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Abstract

Assessing Treatment Effect Heterogeneity:
Predictive Covariate Selection and Subgroup

Identification
Konstantinos Papangelou

A thesis submitted to The University of Manchester
for the degree of Doctor of Philosophy, 2021

A key objective in an interventional study, such as a randomised clinical trial,
is the evaluation of heterogeneity of treatment effect in the population. This
allows us to identify the most promising intervention for a given observation. In
this thesis we approach this by targeting two tightly coupled sub-problems. The
first concerns the identification of covariates and the second the identification of
subgroups associated with treatment effect heterogeneity.

Regarding the first problem we study an information theoretic approach. This
can be motivated by phrasing the predictive covariate selection problem in log-
likelihood terms. We study the properties of this approach in the case of ran-
domised studies and evaluate low-dimensional approximations that are better
suited for small-sample and/or high-dimensional studies. We identify some lim-
itations and propose extensions based on propensity score weighting and strat-
ification that extend this criterion in scenarios when the treatment assignment
depends on the covariates.

Regarding the second problem, we discuss recursive partitioning approaches
coupled with weighting methods for treatment effect estimation. The purpose of
these methods is to tackle the problem of subgroup identification in the presence of
confounders in the data. Finally, studying the literature of subgroup identification
we identify a significant number of approaches. Given such a large number of
methods to choose from, an important question is how to select the best for
a given task. We introduce a framework that uses the subgroup stability as a
measure to capture the variations in the identified subgroups due to small changes
in the data.
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Chapter 1

Introduction

Over the last decades, researchers in diverse fields, such as statistics, healthcare,

sociology, political and economic science, have given great attention to the im-

provement of methodological tools for assessing causation. At the same time, the

increasing number of observational studies that can be used to support the scarce

and often unavailable randomised studies has resulted in much attention on the

development of methodologies for analysing such data. The primary question

for many methodological and empirical studies is estimating the average effect

of an intervention (and other supporting analyses), hence answering the question

of whether one variable (the treatment1) affects another (the outcome). This is

known as the average causal effect of the treatment/intervention or simply the

average treatment effect.

Estimation of this quantity may not reveal a causal relationship, and even if

it does, the researchers or study’s sponsors may be interested in identifying which

treatment would be better suited for certain observations. A prominent example

is personalised (or precision) medicine, where the selection of the treatment for

a patient can be guided by their characteristics. In this thesis, we focus on the

question of how the treatment affects the outcome of interest, and we focus on

assessing the heterogeneity of the effect in subsets of the data. We will explore

this problem by deriving a set of novel methodologies, and while we do so, we

will explore diverse but interconnected areas of modern causal inference. Overall

this thesis discusses a wide range of methodologies regarding the causal inference

1Following the terminology adopted by the greatest part of the literature we will use the
term “treatment” to refer to an intervention and “treatment effect” to refer to the causal effect
of the intervention. These are not necessarily medical treatments, and when they are, it will
be clear from the context.
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20 CHAPTER 1. INTRODUCTION

process in the presence of a binary intervention, from identifying covariates of

interest to identifying subgroups with desirable characteristics.

1.1 Motivation

In healthcare, the field of personalised medicine studies approaches for identify-

ing the right treatment for each patient. In advertising, we may be interested in

the impact of ad exposure which can vary between different groups of customers.

In public policy evaluation, a new program may be better suited to certain in-

dividuals than others. In these cases, we are interested in understanding the

mechanisms by which the treatment affects the outcome of interest and possibly

identify subpopulations where we could recommend the most suitable option. In

this thesis, we will approach this by exploring the heterogeneity of the effect of

a treatment in the population. In particular, we will tackle the following three

challenges:

• Identifying covariates that cause treatment effect heterogeneity.

• Identifying subgroups in our data that exhibit treatment effect heterogeneity.

• Evaluating subgroup identification algorithms.

When we measure the overall causal effect of an intervention in some given sample,

it is likely the case that this is not going to be the same across all observations.

There might exist subsets where there is a much larger effect compared to the

average effect or the opposite. If we have collected a set of covariates describing

the characteristics of each observation (such as demographics, biomarkers, etc.),

we can try to identify which of these covariates are responsible for the observed

heterogeneity of the causal effect. We can then try to identify subsets of the data

where there is substantial heterogeneity. In the context of clinical trials, these two

challenges are interconnected, and they are at the heart of personalised medicine

(Lipkovich et al., 2017a). As we will see, there is a large number of methods

for identifying subgroups, particularly in randomised studies. Given such a large

pool of methods to choose from, the third challenge deals with the problem of

evaluating them. This is a non-trivial task since the quantities we are normally

interested in (e.g. treatment effects, subgroups, and covariates that define them)

are not observed. Let us provide an overview of these challenges.



1.1. MOTIVATION 21

1.1.1 Identifying Predictive Covariates

Suppose we perform a randomised clinical trial to assess the effectiveness of a

novel drug against the standard medical treatment for patients with some type of

cancer. We find that patients who got the novel treatment had longer progression-

free survival compared to standard care. In hope of identifying potential subsets

where the novel drug performs even better, we study how the values of certain

biomarkers may change the effect of the treatment. Interestingly, we find that

patients who had a specific value for a biomarker (e.g. some gene mutation)

and received the novel drug had a longer progression-free survival compared to

standard care and this effect is larger than what we observed in the whole sample.

Even though this is an unplanned analysis, we can hypothesise that this biomarker

may result in heterogeneity of the treatment effect, which can be evaluated by

additional studies in the future. The task of identifying subsets of the data

that exhibit heterogeneity of the effect of a novel treatment or other desirable

characteristics (such as enhanced effects) is called subgroup identification. The

covariates that interact with the treatment causing the observed heterogeneity

are called predictive, or treatment moderators (Chen et al., 2017).

In the context of clinical trials, researchers are often concerned with distin-

guishing between prognostic and predictive biomarkers2. In the literature we can

identify various definitions of the two types of covariates (e.g. (Simon, 2010; Lip-

kovich et al., 2017b; Dunn et al., 2013; Ruberg and Shen, 2015)). In the context

of the thesis, (solely) prognostic will be a covariate that provides information

for predicting the outcome irrespective of the applied treatment (it is not an ir-

relevant covariate) and does not exhibit an interaction with the treatment. In

contrast, a predictive covariate will interact with the treatment. A predictive

covariate can also be prognostic, in which case we may discuss about different

degrees of predictive and prognostic values or strengths. We notice that even

though the definitions of predictive and prognostic covariates appear primarily

in a clinical trial context, they can be rather general, and the identification of

predictive covariates can be important irrespective of the domain of study. The

distinction between the two types of covariates is depicted graphically in figure

1.1.

Subgroup identification is a task that is commonly performed in late-stage

2The term “biomarker” is often used in the context of clinical trials. Here, for consistency
we will use the term “covariate” to refer to pre-treatment variables irrespective of the context.
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Predictive Prognostic

Treatment Outcome

(a)

Gene Mutation Age

Treatment Survival

(b)

Figure 1.1: Identifying predictive covariates is an important task for design-
ing personalised solutions as they indicate the presence of differential treatment
effects (notation adopted from (Dunn et al., 2013)). In this toy example the
existence of a particular gene mutation affects the survival of patients treated
with the novel drug. On the other hand, age affects the survival of a patient
irrespective of whether she gets the novel drug or standard care.

trials due to the presence of a larger sample size. In early-stage trials, higher

emphasis can be placed on the selection of potentially predictive covariates (Lip-

kovich et al., 2017b). Additionally, in the presence of a large number of covariates,

we may first try to reduce the dimensionality before performing subgroup identi-

fication in order to reduce computational complexity and potentially the number

of false discoveries. Even though it is an important question, the identification

of predictive covariates has not received much attention. In this thesis, we study

this problem in detail, describing existing methodologies (most of which have not

been introduced for this task) and suggesting new ones.

1.1.2 Identifying Subgroups of Heterogeneous Effects

As we described, the effect of a treatment is likely to show some variations in the

sample. Identifying subgroups with desirable characteristics, such as enhanced

effects, allows us to focus future studies on members of the population who are

more likely to benefit from a particular treatment and ultimately design tailored

solutions, such as tailored therapies (figure 1.2). In this thesis, we focus on ex-

ploratory subgroup identification; that is, we generate hypotheses rather than

testing pre-defined ones. The latter is described as confirmatory subgroup anal-

ysis (Lipkovich et al., 2017a). Therefore any discoveries we might make by using

a subgroup identification algorithm will need to be examined by domain experts

and verified in a statistically rigorous manner by performing a confirmatory anal-

ysis.

With the increasing interest in salvaging failed studies and providing person-

alised treatments, there has been a significant effort to develop methodologies
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(a) (b)

Figure 1.2: Subgroup identification is the task of identifying subsets with de-
sirable characteristics. In (a) a single covariate defines which observations will
benefit from the treatment (indicated with a ‘+’ sign) and which will not benefit
(indicated with a ‘-’ sign). On the other hand in (b) all observations benefit
equally from the treatment compared to the control, therefore this covariate does
not define a subgroup. As we will see later in the thesis the covariate is predictive
in (a) and prognostic but not predictive in (b).

for subgroup identification. A detailed review of the problem and an analysis

of existing approaches is given by Lipkovich et al. (2017a), while a more recent

empirical comparison of 13 algorithms is performed by Loh et al. (2019). Most

existing algorithms focus on this problem in the context of randomised studies,

where there is no selection bias, i.e. the treatment assigned to each observation is

independent of its covariates. We will explore how this can be problematic when

applying some existing methods to observational studies. Additionally, as we will

see, most algorithms require estimation of treatment effects within subgroups, a

problem that is often ignored.

Regarding the latter, studies have shown that modelling the outcome under

each treatment arm may increase efficiency and reduce the variance of the esti-

mated effect (Zhang et al., 2008; Bloniarz et al., 2016; Steingrimsson et al., 2017),

a method that has also been adopted for subgroup identification (Steingrimsson

and Yang, 2019). In observational studies, where there might exist significant se-

lection bias, estimation of treatment effects becomes even more imperative since

simple comparisons of average outcomes between the treatment groups will likely
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result in biased estimates. We study the problem of subgroup identification in ob-

servational studies with no hidden confounders by combining two well-established

methodologies: recursive partitioning for identifying subsets of the sample and

weighting methods for unbiased estimation of the treatment effect.

Weighting methods are becoming increasingly popular both from an applica-

tion and a methodological perspective (e.g. (Austin and Stuart, 2015; Kallus,

2020b)). They are easy to implement, often non-parametric approaches that ap-

ply a weight to each observation such that on expectation the re-weighted data

satisfy some pre-defined properties. When working with observational data, the

presence of confounders may result in treatment groups that are not directly com-

parable. For example, imagine we have a dataset where patients with a specific

value for some biomarker receive a novel cancer treatment more often than stan-

dard care, while the opposite holds for those that do not have this value. At the

same time, the former patients have shorter progression-free survival compared

to the latter. A simple comparison of the outcomes of patients under the two

values of the treatment might reveal that the novel treatment is not effective.

However, this might be due to the fact that we observe more patients who re-

ceived the novel treatment and were experiencing worse outcomes (irrespective

of the applied treatment) compared to the others. In order to estimate the effect

of the novel treatment we need to compare groups that are very close in their

pre-treatment covariates. Weighting methods try to achieve exactly this by re-

weighting the data such that the two treatment groups are balanced or matched.

Weighting is going to be a core subject of this thesis and we will explore a variety

of methodologies.

1.1.3 Evaluation of Subgroup Identification Algorithms

In the following chapters we will explore subgroup identification algorithms with

diverse characteristics. These are only a few representative examples from a lit-

erature that includes a large number of algorithms. Therefore, a natural question

that arises is how to evaluate and compare different algorithms. This can be

very challenging in an exploratory analysis given that we may not know the true

subgroups and the predictive covariates that define them and we never observe

the true treatment effect each observation. The latter is due to the fact that we

can never observe the outcome of an observation under all possible values of a

treatment since we only intervene once.
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In the literature of subgroup identification a measure that has been adopted is

the quality of a subgroup (Foster et al., 2011). If we are interested in identifying

subgroups of enhanced effect, then this would quantify the excess treatment effect

within a subgroup compared to the whole sample. In the literature of treatment

effect estimation, the error of the (unobserved) treatment effect is often quanti-

fied by assuming some approximation of the ground truth (Schuler et al., 2018).

In addition to these measures, a key concern is also the reproducibility of the

identified subgroups. In other words, small changes in the data should not affect

the subgroup definition. We quantify the stability of an algorithm using concepts

from the literature of feature selection stability (Nogueira et al., 2017). Com-

bining these measures we show how tasks such as hyper-parameter selection and

algorithm comparison can be performed in a multi-objective framework, where

different objectives capture different aspects of the algorithm. By navigating in

the space of solutions, a practitioner may choose an algorithm that sacrifices e.g.

quality of the subgroup if it results in a highly stable result and vice-versa.

1.2 Research Questions

Subgroup identification is one of the primary objectives when analysing the het-

erogeneity of treatment effects, particularly when the sample size allows that.

In some cases performing this task directly may be very challenging either due

to the small sample size or because we have a large number of covariates. In

these scenarios identifying few covariates that interact with the treatment can

help us generate useful hypotheses. We find that this task is usually performed

by training some model to infer unknown quantities such as the outcome under

each value of the treatment and the treatment effect. In the literature of fea-

ture selection, information theoretic criteria (Brown et al., 2012) are a promising

alternative that do not require performing inference, tuning hyper-parameters,

while also being computationally efficient. Therefore, our first question is:

Q1 : “How should we adapt information theoretic criteria to identify predictive

covariates?”

From a more practical point of view we explore how existing methods for subgroup

identification and treatment effect estimation compare with information theoretic

criteria on the task of identifying predictive covariates. In particular, we examine:
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Q2 : “How do information theoretic criteria compare to subgroup identification

approaches on the task of predictive covariate selection in marginally ran-

domised studies and how do they perform when the treatment assignment

depends on the covariates?”

In the presence of larger sample sizes and/or a suitable number of covariates

we may wish to directly identify subgroups of interest. Given the increasing

availability of observational data and focusing on the easy-to-interpret recursive

partitioning methods we study:

Q3 : “How can we modify existing recursive partitioning approaches for sub-

group identification in order to account for the presence of confounders in

the data?”

In order to answer this we suggest a methodology based on weighting estimators

for estimation of average treatment effects (Kallus, 2020b; Kallus and Santa-

catterina, 2019b; Kallus et al., 2021). These approaches have some interesting

properties – e.g. they do not require a correctly specified parametric model for the

treatment and are computationally efficient. From a more practical perspective

we examine:

Q4 : “What are the benefits from using weighting estimators in the context of

subgroup identification?”

In order to answer the above questions we will describe some representative ex-

amples of subgroup identification algorithms from a literature that is abundant

with methods. Given such a large number of algorithms we then focus on how

we can evaluate them. In particular we ask:

Q5 : “How should we evaluate subgroup identification algorithms in order to

account their robustness to small changes?”

We introduce the concept of stability in this setting and propose a multi-objective

framework that captures various desirable aspects of an algorithm.

1.3 Contributions of the Thesis

In order to answer questions Q1, Q3 and Q5 we will study existing methodologies

and suggest new ones. For questions Q2 and Q4 we perform empirical studies and
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explore the properties of the studied methods in different scenarios. In particular

we make the following contributions in each chapter:

• We define the predictive covariate selection problem in log-likelihood terms

which in turn results in an information theoretic objective. In the case

of marginally randomised studies, properties of the resulting information

theoretic criteria are discussed and we show that these can be influenced

by the treatment assignment mechanism. Extensions are proposed that use

propensity score weighting and stratification and are better suited when the

treatment assignment depends on the covariates. We perform a compari-

son of information theoretic criteria and approaches designed for treatment

effect estimation or subgroup identification at the task of predictive covari-

ate selection. Finally, we perform an evaluation of information theoretic

criteria in the presence of confounders in the data (Chapter 4).

• We discuss approaches for subgroup identification in observational studies

with no hidden confounders that combine recursive partitioning and treat-

ment effect estimation via weighting. We evaluate a recursive partitioning

method and its extensions that can handle the presence of confounders in

the data (Chapter 5).

• We propose a multi-objective evaluation framework for subgroup identifi-

cation algorithms that uses the concept of subgroup stability (Chapter 6).

1.4 Structure of the Thesis

In Chapter 2 we present the background material on causal effect estimation.

We first introduce the potential outcomes framework and discuss common causal

quantities. We then focus on estimation of these quantities using weighting meth-

ods, ranging from the popular class of Inverse Propensity Weighting (IPW) esti-

mators to more recent approaches that will be used in this thesis. We conclude

the chapter with a brief description of modelling approaches for conditional av-

erage treatment effect estimation, a problem that has attracted much attention

in the Machine Learning literature.

In Chapter 3 we present some common approaches for variable selection, fo-

cusing particularly on information theoretic criteria. These methods will be used
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to identify predictive covariates. We then present a categorisation of the covari-

ates that we often need to identify in a study. We conclude this chapter with a

categorisation of subgroup identification methods. We emphasise that throughout

this thesis we will focus on a few representative approaches.

In Chapter 4 the problem of predictive covariate selection is phrased in log-

likelihood terms which results in an information theoretic objective. We discuss

some properties of information theoretic criteria and perform an empirical com-

parison with other frameworks. We present results in three randomised studies

with diverse characteristics. We show both theoretically and empirically that the

studied approach can be problematic in the presence of confounders in the data

and introduce new algorithms that can ameliorate the identified issues.

In Chapter 5 we turn our attention to the problem of subgroup identification.

In particular we focus on the case where there might be observed confounders (i.e.

observational studies with no hidden confounders). We introduce the two com-

ponents of our method: a recursive partitioning method and a weighing approach

for treatment effect estimation. We evaluate this approach in various scenarios

and compare it with standard approaches.

Chapter 6 introduces a framework for evaluating subgroup identification algo-

rithms. In particular, we discuss how stability, a concept particularly used in the

context of feature selection, can be adopted to evaluate algorithms based on the

robustness of the identified subgroups in small changes in the data. We propose

a multi-objective evaluation framework combining stability with measures that

capture other characteristics of a subgroup, such as the subgroup quality and the

error on the estimated treatment effect.

Chapter 7 reviews the results of this thesis, discusses some limitations and sug-

gests a number of future directions that would further improve the methodology

of this thesis.



Chapter 2

Introduction to Causal Effect

Estimation

This chapter gives an overview of the problem of treatment effect estimation. We

describe approaches for average and conditional average treatment effect estima-

tion in observational and randomised studies. Emphasis will be given on defining

the problem and discussing methods that will be adopted in this thesis. We

assume the following setting commonly used in the context of causal inference.

We have a sample where each observation is described by some pre-treatment

covariates and for each one we apply some treatment, which we will assume is bi-

nary. For each observation we observe an outcome after the treatment is applied,

which is going to be the primary outcome of interest. In the thesis we will focus

on intention-to-treat effects, i.e. effects of the assigned treatment which can per-

haps be different from the actual treatment received (e.g. due to noncompliance)

(Hernán and Robins, 2020).

In order to estimate treatment effects or perform other tasks that will be

introduced later such as subgroup identification and variable selection, we need to

adopt a mathematical framework that allows us to describe the relevant concepts.

To this end we are going to adopt the Neyman-Rubin causal model, also known

as the potential outcomes framework (Section 2.1). Section 2.2 introduces various

quantities of interest we often need to estimate in an observational study. Section

2.3 describes some basic properties of the propensity score, the stepping stone for

most recent weighting methods. In Section 2.4 we describe some common methods

for average treatment effect estimation, focusing primarily on recently proposed

weighting methods which will be used later in the thesis. Finally, in Section 2.5

29
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we briefly discuss the problem of conditional average treatment effect estimation,

i.e. the effect of the treatment for a specific observation in the data.

2.1 The Neyman-Rubin Causal Model

The concept of potential outcomes dates back to the analysis of randomised stud-

ies by Fisher (1937) and Neyman (1923). In randomised studies the treatment as-

signment is either independent of the covariates or comes from a known procedure.

Alternatively, the evaluation of an intervention may be performed using histor-

ical/observational data where the treatment assignment is in general unknown.

The abundance of such data as well as the inability to perform a randomised

study in many cases, e.g. for ethical reasons or because it can be impractical, has

attracted much attention to the analysis of observational studies. The modern

set up was introduced by Rubin (Rubin, 1974, 1977, 1978) and subsequent works

have made additional contributions making the potential outcomes framework a

popular approach for formalising causal inference problems.

Each observation is described by pre-treatment covariates X = x ∈ Rd and

a treatment t ∈ T = {0, 1}. For simplicity, we will often refer to T = 0 as the

control group and T = 1 as the treated group. The control group often describes

the case of no-treatment, placebo or baseline treatment. The treated group refers

to those who received the novel treatment, that is they have been subject to the

intervention which we wish to investigate on whether it had some effect with

respect to the control group. We define for each observation x and for each value

of the treatment the potential outcome Y (t), while the observed outcome is Y .

The potential outcome Y (t) denotes what would have happened if an observation

had been exposed to treatment T = t.

For each subject we only observe the outcome under the actual treatment

received, Y = Y (1)T + Y (0)(1 − T ), hence the potential outcomes are partially

observed. This is known as the “fundamental problem of causal inference” (Hol-

land, 1986). If for an observation the received treatment is z then Y (z) is also

referred to as the factual outcome (always observed), while Y (z) is known as the

counterfactual (never observed). The potential outcomes framework provides a

mathematical formulation for quantifying the causal effect of a treatment. This

can be defined as a comparison between the potential outcomes. A commonly
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(a) (b)

Figure 2.1: (a) Marginally Randomised Study: The treatment assignment
is independent of the covariates X. (b) Conditionally Randomised Study:
The treatment assignment depends on the pre-treatment covariates X or a sub-
set of those. The latter graph also describes an observational study under the
assumption of no hidden confounders.

used measure of the Conditional Average Treatment Effect (CATE) for an obser-

vation x is the causal risk difference,

CATE(x) = E[Y (1) | x]− E[Y (0) | x] (2.1)

This quantity expresses the effect of intervening on T for a unit x. The Average

Treatment Effect (ATE) that describes the overall effect in the population can

be expressed similarly without conditioning on x:

ATE = E[Y (1)]− E[Y (0)]

In order for treatment effects to be identifiable from the observed data cer-

tain assumptions must hold which we will briefly describe. Firstly, a subject’s

potential outcomes must not depend on the treatment received by other subjects

(there is no interference between the subjects) and there is a single version of

the treatment (e.g. patients are not administered different doses of the same

drug or if they do they are considered as different treatments). This is often

referred to as the Stable Unit Treatment Value Assumption (SUTVA) (Rubin,

1990; Imbens and Rubin, 2015) and in the case of a binary treatment it allows us

to focus on only two potential outcomes Y (1) and Y (0) so that any causal quan-

tity can be derived by comparisons of these. Under SUTVA, there is consistency

of the observed potential outcomes, that is we observe Y = Y (1) | T = 1 and

Y = Y (0) | T = 0, i.e. we observe Y (1) for the treated and Y (0) for the control.

