option in this scenario.

• The Bayesian analysis of mixture autoregressive models described in Chapter

3 is an improvement of the previous analyses by Sampietro (2006) and Hos-

sain (2012), in that, unlike these and other existing literature, our method is

able to cover the complete parameter space of the model. The issue of label

switching, quite prominent in Hossain (2012), is also dealt with, using a rela-

belling algorithm a posteriori. The chapter displays a direct comparison between

these methodologies, and explains in detail the shortcomings of existing meth-

ods in estimating parameter posterior distributions, which we successfully over-

come. This analysis is also available as arXiv preprint (Ravagli and Boshnakov,

2020a).

The main contribution of this chapter is to incorporate a check on whether or not

a candidate set of parameters satisfies the stability region, without the need to

truncate prior distributions, an operation that could result in a significant loss of
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information. In addition, the use of a relabelling algorithm a posteriori solves the

issues created by identifiability constraints, which sometimes affect convergence

of the Markov Chain to its stationary distribution.

• Mixtures of Normal distributions can, in principle, approximate distributions

with heavy tails. However, the number of components required to achieve that

might be very large. Therefore, we present an extension and generalisation of

the Bayesian methodology for MAR models (Chapter 4). This time, the assump-

tion of Gaussian components is replaced by that of Student-t components (Wong

et al., 2009). Although similar in concept, this extension requires introduction of

an additional set of latent variables, and brings up more computational difficul-

ties due to larger variability. On the other hand, Wong et al. (2009) argues that,

because the tails of the Student-t distribution can be adjusted through the degrees

of freedom, this mixture has a higher level of flexibility compared to that of the

Gaussian model. The MAR model with Gaussian component is a particular case

of the more general MAR with Student-t components, in which the degrees of

freedom for each mixture component are sufficiently large that the distribution

is approximately Gaussian.

There are no cases in the literature of a Bayesian analysis of Student-t mixture

autoregressive models, which makes the analysis presented in Chapter 4 a novel

and original contribution.

• Another important contribution is in modelling the degrees of freedom of the

Student-t distribution in the context of MAR models. The challenge here is

in choosing suitable prior distributions for the degrees of freedom, as they are

known to highly influence the posterior in this context (as seen in Geweke,

1994). We propose a different approach to that of Geweke (1994) for choos-

ing prior distributions for the degrees of freedom, which allows to incorporate
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prior information on the parameters more effectively and efficiently, and recur

to a Metropolis-Hastings algorithm for simulation from the respective posterior

distributions.

• We introduce some useful novel application for MAR models (Chapter 5). First,

we give an overview of mixture vector autoregressive models (MVAR), the mul-

tivariate version of MAR, and derive analyical expressions for multi-step predic-

tive densities. Secondly, we propose an innovative application, which consists

in combining MVAR models with modern portfolio theory (Markowitz, 1952)

for portfolio optimisation. Not only the proposed methodology will derive pre-

dictive distributions on portfolio returns analytically, but also allows to estimate

the risk associated with a portfolio of assets. The methodology finds its ground

of comparison among multivariate GARCH models, as well as other conditional

correlation models, well established techniques for estimation and prediction of

multivariate financial time series data. This analysis is also available as arXiv

preprint (Ravagli and Boshnakov, 2020b).

• Finally, we propose a constrained version of MAR models (Chapter 6). A set

of linear constraints can be applied on the autoregressive parameters of a MAR

model, which ensure uncorrelatedness while reducing the number of parame-

ters to be estimated. Such constraints are particularly useful in cases where

the data shows uncorrelatedness, and yet presents typical features of MAR pro-

cesses. Since a constrained MAR process is still dependent, this provides an

alternative to GARCH models. After introducing the linear constraints, we dis-

cuss how applying them reduces the standard error of the parameter estimates.

This shows the advantage of fitting an uncorrelated MAR model when the data

satsifies certain assumptions. Furthermore, we consider an application in econo-

metrics, modelling residuals from a fitted model as a constrained MAR.
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The contribution with uncorrelated MAR models is to provide a model for un-

correlated but dependent data, such as residuals of a time series model, and has

potential to be used to test uncorrelatedness as an alternative to other tests.

• Most of the methodology presented throughout this work are implemented in the

R package mixAR (Boshnakov and Ravagli, 2020), which has been developed

alongside the progression of the research project.

1.2 Structure of the thesis

The thesis is structured as follows:

• Chapter 2 contains a review of MAR models and of the methodology used

throughout the following chapters.

• Chapter 3 presents a fully Bayesian analysis of MAR models with Gaussian

components.

• Chapter 4 presents a fully Bayesian analysis of MAR models with Student-t

components.

• Chapter 5 introduces MVAR models and derivation of multi-step predictive den-

sities for them. Afterwards, the derived formulas are combined with modern

portfolio theory to analyse portfolios of assets.

• Chapter 6 presents a constrained version of the MAR model, discusses the ad-

vantages of using such constraints under suitable circumstances, and proposes

an application to econometric data.



Chapter 2

Theoretical background

The methodology presented in this work finds its main application in the field of fi-

nancial time series, although it is not limited to that. Financial time series have some

peculiar properties which make them not suitable for being modelled with linear time

series models: observations are generally uncorrelated or weakly correlated, while the

squares of the observations tend to show significant autocorrelation; they often present

conditional heteroskedasticity, meaning that, conditional on past information, the vari-

ance of the observations is not constant in time; outliers, or unlikely events, tend to

occur more often than what is suggested by the Normal distribution, making heavy-

tailed distributions more suitable than the Normal; data may sometimes be skewed or

present multiple modes, as a sign, for instance, of a change of trend over time.

The two most popular classes of statistical models that account for these features

of financial data are that of generalised autoregressive conditional heteroskedasticity

(GARCH) models, and that of regime switching models. Mixture autoregressive mod-

els belong to the latter.

There has been growing interest in mixture models for financial data in the last

few decades, since results such as that of Lanne and Saikkonen (2003) support the

hypothesis that mixture models may in fact be better suited to fit this type of data than

22



CHAPTER 2. THEORETICAL BACKGROUND 23

other models commonly used.

2.1 Mixture autoregressive models

Mixture autoregressive models (Wong and Li, 2000) were introduced as a flexible way

of modelling data that presents heteroskedasticity, asymmetry, multimodality. This

makes them particularly suitable for modelling financial and econometric data.

A process {yt} is said to follow a Mixture autoregressive (MAR) model if its cu-

mulative distribution function, conditional on past information, can be written as

F(yt |Ft−1) =
g

∑
k=1

πkFk

(
yt−φk0−∑

pk
i=1 φkiyt−i

σk

)
, (2.1)

where

• Ft−1 is the sigma field generated by the process up to (and including) t − 1.

Informally, Ft−1 denotes all the available information at time t − 1, the most

immediate past.

• g is the total number of autoregressive components, or regimes.

• 0 < πk < 1, k = 1, . . . ,g, are the mixing weights or proportions, specifying a dis-

crete probability distribution. So, ∑
g
k=1 πk = 1 and πg = 1−∑

g−1
k=1 πk. We denote

the vector of mixing weights by πππ = (π1, . . . ,πg). Each πk is the unconditional

probability of an observation to be generated by regime k at any given time t.

• Fk is the distribution function (CDF) of a standardised distribution with location

parameter zero and scale parameter one. The corresponding density function is

denoted by fk.

• φφφk =
(
φk1, . . . ,φkpk

)
is the vector of autoregressive parameters for the kth com-

ponent, with φk0 being the shift or intercept. Here, pk is the autoregressive order
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of component k, and we define p = max(pk) to be the largest order among the

components. A useful convention is to set φk j = 0, for pk +1≤ j ≤ p. We may

refer to a process with largest order p as a MAR process of order p.

• σk > 0 is the scale parameter for the kth component. We denote by σσσ=(σ1, . . .σg)

the vector of scale parameters. Furthermore, we define the precision, τk, of the

kth component by τk = 1/σ2
k .

• If the process starts at t = 1, then Equation (2.1) holds for t > p.

• The MAR model described in (2.1) is formally denoted as MAR(g; p1, . . . , pg),

where g is the number of mixture components, and p1, . . . , pg are the autoregres-

sive orders corresponding to the mixture components.

A nice feature of this model is that one-step predictive distributions are given di-

rectly by the specification of the model in (2.1). The h-step ahead predictive dis-

tribution at time t can be obtained by simulation (Wong and Li, 2000) or, in the

case of Gaussian and α-stable components, analytically (Boshnakov, 2009). Further-

more, combining predictive distributions which depend on the recent history of the

process, MAR models are very flexible in accommodating asymmetry, multimodality,

heteroskedasticity and correlation in time series data.

2.1.1 Mixture autoregression as regime switching model

The idea behind regime switching models is that there may be more than one process,

or regime, to govern the evolution of the data over time. It is not known in practice

when, and how often regimes will switch, therefore a first order Markov chain is used

to estimate the probability of any regime to occur at a given time point. Mathematically

speaking, these probabilities are represented by a matrix, called transition matrix. Let a

time series be described by a model with g distinct regimes. Assuming the most recent
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observation was generated from regime i, i = 1, . . . ,g, then the present observation at

time t is generated from regime j, j = 1, . . . ,g as follows:

yt =



a1 +b1yt−1 + εt1 with probability πi1,

a2 +b2yt−1 + εt2 with probability πi2,

...

a j +b jyt−1 + εt j with probability πi j,

...

ag−1 +bg−1yt−1 + εt(g−1) with probability πi,g−1,

ag +bgyt−1 + εtg with probability πig.

(2.2)

. The transition matrix for the occurrence of these regimes can be written as:

P =



p11 p12 . . . p1(g−1) p1g

p21 p22 . . . p2(g−1) p2g

...
... . . . ...

...

p(g−1)1 p(g−1)2 . . . p(g−1)(g−1) p(g−1)g

pg1 pg2 . . . pg(g−1) pgg


(2.3)

where pi j, i, j = 1, . . . ,g, denotes the probability that regime i will occur at time t,

given that regime j has occured at time t−1. The above matrix is a representation of

the probability of the next observation being generated from a specific regime, knowing

the current state of the Markov chain. Note that (2.2) is only an example of what form

regimes may assume, as in fact a variety of process may be considered.

A mixture autoregressive model may be seen as a particular case of regime switch-

ing model, in which regimes are distinct autoregressive processes, and they are allowed

to alternate any number of times according to some constant probabilities. A MAR

model is hence aimed at detection of outliers, as well as breaking points and changes
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in the behavior of a time series.

To see the analogy with (2.2) and (2.3), we have that the regimes are:

yt =



φ10 +∑
p1
i=1 φ1iyt−i + εt1 with probability π1,

φ20 +∑
p2
i=1 φ2iyt−i + εt2 with probability π2,

...

φg−1,0 +∑
pg−1
i=1 φg−1,iyt−i + εt,g−1 with probability πg−1,

φg0 +∑
pg
i=1 φgiyt−i + εtg with probability πg.

(2.4)

where εt1, . . . ,εtg are independent white noise with equal means 0 and variances σ2
1, . . . ,σ

2
g.

In addition, the transition matrix can now be written as:

P =



π1 π2 . . . π(g−1) πg

π1 π2 . . . π(g−1) πg

...
... . . . ...

...

π1 π2 . . . π(g−1) πg

π1 π2 . . . π(g−1) πg


. (2.5)

meaning the unconditional probability of a given state to occur is constant over time,

and does not depend on which of the regimes has previously occurred.

2.1.2 Stability of the MAR model

Stationarity conditions for MAR time series have some similarity to those for autore-

gressions, with some notable differences. Below we give the results we need, see

Boshnakov (2011) and the references therein for further details.
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Consider the companion matrices

Ak =



φk1 φk2 . . . φk(p−1) φkp

1 0 . . . 0 0

0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0


, k = 1, . . . ,g.

We say that the MAR model is stable (Lütkepohl, 2007; Boshnakov, 2011) if and only

if all eigenvalues of the matrix

A =
g

∑
k=1

πkAk⊗Ak

lie within the unit circle (⊗ is the Kronecker product). What we mean by stable is

that, when the condition is satisfied, {yt} is a bounded sequence,such that for some

real number B, P(t : |yt |> B) = 0. With this interpretation of stability as boundedness,

the properties defined in Lütkepohl (2007) hold, and further assumptions can be made

(NOTE: I thank the internal examiner for their constructive feedback and contribution

on this particular insight). In fact, {yt} is in this case a well-defined stochastic process,

in which distributions and joint distributions of the yt’s are uniquely determined by

the distributions and joint distributions of the innovations, and such that Eytεs = 0 for

t < s.

If a MAR model is stable, then it can be used as a model for stationary time se-

ries. The stability condition is sometimes called stationarity condition, as when this

condition holds, the model is able to generate a stationary process with suitable initial

conditions.

Notice that there may be instances in which the matrix A has eigenvalues outside

the unit circle, and yet the model yields stationary solutions. We regard such models as
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unstable. It is the case that some properties of the MAR model, such as the recursive

equations for the autocorrelation function, do not hold if the model is unstable. For

this reason, all of the analysis presented is based on the assumption that the underlying

model is stable.

If g = 1, the MAR model reduces to an AR model and the above condition states

that the model is stable if and only if A1⊗A1 is stable, which is equivalent to the same

requirement for A1. For g > 1, it is still true that if all matrices A1, . . . ,Ag, k = 1, . . . ,g,

are stable, then A is also stable. However, the inverse is no longer true, i.e. A may be

stable even if one or more of the matrices Ak are not stable.

What the above means is that the parameters of some of the components of a MAR

model may not correspond to causal AR models. It is convenient to refer to such

components as “non-stationary”.

Partial autocorrelations are often used as parameters of autoregressive models be-

cause they transform the stationarity region of the autoregressive parameters to a hyper-

cube with sides (−1,1) (Barndorff-Nielsen and Schou, 1973; Sampietro, 2006). The

above discussion shows that the partial autocorrelations corresponding to the compo-

nents of a MAR model cannot be used as parameters if coverage of the entire stationary

region of the MAR model is desired.

2.1.3 Likelihood function and the missing data formulation

It is straightforward to derive the conditional pdf of a MAR model from (2.1). This is:

f (yt | Ft−1) =
g

∑
k=1

πk

σk
fk

(
yt−φk0−∑

pk
i=1 φkiyt−i

σk

)
(2.6)

Given a time series y1, . . . ,yn, the likelihood function for the MAR model is the
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product of the conditional densities

L(φφφ,σσσ,πππ|yyy) =
n

∏
t=p+1

g

∑
k=1

πk

σk
fk

(
yt−φk0−∑

pk
i=1 φkiyt−i

σk

)
, (2.7)

where yyy denotes the full data, i.e. yyy = (y1, . . . ,yn). Notice that the mixture components

of a MAR model may not be interpreted, in general, as ”real” underlying processes

which, in turn, generate the observations, but rather as a way to bring more flexibility

in fitting the data. This idea exploits the principle that a mixture of distribution can

closley approximate any distribution (McLachlan and Peel, 2000).

Hence, the likelihood is the product of sums. It is often the case in practice that the

likelihood function, as written in (2.7), is hardly tractable, so that it is not possible to

derive estimators for the model parameters in closed form.

A common way to deal with this class of problems is to resort to the missing data

formulation (Dempster et al., 1977). We assume that, at each time t, the corresponding

observation yt is a realisation of exactly one regime. Suppose it was known that yt had

been generated by regime k, then the pdf of yt would be fully specified by fk (·). This

allows to rewrite the likelihood function as a product, which is simpler to deal with.

This procedure is also referred to as data augmentation.

Formally, the idea of data augmentation is defined as follows. Let ZZZt =(Zt1, . . . ,Ztg)

be a latent allocation random variable, where zzzt is a g-dimensional vector with entry k

equal to 1 if yt was generated from the kth component of the mixture, and 0 otherwise,

and such that each zzzt has exactly one entry equal to 1. Without further information on

the process (i.e. unconditionally), we assume that the zzzts are i.i.d. random variables

from a discrete distribution with probabilities:

P(ztk = 1|g,πππ) = πk, k = 1, . . . ,g, (2.8)
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This setup, widely exploited in the literature (see, for instance Dempster et al., 1977;

Diebolt and Robert, 1994) allows to rewrite the likelihood function in a much more

tractable way as follows:

L(φφφ,σσσ,πππ|yyy,zzz) =
n

∏
t=p+1

g

∏
k=1

(
πk

σk
fk

(
yt−φk0−∑

pk
i=1 φkiyt−i

σk

))ztk

(2.9)

In practice, the zzzts are not available, as we do not know which of the regimes has

generated the data point. Both Bayesian and frequentist methods exist to effectively

deal with this issue and estimate the latent variables. We introduce both in the follow-

ing sections.

2.2 The Bayesian approach

Bayesian statistics aims to express the uncertainty about unknown quantities by use of

probability distributions. The idea is that of treating parameters of interest as random

variables rather than uknown fixed quantities to be estimated. A probability distribu-

tion, which represents a degree of belief in an event prior to observing the data, is

attached to said random variables. Integrating this prior belief with the evidence aris-

ing from the data, one is able to build some posterior belief, which is later used to draw

inference about events of interest.

Originated in its raw form as early as 1763 in a paper by Thomas Bayes (hence

Bayesian), Bayesian statistics has become more and more feasible to implement, and

consequently more popular, with the introduction of increasingly fast computers and

the creation of efficient sampling algorithms, in particular Markov Chain Monte Carlo

(MCMC) methods.
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2.2.1 Bayes’ theorem

In his paper, Thomas Bayes derives what is nowadays known by everyone as Bayes’

theorem. Bayes’ theorem is a result in conditional probability. Let θ denote a parame-

ter of interest, and y the observed data. The theorem states that:

p(θ | y) = L(θ | y) p(θ)
p(y)

(2.10)

where p(θ) is the prior distribution (i.e. the prior belief) on the parameter of interest,

L(θ | y) is the likelihood function of the data (i.e. the evidence arising from the data),

p(θ | y) is the posterior distribution (i.e. the posterior belief) on the same parameter,

and finally p(y) 6= 0 is the probability, or density, of observing the data (i.e. the prob-

ability of the evidence). If prior and posterior distribution belong to the same family,

then we say that the prior distribution is a conjugate prior for the likelihood (Diaconis

and Ylvisaker, 1979). Suppose for instance that the likelihood function is a product

of Gaussian densities. By imposing a Gaussian prior distribution on the parameter of

interest (e.g. the mean), we ensure that the posterior distribution will also be Gaussian.

This implies that a Gaussian prior is a conjugate prior for a Gaussian likelihood.

In other words, the theorem proves that the posterior belief on a parameter is, up

to proportionality, the product of the prior belief and the likelihood function of the

observed data. It is common to rewrite the equality in (2.10) as a relationship of pro-

portionality:

p(θ | y) ∝ L(θ | y) p(θ)

or (2.11)

posterior ∝ likelihood× prior

denoting proportionality between the posterior distribution and the product between
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likelihood function and prior distribution. This is because many of the available sam-

pling methods are able to approximate p(θ | y) without having to calculate p(y) ex-

actly, which may in most cases be cumbersome.

The theorem is also valid with a multidimensional parameter θθθ =
(
θ1, . . . ,θq

)
. In

this case, the full conditional posterior distribution of a generic element of the param-

eter vector, say θk, is not only conditional on the data y, but also on the remaining

parameters, θθθ−k. Hence, (2.11) becomes:

p(θk | y,θθθ−k) ∝ L(θk | y,θθθ−k) p(θk) (2.12)

The proportionality term in the denominator is now also dependent on θθθ−k. However,

this does not represent an issue, as it is not a function of θk, and therefore it is constant

for all values of θk. This means that the relationship of proportionality still holds.

2.2.2 Markov chain Monte Carlo

It is often the case in practice that the forementioned posterior distributions are of a

complex form, or are highly dimensional. Bayesian statistics requires evaluation of

the expectation of these functions, exact derivation of which is rather infeasible. For

this reason, Bayesian analyses have mostly been limited to conjugate cases in the past,

where the posterior distribution could be easily derived. With the introduction of nu-

merical methods for approximating functions and their expectations, and the increasing

availability of poweful computers that could quickly implement them, Bayesian statis-

tics has had a steep development in the last few decades, seeing its biggest revolution

with Markov chain Monte Carlo (MCMC) methods, which we here discuss.
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Markov chains Earlier in this chapter we introduced the notion of Markov chains.

Markov chains are stochastic processes defined by states: a state denotes the occur-

rence of a certain event at a given time point. Each state is associated with a proba-

bility of occurrence. Markov chains are called such because they satisfy the so called

Markov property: the probability of a certain event to occur next only depends on the

latest event to have occured, the present. Formally, this means that the probability of

a certain state to occur at the next time point only depends on the current state of the

chain, and not at all on the path that led up to that. Thanks to this property, a Markov

chain may be described by a transition matrix like that in (2.3).

Let x0,x1, . . . ,xn be the first n states of a Markov chain. For the next step xn+1, the

Markov property states that:

P(Xn+1 = xn+1 | Xn = xn, . . . ,X1 = x1,X0 = x0) = P(Xn+1 = xn+1 | Xn = xn) (2.13)

A Markov Chain is said to be :

• aperiodic if there is no certainty that the same state will recur at regular intervals;

• recurrent if the probability of the chain returning to the same state in a finite

number of steps is non-zero;

• irreducible if, at each step, all states have non-zero probability of occurrence.

A Markov chain that satisfies all three properties is called ergodic, and it is guar-

anteed to converge to an equilibrium distribution within a finite number of steps.

Monte Carlo method Monte Carlo is a method for numerical integration which uses

random number generators. In principle, it can be used to approximate definite inte-

grals by simulating random points at which the integrand is evaluated.
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In Bayesian statistics, Monte Carlo is used to approximate posterior distributions.

The idea is that any posterior distribution p(θ | y) may be approximated by simulating

a sufficiently large sample of realisations from p(θ | y), directly or indirectly. Con-

sequently, the summary statistics of the distribution are approximated by those of the

obtained sample.

Markov chain Monte Carlo Combining the two concepts of Markov chains and

Monte Carlo together, it is possible to approximate any posterior distribution of inter-

est. This can be achieved by implementing a Markov chain with the desired distribution

as its equilibrium, or stationary distribution. Once the stationary distribution has been

achieved, a sufficiently large sample can be simulated to approximate such distribution

and the statistics of interest.

Notice that it is not necessary to simulate directly from the target distribution, as

this may be complicated in many occasions. In the next part, we review some of the

simulation methods used througout this project.

2.2.3 Review of MCMC methods

Gibbs sampling Gibbs sampling (Geman and Geman, 1984) is a method for direct

simulation from full conditional posterior distributions. Suppose we are interested in

approximating the joint posterior distribution p(θθθ | y), where θθθ =
(
θ1, . . . ,θq

)
. The

conditional distribution of one variable, say θ j, given all others is proportional to the

joint posterior distribution:

p
(
θ j | y,θθθ− j

)
∝ p

(
θ1, . . . ,θq

)
up to some normalisation constant. The idea of Gibbs sampling is that it is simpler to

simulate from the full conditional posteriors than from the joint posterior distribution.



CHAPTER 2. THEORETICAL BACKGROUND 35

Given the above consideration, a Gibbs sampler can be implemented as follows:

1. Choose initial values for the parameters θ1, . . . ,θq. Starting values may be cho-

sen arbitrarily or, for instance, simulated from the prior distribution, since the

choice may only affect how quickly the chain will reach the stationary distribu-

tion, but not convergence itself.

2. Given full conditional distributions of the parameters, simulate new values from

their respective posterior distributions, conditional on the most up-to-date states

of the remaining parameters. For instance, suppose the chain has completed m

steps, m ≥ 0, and the algorithm now moves to iteration m+ 1. We simulate

θ1, . . . ,θq as:

draw θ
m+1
1 from p

(
θ1 | θm

2 ,θ
m
3 , . . . ,θ

m
q−1,θ

m
q
)

draw θ
m+1
2 from p

(
θ2 | θm+1

1 ,θm
3 , . . . ,θ

m
q−1,θ

m
q
)

draw θ
m+1
3 from p

(
θ3 | θm+1

1 ,θm+1
2 , . . . ,θm

q−1,θ
m
q
)

...

draw θ
m+1
q−1 from p

(
θq−1 | θm+1

1 ,θm+1
2 ,θm+1

3 . . . ,θm
q
)

draw θ
m+1
q from p

(
θq | θm+1

1 ,θm+1
2 ,θm+1

3 . . . ,θm+1
q−1

)
.

3. Repeat step 2 until a large enough sample is obtained.

Notice that this procedure forms an ergodic Markov chain, and is hence guaranteed

to reach the stationary distribution. By simply dropping some early draws (the so

called burn-in period), the remaining sample will accurately approximate full condi-

tional posterior distributions, so that summary statistics may be estimated using sample

estimates.

Gibbs sampling is a particular case of Metropolis-Hastings algorithm, which we
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discuss next.

Metropolis-Hastings algorithm Metropolis-Hastings algorithm is a method for ob-

taining a sample from a posterior distribution which is difficult to simulate from, very

useful in particular with multi-dimensional distributions.

The method requires specification of a distribution q(·, ·), proportional to the target

distribution f (·), which is easy to simulate from, and which values q(θθθ) can be cal-

culated. q(·, ·) is called the proposal distribution, and it is used to generate candidate

values for updating of the Markov chain. In general, q(·, ·) may be chosen to depend

on the most recent draw. For instance, it could be a Normal distribution centered in the

current state of the chain. However, this is not a necessary condition.

Once q(·, ·) is chosen, the algorithm is initiated by choosing an arbitrary starting

point θθθ
(0) for the model paramter. θθθ

(0) can be univariate or multivariate. We then

proceed as follows:

1. At a generic iteration m+ 1, m ≥ 0, simulate a candidate value θθθ
(∗) from the

proposal distribution.

2. Calculate the acceptance probability for θθθ
(∗), α

(
θθθ
(m),θθθ(∗)

)
:

α

(
θθθ
(m),θθθ(∗)

)
= min

{
1,

f
(

θθθ
(∗)
)

q
(

θθθ
(m),θθθ(∗)

)
f
(

θθθ
(m)
)

q
(

θθθ
(∗),θθθ(m)

)} (2.14)

where q(x,y) is the transition probability of moving to state y given that x is the

current state.

3. The candidate value is retained with probability α

(
θθθ
(m),θθθ(∗)

)
. The decision is

made by simulating a value u such that U ∼Un(0,1). If u≤ α

(
θθθ
(m),θθθ(∗)

)
, θθθ

(∗)

is retained, and set θθθ
(m+1) = θθθ

(∗); if u > α

(
θθθ
(m),θθθ(∗)

)
, θθθ

(∗) is rejected, and set

θθθ
(m+1) = θθθ

(m).
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Random walk Metropolis Random walk Metropolis (RWM) is a particular case of

Metropolis-Hastings algorithm in which the proposal distribution g(·) is symmetric.

The symmetry in the proposal implies that the proposal ratio
q
(

θθθ
(m),θθθ(∗)

)
q
(

θθθ
(∗),θθθ(m)

) is always

equal to 1. Therefore, the acceptance probability in (2.14) becomes:

α

(
θθθ
(m),θθθ(∗)

)
= min

{
1,

f
(

θθθ
(∗)
)

f
(

θθθ
(m)
)} (2.15)

For highest efficiency, it is common to set up RWM so that the proportion of ac-

cepted candidate values is between 20%−25%.

Independent sampler When there is not an obvious choice of what the proposal

distribution should be, one choice is to generate candidate values from a fixed distri-

bution, g(·), which does not depend on the current state of the chain. In this way, for a

candidate value θθθ
(∗) and current state θθθ

(m), the proposal distribution is q
(

θθθ
(∗),θθθ(m)

)
=

g
(

θθθ
(∗)
)

. The acceptance probability for a candidate value then becomes:

α

(
θθθ
(m),θθθ(∗)

)
= min

{
1,

f
(

θθθ
(∗)
)

g
(

θθθ
(m)
)

f
(

θθθ
(m)
)

g
(

θθθ
(∗)
)} (2.16)

In a Bayesian setting, the proposal distribution may be the prior distribution p(θθθ).