The following assumptions ensure that treatment is unconfounded and there
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is sufficient evidence to derive expected values of the potential outcomes.

Assumption 1. The potential outcomes are independent of the treatment condi-

tioned on the observed covariates: (Y (1), Y (0)) ⊥⊥ T | x

Assumption 2. The probability of receiving some treatment is bounded away

from zero: p(T = t | x) > 0,∀t ∈ T

Assumption 1 is also referred to as unconfoundedness or no hidden confounders

while Assumption 2 is also known as overlap (Imbens and Wooldridge, 2009;

Imbens and Rubin, 2015). Together they form strong ignorability (Rosenbaum

and Rubin, 1983; Shalit et al., 2017) and result in identifiable estimators of the

treatment effect (Imbens and Wooldridge, 2009; Shalit et al., 2017).

In marginally randomised studies (figure 2.1(a)) the treatment is assigned

independently of any covariates (Hernán and Robins, 2020). In this case, the

above assumptions are implied. In conditionally randomised studies (Hernán and

Robins, 2020) the above assumptions hold by design. Such a scenario would

occur if for example the treatment is assigned with some fixed probability within

strata of the sample defined by some covariate(s) (Hernán and Robins, 2020).

In observational studies the above assumptions, even though common in the

literature, they are not guaranteed to hold. In the rest of the thesis we will assume

that all potential confounders are included in the pre-treatment covariates X, i.e.

there are no unobserved covariates that are causes of both the treatment and the

outcome (Assumption 1). We highlight this assumption as it can be considered

a strong one in real-world studies while confirmation of its validity is itself a

challenging problem. We will discuss the implications of its violation in Chapter

7. Regarding overlap we will also explore some scenarios where the probability of

receiving the treatment can be close to zero or one for some subset of the data.

If follows directly from unconfoundedness and consistency that the conditional

average treatment effects are identifiable from the observed data since it holds:

E[Y (t) | x] = E[Y (t) | T = t,x] = E[Y | T = t,x]. For example, CATE in eq.

(2.1) will become CATE(x) = E[Y | x, T = 1] − E[Y | x, T = 0]. This shows

that CATE can be estimated if additionally there is sufficient overlap between

the treatment groups (see Assumption 2) so that we can estimate the expected

values of the outcomes. In observational studies the problem is not trivial and

often requires additional steps such that there is sufficient balance between the

distributions of the covariates in the two treatment groups (Johansson et al., 2016;
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Shalit et al., 2017; Alaa and Schaar, 2018). Even though much of our discussion

will focus on average treatment effects, we will return to this subject later in this

chapter. We can notice for now that if CATE is identifiable from the observed

data, then this will also hold for estimators of population-level effects. The next

section defines some commonly used quantities.

2.2 Average Treatment Effect in a Target Pop-

ulation

Besides ATE which was described earlier, practitioners might be interested in

estimating average effects for target populations. Two special cases are the Av-

erage Treatment effect on the Treated (ATT) and the Average Treatment effect

on the Control (ATC) defined using causal risk differences as:

ATT = E[Y | T = 1]− E[Y (0) | T = 1]

ATC = E[Y (1) | T = 0]− E[Y | T = 0]

Regarding the assumptions we made previously, we require Assumption 1 to hold

for Y (0) for ATT estimation and for Y (1) for ATC estimation. We notice that

both E[Y (1) | T = 1] and E[Y (0) | T = 0] can be estimated from the data and

therefore we require uncondoundedness to hold only for the counterfactual.

The effects described so far answer inherently different questions in an obser-

vational study. We remind here the reader that we focus on intention-to-treat

effects. Then, given some treatment of interest (e.g. medical treatment, a new

policy etc.), ATE is the effect in the overall population, ATT is the effect amongst

those who were intended to receive it (the exact mechanism that determined who

received it might not be known), while ATC is the effect of switching to the new

treatment amongst those who were not intended to receive it. If the treatment

is medical then ATC can express the gain from moving subjects from baseline

treatment, T = 0 to the new treatment T = 1 (Tao and Fu, 2019). On the other

hand, as described in (Tao and Fu, 2019), ATT might be better suited when

studying safety issues related to the new treatment by estimating what would

happen if those who got the treatment were switched to the baseline. Another

example where ATT might be the quantity of interest is the case of evaluating

some new program or policy, in which case the researcher might be interested in
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the population that actually participated in the program (Frölich, 2004). Hence,

this is often described as the quantity of interest for policy makers, particularly

when they are interested in comparing the benefits of the program with its costs

(Heckman et al., 1997). On the other hand, ATC can describe the effect of a new

program on a population that this has not been implemented in order explore its

potential benefits (Wang et al., 2017).

In general the target population may be defined by other criteria such as a

sub-population defined by demographic characteristics. For example, in Chapter

5 we discuss in more detail the estimation of the conditional average treatment

effect in subgroups of the population. Other examples are the Average Treatment

effect among the evenly Matchable (ATM) (Li and Greene, 2013; Samuels, 2017)

and the Average Treatment effect on the Overlap population (ATO) (Li et al.,

2018). These quantities (a detailed description of which can also be found in

(McGowan, 2018)) were originally defined such that they satisfy certain desirable

properties, such as smaller variance of the treatment effect and/or increased bal-

ance between the treatment groups. The latter will come up very frequently in

our discussion and refers to the key property we wish our data to have, that is the

distributions of the two treatment groups are matched with respect to specified

moments. While this is expected in marginally randomised studies, it will not

be the case in observational studies due to the presence of confounders. Under

the assumptions described previously the sample analogues of the aforementioned

treatment effects can be estimated from the observed data by weighting the ob-

served outcomes with functions of the probability of receiving the treatment, also

known as the propensity score. Hence, these are also referred to as Weighted Av-

erage Treatment Effects (WATE) (Hirano et al., 2003; Tao and Fu, 2019). Since

the propensity score plays a crucial role in causal inference, we will next discuss

some key properties.

2.3 The Propensity Score

The propensity score is generally defined as p(T = 1 | x, y(1), y(0)). Strong

ignorability implies that this is independent of the potential outcomes, i.e. the

treatment assignment does not depend on what would have happened to a subject

had she received a particular treatment and can be expressed as p(T = 1 |
x) = e(x). The propensity score is commonly described as a balancing score. A
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balancing score b(x) has the following important property: If unconfoundedness

holds then the potential outcomes are independent of treatment given b(x), i.e.

(Y (1), Y (0)) ⊥⊥ T | b(x) (Imbens and Rubin, 2015, Lemma 12.2).

Based on this property, propensity score methods are widely applicable in

causal effect estimation problems via stratification (Imbens and Rubin, 2015), but

also via re-weighting (Robins et al., 2000), or matching. Weighting has recently

attracted much attention due to the application of Machine Learning approaches

either for more accurate estimation of the propensity score (McCaffrey et al.,

2004; Gharibzadeh et al., 2018; McCaffrey et al., 2013; Xie et al., 2019) or for

directly balancing the distributions of the treatment groups (Imai and Ratkovic,

2014; Fong et al., 2018; Ning et al., 2020).

For an observation x we can estimate the expected values of the potential

outcomes from the observed data as follows (Imbens and Rubin, 2015):

E[Y T | x]

p(T = 1 | x)
=

E[Y (1)T | x]

p(T = 1 | x)
=

E[Y (1) | T = 1,x]p(T = 1 | x)

p(T = 1 | x)
=

= E[Y (1) | T = 1,x] = E[Y (1) | x]

and similarly for T = 0. Additionally, for a function of the covariates u(X),

which defines the population of interest it holds (Tao and Fu, 2019):

E
[(1− T )u(X)

p(T = 0 | x)

]
= E

[ Tu(X)

p(T = 1 | x)

]
= E

[
u(X)

]
In other words propensity score re-weighting allows us to match the expected

values of the covariates (or functions of those) in the population of interest.

In practice the weights are often normalised (e.g. in order to sum to one)

(Robins et al., 2000; Tao and Fu, 2019). Depending on the treatment effect of

interest (e.g. ATT) different sets of weights will need to be defined. Then the

resulting estimators can be shown to be consistent as long as the propensity

model is correctly specified. In the next section we delve deeper into the problem

of treatment effect estimation with propensity score weights.
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2.4 Average Treatment Effect Estimation Meth-

ods

This section introduces some common methods for average treatment effect es-

timation. In particular we focus on the popular Inverse Propensity Weighting,

Doubly Robust as well as more recent non-parametric weighting methods.

2.4.1 IPW Methods

In the previous section we described how the propensity score can be used to

estimate the potential outcomes and its balancing property. In this section we

describe Inverse Propensity Weighting (IPW) methods for treatment effect esti-

mation. There are various ways in which we can derive consistent estimators of

the treatment effect of interest (Hirano et al., 2003; Tao and Fu, 2019; Hirano

and Imbens, 2001; Robins et al., 2000). For example the following estimators of

the sample analogues of ATE, ATT and ATC will be consistent if the estimated

propensity score, denoted here as ê(x), is correctly specified.

ŜATEIPW =
1

n

(∑
i

I(ti = 1)yi
ê(xi)

−
∑
i

I(ti = 0)yi
1− ê(xi)

)

ŜATTIPW =
1∑

i I(ti = 1)

(∑
i

I(ti = 1)yi −
∑
i

I(ti = 0)yi
ê(xi)

1− ê(xi)

)
ŜATCIPW =

1∑
i I(ti = 0)

(∑
i

I(ti = 1)yi
1− ê(xi)
ê(xi)

−
∑
i

I(ti = 0)yi

)
The following estimators are also consistent and they use normalised weights. In

small sample settings this may result in more stable results (Tao and Fu, 2019).

ŜATEIPW =

∑
i I(ti = 1)yi/ê(xi)∑
i I(ti = 1)/ê(xi)

−
∑

i I(ti = 0)yi/(1− ê(xi))∑
i I(ti = 0)/(1− ê(xi))

ŜATTIPW =

∑
i I(ti = 1)yi∑
i I(ti = 1)

−
∑

i I(ti = 0)yiê(xi)/(1− ê(xi))∑
i I(ti = 0)ê(xi)/(1− ê(xi))

ŜATCIPW =

∑
i I(ti = 1)yi(1− ê(xi))/ê(xi)∑
i I(ti = 1)(1− ê(xi))/ê(xi)

−
∑

i I(ti = 0)yi∑
i I(ti = 0)
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For illustrative purposes we will consider the estimator for ŜATE, then in the

limit of data and assuming a correctly specified model for the propensity score

we have:

E
[
TY

ê(x)

]
− E

[
(1− T )Y

1− ê(x)

]
= E

[
1

ê(x)
E[TY | x]

]
− E

[
1

1− ê(x)
E[(1− T )Y | x]

]
= E

[
1

ê(x)
E[TY1 | x]

]
− E

[
1

1− ê(x)
E[(1− T )Y0 | x]

]
= E

[
1

ê(x)
E[T | x]E[Y1 | x]

]
− E

[
1

1− ê(x)
E[(1− T ) | x]E[Y0 | x]

]
= E

[
1

p(T = 1 | x)
p(T = 1 | x)E[Y1 | x]

]
− E

[
1

1− p(T = 1 | x)
(1− p(T = 1 | x))E[Y0 | x]

]
= E[Y (1)]− E[Y (0)]

where the second equality follows from consistency, the third from unconfounded-

ness and the fourth from assuming a correctly specified model for the propensity

score. Note that in practice since the propensity score is an estimated probability,

values close to 0/1 may result in arbitrary large or undefined estimated potential

outcomes. Therefore it is common practice to perform some post-processing, such

as fixing a minimum or maximum value for the weights, based on percentiles of

their distribution (Lee et al., 2011).

A key challenge with IPW estimators is the assumption of correct estimation

of the propensity score. Additionally, in high-dimensional settings we may need

to identify the covariates to be included in the model. Intuitively, we may con-

sider trying to identify those covariates that are predictors of the treatment if

the purpose is to build the correct model. In practice the investigator might be

interested additionally in other quantities rather only getting unbiased estimates,

in which case the inclusion of covariates that are strong predictors of the outcome

has been suggested as both empirical evidence and theoretical results show that

this can result in variance reduction (Brookhart et al., 2006; Westreich et al.,

2011; Williamson et al., 2014). It is worth mentioning that the use of IPW esti-

mators for variance reduction have also been studied in the context of randomised

studies (Williamson et al., 2014). The problem of identifying a suitable set of co-

variates to include in the propensity model can also be partially ameliorated by

using Machine Learning approaches (McCaffrey et al., 2004; Gharibzadeh et al.,
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2018; McCaffrey et al., 2013; Xie et al., 2019). In any case when performing

our simulations, where we have knowledge of the true propensity score, we will

explore both correct and incorrect specifications. In the next section we describe

doubly robust estimators that relax the requirement of a correct propensity score.

2.4.2 Doubly Robust Methods

A treatment effect estimator is doubly robust if it is consistent when either the

outcome model or the propensity model are correctly specified (Bang and Robins,

2005). A doubly robust estimator can correct the potential miss-estimation of

the propensity score by additionally estimating the potential outcomes. This

is normally performed by fitting some model on the the factual outcome and

then inferring the missing counterfactuals. The literature of causal inference and

missing data analysis are awash with approaches that satisfy double robustness

(e.g. (Bang and Robins, 2005; Funk et al., 2011; Koch et al., 2018; Schuler

and Rose, 2017; Tao and Fu, 2019)). Here we are going to describe the most

commonly used Doubly Robust (DR) estimators for three common quantities of

interest: ATE, ATT and ATC.

Let m̂1(x), m̂0(x) be some models trained using as target the observed out-

comes under treatment T = 1 and T = 0 respectively. Then the following

estimators are doubly robust (Tao and Fu, 2019):

ŜATEDR =
1

n

∑
i

[
m̂1(xi)− m̂0(xi) +

I(ti = 1)

ê(xi)
(yi − m̂1(xi))

− I(ti = 0)

1− ê(xi)
(yi − m̂0(xi))

]

ŜATTDR =
1∑

i I(ti = 1)

∑
i

[
I(ti = 1)yi −

( ê(xi)I(ti = 0)

1− ê(xi)
yi

+
I(ti = 1)− ê(xi)

1− ê(xi)
m̂0(xi)

)]
ŜATCDR =

1∑
i I(ti = 0)

∑
i

[(1− ê(xi)
ê(xi)

I(ti = 1)yi −
I(ti = 1)− ê(xi)

ê(xi)
m̂1(xi)

)
− I(ti = 0)yi

]
For completeness of the presentation we will now describe the double robustness
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property using ŜATEDR. In the limit of data we have:

ŜATEDR ' ÂTEDR = E
[
m̂1(x)

]
− E

[
m̂0(x)

]
+

(a)

E
[ TY
ê(x)

]
−

(b)

E
[Tm̂1(x)

ê(x)

]

−
(c)

E
[(1− T )Y

1− ê(x)

]
+

(d)

E
[(1− T )m̂0(x)

1− ê(x)

]
Suppose the propensity model is correctly specified, then in the limit of data we

have ê(x) ' e(x) = p(T = 1 | x). Each term can be written as follows:

(a) = E
[
E
[ TY
ê(x)

| x
]]

= E
[ 1

ê(x)
E
[
TY (1) | x

]]
= E

[ 1

ê(x)
E[T | x]E[Y (1) | x]

]
= E

[ 1

p(T = 1 | x)
p(T = 1 | x)E[Y (1) | x]

]
= E[Y (1)]

(b) = E
[
E
[Tm̂1(x)

ê(x)
| x
]]

= E
[m̂1(x)

ê(x)
E
[
T | x

]]
= E

[ m̂1(x)

p(T = 1 | x)
p(T = 1 | x)

]
= E[m̂1(x)]

(c) = E
[
E
[(1− T )Y

1− ê(x)
| x
]]

= E
[ 1

1− ê(x)
E
[
(1− T )Y (0) | x

]]
= E

[ 1

1− ê(x)
(1− E[T | x])E[Y (0) | x]

]
= E

[ 1

p(T = 0 | x)
p(T = 0 | x)E[Y (0) | x]

]
= E[Y (0)]

(d) = E
[
E
[(1− T )m̂0(x)

1− ê(x)
| x
]]

= E
[ m̂0(x)

1− p(T = 1 | x)
(1− p(T = 1 | x))

]
=

= E[m̂0(x)]

So putting everything together we have ÂTEDR = ATE = E[Y (1)] − E[Y (0)].

Now suppose that the outcome models are correctly specified, i.e. m̂t(x) '
mt(x) = E[Y (t) | x]. Then we can easily see that (a) and (b) cancel out and

the same applies for (c) and (d), hence ÂTEDR = E
[
m̂1(x)

]
− E

[
m̂0(x)

]
=

E[Y (1)] − E[Y (0)]. We can similarly show the above property for the other

estimators.
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2.4.3 Weighting Estimators

A challenge with IPW estimators is that balance between the treatment groups

is satisfied asymptotically and under a correct propensity model and therefore

they may result to poor small-sample performance. The problem becomes more

challenging under strong confounding since we also have to handle potentially

extreme values. Imai and Ratkovic (2014) note that the propensity score is ap-

propriate if it results in balanced groups, while some authors highlight the time-

consuming nature of propensity weighting methods (Hainmueller, 2012; Imai and

Ratkovic, 2014). As noted by Imai and Ratkovic (2014), researchers may need to

continuously defined a propensity model and check for balance until the latter is

satisfied. To overcome these issues most recent works focus on estimating weights

that satisfy some pre-specified conditions such as equality of certain moments of

the distributions of covariates in the treatment groups. We will now discuss some

of these methods.

Based on the above, one choice is to seek for the parameters of the propensity

model that simultaneously optimise the likelihood of treatment but also achieve

balance between the treatment groups. This is the objective optimised by the Co-

variate Balancing Propensity Score (CBPS) (Imai and Ratkovic, 2014). Suppose

again we have a dataset D = {xi, ti, yi}ni=1, where xi are d-dimensional vectors.

Assuming the propensity score follows the model,

ê(x) =
1

1 + exp(−βTx)

the parameters β ∈ Rd are optimised so that they satisfy the following conditions

(Imai and Ratkovic, 2014):

1

n

n∑
i=1

I(ti = 1)ê′(xi)

ê(xi)
− I(ti = 0)ê′(xi)

1− ê(xi)
= 0

1

n

n∑
i=1

I(ti = 1)xi
ê(xi)

− I(ti = 0)xi
1− ê(xi)

= 0

(2.2)

The first equation is the first-order condition satisfied by maximising the log-

likelihood function for the propensity model (i.e. taking the first derivative and

equating it to zero). The second equation is the balancing condition that states

the re-weighted mean in the treatment group should be equal to the re-weighted
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mean in the control group (Imai and Ratkovic, 2014). The authors propose

learning the parameters using the generalised method of moments with the above

moment conditions. This can be adapted according to the quantity of interest

(i.e. ATT or ATC) and has also been extended to continuous treatments (Fong

et al., 2018) and settings where d� n (Ning et al., 2020).

We can argue that since balance is the primary objective we should try to learn

weights that optimise this – an approach commonly adopted in the literature

of treatment effect estimation. A prominent example is the entropy balancing

estimator (Hainmueller, 2012) which minimises the Kullback Leibler divergence

between the distribution of the weights and a target distribution (usually the

uniform) such that the re-weighted samples match with respect to user-specified

moments. The user can specify both which covariates will be matched and also

their moments. For simplicity let us focus on ATT, where we only need to assign

weights in the control observations and suppose we wish to match the means of

all the covariates. In this case the method proposed by Hainmueller (2012) can

be expressed as:

min
∑
i:ti=0

wilog
wi
bi

s.t.
∑
i:ti=0

wix
k
i =

∑
i:ti=1

xki , k ∈ {1, ..., d}∑
i:ti=0

wi = 1, w � 0

where xki is the value of the k-th covariate for the i-th example (these could be

replaced by higher-order terms in order to capture moments other than the means

of the covariates), and bi are base weights selected by the user. These weights

can be set to 1/nc, where nc is the number of observations in the control group

(Hainmueller, 2012). Intuitively, if the data were from a marginally randomised

experiment then all weights should be equal to 1/nc. Then the above optimisation

problem identifies the weights closer to that uniform distribution so that pre-

specified moments of the covariates match. The other constraints ensure that the

weights are positive and sum to one.

Zubizarreta (2015) solve a similar problem setting the objective function to

‖w−w‖2
2, where w the mean value of the weights. Their motivation is to search

for the weights with minimal variance that achieve the specified balancing condi-

tions. Athey et al. (2018) propose an approach better suited for high-dimensional

data. The authors assume linearity of the outcomes and estimate the weights that
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minimise the residual after applying a sparse linear model for the control units.

While some of the above approaches are defined heuristically in (Kallus, 2020b;

Kallus et al., 2021) the authors derive approaches by targeting directly the con-

ditional bias and mean squared error of the sample ATT and ATE respectively.

This is the approach we will adopt in Chapter 5, where we will discuss it in more

detail. We will focus on this method primarily due to its motivation and empir-

ical performance but also because it requires less effort by the user, since we do

not need to specify beforehand the matching conditions that need to be satisfied.

On Balance and Bias Reduction: A Motivating Example

Let us, for the sake of exposition, focus on SATT and let us assume that the

relationship between the potential outcome Y (0) and the covariates follows the

model:

m0(X) = Xα+ ε

where here we assume linearity in the original set of covariates and ε is a zero

mean error term. The counterfactual Y (0) | T = 1 is estimated using a weighting

method by re-weighting the observed outcome Y (0) | T = 0. In other words the

estimated SATT is:

ŜATT
w

=
1

nt

∑
i:ti=1

yi −
∑
i:ti=0

wiyi

where the weights are normalised to sum to 1. Then using the linearity assump-

tion for the counterfactual it can be shown that the absolute conditional bias is

(Kuang et al., 2019):

|E[ŜATT
w
− SATT | {xi, ti}ni=1]| = |((X1)T −wTX0)α| (2.3)

where we omitted the error term which will be on expectation equal to zero. Here

X1 are the covariates in the treated group and X0 in the control group. Then

applying Hölder’s inequality results in the following:

|((X1)T −wTX0)α| ≤ ‖α‖p‖(X1)T −wTX0‖q

with 1/p+ 1/q = 1. The estimated counterfactual can be expressed as:

((X1)T −wTX0)α̂+
∑
i:ti=0

wiyi = α̂TX1 +
∑
i:ti=0

wi(yi − α̂Txi) (2.4)
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The first equation motivates the bias minimisation procedure under a parametric

model (Kuang et al., 2019), i.e. minimise the bias and estimate the counterfactual

by weighting. The second is the estimator used by Athey et al. (2018). Their

motivation is to use the last term to capture the residuals of the model after

re-weighting (Athey et al., 2018). The authors focus on optimising the balancing

condition ‖(X1)T −wTX0‖∞ and estimation of the parameters α separately.

In (Kuang et al., 2019) the authors focus on direct minimisation of the bias

term under a linear model by jointly learning the weights and parameters of the

model. Both approaches target the problem of treatment effect estimation in a

high dimensional setting.

To show the relationship between balance maximisation and bias reduction

we identify weights that minimise ‖(X1)T −wTX0‖2
2. We assume the outcome

is generated by the following linear model Y =
∑8

i=1Xi + 2T (X7 + X8 + 1) + ε

and the treatment assignment model is logit(P (T = 1 | X)) =
∑5

i=1Xi + ε,

where ε ∼ N (0, 1). The covariates are independent and normally distributed

following, Xi ∼ N (0, 1), i = 1, ..., d. We use n = 1000 observations and d = 50

covariates. All results are averaged over N = 500 realisations. We report the

following (Kuang et al., 2019):

Absolute Bias = | 1
N

N∑
i=1

ŜATT
w

i − ATT|

As we can observe in table 2.1 when both models are correctly specified the

optimisation problem minises the bias. In the second case we modify the term

X1 of the outcome to log(1 + exp(X1)) so that this is the only non-linear term.

We observe that the balance here is not affected, which means that the mean

of this term in the treated group is close to the mean in the control group after

weighting. We note here that a method that relies on minimising the bias under

an assumed parametric model would be influenced in this case. In the third

scenario we add the same term in the treatment model so that now there is a

confounder that affects both treatment and outcome in a non-linear fashion. Now

the performance of the method starts deteriorating and we observe an increase

in the bias. This is even more prominent in the fourth case where we replace the

terms X1, X2 in both models with log(1 + exp(X1))X2
2 . In this case balancing

simply on the means of X1 and X2 separately is not enough to reduce the bias.

This toy example highlights that simply matching the means of the covariates
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Table 2.1: Results on a toy example showing how identifying weights that max-
imise the balance between the treatment groups affects the bias of the estimated
ATT under different specifications.

specification of Y specification of T Absolute bias of estimated ATT
3 3 0.08
7 3 0.07
7 7 0.12
7 7 0.73

could be enough under some conditions but more complex approaches will be

required when there are non-linear and non-additive terms. In Chapter 5 we will

discuss such approaches in more detail.

2.5 Conditional Average Treatment Effect Esti-

mation

In the previous sections we discussed the problem of estimating average treatment

effects for a target population. In this section we will discuss some commonly

used approaches for CATE estimation. We note that there is a rich literature for

tackling this issue and here we will focus primarily on methods that have been

used in the context of subgroup identification which will be discussed later in the

thesis.

A simple approach would be to use a single model for the outcome as a function

of the covariates and the treatment. In this case the target function that we wish

to learn can be denoted as f(ti,xi) (Here we will use f to denote the functions we

wish to learn instead of m in order to distinguish between the different types of

learning methods). In practice, interactions between the pre-treatment covariates

X and the treatment T may also be added. In the case of linear models such

interactions are necessary in order to capture heterogeneous treatment effects.

Given an estimate of the observed outcome f̂(ti,xi) the causal risk difference for

a subject xi is ĈATE(xi) = f̂(1,xi)− f̂(0,xi). In other words, for an observation

xi we estimate the factual outcome under the assigned treatment ti and then

modify the value ti in order to get an estimate of the counterfactual. Using the

nomenclature of Künzel et al. (2019) this is also referred to as an S-learner. This

is summarised below.



2.5. CONDITIONAL AVERAGE TREATMENT EFFECT ESTIMATION 45

Modelling Approach 1. The Single-Model approach estimates the observed out-

come yi using the sample {xi, ti}ni=1: f̂(ti,xi). During inference the predicted

causal risk difference is the difference between estimated outcomes fixing the value

of ti as either ti = 1 or ti = 0: ĈATE(xi) = f̂(1,xi)− f̂(0,xi).

An alternative approach is to treat the problem of estimating treatment effects

as two separate problems, one for each treatment group. In this case, we perform

two steps: 1. Estimate f̂0(xi) using the data for the control group and 2. Estimate

f̂1(xi) using the treated data. Here f̂1 and f̂0 can in general be different models.

For a given example the causal risk difference can be estimated as the difference

between the outputs of the two models. This is also referred to as a T-learner

(Künzel et al., 2019). The procedure is summarised below.

Modelling Approach 2. The Two-Model approach estimates the outcome po-

tential outcome for T = 1 from the sample {xi, yi}i:ti=1: f̂1(xi) and the potential

outcome under T = 0 from the sample {xi, yi}i:ti=0: f̂0(xi). During inference the

predicted causal risk difference is the difference between the estimated outcomes:

ĈATE(xi) = f̂1(xi)− f̂0(xi).

Künzel et al. (2019) describe some properties of these two modelling ap-

proaches. One important property described for the S-learner is that since the

treatment variable is included in the set of covariates, it might be ignored when

using regularised models (will be discussed in the next chapter) or methods that

rely on partitioning of the space (e.g. Tree-based methods) (Künzel et al., 2019).

On the other hand the T-learner can be more flexible since it will fit a new model

for the outcome under each value of the treatment. The authors find empirically

this approach to perform better when the functional forms of the potential out-

comes share few similarities. The two approaches will also use different sample

sizes, since the first modelling approach uses all data to build the model, while

the second uses only a fraction of those.

An alternative approach, commonly used in causal inference and the closely

related area of uplift modelling is the change of the outcome variable (Athey and

Imbens, 2016; Jaskowski and Jaroszewicz, 2012). Consider a continuous outcome

Y ∈ R. The transformed outcome can be expressed as:

Y ∗i = Yi ·
Ti − e(xi)

e(xi)(1− e(xi))
(2.5)
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where e(xi) = p(Ti = 1 | xi) is the propensity score. Athey and Imbens (2015)

show the following, under the assumption of unconfoundedness, which results

directly from applying IPW:

E[Y ∗i | xi] = CATE(xi)

Jaskowski and Jaroszewicz (2012) follow a similar approach for the case of binary

outcomes, Y ∈ {0, 1}, marginal randomisation and balanced groups (1:1). They

define a new variable Y ∗i = YiTi + (1− Yi)(1− Ti). For the new variable we have

Y ∗i = 1, if Yi = 1, Ti = 1 or Yi = 0, Ti = 0 and Y ∗i = 0 otherwise. Assuming

unconfoundedness then they relate Y ∗ with the causal risk difference as follows.

p(Yi = 1 | Ti = 1,xi)− p(Yi = 1 | Ti = 0,xi) = 2 · p(Y ∗i = 1 | xi)− 1

The left hand side of the above equation is the causal risk difference CATE(xi)

which can be estimated directly from the new variable Y ∗.

Modelling Approach 3. The Outcome Transformation approach first estimates

the propensity score ê(xi) and then builds a model on the covariates X using the

transformed variable Y ∗ as the response. During inference the predicted causal

risk difference is simply the output of the model: ĈATE(xi) ' E[Y ∗i | xi].

A practical difference between Approaches 1,2 and Approach 3 is that the

former estimate the potential outcomes while the latter estimates the treatment

effect directly. In other words, with the outcome transformation method we can

avoid modelling the main effect. We will refer to the first two approaches as coun-

terfactual models, as they estimate both the factual and counterfactual outcome.

The aforementioned approaches have been used extensively in the literature of

causal effect estimation (Johansson et al., 2016; Shalit et al., 2017; Alaa and

Schaar, 2018; Athey and Imbens, 2015; Foster et al., 2011) adopting different

types of Machine Learning models.

There are however approaches that do not fall in the above categories. For

example the X-learner (Künzel et al., 2019) is suited for scenarios where one

of the treatment groups is significantly larger than the other. Other popular

approaches are Causal Trees (CT) and Causal Forests (CF) which follow a recur-

sive partitioning approach and estimate the treatment effects locally within the

leaves (Athey and Imbens, 2016; Wager and Athey, 2018a; Athey et al., 2019;
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Athey and Wager, 2019). CFs (Wager and Athey, 2018a) are built so that for

each example the outcome is either used to derive the split or to estimate the

treatment effect within the leaf nodes. This is referred to as “honest” splitting

(Wager and Athey, 2018a). They suggest two approaches. In the first, they build

a classification tree using the treatment to derive the splits. In the second, they

split the data in two parts using one to split the data and one for the estima-

tion. In the second approach, the variance of the estimated treatment effect for

each example is used as the splitting criterion. In Chapter 6 we will use CF as

implemented in the package grf (Tibshirani et al., 2020) which is more closely

related to the second approach (Athey et al., 2019). As described in (Athey and

Wager, 2019), firstly two forests are built in order to estimate E[Yi | xi], denoted

as f̂(xi) and the propensity score ê(xi). These are then used to get the out-of-bag

predictions, denoted with the superscript (−i) (the model was trained without

using the i-th example to derive the splits). If we set as yresi = yi− f̂ (−i)(xi) and

eresi = ti − ê(−i)(xi) then the treatment effect for an example x is estimated as∑
i ηi(x)yresi eresi /

∑
i ηi(x)(eresi )2. Here the weights ηi(x) denote how many times

the i-th training example is in the same leaf node as the test example x.

Additionally, in the last years there has been a significant growth of neural

network based approaches for treatment effect estimation (Yao et al., 2018; Hart-

ford et al., 2017; Künzel et al., 2018; Kallus, 2020a; Li and Fu, 2017; Shi et al.,

2019; Yoon et al., 2018; Louizos et al., 2017; Alaa et al., 2017; Shalit et al., 2017;

Johansson et al., 2016). In the following chapters we will discuss/apply some

methods for subgroup identification that estimate the conditional average treat-

ment effect as part of their process. They all belong in one of the aforementioned

modelling approaches.

2.6 Chapter Summary

In this chapter we firstly introduced the Neyman-Rubin Causal Model (Fisher,

1937; Neyman, 1923; Rubin, 1974) which we will use in the rest of the thesis

to describe mathematically the causal effect estimation problems we will try to

tackle. We then introduced the problem of average treatment effect estimation

and provided a brief description of some commonly used approaches. We de-

scribed Inverse Propensity Weighting (IPW) and Doubly Robust (DR) methods

mainly due to their popularity in the analysis of observational data. We then
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focused on the most recent weighting estimators highlighting their advantages

over IPW methods. These estimators will be the focus of Chapter 5 where we

will use them to tackle the problem of subgroup identification in the presence

of confounders. Lastly we described some simple modelling approaches for the

estimation of conditional average treatment effects. In the next chapter we will

see how these approaches have been used for subgroup identification. We will

additionally introduce the problem of variable selection in the presence of inter-

ventions.



Chapter 3

Variable Selection and Subgroup

Identification

In this chapter we discuss some methods for variable selection and subgroup iden-

tification that we will use in the rest of this thesis. With variable selection we

commonly refer to the problem of identifying a few variables that are relevant

for the task at hand. This results in smaller, easier to interpret and more com-

putationally efficient predictive models. Most importantly it provides insights to

the practitioner about the data generating mechanism. The latter is exemplified

by the use of variable selection in clinical trial data where understanding the

relationships between treatment, pre-treatment covariates (e.g. demographics,

genetic factors) and outcome allow the practitioner to generate hypotheses and

better understand the underlying mechanisms.

The selection of important variables may be coupled with building a predictive

model and we will refer to these methods as model-based. We describe some of

these methods in Section 3.1. Other approaches based on hypothesis testing and

scoring functions, such as the mutual information, identify variables of interest

without performing inference or requiring some predictive model. We discuss

information theoretic variable selection in Section 3.2. The problem of identifying

variables of interest becomes more complex in the presence of interventions, where

in contrast to traditional supervised learning, we may not only be interested

in identifying variables predictive of the outcome. In Section 3.3 we discuss

the various types of variables we often need to identify when facing a causal

inference problem. In this thesis we will focus primarily on identifying predictive

pre-treatment covariates. In Section 3.4 we discuss three common frameworks

49
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for performing this task. These approaches are all model-based, but estimate

different quantities. These approaches will be compared against an information

theoretic method in the next chapter.

3.1 Model-based Variable Selection

In this section we will describe approaches that perform variable selection cou-

pled with prediction. We will focus on two common approaches: regularised

linear models (Hastie et al., 2009; Tibshirani, 1996) and recursive partitioning

approaches (Breiman, 2001). Throughout this section we consider a dataset

D = {xi, yi}ni=1 where yi is the outcome and xi is a d-dimensional vector of

the variables.

3.1.1 Regularised Models

A commonly used approach for variable selection is the Least Absolute Shrinkage

and Selection Operator (LASSO) (Tibshirani, 1996). It identifies the parameters

θ̂0, θ̂
lasso

by solving the following optimisation problem:

min
θ0,θ

1

n

n∑
i=1

J (xi, yi; θ0,θ)

s.t. ‖θ‖1 ≤ k

where J (xi, yi; θ0,θ) is the loss function for a linear model logit(f(xi)) = θ0 +

θTxi with parameters {θ0,θ}. For binary outcomes yi ∈ {0, 1} this corresponds

to the negative log-likelihod:

J (xi, yi; θ0,θ) = −yilog f(xi)− (1− yi)log (1− f(xi))

while for continuous outcome yi ∈ R we may use the squared error:

J (xi, yi; θ0,θ) = (yi − f(xi))
2

The Lagrangian form of the above optimisation problem is:

min
θ0,θ

1

n

n∑
i=1

J (xi, yi; θ0,θ) + λ‖θ‖1
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In the above problem λ is a hyper-parameter that controls the amount of regu-

larisation with larger values resulting in more sparse models. The above prob-

lem is not differentiable due to the constraint and is often solved with iterative

approaches such as coordinate descent (Friedman et al., 2010). The resulting

non-zero coefficients θ̂
lasso

indicate the selected variables.

An alternative to enforcing sparsity is to add a constraint on the L2-norm of

the weights, an approach known as Ridge Regression (Hoerl and Kennard, 1970).

The optimal parameters θ̂0, θ̂
ridge

are chosen by solving the following optimisation

problem:

min
θ0,θ

1

n

n∑
i=1

J (xi, yi; θ0,θ)

s.t. ‖θ‖2 ≤ k

Equivalently, we can solve the Lagrangian of the above optimisation problem for

a given value of the hyper-parameter λ:

min
θ0,θ

n∑
i=1

1

n
J (xi, yi; θ0,θ) + λ‖θ‖2

The L2-norm regulariser is traditionally used in Machine Learning models to

avoid overfitting, while for linear regression models the absolute value of each

coefficient can be interpreted as the importance of the corresponding variable.

This allows us to rank the variables and select the top-k.

3.1.2 Recursive Partitioning Models

Decision Trees and Random Forests have long been used in the Machine Learning

literature (Breiman et al., 1984; Breiman, 2001). In addition to their often good

performance they are also easy to interpret and can be used to derive variable im-

portance scores. In its simplest form, when fitting a tree, the root node partitions

the initial data D in two non-overlapping subsets Dr,Dl which correspond to the

new nodes (a.k.a. children). This is performed by iterating over all variables

and their possible values and estimating a pre-defined splitting criterion G. The

variable and its value that optimise this criterion are selected and the data are

split according to these. Then for each new node we repeat the procedure until

certain termination criteria are met (e.g. a maximum depth has been reached).

There is a variety of methods for determining importance scores from trees
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and forests. Perhaps the most common is to combine the training procedure

with the variable selection task and rank the variables based on the values of the

splitting criterion (Breiman et al., 1984; Hastie et al., 2009). For each variable

the improvement in the splitting criterion is estimated each time this variable

is used and its values are averaged across all splits. The splitting criterion used

to derive the variable importance score could be the Gini index for classification

or the residual sum of squares for regression. For Random Forests (Breiman,

2001) the out-of-bag predictions can also be used, in which case the variable

importance can be derived from calculating the decrease in error before and after

permutation of the variable. These along with other approaches for deriving

variable importance scores are described in (Liaw et al., 2002; Breiman, 2001,

2002; Sandri and Zuccolotto, 2008).

3.2 Information Theoretic Variable Selection

The mutual information between two variables I(X;Y ) (Shannon, 1948) captures

the reduction in uncertainty for a variable X given that we observe the values of

another variable Y . The uncertainty of a categorical random variable X is defined

as its entropy H(X) = −
∑

x∈X p(x)log p(x) yielding the following definition of

the mutual information:

I(X;Y ) = H(X)− H(X | Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log
p(x, y)

p(x)p(y)

where X ,Y are the domains of values of the variables X and Y . It can be

easily seen that the mutual information is zero if and only if the variables are

statistically independent, i.e. p(x, y) = p(x)p(y),∀x, y. Another core concept is

the conditional mutual information I(X, Y | Z), defined as follows:

I(X;Y | Z) = H(X | Z)− H(X | Y Z) =
∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z)log
p(x, y | z)

p(x | z)p(y | z)

The conditional mutual information quantifies the dependence between two ran-

dom variables, once the value of a third variable is known.

For categorical variables the mutual information is normally estimated from

the data with a maximum likelihood estimator. In this case all distributions are

estimated from the contingency table formed for the two variables. In scenarios
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with small sample size and/or large cardinality of the variables many cells will

be empty and the estimates will not be reliable. To this end, several estimators

have been proposed some of which are better suited for this scenario (Paninski,

2003; Nemenman et al., 2002; Hausser and Strimmer, 2009). A review of different

estimators can also be found in (Sechidis et al., 2019a). In Chapter 4 we will use

a shrinkage estimator (Hausser and Strimmer, 2009) and we will describe it in

more detail.

In variable selection, filter methods use a scoring criterion intended to measure

how useful a set of variables is for predicting the outcome of interest (Guyon

et al., 2008). Since the mutual information is a measure of dependence, it is an

intuitive scoring criterion for developing a filter method. There is a large number

of information theoretic methods for variable selection a summary of which can

be found in (Vergara and Estévez, 2014) and (Brown et al., 2012). In particular,

Brown et al. (2012) starting from a clearly defined objective, the conditional

likelihood, derive the following information theoretic variable selection criterion.

arg min
Xθ∈X

I(Y ;X θ̃ |Xθ)

where X θ̃ ⊆ X are the unselected variables and Xθ ⊆ X are the selected.

Alternatively using the chain rule of mutual information (Cover and Thomas,

2012) the variable selection problem can be phrased by maximising I(Y ;Xθ).

This states that given a joint variable X, the optimal set of variables can be

derived by maximising the mutual information shared with the outcome Y .

To solve the above optimisation problem Brown et al. (2012) propose two

greedy procedures: forward selection and backward elimination. For example,

the greedy forward selection procedure selects at each step k the variable Xk ∈
X θ̃τ

that maximises the conditional mutual information (CMI): JCMI(Xk) =

I(Xk;Y |Xθτ ), where Xθτ are the variables selected so far and X θ̃τ
are those that

remain unselected at the τ−th step of the procedure. The backward elimination

procedure starts from the full set of X and at each step removes the variable that

minimises I(Xk;Y | {Xθτ \Xk}) where Xk ∈Xθτ .

As the number of selected variables grows, i.e. the dimensionality of Xθ

grows, the estimates of (conditional) mutual information may be less reliable. To

overcome this several low-order criteria have been proposed, each one relying on

a different set of assumptions. For example, a simple ranking criterion is the

mutual information between the target variable Y and a variable Xk, which takes
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into account the relevancy of each variable (Lewis, 1992; Brown et al., 2012):

JMIM(Xk) = I(Xk;Y )

A popular information theoretic approach is the Joint Mutual Information (JMI)

criterion (Yang and Moody, 2000). This criterion accounts for the three key as-

pects of a variable selection algorithm: the relevancy, redundancy and conditional

redundancy and shows good empirical performance in terms of both predictive

accuracy and stability (Kuncheva, 2007) of the selected variables (Brown et al.,

2012). It is defined as follows:

JJMI(Xk) =
∑

Xj∈Xθ

I(XkXj;Y )

Many other criteria have been proposed in the literature and several of those can

be derived from I(Xk;Y |Xθ) under different assumptions (Brown et al., 2012).

3.3 Variable Categorisation in the Presence of

Interventions

Variable selection in most learning environments, such as supervised and semi-

supervised learning, deals with the problem of identifying variables predictive of

the outcome of interest (Guyon et al., 2008; Brown et al., 2012; Sechidis and

Brown, 2018). When dealing with data that include interventions, we may sim-

ilarly be interested in identifying covariates that are strongly relevant with the

outcome under a particular value of the treatment, i.e. the potential outcome.

These covariates will be indicators of the likely outcome under some value of the

treatment and in general their ranking may be different from the ranking of the

covariates that are predictive of the outcome Y . In particular, since the potential

outcomes are partially observed, the problem of identifying covariates predictive

of the potential outcomes shares similarities with the literature of semi-supervised

variable selection and requires assumptions about the missingness mechanism.

In causal effect estimation problems pre-treatment covariates can affect the

outcome in several ways. In clinical trials distinguishing between different types

of covariates is important and has been highlighted in numerous works (Dunn
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et al., 2013; Ruberg and Shen, 2015; Lipkovich et al., 2017a). A prognostic co-

variate is associated with the likelihood of the event of interest. In healthcare

this is sometimes described as a characteristic that is associated with the outcome

in untreated patients (Lipkovich et al., 2017b; Italiano, 2011). In some cases a

prognostic covariate is described as a covariate that indicates the likely outcome

irrespective of the applied intervention (Ballman, 2015). On the other hand, pre-

dictive covariates are used to identify subjects who are more likely to experience

a favourable or unfavourable effect from the applied treatment. In some cases

predictive covariates might be defined as those that lead to enhanced treatment

effect under the novel treatment (e.g. a new drug). For example, this could

be the case in areas where the treatment effect is monotonic, that is the novel

treatment is not expected to harm the subjects (Kallus, 2019). In our context, in

order to demonstrate whether a covariate is predictive we will need to show that

it exhibits an interaction with the treatment. For a (solely) prognostic covariate

we will need to show that it is associated with the outcome irrespective of the

treatment and it does not interact with the treatment. In practice, a covariate

can be both predictive and prognostic.