With f (·) being the posterior distribution (up to proportionality), the acceptance prob-

ability for a candidate value is now:

α

(
θθθ
(m),θθθ(∗)

)
= min

{
1,

L
(

θθθ
(∗)
)

p
(

θθθ
(∗)
)

p
(

θθθ
(m)
)

L
(

θθθ
(m)
)

p
(

θθθ
(m)
)

p
(

θθθ
(∗)
)} (2.17)
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which reduces to min

{
1,

L
(

θθθ
(∗)
)

L
(

θθθ
(m)
)} if the prior distribution is symmetric.

2.2.4 Bayesian model selection

When attempting to predict a certain event, it is important to measure the uncertainty

associated with the prediction. For instance, there may be several models that describe

the same event, and we may be interested in assessing which one provides the best

fit given the evidence from the data, and how confident we are about that particular

model being the best. In Bayesian statistics, this can be done by estimating posterior

probabilities of candidate models.

Reversible jump MCMC Reversible jump MCMC (RJMCMC) is itself a type of

Metropolis-Hastings algorithm. It allows simulation of posterior probabilities of mod-

els with different parameters (formally models with parameter spaces of varying di-

mensions). In a linear model, it may be used to assess which covriates are relevant

towards predicting the response. Translated into time series, RJMCMC could be used,

for example, to assess the ”best” order of an autoregressive model. This is also how

we will use the methodology for MAR models.

Let M = {M1, . . . ,Mg} be a set containing g distinct candidate models, each de-

scribing a particular event. Suppose that, at step m of the chain, m ≥ 0, the current

model is M (m) = Mi, and that we propose a move to model M j. Because the two

models have different parameter space, it is required to create a mapping between the

two sets of paramters that allows the jump from one model to the other. This mapping

is also called dimension matching, and is essentially a reparametrisation of model Mi

into model M j. This is often done by generation of random variables. For an example

relevant to our case, assume that the two models have parameter vectors respectively

θθθi and θθθ j, where θθθ j has k addotional parameter. We may generate a realisation uuu from
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an arbitrarily selected k-dimensional random variable U with density g(u), and create

the 1 to 1 mapping θθθ j→ (θθθi,uuu).

The acceptance rate of the proposed move from Mi to M j involves a ratio of the

posterior distributions of the parameters given the data y, multiplied by the ratio of pro-

posal distributions, i.e. a function q(x,y) that determines the probability of a proposed

move from x to y:

α
(
Mi,M j

)
= min

{
1,

L
(
θθθ j | y

)
L(θθθi | y)

×
p
(
θθθ j
)

p(θθθi)
× q(θθθi)

q
(
θθθ j
)

g(u)
×|J|

}
(2.18)

The last term of the product, |J|, is the determinant of the Jacobian matrix, that is

determined by the mapping between the two models.

Steps for updating the ”current” model are the same as for all other examples of

Metropolis-Hastings algorithm seen so far.

Marginal likelihood from Gibbs and Metropolis-Hastings output All methods

described so far estimate posterior distributions up to proportion. In fact, for any of

those methods it is not necessary to calculate the normalising constant (the denomina-

tor in (2.10)), which is often very challenging. This normalising constant is also the

marginal likelihood of the model.

The marginal likelihood of a model is the likelihood function after some or all

of the parameters have been marginalised. Formally, given data yyy = (y1, . . . ,yn) where

yyy∼ p(yyy | θθθ), θθθ is a parameter vector and itself a random variable such that θθθ∼ p(θθθ | x),

the marginal likelihood is:

p(y1, . . . ,yn | x) =
∫

θθθ

p(y1, . . . ,yn | θθθ) p(θθθ | x)dθθθ (2.19)

which is the likelihood of the model after marginalising with respect to θθθ. Here, x

denotes additional information about the model other than θθθ.
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Chib (1995) and Chib and Jeliazkov (2001) proposed methods to calculate the

marginal likelihood from the output of, respectively, Gibbs sampling and Metropolis-

Hastings output.

Since the marginal likelihood is the normalising constant in the posterior density,

we define the marginal likelihood identity by rearranging (2.11):

p(yyy | x) = L(θθθ | yyy,x) p(θθθ | x)
p(θθθ | yyy,x)

(2.20)

This equality allows us to estimate the marginal likelihood at a single point θθθ
∗, as long

as the posterior distribution is available (known or estimated).

First, we discuss estimation of the marginal likelihood from Gibbs sampling. The

output of Gibbs sampling provides an estimate of the posterior distribution p(θθθ | x).

Full conditional posterior distributions of θθθ =
(
θ1, . . . ,θq

)
are

p(θi | θθθ−i,yyy,x) , i = 1, . . . ,q,

which estimates are available via Gibbs sampling.

Now, let θθθ
∗ be a single ordinate of the parameter vector. For efficiency reasons,

this is normally taken as a high density point in the posterior distribution. The joint

conditional posterior denisity at θθθ
∗ can be factorised into:

p(θθθ∗ | yyy,x) =
q

∏
i=1

p
(
θ
∗
i | θθθ∗−i,yyy,x

)
(2.21)

with

p
(
θ
∗
i | θθθ∗−i,yyy,x

)
=

∫
p
(
θ
∗
i | θ∗1, . . . ,θ∗i−1,θi+1, . . . ,θq,yyy,x

)
× p

(
θi+1, . . . ,θq | θ∗1, . . . ,θ∗i−1,yyy,x

)
dθi+1 . . . ,dθq (2.22)
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Given a sample of size N obtained via Gibbs sampling, the integrals in (2.22) can then

be estimated via Monte Carlo, so that:

p̂
(
θ
∗
i | θ∗1, . . . ,θ∗i−1,yyy,x

)
=

N

∑
j

p
(

θ
∗
i | θ∗1, . . . ,θ∗i−1,θ

( j)
i+1, . . . ,θ

( j)
q ,yyy,x

)
(2.23)

The methodology can be generalised to all Metropolis-Hastings algorithm, as shown

by Chib and Jeliazkov (2001).

Let Ωi−1 = (θ1, . . . ,θi−1) and Ωi+1 =
(
θi+1, . . . ,θq

)
. This time, suppose that for

each θi the proposal distribution for a move from θi to θ
′
i is q

(
θi,θ

′
i |Ωi−1,Ωi+1,yyy

)
.

The acceptance probability of the proposed move is:

α

(
θi,θ

′
i |Ωi−1,Ωi+1,yyy

)
= min

{
1,

f
(

yyy | θ′i
)

p
(

θ
′
i

)
q
(

θ
′
i,θi | θθθ−i,y

)
f (yyy | θi) p(θi)q

(
θi,θ

′
i | θθθ−i,yyy

) } (2.24)

Now, because Metropolis-Hastings satisfies the principle of detailed balance of

Markov chains, for any single ordinate θθθ
∗ it holds that:

α
(
θi,θ

∗
i |Ω∗i−1,Ωi+1,yyy

)
q
(
θi,θ

∗
i |Ω∗i−1,Ωi+1,yyy

)
p
(
θi |Ω∗i−1,Ωi+1,yyy

)
=

α
(
θ
∗
i ,θi |Ω∗i−1,Ωi+1,yyy

)
q
(
θ
∗
i ,θi |Ω∗i−1,Ωi+1,yyy

)
p
(
θ
∗
i |Ω∗i−1,Ωi+1,yyy

)
. (2.25)

Finally, integrating both sides with respect to θi and rearranging the terms, we obtain:

p
(
θ
∗
i |Ω∗i−1,Ωi+1,yyy

)
=

∫
α
(
θi,θ

∗
i |Ω∗i−1,Ωi+1,yyy

)
q
(
θi,θ

∗
i |Ω∗i−1,Ωi+1,yyy

)
p
(
θi |Ω∗i−1,Ωi+1,yyy

)
dθi∫

α
(
θ∗i ,θi |Ω∗i−1,Ωi+1,yyy

)
q
(
θ∗i ,θi |Ω∗i−1,Ωi+1,yyy

)
dθi

=
E1
[
α
(
θi,θ

∗
i |Ω∗i−1,Ωi+1,yyy

)
q
(
θi,θ

∗
i |Ω∗i−1,Ωi+1,yyy

)]
E2
[
α
(
θ∗i ,θi |Ω∗i−1,Ωi+1,yyy

)] ,

(2.26)

where E1 is with respect to p(θi | yyy) and E2 is with respect to q(θ∗i ,θi). Repeating this

for i = 1, . . . ,q we have the factors needed for estimation of the marginal likelihood.

When a sample of size N from the posterior distribution of θ1, . . . ,θq has been
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obtained via Metropolis-Hastings, the factors in (2.26) are then estimated by Monte

Carlo as:

p̂
(
θ
∗
i |Ω∗i−1,Ωi+1,yyy

)
=

N

∑
j=1

α

(
θ
( j)
i ,θ∗i |Ω∗i−1,Ωi+1,yyy

)
q
(

θ
( j)
i ,θ∗i |Ω∗i−1,Ωi+1,yyy

)
N

∑
j=1

α

(
θ
∗
i ,θ

( j)
i |Ω

∗
i−1,Ωi+1,yyy

)
(2.27)

and ultimately the marginal likelihood, evaluated at θθθ
∗ is the product of these factors,

i.e.:

p̂(θθθ∗ | yyy) =
q

∏
i=1

p̂
(
θ
∗
i |Ω∗i−1,Ωi+1,yyy

)
(2.28)

2.2.5 The label switching problem

A common problem associated with Bayesian analysis of mixtures is that of label

switching (see for instance Celeux, 2000), which derives from symmetry in the likeli-

hood function. If no prior information is available to distinguish the mixture compo-

nents, then the posterior distribution will also be symmetric. It is essential that label

switching is detected and handled properly in order to obtain meaningful results. A

common way to deal with this is to impose some sort of ordering of the mixture com-

ponents through identifiability constraints, e.g. imposing in (2.1) that π1 > π2 > πg.

However, it is known that such constraints may lead to bias and other issues (think for

instance of the case of two regimes with π1 = π = 2 = 0.5). In the case of MAR mod-

els, Hossain (2012) showed that these constraints may affect convergence of the chain

to the posterior distribution. More examples of this issue are given in the discussion to

the paper by Richardson and Green (1997).

Throughout this work, label switching is dealt with using a k-means clustering

algorithm proposed by Celeux (2000).

The algorithm works by first choosing the first m simulated values of the output
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after convergence. The value m shall be chosen small enough for labels switch to not

have occurred yet, and large enough to be able to calculate reliable initial values of

cluster centres and their respective variances.

Let θθθ = (θ1, . . . ,θg) be a subset of model parameters of size g, and N the size of

the converged sample. For any centre coordinate θi, i = 1, . . . ,g, we calculate the mean

and variance, based on the first m simulated values, respectively as:

θ̄i =
1
m

m

∑
j=1

θ
( j)
i s̄2

i =
1
m

m

∑
j=1

(
θ
( j)
i − θ̄i

)2

We set this to be the “true” permutation of the components, i.e. we now have an

initial center θ̄θθ
(0) with variances s̄(0)

2

i , i = 1, . . . ,g. The remaining g!−1 permutations

can be obtained by simply permuting these centres.

From these initial estimates, the rth iteration (r = 1, . . . ,N−m) of the procedure

consists of two steps:

• the parameter vector θθθ
(m+r) is assigned to the cluster such that the normalised

squared distance

g

∑
i=1

(
θ
(m+r)
i − θ̄

(m+r−1)
i

)2

(
s(m+r−1)

i

)2 (2.29)

is minimised, where θ̄
(m+r−1)
i is the ith centre coordinate and s(m+r−1)

i its stan-

dard deviation, at the latest update m+ r−1.

• Centre coordinates and their variances are respectively updated as follows:

θ̄
(m+r)
i =

m+ r−1
m+ r

θ̄
(m+r−1)
i +

1
m+ r

θ
(m+r)
i (2.30)
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and

(s(m+r)
i )2 =

m+ r−1
m+ r

(s(m+r−1)
i )2 +

m+ r−1
m+ r

(
θ̄
(m+r−1)
i − θ̄

(m+r)
i

)2

+
1

m+ r

(
θ
(m+r)
i − θ̄

(m+r)
i

)2
(2.31)

for i = 1, . . . ,g.

It is important to aknowledge that the choice of a subset is not always objective. In

fact, clusters may appear in different subsets of the parameters for different datasets.

As a result, certain choices of subsets may be ineffective for the purpose of relabelling.

Translated into the the context of mixtures, clusters may sometimes be clear in the

mixing weights π1, . . . ,πg at times, or in the scale parameters σ1, . . . ,σg at others, and

so on. Therefore this method requires graphical assistance, checking the raw output

looking for the clearest group separation. For MAR models however, it is advisable

not to use the autoregressive parameters, especially when the orders are different.

Once the selected subset has been relabelled, labels for the remaining parameters

can be switched accordingly.

2.2.6 Label switching and marginal likelihood

We here discuss the possible effect of incorrect label switching on the methodology in

Section 2.2.4 for calculation of the marginal likelihood of the data. Recall the formula:

p(yyy | x) = L(θθθ∗ | x) p(θθθ∗)
p(θθθ∗ | yyy,x)

where θθθ
∗ is a point of high density (ideally of highest density) according to its posterior

distribution.

For mixture models, we have that the likelihood function L(θθθ∗ | x) is a product of

sums. For simplicity, suppose the model is a mixture of two components, and θθθ =
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(θθθ1,θθθ2). It follows that the conditional likelihood is

L(θθθ∗ | x) =
n

∏
i=1

π1 f (yi | θ1)+π2 f (yi | θ2) =
n

∏
i=1

π2 f (yi | θ2)+π1 f (yi | θ1)

which means that the likelihood is invariant with respect to the permutation of θθθ.

Under the same example, prior and posterior distributions for θθθ may somewhat be

affected by label switching. For prior distributions, this will happen when the prac-

tician sets up the experiment with informative priors, as this would bring the risk of

evaluating a parameter under the wrong prior distribution. However, informative pri-

ors have the purpose of creating enough separation so that label switching does not in

fact occur, as they incorporate prior belief on the distribution of the parameters (see

Celeux, 2000). In the examples presented here, prior distributions are the same across

all components for corresponing parameters (for instance, all precisions follow a priori

the same Gamma distribution), and therefore label switching will not affect the result.

Posterior distributions are the most subject to the effect of label switching. How-

ever, we point few remarks in favor of the effectiveness of Chib (1995) and Chib and

Jeliazkov (2001), even in the case of undetected label switching:

• The authors reassure that the methodology works effectively with a range of

high density values under their respective posterior distributions. Returning to

the two-component mixture example, suppose that there is undetected switching.

The corresponding parameters in the two components, for example π1 and pi2,

will show two modes. These modes will however correspond to the two highest

density values, respectively, of π1 and π2. Therfore, it makes sense to believe

that, ultimately, the choice of π∗1 and π∗2 will not change significantly, and high

density values will be selected regardless.

• From (2.23) and (2.27), it is clear that undetected label switching could cause
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issues in evaluation of the posterior density of θθθ
∗. This brings forward two

considerations: first of all, label switching may occur due to little separation

between the groups, meaning the two posterior distributions shall not be too

dissimilar and a wrong labelling of a few iterations may not affect significantly

the evaluation. Secondly, even when incorrect labelling does have an effect, each

iteration is dampened by a 1/N factor since we take an average over the entire

sample.

• The algorithm in Section 2.2.4 sequentially fixes a set of parameters to their

highest density values. This implies that, after very few parameters are fixed,

label switching will definitely not occur for the remaining parameters. Going

back to the two-component example, it is obvious that once we fix θθθ
∗
1, there can

no longer be label switching, since now we only draw a sample from θθθ2.

• Finally, we must take into account that the contribution of the posterior dis-

tribution towards p(yyy | x) will in general be rather small compared to that of

L(θθθ | yyy,x), which is ”immune” to label switching.

All things considered, we therefore conclude that, while handled correctly through-

out every example in this project, the effect of label switching could in general be

neglectible in terms of correct model selection with marginal likelihood.

2.3 The frequentist approach

Unlike Bayesian statistics, frequentist inference does not treat model parameters as

random variables, but rather as unknown fixed quantities to be estimated. Furthermore,

frequentist inference does not in any way incorporate subjective information (besides

the choice of model) in the estimation process. Results are solely based on evidence
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extracted from a given dataset, which is deemed to be representative of the population

of interest.

While the origins of frequentist, or ”classical”, statistics date back to the 19th cen-

tury, it was formally introduced in the early 1900s, with the works of Fisher, Neyman

and Pearson, who set the baseline theory for estimation and confidence intervals, as

well as hypothesis and importance testing.

In the context of mixture models, frequentist parameter estimation is usually done

by EM-algorithm, which we now introduce.

2.3.1 Expectation-Maximisation algorithm

The Expectation-Maximisation (EM) algorithm (Dempster et al., 1977) is an iterative

method to find local maximum likelihood estimates of the parameters of a statistical

model in cases where the maximisation problem cannot be solved directly.

The idea of EM algorithm is to consider the likelihood function of the data as

incomplete. To ”complete” the likelihood, a set of latent, unobservable variables are

introduced of the type defined in Section 2.1.3. The latent variables function as missing

values from the original data. Since these variables are not observable, they need to be

included in the estimation process.

Let yyy be a dataset, θθθ the model parameter vector, and zzz the latent variables. In

addition, denote L(θθθ;yyy,zzz), the likelihood function of the data. The EM algorithm aims

at maximising the marginal likelihood

L(θθθ;yyy) =
∫

L(θθθ;yyy,zzz)dzzz (2.32)

Assume however that this marginal likelihood, as it is, is intractable. The EM algorithm

is used to find a local MLE to L(θθθ;yyy), with a two-step iteration involving Z:
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• E step: calculate the expected value of the loglikelihood Q
(

θθθ | θθθ(t)
)

:

Q
(

θθθ | θθθ(t)
)
= Ezzz|yyy,θθθ(t) [L(θθθ;yyy,zzz)] (2.33)

This step is used to predict the latent variables zzz through their expectations, con-

ditional on the known parameter vector θθθ;

• M step: Maximise Q
(

θθθ | θθθ(t)
)

conditional on the current conditional distribu-

tion of the complete data (yyy,zzz):

θθθ
(t+1) = argmax

θθθ

{Q
(

θθθ | θθθ(t)
)
} (2.34)

The two steps are iterated until convergence.

An important property of the EM algorithm is that convergence to a local maximum

is always guaranteed. However, in the case of multiple local maxima, convergence to

the global maximum is not guaranteed. Therefore one must be alert of the likelihood

function possibly having several local maxima (a common feature in mixture models),

and carefully choose appropriate starting values for implementation of the algorithm.

2.4 Diagnostics for MAR models

For diagnostics of MAR models, we calculate two types of errors:

• The first set of errors, εt follows the ”standard” definition, calculated as the dif-

ference between the observation and its conditional expectation or conditional

predictor:

εt = yt−E [yt | Ft−1] = yt− ŷt . (2.35)

While no distribution assumption can be made about εt , these errors should still
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be uncorrelated (hence lack of serial correlation is a first sign of good model fit).

Furthermore, it can be proved that εt form a martingale difference sequence with

mean 0 and positive, finite variance with an upper bound at the unconditional

variance of yt . (see Akinyemi, 2013, for details).

We can perform some transformations on the yt to assess goodness of fit of the

model. Smith (1985) suggests that, under correct model specification, the fol-

lowing assumptions on transformations of yt are correct:

Ut = F (yt | Ft−1)∼U (0,1)

Vt = ΦΦΦ
−1 (Ut)∼ N (0,1)

(2.36)

One can therefore calculate the series Ut and Vt from the fitted model, and test

their respective distributional assumption.

• The second set of errors, denoted ε̃t , arises from exploiting the assumption of

a mixture model. The idea for estimation of such errors is that if the model is

correctly specified, then every observation shall be assigned to its ”true” mixture

component it was generated from. In this sense, we make use of the conditional

expectations of the latent allocation variables, zt . Recall the formula:

E
[
ztk | yyy,µµµ, φ̂φφ, σ̂σσ, π̂ππ

]
= τ̂tk =

π̂k fk

(
êtk

σ̂k

)
∑

g
l=1 π̂l fl

(
êtl

σ̂l

)

where êtk = yt− φ̂k0−∑
p
i=1 φ̂kiyt−i for k = 1, . . . ,g.

Naturally, the largest τ̂tk will occur for that mixture component k which gener-

ated yt . Hence, we choose k, the ”true” mixture component to have generated

yt , as the one for which τ̂tk is the largest. For that component k, we calculate the
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standardised error as if the model was now an AR(pk):

ε̃t =
êtk

σ̂k
(2.37)

Under correct model specification, each residual êtk will be standardised by its

”true” standard deviation, up to variance of the estimator σ̂k. Therefore, the se-

ries of residuals ε̃t will appoximately follow the standardised distribution of in-

terest. For instance, if fk ≡ φφφ, the standard Normal distribution for k = 1, . . . ,g,

then the distribution of ε̃t would be standard Normal under correct model specifi-

cation. This provides us with one further tool for assessing the goodness of fit of

the model, as we can calculate ε̃t , and test for uncorrelatedness and distribution

of this set of residuals.

A limitation of this method is that it depends on correct classification of the

observations, therefore it may not be accurate when mixture components are

not well separated. However, if mixture components are so indistinguishable

that correct classification of observations is not possible, one should question

whether the right number of mixture components has been chosen, or even if the

choice of a mixture model was correct in the first place.

2.5 Prediction with density forecasts

A density forecast of the realisation of a random variable at some future time horizon

is an estimate of the probability distribution of the possible values that random variable

may assume. It hence provides a measure of the uncertainty associated with a predic-

tion, as opposed to point forecasts, which by themselves do not give any description of

uncertainty.

In the context of mixture models, density forecasts are often more attractive than
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point predictors and prediction intervals. This is because the qualitative features of

a predictive distribution, such as multiple modes or skewness, are more intuitive and

useful than just a forecast and its associated prediction interval, which are unable to

catch such behavior. Think for example of the point prediction for a symmetric bi-

modal density: a point prediction would fall exactly between the two modes, in a point

of low density, and would therefore be misleading. In addition, when the predictive

distribution is available, prediction intervals can easily be obtained by extracting the

quantiles of interest from the distribution (Boshnakov, 2009; Lawless and Fredette,

2005).

2.5.1 Prediction with mixture autoregressive models

Boshnakov (2009) showed that the h-steps ahead predictive distribution of MAR mod-

els can be derived analytically. For a mixture of g components, the density forecast at

horizon h is a mixture of gh components, which essentially accounts for every possible

permutation of components up until time t + h. In particular, this holds true for any

α-stable distribution, including Gaussian. Details on derivation can be found in Bosh-

nakov (2009). Derivation of the same properties in the case of multivariate Normal

mixtures is shown in Chapter 5.

2.5.2 Scoring rules

A scoring rule is a function that assigns a numerical value to a pair of a forecast dis-

tribution F and an observation y. In general, it is convention for scoring rules that a

lower value denotes a better forecast.

Let F be the true distribution of y, and G be any distribution. A scoring rule S is a

proper scoring rule if:

E [S (F,y)]≤ E [S (G,y)] (2.38)
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This means that, on expectation, the scoring rule will be minimised when the true dis-

tribution of y is used. In addition, S is a strictly proper scoring rule if equality in (2.38)

only holds for G≡ F (i.e. there is not a distribution that can match the performance of

F). We will make use of scoring rules in Chapter 5, to compare predictive performance

of portfolios built with different model.

Continuous ranked probability score Continuous ranked probability score (CRPS)

(see for instance Gneiting and Raftery, 2007) is one of the strictly proper scoring rules

chosen to directly compare forecasting performance of different methods on the same

dataset.

Given an observation x and the associated forecast distribution F , CRPS is defined

mathematically as:

CRPS(F,x) =
∫
R

(F(y)− I (y≥ x))2 dy (2.39)

where I (·) is the indicator function assuming value 1 when the argument y≥ x is true,

and 0 othetwise. CRPS is a measure of discrepancy between the forecast CDF, F , and

the empirical CDF of the observation x.

Logarithmic score Logarithmic score (LogS, Good, 1952) is another example of

strictly proper scoring rule. Given an observation x, a score is assigned equal to the

logarithm of the corresponding density:

LogS(F,x) = log f (x) . (2.40)

Dawid-Sebastiani score The Dawid-Sebastiani score (DSS, Dawid and Sebastiani,

1999) is the last example of strictly proper scoring rule.

Given the mean µ and the variance σ2 of the predictive distribution of a variable x,
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DSS is calculated as

DSS(F,x) =− logσ
2− 1

σ2 (x−µ)2 (2.41)

2.6 Review of some relevant probability distributions

2.6.1 Normal distribution

A random variable X is said to follow a Normal (or Gaussian) distribution with mean

µ and variance σ2 if its probability density function can be written as:

f (x) =
1√

2πσ2
exp

{
− 1

2σ2 (x−µ)2

}
. (2.42)

When µ = 0 and σ2 = 1, X is said to follow a standard Normal distribution.

Properties.

• Let X ∼ N
(
µ,σ2), then Y =

X−µ
σ
∼ N (0,1);

• Let X1, . . . ,Xn follow independent N
(
µi,σ

2
i
)
, i = 1, . . . ,n. Then Y = ∑

n
i=1 Xi ∼

N
(
∑

n
i=1 µi,∑

n
i=1 σ2

i
)
. This can be extended to correlated random variables, by

adding the covariance terms;

2.6.2 Multivariate Normal distribution

This is a generalisation of the Normal distribution to dimensions higher than 1. A d-

variate vector XXX is said to follow a multivariate Normal distribution with mean vector

µµµ and covariance matrix Σ if its probability density function can be written as:

f (xxx) =
1

(2π)d/2 |ΣΣΣ|
−1/2 exp

{
− 1

2
(xxx−µµµ)T

ΣΣΣ
−1 (xxx−µµµ)

}
(2.43)
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A useful property of the multivariate Normal distribution regards linear combina-

tions of the random vector XXX . Let XXX ∼ MV N (µµµ,ΣΣΣ), and aaa be a k-variate constant

vector. For any aaa, it holds that:

k

∑
i=1

aiXi = aaaT XXX ∼ N
(
aaaT µµµ,aaaT

ΣΣΣ,aaa
)

(2.44)

2.6.3 Gamma distribution

A random variable X defined in the support (0,+∞) is said to follow a Gamma distri-

bution with shape parameter α > 0 and scale parameter β > 0 if its probability density

function ca be written as:

f (x) =
βα

Γ(α)
xα−1 exp

{
−βx

}
, (2.45)

where Γ(·) is the gamma function. We denote X ∼ Ga(α,β).

Properties .

• Let X ∼ Ga(α,β). The expected value of X is E [X ] =
α

β
; the variance of X is

Var(X) =
α

β2 ;

• If X ∼ Ga(1,β), then X follows an exponential distribution with parameter β,

X ∼ Exp(β);

• If α > 1, then the probability density function of X has a unique mode at
α−1

β
.

If α≤ 1, the distribution does not have a mode.

• Let X1, . . . ,Xn follow respectively Ga(αi,β), i= 1, . . . ,n. Then, ∑
n
i=1 Xi∼Ga(∑n

i=1 αi,β)
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2.6.4 Student-t distribution

A continuous random variable X is said to follow a Student-t distribution (or simply t

distribution) with ν > 0 degrees of freedom if its probability density function can be

written as:

f (x) =
Γ

(
ν+1

2

)
Γ

(
ν

2

) (
1+

x2

ν

)−(ν+1)/2

. (2.46)

Provided certain conditions on ν are met, we have:

E [X ] = 0, if ν > 1;

Var(X) =
ν

ν−2
, if ν > 2

The random variable X can be shifted and rescaled to obtain a t distribution with mean

µ scale parameter σ2 and again degrees of freedom ν. In this case, the probability

density function becomes:

f (x) =
Γ

(
ν+1

2

)
Γ

(
ν

2

) σ√
ν

(
1+

(x−µ)2

σ2ν

)−(ν+1)/2

(2.47)

Mean and variance of X change accordingly. We have in fact:

E [X ] = µ, if ν > 1;

Var(X) = σ
2 ν

ν−2
, if ν > 2

Integral representation of the t distribution In Bayesian statistics, a shifted and

re-scaled version of the t distribution arises as marginalisation, with respect to the

variance, of a Normal distribution with uknown mean and variance. Let X follow the t

distribution with mean µ, scale parameter σ2 and degrees of freedom ν in (2.47). It can
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be shown that the probability density function of X arises as solution to the integral:

fX (x) =
∫

∞

0
fX |Z (x | z) fZ (z)dZ (2.48)

where X | Z = z∼ N
(

µ,
σ2

z

)
and Z ∼ Ga

(
ν

2
,
ν

2

)
.