We can further categorise the predictive covariates depending on whether they

exhibit a quantitative or a qualitative interaction with the treatment (Lipkovich

et al., 2017a). A predictive covariate is said to exhibit a quantitative interaction

with the treatment if it modifies the overall treatment effect to a certain direc-

tion. For example, in a failed clinical trial, a quantitative interaction could be an

indicator of enhanced treatment effect for subsets of the data (Lipkovich et al.,

2017a). A predictive covariate is said to exhibit a qualitative interaction with the

treatment if it defines both subgroups of enhanced and deteriorated treatment

effect. In healthcare the distinction between the two is also referred to as identi-

fying the best patient for the treatment (quantitative) or the best treatment for

a patient (qualitative) (Lipkovich et al., 2017a).

A detailed discussion regarding the distinction between the different types of

covariates and their use in a clinical trial setting can be found in (Lipkovich et al.,

2019, 2017a). Here we will focus on four cases that are worth exploring in more

detail:

• Case 1: A covariate is prognostic but not predictive

• Case 2: A covariate is predictive but not prognostic
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(a) (b) (c)

Figure 3.1: (a) X is predictive but not prognostic (b) X is predictive and exhibits
a quantitative interaction with the treatment (d) X is predictive and exhibits a
qualitative interaction with the treatment.

• Case 3: A covariate is both predictive and prognostic and exhibits a quan-

titative interaction with the treatment

• Case 4: A covariate is both predictive and prognostic and exhibits a quali-

tative interaction with the treatment

The first case is simulated for a continuous covariate and outcome in figure

1.2(b). The other cases are shown in figure 3.1 where each point represents

an observation from a simulated randomised experiment assuming we know both

potential outcomes. In particular, in figure 1.2(b) the potential outcomes are

generated by Y = X + T , in figure 3.1(a) by Y = TX, in figure 3.1(b) by

Y = X + T (1 + 0.5X+), where X+ = 0 if X < 0 and X+ = X if X > 0 and in

figure 3.1(c) as Y = 0.5 ∗X + (2T − 1)X.

To give another example, let m1(X),m0(X) be the functional forms of the

potential outcome and suppose both are linear. Following the definition of a prog-

nostic covariate that will be adopted in this thesis, solely prognostic covariates

will be included in the functional form of both potential outcomes, m1(X) and

m0(X), and in the same way –i.e. they describe the main effect. On the other

hand, solely predictive covariates are those that are included in the functional

form of one potential outcome but not the other. For example, if we intend to

compare a new treatment, T = 1, with a baseline treatment, T = 0, then a

solely predictive covariate for our task will be predictive of Y (1) and therefore

will be included in m1(X) but not in m0(X). In practice, a variable may be

characterised by degrees of “prognosticness” and “predictiveness”.

In observational studies (with no hidden confounders) we are also concerned
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with the identification of confounders - a set of covariates that we need to con-

dition, to satisfy unconfoundedness. Confounder selection is itself a variable

selection problem (De Luna et al., 2011; VanderWeele and Shpitser, 2011; Pearl,

1995). Any of the covariates described previously can act as a confounder if

without conditioning on it leaves an open path between the treatment T and

at least one of the potential outcomes. A common criterion for identifying con-

founders is Pearl’s Back-door criterion (Pearl, 1995). Given a causal graph over

the variables {X, T, Y } a set of covariates Xc satisfies the back-door criterion

if firstly no covariate in Xc is a descendant of T and secondly, Xc blocks all

paths from T to Y that contain an arrow into T (Pearl, 1995). VanderWeele and

Shpitser (2011) notice that assessing this criterion can be a difficult task as it

requires knowledge of the underlying causal structure. Instead they propose a

new criterion suited for practitioners that suggests including a covariate in the

set of confounders if it is either a cause of the treatment or the outcome or both.

The theoretical justification arrives from the observation that if there are some

observed pre-treatment covariates that satisfy the back-door criterion then the

set that satisfies the aforementioned causal relationships will also satisfy it (Van-

derWeele and Shpitser, 2011). The first criterion relies on knowledge of the causal

graph, which in many cases can be infeasible. The second criterion requires at

least knowledge of the causes of the outcome or the treatment. VanderWeele

and Shpitser (2011) describe that in practice subject matter experts may have

such knowledge which makes this easier to apply in a practical setting. From

a methodological perspective if we are willing to assume unconfoundedness the

main question is whether we can define a data-driven approach for confounder

selection that does not make further assumptions about the causal graph. To

this end some methodologies for identifying a minimal set of confounders with

respect to the potential outcomes Y (1), Y (0) have been proposed (De Luna et al.,

2011; Häggström, 2018). They use data-driven methods to identify possible sets

of covariates that may act as confounders by combining the Markov Blanket of

the treatment T and the outcomes under each treatment in different ways.

We can summarize the variable selection problems we often need to tackle

when dealing with data that include interventions:

1. CovariatesX t that are predictive of the potential outcome Y (t) under treat-

ment T = t. As opposed to covariates that are predictive of the outcome Y ,

they describe the importance of the covariates if we were to apply treatment
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T = t.

2. Predictive covariates Xpred that exhibit an interaction with the treatment.

3. Prognostic covariatesXprog that provide information for predicting the out-

come irrespective of the applied treatment.

4. Confounders Xc(t) that satisfy Y (t) ⊥⊥ T | Xc(t). Depending on the

context, we may define the set of confounders Xc as those that satisfy(
Y (1), Y (0)

)
⊥⊥ T |Xc.

The second category of variables is going to be the focus of the next chapter,

where we will describe how information theoretic variable selection approaches

can be adapted to tackle this problem. Before that let us describe some existing

approaches that can be used for identifying predictive covariates.

3.4 Three Frameworks for Subgroup Identifica-

tion

Subgroup identification is the task of identifying subsets of the data with desirable

characteristics. For example, a common scenario in clinical trials is when a spon-

sor is interested in identifying subgroups that benefit from the treatment in an

otherwise failed trial (a trial that did not meet its primary objective) (Lipkovich

et al., 2017a). This is commonly performed in phase III and IV trials (Dmitrienko

et al., 2016) where the sample size is large enough to allow us to perform such

analysis. We will focus on the task of exploratory subgroup identification, that is

using methods to generate hypotheses which can be tested in latter stages. This

is in contrast to confirmatory subgroup analysis where pre-specified subgroups

are analysed using clinical trial data (Lipkovich et al., 2017a). We note that the

task of subgroup identification is a rather general task and can be of interest

in scenarios other than clinical trials such as public policies (Loh et al., 2019;

Alemayehu et al., 2018) and consumer analysis (Wang and Rudin, 2017). In this

section we describe three approaches for subgroup identification and discuss how

these can be used for identifying predictive covariates, which will be the focus of

the next chapter.

Subgroup identification is closely related to the problem of conditional average

treatment effect estimation. In order to connect the described algorithms with
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the modelling approaches described in the previous chapter, we use the taxonomy

of Lipkovich et al. (2017a). They categorise subgroup identification algorithms as

global outcome modelling, global treatment effect modelling and local modelling.

In our context in order to make matters simpler we distinguish algorithms that

model the potential outcomes, the treatment effect or identify subgroups directly.

• Counterfactual Modelling: These approaches estimate the potential

outcomes as part of their process. Based on the discussion of the previ-

ous chapter, this can be achieved using a Single-Model or a Two-Model

method.

• Treatment Effect Modelling: These approaches estimate the treatment

effect directly without modelling the main effect. An approach that uses

the outcome transformation method as part of its process will fall in this

category.

• Subgroup Modelling: These approaches directly search for subgroups

with desirable characteristics.

The first two approaches solve the problem of treatment effect estimation

before identifying subgroups of interest and they differ on the way they achieve

this. The last approach in principal may not be used to estimate treatment effects

but will provide subgroups directly. We shall now describe in more detail some

representative examples of each category and describe how we can use them to

identify predictive covariates. We will focus our discussion on methods that will

be used in Chapter 4.

3.4.1 Counterfactual Modelling

In this category we have approaches that estimate the potential outcomes before

searching for subgroups. Commonly used methods are (penalised) linear models

and tree-based models, appropriately modified to include treatment/covariate

interactions. For example Imai et al. (2013) propose a modified SVM model

that imposes two L1 regularisation terms, one for the covariates that describe

the main effect and one for the covariates that describe the treatment effect,

i.e. the interactions with the treatment. A popular method of this category is

Virtual Twins (Foster et al., 2011), which proceeds in two steps. In the first
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step, it estimates E[Yi | Ti = 1,xi] and E[Yi | Ti = 0,xi] using Random Forests

(Breiman, 2001). In Foster et al. (2011) the authors train a Random Forest

on the variable set {X, T,XI(T = 1),XI(T = 0)}. The factual outcome is

estimated using the out-of-bag estimates while the counterfactual is predicted by

switching the treatment indicator (i.e. replace T = 1(0) with T = 0(1)). Then

they define a new variable z(xi), which is the estimated treatment effect defined

as the causal risk difference. Alternatively for binary outcomes one may measure

the effect as difference in logits, log-odds or some other measure of comparison

of the potential outcomes. In the second step, they use either a regression tree

on z(·) or a classification tree on the variable Z∗ = 1(z(xi) > c) where c is some

constant, most commonly the average treatment effect in the sample. It is the

second step of the approach that identifies subgroups by partitioning the space

based on the values of the estimated treatment effect.

In general, Virtual Twins defines a rather general method to the problem

of subgroup identification and the first step can be replaced by other modelling

approaches for estimating the potential outcomes, such as using two models, one

for each treatment group. A closely related problem is described in (Makar et al.,

2019), where their motivation is to use the final decision tree as a surrogate of a

more complex model for conditional average treatment effect estimation. In order

to derive predictive covariates, we can replace the second step with a random

forest, a common method to derive importance scores (Hastie et al., 2009). Using

the estimated z(·) as the target we rank the covariates as described in 3.1.2 and

use the residual sum of squares as the scoring criterion. This provides a ranking

of the covariates based on how relevant they are for predicting the estimated

treatment effect and hence can be interpreted as a predictive ranking.

3.4.2 Treatment Effect Modelling

Virtual Twins estimates the potential outcomes and therefore it necessarily mod-

els the main effect as well as the interactions with treatment. For subgroup iden-

tification purposes, we are interested on modelling only the interactions. This

motivated the adoption of methods that use the the outcome transformation ap-

proach, which we described in the previous chapter. A representative example of

this category is the Modified Covariates Regression (MCR) (Tian et al., 2014).

For continuous outcomes the treatment effect can be estimated by performing

regression using the modified outcome variable Y ∗i = 2T ∗i Yi, where T ∗i = 2Ti − 1.
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Since CATE(xi) = E[Y ∗i | xi] this approach has a clear causal interpretation,

while it also avoids modelling the main effect. The authors show that under the

squared loss for continuous outcomes this is equivalent to regressing on Y and

multiplying the covariates with T ∗/2. They also extend their approach to sur-

vival and binary outcomes following a similar weighting scheme. This approach

will produce an estimation of the treatment effect, which can be used to stratify

the population and identify subgroups with desirable characteristics (Lipkovich

et al., 2017a).

We can notice that this approach is equivalent to the one discussed in (Athey

and Imbens, 2016, 2015) in 1:1 randomised experiments. In this case we have

e(xi) = 1/2. Substituting in eq. (2.5) we have Y ∗i = Yi · Ti−1/2
1/2·1/2 = 2(2Ti − 1)Yi =

2T ∗i Yi. The authors use L1 regularisation (Tibshirani, 1996) to identify a minimal

set of predictive covariates, while alternatively one may use L2 regularisation

(Hoerl and Kennard, 1970) to derive a ranking, as we discussed in 3.1.1.

Other examples of this framework are Interaction Trees (IT) (Su et al., 2009)

and CF (Athey and Imbens, 2016; Athey et al., 2019) which perform recursive

partitioning of the space. CF was discussed in detail in the previous chapter. IT

follows the procedure of Classification and Regression Trees (CART) (Breiman

et al., 1984) adapted for causal inference tasks. This approach will be discussed

in more detail in Chapter 5 where we will explore extensions in observational

studies with no hidden confounders. In the next chapter we will use MCR as an

example of a linear model that adopts the outcome transformation approach for

identifying predictive covariates.

3.4.3 Subgroup Modelling

The approaches that fall in this framework search for subgroups with desirable

characteristics directly. A representative example of this category is Subgroup

Identification using Differential Effect Search (SIDES) (Lipkovich et al., 2011)

and its extensions SIDEScreen (Lipkovich and Dmitrienko, 2014b) and Stochas-

tic SIDEScreen (Lipkovich et al., 2017b). SIDES is a recursive partitioning ap-

proach that splits the data into subgroups using the following splitting criterion

(Lipkovich et al., 2017b; Lipkovich and Dmitrienko, 2014b):

G = 2
[
1− Φ

( |ZL − ZR|√
2

)]
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where ZL, ZR are the normalised treatment effects of the children defined by

subsets of the data split using some covariate X. Here, Φ(·) is the cumulative

distribution of the standard normal distribution. Larger values of the absolute

difference or lower values of the estimated p-value indicate greater discrimination

between the subgroups. The covariate that has the minimal p-value is added in

the list of promising subgroups. The estimated p-values may be further adjusted

to account for multiple comparisons (Lipkovich et al., 2011).

Various criteria are applied in order to control the number of promising sub-

groups. Firstly, the treatment effect p-value of a child is compared to the corre-

sponding value of the parent and the subgroup is retained if their ratio is lower

than a pre-specified threshold. The partitioning continues until a minimum sam-

ple size has been reached or the subgroup is defined by a maximum number of

covariates that has been set by the user. Secondly, a child subgroup is added

to the promising subgroups if the estimated p-value is lower than a pre-specified

threshold. The p-values of the promising subgroups are re-estimated using a

resampling-based adjustment in order to control the Type I error rate (falsely

identifying a subgroup) (Lipkovich et al., 2011). In particular, the covariates

of each example are permuted, so that in the permuted sample the treatment

effect remains unchanged but removing any interactions between treatment and

covariates. This is repeated multiple times for a set of possible thresholds calcu-

lating the proportion of times at least one promising subgroup is retained. From

the threshold values for which the calculated proportion was not greater than a

specified value of the Type I error rate, the largest is retained as the final one (Lip-

kovich et al., 2011). In contrast to methods that extend CART (Breiman et al.,

1984), such as IT (Su et al., 2008), SIDES may give overlapping subgroups, since

at each iteration it retains a number of promising splits rather than keeping only

the most promising one.

The above splitting criterion cannot discriminate subgroups that lead to pos-

itive and negative effects. To address this, they suggest the directional splitting

criterion (Lipkovich and Dmitrienko, 2014a; Lipkovich et al., 2017b) which may

ignore those subgroups that lead to negative treatment effects, hence evaluating

the splits based on whether they lead to enhanced effects. There have also been

proposed modifications suited for handling high-dimensional data, in which case

false discovery rate, i.e. forming subgroups using non-predictive covariates, is a
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key concern. In particular, they introduce an additional screening step that iden-

tifies promising covariates and then proceed by identifying subgroups using only

those (Lipkovich and Dmitrienko, 2014b; Lipkovich et al., 2017b). The promis-

ing covariates are selected based on the value of the splitting criterion for each

subgroup that they appear in. This criterion will be used in the next chapter

in order to rank the covariates based on their predictive strength. In particular,

the importance of a covariate X is given by 1
L

∑L
i=1 vi, where L is the number

of subgroups, vi = −log Gi if the i-th subgroup contains X and zero otherwise

(Lipkovich et al., 2017b). This procedure can be repeated for multiple bootstrap

samples in order to derive a distribution of the variable importance scores as

discussed in (Lipkovich et al., 2017b).

3.5 Chapter Summary

The goal of this chapter is two-fold; Firstly to introduce some key concepts and

methods regarding variable selection and subgroup identification and secondly

to provide background information on the problem of variable selection in the

presence of interventions. In particular, in Section 3.1 we discussed variable

selection using LASSO, Ridge Regression and Random Forests. In Section 3.2 we

described information theoretic criteria, that belong to the family of filter variable

selection - they are used to identify useful variables without building some model

for inference. We then discussed the variable selection problem in the presence

of interventions.

Finally, we concluded this chapter with a discussion of the problem of sub-

group identification and described how such algorithms can be used to identify

predictive covariates. In particular, we described Virtual Twins (VT) (Foster

et al., 2011), Modified Covariates Regression (MCR) (Tian et al., 2014) and Sub-

group Identification using Differential Effect Search (SIDES) (Lipkovich et al.,

2011) respectively. These are representative examples of three subgroup identi-

fication frameworks. VT estimates the potential outcomes, MCR the treatment

effect and SIDES performs subgroup identification directly. In the next chapter

we take a closer look at the problem of predictive covariate selection and discuss

a new framework, the information theoretic.



Chapter 4

Identifying Predictive Covariates:

An Information Theoretic

Approach

In this chapter we study a method for identifying predictive covariates and dis-

cuss its properties. This method is an information theoretic approach, which

comes with the advantage that it does not require inference of treatment effects

or counterfactuals. We present this method from a likelihood maximisation per-

spective (Section 4.1), analyse its properties (Sections 4.2, 4.3) and perform an

empirical comparison with the approaches discussed in the previous chapter in

synthetic scenarios (Section 4.4) and an evaluation in real data (Section 4.5).

The theoretical analysis of the proposed method shows that it can be influenced

by the treatment assignment mechanism. We then present extensions that can

ameliorate this issue (Section 4.6).

Author contribution statement : This chapter is based in part on (Sechidis

et al., 2018), where the author contributed to the theoretical analysis, experimen-

tal evaluation and writing of the manuscript. In addition, this chapter presents

work not present in (Sechidis et al., 2018). In particular, we define the covari-

ate selection criterion from a likelihood maximisation perspective (Section 4.1).

We perform a theoretical analysis that shows newly identified properties of the

method (Section 4.3). We add new experiments with both continuous and dis-

crete covariates while varying both the main effect and the effect of the interaction

(Section 4.4) as well as a new dataset (section 4.5). Finally we introduce two ex-

tensions that overcome some of the identified limitations (section 4.6).

64
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4.1 An Information Theoretic Criterion for Iden-

tifying Predictive Covariates

In this section we build links between data-driven predictive covariate selection

and information theoretic feature selection (Brown et al., 2012). We consider

a dataset D = {xi, ti, yi}ni=1, where xi, ti, yi are n realisations of the following

random variables: X ∈ Rd are the covariates, T ∈ {0, 1} is the treatment variable,

Y ∈ {0, 1} is the outcome. In a randomised study designed to evaluate the efficacy

of some intervention, the covariates X can be distinguished by how much they

influence Y via their main or prognostic effect and their interaction with the

treatment or predictive effect. Focusing on the latter we can rank the covariates

in terms of how predictive they are of the outcome Y when used in conjunction

with the treatment T as opposed to without using the treatment.

Definition 1 (Predictive covariate identification objective). The objective is to

identify a set of covariates X∗ ⊆X such that they maximise,

X∗ = arg max
Xθ∈X

E
[
log p(Y | t,xθ)

]
− E

[
log p(Y | xθ)

]

Here the first term captures the conditional likelihood of the outcome given

the interaction between treatment and covariates and the second term is the

likelihood of the outcome given the covariates, irrespective of the treatment. By

adding and subtracting the term E
[
log p(Y )

]
we get:

E
[
log p(Y | t,xθ)

]
− E

[
log p(Y )

]
− E

[
log p(Y | xθ)

]
+ E

[
log p(Y )

]
=

= I(Y ;XθT )− I(Y ;Xθ) = I(T ;Y |Xθ)

Therefore the objective can be expressed in information theoretic terms as:

X∗ = arg max
Xθ∈X

I(T ;Y |Xθ) (4.1)

Brown et al. (2012), in the context of feature selection, presented two heuristics

for optimising problems as the above, which consider sequentially features one-

by-one for adding or removal; the forward selection and the backward elimination

respectively. The forward selection step starts from an empty set and sequentially
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adds features, while the backward elimination step starts from the full feature set

X and sequentially removes one feature at a time. To present these procedures

in our setting let us denote as Xθτ the covariates selected up to the τ -th step and

X θ̃τ
= X \Xθτ the remaining covariates.

Definition 2 (Predictive covariate forward selection step). The forward selection

step adds the covariate X∗k which maximises the conditional mutual information

between T and Y given the joint variable of the currently selected set Xθτ and

X∗k . The operations performed are:

X∗k = arg max
Xk∈X θ̃τ

I(T ;Y |XθτXk)

Xθτ+1 ←Xθτ ∪X∗k
X θ̃τ+1

←X θ̃τ
\X∗k

(4.2)

Using the results of Brown et al. (2012), the following corollary holds.

Corollary 1. The predictive forward selection heuristic adds the covariate that

causes the largest increase in the predictive objective.

For the backward elimination we have the following definition and corollary which

follows from Brown et al. (2012).

Definition 3 (Predictive covariate backward elimination step). The backward

elimination step removes the covariate X∗k which minimises the conditional mu-

tual information between T and Y given the joint variable of the currently selected

set Xθτ without X∗k . The operations performed are:

X∗k = arg min
Xk∈Xθτ

I(T ;Y | {Xθτ \Xk})

Xθτ+1 ←Xθτ \X∗k
X θ̃τ+1

←X θ̃τ
∪X∗k

(4.3)

Corollary 2. The predictive backward elimination heuristic removes the covariate

that causes the minimum possible decrease in the predictive objective.

For simplicity from now on we will focus on the forward selection procedure.

Given the set of unselected covariates X θ̃ we select the covariate not ranked so
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far X∗k ∈X θ̃ that maximises the following score:

X∗k = arg max
Xk∈X θ̃

JPred-CMI(Xk) = arg max
Xk∈X θ̃

I(T ;Y |XθXk) (4.4)

We will refer to this criterion as Pred-CMI, since it quantifies the predictive

“strength” of each covariate Xk using the conditional mutual information between

the treatment and the outcome given the joint variable between Xk and the

currently selected covariates Xθ. For simplicity we will use the term JPred-CMI to

denote both I(T ;Y | Xθ) and I(T ;Y | X) depending on the context. In order

to derive predictive rankings using Pred-CMI we need to tackle an important

challenge: as the number of selected covariates grows, so does the dimension of

Xθ, which makes our estimations less reliable. To overcome this problem we can

use low-dimensional criteria that rely on simplifying assumptions regarding the

underlying distribution of the data (Brown et al., 2012).

4.2 Low-dimensional Approximations

The simplest approximation is to measure the conditional mutual information

of T and Y given each covariate independently. This criterion can be seen as a

univariate information theoretic way to derive predictive rankings. This will be

referred to as INFO. The score that INFO uses to rank the covariates is:

JINFO(Xk) = I(T ;Y | Xk)

While this is a low-dimensional criterion – we simply need to estimate a joint

distribution of three variables – and therefore relaxes the complexity of JPred-CMI,

it fails to capture the dependencies between the covariates. We can illustrate

these dependencies better by using the information theoretic identity I(A;B |
CD) = I(A;B | D) − I(C;B | D) + I(C;B | AD) to re-write the Pred-CMI

criterion as

JPred-CMI(Xk) = I(T ;Y | Xk)− I(Xθ;Y | Xk) + I(Xθ;Y | TXk)

Using this expression, INFO is an approximation of Pred-CMI that captures only

the first term, which measures the predictive “strength” of covariateXk but it fails

to account for terms that capture the redundancy between the covariates. The
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second term captures the three-way interaction between the existing covariate set

Xθ, the outcome Y and the covariate Xk. Finally, the third term captures the

four-way interaction between Xθ, Y , T and the covariate Xk.

We approximate these high dimensional functions of Xθ by a sum of second-

order interactions as follows.

JINFO+(Xk) =
∑

Xj∈Xθ

I(T ;Y | XjXk)

We refer to this criterion as INFO+ and we can show that it can be derived from

JPred-CMI under certain simplifying assumptions. As in Brown et al. (2012) if we

assume p(xθ | y, xk) =
∏

j∈xθ p(xj | y, xk) and p(xθ | xk) =
∏

j∈xθ p(xj | xk) and

additionally we assume p(xθ | y, t, xk) =
∏

j∈xθ p(xj | y, t, xk) and p(xθ | t, xk) =∏
j∈xθ p(xj | t, xk) then the criterion becomes equal to:

JPred-CMI(Xk) = I(T ;Y | Xk)−
∑

Xj∈Xθ

I(Xj;Y | Xk) +
∑

Xj∈Xθ

I(Xj;Y | TXk)

Brown et al. (2012) consider a parameterisation of a similar objective in the

context of supervised learning and show that many existing feature selection

criteria can be derived from this. Here, INFO+ follows by applying the weight
1
|Xθ|

in the last two terms. Hence it shares similarities in its form with the JMI

criterion in the context of supervised feature selection (Brown et al., 2012).

JINFO+(Xk) ∝ I(T ;Y | Xk)−
1

|Xθ|
∑

Xj∈Xθ

[
I(Xj;Y | Xk)− I(Xj;Y | TXk)

]
Here |Xθ| is the number of covariates already selected. In theory this could be

extended to arbitrary higher order interactions, but data constraints will always

limit this. In scenarios with high dimensionality and/or small sample size the

estimator of mutual information will be particularly important.

4.3 Estimation and Properties

Algorithm 1 describes the forward selection procedure for deriving predictive

rankings using INFO+, where now the information theoretic terms I(·) are re-

placed with their estimates Î(·). We note here that since we estimate information

theoretic terms for all pairs of covariates, these values can be stored every time we
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estimate them and use them in subsequent iterations resulting in a much faster

implementation than the one described here. The number of the selected covari-

ates k can be selected either by the user or by adopting some stopping criterion.

The former is common amongst information theoretic approaches (Vergara and

Estévez, 2014). Normally the identified predictive covariates will be assessed in

terms of whether they can define interesting subgroups. Since these subgroups

will need to be interpretable by domain experts we could focus on only a few

covariates. Regarding the stopping procedure some approaches have been intro-

duced in the literature of supervised learning such as monitoring the changes of

the objective value or performing permutation tests to assess the significance of

adding or removing a covariate (François et al., 2007; Gocht et al., 2018; Beraha

et al., 2019; Yu and Pŕıncipe, 2019). Here we will not consider such stopping cri-

teria, however including them in the algorithm could be an interesting extension.

In order to estimate the information theoretic terms for categorical vari-

ables we can use any off-the-shelf estimator suggested in the literature (Hausser

and Strimmer, 2009; Sechidis et al., 2019a; Nemenman et al., 2002). Since in

randomised studies and particularly in clinical trials we often encounter small-

samples, we use a shrinkage estimator suitable for such scenarios (Hausser and

Strimmer, 2009). The conditional mutual information is estimated as:

Î(T ;Y |Xθ) =
∑

t∈T ,y∈Y,xθ∈Xθ

p̂shrink(t, y,xθ)log
p̂shrink(t, y,xθ)p̂

shrink(xθ)

p̂shrink(t,xθ)p̂shrink(y,xθ)

where p̂shrink(t, y,xθ) is the convex combination of a low-variance/high-bias esti-

mator and a high-variance/low-bias one. Hausser and Strimmer (2009) adopt the

uniform probabilities puni(t, y,xθ) = 1
|T ||Y||Xθ|

as the low-variance/high-bias esti-

mator, where |·| denotes the cardinality of the domain. As a high-variance/low-

bias estimator, they choose the maximum likelihood estimates p̂ML(t, y,xθ) =
nt,y,xθ
n

, where nt,y,xθ is the number of observations with T = t, Y = y andXθ = xθ.

The optimal (in terms of mean squared error) parameter that controls the convex

combination can be derived in a closed form expression (Hausser and Strimmer,

2009):

p̂shrink(t, y,xθ) = λpuni(t, y,xθ) + (1− λ)p̂ML(t, y,xθ)

λ̂∗ =
1−

∑
t∈T ,y∈Y,xθ∈Xθ

(
p̂ML(t, y,xθ)

)2

(n− 1)
∑

t∈T ,y∈Y,xθ∈Xθ

(
puni(t, y,xθ)− p̂ML(t, y,xθ)

)2
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Algorithm 1 Algorithm for identifying predictive covariates using INFO+.

Input dataset {xi, ti, yi}ni=1, Size of the returned ranking k
Output Xθ: the INFO+ ranking of the top-k variables

Initialisation
Xθ ← ∅
X θ̃ ←X
Ranking
for l := 1 to k do

for Xi ∈X θ̃ do

Ĵ(Xi) = 0
for Xj ∈Xθ do

Ĵ(Xi)+ = Î(T ;Y | XjXi)
end for

end for
Xθ(l)← arg maxXi∈X θ̃

Ĵ(Xi)

X θ̃ ←X θ̃ \Xθ(l)
end for

For continuous variables we can still use the above estimator after discretisation,

using for example methods for histogram generation. We will discuss this in the

experimental section and also in Chapter 7.

Ranking predictive covariates with INFO+ has several advantages over exist-

ing methods but also has some limitations which we will discuss in this section.

For subgroup identification purposes and particularly in high-dimensional set-

tings we might be interested in only a few covariates (Lipkovich and Dmitrienko,

2014b). To this end, in contrast to the methods described in the previous chapter

(i.e. SIDES, VT, MCR) which rank all covariates, the forward step-wise proce-

dure adopted by INFO+ can return only the top-k, reducing the computational

burden considerably. Compared to the frameworks described in the previous sec-

tion it does not require imputation of the missing counterfactuals (such as VT) or

a correctly specified model (such as MCR). Additionally due to its computational

efficiency it can be adopted as a screening criterion before the application of any

of the aforementioned frameworks (such as subgroup identification with SIDES).

An interesting scenario is when there is no interaction with the treatment

and no overall effect, e.g. a failed study that does not exhibit treatment effect

heterogeneity. In this case the following holds.

Lemma 1. In marginally randomised experiments and in the absence of treatment

effect JPred-CMI becomes independent of the covariates.
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Proof. Provided in Appendix A.1

Therefore we expect that in the absence of an interaction with the treatment (and

with no overall effect) JPred-CMI should perform similarly to random selection. We

validate this empirically in the next section for a low-dimensional criterion where

interestingly we notice that this is not the case for VT.

Despite its advantages, INFO+ has also certain limitations. As we described

in the previous chapter an interaction with the treatment might be quantitative

or qualitative, showing an increased effect under the experimental treatment, a

negative effect or both. This criterion cannot distinguish between the different

types of interaction. This however can be performed by certain subgroup iden-

tification approaches which focus either on the identification of interactions that

lead to enhanced effects (Lipkovich and Dmitrienko, 2014b) or qualitative in-

teractions (Dusseldorp and Van Mechelen, 2014). Nevertheless, as we described

INFO+ could be a fast filtering criterion before applying the more computation-

ally demanding subgroup identification methods that are suited for certain types

of interaction.

Using the chain rule we can notice that the predictive covariate selection

objective can written as:

I(T ;Y |Xθ) = I(T ;Y )− I(T ;Xθ) + I(T ;Xθ | Y ) (4.5)

The first term is independent of the covariates and in the case of marginally ran-

domised studies, where T ⊥⊥ Xθ the criterion becomes equivalent to maximising

the last term. In all other cases, the variables that are dependent with the treat-

ment variable T will also affect the score and therefore the final ranking. Hence

JPred-CMI and consequently its low dimensional approximations will be influenced

by the treatment assignment mechanism. We validate this in the last section and

explore simple, yet effective extensions that use propensity-score weighting and

stratification as pre-processing steps. The first approach modifies the data on

which algorithm 1 is applied, while the second modifies the step that estimates

the mutual information (i.e. the term Ĵ(Xi)+ = Î(T ;Y | XjXi)). As we will

see, our motivation is to perform covariate selection with INFO+ in such a way

so that any influence of the treatment assignment mechanism is limited. This

is useful in conditionally randomised and/or observational studies with no hid-

den confounders where the treatment groups are imbalanced in their covariate

distributions.
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4.4 Simulated Data

Following the bulk of the literature on treatment effect estimation, e.g. (Foster

et al., 2011; Lipkovich et al., 2011; Nie and Wager, 2021; Wager and Athey, 2018b;

Anoke et al., 2019), we will first evaluate INFO and INFO+ using simulated

randomised studies, where we know the ground truth for the covariates that

interact with the treatment. In this section we assume 1:1 marginally randomised

studies.

Let us denote as Xpred the set of predictive covariates and X̂pred the set of

covariates identified at the top k = |Xpred| positions. We define the true positive

rate (TPR) as the fraction of predictive covariates correctly ranked at the top k

positions:

TPR =
|Xpred ∩ X̂pred|
|Xpred|

TPR captures how accurate is an algorithm in correctly identifying the predic-

tive covariates. Let us also define as Xprog the prognostic covariates and X irr

the irrelevant covariates. The False Negative Rate (FNR = 1 -TPR) can be

decomposed as follows:

FNR =
|(Xprog \Xpred) ∩ X̂pred|

|Xpred|
+
|X irr ∩ X̂pred|
|Xpred|

= FNRprog + FNRirr

FNRprog captures how often an algorithm selects as predictive covariates those

that are solely prognostic.

We compare INFO+ against a counterfactual modelling method (Virtual

Twins), a subgroup modelling method (SIDES) and a treatment effect modelling

(MCR). The Virtual Twins (VT) approach was initially proposed for subgroup

identification problems (Foster et al., 2011). Following Foster et al. (2011) we

train a Random Forest using the variables {X, T,XT,X(1 − T )}. For an ob-

servation x with treatment t we estimate the probability of the factual outcome,

p̂(y = 1 | x, t) using the out-of-bag estimate. To estimate the counterfactual we

switch the treatment to t, which is 0/1 if t = 1/0. Following their implementation

we used 1000 trees for this step. The difference between the predicted probabili-

ties for each x can be used to express CATE. Then the authors train a decision

tree on the estimated treatment effect to partition the input space into subgroups

of heterogeneous treatment effects. Instead, we train a RF using 1000 trees and

rank the covariates based on their importance score as described in Chapter 3.



4.4. SIMULATED DATA 73

The first step of VT was performed using the R package aVirtualTwins (Vieille,

2018). For SIDES we used the original algorithm1 (Lipkovich et al., 2011) with

the default parameters as described by Lipkovich et al. (2017a). For the Modified

Covariates Method (MCR) (Tian et al., 2014) method, the user has to specify the

main effects and the interactions. We assume no prior knowledge and include in

the model only first order interactions with the treatment. In order to rank the

covariates based on their predictive “strength” we used L2 regularisation and op-

timised the regularisation parameter via cross-validation using the package glmnet

(Friedman et al., 2010). We used the default parameters for the number of folds,

which is 10. In the simulations that use MCR this will leave 100 observations to

get an estimation of the error and 900 for training with the dimensionality being

20. The regularisation parameter was selected using the one-standard-error rule,

i.e. selecting the largest value such that the error is within one standard error of

the minimum (Hastie et al., 2009). This takes into account that the measure that

is optimised (the cross-validation error) will change over different runs, hence tak-

ing a conservative approach and picking a regularisation parameter that is likely

to be optimal (Hastie et al., 2009). As we will notice VT and SIDES tend to be

stronger competitors, so we will focus primarily on the results of these methods.

For all simulations we report the results averaged over 200 realisations of the

outcome functions. Unless specified otherwise the covariates have a marginal

distribution that is the standard normal N (0, 1) and any two covariates Xi, Xj

have a correlation equal to 0.7 if both i 6= j are even or odd and 0 otherwise.

4.4.1 Correlated Covariates and Interactions

In this section we explore the low-dimensional approximations of Pred-CMI,

namely INFO and INFO+. The first criterion captures only first-order interac-

tions with the treatment, while the second can capture additionally second-order

interactions. In order to validate that we compare the two criteria using the

following simulated outcomes:

M1 : logit(p(Y = 1 | T,X)) =
∑4

j=1 Xj + βpredT
∑8

j=5 Xj

M2 : Same as M1 but with correlated covariates

M3 : logit(p(Y = 1 | T,X)) = X1X2 +X3X4 + βpredT
(
X5X6 +X7X8

)
1The code can be found on the Biopharmaceutical Network web site at: http://

biopharmnet.com/subgroup-analysis/ [last accessed: 17/12/2020].
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We generate samples with size n = 1000 and d = 20 covariates. The covariates

are then discretised in 2-5 bins following an equal width strategy.

We vary the predictive strength βpred in order to explore what happens under

different degrees of difficulty. In figure 4.1(a) we observe that in the first scenario

the two criteria have similar TPR. The dotted horizontal line corresponds to the

expected result under random selection. The second scenario is more challenging

due to the correlations between the covariates, in which case INFO+ tends to

perform better (figure 4.1(b)). This is highlighted even more in third scenario

where we also have interactions between the covariates. In this case the univariate

criterion fails and has a TPR close to what it would be under random selection.

For the rest of this chapter we will use only INFO+.

(a) M1 (b) M2 (c) M3

Figure 4.1: INFO+ that captures second-order interactions outperforms the uni-
variate criterion in the presence of correlated covariates and interactions.

4.4.2 Varying the Predictive and Prognostic Strength

We define as βmain the coefficient of the main effect and βpred the coefficient of

the interaction. We would like to explore how different methods compare as we

vary these parameters. We generate the outcomes as follows:

M4 : logit(p(Y = 1 | T,X)) = βmain
∑5

j=1Xj + βpredT1(X1 > 0 ∩X2 < 0)

M5 : logit(p(Y = 1 | T,X)) = βmain
∑5

j=1Xj + βpredTX1X2

We generate n = 1000 observations and d = 20 covariates. For M4 we used

continuous covariates, while for M5 we consider discrete covariates, by discretising

the data in 2-5 bins following an equal-width strategy (Dougherty et al., 1995).
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In order to handle the continuous case for INFO+ we used an estimator for

the conditional mutual information, which is based on non-parametric density

estimation procedure. The core idea is to transform the continuous covariates to

categorical using a method for histogram generation, such as Scott’s rule or the

Freedman-Diaconis’ rule (Scott, 1992) and then to use the shrinkage estimator.

Here we used Scott’s rule.

The results are shown in figure 4.2 for M4 and figure 4.3 for M5. Each circle

in the graphs corresponds to the TPR for a pair of values for βmain and βpred.

We observe that INFO+ tends to perform better than SIDES and MCR for large

predictive effects and particularly for M4, but can perform worse in some cases in

the presence of small predictive effects and when using continuous data. Overall,

INFO+, SIDES and MCR tend to increase their TPR for higher values of βpred

and/or lower values βmain. VT shows a different behaviour. It outperforms all

competing approaches, especially in the continuous case, but its TPR tends to

increase even if we keep βpred to a small value and increase βmain. This suggests

that VT tends to be affected by the main effect to a larger extend than the

competing methods. However, in order to study this in more detail we need

to distinguish the predictive covariates from the main effect and observe what

happens in TPR and FNRprog separately. In the next section we take a closer

look at what happens when there is only main effect and no interaction with the

treatment.

4.4.3 Homogeneous Effects

In this section we explore what happens when there is no covariate exhibiting

an interaction with the treatment and no overall effect. This is the scenario of

having homogeneous effects, in which case we expect that no covariate would be

preferred over the others. We study a simple case where the outcome is defined as

logit(p(Y = 1 | T,X)) =
∑5

j=1 Xj. We generate n = 1000 observations and d =

20 covariates and report the position of each covariate in the ranking averaged over

200 repetitions. In figure 4.4 we report the average position of each covariate. The

vertical dotted line indicates the expected position of a covariate under random

selection. We observe that VT tends to identify the prognostic covariates at the

top positions, while the other methods do not show any preference. These results

show that VT is biased towards identifying prognostic covariates as predictive.

For the rest of this section we will omit MCR and focus on VT that achieves
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(a) INFO+ (b) VT

(c) MCR (d) SIDES

Figure 4.2: INFO+ is sensitive to the predictive “strength” and achieves a higher
TPR for larger values of βpred and lower values of βmain as we observe here for
model M4. Similar behaviour is observed with MCR and SIDES. In contrast VT
tends to achieve higher TPR even if we keep βpred constant and increase the value
of βmain.

(a) INFO+ (b) VT (c) SIDES

Figure 4.3: INFO+ performs similarly to VT for categorical data (model M5)
and large values of the predictive “strength”. For fixed βpred increasing βmain
may result in higher TPR when using VT. This is not observed to the same
extend with the other methods.
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high TPR but can be biased to prognostic covariates and SIDES that tends to

show lower TPR but does not exhibit such biases. Additionally, these methods

can handle both continuous and categorical covariates without any modification.

(a) INFO+ (b) VT (c) MCR (d) SIDES

Figure 4.4: In the absence of treatment effect, INFO+, MCR and SIDES perform
similarly to random selection (the average position of each covariate is close to
the vertical dotted line). In contrast VT tends to rank the prognostic covariates
at the top positions.

4.4.4 Distinguishing Prognostic and Predictive Covariates

The experiment of this section focuses on two scenarios where the covariates can

be either solely predictive or solely prognostic. We would like to explore how

each method can distinguish between the two. We use the following outcome

functions:

M6 : logit(p(Y = 1 | T,X)) =
∑4

j=1 Xj+5T (X5+1(X6 > −0.545∩X7 < 0.545)

M7 : logit(p(Y = 1 | T,X)) =
∑4

j=1 Xj + 5T (X5 +X6X7)

We generate d = 20 covariates and report TPR and FNRprog for increasing sample

size. For M6 we used continuous covariates, while for M7 we consider discrete

covariates, by discretising the data in 2-5 bins following an equal-width strategy.

In figure 4.5 we observe that INFO+ achieves both higher TPR and lower FNRprog

compared to VT and higher TPR compared to SIDES. On the other hand, VT

often selects solely prognostic covariates as predictive, which results in a higher
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FNRprog. This is more clearly observed in the first scenario. In the second scenario

all approaches have a slightly higher FNRprog but as the sample size increases

this tends to remain constant for INFO+ but it increases for SIDES and VT.

The results of this section suggest that INFO+ can successfully distinguish the

predictive and prognostic covariates.

Figure 4.5: INFO+ and SIDES can distinguish between predictive and prognos-
tic covariates. On the other hand, VT may wrongly identify solely prognostic
covariates as predictive, as indicated by the large FNRprog.

4.4.5 Computational Time

Information theoretic criteria allow us to identify only the top-k covariates, with

k � d, as opposed to VT and SIDES which will rank all the covariates. This

results in significant computational savings as shown in figure 4.6 where we report

the time required (in logarithmic scale) to identify the most predictive covariates

for model M4. If we were to rank all covariates then the required computational
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time of the INFO+ is similar to SIDES for small sample sizes and better as the

sample size increases.

Figure 4.6: (a) Computational time required to identify the two most predictive
covariates for M4. (b) Time required to identify the top 20 covariates using 1000
observations and increasing dimensionality.

4.5 Case Studies

In this section we apply INFO+ in three scenarios with diverse characteristics. In

the first two there are known predictive covariates while the other is a real clini-

cal trial dataset where we do not have prior knowledge of potentially predictive

covariates. Regarding the analysis of the clinical trial data, we highlight that the

purpose of our experiments is not to reproduce the results of the corresponding

studies. In contrast, we treat them as binary classification tasks and explore

whether the identified predictive covariates are plausible.

4.5.1 Application to Simulated Clinical Trial Data

We evaluate INFO+ on a simulated dataset, a description of which can be found

in (Lipkovich et al., 2017a). The dataset consists of 470 patients with severe

sepsis who were randomly assigned to either a treatment group that received a

novel therapy or the control group that received standard care. The outcome is

survival at 28 days. Here we use a version of the dataset that is available with the

R package aVirtualTwins (Vieille, 2018). In this dataset there are 11 covariates

and the true subgroup is defined by the patient’s age and the pre-infusion apache-

ii score.
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Here we would like to explore how INFO+ would perform in a setting where

all covariates are continuous that follow different distributions as indicate by their

histograms, while there are also potential outliers. In order to apply INFO+ we

discretise the covariates using the K-means algorithm with K=3. We repeat the

algorithm for 500 bootstrap samples and observe the average score. The score of

a covariate is given by (d−rf +1)/d where rf is the position of the f -th covariate

in the ranking and d is the number of covariates. We find that INFO+ ranks first

the pre-infusion apache-ii score and second the patient’s age. The average scores

are 0.96 and 0.84 respectively (table 4.1). The results validate that INFO+ can

identify known predictive covariates after discretisation.

4.5.2 Application to Real Clinical Trial Data

Firstly, INFO+ was validated in a clinical trial dataset were there is a known pre-

dictive covariate. The IPASS study (Mok et al., 2009; Fukuoka et al., 2011) was

a Phase III, multi-center, randomised, open-label, parallel-group study compar-

ing gefitinib (Iressa, AstraZeneca) with carboplatin (Paraplatin, Bristol-Myers

Squibb) plus paclitaxel (Taxol, Bristol-Myers Squibb) as first-line treatment in

clinically selected patients in East Asia who had advanced non small-cell lung

cancer (NSCLC). The trial consisted of 1217 patients randomly assigned in the

two treatment arms. The outcome of interest is progression-free survival, which

was modelled as a binary endpoint, neglecting its time-to-event nature. The data

were analysed at 78% maturity, when 950 subjects have had progression events.