Notice that by adjusting the distribution of Z to a Ga
(

ν

2
,
ν−2

2

)
, the variance of X

becomes Var(X) = σ2. This adjustment will be important to simulate samples directly

from σ2 (or sometimes σ−2, as we will do in Chapter 4)with no need to perform any

transformation.

2.6.5 Multinomial distribution

The multinomial distribution is a discrete distribution used to model n realisations of

an event with k possible outcomes (for instance the roll of a die with 6 faces). In the

particular case k = 2, we have the so called binomial distribution. Moreover, if k = 2

and n = 1 we have the Bernoulli distribution.

Let π1, . . . ,πk be probabilities associated with k possible outcomes of an event, and

x1, . . . ,xk be the total number of realisations of each outcome, such that ∑
k
i=1 xi = n,

where n is the number of experiments. Then the probability mass function for this

distribution can be written as:

f (x1. . . . ,xn) =
n!

x1! x2! . . . xn!
π

x1
1 π

x2
2 . . .πxk

k (2.49)

2.6.6 Dirichlet distribution

The Dirichlet distribution is a family of continuous multivariate distributions, charac-

terised by a parameter vector of positive real values aaa = (a1, . . . ,ak), ai > 0 for all

i. It is a generalisation of the beta distribution. In Bayesian statistics, the Dirichlet
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distribution is a natural conjugate prior distribution for mixing weights in a mixture

model.

A random vector XXX = (X1, . . . ,Xk) is said to follow a Dirichlet distribution if its

probability density function can be written as:

f (xxx) =

k

∏
i=1

xai−1
i

B(aaa)
(2.50)

Conditions on xxx = (x1, . . . ,xk) are that xi > 0 for all i and
k

∑
i=1

xi = 1.

2.7 GARCH models

Generalised autoregressive conditional heteroskedasticity (GARCH) models are a class

of statistical models for time series in which the variance of the current error term, or

innovation, is a function of the previous error terms and their respective variances.

GARCH models find their application in financial time series, which often present pe-

riods of high variability followed by periods of low variability, as well as significant

correlation in the square of the series. In fact, GARCH modelss are built under the as-

sumption that the variance, or volatility, of an observation is depends upon the squares

of previous innovations, as well as on past variances.

The traditional GARCH(p,q) model introduced by Bollerslev (1986) as a gener-

alisation of the autoregressive conditional heteroskedasticity (ARCH, Engle, 1982) is

defined as follows:

εt = σtηt , ηt ∼ N(0,1)

σ
2
t = α0 +

q

∑
i=1

αiε
2
t−i +

p

∑
j=1

β jσ
2
t− j

(2.51)
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where εt is the innovation at time t, ηt is a standard Normal random variable (but may

be generalised to any white noise distribution), σ2
t is the variance, or volatility, of εt .

A necessary restriction to the model parameters is αi ≥ 0, i = 0, . . . ,q and β j ≥ 0,

j = 1, . . . , p. If p = 0 the model reduces to an ARCH(q) model, in which the variance

is a linear combination of past variances; if p = q = 0 the process is white noise.

2.7.1 Multivariate GARCH models and Dynamic Conditional Cor-

relation

A natural extension of GARCH models is their multivariate version. The advantage

of a multivariate model is that it accounts for cross-correlation between different time

series of interest, a feature that can be very useful with financial data, for example to

build a portfolio of assets.

Bollerslev et al. (1988) and Engle and Kroner (1995) pioneered in the attempt to

model conditional covariance matrices of predictors for multivariate time series with

multivariate GARCH models, using different parametrisations known respectively as

VEC and BEKK. Engle (2002) extended the idea of multivariate GARCH to the so

called Dynamic Conditional Correlation models, in which each element of the time-

dependent covariance matrix of the data is modelled to follow a GARCH process. Such

models have computational advantages over multivariate GARCH models in that the

number of parameters to be estimated in the correlation process is independent of the

number of series to be correlated, by use of common parameters across all correlations.

Since then, much work has been done to develop multivariate GARCH models,

with various applications in finance and econometrics. Of particular interest, attempts

have been made in combining GARCH and factor models, with the aim of dimension-

ality reduction when modelling large portfolios or panel data. These models rely on

the assumption that financial returns are described by a small number of underlying
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common variables, or factors, which can be used to model the data more parsimo-

niously. Although all equal in concept, different approaches used different assump-

tions on such factors, and different techniques are used to derive them. For instance,

Alexander (2000) uses a principal components analysis in which factors are assumed

to follow independent GARCH processes, whereas Van der Weide (2002) considers the

case in which factors are not orthogonal. Finally, Santos and Moura (2014) introduced

the dynamic factor GARCH model with time-varying factor loadings.

We focus here on the DCC model by Engle (2002), which directly compares to our

MAR model and its multivariate extension.

A multivatiate GARCH (MGARCH) model for a m-variate time series process yyyt

can be written as:

yyyttt = E [yyyt | Ft−1]+ εεεt

Var(εεεt) = Ht

(2.52)

where Ht is a positive definite matrix for all t. Ht can be decomposed as Ht = DtRtDt ,

where Dt is a diagonal matrix with elements (σ1t , . . . ,σmt) and Rt is a time-dependent

correlation matrix, with the same requirements as Ht and with diagonal elemements

equal to 1. In the standard MGARCH model, it is instead assumed that Rt is constant

at all times t.

These equations will produce a correlation matrix at each time point. Engle (2002)

suggests to specify each element of the matrix Rt by a univariate GARCH model. Let

ri, j,t be a generic element of the correlation matrix Rt . ri, j,t is assumed to follow a

GARCH(1,1) process:

ri, j,t = ρ̄i, j +α
(
εi,t−1ε j,t−1− ρ̄i, j

)
+β
(
ri, j,t− ρ̄i, j

)
(2.53)

where ρ̄i, j is the unconditional correlation between εi,t and ε j,t . Notice that the average
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of ri, j,t will be ρ̄i, j, and the average of the variances will be 1. The estimator of the

conditional correlation is ultimately

ρ̂i, j,t =
ri, j,t√ri,i,tr j, j,t

(2.54)

2.8 Modern portfolio theory and financial risk

2.8.1 Modern portfolio theory

Modern portfolio theory (MPT, Markowitz, 1952) is a theory on how to construct port-

folios to maximise expected return on a given level of risk. Likewise, it can minimise

the risk for a given expected return.

MPT assumes that investors are adverse to risk, meaning that, for a given return,

they prefer a lower level of risk. This is achieved by investing on multiple assets or

asset classes, rather than on a single asset.

The expected return on a portfolio is calculated as a weighted average of asset

returns, where the weights are the proportion of invested capital placed on each assets.

The risk associated with a portfolio is calculated as a function of the variances of the

assets and pairwise correlations. Furthermore, MPT in general allows short selling,

which is reflected in negative values for the portfolio weights.

Terminology:

• Short selling: short selling consists in the investor borrowing shares of an asset

which they believe will decrease in value by a future date. In this case, the in-

vestor sells the borrowed shares, which they will purchase back in the future and

return to the lender. If the price of the shares has decreased over this period of

time, the investor will buy back for a lower price than what they have previously

sold, hence making a profit.
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• Efficient portfolio: for a given target return µ, the portfolio of assets that has

the lowest risk among all portofolios of the same assets with same target return µ

is called efficient portfolio. We denote quantities related to an efficient portfolio

with the subscript EFF.

• Minimum variance portfolio: The portfolio of assets with the lowest variance

of all portfolios built with those same assets is called minimum variance port-

folio. We denote quantities related to a minimum variance portfolio with the

subscript MVP.

Let yyyt be a multivariate time series of m financial assets. For simplicity, we assume

for now that yyyt is second order stationary, such that E[yyyt ] = µµµ and Var(yyyt) = ΩΩΩ.

Suppose now that we would like to build a portfolio of these assets, and predict the

expected portfolio return and the risk associated with it at the next time point t+1. Let

w denote portfolio weights, Rt+1 = wT yyyt+1 denote the portfolio return at t +1, and

A = 1ΩΩΩ
−1µµµ , B = µµµΩΩΩ

−1µµµ , C = 1ΩΩΩ
−1
1 , D =CB−A2 (2.55)

where 1 is a vector of 1s of the same length as µ.

It can be proved that optimal weights for an efficient portfolio of these assets and

target return µEFF are

wEFF =
1
D

(
BΩΩΩ
−1
1−AΩΩΩ

−1µµµ+µµµ∗
(

CΩΩΩ
−1µµµ−AΩΩΩ

−1
1

))
(2.56)

Consequently, the expected return of that efficient portfolio is Rt+1 = wT
EFFŷyyt+1,

ŷyyt+1 being the prediction of asset prices at t + 1. The variance of such portfolio is

wT
EFFΩΩΩwEFF . Weights of the minimum variance portfolio of same assets {yyyt}, and
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corresponding return, are:

wMVP =
ΩΩΩ
−1
1

C
µµµMVP =

A
C

(2.57)

Notice that this methodology allows for weights w to assume negative values. An

asset with a negative weight associated to it indicates that short-selling is applied to

that asset.

2.8.2 Financial risk measures

A financial risk measure gives the probability associated with an estimated loss. For-

mally, financial risk measures are a class ρ of random variables in the support (0,1)

which satisfy the following properties:

1. Normalised property: ρ(0) = 0; this property states that there is no risk if no

assets are held.

2. Translative property: let c be a real constant. Then ρ(X + c) = ρ(X)+ c.

3. Monotone property: X ≤ Y ⇒ ρ(X) ≥ ρ(Y ); this property states that if port-

folio Y always has better returns than portfolio X , then the risk associated with

portfolio Y is always lower than that associated with portfolio X .

Furthermore, a risk measure is called a coherent risk measure if it satisfies two

additional properties:

4. Positive homogeneity: let c be a real constant. Then ρ(cX) = cρ(X).

5. Sub-additivity: ρ(X +Y ) = ρ(X)+ρ(Y )

We here introduce two of the most popular measures to assess risk associated with

a financial investment, value at risk (VaR) and expected shortfall (ES).



CHAPTER 2. THEORETICAL BACKGROUND 63

Value at risk. Value at risk estimates how much an investment might lose, with a

given probability p, in normal market conditions. Informally, VaRp(x) = θ means that

an investment x is likely to result in a loss of at least θ units with probability p in a set

time window. Let X be a random variable desciribing some financial returns, such that

negative values of X represent a loss and positive values represent a profit. The value

at risk at level p is:

VaRp(X) =− inf{x ∈ R ,FX(x) = 1− p}=−F−1
X (1− p) . (2.58)

What (2.58) tells us is that the value at risk θ associated with X at level p is minus the

1− p quantile of the distribution of X .

When the distribution of X is known and can be inverted, VaR can be calculated

analytically. Otherwise, nonparametric methods are available. We will see in Chapter

5that for MAR models the distribution of interest is available, and quantiles can be

estimated with analytical solutions.

Value at risk is not a coherent risk measure, as it does not satisfy the sub-additive

property. However it still satisfies properties 1-4, plus the following:

• VaRp(X) = VaR1−p(−X)

• X ≤ 0⇒ VaRp(X)≥ 0

Expected shortfall. Expected shortfall is strictly related to value at risk. Broadly

speaking, ES estimates the expected loss on an investment, assuming that a loss larger

than VaR will be recorded. Expected shortfall is sometimes preferred to value at risk

since it is more sensitive about the tails of the distribution, and most importantly be-

cause is a coherent risk measure.

Let X be an absolutely continuous random variable describing some financial re-

turns, such that negative values of X represent a loss and positive values represent a
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profit. The expected shortfall at associated with X at level p is obtained by solving the

integral:

ESp (X) =
1
p

∫ p

0
VaRα(X) dα (2.59)

Expected shortfall can hence be calculated analytically. However, analytical solu-

tions to such integral may not be straightforward, as they depend on the distribution

assumption. For this reason, numerical integration methods such as Monte Carlo are

sometimes preferred.



Chapter 3

Bayesian analysis of mixture

autoregressive models covering the

complete parameter space

Mixture autoregressive (MAR) models (Wong and Li, 2000) provide a flexible way to

model time series with predictive distributions which depend on the recent history of

the process. Not only do the predictive distributions change over time, but they are also

different for different horizons for predictions made at a fixed time point. As a result,

they inherently accommodate asymmetry, multimodality and heteroskedasticity. For

this reason, mixture autoregressive models have been considered a valuable alternative

to other models for time series, such as the SETAR model (Tong, 1990), the Gaussian

transition mixture distribution model (Le et al., 1996), or the widely used class of

GARCH models (Nelson, 1991). Another useful feature of MAR models is that they

model jointly the conditional mean and autocovariance. Moreover, the autocovariances

are zero on a subspace of the parameters. So, if an uncorrelated (weak white noise)

model is required, as is often the case for financial time series, the parameters can be

restricted to that subspace.

65
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MAR models can be thought of as random coefficient autoregressive models (Bosh-

nakov, 2011). Similarly to the usual autoregressions, there is a stationarity region for

the parameters, outside which the MAR models are explosive and thus not generally

useful.

Wong and Li (2000) considered estimation of MAR models based on the EM algo-

rithm (Dempster et al., 1977). That method is particularly well suited for mixture-type

models and works well. On the other hand, a Bayesian approach can offer the advan-

tage of incorporating the uncertainty in the estimated models into the predictions.

Sampietro (2006) presented the first Bayesian analysis of MAR models. In his

work, reversible jump MCMC (Green, 1995) is used to select the autoregressive orders

of the components in the mixture, and models with different number of components

are compared using methods by Chib (1995) and Chib and Jeliazkov (2001), which

exploit the marginal likelihood identity. In addition, he derives analytically posterior

distributions for all parameters in the selected model.

The Bayesian updates of the autoregressive parameters are problematic, because

the parameters need to be kept in the stationarity region, which is very complex, and

so cannot really be updated independently of each other. In the case of autoregressive

(AR) models, it is routine to use parametrisation in terms of partial autocorrelations

(Jones, 1987), which are subject only to the restriction to be in the interval (−1,1).

Sampietro (2006) adapted this neatly to MAR models by parameterising the autore-

gressive parameters of each component of the MAR model with the partial autocorre-

lations of an AR model with those parameters.

A major drawback of Sampietro’s sampling algorithm for the autoregressive pa-

rameters, is that it restricts the parameters of each component to be in the stationarity

region of an autoregressive model. While this guarantees that the MAR model is sta-

tionary, it excludes from consideration considerable part of the stationarity region of



CHAPTER 3. BAYESIAN MAR 67

the MAR model (Wong and Li, 2000, p. 98; Boshnakov, 2011). Depending on the mix-

ture probabilities, the excluded part can be substantial. For example, most examples

in Wong and Li (2000, p. 98) cannot be handled by Sampietro’s approach, see also the

examples in Section 3.3.

Lau and So (2008) proposed an infinite mixture of autoregressive models and used

a semi-parametric approach based on a Dirichlet process (Ferguson, 1973) and the so

called Gibbs version of the weighted Chinese restaurant process (Lo, 2005) to select

the optimal number of mixture components and assign observations to those. How-

ever, they do not assess conditions for second order stationarity of the model. Wood

et al. (2011) used data segmentation for estimation of a variant of the MAR models—

they divide the data into segments and assign each segment to one mixture component.

Their approach is aimed at time series which are piecewise autoregressions (for exam-

ple as a result of structural changes), has a different field of applications, and is not

directly comparable to the MAR model considered here.

Hossain (2012) developed a full analysis (model selection and sampling), which

reduced the constraints of Sampietro’s analysis. Using Metropolis-Hastings algorithm

and a truncated Gaussian proposal distribution for the moves, he directly simulated the

autoregressive parameters from their posterior distribution. This method still imposes

a constraint on the autoregressive parameters through the choice of boundaries for the

truncated Gaussian proposal. While the truncation is used to keep the parameters in the

stationarity region, the choice of boundaries is arbitrary and can leave out a substantial

part of the stationarity region of the model. In addition, his reversible jump move for

the autoregressive order seems conservative, as it uses functions which always prefer

jumps towards low autoregressive orders (this will be seen in Section 3.2.5).

A common problem associated with mixtures is label switching (see for instance

Celeux, 2000), which derives from symmetry in the likelihood function. If no prior

information is available to distinguish components in the mixture, then the posterior
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distribution will also be symmetric. It is essential that label switching is detected and

handled properly in order to obtain meaningful results. A common way to deal with

this, also used by Sampietro (2006) and Hossain (2012), is to impose identifiability

constraints. However, it is well known that such constraints may lead to bias and other

problems. In the case of MAR models, Hossain (2012) showed that these constraints

may affect convergence to the posterior distribution.

We develop a new procedure which resolves the above problems. We propose an

alternative Metropolis-Hastings move to sample directly from the posterior distribution

of the autoregressive components. Our method covers the complete parameter space.

We also propose a way of selecting optimal autoregressive orders using reversible jump

MCMC for choosing the autoregressive order of each component in the mixture, which

is less conservative than that of Hossain. We propose the use of a relabelling algorithm

to deal a posteriori with label switching.

We apply the new method to both simulated and real datasets, and discuss the

accuracy and performance of our algorithm, as well as its advantages over previous

studies. Finally, we briefly introduce the idea of density forecasting using MCMC

output.

The structure of this chapter is as follows. In Section 3.1 we review the mixture

autoregressive model and somer relevant notation. In Section 3.2 we give detailed

description of our method for Bayesian analysis of MAR models, including model

selection, full description of the sampling algorithm, and the relabelling algorithm to

deal with label switching. Section 3.3 shows results from application of our method

to simulated and real dataset. Section 3.4 introduces the idea of density forecast using

MCMC output.
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3.1 The mixture autoregressive model

Recall the conditional cumulative distribution function of the mixture autoregressive

model in (2.1)

F(yt |Ft−1,θθθ) =
g

∑
k=1

πkFk

(
yt−φk0−∑

pk
i=1 φkiyt−i

σk

)
,

where θθθ is the vector of model parameters.

We now introduce some notation. Let

µtk = φk0 +
pk

∑
i=1

φkiyt−i.

The error term associated with the kth component at time t is defined by

etk = yt−φk0−
pk

∑
i=1

φkiyt−i = yt−µtk. (3.1)

A useful alternative expression for µtk is the following mean corrected form:

µtk = µk +
pk

∑
i=1

φki (yt−i−µk) .

Comparing the two representations we get

φk0 = µk
(
1−

pk

∑
i=1

φki
)
.

If ∑
pk
i=1 φki 6= 0, we also have

µk =
φk0

1−∑
pk
i=1 φki

. (3.2)

A nice feature of this model is that the one-step predictive distributions are given

directly by the specification of the model with (2.1). The h-steps ahead predictive
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distributions of yt+h at time t can be obtained by simulation (Wong and Li, 2000) or,

in the case of Gaussian and α-stable components, analytically (Boshnakov, 2009).

We focus here on mixtures of Gaussian components. In this case, using the standard

notations ΦΦΦ and φφφ for the CDF and PDF of the standard Normal distribution, we have

Fk ≡ΦΦΦ and fk ≡ φφφ, for k = 1, . . . ,g. The model in (2.1) can hence be written as

F(yt |Ft−1,θθθ) =
g

∑
k=1

πkΦΦΦ

(
yt−φk0−∑

pk
i=1 φkiyt−i

σk

)
(3.3)

or, alternatively, in terms of the conditional pdf

f (yt |Ft−1,θθθ) =
g

∑
k=1

πk

σk
φφφ

(
yt−φk0−∑

pk
i=1 φkiyt−i

σk

)
(3.4)

Conditional mean and variance of Yt , respectively top and bottom of (3.5), are:

E[yt |Ft−1,θθθ] =
g

∑
k=1

πk

(
φk0 +

p

∑
i=1

φkiyt−i

)
=

g

∑
k=1

πkµtk

Var(yt |Ft−1,θθθ) =
g

∑
k=1

πkσ
2
k +

g

∑
k=1

πkµ2
tk−

g

∑
k=1

(πkµtk)
2

(3.5)

Notice that ∑
g
k=1 πkµ2

tk−∑
g
k=1 (πkµtk)

2 ≥ 0, with equality for µt1 = µt2 = · · · = µtg.

Consequently, Var(yt |Ft−1,θθθ)≥ ∑
g
k=1 πkσ2

k .

The correlation structure of a stable MAR process with maximum order p is similar

to that of an AR(p) process. At lag h we have:

ρh =
g

∑
k=1

πk

p

∑
i=1

φkiρ|h−i| =
p

∑
i=1

(
g

∑
k=1

πkφki

)
ρ|h−i| h≥ 1.

Setting ai =
(
∑

g
k=1 πkφki

)
for i = 1, . . . , p, we see that these are analogous to the Yule-

Walker equations for an AR(p) model. See Wong (1998) for more details. Notice that

if the stability condition is not satisfied, meaning some of the roots of the matrix A in



CHAPTER 3. BAYESIAN MAR 71

Section 2.1.2 lie outside the unit circle, then the solution of this recurrence equation is

not the autocorrelation function, which contradicts the assumption of stationarity.

The conditional mean in (3.5) may be written in similar fashion to resemble that of

an AR(p). Setting ∑
g
k=1 πkφk0 = c, we have:

E [yt | Ft−1] =
g

∑
k=1

πkφk0 +
p

∑
i=1

(
g

∑
k=1

πkφki

)
yt−i = c+

p

∑
i=1

aiyt−i. (3.6)

While it is true that the linear predictor of yt of the MAR model, calculated as the

conditional expectation, is analogous to that of an AR(p) model with corresponding

autoregressive parameters a1, . . . ,ag, one would be mistaken in assuming that the two

models are analogous. In fact, the conditional variance, in general, is different between

the two models, so that the variance on the prediction, if we assumed an AR(p) model,

would be underestimated, as it does not account for component-specific variabilities.

3.2 Bayesian analysis of mixture autoregressive models

3.2.1 Likelihood function and missing data formulation

Given data y1, . . . ,yn, the likelihood function for the MAR model in the case of Gaus-

sian mixture components takes the form of (3.4)

L(φφφ,σσσ,πππ|yyy) =
n

∏
t=p+1

g

∑
k=1

πk

σk
φφφ

(
yt−φk0−∑

pk
i=1 φkiyt−i

σk

)
.

The likelihood function is not very tractable and a standard approach is to resort to a

missing data formulation (Dempster et al., 1977).

Let ZZZt = (Zt1, . . . ,Ztg) be a latent allocation random variable, where zzzt is a g-

dimensional vector with entry k equal to 1 if yt comes from the kth component of

the mixture, and 0 otherwise. We assume that the ZZZttts are discrete random variables,
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independently drawn from the discrete distribution:

P(ztk = 1|g,πππ) = πk, k = 1, . . . ,g. (3.7)

This setup, widely exploited in the literature (see, for instance Dempster et al., 1977;

Diebolt and Robert, 1994) allows to rewrite the likelihood function in a much more

tractable way as follows:

L(φφφ,σσσ,πππ|yyy) =
n

∏
t=p+1

g

∏
k=1

(
πk

σk
φφφ

(
yt−φk0−∑

pk
i=1 φkiyt−i

σk

))ztk

(3.8)

In practice, the zzzts are not available. We adopt a Bayesian approach to deal with

this. We set suitable prior distributions on the latent variables and the parameters

of the model and develop a methodology for obtaining posterior distributions of the

parameters and dealing with other issues arising in the model building process.

3.2.2 Priors setup and choice of hyperparameters

The setup of prior distributions is based on Sampietro (2006) and Hossain (2012).

In the absence of any relevant prior information it is natural to assume a priori that

each data point is equally likely to be generated from any component, i.e. π1 = · · · =

πg = 1/g. This is a discrete uniform distribution, which is a particular case of the

multinomial distribution. The conjugate prior of the latter is the Dirichlet distribution.

We therefore set the prior for the mixing weigths vector, πππ, to

πππ∼ D(w1, . . . ,wg) , w1 = · · ·= wg = 1. (3.9)
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The prior distribution on the component means is a normal distribution with common

fixed hyperparameters ζ for the mean and κ for the precision, i.e.

µk ∼ N(ζ,κ−1), k = 1, . . . ,g. (3.10)

For the component precisions, τk, a hierarchical approach is adopted, as suggested in

Richardson and Green (1997). Here, for a generic kth component the prior is a Gamma

distribution with hyperparameters c (fixed) and λ, which itself follows a gamma distri-

bution with fixed hyperparameters a and b. We have therefore

c−fixed

λ∼ Ga(a,b)

τk | λ∼ Ga(c,λ), k = 1, . . . ,g.

(3.11)

The main difference between our approach and that of Sampietro (2006) and Hos-

sain (2012) is in the treatment of the autoregressive parameters.

Sampietro (2006) exploits the one-to-one relationship between partial autocorre-

lations and autoregressive parameters for autoregressive models described in Jones

(1987). Namely, he parameterises each MAR component with partial autocorrelations,

draws samples from the posterior distribution of the partial autocorrelations via Gibbs-

type moves and converts them to autoregressive parameters using the functional re-

lationship between partial autocorrelations and autoregressive parameters. Of course,

the term “partial autocorrelations” does not refer to the actual partial autocorrellations

of the MAR process, they are simply transformed parameters. The advantage of this

procedure is that the stability region for the partial autocorrelation parameters is just a

hyper-cube with marginals in the interval (−1,1), while for the AR parameters it is a

body whose boundary involves non-linear relationships between the parameters.
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A drawback of the partial autocorrelations approach in the MAR case is that it

covers only a subset of the stability region of the model. Depending on the other

parameters, the loss may be substantial.

Hossain (2012) overcomes the above drawbacks by simulating the AR parameters

directly. He uses Random Walk Metropolis, while applying a constraint to the pro-

posal distribution (a truncated Normal). The truncation is chosen as a compromise that

ensures that an arbitrarily large part of the stability region is covered, while keeping

a reasonable acceptance rate. Although effective with ”well behaved” data, there are

scenarios, especially concerning financial examples, in which the loss of information

due to a pre-set truncation becomes significant, as will be shown later on.

If, by use of a truncation, the true values of the parameters are excluded, the Markov

Chain may converge towards the boundary of the constrained parameter space, and the

resulting posterior distributions of such parameters would be misleading. Suppose for

instance that the true value of a generic autoregressive parameter of a MAR model,

φki, was 1.2. If we decided to constrain that parameter in the interval (−1,1), to ensure

stability of the model, then the posterior distribution of φki would be pushed towards

the upper boundary of the interval, with its peak very close to 1. In conlcusion, we

cannot safely choose the stability region of a MAR model beforehand, unless we know

or assume that the specified model is correct.In this paper, we choose Random Walk

Metropolis for simulation from the posterior distribution of autoregressive parameters,

while exploiting the stability condition to avoid restraining the parameter space a priori.

With the above considerations, for the autoregressive parameters we choose a mul-

tivariate uniform distribution with range in the stability region of the model, and in-

dependence between parameters is assumed. Hence, for the parameter vector φφφ prior

distribution is such that:

p(φφφ | πππ) ∝ I{Stable}, k = 1, . . . ,g.
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where I denotes the indicator function assuming value 1 if the condition is satisfied

and 0 otherwise (see section 2.1.2 for details on stability of MAR models). In other

words, what we propose is a flat (uniform) prior over the stability region of the model.

This uniform prior allows for better exploration of the parameter space than a Normal

prior and doesn’t mask multimodality.

Choice of hyperparameters. Here we discuss the settings for the hyperparameters

ζ, κ, a, b, and c. We have already discussed that the hyperparameters for the Dirichlet

prior distribution on the mixing weights (all equal to 1). Also, λ is a hyperparameter

but it is a random variable with distribution which will be fully specified once a and b

are.