Covariates with missing data were handled by creating an additional category

(Allison, 2001). It is known that gefitinib inhibits the epidermal growth factor

receptor (EGFR) and is now indicated as a first-line treatment for patients with

NSCLC whose tumours have specific EGFR mutations. It is therefore expected

the EGFR mutation status to appear as a strongly predictive covariate. INFO+

was applied in 500 bootstrap samples and the average score was calculated. The

ranking based on the average score showed that the EGFR mutation was ranked

first. We will now explore a case study where the is no known predictive covariate.

The AURORA study was a randomised, double-blind, placebo-controlled,

multicenter trial in which 2776 patients with end-stage renal disease were ran-

domly assigned 1:1 to double-blind treatment with rosuvastatin at a dose of 10

mg or placebo. The primary endpoint was the time to a major cardiovascular

event (MACE) defined as a nonfatal myocardial infarction, nonfatal stroke, or
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death from cardiovascular cause. For full details of the trial see (Fellström et al.,

2009).

Here the outcome is treated as binary indicating the presence of a MACE.

Following Lipkovich et al. (2017a) for the patients with missing values in a cate-

gorical covariate an additional category is created (i.e. missing indicator method),

while the missing values for continuous covariates were replaced by the mean of

that covariate (i.e. mean imputation) (Allison, 2001). Furthermore, the con-

tinuous covariates were discretised in 5 bins following an equal width strategy.

Similarly to the previous studies the covariate selection algorithm is repeated for

500 bootstraps. INFO+ identifies at the top positions the following: Blood Lym-

phocytes, Serum Apolipoprotein B and Blood Leukocyte Particle Concentration.

In contrast to the previous studies, in this case there is no prior information on

potentially predictive covariates. In this case INFO+ does not place high con-

fidence on a specific covariate and the average scores are not very high (below

0.9). The detailed ranking can be found in table 4.1. The results of INFO+,

i.e. not showing a strong preference towards a covariate are in agreement with

the trial findings. In contrast we note that VT identified the patient’s age at

the top position with high confidence (average score close to 1), a covariate that

has previously been identified as a risk factor for MACE in a post hoc analysis

(Schneider et al., 2013).

Table 4.1: The top selected covariates for two studies based on their average score
over 500 bootstrap samples.

Data 1st 2nd 3rd
Sepsis Apache Age Glasgow coma scale
Aurora Lymphocytes Apolipoprotein B Leukocyte conc.

4.6 Addressing a Limitation of INFO+: Exten-

sions in the Presence of Confounders

The approaches studied in this chapter are primarily designed for randomised

studies where there is sufficient balance between the covariates of the treatment

groups. In particular, for INFO+ we know from our previous analysis and from

eq. (4.5) that is affected by the treatment assignment mechanism. We would like

to explore how standard pre-processing steps such as propensity-score weighting
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and stratification can be used along with INFO+ when facing studies where the

treatment is not marginally randomised. An advantage of INFO+ over some

existing approaches is that it does not require a model for inference, i.e. it

is a filter method (Guyon et al., 2008). Hence we can avoid the problem of

model selection and/or introducing additional errors from estimation. With the

aforementioned pre-processing steps we still avoid the use of a model for the

outcome since we use only the covariates and the treatment. However, we now

need to introduce hyperparameters relating to the estimation of the treatment

assignment.

Following the discussion of Chapter 2 we can estimate the propensity score

and use the inverse as a weight in order to up-weight each observation accordingly

(Robins et al., 2000). Based on this we create a new sample, where each observa-

tion is repeated as many times as the corresponding weight and apply INFO+ in

the new sample. We refer to this approach as INFO+W. An alternative approach

is to perform stratification on the propensity score. In particular, we divide the

sample into strata based on the value of their propensity score, so that observa-

tions with similar propensity score fall within the same stratum. For example,

when using 5 equal-width strata, for the observations with propensity score in

(0,0.2) we assume that they come from an approximately marginally randomised

study and apply INFO+ as usual. We repeat this for the rest of the sub-samples,

i.e. [0.2,0.4), [0.4,0.6], [0.6,0.8], [0.8,1) and average the scores of INFO+ for each

covariate to get its final score. Therefore, the covariates are ranked based on the

value of the criterion averaged over all strata. We refer to this as INFO+S.

In order to explore how INFO+ performs in the presence of confounders, as

well as how the aforementioned approaches can be used to correct it, we revisit

the model M5 but change the treatment assignment mechanism considering the

following scenarios:

PM1 : logit(p(T = 1 |X)) = γ(X1 +X2)

PM2 : logit(p(T = 1 |X)) = γ(X3 +X4 +X5)

PM3 : logit(p(T = 1 |X)) = γ(X1 +X2 +X1X2 +X2
1 −X2

2 )

PM4 : logit(p(T = 1 |X)) = γ(X3 +X4 +X5 +X3X4 +X3X5 +X4X5 −X2
3 +

+X2
4 −X2

5 )

In the first case the treatment assignment depends on predictive covariates, while
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in the second case it depends on solely prognostic covariates. Additionally, we

consider modifications of PM1 and PM2 so that the treatment assignment de-

pends on the covariates, their squared terms and all pairwise interactions. We

explore what happens as we increase the value of γ, i.e. increasing the confounding

strength and hence creating more imbalanced samples. The result of increasing γ

on the values of the propensity score is shown in figure 4.7 for propensity model

PM1. As the confounder strength increases so does the number of observations

with propensity score close to 0 and 1. This is particularly the case for PM3

and PM4 under γ = 1. We would like to explore what happens under such a

scenario in terms of predictive covariate selection. In all cases we do not assume

knowledge of the true propensity score, which needs to be estimated.

(a) γ = 0.1 (b) γ = 0.5 (c) γ = 1

Figure 4.7: Histograms of values of the propensity score for PM1 and different
values of the confounding strength γ. As the confounding strength increases the
values of the propensity score move away from 0.5 resulting in increased imbalance
between the treatment groups.

In figure 4.8 we show an example of how the described pre-processing steps

perform in practice. With propensity score weighting observations that have T =

0/1 and lie in regions where treatment group T = 1/0 is over-represented are over-

sampled in order to create a balanced sample. With propensity score stratification

the observations are grouped so that each group can be approximately treated as

a sample from a randomised study with a constant propensity score.

In all cases we fit a linear propensity score model. We study two scenarios:

using the estimated propensity score and re-weighting and using propensity score

stratification. The number of strata can be considered a parameter to be selected

by the user. Here we choose 5 as this is a common choice in the literature

(Lunceford and Davidian, 2004; Austin, 2009b). A data-driven approach could

also be considered here. In particular, we could determine the minimum sample

size that would be required to get a reliable estimation of the conditional mutual

information. This will depend on the cardinality of the involved covariates as well



84 CHAPTER 4. IDENTIFYING PREDICTIVE COVARIATES

(a) Original Data (b) After Weighting

(c) After Stratification

Figure 4.8: We generate a dataset using PM1 and γ = 1. In (a) we report the
distribution of the covariates X1 and X2. In (b) we show how with propensity
score weighting certain observations are over-sampled in areas with limited over-
lap. In (c) we observe how propensity score stratification with three strata creates
groups with different probabilities of treatment assignment. These probabilities
are from left to right, 0.15, 0.5 and 0.85.

as the used estimator. In this case some preliminary analysis would be required in

which case we could explore the behaviour of the estimation error under different

values of the conditional mutual information e.g. by simulating contingency tables

or referring to existing empirical analyses of the used estimator. We could then

define the number strata so that each stratum has the minimum sample size that

is required. On the other hand, we could select the number of strata by exploring

the balance of the covariates between the treatment groups and then search for

an estimator that would perform well given the sizes of selected strata. In any
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case larger number of strata will result in smaller sample sizes hence making the

estimation more challenging.

In figure 4.9 we plot the TPR averaged over 200 simulated datasets, using 20

covariates and increasing sample size. We report the results for increasing value

of γ. More specifically the left-hand side plots correspond to γ = 0.1, the plots

in the middle are for γ = 0.5 and the right-hand size plots correspond to γ = 1.

We observe that we can partially correct INFO+ using simple pre-processing

techniques, with stratification being the best performing in most settings with

γ > 0.1. For example when γ = 0.5 both stratification and propensity score

weighting perform in most cases similarly to the case with γ = 0.1. The case of

γ = 1 becomes more challenging since more observations have propensity score

close to 0 and 1. We note that even after these pre-processing steps we still

observe some bias towards the treatment assignment mechanism. In particular,

when the treatment assignment depends on prognostic covariates INFO+ tends

to perform better compared to when the dependency is on predictive covariates

(we remind the reader that according to eq. (4.5) the covariates that have larger

mutual information with the treatment are penalised more heavily). This is also

the case for INFO+S which shows higher TPR compared to the other methods

when the treatment assignment depends on prognostic covariates (PM2,PM4).

Therefore, even though we can improve standard INFO+, the resulting methods

may still be influenced but to a lower degree by the treatment assignment.

From the conducted simulations we cannot conclude whether INFO+S or

INFO+W would be better suited in a particular setting. We can however note

some properties of the two approaches. INFO+S uses a smaller sample size as it

replaces Ĵ(Xi)+ = Î(T ;Y | XjXi) in Algorithm 1 with:

for Dm ∈ Dall do

Ĵ(Xi)+ = nm
n

Î(Tm;Y m | Xm
j X

m
i )

end for

where Dm is the dataset for m-th stratum with nm examples and Dall denotes

the set of all created datasets after stratification. We notice in the simulations

that when γ = 0.1 where we expect all methods to perform similarly due to the

small confounding strength, INFO+S shows lower TPR than the other methods

particularly for small sample sizes which could be attributed to this. INFO+S

also introduces an additional parameter, the number of strata, which needs to

be chosen by the user as we discussed above. On the other hand INFO+W does
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not have any additional parameters and uses the full dataset, but it acts as an

approximation, since it does not use the estimated IPW weights directly in the

estimation and instead it up-weights the observations based on the closest inte-

ger value of the IPW weight (this can also be adjusted by the user for better

precision). To this end, we could potentially explore extensions of INFO+W

that incorporate the weights directly in the estimation. This would likely require

revisiting the predictive covariate identification objective given in Definition 1

(perhaps by considering a weighted likelihood), since as we discussed the infor-

mation theoretic criterion that follows from this definition will be sensitive to the

treatment assignment. In this chapter we chose to not change the definition and

instead perform some pre-processing steps so that it would be applicable in the

presence of confounders.
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(a) PM1

(b) PM2

(c) PM3

Figure 4.9: INFO+ is influenced by the treatment assignment mechanism. Com-
bining INFO+ with propensity score weighting and stratification can ameliorate
some of the issues that arise. Here we plot the TPR for four different scenarios
and increasing sample size. From left to right we report the results for γ = 0.1, 0.5
and 1.



88 CHAPTER 4. IDENTIFYING PREDICTIVE COVARIATES

(d) PM4

Figure 4.9: INFO+ is influenced by the treatment assignment mechanism. Com-
bining INFO+ with propensity score weighting and stratification can ameliorate
some of the issues that arise. Here we plot the TPR for four different scenarios
and increasing sample size. From left to right we report the results for γ = 0.1, 0.5
and 1. (cont.)

4.7 Chapter Summary

In this chapter we discussed methods for identifying predictive covariates using in-

formation theory. These methods are all derived from the objective of maximising

the difference of two log-likelihood functions which in turn results in an informa-

tion theoretic objective. We discussed some theoretical properties of INFO+ and

compared it against three approaches, representative of the frameworks described

in the previous chapter: VT (Foster et al., 2011), SIDES (Lipkovich et al., 2011)

and MCR (Tian et al., 2014). Unlike VT, the information theoretic approach

does not require to build a prediction model to estimate the potential outcomes.

Also, in contrast to recursive partitioning methods, it uses all available data

for estimating the predictive strength and for capturing possible interactions be-

tween the covariates. In addition, for INFO+ the user does not need to define a

functional form of the outcome (in contrast to MCR where this is required) and

perform hyper-parameter selection. In particular the studied low-dimensional

criteria (INFO+, INFO+S, INFO+W) can capture second-order interactions be-

tween the covariates. We may account for higher order interactions with a simple

modification of the criterion and by adopting an appropriate estimator for the

mutual information (Sechidis et al., 2019a).

The experimental evaluation was performed such that we can explore what

happens when both discrete and continuous covariates are used but also when
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the predictive covariates are also prognostic. From the conducted simulations

we notice that each method has different characteristics. In particular, VT can

achieve high TPR when the predictive covariates are also prognostic but it often

fails to distinguish between the two types and can be influenced by the prognostic

strength. This behaviour can result in more false discoveries. In the simulations

SIDES did not show a bias towards identifying prognostic as predictive, but it

showed lower TPR than INFO+ when the prognostic and predictive covariates

were different. INFO+ can better distinguish the two types of covariates, but

it also has a limitation that may influence its applicability. Its performance will

depend on the estimator for the mutual information and the discretisation of the

continuous covariates (if applied). Hence applying it in a mixed data scenario will

require these to be taken into account by the researcher, while other methods,

such as VT, can be applied directly. It is also worth noting that information

theoretic methods allow us to return the top-k covariates, which is practically

relevant since domain experts are often interested in only a few covariates (the

most predictive). This results in substantial computational savings compared to

the other approaches.

We also studied the behaviour of INFO+ in the presence of confounders and

showed that it can be influenced by the treatment assignment mechanism. We

proposed two simple yet effective modifications that allow us to ameliorate these

issues namely INFO+W and INFO+S. We validated these criteria using simu-

lated data. Note that a characteristic of filter criteria (such as the information

theoretic) is that they are independent of any predictor. Our extensions use a

model for the treatment, however they remain independent of any predictor of

the outcome.

In this chapter we studied the problem of predictive covariate selection. This

procedure allows us to generate hypotheses for potential interactions with the

treatment and reduce the dimensionality of the dataset. Alternatively, we may

wish to directly search for subgroups, especially when the sample size and the

dimensionality allows us to do it. Most existing approaches, such as SIDES

(Lipkovich et al., 2011) and IT (Su et al., 2008) focus on subgroup identification

in marginally randomised studies. We now turn our attention to exploring this

problem in the presence of confounders using non-parametric weighting methods.



Chapter 5

Subgroup Identification using

Weighting Methods

In this chapter we turn to the problem of subgroup identification and we focus on

methods that perform recursive partitioning of the space. These are attractive

due to their simplicity and interpretability as the resulting subgroups are de-

scribed by a set of rules. Most of the methods discussed in the previous chapter

cannot be applied in studies where there is imbalance between the covariate dis-

tributions of treatment groups due to the presence of confounders. For example,

MCR (Tian et al., 2014), SIDES (Lipkovich et al., 2011), Qualitative Interac-

tion Trees (QUINT) (Dusseldorp and Van Mechelen, 2014) and Interaction Trees

(IT) (Su et al., 2009), to name a few, are applicable in randomised studies where

there is balance between the treatment groups. Subgroup identification in scenar-

ios of increased imbalance becomes more and more common with the increased

availability of observational data (e.g. medical databases).

This chapter discusses modifications of recursive partitioning approaches that

allow us to perform subgroup identification in these scenarios. We focus on IT

(Su et al., 2009) and study firstly how it performs in the presence of confounders

and secondly how we can modify the methodology in order to tackle the is-

sues that arise. The choice of IT over other recursive partitioning approaches,

such as SIDES, is motivated primarily due to its simplicity as it requires less

hyper-parameters and follows the rules of CART (Breiman et al., 1984) a well

studied approach in the literature. This has been extended recently including

modifications that combine IT with regression (Steingrimsson and Yang, 2019)

or propensity score weighting (Yang et al., 2021).

90
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In this chapter we revisit the problem discussed in (Yang et al., 2021), where

the authors propose Causal Interaction Trees (CIT), an extension of IT for ob-

servational studies with no hidden confounders using IPW, DR and regression

estimators. We suggest a new methodology that adopts recently proposed non-

parametric weighting methods (Kallus and Santacatterina, 2019b; Kallus et al.,

2021). The motivation is two-fold; Firstly, IPW estimators require correct specifi-

cation of a propensity score model and secondly balance between the re-weighted

data is not always achieved especially under strong confounding. The latter is

particularly important in the context of subgroup identification with recursive

partitioning where we encounter small sample sizes as we partition the space. As

we discussed in Chapter 2 these observations have motivated weighting methods

that optimise the balance between the treatment groups directly. Here we fol-

low the method proposed in (Kallus et al., 2021) to get weights that optimise

clearly defined quantities, such as the conditional bias or MSE of the sample

average treatment effect. This approach has shown improved empirical results

compared to other weighting estimators, including IPW, and here we study its

use in the context of subgroup identification. Similarly, to CIT we modify the

splitting criterion, while additionally we explore what happens as we increase the

confounding strength, as well as how the original IT algorithm performs in the

presence of imbalance between the treatment groups.

Section 5.1 defines the problem and shows why some existing methods may

be problematic in the presence of confounders. Section 5.2 describes the general

principles of the recursive partitioning approach followed by IT and CIT which

will also be adopted in this chapter. Section 5.3 describes the non-parametric

weighting methods and the modifications performed in the original IT. Finally,

Section 5.4 validates the approach using simulated data and Section 5.5 shows

the results in two case studies.

5.1 Problem Definition

Consider a study conducted to evaluate the efficacy of a novel treatment. We

assume an i.i.d. dataset {xi, ti, yi}ni=1, where xi denotes the d-dimensional vector

of covariates of the i-th subject, ti is the assigned treatment and yi is the outcome.

Additionally, suppose that for the support of the treatment variable we have

T = {0, 1}. For ease of exposition, we use ti = 0 to denote subjects in the control



92 CHAPTER 5. SUBGROUP IDENTIFICATION

arm and ti = 1 for subjects in the experimental treatment arm.

A subgroup S is most commonly defined by a rule that determines which

observations belong to a favourable group according to the values of their co-

variates. For example, a subgroup may be defined as the subset of the data for

which some covariate Z is positive, S = {xi : zi > 0}. There is an abundance

of methods for subgroup identification, some of them discussed in detail in the

previous chapters. Since we perform exploratory analysis, any resulting hypothe-

sis should be easy to interpret by domain experts, particularly since this is going

to define the sample on which a confirmatory analysis might be performed. To

this end, subgroups are usually defined by only a few covariates (e.g. 2–3) with

the strongest predictive strength (Foster et al., 2011). Considering the above we

will focus on recursive partitioning approaches due to their flexibility (they can

incorporate different splitting criteria) and interpretability.

The partitioning of the space is most commonly performed using either some

scoring criterion or a statistical test that uses the distribution of such a criterion.

In any case a key component is the correct estimation of the treatment effect in

the subset of the data determined by the parent node. This can be written as,

ATES = E[Y (1) | x ∈ S]− E[Y (0) | x ∈ S] (5.1)

To make the above identifiable from the observed data the following assump-

tions (Imbens and Wooldridge, 2009; Rosenbaum and Rubin, 1983; Imbens and

Wooldridge, 2009) are made, which we discussed in detail in Chapter 2.

1. Consistency : We observe Y = Y (1) | T = 1 and Y = Y (0) | T = 0, i.e. we

observe Y (1) for the experimental treatment arm and Y (0) for the control

arm.

2. Unconfoundedness : The potential outcomes are independent of the treat-

ment conditioned on the observed variables: (Y (1), Y (0)) ⊥⊥ T | x

3. Overlap: The probability of receiving the treatment is bounded away from

zero: p(T = t | x) > 0,∀t ∈ T

Let S(x) = 1{x ∈ S} denote which observations belong in the subgroup for

which we want to estimate the treatment effect. In practice we wish to estimate
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the sample average treatment effect in the subgroup which can be defined as:

SATES =

∑
i S(xi)E[y(1) | xi]− S(xi)E[y(0) | xi]∑

i S(xi)
(5.2)

Subgroup identification methods such as IT (Su et al., 2009) and SIDES (Lip-

kovich et al., 2011) use the raw mean difference of the outcomes under each

treatment value as the estimate of the treatment effect. Hence they are suitable

for balanced randomised studies where this would be an unbiased estimator of

the effect. We will refer to averaging of the outcomes within each group as the

unadjusted estimator:

ŜATE
unadj

S =

∑
i:ti=1,S(xi)=1 yi∑
i S(xi)I(ti = 1)

−
∑

i:ti=0,S(xi)=1 yi∑
i S(xi)I(ti = 0)

(5.3)

One approach for estimating the subgroup effects in imbalanced studies is

the use of IPW methods. Let e(X) denote the propensity score. The estimated

treatment effect in the subgroup can be expressed as:

ŜATE
ipw

S =

∑
i S(xi)

I(ti=1)yi
ê(xi)

− S(xi)
I(ti=0)yi
1−ê(xi)∑

i S(xi)
(5.4)

As we discussed in Chapter 2 the theoretical properties of IPW estimators

hold under correct specification of the propensity score. Studies have found that

miss-specifications may lead to substantial bias of the estimated effect (Kang

et al., 2007). Additionally, the estimation of SATES with IPW estimators can

become particularly challenging in the presence of small samples and under strong

confounding. This is crucial in subgroup identification via recursive partitioning,

where we need to estimate effects in smaller subsets of the data as we move deeper

in the tree. To this end we instead focus on methods that either optimise the

balance of the groups directly or some error function of the treatment effect.

Most recently, optimisation methods such as Entropy Balancing (EBAL) (Hain-

mueller, 2012), Stable Weighting (SW) (Zubizarreta, 2015) and Kernel Optimal

Matching (KOM) (Kallus, 2020b; Kallus and Santacatterina, 2019b; Kallus et al.,

2021) have shown good empirical performance over standard IPW approaches for

estimation of SATT and SATE. From these methods KOM has additionally some

desirable properties, since it directly optimises the worst-case conditional Mean

Squared Error (MSE) of SATE (the worst-case conditional bias is a special case).
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Additionally, such weighting methods can allow us to achieve balance on non-

linear transformations of the covariates by postulating a representation for the

potential outcomes.

In this chapter we make use of KOM to get the estimates of the treatment

effect within the subgroups. In particular, we replace the biased unadjusted

estimator with the weighting estimator:

ŜATE
w

S =

∑
i S(xi)I(ti = 1)wiyi∑
i S(xi)I(ti = 1)wi

−
∑

i S(xi)I(ti = 0)wiyi∑
i S(xi)I(ti = 0)wi

(5.5)

When wi = 1/ê(xi) for ti = 1 and wi = 1/(1− ê(xi)) for ti = 0 we get ŜATE
ipw

S

with normalised weights. We compare algorithms that use the above estimator

with standard IT. As we will see the methods that use weighting estimators can

successfully identify subgroups in the presence of confounders, where standard IT

may fail. Additionally, the method that adopts KOM does not require training

a parametric model for the outcome or the treatment. Let us now describe the

approach in more detail.

5.2 Subgroup Identification via Recursive Par-

titioning

In this section we describe the recursive partitioning procedure followed by IT

(Su et al., 2009) and its extensions (Steingrimsson and Yang, 2019; Yang et al.,

2021). At the beginning all observations D = {xi, ti, yi}ni=1 are in a single node,

the root node. Then for a continuous covariate Xj and each value of the covariate

c we split the sample into two sub-samples – in one holds Xj ≤ c and the other

Xj > c. For a categorical covariate the splitting point is defined for each possible

combination of values. The optimal split is selected by maximising a criterion,

which is a function of the sample average treatment effects in the two sub-samples

ŜATEL and ŜATER. In order to maximise the treatment effect contrast, the

squared standardised difference between the treatment effects in the two samples

is adopted, defined as follows:

G =
( ŜATEL − ŜATER√

v̂arL + v̂arR

)2
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When the treatment effects are estimated using ŜATE
unadj

S normalised with the

pooled variance then we get the criterion of Su et al. (2009). When the treatment

effects are estimated using ŜATE
ipw

S then we get the criterion of Yang et al. (2021)

with a modified denominator. The authors suggest estimators of the variance as

well as DR and regression-based estimators for the numerator, but in this chapter

we will focus on weighting. The covariate that maximises the above splits the

current node, referred to as parent node, into two nodes, which will be referred

to as child nodes. This is repeated for each new node until some pre-defined

termination criteria are met. Here the termination criteria are the depth of the

tree and the size of the node, which also controls the minimum size of a subgroup.

The final nodes which cannot be split further are referred to as terminal or leaf

nodes.

Once an initial tree has been derived, the second step is the pruning of the tree.

This step creates a sequence of smaller trees by removing the weaker nodes. It is

commonly performed in order to reduce computational complexity and memory

requirements of large trees as well as to control overfitting. Each sub-tree Ti

created by removing a node is assigned a score:

Gρ(Ti) =
∑
j∈ITi

G(Tj)− ρ|ITi | (5.6)

where ITi is the set of internal nodes, i.e. all nodes without the terminal ones and

|ITi| is the cardinality of this set, i.e. number of internal nodes in the tree Ti. The

first term captures the overall score of the tree, while the second term captures

the complexity measured as the number of splits. The parameter ρ controls the

importance of the complexity of the tree. Following the procedure described in

(Su et al., 2009) at each iteration a sub-tree is created by removing the node that

minimises
∑

j∈ITi
G(Tj)/|ITi | until the remaining tree consists of only the root

node. This step creates a sequence of trees of varying size. The last step is the

selection of the final tree, which can be done using various approaches. When the

size of the dataset is large enough we can split the data into a training set and a

validation set (Su et al., 2009; Steingrimsson and Yang, 2019). The training set

is used to fit the initial tree and create the sequence that results from pruning,

while the validation set is used to select the final tree that has the maximum

score Gρ(Ti).

In small sample datasets the final tree can be selected using the bootstrap
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method described in (Su et al., 2009, 2008; Dusseldorp and Van Mechelen, 2014).

This method corrects the bias of the estimated value of the splitting criterion by

re-evaluating it using multiple bootstrap samples. First the original data are used

to perform both the construction of the tree and estimate the splitting criterion for

each sub-tree Ginit(Ti). Then B bootstrap samples are drawn. For each bootstrap

sample b a tree is grown and the value of the splitting criterion is computed

Gboot
b (Ti). The splitting criterion is re-evaluated in the original sample Gorig

b (Ti).

The final value of the criterion is Ginit(Ti)− 1
B

∑B
b=1

(
Gboot
b (Ti)−Gorig

b (Ti)
)

. For

the details of the procedure followed by IT we refer the reader to (Su et al., 2009,

2008; Calhoun et al., 2018). In each repetition b the original data are used as

the external dataset. The motivation is to correct the initial optimistic value by

subtracting the difference between evaluating the criterion in the same data used

for learning the structure and using different data for learning the structure and

evaluating the criterion (Su et al., 2008). The final tree can be selected using

Gρ(·) for some value of ρ as described previously, or using the one-standard-error

rule as described in (Dusseldorp and Van Mechelen, 2014). In the latter case

we may choose the smallest tree that has a bias-corrected value of the splitting

criterion within 1 standard error (1-SE) of the maximal value.

5.3 Estimation of the Splitting Criterion

We now describe the modifications to IT and in particular how to estimate ŜATES

and v̂arS for each subgroup. The estimation of ŜATES is done via weighting

using Kernel Optimal Matching (KOM) (Kallus et al., 2021). In particular, the

authors represent the conditional expectations of the outcomes in a Reproducing

Kernel Hilbert Space (RKHS) and derive an approach that optimises the worst-

case conditional MSE (conditioned on the covariates and treatment). Here we

will also consider the approach that targets the worst-case conditional bias. We

will describe these two approaches along with the other components required for

implementing the subgroup identification algorithms.

Targeting the Bias

The treatment effect within each subgroup S is estimated using eq. (5.5), where

if we normalise the weights to sum to one within each treatment group we can
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equivalently express it as:

ŜATE
w

S =
ns∑
i=1

(
I(Ti = 1)wiyi(1)− I(Ti = 0)wiyi(0)

)
(5.7)

Let us define as k(·, ·) : X ×X → R a positive semi-definite symmetric kernel and

φ(x) : X → H a feature map. We also consider that for such a kernel function

k(·, ·) we can find a feature mapping φ(·) that transforms xi to a new space where

for any xj we have k(xi,xj) = 〈φ(xi), φ(xj)〉. Letw(z) denote the weights for the

observations that have t = z. In the first version of the subgroup identification

algorithm these are chosen solving the following optimisation problem:

arg min
w(z)

wT (z)Kzz
z w(z)− 2

ns
1TK ·zz w(z)

s.t.
∑
i:ti=z

wi(z) = 1, w(z) � 0
(5.8)

wherew(z) � 0 indicates that all entries in the vector of weights are non-negative,

Kz is a ns × ns kernel matrix associated with the potential outcome Y (z) and

1 denotes a vector of ones. Here Kzz
z corresponds to the entries of the matrix

for the group T = z and K ·zz has all rows of the initial matrix and the columns

for which T = z. Let us denote the above objective function as JY (z). This

problem can be motivated by minimising the worst-case squared conditional bias

of each potential outcome (Kallus et al., 2021) and we will refer to the recursive

partitioning method that uses these weights as Bias reducing IT (B-IT).

We can alternatively approach the above by assuming the potential outcomes

can be expressed as linear functions in the feature space denoted by φ(·) as in

(Hazlett, 2020). In particular, we can write the potential outcomes as yi(z) =

mz(xi)+εz(xi) = αTz φ(xi)+εz(xi), where εz(xi) is a zero-mean error term. Then

we can express the optimisation problem so that the following balancing condition

holds within the subgroup:

ns∑
i=1

I(ti = z)wiφ(xi) =
1

ns

ns∑
i=1

φ(xi) (5.9)

for z ∈ {0, 1} and all weights wi are positive and sum to one within each treatment

group. The relationship between balance maximisation and bias reduction was

also discussed in Chapter 2 and described for SATT estimation using kernels in
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(Hazlett, 2020). For completeness of the presentation let us describe this in more

detail. We know that SATES in the subgroup can be expressed as:

SATES =
1

ns

ns∑
i=1

(
E[Y (1) | xi]− E[Y (0) | xi]

)
=

1

ns

ns∑
i=1

(
m1(xi)−m0(xi)

)
Taking the difference of the above and its estimate given in eq. (5.7) and replacing

yi(z) with αTz φ(xi)+εz(xi) results in three terms: ŜATE
w

S−SATES = B1−B0+E .

The expected values of these conditioned on the covariates and treatment are the

conditional biases and error.

The error term
∑ns

i=1 I(Ti = 1)wiε1(xi) −
∑ns

i=1 I(Ti = 0)wiε0(xi) will be on

expectation equal to zero and therefore we can focus on minimising the two terms

B1 and B0, which will result in the aforementioned balancing conditions since for

Bz we have:
ns∑
i=1

(
I(Ti = z)wi −

1

ns

)
αTz φ(xi) = 0

Alternatively, the absolute value of the above can be upper-bounded by the prod-

uct of two L2-norms as described in Chapter 2. By re-arranging eq. (5.9) and

taking the squared L2-norm results in:

wT (z)Kzzw(z)− 2

ns
1TK·zw(z) +

1

n2
s

1TK1

which corresponds to the optimisation problem of eq. (5.8), after omitting the

last term that is independent of w(·) and assuming the potential outcomes can

be expressed as linear functions in the same feature space. Hence, the resulting

optimisation problem can be solved so that balance is achieved in the new space

defined by the mapping φ(·).

In the simplest case we can assume a linear model on the initial space of

pre-treatment covariates in which case we will be matching the means of the

treatment groups. More complex functions allow for matching higher moments,

while the use of a kernel allows for adopting feature spaces where the number

of dimensions might not be finite. Some examples of commonly used kernels

are the RBF, k(xi,xj) = exp(−‖xi − xj‖2
2/2l

2) and the polynomial k(xi,xj) =

(xTi xj + l2)d. In this chapter we will use the latter with d = 1, 2 in order to

either match the means of the covariates or additionally interactions between

those. It should be noted that a potential problem with the above approach is



5.3. ESTIMATION OF THE SPLITTING CRITERION 99

that no restrictions are imposed on the variability of the weights. Controlling the

variance of weights was suggested by Zubizarreta (2015) who proposed minimising

the squared distance of the weights from their means. Here we will instead focus

on using an approach that adds a regularisation term for the weights which can be

associated with controlling the variance of the estimated effect. Before describing

the second method we will adopt in this chapter let us give an example of how

the aforementioned method optimises the balance.

The properties of the described approach over using IPW become particularly

important in the case of subgroup identification, where treatment effects need to

be estimated using small sample sizes as we keep partitioning the space but also

in the presence of strong confounding. In order to show this consider the following

example. The outcome follows: Y = X1 + X2 + 2T I(X1 > 0) +N (0, 1) and the

treatment assignment model is: logit(p(T = 1 | X)) = γ(X1 + X2) where the

covariates are independent and follow the standard normal distribution. Suppose

we run the recursive partitioning algorithm to identify the subgroup in which

case we will need to estimate the treatment effect within subsets of the data.

We use IPW and weights that optimise eq. (5.8) with a linear kernel. For IPW

the propensity score is estimated using a correctly specified model and applying

weight truncation using the 1st and 99th percentile of their distribution (Lee et al.,

2011; Cole and Hernán, 2008). In figure 5.1 we report the absolute standardised

mean difference between the treatment groups for the confounder X2 estimated

within the subgroup averaged over 500 runs. In this figure, we plot the cases of

γ = 0.5 (dashed line) and γ = 1 (solid line). We vary the sample size from 50 to

500 observations and in the horizontal axis we report the approximate subgroup

size which will correspond to ∼ 50% of the observations. We observe that in the

initial data there is imbalance between the treatment groups and the absolute

standardised mean difference is approximately 0.5 for γ = 0.5 and 0.9 for γ = 1.

Using IPW results in better balance which is improved as we increase the sample

size. The weights that optimise the balance within the subgroup will result in an

absolute standardised mean difference close to zero even with a few observations.

Targeting the Variance and Augmented Estimators

Recent works focusing additionally on the variance of the effect showed that this

can be controlled by the squared norm of the weights (Kallus, 2020b; Kuang

et al., 2019; Kallus et al., 2021). In this study we will adopt a version of KOM
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Figure 5.1: When performing subgroup identification with IT we may encounter
small sample sizes as we keep partitioning the space. IPW with a correctly
specified model will balance the covariates better as the sample size increases
and this can be further improved by optimising it directly (Opt. Balance). Here
the solid line corresponds to γ = 1 and the dashed line to γ = 0.5.

(Kallus et al., 2021) by assuming constant conditional variance of the outcomes

under each value of the treatment. Their problem is more general and allows for

including the conditional variance for each observation. The objective JY (z) is

re-written as a function of w: JY (z) = wT IzKzIzw − 2
ns

1TKzIzw, where Iz is a

ns × ns diagonal matrix with one where ti = z and zero otherwise. Then, under

the assumption of constant variance, the optimisation problem can be written as:

arg min
w

JY (0) + JY (1) + λ0

∑
i:ti=0

w2
i + λ1

∑
i:ti=1

w2
i

s.t.
∑
i:ti=0

wi =
∑
i:ti=1

wi = 1, w � 0
(5.10)

This approach is motivated by optimising the (worst-case) conditional MSE of

SATE when λt are the conditional variances of the outcomes under each treat-

ment group and the conditional expectations of the outcomes are represented in

a RKHS (Kallus et al., 2021). Additionally the authors discuss an approach for

selecting the parameters of the used kernels and the variances by fitting a Gaus-

sian Process (GP) (Williams and Rasmussen, 2006) for the outcome under each

treatment arm. Here we will also follow this approach.

We will refer to the method that uses IT and applies the aforementioned

weights as MSE-IT. The values λz can also be seen as parameters in which case

as the value of λz increases more uniform weights are achieved and when they are

equal to zero MSE-IT becomes B-IT with the weights optimised jointly. We note
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that we will focus on the absolute error of the estimated treatment effect within

the subgroup and not the MSE, hence the use of both MSE-IT and B-IT in our

setting is motivated so that we can explore whether targeting the variance can

provide different results in terms of identifying the correct trees under different

values of the confounding strength.

Since combinations of weighting and regression adjustment have shown good

empirical performance (Athey et al., 2018; Kuang et al., 2019; Kallus, 2020b), we

shall explore these using the predicted outcomes of models fitted for each treat-

ment group. These are often described as augmented estimators in the literature

(Kang et al., 2007; Kallus, 2020b) and we will follow this terminology. In this

case the predicted treatment effect is given by:

ŜATE
aug

S = m̂1 +
∑

i:xi∈S,ti=1

wi(1)(yi − m̂1(xi))

− m̂0 −
∑

i:xi∈S,ti=0

wi(0)(yi − m̂0(xi))
(5.11)

where m̂1(xi), m̂0(xi) are the estimated potential outcomes and m̂1, m̂0 their

means.

Such augmented estimators have been studied with the use of IPW weights in

(Kang et al., 2007) where their DR properties are discussed and with the use of

the aforementioned weights in (Kallus, 2020b). It has been observed empirically

that when using IPW weights and both models are incorrect then the augmented

estimator can perform worse than weighting alone (Kang et al., 2007). However,

under correct specification they can show better efficiency (Kang et al., 2007). In

this chapter we will focus mainly on weighting and we will present some results

using augmented estimators in Section 5.4.1 for completeness.

Balancing Considerations

So far we have considered that the weights are going to be estimated within

each candidate subgroup. However, creating new weights for each possible split

may be computationally impractical especially if the covariates are continuous

and/or we face a high-dimensional problem. Similarly to Yang et al. (2021) we

consider approaches of increasing complexity. Firstly, we derive the weights once

in the root node. In other words we identify weights that optimise the quantity
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of interest in the initial dataset and then apply recursive partitioning on the re-

weighted dataset. As we partition the data, this will not guarantee balance (or

optimisation of the corresponding quantity) on each resulting sub-sample, but it

may act as an approximation. The second approach estimates new weights in each

parent node. Lastly we consider fitting new weights for each candidate split. This

however can be computationally demanding in the presence of a large number of

covariates with a large number of distinct values. In this case we may use only

a subset of the possible splits of a continuous covariate to derive the balancing

weights. More specifically, if the covariate is continuous with unique values more

than a specified number we treat it as such for the purposes of estimation of the

optimal split but the weights are fitted on only a number of equally distributed

values of the covariate.

Notice that by fitting the weights once in the root node and using them for the

rest of the analysis we implicitly assume that the functional form of the potential

outcomes assumed in the root node will also hold in subsets of the data. Moreover,

the derived weights that optimise the corresponding quantity (bias, MSE) in the

full sample, will also optimise this quantity in subsets. As we will see in certain

scenarios this simple and computationally efficient approach may provide good

empirical results, but we need to stress that the used weights may not be the

optimal. The other two approaches relax this assumption and may consider a

different form of the outcome in each parent node or each possible child node.

Overall, we would suggest finding new weights for each possible split (or at least

a subset of the possible splits). If the other two approaches are considered, e.g.

due to limited computational resources, the resulting balance may need to be

assessed.

Subgroup-Specific Variance

In order to normalise the estimated effects we require an estimate of the variance.

There is a long literature regarding the estimation of standard errors or confidence

intervals for weighting estimators (Little and Rubin, 2002, Chapter 3; Kallus,

2020b; Athey et al., 2018; Abadie and Imbens, 2006; Imbens, 2004). A general

approach for deriving the variance of the sample treatment effect conditioned on

X, T is described in (Imbens and Rubin, 2015, Chapter 19). For a weighting
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Method Estimator Weighting Algorithm

IT (Su et al., 2009) eq. (5.3) -
CIT-IPW (Yang et al., 2021) eq. (5.4) propensity model

B-IT eq. (5.7) eq. (5.8)
MSE-IT eq. (5.7) eq. (5.10)

B-IT (augmented) eq. (5.11) eq. (5.8)
MSE-IT (augmented) eq. (5.11) eq. (5.10)

Table 5.1: Summary of IT-based methods. The estimator refers to the equation
used to estimate the treatment effect within a potential subgroup and the weight-
ing algorithm refers to the approach used to estimate the weights where this is
applicable.

estimator with normalised weights this is given by:

v̂arS =
∑

i:xi∈S,ti=1

w2
i σ̂

2
i (1) +

∑
i:xi∈S,ti=0

w2
i σ̂

2
i (0) (5.12)

For the estimation of σ̂i(t), Imbens and Rubin (2015) (see also (Abadie and Im-

bens, 2006)) propose a nearest neighbour estimator where σ̂2
i (t) is approximated

by the mean squared difference between the outcome of the i-th example and

the outcome of the nearest neighbour in the group with T = t. An alterna-

tive approach that we adopt in this chapter when using the augmented esti-

mator is to use the predicted outcomes to estimate the residuals. In this case,

σ̂2
i (t) = (yi(t) − m̂t(xi))

2, where m̂t(xi) is the estimated value of the potential

outcome. This is in similar spirit with the variance estimator described in (Athey

et al., 2018) for linear models. Another option which is adopted in our case stud-

ies when using the weighting estimator is to perform weighted least squares with

the estimated weights and use the robust sandwich estimator (Freedman, 2006;

Zeileis, 2004, 2006).

5.4 Simulated Data

In this section we compare IT with unadjusted treatment effect estimation against

B-IT and MSE-IT. Additionally, we will consider IT with IPW weighting. The

methods that are used in this chapter are summarised in table 5.1. For their
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implementation we modified the splitting criterion of IT1 (Su et al., 2009). We

will use the following evaluation metrics (Loh et al., 2019; Yang et al., 2021).

• Proportion of Correct Trees (PCT): The percentage of simulations where

the resulting tree has the splits that define the true subgroup and only

those.

• Absolute Error (AE) expressed as the difference between the estimated and

expected treatment effect within the subgroup |ŜATEs − ATEs|.

• Mean Squared Error (MSE) of the estimated treatment effect for each obser-

vation evaluated in a separate test set, MSE = 1
ntest

∑ntest
i=1

(
(ŷi(1)− ŷi(0))−

(yi(1) − yi(0))
)2

. Here ŷi(1), ŷi(0) are the estimated potential outcomes if

we were to use our algorithms for estimating the individual treatment ef-

fect yi(1)− yi(0). For a given observation this is estimated as the weighted

average within the leaf of the tree where this observation belongs.

• True Positive Rate (TPR): Let P be the covariates that define the splits and

V be the covariates that are used by the subgroup identification algorithm

to define the resulting subgroups. The TPR is the ratio |P∩V||P| averaged over

the number of simulations.

• Number of False Discoveries (NFD): The number of non-predictive covari-

ates wrongly used to define subgroups averaged over the number of simula-

tions.

5.4.1 Varying the Confounding Strength

Firstly we test IT with unadjusted estimator and the weighting versions in the

presence of confounders. We simulate data using the following outcome model

from Foster et al. (2011), but using a continuous outcome instead of binary.

Y = αT (1, X1, X2, X3, X2X3) + TβT (1,1(X1 > 0 ∩X2 < 0) + ε

1An implementation of IT can be found on the Biopharmaceutical Network web site at:
http://biopharmnet.com/subgroup-analysis/ [last accessed: 17/12/2020]
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where α = (−1, 0.5, 0.5,−0.5, 0.5)T , β = (0.1, 0.9)T and ε ∼ N (0, 0.01). The

covariates are normally distributed with zero mean and unit variance, while odd-

numbered covariates {X1, X3, X5, ...} have an internal correlation of 0.7, and even-

numbered, {X2, X4, X6, ...}, have the same internal correlation. In this dataset

there is one subgroup that corresponds to approximately 25% of the sample size

where we have ATES = E[Y (1) | x ∈ S] − E[Y (0) | x ∈ S] = 1. In order

to introduce imbalance between the covariates in the two treatment groups, the

treatment assignment is generated according to the following model:

logit(p(T = 1 |X)) = γ(X1 +X2 −X3) (5.13)

where γ is the confounding strength. We consider three cases: no confounding,

γ = 0, which corresponds to a 1:1 randomised study, and two cases of increased

confounding γ = 0.5 and γ = 1.

In this section we consider the simplest implementation of the proposed meth-

ods optimising the weights once using the full data. We choose to use a linear

kernel (i.e. matching the means of the covariates) for B-IT and MSE-IT. We

additionally consider B-IT and MSE-IT combined with the augmented estima-

tors. Notice here that the linear kernel corresponds to miss-specification of the

outcome due the the interaction between X2 and X3 but also the presence of the

indicator function. Nevertheless, initial results showed that assuming linearity

in this case results in treatment effects close to the ground truth. We create a

sample of 2000 observations and 6 covariates and use 1000 for training, 500 for

tree selection and 500 for estimating the MSE. From the 6 covariates, 1 is solely

prognostic, 2 are both prognostic and predictive and 3 are irrelevant. All results

reported in this section have been averaged over 500 realisations of the treatment

assignment and outcome functions. The initial tree was grown with maximum

depth equal to 15, minimum size required for splitting a node equal to 50 obser-

vations and minimum size of a terminal node (i.e. minimum size of a subgroup)

equal to 20 observations. The final tree was selected as the one that maximises

Gρ(·) estimated in a separate validation set (Su et al., 2009). The value of ρ was

chosen so that it corresponds to the 0.05 significance level on the χ2 distribution

with 1 degree of freedom as suggested in previous works (Su et al., 2009; Yang

et al., 2021).