Following Richardson and Green (1997), let Ry = max(y)−min(y) be the length

of the interval variation of the dataset. Also fix the two hyperparameters a = 0.2 and

c = 2. The remaining hyperparameters are set as follows:

ζ = min(y)+
Ry

2
κ =

1
Ry

b =
100a
cR 2

y
=

10
R 2

y

3.2.3 Posterior distributions and acceptance probability for RWM

Following Sampietro (2006) and Hossain (2012), we derive here posterior distributions

for all but the autoregressive parameters. For k = 1, . . . ,g, define the useful quantities:

etk = yt−νtk, nk =
n

∑
t=p+1

ztk, bk = 1−
pk

∑
i=1

φki, ēk =
1
nk

n

∑
t=p+1

etkztk.
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Simulation of the latent variables The latent variables Zt are updated using Bayes

Theorem. We can derive the posterior density of zt to be

p(zt |yt ,πππ,µµµ,τττ,λ) ∝ L(πππ,µµµ,τττ,λ|yt ,zt)p(zt |yt ,πππ)

∝

g

∑
k=1

πk φφφ

(
etk

σk

)
I{zt = k}

(3.12)

It follows that posterior probability of an observation at time t to be generated by the

kth component is

P(zt = k|yt ,πππ,µµµ,τττ,λ) =
πk φφφ

(
etk

σk

)
g

∑
l=1

πl φφφ

(
etl

σl

) (3.13)

Posterior distribution of πππ Prior distribution for the mixing weight was chosen to

be πππ∼ D(w1, . . . ,wg) ,

w1 = · · ·= wg = 1. The posterior distribution is consequently

p(πππ|yyy,zzz,φφφ,µµµ,τττ,λ) ∝ p(yyy,zzz|πππ) p(πππ)

∝ p(zzz|πππ) p(πππ)

∝

g

∏
k=1

π
nk
k

g

∏
k=1

π
1−1
k

∝

g

∏
k=1

π
(nk+1)−1
k

(3.14)

where nk =
n

∑
t=p+1

ztk.

Thus

πππ|yyy,zzz,φφφ,µµµ,τττ∼ D(1+n1, . . . ,1+ng) (3.15)

Posterior distribution of µµµ Prior distribution is identical for every component mean

µk ∼ N(ζ,κ−1), k = 1, . . . ,g
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Choice of hyperparameters is discussed in Section 3.1.

Posterior distribution for the kth component becomes

[]

p(µk|yyy,zzz,µµµ−k,φφφ,πππ,τττ,λ) ∝

n

∏
t=p+1

zt=k

p(yt ,zt |µk) p(µk)

∝ exp

−τk

2

n

∑
t=p+1

zt=k

(
yt −µk−

pk

∑
i=1

φki(yt−1−µk)

)2
× exp

[
−κ

2
(µk−ζ)2

]

= exp

−τk

2

n

∑
t=p+1

zt=k

[(
yt −

pk

∑
i=1

φkiyt−1

)
−µk

(
1−

pk

∑
i=1

φkiyt−1

)]2


× exp
[
−κ

2
(µk−ζ)2

]
= exp

−τk

2

n

∑
t=p+1

zt=k

(ekt −µkbk)
2

× exp
[
−κ

2
(µk−ζ)2

]

= exp

−τk

2

 n

∑
t=p+1

zt=k

(ekt− ēk)
2 +nk (ēk−µkbk)

2


× exp

[
−κ

2
(µk−ζ)2

]

where ēk =
1
nk

n

∑
t=p+1

zt=k

ekt

∝ exp
[
−nkτk

2
(ēk−µkbk)

2− κ

2
(µk−ζ)2

]
∝ exp

[
−1

2
(
τknkb2

k +κ
)

µ2
k +(τknkēkbk +κζ)µk

]
(3.16)

Hence, posterior distribution for the mean of the kth component is

µk|yyy,zzz,µµµ−k,φφφ,πππ,τττ,λ∼ N
(

τknkēkbk +κζ

τknkb2
k +κ

,
1

τknkb2
k +κ

)

using the fact that exp
(
Aµ2 +2Bµk

)
∝ N

(
µ;

B
A
,

1
A

)

Posterior distribution of λ and τττ

We start by deriving the posterior distribution of λ:
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p(λ|yyy,zzz,φφφ,πππ,µµµ,τττ) ∝ p(τττ|λ) p(λ)

∝

g

∏
k=1

λ
c exp(−λτk)×λ

a−1 exp(−bλ)

∝ λ
a+gc−1 exp

(
−(b+

g

∑
k=1

τk)λ

) (3.17)

And thus

λ|yyy,zzz,φφφ,πππ,µµµ,τττ∼ Ga

(
a+gc,b+

g

∑
k=1

τk

)

Secondly, we can derive the posterior distribution for the precision of the kth compo-

nent

p(τk|yyy,zzz,τττ−k,φφφ,πππ,µµµ,λ,) ∝ p(yyy,zzz|τk)p(τk)

∝ τ

nk

2
k exp

−τk

2

n

∑
t=p+1

zt=k

e2
kt

× τ
c−1
k exp(−λτk)

= τ

(
c+

nk

2

)
−1

k exp

−
λ+

1
2

n

∑
t=p+1

zt=k

e2
kt

τk


(3.18)

Thus

τk|yyy,zzz,τττ−k,φφφ,πππ,µµµ,λ∼ Ga

c+
nk

2
,λ+

1
2

n

∑
t=p+1

zt=k

e2
kt


Exploiting the fact that τA−1 exp(−Bτ)∝ Ga(τ;A,B). All these parameters are updated

via a Gibbs-type move.

Similarly, zzzts are simulated from a multinomial distribution with associated poste-

rior probabilities.
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Update of φφφ

To update autoregressive parameters, let φφφk, k = 1, . . . ,g, be the set of current states of

the autoregressive parameters, i.e. a set of observations from the posterior distribution

of φφφk. We can simulate φφφ
∗
k from a proposal MV N(φφφk,Γ

−1
k ) distribution, denoted by

q(φφφ∗k ,φφφk), with Γk = γkIpk , where Ipk is the identity matrix of size pk.

Here γk, k = 1, . . . ,g is a tuning parameter, chosen in such way that the acceptance

rate of RWM is optimal (20−25%) for component k. We allow γk to change between

components, but to be constant within the same component. Notice the difference

between our proposal and the two-step approach by Sampietro (2006), or the truncated

Normal proposal chosen by Hossain (2012). The probability of accepting a move to

the proposed φφφ
∗
k is

α(φφφk,φφφ
∗
k) = min

{
1,

f (yyy | φφφ∗k) p(φφφ∗k)q(φφφk,φφφ
∗
k)

f (yyy | φφφk) p(φφφk)q(φφφ
∗
k ,φφφk)

}
, (3.19)

where q(φφφk,φφφ
∗
k) = q(φφφ∗k ,φφφk), due to the symmetry in the Normal proposal. Therefore,

the acceptance probability will only depend on the likelihood ratio of the new set of

parameters over the current set of parameters, i.e.

α(φφφk,φφφ
∗
k) = min

{
1,

f (yyy | φφφ∗k)
f (yyy | φφφk)

}
(3.20)

where

f (yyy | φφφ∗k)
f (yyy | φφφk)

=

n

∏
t=p+1
ztk=1

exp

{
− 1

2σ2
k

(
yt−φk0−

pk

∑
i=1

φ
∗
kiyt−i

)2}

n

∏
t=p+1
ztk=1

exp

{
− 1

2σ2
k

(
yt−φk0−

pk

∑
i=1

φkiyt−i

)2}

The priors are absent from the above formula, since their ratio is 1,as a flat prior on the

autoregressive parameters was assumed.
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This means that the likelihood ratio for the kth component is independent of cur-

rent values of parameters for the remaining components, which enables to calculate

likelihood ratios separately for each component.

The procedure described builds a candidate model with updated mixing weights,

shift, scale and autoregressive parameters. However, because stability of such model

does not only depend on the autoregressive parameters, we must ensure that the stabil-

ity condition of Section 2.1.2 is satisfied. If this is not the case, the candidate model

and all its parameters are rejected, and the current state of the chain is set to be the

same as at the previous iteration.

3.2.4 The label switching problem

Once the samples have been drawn, label switching is dealt with using a k-means

clustering algorithm proposed by Celeux (2000). It is common to use the identifiability

constraint π1 > π2 > · · ·> πg but it is well known that it is problematic. Examples are

given in the discussion to the paper by Richardson and Green (1997). It was shown

in fact by Hossain (2012) that applying an identifiability constraint such as π1 > π2 >

· · ·> πg may in some cases affect convergence of the chain. With our approach instead,

we do not interfere with the chain during the simulation, and hence convergence is not

affected.

Our algorithm works by first choosing the first m simulated values of the output

after convergence. The value m shall be chosen small enough for label switching to

not have occurred yet, and large enough to be able to calculate reliable initial values of

cluster centres and their respective variances.

Let θθθ = (θ1, . . . ,θg) be a subset of model parameters of size g, and N the size of

the converged sample. The requirement on subsetting is that corresponding paramters

of the different mixture components must be chosen, for instance θθθ ≡ (π1, . . . ,πg) or
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θθθ ≡ (µ1, . . . ,µg) among other choices. For any centre coordinate θi, i = 1, . . . ,g we

calculate the mean and variance, based on the first m simulated values, respectively as:

θ̄i =
1
m

m

∑
j=1

θ
( j)
i s̄2

i =
1
m

m

∑
j=1

(
θ
( j)
i − θ̄i

)2

We set this to be the “true” permutation of the components, i.e. we now have an

initial center θ̄θθ
(0) with variances s̄(0)

2

i , i = 1, . . . ,q. The remaining g!−1 permutations

can be obtained by simply permuting these centres.

From these initial estimates, the rth iteration (r = 1, . . . ,N−m) of the procedure

consists of two steps:

• the parameter vector θθθ
(m+r) is assigned to the cluster such that the normalised

squared distance

g

∑
i=1

(
θ
(m+r)
i − θ̄

(m+r−1)
i

)2

(
s(m+r−1)

i

)2 (3.21)

is minimised, where θ̄
(m+r−1)
i is the ith centre coordinate and s(m+r−1)

i its stan-

dard deviation, at the latest update m+ r−1.

• Centre coordinates and their variances are respectively updated as follows:

θ̄
(m+r)
i =

m+ r−1
m+ r

θ̄
(m+r−1)
i +

1
m+ r

θ
(m+r)
i (3.22)

and

(s(m+r)
i )2 =

m+ r−1
m+ r

(s(m+r−1)
i )2 +

m+ r−1
m+ r

(
θ̄
(m+r−1)
i − θ̄

(m+r)
i

)2

+
1

m+ r

(
θ
(m+r)
i − θ̄

(m+r)
i

)2
(3.23)

for i = 1, . . . ,g.
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For the mixture autoregressive case, it is not always clear which subset of the pa-

rameters should be used. In fact, group separation might seem clearer in the mixing

weights at times, as well as in the scale or shift parameters. Therefore this method

requires graphical assistance, i.e. checking the raw output looking for clear group sep-

aration. However, it is advisable not to use the autoregressive parameters, especially

when the orders are different.

Once the selected subset has been relabelled, labels for the remaining parameters

can be switched accordingly.

3.2.5 Reversible Jump MCMC for choosing autoregressive orders

For this step, we use Reversible Jump MCMC (Green, 1995). At each iteration, one

component k is randomly chosen from the model. Let pk be the current autoregressive

order of this component, and set pmax to be the largest possible value pk may assume.

For the selected component, we propose to increase or decrease its autoregressive order

by 1 with probabilities

p∗k =


pk−1 with probability d(pk)

pk +1 with probability b(pk)

where b(pk) = 1−d(pk), and such that d(1) = 0 and b(pmax) = 0. Notice that d(pk)

(or equivalently b(pk)) may be any function defined in the interval [0,1] satisfying such

condition. For instance, Hossain (2012) introduced two parametric functions for this

step. However, in absence of relevant prior information, we choose b(pk) = d(pk) =

0.5 in our analysis, while presenting the method in the general case.

Finally, it is necessary to point out that in both scenarios we have a 1-1 mapping

between current and proposed model, so that the resulting Jacobian is always equal to

1.
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Given a proposed move, we proceed as follows:

• If the proposal is to move from pk to p∗k = pk− 1, we simply drop φkpk , and

calculate the acceptance probability by multiplying the likelihood ratio and the

proposal ratio, i.e.

α

(
Mpk ,Mp∗k

)
= min

{
1,

f
(

yyy | φφφp∗k
k

)
p(φφφ

p∗k
k )

f
(
yyy | φφφpk

k

)
p(φφφpk

k )
×

[
b
(

p∗k
)

d (pk)
×φφφ

(
φkpk−φkpk

1/
√

γk

)]}
(3.24)

where φφφ

(
φkpk−φkpk

1/
√

γk

)
is the density of the parameter dropped out of the model,

according to its proposal distribution.

If the candidate model is not stable, then it is automatically rejected, i.e. α

(
Mpk ,Mp∗k

)
=

0.

• If the proposed move is from pk to p∗k = pk + 1, we proceed by simulating the

additional parameter from a suitable distribution. In absence of relevant prior

information, the choice is to simulate a value from a uniform distribution centred

in 0 and with appropriate range, so that values both close and far apart from 0,

both positive and negative, are taken into consideration.

These considerations lead to draw φkp∗k ∼U (−1.5,1.5)

The acceptance probability in this case is

α

(
Mpk ,Mp∗k

)
= min

{
1,

f
(

yyy | φφφp∗k
k

)
p(φφφ

p∗k
k )

f
(
yyy | φφφpk

k

)
p(φφφpk

k )
×

[
d (pk)

b
(

p∗k
) ×3

]}
(3.25)

where 3 is the inverse of the U (−1.5,1.5) density.

Once again, if the candidate model is not stable, α

(
Mpk ,Mp∗k

)
= 0 and the

current model is retained.
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Notice that, similarly to the sampler for autoregressive parameters, the prior ratio

in both cases is equal to 1 and therefore omitted.

3.2.6 Choosing the number of components

To select the appropriate number of autoregressive components in the mixture, we ap-

ply the methods proposed by Chib (1995) and Chib and Jeliazkov (2001), respectively,

for use of output from Gibbs and Metropolis-Hastings sampling. Both make use of the

marginal likelihood identity.

From Bayes’ theorem, we know that

p(g|yyy) ∝ f (yyy | g)p(g), (3.26)

where p(g) is the prior distribution on g, and f (yyy | g) is the marginal likelihood func-

tion, defined as

f (yyy | g) = ∑
p

∫
f (yyy | θθθ, p,g)p(θθθ, p | g)dθθθ (3.27)

with θθθ = (φφφ,πππ,µµµ,τττ) being the parameter vector of the model.

For any values θθθ
∗, p∗, number of components g and observed data yyy, we can use

the marginal likelihood identity to decompose the marginal likelihood into parts that

are know or can be estimated

f (yyy|g) = f (yyy | θθθ∗, p∗,g)p(θθθ∗, p∗ | g)
p(θθθ∗, p∗ | yyy,g)

=
f (yyy | θθθ∗, p∗,g)p(θθθ∗ | p∗,g) p(p∗ | g)

p(θθθ∗ | p∗,yyy,g) p(p∗ | yyy,g)

(3.28)

Notice that the only quantity not readily available in the above equation is p(θθθ∗ | p∗,yyy,g).

However, this can be estimated by running reduced MCMC simulations for fixed p∗
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(which can be obtained by the RJMCMC method described in Section 2.2.4), as fol-

lows:

p̂(θθθ∗ | p∗,yyy,g) = p̂(φφφ∗ | yyy, p∗,g)

p̂(µµµ∗ | φφφ∗,yyy, p∗,g)

p̂(τττ∗ | µµµ∗,φφφ∗,yyy, p∗,g)

p̂(πππ∗ | τττ∗,µµµ∗,φφφ∗,yyy, p∗,g)

(3.29)

Once these quantities are estimated (see 3.31, 3.32, 3.33, 3.34), plug them in Equa-

tion (3.28), together with the other known quantities, to obtain the marginal likelihood

for the model with fixed number of components g.

For higher accuracy of results, it is suggested to compare marginal likelihood with

different g at points of high density in the posterior distribution of θθθ
∗. We will use the

estimated highest posterior density values.

Estimation of p̂(φφφ∗ | yyy, p∗,g)

Suppose we want to estimate p̂(φφφ∗kkk | p∗,yyy,g), for k = 1, . . . ,g. We partition the parame-

ter space into two subsets, namely Ψk−1 =
(

p,φφφ1, . . . ,φφφk−1,g
)

and Ψk+1 =
(

φφφk+1, . . . ,φφφg,µµµ,τττ,πππ
)

,

where parameters belonging to Ψk−1 are fixed (known or already selected high density

values).

First, produce a reduced chain of length N j to obtain φφφ
∗
kkk, the highest density value

for φφφkkk, using the sampling algorithm in Section 4.3, applied to the non-fixed set of

parameters only. Define Ψk∗ , the set of known (fixed) parameters with the addition of

φφφ
∗
kkk. From a second reduced chain of length Ni, simulate {Ψ̃(i)

k+1, z̃
(i) |Ψk∗,yyy}, as well as

new observations φ̃φφ
(i)
k from the proposal density in Equation 10, centred in φφφ

∗
kkk.

Now, let α(φφφ
( j)
k ,φφφ∗kkk) and α(φφφ∗kkk, φ̃φφ

(i)
k ) denote acceptance probabilities respectively of

the first and second chain. We can finally estimate the value of the posterior density at
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φφφ
∗
k as

p̂
(
φφφ
∗
k | p?,φφφ∗1, . . . ,φφφ

∗
k−1,g

)
=

1
N j

N j

∑
j=1

α(φφφ
( j)
k ,φφφ∗kkk)q

(
φφφ
( j)
k ,φφφ∗k

)
1
Ni

Ni

∑
i=1

α(φφφ∗kkk, φ̃φφ
(i)
k )

(3.30)

Repeat this procedure for all k = 1, . . . ,g and multiply the single densities to obtain

p̂(φφφ∗ | yyy, p∗,g) =
g

∏
k=1

p̂
(
φφφ
∗
k | p?,φφφ∗1, . . . ,φφφ

∗
k−1,g

)
. (3.31)

Note that there are no requirements on what Ni and N j should be, granted the first chain

is long enough to have reached the stationary distribution.

Estimation of p̂(µµµ∗ | φφφ∗,yyy, p∗,g)

Run a reduced chain of length N. At each iteration, draw observations zzz(i), πππ(i), τττ(i),

µµµ(i). Set µµµ∗ = (µ1, . . . ,µg), the parameter vector of highest posterior density. The

posterior density at µµµ∗ can be estimated as

p̂(µµµ∗ | φφφ∗,yyy, p∗,g) =
1
N

N

∑
i=1

g

∏
k=1

p
(

µ∗k | φφφ∗,τττ(i),πππ(i),yyy,zzz(i), p∗,g
)
. (3.32)

Estimation of p̂(τττ∗ | µµµ∗,φφφ∗,yyy, p∗,g)

Run a reduced chain of length N. At each iteration, draw observations zzz(i), πππ(i), τττ(i). Set

τττ∗ = (τ1, . . . ,τg), the parameter vector of highest posterior density. Posterior density at

τττ∗ can be estimated as

p̂(τττ∗ | µµµ∗,φφφ∗,yyy, p∗,g) =
1
N

N

∑
i=1

g

∏
k=1

p
(

τ
∗
k | µµµ∗,φφφ∗,πππ(i),yyy,zzz(i), p∗,g

)
. (3.33)
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Estimation of p̂(πππ∗ | τττ∗,µµµ∗,φφφ∗,yyy, p∗,g)

Run a reduced chain of length N. At each iteration, draw observations zzz(i),πππ(i). Set

πππ∗ = (π1, . . . ,πg), the parameter vector of highest posterior density. Posterior density

at πππ∗ can be estimated as

p̂(πππ∗ | τττ∗,µµµ∗,φφφ∗,yyy, p∗,g) =
1
N

N

∑
i=1

g

∏
k=1

p
(

π
∗
k | yyy,zzz(i), p∗,g

)
. (3.34)

3.3 Application

3.3.1 Simulation examples

For comparative and demonstrative purposes, we show applications of our method

using two simulated datasets from

(A): the MAR(2;1,1) model

yt =


−0.5yt−1 + εt1 with probability π1 = 0.5,

yt−1 + εt2 with probability π2 = 0.5,

where εt1 ∼ N(0,1) and εt2 ∼ N(0,22) for all t;

(B): the MAR(3;2,1,1) model

yt =


−0.5yt−1 +0.5yt−2 + εt1 with probability π1 = 0.5,

−0.4yt−1 + εt2 with probability π2 = 0.3,

yt−1 + εt3 with probability π3 = 0.2,

where εt1 ∼ N(0,1), εt2 ∼ N(0,22), εt3 ∼ N(0,42) for all t.

The two time series include respectively 300 and 600 simulated observations. Pro-

cess (A) is similar to the one considered by Hossain (2012) and Wong and Li (2000),
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while (B) was chosen to illustrate in practice how label switching is dealt with. The

issue of label switching for (B) can be seen in Figure 3.3, where we show the raw

MCMC output with signs of label switching between components 2 and 3 (green and

red lines), and the relabelled output after applying the algorithm.
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Figure 3.1: Simulated series from (A) (top) and (B) (bottom).

The algorithm then proceeds as described in Algorithm 1 below:

Algorithm 1
1: for g← 2, . . . ,gmax do
2: RJMCMC and determine p∗1, . . . , p∗k
3: Calculate f (yyy | g)
4: Select g∗ = max f (yyy | g), g = 2, . . . ,gmax
5: Simulate f (θθθ | y,g∗, ppp∗)

As we can see from Tables, 3.1, 3.2 and 3.3, and Figures 3.2 and 3.4, the “true”

model is chosen in both cases, as it has the largest marginal log-likelihood. In addi-

tion, true values of the parameters are found in high density regions of their respective
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Model (A) Preference Marg. log-lik
MAR(2;1,1) 0.7399 −611.8113

MAR(3;1,1,1) 0.1819 −613.0888
MAR(4;1,1,1,4) 0.0382 −923.1585

Model (B) Preference Marg. log-lik
MAR(2;2,1) 0.6258 −1468.628

MAR(3;2,1,1) 0.2937 −1383.061
MAR(4;2,1,2,1) 0.0491 −1470.543

Table 3.1: Results from simulation studies. “Preference” is the proportion of times the
model was retained against all models with same number of components.

posterior distributions.

Model A True Value Posterior Mean Standard Error 90% HPDR
φ10 0 0.011 0.0268 (-0.032, 0.055)
φ20 0 -0.183 3.273 (-5.672, 5.206)
φ11 -0.5 -0.449 0.037 (-0.511, -0.389)
φ21 1 0.994 0.079 (0.869, 1.136)
σ1 1 0.992 0.079 (0.862, 1.119)
σ2 2 2.069 0.149 (1.825, 2.311)
π 0.5 0.571 0.046 (0.494, 0.647)

Table 3.2: Results of simulation from posterior distribution of the parameters under
model (A).
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Figure 3.2: Trace and density plots of selected model from (A). Sample size is 100000,
after discarding 50000 draws as burn-in period.

Model B True Value Posterior Mean Standard Error 90% HPDR
φ10 0 0.001 0.018 (-0.009, 0.007)
φ20 0 0.005 0.253 (-0.078, 0.091)
φ30 0 0.102 2.133 (-3.145, 3.405)
φ11 -0.5 -0.483 0.038 (-0.536, -0.427)
φ12 0.5 0.498 0.034 (0.450, 0.547)
φ21 -0.4 -0.461 0.105 (-0.596, -0.327)
φ31 1 0.731 0.264 (0.432, 1.058)
σ1 1 1.035 0.246 (0.804, 1.156)
σ2 2 2.035 0.439 (1.625, 2.522)
σ3 4 4.074 0.341 (3.559, 4.573)
π1 0.5 0.495 0.056 (0.411, 0.568)
π2 0.3 0.293 0.064 (0.207, 0.395)
π3 0.2 0.212 0.041 (0.148, 0.275)

Table 3.3: Results of simulation from posterior distribution of the parameters under
model (B).
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Figure 3.3: Comparison of raw output (left) and output adjusted for label switching
of mixing weights from (B). We notice the effectiveness of the relabelling algorithm
applied to our MCMC.

3.3.2 The IBM common stock closing prices

The IBM common stock closing prices (Box and Jenkins, 1976) is a financial time

series widely explored several times in the literature (see, for instance Wong and Li,

2000). It contains 369 observations from May 17th 1961 to November 2nd 1962. Orig-

inal and difference series can be seen in Figure 3.5.

Following previous studies, we consider the series of first order differences. To

allow direct comparison with Wong and Li (2000) and Hossain (2012), we set φk0 =

0, k = 1, . . . ,g.

With the procedure outlined in Algorithm 1 our method chooses a MAR(3;4,1,1)

to best fit the data, amongst all 2, 3, and 4 component models of maximum order

pk = 5, k = 1, . . . ,g. The RJMCMC algorithm selects this model roughly 25% of

the time, ahead of MAR(3;3,1,1) with 13%. The marginal log-likelihood for this

model is −1245.51, which is larger than that of the best 2 and 4 component models, a
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Figure 3.4: Trace and density plots of parameters from (B). Sample size is 100000,
after discarding 50000 draws as burn-in period.

MAR(2;1,1) and a MAR(4;1,1,1,1), which respectively have a value of marginal log-

likelihood equal to−1248.921 and−1252.381. We immediately notice that this is dif-

ferent from the selected model in Wong and Li (2000), who selected a MAR(3;1,1,0)

as best model. Such difference may occur as the frequentist approach fails to capture

the multimodality in the distribution of certain parameters, which we can clearly see

from Figure 3.6. In fact, by attempting to fit a MAR(3;4,1,1) model by EM-Algorithm

from several different starting points, we concluded that this would actually provide a
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Figure 3.5: Times series of IBM closing prices (top) and series of the first order differ-
ences (bottom)

better fit than the MAR(3;1,1,0) chosen by Wong and Li. Furthermore, different start-

ing points to the EM-Algorithm result in convergence to different parameter values for

the autoregressive components, which approximately correspond to the modes shown

in Figure 3.6.

Figure 3.7 shows once again the time series of first order differences of IBM clos-

ing prices, with the addition of two lines representing prediction intervals. Specifically,

the red lines delimit the 95% highest density region of the average one step prediction

densities, calculated using the sample from the parameter posterior distributions (see

Section 3.4) for each yt for t > 4. The blue lines denote instead the 95% prediction

interval, calculated as the average one step point predictor ± twice the average condi-

tional standard error recorded for the predictor, as defined in (??). It appears from the
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Figure 3.6: Posterior distributions of autoregressive parameters from selected model
MAR(3;4,1,1), with 90% HPDR highlighted. We can clearly see multimodality oc-
curring for certain parameters. Sample of 300000 simulated values post burn-in.

picture that there is indeed an advantage in using prediction density over point predic-

tion. While there is not a substantial difference between the two predictors in periods

of relatively low volatility, as the very start of the series shows, the interval calculated

using density prediction seem to provide more certainty in periods of higher volatility.

This can be seen around observations 250− 280, a period of high volatility for the

series, where we can see several spikes, and therefore a large prediction interval, for

the blue lines, while density prediction seems to accommodate well the sudden jumps

in the series. Overall, we may say that, using the highest density region of density

forecasts, a MAR model is able to account for the time-dependent volatility and its

persistence in the IBM difference series. Furthermore, if we decided for a narrower

prediction interval, the density forecast method would allow us to detect presence of

multiple modes, so that the highest density region may no longer be continuous. This
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IBM first order differences
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Figure 3.7: IBM first order differences with 95% prediction interval from (mean) den-
sity forecast (red) and point prediction ± twice the (mean) standard error with fitted
MAR(3;4,1,1) model.

feature will be seen in Section 3.4.
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3.3.3 The Canadian lynx data

Another dataset widely explored in time series literature, amongst which by Wong

and Li (2000), is the annual record of Canadian lynx trapped in the Mackenzie River

district in Canada between 1821 and 1934. This dataset, listed by Elton and Nicholson

(1942), includes 111 observations.

Following previous studies, we consider the natural logarithm of the data, which

presents a typical autoregressive correlation structure with 10 years cycles. We notice

the presence of multimodality in the log-data, with two local maxima (see Figure 3.8).

This suggest that the series may be in fact generated by a mixture of two components.
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Figure 3.8: Original time series of Canadian lynx (top left), series of natural logarithms
(top right), histogram of log-data (bottom left) and autocorrelation plot of log-data
(bottom right). The data presents a typical autoregressive correlation structure, as well
as multimodality.

In their analysis, Wong and Li (2000) choose a MAR(2;2,2) as best model to fit

the data. However, their choice was based on the minimum BIC criterion, which in

their paper does not always seem reliable for MAR models, particularly with small
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datasets.

Aiming to have a better insight about the data, we apply our Bayesian method. The

selected model is in this case a MAR(2;1,2), preferred over a MAR(2;2,2) by the al-

gorithm, and to all 2,3 and 4 component models with autoregressive order p= 1,2,3,4.

In particular, RJMCMC selects MAR(2;1,2) about 38% of the time, against 20% for

MAR(2;2,2). The latter is also the model selected by Wong and Li (2000) by EM-

Algorithm. Hence, the Bayesian model selection suggests that one fewer autoregres-

sive parameter may be required.

The marginal log-likelihood of this model is −131.0381, which is larger than that

of other candidate models MAR(3;1,2,2) with−176.4684 and MAR(4;1,2,2,1) with

−154.9989.

We generated a sample of size 100000 from the posterior distribution of the pa-

rameters of the selected MAR(2;1,2) model. It is noticed that, for most parameters,

the 90% credibility region includes the MLEs obtained by Wong and Li (2000). The

only exception stands for the scale parameters, which seem to be slightly larger than

such MLEs. However, this may be due to our model containing one fewer AR pa-

rameter. On the other hand, these results are in line with the estimates obtained by

fitting a MAR(2;1,2) using the EM algorithm, since all estimates are well within the

corresponding 90% highest posterior density region.

Parameter MLE HD value Standard Error 90% HPDR
φ10 0.4957 0.4962 1.6897 (-1.2599, 3.4341)
φ20 2.5728 1.6945 1.2663 (-0.0138, 3.8897)
φ11 0.9901 1.0779 0.0667 (0.9893 1.1320)
φ21 1.5042 1.7205 0.1594 (1.4717, 1.9866)
φ22 -0.8984 -0.7966 0.1528 (-1.0578, -0.5604)
σ1 0.2313 0.3553 0.1846 (0.2162, 0.6451)
σ2 0.4828 0.6010 0.1006 (0.4933, 0.7478)
π 0.2358 0.3280 0.1247 (0.1536, 0.5555)

Table 3.4: Summary statistics of sample of size 100000 from posterior distributions of
the parameters of the selected model for the log-lynx data.
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Figure 3.9: Posterior trace plots and density of selected MAR(2;1,2) model for the
natural logarithm of Canadian lynx data. For all parameters, the credibility region
contains the estimated values from Wong and Li (2000). Sample size is 100000, after
50000 burn-in iterations.
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3.4 Bayesian density forecasts with mixture autoregres-

sive models

Once a sample from the posterior is obtained, it is useful to use it to make predictions

on future (or off-set) observations.

Wong and Li (2000) and Boshnakov (2009) respectively introduced a simulation

based and an analytical method for density forecasts assuming a MAR model. The

first method relies on Monte Carlo simulations, while the second derives exact h-step

ahead predictive distributions of a given observation.

On one hand, we could estimate density forecasts using the highest posterior den-

sity values (i.e. the peak of the posterior distribution). However, it is better in this case

to exploit the entire simulated sample as follows:

1. Label each simulation from 1 to N, e.g. θθθ
(i), i = 1, . . . ,N.

2. Arbitrarily define a grid of points which the density shall be evaluated at. With

reference to the IBM density forecast example in Figure 3.10, we selected 1000

equally spaced points between 300 and 450 on the x−axis. We denote a generic

grid point as s.

3. Derive the density forecast f (i)yt+h

(
yt+h | Ft ,θθθ

(i)
)

, evaluate it at each grid point,

and repeat for i = 1, . . . ,N. In this way, we have a sample of N evaluations of the

density forecast at each grid point s.

4. Estimate the mean density forecast at each grid point as

f̂yt+h (s | Ft) =
1
N

N

∑
i=1

f (i)yt+h

(
s | Ft ,θθθ

(i)
)

In this way, we obtain a sample from the h-step ahead density forecast of an observation
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of interest. We then average the density at each point over its sample size, to obtain an

estimate of the mean density forecast.

We estimate the 1-step and 2-step predictive distributions of the IBM data at t =

258 using the analytical method by Boshnakov (2009), and compare them to the ones

obtained by EM algorithm (see Figure 3.10). The solid red lines represent the density

obtained by Boshnakov (2009) using EM estimates and the exact method. Results

of our method are represented by the solid black lines, with the dashed lines as 90%

credibility region. The figure also shows how quickly the uncertainty on the predictions

grows as we move further in the future, with the 2-step predictive density looking much

flatter.

We can see that there are no substantial differences in the shape of these predictive

distributions. However, we notice that, particularly for the 2-step predictor, averaging

seems to ”stabilise” the density line.
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Figure 3.10: Mean density of 1 and 2 steps ahead predictor at t = 258 for the IBM data.
The solid black line represents our Bayesian method, with the 90% credibility interval
identified by the dashed lines. The solid red line represents the predicted density using
parameter values from EM estimation by Wong and Li.

We notice from the plots that, clearly for the 1-step predictor and slighlty for the

2-step predictor, the density obtained by MCMC attaches higher density to the obser-

vations of interest y259 and y260.
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3.5 Discussion

We presented an innovative fully Bayesian analysis of mixture autoregressive models

with Gaussian components, in particular a new methodology for simulation from the

posterior distribution of the autoregressive parameters, which covers the whole sta-

tionarity region, compared to previous approaches that constrained it in one way or

another. Our approach allowed us to better capture presence of multimodality in the

posterior distribution of model parameters. We also introduced a way of dealing with

label switching that does not interfere with convergence to the posterior distribution of

the model parameters. This consisted in using a relabelling algorithm a posteriori.

Simulations indicate that the method works well. We presented results for two sim-

ulated data sets. In both cases the “true” model was selected, and posterior distributions

showed high densities regions around the “true” values of the parameters.

The ability of our method to explore the complete stationarity region of the autore-

gressive parameters allows it to capture better multimodality of distributions. This was

illustrated with the IBM and the Canadian Lynx datasets. In the former (Figure 3.6)

we saw how multimodality in the posterior distribution of autoregressive parameters

was captured, aspects which were missed in the analyses of Hossain (see for instance

Figures 3.10 and 3.11 in Hossain, 2012). For this example, it was also noticed that

modes of posterior distributions of the autoregressive parameters roughly correspond

to point estimates obtained by EM estimation. In the latter (Figure 3.9), we found the

mode of φ21 to be quite distant from 0, with values close to 2 lying in the credibility

interval. In this case, the risk with Hossain’s method would be to truncate the Normal

proposal at points such that a significant part of the stationarity region of the model is

not covered. Sampietro’s method would have failed to detect such a mode, since it is

outside the interval [−1,1].

In conclusion, we may say that our algorithm provides accurate and informative
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estimation and a more thorough and comprehensive estimation of model parameters

and their distributions, and therefore result in more accurate predictions.



Chapter 4

Bayesian mixture autoregressive

model with Student-t innovations

4.1 Introduction

We have already discussed several times how mixture autoregressive models were in-

troduced as a flexible tool to model time series data which presents asymmetry, mul-

timodality and heteroskedasticity. For this reason, MAR models have proven valid to

deal with financial returns, which often present one or more of such features.

In their paper, Wong and Li (2000) describe a MAR model with Gaussian inno-

vations, in which the condtitional distribution of each component in the mixture is

assumed to be Normal, and use the EM-Algorithm Dempster et al. (1977) for paramter

estimation. Since this, examples of Bayesian estimation for MAR models with Gaus-

sian innovations have been presented (see for instance Sampietro, 2006).

Wong et al. (2009) introduced the mixture autoregressive model with Student-t

innovations, in which the mixture components are now assumed, conditionally on the

past history of the process, to follow a Student-t distribution. The reason behind this

different hypothesis for the innovations is that the Student-t distribution, having heavier

103
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tails than the Normal distribution, could be more suitable to model financial returns.

In addition, it was argued by the authors that, because the tails of the distribution can

be adjusted, a higher level of flexibility is achieved compared to the Gaussian MAR

model.

We present in this chapter a fully Bayesian approach to estimating paramters of

a mixture autoregressive model with Student-t innovations. Conditional to the past

history of the process, each mixture component is assumed to follow a standardised

Student-t distribution as formulated in Wong et al. (2009). In addition, exploiting the

so called integral representation of the Student-t distribution, component variances do

not depend on the degrees of freedom, so that they can be estimated directly. The

proposed method is able to identify the best model to fit a time series, as well as

estimate parameter posterior distributions, by adapting the MCMC methods seen in

Chapter 3.

The degrees of freedom of each mixture component are treated as random vari-

ables in the model. In the Bayesian framework, Geweke (1993) proposes a suitable

prior distribution for such parameters in the case of a linear regression model with

Student-t errors. However, results admittedly may be highly affected by the choice of

prior distribution, and therefore one must be careful incorporating their prior belief or

knowledge about the data. Geweke (1994) also used a similar approach to time series

data with the assumption of Student-t innovations. In both cases, the choice was an

exponential prior for the degrees of freedom, which is conservative towards low values

regardless of the choice of the hyperparameter. We propose the use of a more informa-

tive prior distribution on the degrees of freedom, in order to try to better incorporate

prior beliefs on the model. The chosen distribution, unlike the exponential, will favor

values that are considered ”more likely” a priori.

In general, it is conventient for the Student-t distribution to constrain the degrees

of freedom parameters to be larger than 2, as this ensures existence of both mean and
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variance of the distribution. Geweke (1993) and Geweke (1994), as well as different

apporches to the problem such as Fonseca et al. (2008), do not seem to take this into

account in their analysis. On the contrary, our prior distribution for the degrees of

freedom will ensure existence of the first and second moment. Notice that, would we

require existence of third and fourth moment, the parameter space would need to be

further restricted to ensure they are larger than 4, which our analysis can easily be

adapted to.

The chapter is structured as follows: Section 4.2 reviews the mixture autoregres-

sive model with Student-t innovations, its properties, the missing data formulation and

the first and second order stationarity (stability) condition. Section 4.3 presents a fully

Bayesian analysis of the MAR model with Student-t innovations, including model se-

lection and estimation of posterior distributions of the parameters. Section 4.4 shows a

simulation study to present how the methodology works in practice, and finally Section

4.5 presents an example with real time series data.

4.2 Mixture autoregressive model with Student-t inno-

vations

A process {yt} is said to follow a mixture autoregressive (MAR) process with Student-t

innovations (Wong et al., 2009) if its conditional CDF can be written as:

F (yt | Ft−1) =
g

∑
k=1

πkFνk


yt−φk0−

pk

∑
i=1

φkiyt−i

σk

 (4.1)

where:

• Ft is the sigma-field generated by the process up to, and including (t-1).
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• g is the number of mixture components.

• 0 < πk < 1,k = 1, . . . ,g are the mixing weights, specifying a discrete probability

distribution in [1,g] such that ∑
g
k=1 πk = 1 and πg = 1−∑

g−1
k=1 πk.

• Fνk(·), k = 1, . . . ,g denotes the conditional CDF of a standardised Student-t dis-

tribution for component k of the mixture, with corresponding degrees of freedom

νk. Formally, we denote a standardised t distribution with mean µ, variance σ2

and degrees of freedom ν as S(µ,σ2,ν).

• φk =
(
φk1, . . . ,φkpk

)
is the vector of autoregressive parameters for the kth mixture

component, with φk0 being shift parameter. pk is the autoregressive order, and

we p = max(pk) to be the largest autoregressive order in the model. A useful

convention is to set φk j = 0 for pk < j ≤ p.

• σk, k= 1 . . . ,g is the scale parameter, and we define τk = 1/σ2
k , the corresponding

”precision” parameter.

• If the process starts at t = 1, then (4.1) holds for t > p.

• The MAR model described in (4.1) is formally denoted as tMAR(g; p1, . . . , pg),

where g is the number of mixture components, p1, . . . , pg are the autoregressive

orders corresponding to the mixture components, and t implies that the mixture

components follow distinct Student-t distributions.

The pdf of the Student-t distribution can be expressed using the so called integral

representation. Suppose a random variable X follows a Student-t distribution with

mean µ, variance σ2 and degrees of freedom ν. Then the marginal pdf of X can be

written as:

fX(x) =
∫

∞

0
fX |ξ (x | ξ) fξ(ξ)dξ (4.2)
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where X | ξ∼N
(

µ,
σ2

ξ

)
and ξ∼Ga

(
ν

2
,
ν

2

)
. This setup is valid for the non-standardised

Student-t distribution, for which the variance is equal to σ2 ν

ν−2
.

For the standardised Student-t, it is necessary to adjust the distribution of ξ to a

Ga
(

ν

2
,
ν−2

2

)
. With this adjustment, the variance of the distribution becomes σ2,

so it no longer depends on the degrees of freedom. At the same time, the degrees of

freedom play a part in determining the shape of the distribution, including the tails,

and it is therefore important to estimate them accurately.

Given (4.2) and the subsequent considerations, the pdf of the model can be written

as

f (yt | Ft−1) =
g

∑
k=1

πk

√
τkξt

2π
exp

{
− τkξt

2

(
yt−φk0−

p+k

∑
i=1

φkiyt−i

)2}

×

νk−2
2

νk/2

Γ

(
νk

2

) ξ
νk/2−1
t exp

{
− νk−2

2
ξt

} (4.3)

Wong et al. (2009) showed that conditional expectation, conditional variance and

autocorrelation functions are identical to the Gaussian MAR model. Respectively:

E [yt | Ft−1] =
g

∑
k=1

πkµtk

Var(yt | Ft−1) =
g

∑
k=1

πkσ
2
k +

g

∑
k=1

πkµ2
tk−

g

∑
k=1

(πkµtk)
2

ρh =
g

∑
k=1

πk

p

∑
i=1

φkiρ|h−i| =
p

∑
i=1

(
g

∑
k=1

πkφki

)
ρ|h−i| h≥ 1

(4.4)

where µtk = φk0 +∑
pk
i=1 φkiyt−i and ρh is the autocorrelation at lag h.
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4.3 Bayesian analysis of Student-t MAR model

Given a time series y1, . . . ,yn, the likelihood function for the Student-t MAR model

using (4.3) is:

L(φφφ,σσσ,πππ | yyy,ξξξ) =
n

∏
t=p+1

g

∑
k=1

πk

√
τkξt

2π
exp

{
− τkξt

2

(
yt−φk0−

p+k

∑
i=1

φkiyt−i

)2}

×

νk−2
2

νk/2

Γ

(
νk

2

) ξ
νk/2−1
t exp

{
− νk−2

2
ξt

} (4.5)

The likelihood function is not very tractable and the standard approach is to resort

to the missing data formulation (Dempster et al., 1977). Let ZZZt = (Zt1, . . . ,Ztg) be an

allocation random variable, where zzzt is a g-dimensional vector with entry k equal to 1

if yt was generated from the kth component in the mixture, and 0 otherwise. We as-

sume that the zzzts are discrete random variables, independently drawn from the discrete

distribution:

P(ztk = 1 | g,πππ) = πk

This setup, widely exploited in the literature of finite mixture models (see, for instance

Diebolt and Robert, 1994) allows to rewrite the likelihood function in a much more

tractable way as follows:

L(φφφ,σσσ,πππ | yyy,ξξξ,zzz) =
n

∏
t=p+1

g

∑
k=1

(
πk

√
τkξt

2π
exp

{
− τkξt

2

(
yt−φk0−

p+k

∑
i=1

φkiyt−i

)2}

×

νk−2
2

νk/2

Γ

(
νk

2

) ξ
νk/2−1
t exp

{
− νk−2

2
ξt

})ztk

(4.6)
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Notice that, because exactly one ztk = 1 at each time t, the augmented likelihood is a

product, and therefore easier to handle.

In practice, both the zts and the ξts are not available. We refer to them as latent

variables of the model, and we use a Bayesian approach to deal with this.

4.3.1 Priors setup and hyperparameters

The setup of prior distributions mostly exploits and adapts the existing literature (for

examples see, for instance, Diebolt and Robert, 1994; Geweke, 1993; Sampietro, 2006).

In absence of relevant prior information, it is reasonable to assume that each ob-

servation is equally likely to be generated from any of the mixture components, i.e.

π1 = . . . ,πg = 1/g. This implies a discrete uniform distribution for the zts, which is a

particular case of the multinomial distribution. The natural conjugate prior for it is a

Dirichlet distribution for πππ, and therefore we set:

πππ∼D (w1, . . . ,wg) , w1 = · · ·= wg = 1

The prior distribution of each ξt directly depends upon the corresponding zt , i.e.

which of the mixture component has generated the observation yt . By model specifi-

cation, for a generic ztk = 1, prior distribution on ξt is

ξt | zzzt ∼ Ga(
νk

2
,
νk−2

2
)

The prior distribution on the component means is a Normal distribution with common

hyperparamters ζ for the mean and κ for the precision

µk ∼ N
(
ζ,κ−1) , k = 1, . . . ,g

where µk is defined in the same way as in (3.2).
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For the precision τk, a hierarchical approach is adopted, as suggested by Richardson

and Green (1997). Specifically, we set

τk ∼ Ga(c,λ) , k = 1, . . . ,g

λ∼ Ga(a,b)

To account for potential multimodality in the distribution, we choose a multivariate

uniform prior distribution for the autoregressive parameters, limited in the stability

region of the model. Hence, for the parameter vector φφφ we have:

p(φφφ | πππ) ∝ I{Stable}

where I{·} is the indicator function assuming value 1 if the model is stable and 0

otherwise.

For prior distributions on the degrees of freedom νk, k = 1, . . . ,g, Geweke (1993)

suggests an exponential distribution. However, the author aknowledges that the pos-

terior distribution could potentially be highly influenced by the choice of prior. The

exponential distribution naturally favours low degrees of freedom, so it may not always

be suitable. We opt instead for Ga(αk,βk), k = 1, . . . ,g prior distributions, which are

more flexible, and allow to better incorporate prior information or belief.

Two more considerations have to be made: degrees of freedom must be larger than

2, too guarantee existence of first and second moments of the Student-t distribution;

for degrees of freedom larger than 30, it is reasonable to use a Normal approximation.

Therefore, we opted for truncating the prior distribution so that only values in the

interval (2,30) belong to the parameter space.

Choice of hyperparameters We require specification for hyperparameters ζ, κ, c, a

and b. Although λ is also a hyperparameter, it is treated as a random variable, fully
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specified once a and b are chosen.

Following standard setup of mixture models (Richardson and Green, 1997, e.g.),

let Ry = max(y)−min(y) be the length variation of the dataset. Hyperparameters are

then set as follows:

a = 0.2 c = 2 b =
100a
cR 2

y
=

10
R 2

y

ζ = min(y)+
Ry

2
κ = R−1

y

The choice of αk and βk for prior distributions of degrees of freedom parameters

are the result of three considerations: in general, choosing αk > 1 ensures a peak

in the gamma distribution, which could drive the posterior distribution towards such

peak. In addition, the mode of a gamma distribution is equal to
αk−1

βk
, because of the

inevitable subjectivity of this prior, it is reasonable to choose a distribution that sees its

peak around the point of maximum likelihood. Denoting ν̂EM
k the estimate of degrees

of freedom using the EM-algorithm approach (Wong et al., 2009), we set a condition

that
αk−1

βk
= ν̂

EM
k

Finally, we may want to assume that degrees of freedom for all components have a pri-

ori the same variance (at least approximately, given the truncated nature of the prior).

Given a target variance s2, this can be done by setting:

αk

β2
k
= s2

Thus, each αk and βk are carefully chosen so that such conditions are satisfied.
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4.3.2 Simulation of latent variables and posterior distributions

We here give formulas for simulation of the latent variables in the model, zzz and ξξξ, and

posterior distributions of model parameters. The methodology is analogous to that of

3.2.3, adjusted for the different distribution assumption on the innovations.

Let φφφ(·) denote the pdf of the standard Normal distribution. In addition, let θθθ =

(πππ,φφφ,µµµ,τττ,λ,ννν), and θθθ−x the parameter vector excluded x. We introduce the following

notation:

etk = yt−φk0−
p

∑
i=1

φkiyt−i, k = 1, . . . ,g; t = (p+1), . . . ,n

nk =
n

∑
t=p+1

ztk ēk =
1
nk

∑
t:ztk=1

etk bk = 1−
p

∑
i=1

φki

ck = ∑
t:ztk=1

ξt (etk− ēk) dk = ∑
t:ztk=1

ξt

Simulation of the latent variables The posterior probability of an observation yt

being generated from component k is:

P(ztk = 1 | yt ,ξt ,θθθ) =

πk

σk
fνk

(
etk

σk/
√

ξt

)
g

∑
l=1

πl

σl
fνl

(
etl

σl/
√

ξt

) (4.7)

Realisations of zzz are then drawn via a multinomial distribution with the corresponding

probabilities.

Posterior distribution of ξξξt

As we used the integral representation of the Student-t distribution, we assumed a
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priori that ξt | zzzt = k ∼ Ga
(

νk

2
,
νk

2

)
. The posterior distribution is:

p(ξt | yt ,zzzt ,θθθ) ∝ ξ
1/2
t exp

{
− τkξt

2

(
yt −φk0−

pk

∑
i=1

φkiyt−i

)2}
×ξ

νk
2 −1

t exp

{
− νk

2
ξt

}

= ξ

νk−1
2

t exp

{
−ξt

τk

2

(
yt −φk0−

pk

∑
i=1

φkiyt−i

)2

+
νk

2

} (4.8)

And hence ξt | yt ,zzzt ,θθθ∼ Ga
(

νk +1
2

,
τke2

tk
2

+
νk

2

)
.

Posterior distribution of πππ

The prior distribution is p(πππ)∼ D(1, . . . ,1). The posterior distribution is:

p(πππ | yyy,zzz) ∝

g

∏
k=1

π
nk
k (4.9)

Therefore πππ | yyy,zzz∼ D(n1 +1, . . . ,ng +1).

Posterior distribution of µµµk

The prior distribution is µk ∼ N(ζ,κ−1). The posterior distribution can be derived
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as follows:

p(µk | yyy,ξξξ,zzz,θθθ−µk) ∝ exp

{
− τk

2 ∑
t:zt=k

ξt

[
(yt −µk)−

pk

∑
i=1

φki (yt−i−µk)

]2}
× exp

{
− κ

2
(µk−ζ)2

}

= exp

{
− τk

2 ∑
t:zt=k

ξt


yt −

pk

∑
i=1

φkiyt−i︸ ︷︷ ︸
etk

−
1−

pk

∑
i=1

φki︸ ︷︷ ︸
bk

µk


2}
× exp

{
− κ

2
(µk−ζ)2

}

= exp

{
− τk

2 ∑
t:zt=k

ξt (etk−bkµk)
2

}
× exp

{
− κ

2
(µk−ζ)2

}

= exp

{
− τk

2 ∑
t:zt=k

ξt (etk− ēk + ēk−bkµk)
2

}
× exp

{
− κ

2
(µk−ζ)2

}

= exp

{
− τk

2 ∑
t:zt=k

ξt

[
(etk− ēk)

2 ++(ēk−bkµk)
2 +2(etk− ēk)(ēk−bkµk)

]}

× exp

{
− κ

2
(µk−ζ)2

}

∝ exp

{
− τk (ēk−bkµk) ∑

t:zt=k
(etk− ēk)︸ ︷︷ ︸

ck

−τk

2
(ēk−bkµk)

2
∑

t:zt=k
ξt︸ ︷︷ ︸

dk

}

× exp

{
− κ

2
(µk−ζ)2

}

∝ exp

{
− 1

2
(
τkb2

kdk +κ
)

µ2
k +[τkbk (ck +dkēk)+κζ]µk

}
(4.10)

And therefore, we conclude that µk | yyy,ξξξ,zzz,θθθ−µk ∼N
(

τkbk (ck +dkēk)+κζ

τkb2
kdk +κ

,
1

τkb2
kdk +κ

)
.

Posterior distribution of λλλ and σσσk

The prior distribution for τk was hierarchical, with the hyperparameter λ itself being

random. We first derive posterior distribution of λ.

p(λ | yyy,ξξξ,zzz,θθθ−λ) ∝

(
g

∏
k=1

λ
c exp

{
−λτk}

)
×λ

a−1 exp{−bλ}

}

= λ
cg+a−1 exp

{
−

(
b+

g

∑
k=1

τk

)
λ

} (4.11)
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Therefore, we have λ | yyy,ξξξ,zzz,θθθ−λ ∼ Ga

(
cg+a,b+

g

∑
k=1

τk

)
. Posterior distribution of

τk conditional on λ is then

p(τk | yyy,ξξξ,zzz,θθθ−τk) ∝ ∏
t:zt=k

τ
1/2 exp

{
− τk

2 ∑
t:zt=k

ξt

(
yt−φk0−

pk

∑
i=1

φkiyt−i

)2}

× τ
c−1
k exp

{
−λτk

}

= τ
c−1+nk/2
k exp

{
−

1
2 ∑

t:zt=k
ξt

yt−φk0−
pk

∑
i=1

φkiyt−i︸ ︷︷ ︸
etk


2

+λ

τk

}

(4.12)

and hence we conclude τk | yyy,ξξξ,zzz,θθθ−τk ∼ Ga

(
c+

nk

2
,
1
2 ∑

t:zt=k
ξte2

tk +λ

)
.

Update of φφφ and ννν

Posterior distributions of φφφk and νk do not have the form of a standard distribution,

therefore we resort to Metropolis-Hastings methods for simulation.

For the autoregressive parameters, φφφk, k = 1, . . . ,g, we make us of random walk

metropolis. Let φφφk be the current state of the chain. We simulate a candidate value φφφ
∗
k

from the proposal distribution MV N (φφφk,γkIpk), where γk is a tuning parameter and Ipk

is the pk× pk identity matrix. A move to the candidate value φφφ
∗
k is then accepted with

probability

α(φφφk,φφφ
∗
k) = min

1,

exp

{
− τk

2 ∑
t:ztk=1

(
yt−φk0−

pk

∑
i=1

φ
∗
kiyt−i

)2}

exp

{
− τk

2 ∑
t:ztk=1

(
yt−φk0−

pk

∑
i=1

φkiyt−i

)2}
 (4.13)

Before the candidate value is accepted, stability of the updated model, as defined
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in Section 2.1.2, is assessed. If the model is not stable, then we set α
(
φφφ
,
kφφφ
∗
k
)
= 0, and

the candidate value is automatically rejected.

The posterior distribution of a generic νk can be written as:

p(νk | yyy,ξξξ,zzz,θθθ−νk) ∝

(
νk−2

2

)nkνk/2

Γ

(
νk

2

) ∏
t:ztk=1

ξ
νk/2−1
t exp

{
νk−2

2 ∑
t:ztk=1

ξt

}
×

νk exp{−βνk} (4.14)

which indeed is not a standard distribution. We propose an independent sampler. Re-

gardless of the current state of the chain, say νk, we simulate a candidate value ν∗k from

its prior distribution. In this way, the acceptance probability reduces to the likelihood

ratio between the candidate value and the current value, i.e.

α(νk,ν
∗
k) = min

1,

(
ν∗k−2

2

)nkν∗k/2

(
νk−2

2

)nkνk/2

Γ

(
νk

2

)
Γ

(
ν∗k
2

) ∏
t:ztk=1

ξ
ν∗k/2−1
t

∏
t:ztk=1

ξ
νk/2−1
t

ν∗k
νk

exp
{
−β(νk−ν

∗
k)
}


(4.15)

4.3.3 Choosing autoregressive orders

For this step, we resort to reversible jump MCMC (Green, 1995), updating the equa-

tions of Section 3.2.5 to account for the new model assumptions. At each iteration,

one of the g mixture components, say k, is chosen at random. Let pk be the current

autoregressive order of such component. In addition, set pmax as the largest possible

autoregressive order, chosen arbitrarily. The proposal is to increase the autoregressive

order to p∗k = pk + 1 with probability b(pk), or decrease it to p∗k = pk− 1 with prob-

ability d(pk). b(·) may be any function defined in [0,1] satisfying b(pmax) = 0, and

d(pk) = 1−b(pk).
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Both scenarios have a 1− 1 mapping between current and candidate model, since

the only difference between the two is the addition or subtraction of the largest order

autoregressive parameter. Therefore, the Jacobian is always equal to 1.

Given a proposed move, we proceed as follows:

• If the proposed move is to p∗k = pk − 1, the autoregressive parameter φkpk is

dropped from the model, and the acceptance probability is the product of the

likelihood and the proposal ratio, i.e.

α(pk, p∗k) = min

{
1,

f
(

yyy | φφφp∗k
k

)
f
(
yyy | φφφpk

k

) × b(p∗k)
d(pk)

×φφφ

(
φpk−φpk

1/
√

γk

)}
(4.16)

• If the proposal is to move to p∗k = pk +1, we simulate the additional parameter

φkp∗k from a U(−1.5,1.5) distribution. This choice ensures that values close

to 0 are equally as likely to be taken into consideration as values far from zero,

while trying to maintain the algorithm as efficient as possible in terms of drawing

values within the stability region of the model.

In this case, the acceptance probability is the ratio between the likelihood and

the proposal, i.e.

α(pk, p∗k) = min

{
1,

f
(

yyy | φφφp∗k
k

)
f
(
yyy | φφφpk

k

) × d(p∗k)
b(pk)

×3

}
(4.17)

where 3 is the inverse of the density of any φkp∗k under a U(−1.5,1.5) proposal

distribution.

Notice that, in both scenarios, if the candidate model does not satisfy the stability

condition of Section 2.1.2, then it is automatically rejected.

Ultimately, the model which is selected the most number of times over a pre-

detrmined number of iterations is retained to be the best fit for the data (for a certain
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fixed g).

4.3.4 Choosing the number of mixture components

The analysis presented so far works under the assumption of correct specification of

the number of mixture components g. We now need a way to select a suitable number

of mixture components.

Recall the marginal likelihood identity. The marginal likelihood function, which is

only conditional on the number of mixture components g, is defined as:

f (yyy | g) = ∑
p

∫
f (yyy | θθθ, p,g)p(θθθ, p | g)dθ (4.18)

where θθθ is the vector of model parameters. In our case, θθθ = (φφφ,µµµ,τττ,πππ,ννν).

For any values θθθ
∗, p∗, g and observed data y, the marginal likelihood identity can

be decomposed into products of quantities that can be estimated:

f (yyy | g) = f (yyy | θθθ∗, p∗,g)p(θθθ∗ | p∗,g)p(p∗ | g)
p(θθθ∗ | yyy, p∗,g)p(p∗ | y,g)

(4.19)

Notice that most quantities in (4.19) are ready available. In fact, f (yyy | θθθ∗, p∗,g) is the

conditional pdf of the data, which is known under the model specification; p(θθθ∗ | p∗,g)

is the set of prior densities on the model parameters (see Section 4.3.1); p(p∗ | g) is

the prior on the maximum autoregressive order, which is discrete uniform in [1, pmax]

a priori (see Section 4.3.3); p(p∗ | yyy,g) is the posterior distribution of the selected

autoregressive orders, which we approximate by the proportion of times the RJMCMC

algorithm in Section 4.3.3 retains such model; finally, p(θθθ∗ | yyy, p∗,g) is the set of

posterior densities on the model parameters (see Section 4.3.2), which needs to be

estimated.

To estimate p(θθθ∗ | yyy, p∗,g) we recur to the the methods by Chib (1995) and Chib
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and Jeliazkov (2001), respectively for use of output from Gibbs sampling and Metropolis-

Hastings sampling. The method is analogous to that used in Sampietro (2006), taking

into account the different model specification, and the additional model parameters

introduced for the degrees of freedom of each mixture component.

Notice that p(θθθ∗ | yyy, p∗,g) can be further decomposed into a product:

p(θθθ∗ | yyy, p∗,g) =p(φφφ∗ | yyy, p∗,g)

p(ννν∗ | φφφ∗,yyy, p∗,g)

p(µµµ∗ | φφφ∗,ννν∗,yyy, p∗,g)

p(τττ∗ | φφφ∗,ννν∗,µµµ∗,yyy, p∗,g)

p(πππ∗ | φφφ∗,ννν∗,µµµ∗,τττ∗,yyy, p∗,g)

(4.20)

Once all quantities have been estimated, they are plugged into (4.19) to estimate

the marginal loglikelihood.

To compare models with different g, the algorithm must be run separately for each

individual g1,g2, and so on. In addition, for better efficiency it is recommended that

models with different number of mixture components are compared on the basis of

high density values of the parameters according to their distributions in (4.20).

Estimation of ppp(((φφφ∗ ||| yyy,,, ppp∗,,,ggg)))

Posterior distributions of autoregressive paramters are estimated by a Metropolis-Hastings

algorithm. Here we describe how to estimate the probability of interest.

For a generic mixture component k, we partition the parameter space into two sub-

sets, namely Ψk−1 = (p,φφφ∗1, . . . ,φφφ
∗
k−1,g) and Ψk+1 = (φφφk+1, . . . ,φφφg,ννν,µµµ,τττ,πππ), where

parameters in Ψk−1 are fixed.

First, produce a reduced chain of length N j for the non-fixed parameters, and fix φφφ
∗
k
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to be the highest density value. Define now Ψk = (Ψk−1,φφφ
∗
k)

Run a second reduced chain of length Ni (Ni and N j may be equal) for Ψk+1, as

well as a sample φ̃φφk from the proposal distribution MV N(φφφ∗k ,γkIpk).

Finally, let α(φφφ
( j)
k ,φφφ∗k) and α(φφφ∗k , φ̃φφ

(i)
k ) be the acceptance probabilities of the Metropolis-

Hastings algorithm, respectively for the first and the second chain. The conditional

density at φφφ
∗
k can then be estimated as

p(φφφ∗k |Ψk−1,yyy, p∗,g) =

1
N j

N j

∑
j=1

α(φφφ
( j)
k ,φφφ∗k)qφk

(
φφφ
( j)
k ,φφφ∗k

)
1
Ni

Ni

∑
i=1

α(φφφ∗k , φ̃φφ
(i)
k )

(4.21)

where q
(

φφφ
( j)
k ,φφφ∗k

)
denotes the density of φφφ

( j)
k under the proposal MV N(φφφ∗k ,γkIpk).

Estimation of ppp(((ννν∗ ||| φφφ∗,,,yyy,,, ppp∗,,,ggg)))

Degrees of freedom are also estimated via Metropolis-Hastings, therefore we proceed

in a similar way.

For a generic component k, partition the parameter space into Ωk−1 =(p,φφφ∗,ν1, . . . ,νk−1,g)

and Ωk+1 = (νk+1, . . . ,νg,µµµ,τττ,πππ).

Produce a reduced chain of length N j for the non-fixed parameters and fix ν∗k to be

the highest density value, and define Ωk = (Ωk−1,ν
∗
k).

Run as second chain of length Ni for Ωk+1, as well as second sample ν̃k from the

proposal disitribution. Let α(ν
( j)
k ,ν∗k) and α(ν∗k , ν̃

(i)
k ) be acceptance probabilities re-

spectively of the first and second chain. The conditional density at ν∗k can be estimated

as

p(ν∗k |Ωk−1,yyy, p∗,g) =

1
N j

N j

∑
j=1

α(ν
( j)
k ,ν∗k)qνk

(
ν
( j)
k ,ν∗k

)
1
Ni

Ni

∑
i=1

α(ν∗k , ν̃
(i)
k )

(4.22)



CHAPTER 4. BAYESIAN STUDENT-T MAR 121

where qνk

(
ν
( j)
k ,ν∗k

)
denotes the density of ν

( j)
k under the prior (proposal) distribution

Ga(α,β).

Estimation of ppp(((µµµ∗ ||| φφφ∗,,,ννν∗,,,yyy,,, ppp∗,,,ggg)))

Run a reduced chain of length N j for the non-fixed parameters. Set µµµ∗ = (µ∗1, . . . ,µ
∗
g)

to be the highest density value. The posterior density of µµµ∗ can be estimated as:

p(µµµ∗ | φφφ∗,ννν∗,yyy, p∗,g) =
1
N

N j

∑
j=1

g

∏
k=1

p
(

µ∗k | φφφ∗,ννν∗,τττ(i),πππ(i),y,zzz(i), p∗,g
)

(4.23)

Estimation of ppp(((τττ∗ ||| φφφ∗,,,ννν∗,,,µµµ∗,,,yyy,,, ppp∗,,,ggg)))

Run a reduced chain of length N j for the non-fixed parameters. Set τττ∗ = (τ∗1, . . . ,τ
∗
g) to

be the highest density value. The posterior density of τττ∗ can be estimated as:

p(τττ∗ | φφφ∗,ννν∗,µµµ∗,yyy, p∗,g) =
1

N j

N j

∑
j=1

g

∏
k=1

p
(

τ
∗
k | φφφ∗,ννν∗,µµµ∗,πππ(i),yyy,zzz(i), p∗,g

)
(4.24)

Estimation of ppp(((πππ∗ ||| φφφ∗,,,ννν∗,,,µµµ∗,,,τττ∗,,,yyy,,, ppp∗,,,ggg)))

Run a reduced chain of length N j for the mixing weights, which are now the only non-

fixed parameters. Set πππ∗ = (π∗1, . . . ,π
∗
g) to be the highest density value. The posterior

density of πππ∗ can be estimated as:

p(πππ∗ | ννν∗,φφφ∗,µµµ∗,τττ∗,yyy, p∗,g) =
1

N j

N j

∑
j=1

p
(

πππ
∗ | φφφ∗,ννν∗,µµµ∗,τττ∗,yyy,zzz(i), p∗,g

)
(4.25)
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4.4 Example

To illustrate performance of our method, we simulated a time series of length n = 500

from the process:

yt =


−0.5yt−1 +0.5yt−2 + εt1 with probability π1 = 0.4

1.1yt−1 + εt2 with probability π2 = 0.4

−0.4yt−1 + εt3 with probability π3 = 0.2

where εt1 ∼ S(0,52,4), εt2 ∼ S(0,32,14) and εt3 ∼ S(0,1,10), and S(µ,σ2,ν) is

the Student-t distribution with mean µ, variance σ2 and degrees of freedom ν. We

denote this model as tMAR(3;2,1,1).

The series can be seen in Figure 4.1, and it represents what in practice one should

be looking for to assume a MAR model. The series looks in fact heteroskedastic, amd

the plot of the sample autocorrelation shows that data are slightly correlated at lag

2. Both these features may indicate that the underlying generating process is mixture

autoregressive.

For the analysis, we compared all possible models with 2 and 3 mixture compo-

nents, and maximum autoregressive order equal to 4.

For what regards the optimal autoregressive orders, the RJMCMC algorithm chooses

a tMAR(3;2,1,1) among all 3-component models with a preference of 0.8054, which

means the model was retained as ”best” 3-component model for roughly 81% of the

iterations. The competitor 2-component models is a a tMAR(2;2,1), with a prefer-

ence of 0.8149. When compared with each other in terms of marginal log-likelihood,

the best model is tMAR(3;2,1,1) with marginal log-likelihood of −1502.77 against

−1519.166 for tMAR(2;2,1).

We then simulated a sample of length 100000 from the posterior distribution of the
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Figure 4.1: Simulated time series from tMAR(3;2,1,1) process (top) and sample au-
tocorrelation.

paramters, after allowing 10000 burn-in iterations. Results are displayed in Figure 4.2

and Figure 4.3.

We can see from Figure 4.2 that almost all ”true” parameters are included within

the 95% posterior density region of their respective distribution. The only exception is

found in µ1, for which such region is [−1.449,−0.0177]. However, it must be taken

into account that component 1 has the largest variance and the largest autoregressive

order, and is therefore more subject to sampling variability. For what regards the de-

grees of freedom parameter, all three components have their peak near the true values

of the paramaeters: respectively, peaks are found between [4,7], [11,13] and [8,11]

(true values are 4, 14 and 10).

Overall, we may be satisfied with performance of the algorithm.

4.5 The IBM common stock closing prices

We propose once again an analysis of the IBM common stock closing prices seen in

Section 3.3.2. This way, we will have a term of comparison between the respective
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Figure 4.2: Trace and density plots of full conditional posterior distributions of model
parameters under selected tMAR(3;2,1,1) model. Red lines highlight true values.
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Figure 4.3: Trace plots and histograms of full conditional posterior distributions of
degrees of freedom parameters under selected tMAR(3;2,1,1) model, with unit bin-
width. Red lines highlight true values.

assumptions in each chapter of Gaussian innovations and Student-t innovations.

We consider the series of first order differences, which can be seen in Figure 4.4.

The series presents clear signs of heteroskedasticity, therefore a tMAR model may be

a reasonable choice to model the data.

For comparison with previous studies, shifts φk0, k = 1, . . . ,g are fixed to 0, hence

are not paramters in the model. This taken into account, our method chooses a tMAR(2;1,1)

as best fit among all tMAR models with 2 and 3 mixture components and maximum

autoregressive order equal to 4. More specifically, the model was retained about half of

the iterations (5067 times over 10000 iterations) by RJMCMC, meaning it is preferred

to models with 2 mixing components and larger autoregressive orders. Furthermore,

the marginal loglikelihood for this model is −1232.678, which is larger than that of

the competing tMAR(3;2,1,1), −1258.073, which was selected as best 3-component

model.
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Figure 4.4: Series of first order differences for IBM adjusted closing prices.

Once again, we simulated a sample of size 100000 from the posterior distribution

of the parameters, after 10000 burn-in iterations, which can be seen in Figure 4.5.

In Chapter 3, we selected a Gaussian MAR(3;1,1,4) as best fit for the same dataset.

In such model, one of the mixture components was ”specialised” to model very few

observations with large variability. However, the tMAR model, thanks to its flexibility

in the tails of the distribution, only requires 2 components to account for such noise,

returning a model which is simpler, in that it has fewer parameters, and most impor-

tantly has a more straightforward interpretation. This may well result in more accurate

estimates of posterior distributions, as the Markov Chain will converge more quickly,

and consequently in more accurate and reliable forecasts.

Figure 4.6 shows a comparison of the average density forecast, as described in

Section 3.4, between the tMAR(2;1,1) model and the MAR(3;4,1,1) model fitted in

Chapter 3. We can see that, regardless of having fewer parameters, the two predic-

tive distributions do not change substantially for the fitted tMAR(2;1,1) with respect

to the Gaussian MAR. For the tMAR model, the one-step predictive distribution was
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Figure 4.5: Trace and density plots of parameter posterior distributions under selected
tMAR(2;1,1) model for the IBM data.

estimated analytically using (4.3), while the two-step predictive distribution was esti-

mated by Monte Carlo simulations.

4.6 Discussion

We have seen a fully Bayesian analysis of mixture autoregressive models with stan-

dardised Student-t innovations. In a simulation example, it was shown how the method

can correctly find the best model to fit a given dataset. In addition, we saw that the pro-

posed MCMC for simulation from parameter posterior distributions quickly converges

to stationarity, and that true values of those parameters are found in high density region.

Later, we showed the analysis performed on the IBM common stock closing prices,

a dataset widely exploited in the literature of heteroskedastic models. In particular, we

focused on comparison with the analysis of Gaussian MAR models seen in Chapter

3. Results tell that, thanks to the flexibility of the Student-t distribution in its tails,
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Figure 4.6: One and two step ahead density forecasts at t = 258 for the tMAR(2;1,1)
model (solid line) and MAR(3;4,1,1) (dashed line) for the IBM closing prices.

we are able now to fit the data with a considerably more parsimonious model, which

also has an easier interpretation. The advantage of having a simpler model is that the

Markov Chain will converge to its stationary distribution more quickly, meaning that

we obtain a more accurate estimate of posterior distributions of the model parameters

with a smaller sample (hence also saving computational time). Forecasts will also

benefit from this, as they will, in general, be more accurate and reliable.



Chapter 5

Portfolio optimisation with mixture

vector autoregressive models

When it comes to multivariate time series, heteroskedasticity implies that the covari-

ance matrix of an observation at a given time point depends upon the recent history of

the process. This may be due to changes in the volatility of a single series, as well as in

the cross-correlations between any two series of interest. As a result, one cannot trust

sample estimates of the (unconditional) covariance matrix, or linear time series models

to build reliable predictions about the future. Therefore, obtaining reliable estimates

of covariance matrices remains an important challenge in multivariate financial time

series for the purpose of portfolio optimisation and financial risk management which

use, for instance, modern portfolio theory (Markowitz, 1952).

Bollerslev et al. (1988) and Engle and Kroner (1995) pioneered in the attempt of

modelling conditional covariance matrices of predictors for multivariate time series

with multivariate GARCH models, using different parametrisations known respec-

tively as VEC and BEKK. Engle (2002) extended the idea of multivariate GARCH

to the so called Dynamic Conditional Correlation models, in which each element of

129
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the time-dependent covariance matrix of the data is modelled to follow a GARCH pro-

cess. Such models have computational advantages over multivariate GARCH models

in that the number of parameters to be estimated in the correlation process is indepen-

dent of the number of series to be correlated, by use of common parameters across

involved in the estimation.

Since then, much work has been done to develop multivariate GARCH models,

with various applications in finance and econometrics. Of particular interest to us

are those attempts attempts which combine multivariate GARCH and factor models,

with the aim of dimensionality reduction when modelling large portfolios or panel

data. These models rely on the assumption that financial returns are described by a

small number of underlying common variables, or factors, which can be used to model

the data more parsimoniously. Although all equal in concept, different approaches

used different assumptions on the factors, and different techniques are used to derive

them. For instance, Alexander (2000) uses a principal components analysis in which

factors are assumed to follow independent GARCH processes, whereas Van der Weide

(2002) considers the case in which factors are not orthogonal. Finally, Santos and

Moura (2014) introduced the dynamic factor GARCH model with time-varying factor

loadings.

We propose using a mixture vector autoregressive (MVAR) model (Fong et al.,

2007) for portfolio optimisation. MVAR models are the multivariate extension of the

mixture autoregressive (MAR) model by Wong and Li (2000). Combining predictive

distributions which depend on the recent history of the process, MVAR models can

accommodate asymmetry, multimodality, heteroskedasticity and cross-correlation in

multivariate time series data. Theoretical properties of MVAR were explored for the

case of a multivariate Gaussian mixture in Fong et al. (2007) and Kalliovirta et al.

(2016).

Financial returns are typically assumed to be uncorrelated or weakly correlated.
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The stationary region of the parameters of MAR and MVAR models contains the un-

correlated case, which allows these properties to be achieved smoothly as part of the

estimation process.

Using the Gaussian MVAR model assumption, we are able to fully specify condi-

tional predictive distributions of future observations. We will show how it is possible

to combine modern portfolio theory (Markowitz, 1952) and the assumption of Gaus-

sian mixture vector autoregressive model for portfolio optimisation. Under this model

assumption, we will also estimate the risk associated with the forecast. Finally, we will

compare the performance of our method with that of the dynamic conditional correla-

tion model by Engle (2002) and the vector autoregressive model (VAR).

5.1 The mixture vector autoregressive model

Mixture vector autoregressive models or MVAR (Fong et al., 2007) are the multivariate

extension of Mixture Autoregressive Models (Wong and Li, 2000).

The MVAR model with g Gaussian components, and an m dimensional observation

vector yyyt is defined as

F(yyyt | Ft−1) =
g

∑
k=1

πkΦ

(
Ω
−1/2
k

(
yyyt−Θk0−

pk

∑
i=1

Θkiyyyt−i

))
(5.1)

where

• yyyt is a m×1 data vector at time t.

• πππ = (π1, . . . ,πg) are the mixing weights, such that 0 < πk < 1 for k = 1, . . . ,g,

and ∑
g
i=k πk = 1.

• Ωk is the covariance matrix of component k.
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• pk, k = 1, . . . ,g is the autoregressive order of component k. We denote p =

max(pk).

• Θk0 is a m× 1 intercept vector for component k, and Θk1, . . . ,Θkpk are m×m

matrices of autoregressive parameters. If pk < p, then Θkl = 0m for pk < l ≤ p,

where 0m is the zero-matrix of size m×m.

• Φ(·) is the CDF of the standard multivariate Normal distribution, and φ(·) is the

corresponding pdf.

• Assuming start at t = 1, (5.1) holds for t > p.

Regularity conditions and parameter estimation by EM algorithm are discussed in Fong

et al. (2007) and Kalliovirta et al. (2016).

MVAR may be seen as an alternative to multivariate GARCH when the data presents

heteroskedasticity and time-dependent correlation matrices, while also accounting for

possible multimodality and asymmetry in the distribution.

For parameter estimation, we resort once again to the missing data formulation.

Suppose that a m-variate time series {yyyt} of length n follows a MVAR process. Let ZZZ =

(ZZZ1, . . . ,ZZZn) be an unobserved allocation random variable, where zzzt is a g-dimensional

vector with component k equal to 1 if yyyt comes from the kth component, and 0 other-

wise, and such that exactly one element of zzzt is equal to 1.

Following notation from Fong et al. (2007), let Θ̃k =
[
Θk0,Θk1, . . . ,Θkpk

]
and

Xtk =
(
1,yyyT

t−1, . . . ,yyy
T
t−pk

)T . In addition, let ϑ denote the complete set of parameters.

Parameter estimates are then obtained by EM-algorithm (Dempster et al., 1977) with

the following steps:
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• E-step

τtk = E [ztk | yt ,ϑ] =

πk φφφ

(
Ω
−1/2
k

(
yyyt−Θk0−

pk

∑
i=1

Θkiyyyt−i

))
g

∑
l=1

πl φφφ

(
Ω
−1/2
l

(
yyyt−Θl0−

pl

∑
i=1

Θliyyyt−i

)) (5.2)

• M- step

π̂k =
1

n− p

n

∑
t=p+1

τtk

ˆ̃
Θk =

(
n

∑
t=p+1

τtkXtkXT
tk

)−1( n

∑
t=p+1

τtkXtkyyyT
t

)

Ω̂k =

n

∑
t=p+1

τtketkeT
tk

n

∑
t=p+1

τtk

(5.3)

where etk = yyyt−Θk0−
pk

∑
i=1

Θkiyyyt−i.

E-step and M-step are repeated recursively until convergence to maximum likelihood

estimates of the parameters.

First and second order stationarity conditions are discussed by Saikkonen (2007)

(see also Boshnakov, 2011, or Section 2.1.2 for the univariate case) . Let

Ak =



Θk1 Θk2 . . . Θkp−1 Θkp

Im 0m . . . 0m 0m

0m Im . . . 0m 0m

...
... . . . ...

...

0m 0m . . . Im 0m


, k = 1, . . . ,g (5.4)

where Im and 0m are respectively the identity matrix and the zero matrix of size m×m.
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A necessary and sufficient condition for the MVAR model to be stationary is that the

eigenvalues of ∑
g
k=1 πkAk⊗Ak are smaller than 1 in modulus. A MVAR model that

satisfies this condition is said to be Stable. In practice, to assess stability of the fitted

model, parameters are replaced by their estimates.

5.1.1 Prediction with mixture vector autoregressive models

In the context of mixture models, density forecasts are often more attractive than point

predictors and prediction intervals. This is because the qualitative features of a pre-

dictive distribution, such as multiple modes or skewness, are more intuitive and use-

ful than simply a forecast and the associated prediction interval. In addition, when

the predictive distribution is available, prediction intervals can easily be obtained by

extracting the quantiles of interest (Boshnakov, 2009; Lawless and Fredette, 2005).

Therefore, we here present derivation of full predictive distributions for MVAR mod-

els, which will be used throughout the analysis.

By model assumption, the one step ahead conditional predictive distribution at time

t is fully specified, and it is that of (5.1) where, for notational convenience, we replace

t with t +1, i.e.

F(yyyt+1 | Ft) =
g

∑
k=1

πkΦ

(
Ω
−1/2
k

(
yyyt+1−Θk0−

pk

∑
i=1

Θkiyyyt+1−i

))
.

Thus, the conditional distribution of the one step ahead predictor is a mixture of g

Gaussian components and it depends on previous observations. In particular, the con-

ditional covariance matrix depends on previous values of the process, a defining prop-

erty of heteroskedasticity. To obtain the conditional mean and the covariance matrix
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let µt+1,k = Θk0 +∑
pk
i=1 Θkiyyyt+1−i, for k = 1, . . . ,g. Then

E [yyyt+1 | Ft ] =
g

∑
k=1

πkµt+1,k = µt+1

Cov(yyyt+1 | Ft) =
g

∑
k=1

πkΩk +
g

∑
k=1

πk
(
µt+1,k−µt+1

)(
µt+1,k−µt+1

)T

=
g

∑
k=1

πkΩk +
g

∑
k=1

πkµt+1,kµT
t+1,k−µt+1µT

t+1

(5.5)

Using a method analogous to that of Boshnakov (2009), we can derive the condi-

tional distribution for the two-step ahead predictor as a mixture of g2 Gaussian com-

ponents:

F (yyyt+2 | Ft) =
g

∑
k=1

g

∑
l=1

πkπlΦ
(

Ψ
−1/2
kl (yyyt+2−µkl)

)
(5.6)

where, for each k, l = 1, . . . ,g,

µkl = Θk0 +Θk1Θl0 +
p−1

∑
i=1

(
Θk,i+1 +Θk1Θli

)
yyyt−1−i +Θk1Θl pyyyt−1−p

Ψkl = Ωk +Θk1ΩlΘ
T
k1

Note that, in general, µkl 6= µlk and Ψkl 6= Ψlk. Expectation and covariance matrix of

this predictor are:

E [yyyt+2 | Ft ] =
g

∑
k=1

g

∑
l=1

πkπlµkl = µt+2

Cov(yyyt+2 | Ft) =
g

∑
k=1

πkπlΨkl +
g

∑
k=1

g

∑
l=1

πkπlµklµT
kl−µt+2µT

t+2

(5.7)

Full derivation of (5.7), as well as proof of the conditional distribution of yyyt+2, is

given below. By recursing this procedure, we could derive a full conditional predictive

distribution for any horizon h. However, the number of components in the mixture

increases to gh as h increases, so that analytic expressions may no longer be attractive

or meaningful for large g or h. Therefore simulation methods may be preferred for
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approximate computation of predictive densities for larger horizons.

Proof of (5.7).

Let zzzt be the allocation random variable defined in Section 5.1, and assume zt+2,k =

1,zt+1,l = 1 at times t +2 and t +1 respectively. We have that

yyyt+2 = µt+2,k +Ω
1/2

εt+2,k

= µt+2,k−Θk,1yyyt+1 +Θk,1yyyt+1 +Ω
1/2

εt+2,k

=
(
µt+2,k−Θk,1yyyt+1 +Θk,1µt+1,l

)
+Θk,1Ω

1/2
l εt+1,l +Ω

1/2
εt+2,k

= µt+2;k,l +Θk,1Ω
1/2
l εt+1,l +Ω

1/2
εt+2,k

(5.8)

where εt+h,k is the innovation term associated with the kth component.

We wish to predict yt+2 using available the information at time t. In order to do

this, we require an expression that does not contain yt+1. Hence, we rewrite µt+2;k,l as

µt+2;k,l = µt+2,k−Θk,1yyyt+1 +Θk,1µt+1,l

= Θk,0 +
p

∑
i=1

Θk,iyt+2−i−Θk,1yyyt+1 +Θk,1

(
Θl,0 +

p

∑
i=1

Θl,iyyyt+1−i

)

= Θk,0 +Θk,1Θl,0−Θk,1yyyt−1 +Θk,1yyyt+1 +
p

∑
i=2

Θk,iyyyt+2−i

+Θk,1

p

∑
i=1

Θl,iyyyt+1−i

= Θk,0 +Θk,1Θl,0 +
p−1

∑
i=1

Θk,i+1yyyt+1−i +Θk,1

p

∑
i=1

Θl,iyyyt+1−i

= Θk,0 +Θk,1Θl,0 +
p−1

∑
i=1

(
Θk,i+1 +Θk,1Θl,i

)
yyyt+1−i +Θk,1Θl,pyyyt+1−p
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And therefore we have the expression for yyyt+2

yyyt+2 = Θk,0 +Θk,1Θl,0 +
p−1

∑
i=1

(
Θk,i+1 +Θk,1Θl,i

)
yyyt+1−i +Θk,1Θl,pyyyt+1−p

+Θk,1Ω
1/2
l εt+1,l +Ω

1/2
k εt+2,k

We deduce that, given observed zzzt+2,zzzt+1:

E[yyyt+2 | zzzt+2,zzzt+1,Ft ]

= Θk,0 +Θk,1Θl,0 +
p−1

∑
i=1

(
Θk,i+1 +Θk,1Θl,i

)
yyyt+1−i +Θk,1Θl,pyyyt+1−p

Cov(yyyt+2 | zzzt+2,zzzt+1,Ft) = Θk,1ΩlΘk,1 +Ωk

The conditional distribution of yyyt+2 can be then derived through its characteristic func-

tion. Recall the characteristic function for the multivariate normal distribution and yyyt+1

can be written as

ϕt+1|t ≡ E
[
eisT yyyt+1 | Ft−1

]
= E

[
g

∑
k=1

πkeisT µt+1;kϕk(Ω
1/2
K s)

]

It follows that, for yt+2, we have

ϕt+2|t(s)≡ E
[
eisT yt+2 | Ft

]
= E

[
E
(

eisT yyyt+2 | zzzt+2,zzzt+1,Ft

)
| Ft

]
= E

[
isT µt+2;k,l E

(
eΘk,1Ω

1/2
l εt+1,l+Ω1/2εt+2,k | zzzt+2,zzzt+1,Ft

)
| Ft

]
=

g

∑
k,l=1

πkπleisT µt+2;k,l ϕ1(Θk,1Ω
1/2
l s)ϕ2(Ω

1/2
k s)

Thus, the conditional distribution of yt+2 given Ft is a mixture of g2 components with

mixing weights πkπl . For a normal mixture, we also have that:

ϕ1(Θk,1Ω
1/2
l s)ϕ2(Ω

1/2
k s) = eΘk,1ΩlΘ

T
k,1eΩk = eΘk,1ΩlΘ

T
k,1+Ωk
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which shows that the conditional distribution of the two-step predictor is a mixture of

Normals with means µt+2;k,l and covariance matrices Θk,1ΩlΘ
T
k,1 +Ωk.

5.2 Portfolio optimisation with MVAR models

Suppose that a multivariate time series {yyyt} of asset returns is observed, and it is be-

lieved that the underlying generating process is MVAR. From Section 5.1.1, condi-

tional distributions of the 1 and 2 step predictors are fully specified, and can be esti-

mated by plugging parameter estimates into the relevant equations.

Now, let w denote the weights of a portfolio built with assets {yt} (allowing short

selling), and let Rt+1 = wT yyyt+1 be the portfolio return at time t + 1. Intuitively, be-

cause our model consists of a mixture of multivariate normal components, we can

apply the property in (2.44) to conclude that the conditional distribution of Rt+1 is also

(univariate) mixture normal, with corresponding mixing weights πππ from the fitted mul-

tivariate model. By model assumption in fact, at each time t + 1 an observation yt+1

is assumed to be generated from one of g components of the mixture. Consequently,

Rt+1 is obtained by applying (2.44) to the selected component. Recursing this for all g

components the result is itself a mixture distribution for Rt+1.

In terms of MVAR model parameters we write:

F(Rt+1 | Ft) =
g

∑
k=1

πkΦ

(
Rt+1−wT µt+1,k√

wT Ωkw

)
(5.9)

Conditional mean and variance of Rt+1 are:

E[Rt+1 | Ft ] =
g

∑
k=1

πk
(
wT µt+1,k

)
=

g

∑
k=1

πkµ∗t+1,k = µ∗

Var(Rt+1 | Ft) =
g

∑
k=1

πk
(
wT

Ωkw
)
+

g

∑
k=1

πk
(
µ∗t+1,k

)2− (µ∗)2
(5.10)
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where µt+1,k is the same as in (5.5).

Modern portfolio theory (Markowitz, 1952) gives us a way to calculate weights

w∗ to construct the most efficient portfolio for a given return, and to calculate the

efficient portfolio of assets with the minimum possible variance. A portfolio with

target return µ is said to be an efficient portfolio when the variance associated with it is

the lowest amongst all portfolios of the same assets having that same target return. The

minimum variance portfolio is the efficient portfolio with the lowest possible variance

of all efficient portfolios of the same assets (see also Section 2.8.1 for more details).

For the remainder of the analysis, we will denote efficient portfolios with the subscript

EFF, and minimum variance portfolios with the subscript MVP. We now see how

modern portfolio theory can be used to predict future observations assuming a MVAR

model.

For the MVAR case, let E [yyyt+1 | Ft ] = µt+1 and Cov(yyyt+1 | Ft) = Ωt+1. Recall

expressions of the quantities (2.55), revisited for MVAR models:

A = 1Ω
−1
t+1µt+1 , B = µt+1Ω

−1
t+1µt+1 , C = 1Ω

−1
t+11 , D =CB−A2 (5.11)

where 1 is a vector of 1s of the same length as µt+1.

It can be proved that optimal weights for an efficient portfolio of these assets and

target return µEFF are

wEFF =
1
D

(
BΩ
−1
t+11−AΩ

−1
t+1µt+1 +µ∗

(
CΩ
−1
t+1µt+1−AΩ

−1
t+11

))
(5.12)

and the variance of such portfolio can be calculated equivalently as Var(Rt | Ft−1)

(MVAR model assumption) or wT Ωtw (the variance of an efficient portfolio of assets)
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since

wT
EFFΩt+1wEFF =

g

∑
k=1

πk
(
wT

EFFΩkwEFF
)
+

g

∑
k=1

πk
(
wT

EFFµt+1,k
)2

−

[
g

∑
k=1

πk
(
wT

EFFµt+1,k
)]2

=Var(Rt+1 | Ft)

(5.13)

In practice, µt+1,k and Ωt+1 are replaced with their estimates µ̂t+1,k and Ω̂t+1.

Weights of the minimum variance portfolio of same assets {yyyt}, and corresponding

return, are:

wMVP =
Ω
−1
t+11

C
µMVP =

A
C

(5.14)

Conditional predictive distributions can also be calculated analytically for any h ≥ 2.

However, one must keep in mind that such predictive distribution would be a mixture

of gh components, and their computations be cumbersome, so that simulation methods

may be preferred in some cases as h increases.

Consider the case h = 2. The conditional predictive distribution F (yyyt+2 | Ft) for

the MVAR model is a mixture of g2 Gaussian components given in (5.7). Similarly to

the case h = 1, we can derive the full conditional distribution of Rt+2, which is again a

mixture of g2 Gaussian components:

F(Rt+2 | Ft) =
g

∑
k,l=1

πkπlΦ

(
Rt+2−w(2)µkl

w(2)T
Ψklw(2)

)
(5.15)

where w(2) is the vector of optimal weights for this portfolio, indicating we are pre-

dicting 2 steps into the future. Similarly to the case h = 1, one can now calculate

E [yyyt+2 | Ft ] = µt+2 and Cov(yyyt+2 | Ft) = Ωt+2 and adapt (2.55), (2.56), (5.13) and

(2.57) to obtain an efficient or minimum variance portfolio.
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5.3 Simulated data example

We simulate a series of size n = 500 of hypothetical stock returns from the 3−variate

MVAR(2;1,1) process with CDF

F(yyyt | Ft−1) = 0.75ΦΦΦ

(
yyyt− v1

Ω1

)
+0.25ΦΦΦ

(
yyyt− v2

Ω2

)

where

v1 = Θ10 +Θ11yyyt−1 v2 = Θ20 +Θ21yyyt−1

and

Θ10 =


0

0

0

 Θ11 =


0.5 0 0.4

−0.3 0 0.5

−0.6 0.5 −0.3

Ω1 =


1 0.5 −0.40

0.5 2 0.8

−0.4 0.8 4



Θ20 =


0

0

0

 Θ21 =


−0.5 1 −0.4

0.3 0 −0.2

0 −0.5 0.5

Ω2 =


1 0.2 0

0.2 2 −0.55

0 −0.55 4


The three univariate series can be seen in Figure 5.1, with their autocorrelation and

cross-correlation plots in Figure 5.2. The data is very representative of what we should

be looking for, in a real case scenario, to assume an underlying MVAR process. We

notice in fact signs of heteroskedasticity in each of the series, and autocorrelations and

cross-correlations significantly different from 0 at lags larger than 0. The latter is what

separates MVAR from multivariate GARCH models, which assume the original series

to be uncorrelated.

Parameter estimates are calculated using the EM Algorithm with the formulas in

(5.2) and (5.3). In order to perform out of sample prediction, data from yyy1 to yyy498 were

used for estimation. This leaves yyy499 and yyy500 out as observations 1 and 2 time points
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Figure 5.1: Simulated time series of stock returns Asset 1 (top left), Asset 2 (top right)
and Asset 3 (bottom).
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Figure 5.2: Autocorrelation and corss-correlation plots of the simulated time series
data.
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in the future, to be predicted:

π̂ππ = (0.7242,0.2758)

Θ10 =


−0.0022

−0.0303

0.1276

 Θ̂11 =


0.4931 −0.0339 0.4169

−0.3156 −0.0012 0.5078

−0.6141 0.6007 −0.3844

Ω̂1 =


0.9551 0.4783 −0.2776

0.4783 1.9123 0.9736

−0.2776 0.9736 3.9455



Θ̂20 =


0.0338

0.5499

−0.7580

 Θ̂21 =


−0.4595 1.0124 −0.4004

0.3343 −0.1423 −0.1551

−0.1273 −0.2336 0.6509

Ω̂2 =


0.8767 0.4794 −0.3627

0.4794 2.9148 −0.6576

−0.3627 −0.6576 9.8135


We then calculate the one step ahead conditional mean and variance based on pa-

rameter estimates:

E [yyy499 | F498] = µ̂499 =


−0.1750

−0.9655

−1.4361



Cov(yyy499 | F498) = Ω̂499 =


1.3109 −0.6080 −0.0768

−0.6080 5.3174 −0.5642

−0.0768 −0.5642 5.9420


Given Ω̂499, we can calculate the minimum variance portfolio, which is obtained

for weights wMVP = (0.6434,0.2228,0.1338)T . The corresponding expected return on

this portfolio at time 499 is µMVP =−0.5198, with standard deviation σMVP = 0.8475.

Suppose now that we wish to increase our return to µ∗ = 0, i.e. no expected loss,

at the cost of a larger variance. We can calculate weights to construct an efficient
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portfolio of these assets as seen in Section 5.2. We obtain:

wEFF =


1.1097

0.0781

−0.1878


The interpretation of wEFF is that the otpimal portfolio yielding expected return of 0

is constructed by short-selling a small amount of Asset 3, and investing 110.97% and

7.81% of the total capital (meanwhile increased by short selling) into Asset 1 and Asset

2 respectively. Notice that the target return is wEFFµt = µEFF = 0 as desired.

We can now calculate the quantities we need for the conditional predictive distri-

bution of R499:

µ∗1 = w∗µ499,1 = 0.2642 σ
∗2

1 = 1.4968≈ (1.2235)2

µ∗2 = w∗µ499,2 =−0.6939 σ
∗2

2 = 1.6062≈ (1.3025)2

Therefore, the conditional distribution of R499 = w∗
T
yyy499 is

F(R499 | F498) = 0.7242×Φ

(
R499−0.2642

1.2235

)
+0.2758×Φ

(
R499−0.6939

1.3025

)

The standard deviation associated to this portfolio is σEFF = 1.3173 which, as ex-

pected, is larger than σMVP. More importantly, we can use the distribution assumption

on R499 to estimate risk measures. Figure 5.3 shows the conditional distribution of

R499. The dot on the left hand side of the figure, highlighted with a dashed line, is

the value at risk at 95% level. We find that the value at risk at such level is 2.2039,

with expected shortfall of 2.7912. This means that an investor could expect a loss on

this portfolio larger than 2.2039 units with probability 0.05, and when this threshold

is exceeded, the expected loss is of 2.7912 units. The observed return is also shown in
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Figure 5.3: Conditional one-step predictive density of R499, with VaR at 95% (dashed
line) and observed return (dotted line) highlighted.

Figure 5.3 as a dot with dotted line. We notice that it lies on a region of high density

of the predictive distribution.

We can also estimate the conditional distribution of the two-step ahead predictor at

t = 498, F(R500 | F498). This is shown in Figure 5.4).

The minimum variance portfolio for a a two-step ahead portfolio of assets is calcu-

lated with weights w(2)
MVP = (0.4367,0.2822,0.2811), with an expected return µ(2)MVP =

−0.3918, with σ
(2)
MVP = 1.1784, showing the increasing uncertainty as we attempt to

predict further into the future.

Once again we consider building a portfolio of assets yielding expected return µ∗=

0. Optimal weights for this portfolio are

w(2)
MVP =


−0.9404

1.5193

0.4211
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Figure 5.4: Conditional two-step predictive density of R500, with VaR at 95% (dashed
line) and observed return (dotted line) highlighted.

From Figure 5.4, we notice how the density is now flatter, which is sign of a larger

variability. This is confirmed by an estimated standard deviation of 3.5056 for the

two-step predictorR500, which is a significant increase. This also results in much larger

estimated VaR = −5.0207 (in absolute value) at the same 95% level, with expected

shortfall equal to −7.4505. Once again, the observed return (dotted line) is in a high

density region of the predictive distribution. This was all to be expected, since it is

reasonable to think that forecasts will become less and less accurate as we try to predict

further in the future.

Overall, we can be satisfied with the performance of our method in predicting port-

folio returns.
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5.4 Application to the US stock market

We consider a multivariate dataset of m = 4 stocks on the US stock market: Dell Tech-

nologies Inc. (DELL), Microsoft Corporation (MSFT), Intel Corporation (INTC), and

International Business Machine Corporation (IBM). The data were obtained from Ya-

hoo! Finance (https://finance.yahoo.com). The original time series include daily

Adjusted Close Prices between January 2nd 2016 and January 29th 2020 (867 obser-

vations). For each series and t = 2, . . . ,867, we calculated daily returns as (Pricet −

Pricet−1)/Pricet−1. The resulting series, displayed individually in Figure 5.5, includes

866 observations.

Figure 5.5: Time series of returns of DELL (top left), MSFT (top right), INTC (bottom
left) and IBM (bottom right).

All four univariate series in Figure 5.5 show signs of heteroskedasticity. The his-

tograms show signs of heavy tails, too. This second feature was confirmed by calcu-

lation of sample excess kurtosis (all significantly larger than 0). In addition, from a

https://finance.yahoo.com
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Figure 5.6: Autocorrelation and cross-correlation plots for the multivariate time series.
Notice the presence of correlation and cross-correlation in the data.

preliminary analysis, it was noticed that the data presents autocorrelation at least at

lags 1 and 2, and cross-correlations at lags 0, 1 and 2 (see Figure 5.6). Therefore, it is

reasonable to consider a MVAR generating process for the data.

Several models were fitted. In terms of diagnostics, a MVAR(3;3,2,1) was chosen

as best fit. Estimation was carried out on the first 864 observations, omitting the last

two for out-of-sample prediction.

Given parameter estimates and the one-step ahead predictive distribution at t = 864,

we calculate weights for the minimum variance portfolio built with these assets, which

yields a mean return of approximately 0.0024(0.24%). The standard deviation associ-

ated with this portfolio is σMVP = 0.0092, with weights wMV P =(0.1319,0.4597,−0.0136,0.4220).

Now, assume we would like to increase our mean return to 0.007 = 0.7%. We can
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calculate optimal weights

wEFF = (−0.5832,0.9538,0.1085,0.5209)T .

Weights are interpreted as follows: an investor shall short-sell an amount of around

0.58 times their inital capital in DELL stocks, and reinvest the new total in the remain-

ing three assets, with a major bet on MSFT and IBM. The idea behind this is that it is

believed that DELL stocks will decrease in value between the present and the nearest

future, and therefore one could short-sell to make a profit. On the other hand, it is

believed that the remaining three assets will increase their value in the same time span,

and in particular MSFT stocks. However, the standard deviation associated with this

portfolio is σEFF = 0.0139, a slight increase compared to σMVP, considering the scale

of the data.

For the latter portfolio, we calculate the one-step ahead conditional distribution of

R865 = ∑
4
m=1 w∗mym,865 using parameter estimates from the MVAR model fitting:

F(R865 | F864) =0.1316Φ

(
R865 +0.00052

0.0266

)
+0.5627Φ

(
R865 +0.00178

0.0093

)
+0.3057Φ

(
R865 +0.01932

0.0169

)

The corresponding predictive density can be seen in Figure 5.7.

Value at risk at α = 95% is estimated at 0.0174, with expected shortfall of 0.0299.

The subsequently observed return is R865 =−0.0062, which we can see lies on a region

of high density, and therefore is somewhat plausible.

We can also look at building a portfolio of the same assets looking two steps into the

future, at t = 866. The minimum variance portfolio in this case yields an expected re-

turn µ(2)MVP =−0.011, with associated standard deviation σ
(2)
MVP = 0.0101. The optimal

weights for this minimum variance portfolio were estimated as (0.1278,0.2366,0.1700,0.4655).
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Figure 5.7: Conditional one-step predictive density of R865, with VaR at 95% (dashed
line) and observed return (dotted line) highlighted.

We then use the distribution assumptions on yyy866, its expected value and covari-

ance matrix to estimate optimal weights to look once again to increasing our return by

bulding an efficient portfolio with same target return µ∗ = 0.007 as before:

w(2)
EFF = (0.0402,0.6174,0.7554,−0.4130)T

Using parameter estimates and (5.15), the conditional distribution of R866 is a mix-

ture of 32 = 9 components:

F(R866 | F864) =0.0173 Φ

(
R866−0.0170

0.0285

)
+0.0741 Φ

(
R866−0.0190

0.0268

)
+0.0402 Φ

(
R866−0.0252

0.0276

)
+0.0741 Φ

(
R866−0.0086

0.0101

)
+0.3166 Φ

(
R866−0.0069

0.0096

)
+0.1720 Φ

(
R866−0.0051

0.0096

)
+0.0402 Φ

(
R866−0.0098

0.0206

)
+0.1720 Φ

(
R866−0.0040

0.0187

)
+0.0935 Φ

(
R866 +0.0077

0.0196

)
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Figure 5.8: Conditional two-step predictive density of R866, with VaR at 95% (dashed
line) and observed return (dotted line) highlighted.

The conditional distribution of R866 can be seen in Figure 5.8. We notice, as ex-

pected, an increase in the standard deviation of the distribution, σ
(2)
EFF = 0.0177 with

respect to σEFF = 0.0177. Overall, the two shapes in Figure 5.7 and 5.8 look similar,

however the observed return R866 is not in a high density region of its predictive distri-

bution, as it actually exceeds the expectations. VaR is now estimated at −0.021, with

expected shortfall equal to −0.0315.

5.5 Comparison of VAR, MVAR and DCC

Dynamic Conditional Correlation models (DCC, Engle, 2002) are a class of multivari-

ate GARCH models in which conditional correlations between elements of a vector

series are time dependent. In particular, given the conditional covariance matrix of the

model at time t, Ht , each entry hi j of the matrix is modelled as a univariate GARCH

model. DCC models are used in finance to predict behavior of vector time series in
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which the assets are correlated and heteroskedastic, thanks to the fact that the condi-

tional covariance matrix of a predictor is always fully specified (see Section 2.7.1 for

more details).

In his model, Engle (2002) states that correlation is based (i.e. conditional) on

information known the previous period, and that correlation matrices of multi-period

forecasts are similarly defined. According to this, each time point produces a differ-

ent conditional correlation matrix. A similar argument can be presented for MAR and

MVAR models, except we work with conditional covariance matrices, rather than cor-

relations. The conditional covariance matrix clearly depends on past observations, and

one unique conditional covariance matrix is produced at each time point, except for

some limiting cases. As seen in Section 5.2, this also applies to one and multi-step

forecasts. For this reason, we consider a comparison between MVAR and DCC to be

appropriate.

We compare here the performance of modelling the data in Section 5.4 with an

MVAR model and a DCC model. We also add a comparison with a fitted vector autore-

gressive model of order 3 (VAR(3)). We use a rolling-window setup for comparison of

the density forecasts.

First, we consider a window from the first observation on January 2nd 2016 to Oc-

tober 10th 2019, thus including 766 observations (roughly 90% of the available data).

We use this to estimate MVAR, DCC and VAR models, and derive one and two steps

density forecasts for the three models for October 11th and October 12th, and calculate

forecasting accuracy using their respective observed values. We then move the window

forward by one day. The window would now contain 766 observations from from the

first observation on January 3rd 2016 to October 11th 2019. The procedure is repeated

until the window contains the most up to date observation on January 28th 2020, which

allows a one step forecast. Therefore, we obtain 100 one step density forecasts, and 99

two step density forecasts.
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Comparison of density forecasts is ususally done using scoring rules. Here we

compare the three models in terms of some strictly proper scoring rules: Continu-

ous Ranked Probability Score (CRPS, see for instance Gneiting and Raftery, 2007),

logarithmic score (LogS, Good, 1952), and the Dawid-Sebastiani score (Dawid and

Sebastiani, 1999, DSS,). For more details on these, see Section 2.5.2.

A DCC-GARCH(1,1) was found to be the best model for the return series assuming

multivariate normal innovations. For this, and for the VAR(3) model, the same rolling

window procedure as for MVAR is performed. For each forecast of each model, we

calculate CRPS, LogS and DSS, and take the average score for comparison. Results

can be seen in Tables 5.1 and 5.2: —

CRPS LogS DSS
MVAR(2;3,2,1) 0.004895 −3.300112 −8.410847

DCC-GARCH(1,1) 0.005048 −3.296478 −8.430833
VAR(3) 0.005123 −2.930259 −7.698397

Table 5.1: Average scores for one step density forecasts.

CRPS LogS DSS
MVAR(2;3,2,1) 0.004805 −3.310742 −8.439584

DCC-GARCH(1,1) 0.004845 −3.326115 −8.490107
VAR(3) 0.005022 −3.024682 −7.887240

Table 5.2: Average scores for two step density forecasts.

From this comparison, it appears that the only significant differences between

MVAR and DCC-GARCH, in terms of forecast accuracy, are in the CRPS for the

one step predictor (first column of Table 5.1), in which on average MVAR outper-

forms DCC-GARCH, and for DSS in the two step predictor (last column of Table 5.2),

where DCC-GARCH outperforms MVAR instead. However, neither method is objec-

tively better than the other. On the other hand, we notice that the VAR model is far

behind in terms of forecasting accuracy, and therefore may not suitable for predicting

portfolio returns. We conclude that our method for portfolio optimisation with MVAR
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models may be a valid alternative to a widely accepted method such as DCC-GARCH,

while it clearly outperforms the standard VAR model.

5.6 Discussion

We presented an innovative way of using mixture vector autoregressive models for

portfolio optimisation. The method consists in deriving analytically predictive dis-

tributions of future observations, and use the conditional covariance matrix, together

with modern portfolio theory, to build an efficient portfolio and obtain a distribution for

future returns. We have seen in fact that, assuming multivariate normal distributions

for mixture components, the conditional predictive distribution of the portfolio return

at a future horizon h itself follows a (univariate) mixture of gh normal components,

depending on observation up to the present.

The methodology was tested both on a simulated and a real dataset. For the latter,

we compared performance of MVAR with the widely used dynamic conditional cor-

relation model, which uses multivariate GARCH to estimate conditional correlations,

and with the VAR model, using a rolling-window forecasting scheme. In particular,

forecasting accuracy was assessed using three strictly proper scoring rules, averaged

over the number of forecasts. In terms of minimum variance portfolios, the conclu-

sion was that the MVAR and DCC-GARCH have similar performance on the analysed

datasets, suggesting MVAR may be considered a valid alternative to DCC-GARCH.

Furthermore, it was seen that MVAR outperformed VAR.



Chapter 6

Constrained mixture autroegressive

model for uncorrelated time series

We have so far presented applications of mixture autoregressive models to financial re-

turns, highlighting some of the features of this kind of data, such as heteroskedasticity,

heavy tails or multimodality. While MAR models can intrisically account for absence

of autocorrelation in the data, the property of financial returns of being uncorrelated

or weakly correlated has not yet been taken into account explicitly. A standout exam-

ple of effectively modelling such characteristics is given by GARCH models, which

assumptions are that of 0 mean and absence of autocorrelation. For this reason, we

consider in this chapter some simple, yet crucial linear constraints that can be applied

to MAR models to account for uncorrelatedness in a time series of interest, with the

assumption of 0 mean. We refer to this as an uncorrelated version of MAR models.

The stationary region of the parameters of MAR and MVAR models contains the

uncorrelated case as well as the 0 mean case, which allows all of the properties men-

tioned to be achieved smoothly as part of the estimation process. However, it may be

useful to ”force” a MAR model to satisfy these assumptions. In fact, given the nature

of the model, which allows for multiple modes, the EM algorithm may fail to estimate

155
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paramters such that this assumption is satisfied, if indeed the likelihood function was

multimodal.

Another scenario in which we may wish to impose uncorrelatedness on our model

is in time series regression or econometric models for which the assumption of i.i.d.

residuals is violated. Suppose in fact that a time series regression model has been fitted,

and that residuals for such model are uncorrelated, but violate the homoskedasticity as-

sumption of a linear model. In this case, an additional layer of estimation can be added

on the residuals by fitting a MAR model that simultaneously accounts for absence of

correlation and heteroskedasticity.

A MAR model can be ”forced” to satisfy the assumption of uncorrelatedness and 0

mean by simply imposing certain linear constraints on the autoregressive parameters,

which we will derive analytically.

6.1 Constraints for uncorrelated MAR model

From Equation (??) we have, for h > 0:

ρh =
g

∑
k=1

πk

p

∑
i=1

φkiρ|h−i|

=
p

∑
i=1

g

∑
k=1

(πkφki)ρ|h−i|

(6.1)

If ρh = 0 for h = 1, . . . , p, then ρh = 0 for h > p as well. So, it is sufficient to

determine the restrictions for h = 1, . . . , p. If h ∈ {1, . . . , p} and under the assumption

ρh = 0 for |h| > 0, the left hand side of (6.1) is 0, and the only non-zero term on the

right hand side is in the sum over i when i = h. Taking into account that ρ0 = 1, we

obtain the condition for uncorrelatedness:

g

∑
k=1

πkφkh = 0 h = 1, . . . , p (6.2)
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This is also a sufficient condition for uncorrelatedness since, if it holds, then (6.1)

reduces to ρh = 0 for h = 1, . . . , p.

Notice that this set of constraints implies that, if a MAR model is of autoregressive

order p, at least two of the regimes involved must be autoregressive processes of order

p for the model to satisfy the assumption of no correlation.

Finally, a constraint to impose 0 mean on the model may be similarly added. As-

suming a stationary MAR model, the expression for the unconditional mean, µ, of the

model is

µ =

g

∑
k=1

πkφk0

1−
p

∑
i=1

p

∑
i=1

πkφki

(6.3)

If the conditions for uncorrelatedness are satisfied, then the denominator in (6.3) is

equal to 1. In general, assuming that the denominator is different from 0, and setting

µ = 0, we obtain that the condition for the model to have a 0 mean is analogous to that

for the autocorrelations:

0 =
g

∑
k=1

πkφk0 ⇔ φg0 =−

g−1

∑
k=1

πkφk0

πg
(6.4)

Therefore, we have a set of p+1 constraints on the model. It is important to stress

that the constraints in (6.1) and (6.4) are independent of each other, i.e. we could

impose uncorrelatedness without setting any constraints on the shift parameters, and

viceversa.

Note that, by imposing 0 mean, the conditional expetation of yt is also 0 at every

time t. In fact, the conditional expectation seen in (??) is now:

E [yt | Ft−1] =
g

∑
k=1

πk

(
φk0 +

p

∑
i=1

φkiyt−i

)
=

g

∑
k=1

πkφk0 +
p

∑
i=1

g

∑
k=1

πkφkiyt−i = 0
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Consequently, the conditional variance (??) reduces to:

Var(yt | Ft−1) = E
[
y2

t | Ft−1
]
=

g

∑
k=1

πkσ
2
k +

g

∑
k=1

πkµ2
tk.

where µtk = φk0 +∑
p
i=1 φkiyt−i.

With these constraints, it appears to be no longer possible to derive explicit for-

mulas for parameter estimates via EM-Algorithm. Numerical optimisation methods to

maximise the likelihood functions may be sucsessfully used instead.

It is important to notice that there are no constraints required on the component

scale parameters σ1, . . . ,σg. This implies that the capacity of MAR models to account

for heteroskedasticity is conserved under a constrained setup.

6.1.1 Constrained MAR vs. GARCH model

We have explained several times how MAR models represent a suitable alternative to

GARCH models. In particular, the constrained version of MAR model introduced in

this chapter could be the direct ”competitor” of GARCH.

Recall the equations that define a GARCH(p,q) model, as defined in (2.51):

εt = σtηt ηt ∼WN(0,1)

σ
2
t = Var(εt | Ft−1) = ω+

q

∑
i=1

αiε
2
t−i +

p

∑
j=1

βiσ
2
t−i

(6.5)

where ω,αi,β j ≥ 0 for all i, j. The first equation controls the conditional distribution

of the process, which is introduced explicitly and does not change over time, while

the second equation describes the conditional variance structure. ηt are i.i.d. with

mean 0 and unit variance (i.e. strong white noise), so it may be assumed to follow

any distribution satisfying such conditions (e.g. Gaussian, Student-t, skewed Student-

t), a characteristic that gives flexibility to the model. Clearly, the conditional mean



CHAPTER 6. CONSTRAINED MAR 159

E [εt | Ft−1] = 0.

We have discussed how imposing constraints to a MAR model ensures uncorrelat-

edness, as well as 0 mean. As a result, the process is weak white noise, analogous to

εt for the GARCH model in (6.5). In addition, the choice of a mixture of distributions

provides the flexibility required to handle multimodality, skewness and heavy tails. In

addition, and in contrast with GARCH, conditional distributions are not explicitly de-

fined, but rather they arise naturally from parameter estimation, and they depend on

the recent past of the process. Furthermore, the conditional variance in (6.1) depends

on the past of the process, thus accounting for a dependence structure in the data. This

is another similarity to GARCH model. It is now clear how MAR and GARCH may

be alternative of each other, in that they are similarly structured.

6.2 Testing constrained vs. unconstrained model

In this section, we discuss a test for constrained MAR model against an unconstrained

one. Formally, this test determines whether the autoregressive parameters of one of the

mixture components can be expressed as a linear combination of the parameters from

the other components. Implicitly, this may be seen as a test for serial uncorrelatedness

in a time series (i.e. weak white noise), in that the linear combination of parameters

discussed implies absence of autocorrelation in the data.

We can therefore build a likelihood ratio test between the constrained and uncon-

strained models. The literature for likelihood ratio tests in the context of mixture mod-

els (Hope, 1968; Aitkin et al., 1981; McLachlan and Peel, 2000, and references therein)

suggests that the test statistic, in general, does not follow a standard χ2
p distribution,

where p is the difference in number of parameters between the full and constrained

model. While our case is slightly different, as we are not strictly testing for number of

mixture components, the same rule applies.
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Figure 6.1: Monte Carlo estimated probability density functions of the inspected MAR
models.

Every example in the related literature proposes simulation approaches to approxi-

mate the distribution of the LR statistic. Two methods are mainly used, namely Monte

Carlo and bootstrapping. Due to the underlying dependence of time series data, boot-

strapping is not a suitable approach, and therefore we choose to estimate the distribu-

tion of the test statistics via Monte Carlo simulations.

We hence proceed with a simulation study. Table 6.1 summarises critical quan-

tiles for all MAR models used (for comparison, or demonstration, although not all

displayed), throughout the project. For each model listed, various combinations of pa-

rameters were considered, and for each combination 2000 time series of length n= 500

were simulated. It was noticed that the distribution of the likelihood ratio statistic is

not affected by the choice of model parameters. The shape of the estimated proba-

bility density functions for some MAR models is shown in Figure 6.1. Furthermore,

it appears that, while the χ2 and the distribution of the LR statistics are nearly indis-

tinguishable for g = 2 mixture components except for extremely large quantiles, the

discrepancy increases as g and p increase. Aitkin et al. (1981) suggests that this may

be due to the 2 component model being more likely to have one unique maximum,

whereas multiple local maxima may appear more often as the number of components

increases.
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α = 0.1 α = 0.05 α = 0.01 α = 0.001
MAR(2;1,1) 4.552815 5.889053 8.375820 11.794349

(χ2
2) (4.605170) (5.991465) (9.210340) (13.815511)

MAR(2;2,2) 6.290129 7.808398 10.72092 14.18025
(χ2

3) (6.251389) (7.814728) (11.344867) (16.266236)
MAR(2;3,3) 7.906311 9.502881 12.55007 18.57420

(χ2
4) (7.779440) (9.487729) (13.276704) (18.466827)

MAR(2;4,4) 14.47753 17.23880 22.00793 33.04748
(χ2

5) (9.236357) (11.070498) (15.086272) (20.515006)
MAR(3;1,1,1) 6.417377 7.555101 12.13223 20.00665

(χ2
2) (4.605170) (5.991465) (9.210340) (13.815511)

MAR(3;2,2,2) 9.309040 10.909260 15.04179 18.66130
(χ2

3) (6.251389) (7.814728) (11.344867) (16.266236)
MAR(3;3,3,3) 11.544098 13.418782 17.56541 23.99487

(χ2
4) (7.779440) (9.487729) (13.276704) (18.466827)

Table 6.1: Critical quantiles for distribution of likelihood ratio test statistic of some
MAR models, each based on 2000 simulated time series of n = 500 data points

As usual for likelihood ratio tests, the test is one-sided, meaning that the null hy-

pothesis is rejected if the likelihood ratio between the complete and the constrained

model is large. Formally, we test for:

H0 : MC ≡MF vs H1 : MC 6= MF (6.6)

where MC and MF denote constrained and unconstrained model respectively. The null

hypothesis is rejected if the test statistic T is such that T > q1−α;(g,p). At a closer look,

testing constrained versus unconstrained model implicitly corresponds to testing the

assumption of weak white noise (i.e. uncorrelatedness) for the time series of interest.

This provides an additional support tool to Ljung-Box test, which is predominantly

used to test the assumption of strong white noise. Strictly speaking, rejecting the null

hypothesis of a Ljung-Box test means that the data are not i.i.d., however it does not

necessarily imply correlatedness. Hence, where Ljung-Box test, routinely used to test

for independence, rejects the null hypothesis, an additional test for constrained MAR

could provide additional information on whether the data can be deemed uncorrelated.
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We illustrate this in more detail through an example. We consider data From Fred-

die Mac, an American mortgage loan company. The dataset, which comprises 570

weekly returns from May 2006 to April 2017, is available in the R package sarima

(Boshnakov and Halliday, 2020), where it was used as example for introducing a test

of uncorrelatedness of a time series using a GARCH model, after the null hypothe-

sis of strong white noise had been rejected. This is a particularly interesting example

since, after the real estate plummeted with the financial crisis in 2008, the price of this

stock fell from $60 to as little as $0.5, and decreased by a further 50% in 2010. As

a consequence, the vast majority of shares have been owned by the US governement

since 2008. In the following years, the company has been target of speculation in the

financial market, due to belief that the stocks would be sold back to private properties.

This caused the stock to be highly unpredictable, with volatility clusters alternating

over time.

The series of first order differences of log-returns and the corresponding autocorre-

lation function are shown in Figure 6.2. The autocorrelation plot shows several values

exceeding the confidence bands for the null hypothesis of the Ljung-Box test, which is

in fact rejected at several lags (we attempted lags 5, 10, 15, 20), with p-values < 0.001

in all cases.

We then fitted a constrained MAR(2;2,2) model (found to be the best fit to the

data), and use it to test uncorrelatedness against its corresponding unconstrained model.

In contrast with the previous result, the test statistic is 1.6148, which is not significant

at 10% level (see the second row of Table 6.1 for reference). Therefore, there is evi-

dence in support of the data being weak white noise, but not strong white noise.

The test can hence be used routinely, similarly to the Ljung-Box test, to assess the

presence of an underlying dependence structure in a time series.
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Figure 6.2: Time series of Freddie Mac’s log returns and its autocorrelation function.
Notice significant correlation at several lags, leading to reject Ljung-Box test.

6.3 Simulation study

Alongside the estimation of quantiles of the distribution of the test statistics, we per-

forme a study aimed to assess what could be the potential benefits in fitting a con-

strained MAR model in the correct condition. In order to do this, we set up simulations

of data from several MAR processes, with g = 2,3,4 components and with maximum

autoregressive order p = 4 (e.g. MAR(2;3,3) or MAR(3;1,1,1)). Model parameters

are selected in a way such that ρ|h| = 0 for |h| > 0 and µ = 0 as defined in (6.3). A

total of m = 1000 datasets of size n = 500 were simulated from each of the processes

considered in the experiment, for 12 different models within the requirements set de-

scribed above.

The aim of the experiment is to quantify the improvement in accuracy of the param-

eter estimates of a constrained MAR model, when the data satisfies the assumptions.

In order to do this, for each simulated dataset we estimate the corresponding ”true”

model, both constrained and unconstrained versions, building in this way Monte Carlo

samples of the paramter estimates.

Since the true values of the parameters are known, we then can compare these

samples in term of mean squared error (MSE). For a generic parameter θ, recall the
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formula for calculation of the mean squared error:

MSE
(
θ̂
)
= E

[(
θ̂−θ

)2
]
=

∑
M
m=1

(
θ̂m−θ

)2

M
(6.7)

where θ̂i is the parameter estimate from the ith dataset and θ is the true value. The

MSE is hence a measure of discrepancy between the parameter estimates and the true

value of the parameter, and it quantifies the efficiency of the estimator in question.

The simulation study shows significant improvements in terms of accuracy of the

parameter estimates. Overall, mean squared errors reduce by ∼ 10% across all models

with g = 2 and ∼ 50% across models with g = 3 regimes, giving an indication that the

more complex the true model is, the more convenient it becomes to use constrained

parameter estimation. This is reasonable, since the number of model parameters in-

creases steeply as g increases.

Delving deeper into the simulation results, we notice that the most reductions in

MSE are found in the mixing weights. In particular, the average reduction in MSE id

around 50% for π1 in two-component models, and even lower for π1 and π2 in three-

component models, where the reduction is over 85%. For the remaining parameters,

the improvement is still significant, although not on the same level as that for the

mixing weights. For two-component models, the improvement swings between 5−

10%, whereas the reduction in MSE is much more relevant in three-component models,

with a decrease between 25% and 50% for most parameters. For what regards the four-

component models, result are more constant throughout the model parameters, with

reductions in MSE oscillating between 15−25%.

Overall, we may conclude that there is evidence that using constrained estima-

tion under correct assumptions brings improvements to parameter estimation in MAR

models, suggesting that it is convenient to consider the restricted model for estimation

when the data satisfies the assumptions.
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6.4 Time Series regression with heteroskedastic errors

A possible application of constrained MAR models, besides that to financial returns,

is found in econometrics with time series regression models.

Econometric models consist in the use of statistical methods for a quantitative anal-

ysis of economic phenomena. Much like financial data, econometric datasets some-

times show simple linear relationships over time between a variable and lagged values

of that variable itself, with the addition of so called ”exogenous” variables, other eco-

nomic phenomena that may influence the response of interest.

Consider a simple linear regression with econometric data:

yt = β0 +β1yt−1 + xt +ωt (6.8)

which is essentially an AR(1) model with the addition of an exogenous variable xt . Un-

like linear regression, ωt in econometric models is not necessarily assumed to follow a

Normal distribution. It is often the case in fact that ωt , t = 1, . . . ,n are not i.i.d. or even

just normally distributed. More often, they are in fact heteroskedastic or heavy-tailed.

In such cases a constrained MAR model may be suitable for modelling {ωt}.

We demonstrate this through an example, aimed to show how an uncorrelated MAR

model can be used to improve the fit of a previously fit model, whose residuals look

far from i.i.d. Normally distributed.

We consider two time series of S&P500 stock indices and the monthly change of

the Federal Reserve Board’s index of industrial production. Both series are calcu-

lated as 100 times the natural logarithm of the index change between a month and the

previous month. Before transformation, the two original series consist of monthly ob-

servations between January 1946 and June 1993, for a total of 559 observations. The

dataset, available in the R package wooldridge (Shea, 2018), is analysed by Hamilton
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and Lin (1996) who suggest the presence of an intrinsic relationship between stock

indices in S&P500 (pcsp) and industrial production (pcip). The authors also hint to a

particular characteristic of this relationship, in that the S&P500 index may foresee the

future behavior of industrial production. This means in practice that pcip should be

influenced by past values of pcsp.

Following the authors’ analysis and recommendations, the transformed industrial

production index pcip is treated as the response variable. We then fitted a linear model

of the form:

pcipt = β0 +β1 pcspt−2 +φ1 pcipt−1 +φ2 pcipt−3 +φ12 pcipt−12 +φ24 pcipt−24 +ωt

Here, a seasonal ARIMA model, SARIMA(3,0,0)(2,0,0)12 is fitted to pcipt , plus

an additional exogenous variable in pcspt−2. The ARIMA term accounts for short term

and seasonal autocorrelation in the process, while the exogenous variable is somewhat

a confirmation that stock behaviors may in fact foresee future industrial production

trends by two months (two time points in practice). The fitted model is hence:

pcipt = 3.269+0.032pcspt−2 +0.329pcipt−1 +0.099pcipt−3

−0.175pcipt−12−0.125pcipt−24 +ωt (6.9)

While the fitted model in itself is interesting, our main focus here is in the resid-

uals {ωt}. In their work Hamilton and Lin (1996) show that the residuals, although

uncorrelated, violate the assumptions of a linear model. From diagnostics such as

Shapiro-Wilk normality test or Breusch-Pagan test for heteroskedasticity, which both

reject their respective null hypothesis with p-values < 0.001, it turns out that the resid-

uals are in fact not i.i.d. Gaussian, nor they have a common variance, but rather are

conditionally heteroskedastic. The residuals are shown in the left panel of Figure 6.3
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As a solution, Hamilton and Lin (1996) propose to introduce a second step in the esti-

mation, by modelling the residuals, εt , using a Markov-switching GARCH model.

In this example, we exploit the same idea of a two-step estimation, but we use

instead our uncorrelated mixture autoregressive model with Gaussian components for

the residuals, and take the chance to showcase the diagnostic tools for goodness of fit

of autoregressive models introduced in Section 2.4.

The time series of residuals can be seen in Figure 6.3. The figure shows that most
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Figure 6.3: Residuals from fitted model in (6.9) and autocorrelation function.

residuals are in the interval [−20,20], however with several larger values throughout.

This behavior suggests a mixture of two components, one to model the data around

the 0 mean, the other to account for the sporadic large residuals. After fitting several

models, a constrained MAR(2;2,2) was selected as best fit to the data, in terms of

diagnostics and BIC. Model diagnostics are displayed in Figures 6.4 and 6.5. Fur-

thermore, the likelihood ratio test statistic for constrained vs. unconstrained model is

3.316. This is not significant at 10% level according to the critical quantiles in Table

6.1, meaning that there is evidence in favor of the constrained model. In other words,
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Figure 6.4: Diagnostic plots of fitted MAR(2;2,2) for the series {ωt}.

our fitted uncorrelated MAR model fits the data sufficiently well, so that a MAR model

with correlation is not required.

The conditional CDF of the fitted mixture for the residuals can be written in terms

of parameter estimates as:

F(εt | Ft−1) = 0.911ΦΦΦ

(
ωt +0.354−0.014ωt−1−0.085ωt−2

8.367

)
+0.089ΦΦΦ

(
ωt−3.609+0.139ωt−1 +0.874ωt−2

29.953

)

where autoregressive and shift parameters of the second component are functions of

parameters of the first component, as descibed in previous sections.

We start from analysing the set of ”traditional” residuals described in section 2.4.

The top two plots in Figure 6.4 show the original series and the autocorrelation

function of the residuals. As expected, the absence of correlation, which is a feature
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of the original series {ωt}, is maintained in the MAR residuals. The bottom two plots

show instead histograms of the two sets of transformed residuals U and V , as defined

in (2.36). P-values of relevant tests, specifically Ljung-Box and Kolmogorov-Smirnov

for Ut , Ljung-Box and Shapiro-Wilk for Vt , are also printed on the top left of the

histograms. We see that the respective null hypothesss for U and V are not rejected,

meaning that there is evidence that the model provides a good fit for the data.

Secondly, we derive the set of residuals ε̃t , as defined in (2.37). Figure 6.5 shows

a histogram of such residuals, as well as the autocorrelation function. It appears from

the two plots that the series ε̃t is essentially uncorrelated, and it fits well the standard

Normal distribution (blue line), which is what we would expect under correct model

specification. Both claims are confirmed once again by Ljung-Box and Shapiro-Wilk

tests, which p-values are printed in the histogram plot, both not rejecting the null hy-

pothesis.
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Figure 6.5: Histogram and autocorrelation of residuals ε̃t .

It appears in conclusion that the constrained MAR(2;2,2) fits the series of residuals

ωt adequately. In terms of prediction, we know from model assumptions that E [ωt ] = 0

for all t, meaning that the point predictor ˆpcipt remains invariate. On the other hand,
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the variance of such predictor now incorporates the conditional heteroskedasticity and

the dependent structure of the data, brought in by the MAR part of the model. For

instance, the conditional one step ahead predictor of pcipt given past information has

expected value and variance:

E [pcipt | Ft−1] =3.269

+0.329E [pcipt−1 | Ft−1]+0.099E [pcipt−3 | Ft−1]−0.175E [pcipt−12 | Ft−1]

−0.125E [pcipt−24 | Ft−1]+0.032E [pcspt−2 | Ft−1]+E [ωt | Ft−1]

=3.269+0.329pcipt−1 +0.099pcipt−3−0.175pcipt−12

−0.125pcipt−24 +0.032pcspt−2 +0

Var(pcipt | Ft−1) =Var(εt | Ft−1) =

0.902
[
8.3072 +(−0.321+0.034εt−1 +0.088εt−2)

2
]

+0.088
[
26.5462 +(2.952−0.314εt−1−0.812εt−2)

2
]

Therefore, the variance of the conditional prediction is now time-dependent, through

ωt , on previous values of the production index itself, as well as several past values of

the S&P500 stock index.

6.5 Discussion

We introduced an uncorrelated version of MAR models. Formally, the assumption of

uncorrelatedness is imposed by a set of linear constraints on the autoregressive pa-

rameters of the mixture components, as well as on their shift parameters to impose 0

mean.

We then proposed a likelihood ratio test for testing a constrained model against

its corresponding unconstrained model. Implicitly, this test provides information on

whether a time series of interest may be considered a weak white noise process, and

may be used as an additional tool in support of the traditional Ljung-Box test, when its
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null hypothesis is rejected and therefore strong white noise cannot be assumed.

We also showed the advantages of fitting an uncorrelated MAR model when the

data appears to satisfy the assumption of uncorrelatedness or weak white noise. In fact,

a significant decrease in mean squared error of the parameter estimates was registered.

Finally, we proposed an application of uncorrelated MAR models to error terms

from an econometric model. The reason for this application arises from the fact that,

in econometrics, the assumption of i.i.d. error terms may be violated, as there is an un-

derlying dependent structure. In such cases, uncorrelated MAR provides an additional

layer of modelling, directly applied to the error terms, which aims to better explain

their dependent structure.



Chapter 7

Discussion and future work

This thesis proposed and presented advances in theory and applications within the class

of mixture autoregressive models.

Chapters 3 and 4 focused on Bayesian analysis of MAR models. The former pro-

poses a way of modelling MAR models with Gaussian components. The existing lit-

erature on the topic had in fact some shortcomings in that authors did not consider

that the region of first and second order stationarity of the MAR model, what we refer

to as stability region, does not coincide with that of AR model, and therefore a dif-

ferent approach is required to simulate samples from the posterior distribution of the

model parameters. Our proposed method overcame this issue, by use of a Metropolis-

Hastings move for the autoregressive parameters. Furthermore, at each iteration of the

MCMC, stability of the candidate model is assessed, so that a given set of parameters

is automatically rejected if it violates this assumption.

Chapter 4 extended the Bayesian analysis of MAR models to the class of Student-t

autoregression. The new assumption on the mixture components was for the innova-

tions to follow Student-t distributions with different degrees of freedom. By using the

integral representation of the t distribution, we saw how it is possible to write each

component not only in terms of its degrees of freedom, but also mean and variance.

172
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This aspect allows to control all the main features of the distribution.

For the mean and variance of the Student-t distribution to be finite, it is necessary to

assume that the degrees of freedom are larger than 2. On the other hand, we discussed

how, for degrees of freedom larger than 30, a Gaussian approximation may be preferred

due to better numerical stability in MCMC simulations. This also means that a mixture

of Gaussian components is a limit case of Student-t mixture. All things considered,

we constrained the degrees of freedom to assume values in the interval [2,30]. To

take this restriction into account, we introduced a truncated Gamma prior distribution,

which also incorporates prior information into the estimation. It was discussed in fact

how relevant it is to make use of any prior information for efficient estimation of the

posterior distirbution of the degrees of freedom.

Another common issue with Bayesian analysis of mixture models is that of label

switching. Label switching arises from the fact that the likelihood function of a mixture

model has a number of symmetric modes equal to g!, where g is the number of mixture

components. In absence of prior information, this may result in mixture components

switching permutation, perhaps several times, during MCMC simulations. If not de-

tected, label switching may lead to meaningless, or even wrong inference. Notice

however that label switching involves interpretation and identifiability of the model.

Prediction of future events using an entire MCMC sample is not affected by label

switching, since the density function of MAR models is invariant to permutation of the

labels.

While identifiability constraints are commonly used to prevent the occurrence label

switching, we opted for a relabelling algorithm a posteriori. From the literature (we

refer in particular to Hossain, 2012) it appeared in fact that imposing identifiability

constraints on MAR models, such as π1 > π2 > · · · > πg, may sometimes affect con-

vergence of the Markov Chain, so that the stationary distribution cannot be achieved at

all (or at least in a feasible amount of simulations). Our relabelling algorithm instead
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does not interact with the chain until after the simulation has been completed. The

key is in fact that, if label switching has occurred at all in the chain, we are able to

detect its presence, at least graphically, and we can consequently apply a relabelling

algorithm to adjust labels according to one permutation of our choice. Note that it is

not important which permutation is chosen for relabelling, as long as that same one is

maintained throughout the relabelling process.

Chapter 5 introduced a novel application of MAR models aimedd to optimisation

of portfolios of assets and the associated risk. The methodology combined theory, es-

timation and prediction with mixture vector autoregressive models (MVAR), the mul-

tivariate version of MAR, and modern portfolio theory. MVAR models in fact pro-

vide expected value and covariance matrix of a predictor at an arbitrary time horizon,

which can be then used to estimate optimal weights to construct a portfolio of assets

with given expected return and the risk associated with it. Furthermore, thanks to the

properties of MVAR models and of the multivariate Normal distribution, the distribu-

tion of the return on a portfolio is fully specified at any time horizon, and therefore we

could resort to predictive densities to estimate risk measures such as value at risk and

expected shortfall, as well as comparing performance and accuracy of different models

in predicting portfolio returns.

Finally, Chapter 6 proposed an uncorrelated version of MAR models. The assump-

tion of uncorrelatedness is satisfied by applying linear constraints on the autoregressive

parameters of the model. The main argument behind these constraints is that financial

data, and in particular asset returns, are often uncorrelated or weakly correlated, and

they are distributed around 0. On the other hand, financial and econometric data are in

general heteroskedastic, a feature that standard linear models cannot handle correctly.

In addition, by testing the constrained model against its unconstrained counterpart, we

also obtained an additional tool for assessing whether a time series could be considered

as weak white noise, where the assumption of strong white noise (e.g. by Ljung-Box
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test) had previously been rejected.

The forementioned constraints involved the autoregressive parameters of the MAR

model, including the shift, which the autocorrelation function of the MAR model de-

pends on. In particular, it turned out that, to ensure that the estimated autocorellation

is equal to 0 at all lags, as well as the mean is equal to 0, the autoregressive param-

eters of one of the mixture components can be written as a linear combination of the

autoregressive parameters of the remaining g−1 regimes and their mixing weights. At

the same time, the heteroskedastic nature of the model is maintained, since the scale

parameters of all mixture components are estimated independently.

While the possibility to apply the uncorrelated model to financial returns appeared

straightforward, we presented an alternative, more subtle use for it in modelling resid-

uals of a time series regression model in econometrics. We considered a linear rela-

tionship (i.e. a linear regression model) between industrial production index and the

S&P500 index in the United States. This relationship was highly significant, suggest-

ing that the s&P500 index can foresee future behavior in industrial production. How-

ever, the residuals of this model violated the necessary assumptions for a linear model,

as there appeared to be an underlying dependence structure. We hence fitted our uncor-

related MAR model to the residuals, and later showed how this additional layer affects

prediction, and in particular the uncertainty (variance) around the prediction of future

values of the industrial production index.

Future research could extend mixture autoregressive models even further to other

distribution assumptions than the ones presented in this thesis. One example of this

could be a mixture of Poisson distributions for high frequency count data. In fact, the

growing accessibility of nearly instantaneous obserations (such as number of trans-

actions on a particular stock in a minute, numbers of accesses to a website or to a

building, among others) may result in clusters that could be modelled effectively by a

mixture.
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Other possible additions, regarding the Bayesian analysis in particular, could be the

implementation of faster Metropolis-Hastings algorithms for simulation of the autore-

gressive parameters. For instance, one could use the Metropolis Adjusted Langevin

Algorithm, or MALA, which makes use of gradient functions to improve the accep-

tance rate and therefore the efficiency. Fonseca et al. (2008) proposed a way to reduce

the level of subjectivity in setting up the prior distribution on the degrees of freedom in

a linear regression model with Student-t error terms using Jeffreys priors. The method-

ology may as well be applied to MAR models, however with the requirement of having

to derive objective Jeffreys priors for the specific model.

There are various ways in which the methodology presented in Chapter 5, regarding

portfolio optimisation with MVAR models, could be extended. One possibility is to

employ the GMVAR model (Kalliovirta et al., 2016) in place of the MVAR model.

GMVAR has the useful property that the mixing weights depend on past values of the

process. On the other hand, the region for the autoregressive parameters of GMVAR

is restricted to a subset of that of MVAR. Also, MVAR and GMVAR have different

dynamics and stationary distributions. So the two classes of models complement each

other.

Another possible extension of our method is to incorporate factor models. Factor

models provide a way of modelling a large number of possibly correlated assets at

a time. In addition, distribution assumptions other than normal can be made on the

innovation terms. For example, considering a distribution with heavy tails might need

a smaller number of components to fit the data. However, estimation could become

much more complicated, and numerical algorithms would be required.

The properties of constrained estimation of MAR models are something that re-

quires some more focus and research, given the crucial advantages discussed in chapter

6. For our analysis, we resorted to a numerical optimisation method to obtain parame-

ter estimates, as it appeared that explicit expressions for these are no longer available
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due to the nature of the constraints. However, this has not been explored in depth yet,

and deserves further study. In addition, while the stability condition remains the same,

it may be worth checking whether, with the constraints, it can be rewritten in terms of

the g− 1 unconstrained mixture components with an explicit form. At this stage, we

cannot exclude that further constraints could arise from this expression. If that was the

case, this might also bring more clarity about the distribution of the likelihood ratio

test, which so far has only been derived via simulations.
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