In figure 5.2 we firstly observe that all approaches have high TPR, hence us-

ing the true predictive covariates to split the data. Regarding PCT, when the
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treatment assignment is marginally randomised all approaches perform similarly.

In the scenario studied in this section the PCT is defined as the number of times

the depth of the final tree is 2 and the data are split using only X1 and X2. As we

increase the confounding strength we observe that IT has lower PCT. B-IT is also

influenced by the confounding strength but to a lower degree compared to IT.

On the contrary, MSE-IT that controls the variance of the estimated treatment

effect is not influenced by the increased confounding strength resulting in almost

the same results as if the treatment assignment was marginally randomised. Ad-

ditionally, we observe that combining weighting with regression adjustment can

further improve the results, particularly in the challenging case of γ = 1.

(a) IT (b) B-IT

(c) B-IT (augment.) (d) MSE-IT (e) MSE-IT (augment.)

Figure 5.2: Proportion of correct trees and True Positive Rate for various values
of the confounding strength.

In figure 5.3 we show the absolute error of the estimated treatment effect

within the subgroup. The box-plots show the distribution of the error over the

number of simulations where the correct tree was identified. Here, we observe

that B/MSE-IT and the variants that use regression adjustment tend to estimate

treatment effects that are more concentrated towards the ground truth. Inter-

estingly, even in the case of γ = 0 B/MSE-IT with regression adjustment tend

to achieve errors close to zero for more simulations compared to IT with unad-

justed estimator. As expected IT with unadjusted estimator does not estimate
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the treatment effect correctly when γ > 0.

(a) IT (b) B-IT

(c) B-IT (augment.) (d) MSE-IT (e) MSE-IT (augment.)

Figure 5.3: The absolute error of the estimated treatment effect within the sub-
group for various values of the confounding strength.

Even though our primary task is to identify subgroups an interesting question

is how these methods would perform if they were to be used to perform inference

– i.e. estimate the individual treatment effect for a given observation. In figure

5.4 we report the MSE in a separate test set where we observe that B/MSE-IT

and the augmented versions tend to achieve better results, particularly in the

case with γ = 1 where the problem becomes more challenging.

We repeat this experiment using larger subgroup size as described in Foster

et al. (2011). The results can be found in Appendix A.2, where we find that the

augmented estimators tend to provide worse results in terms of PCT than using

weighting alone. Besides miss-specification, the definition of PCT may also be

a reason for the observed difference. Based on this section we can validate that

IT with unadjusted estimator is not suited in the presence of confounders while

the use of weighting estimators may improve the increased bias resulting in an

overall performance similar to as if the data were from a marginally randomised

study. In the next section we will explore how these approaches compare to using

IT with IPW estimators.
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(a) IT (b) B-IT

(c) B-IT (augemnt.) (d) MSE-IT (e) MSE-IT (augment.)

Figure 5.4: The mean squared error of the estimated treatment effect in a separate
test set for various values of the confounding strength.

5.4.2 Comparison with Recursive Partitioning using IPW

In order to show the properties of B/MSE-IT compared to IT with an IPW

estimator we will consider a simple example. We assume the outcome follows

Y = X1 +X2 +X3 + 2T I(X1 > 0) + ε and the propensity score is logit(p(T = 1 |
X)) = γ(X1 +X2 +X3). The covariates take values in {−1.5,−1.25, ..., 1.25, 1.5}
and ε ∼ N (0, 1). We simulate a dataset with 500 observations and 6 covariates

and consider the proportion of times (out of 500 repetitions) each method splits

the data correctly. For this simulation we consider only trees of depth 1. We

compare B-IT and MSE-IT, with CIT using IPW (CIT-IPW). We fit the weights

in the node that is considered for splitting instead of every possible split, which

showed better results in (Yang et al., 2021).

In figure 5.5 we report the PCT, defined here as the proportion of trees of

depth 1 that split the data correctly and the absolute error of the treatment

effect in the subgroup. We observe that the subgroup identification algorithms

with non-parametric weighting methods tend to identify the correct split more

often and provide more accurate estimates of the treatment effect within the

subgroup for larger values of the confounding strength. For values γ ≤ 0.5 all



5.4. SIMULATED DATA 109

methods perform similarly. We need to highlight that by fitting the weights in the

root node and not in each possible split this is going to guarantee optimisation of

the corresponding quantity only in the initial sample. We additionally find that

for the largest value of the confounding strength MSE-IT tends to achieve better

PCT compared to B-IT, which was also observed in the previous section. For the

rest of this chapter we will focus on MSE-IT.

(a) PCT (b) Absolute Error

Figure 5.5: For small values of the confounding strength all approaches perform
similarly. Both B-IT and MSE-IT find the correct split more often than using
IPW estimators for larger values of the confounding strength. They also provide
more accurate estimates of the treatment effect within the subgroup in this case.

5.4.3 Varying the Outcome Specification

In this section we will explore what happens under miss-specification of the out-

come model. For this purpose we generate data using the following model:

Y = αT (1, X1X2, X
2
3 ) + TβT (1,1(X3 > 0)) + ε

where α = (1, 2, 1)T , β = (1, 2)T and ε ∼ N (0, 1). The treatment assignment

depends on the covariates according to:

logit(p(T = 1 |X)) = γ(X1X2 +X3)

The pre-treatment covariates are independent and their values are randomly

drawn from the domain {−1.5,−1,−0.5, 0, 0.5, 1, 1.5}. We create a sample of

1000 observations and 6 covariates and use 500 for training and 500 for tree



110 CHAPTER 5. SUBGROUP IDENTIFICATION

selection. The results reported in this section have been averaged over 500 re-

alisations of the treatment assignment and outcome functions. This scenario is

more challenging compared to the one we studied in Section 5.4.1. Here both

the outcome and the treatment assignment depend on interactions between the

covariates while we also have larger main effects, noise with larger variance and

we use a smaller sample size.

We first apply IT with unadjusted estimator and we find that the PCT is

0.80 for γ = 0, 0.54 for γ = 0.5 and 0.07 for γ = 1. In this section we will focus

on MSE-IT and explore the results under two model specifications. In the first

setting we assume the outcome is a linear function of the covariates, therefore

we simply match the means of the covariates. In the second setting we use a

second-degree polynomial kernel. For the recursive partitioning method we use

the same parameters as in the previous section.

The PCT is estimated as the proportion of resulting trees that have a single

split on X3 with cut-off 0. This is shown in figure 5.6. Under linear specifica-

tion fitting the weights once in the root node or in each parent node is heavily

influenced by the confounding strength. Interestingly, when fitting the weights

for each possible split we find that this results in high PCT. However, this should

be interpreted with caution since it also results in large errors on treatment ef-

fect estimation as shown in figure 5.7. In this case the algorithm becomes more

conservative, finding trees with only X3 as the splitting covariate more often, but

still introducing a significant error when estimating the treatment effect. This

can be witnessed also by the average number of false discoveries reported in fig-

ure 5.8. This result could occur if, for example, the method used to estimate

the treatment effect tends to consistently over-estimate or under-estimate it. In-

terestingly, even under incorrect specification and without fitting the weights for

each possible split we can still achieve higher PCT compared to using unadjusted

estimators.

We repeat the experiment but this time we fit a second-degree polynomial

kernel. The results are shown in figure 5.6(b) for PCT, figure 5.7(b) for the

absolute error and figure 5.8(b) for the number of false discoveries. We observe

that this modification improves the results, particularly when fitting the weights

in the full data or each parent node. We also observe that the PCT decreases

when γ = 1. In figure 5.8 we notice that in this case NFD is small. This suggests

that MSE-IT may split the data using X3 either with an incorrect cut-off point
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(a) d = 1 (b) d = 2

Figure 5.6: Proportion of Correct Trees (PCT) resulting by estimating the weights
in the root node, parent node or each possible split of a parent node. We use
MSE-IT and we either assume a linear kernel d = 1 or a second degree polynomial
kernel d = 2. We notice that even when the model is not correctly specified all
methods perform similarly or better than if we used the unadjusted estimator.

or by performing multiple splits on the same covariate.

In Section 5.3 we described that when the covariates are continuous and/or

take a large number of possible values, we may reduce the computational com-

plexity by fitting new weights in a number of pre-specified cut-off values rather

than each possible split. We repeat the previous experiment, but this time the

covariates are normally distributed and are correlated with correlation 0.3. In-

stead of fitting new weights for each possible split, we consider three and five

equally spaced cut-off values for each covariate and derive weights for each one of

the splits that result from these cut-off values. Then while performing recursive

partitioning for each possible split we use the weights of the nearest cut-off. The

resulting PCT is shown in figure 5.9. A correct tree here is defined as one that

has depth equal to one and splits the data using only X3.

When using IT with unadjusted estimator we find that the PCT is 0.6 when

γ = 0, 0.26 for γ = 0.5 and 0.07 for γ = 1. From the figure we observe that the

aforementioned approximation results in higher PCT than IT in most cases. Sim-

ilarly to our previous observations, even under incorrect specification the method

may result in higher PCT compared to using the unadjusted estimator except

when the weights are fitted in the root node or in each parent node and γ = 1.

When the outcome accounts for higher-order terms (in this case pairwise inter-

actions) simple approximations, such as fitting the weights once in the root node

can result in high PCT. In this scenario, when the weights are fitted for three/five

splits we observe a reduced PCT when γ = 1. This could be attributed to the
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(a) d = 1 (b) d = 2

Figure 5.7: Absolute error resulting by estimating the weights in the root node,
parent node or each possible split of a parent node. As the confounding strength
increases so does the error, however this increase is lower under a correctly spec-
ified model in the subgroup.

(a) d = 1 (b) d = 2

Figure 5.8: Number of non-predictive covariates identified by MSE-IT and aver-
aged over 500 realisations of the outcome and treatment assignment. This tends
to be lower for smaller values of the confounding strength and and/or when using
the second degree kernel.

used cut-off values for estimating the weights, but also to the definition of the

metric. In particular, we find that in these cases the algorithm identifies the cor-

rect subgroup of enhanced effect as often as the other considered approaches, but

it also tends to retain more splits in the final tree, resulting in a lower PCT. Note

that a difference compared to the previous experiment is that here we consider

a tree as correct if it uses the correct predictive covariate without taking into

account the actual cut-off value. The full results including the absolute error and

the number of false discoveries are reported in the Appendix A.3.
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(a) d = 1 (b) d = 2

Figure 5.9: Proportion of Correct Trees (PCT) using normally distributed covari-
ates.

5.4.4 Homogeneous Effects

In the previous sections we studied whether the proposed algorithms can identify

the correct subgroup in the presence of confounders. An interesting question is

what happens when there are no known subgroups. In this case we would like an

algorithm to return a root-only tree. We repeat the experiment of Section 5.4.1,

but now without the presence of the subgroup, i.e. there is no treatment effect

heterogeneity. We perform 500 simulations and report the PCT as the number

of times a root-only tree is returned.

In figure 5.10 we observe that the approach that uses weighting estimators

has a PCT close to one which remains almost unaffected by the presence of

confounders. In contrast IT with unadjusted estimator tends to split the data

using the confounders, X1 −X3. The proportion of root-only trees decreases to

close to zero when γ = 1. Therefore, in the absence of subgroups, methods that

use unadjusted estimators of the treatment effect can be biased to the treatment

assignment mechanism and identify subgroups defined by the confounders. We

can ameliorate these issues with weighting estimators.

5.5 Case Studies

In this section we apply MSE-IT in two data sets. In the first experiment we

consider a simulated trial and introduce artificially imbalance in the data. We

would like to explore how imbalance can affect IT as well as the benefits from

estimating the splitting criterion with weighting methods. For the second study

we consider a dataset where previous works have not identified any subgroups
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Figure 5.10: In the absence of heterogeneous effects MSE-IT correctly identifies
an only root tree and exhibits a PCT close to 1. IT with unadjusted estimator
tends to identify trees defined by the confounders.

and we explore whether we can reproduce these results using MSE-IT.

5.5.1 Application to Simulated Study

In this section we use the simulated trial data described in Chapter 4. In order to

simulate an observational study we artificially introduce imbalance by removing a

non-random proportion of the data. In particular we remove all treated patients

with pre-infusion apache-ii score lower or equal to 23 and age lower or equal to 70.

We note that these covariates were also found to have the strongest prognostic

effect as indicated by the importance scores derived using a random forest model

with 500 trees. In the resulting dataset we expect a higher imbalance between

the treatment groups compared to the initial data.

In figure 5.11 we report the absolute standardised mean difference (Austin,

2009a) in the two treatment groups before and after removing a non-random

proportion of the data. The vertical dotted line indicates the difference that is

normally accepted as being sufficient, so that the covariates that have a lower

value can be considered as balanced (Austin, 2009a). We observe that for most

covariates there is an increased imbalance and this holds particularly for the

patient’s age and the pre-infusion apache-ii score. After we create the new sample

the outcome is generated as follows: Y =
∑

iXi+2T I(PRAPACHE > 25), where

Xi are the standardised covariates and PRAPACHE is the apache-ii score. This

covariate acts both as a predictive covariate and a confounder. In this way we

will know the true subgroup so that we can evaluate the results but in contrast

to the previous section we do not know the treatment assignment mechanism.
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We apply IT and MSE-IT with first-degree polynomial kernel and the weights

estimated for each possible split. For both methods we use a minimum depth of

5, minimum node size for performing a split equal to 40 and minimum size of

a terminal node equal to 20. The final tree is selected following the bootstrap-

based approach (Su et al., 2008, 2009; Dusseldorp and Van Mechelen, 2014) with

25 bootstrap samples and using the 1-SE rule as described in (Dusseldorp and

Van Mechelen, 2014). In this experiment we prefer this method over keeping a

validation dataset due to the small sample size.

The fully grown trees using IT and MSE-IT are shown in figure 5.12. IT first

splits the data using the patient’s age, which acts as a confounder. The final tree

after pruning does not retain any subgroup and is a root-only tree. By using

weighting estimators for the treatment effect with MSE-IT we can identify the

correct tree. The data are first split using the predictive covariate, while also the

estimated treatment effects are those expected according the outcome function.

After pruning, MSE-IT retains only the split on the pre-infusion apache-ii score,

hence identifying the correct subgroup. Therefore, we can validate that by using

weighting methods we can recover the true subgroup, while with unadjusted

estimators the resulting subgroups can be biased towards splitting the data using

Figure 5.11: Covariate balance (Absolute Standardised Mean Difference) between
the two treatment groups in the initial data and after removing a non-random
proportion.
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AGE ≤ 68 (2.67)

PRAPACHE ≤ 25 (3.36)

1.00 TIMFIRST ≤ 27 (2.95)

2.37 3.53

0.78

(a) IT

PRAPACHE ≤ 25 (1.11)

TIMFIRST ≤ 19 (0)

0.55 BLSOFA ≤ 7.5 (0.03)

0.21 -0.94

BLIL6 ≤ 723 (2.00)

2.00 2.18

(b) MSE-IT

Figure 5.12: Fully grown trees using IT and MSE-IT in the simulated data where
the patient’s age (AGE) and the pre-infusion apache-ii score (PRAPACHE) are
the most imbalanced covariates, while the latter is the only predictive covariate.
The final trees after pruning are a root-only tree using IT and a tree that splits
the data on PRAPACHE for MSE-IT.

confounders. This was also observed in Section 5.4.4 where in the absence of

predictive covariates, using unadjusted estimators tends to split the data using

the confounders. In the next section we validate our method in a case study

where there are no known predictive covariates or subgroups.

5.5.2 Application to Right Heart Catheterization Study

We evaluate MSE-IT on an observational study that evaluated the effectiveness

of right heart catheterization (RHC) in the initial care of critically ill patients2

(Connors et al., 1996). The dataset contains 2184 participants who received

2Data obtained from http://hbiostat.org/data [last accessed: January 2021] courtesy of
the Vanderbilt University Department of Biostatistics



5.6. CHAPTER SUMMARY 117

RHC during the first day of their hospitalisation and 3551 who did not receive

it. The patients are described with 51 covariates. A subgroup analysis was

performed in (Yang et al., 2021), where the authors used the 30-day survival

as the outcome and applied IPW, DR and regression methods to estimate the

effects. After splitting the data in 80% for creating the tree and 20% for pruning

they found that any subgroups where not retained in the final tree. We repeat the

aforementioned analysis using MSE-IT with first and second degree polynomial

kernels and fitting the weights either once in the root node or in each parent node.

We choose these approaches due to their lower computational complexity. Missing

data were handled by including a new category. With this approach we can use

the full data, we note however that a pitfall is that if the covariate with missing

values is a confounder, then residual confounding can be an issue (Bennett, 2001;

Pedersen et al., 2017). Hence, while this approach may not be problematic when

the covariates are independent of the treatment (where missing data are likely

to be balanced between the treatment groups), it should be considered when

evaluating treatment effects in observational studies. In this section we compare

the final tree (after pruning) with the results of previous studies, but do not

evaluate the resulting treatment effects.

We find that in all cases the subgroups of the initial tree where not retained

after pruning. The first covariate used to split the data is the probability of

surviving 2 months at study entry, a covariate that has also been identified as

potentially promising in previous works (Yang et al., 2021; Connors et al., 1996).

5.6 Chapter Summary

Subgroup identification has been studied extensively in the context of (marginally)

randomised studies, where the treatment groups are balanced. In this chap-

ter we studied this problem when there are observed (but possibly unknown)

confounders that cause imbalance between the covariates in the two treatment

groups. This can be the case in conditionally randomised studies or observational

studies under the assumption of unconfoundedness. This problem has been stud-

ied in (Yang et al., 2021), where the authors propose approaches that use IPW,

DR and regression estimators. In this chapter we used non-parametric weighting

methods for treatment effect estimation, which have shown good empirical results

while they avoid modelling the treatment assignment (Kallus and Santacatterina,
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2019b; Kallus et al., 2021).

The simulations show that using weighting methods to derive unbiased es-

timations of the subgroup-specific treatment effects can improve the results of

standard methods, particularly in the presence of strong confounding. In the ab-

sence of treatment effect heterogeneity, the proposed methods can provide better

results regarding the false discovery of subgroups, while IT may split the data

using the confounders. We note that a key difference between MSE-IT and B-IT

is the regularisation of the weights which controls the variance of the effect. The

two approaches use weights that are motivated from different perspectives and in

our context, where we are interested in identifying the correct tree and calculating

the absolute error of the treatment effect, we find them to perform similarly under

moderate values of the confounding strength. We do note however, that under

the largest confounding value, MSE-IT tends to identify the correct tree more

often (Sections 5.4.1,5.4.2) showing an advantage over B-IT. In some scenarios

under correct specification of the outcome within the subgroup and under various

confounding mechanisms the resulting methods show similar performance to the

case of γ = 0 (marginal randomisation). However, even under incorrect specifica-

tion we can balance selected moments of the distributions of the covariates in the

two treatment groups, which improves the results under moderate confounding

compared to using the unadjusted estimator of the treatment effect.

We note here that the subgroups identified using the described procedure can

only be considered as promising candidates and further analysis will be required

to assess them (e.g. estimating p-values, controlling the Type I error rate). Even

though we do not discuss these issues here and we focus primarily on the treatment

effect estimation problem, we need to highlight their importance. For example,

if test data are available, the resulting subgroups could be re-evaluated in order

to retain the final ones (Su et al., 2009; Lipkovich et al., 2011). Alternatively,

in (Lipkovich et al., 2011) the authors discuss an approach for controlling the

overall Type I error rate, when test data are not available (we briefly described

this in Chapter 3). When performing multiple tests (as in the case of subgroup

identification), adjustment and interpretation of the p-values is also an important

concern (Dmitrienko et al., 2017; Alosh et al., 2014).



Chapter 6

A Multi-objective Evaluation

Framework for Subgroup

Identification Algorithms

In the previous chapters we studied the problem of treatment effect heterogeneity

from different perspectives. A common theme was the application of subgroup

identification algorithms and we explored some representative examples. How-

ever, there is a plethora of methods suited for this problem in marginally ran-

domised studies. For example, Lipkovich et al. (2017a) review and categorise 16

subgroup identification algorithms, while more recently Loh et al. (2019) perform

an empirical comparison of 13 methods. Given such a large number of algorithms

to choose from, an important question is how to select the best for the task at

hand. This is a challenging problem since we never observe the true treatment

effect or the predictive covariates that interact with the treatment.

In this chapter we phrase the algorithm selection problem in a multi-objective

framework1. One objective is to evaluate an algorithm in terms of the quality

of the subgroups it identifies. Following the literature of subgroup identification,

we define the subgroup quality as the excess treatment effect in the identified

subgroup compared to the average treatment effect (Foster et al., 2011). For

algorithms that estimate the individual treatment effect as part of their process

we can also estimate some approximation of the error on the estimated effect

(Steingrimsson et al., 2017; Schuler et al., 2018). Besides evaluating the efficacy

1An initial version of this chapter was presented in the ECML/PKDD 2020 workshop “Ma-
chine Learning for Pharma and Healthcare Applications”.
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of the treatment we would like the resulting subgroups to be reproducible. To

quantify this, we introduce the subgroup stability, a measure that captures how

small changes in the data affect the selected subgroups. We demonstrate the use of

the proposed framework in a number of cases, assuming marginal randomisation

throughout the chapter.

6.1 Measuring the Quality of Subgoups

Suppose we are given a dataset D = {xi, ti, yi}ni=1, with n realisations of the

variables X, T, Y , where X ∈ Rd are the covariates, T ∈ {0, 1} is the treatment

and Y the outcome. In the literature of subgroup identification, an algorithm

is commonly evaluated first in simulated scenarios where we have knowledge of

the ground truth. Measures that capture whether it selects the correct predictive

covariates, identifies the right splits and estimates the true effects can be used for

the evaluation. In non-simulated scenarios such measures are not applicable and

the results are commonly evaluated with respect to the characteristics of the iden-

tified subgroups. For example by comparing the effects in the subgroups with the

average effect in the data, or by validating their plausibility based on the results

of previous studies or the knowledge of domain experts. Suppose our objective

is to identify subgroups of enhanced effect. Then a measure that quantifies the

efficacy of the treatment within the identified subgroup could be used to assess

whether the algorithm has achieved our primary objective. Foster et al. (2011)

introduce the subgroup quality, a measure that captures the treatment benefit.

Let Ŝ denote a region in the covariate space identified by some subgroup

identification algorithm. Foster et al. (2011) define the quality of this region as

the excess treatment effect over the average treatment effect in the population:

Q(Ŝ) = E[Y | T = 1,X ∈ Ŝ]− E[Y | T = 0,X ∈ Ŝ]− ATE

In practice we get an estimate of the above Q̂(Ŝ) from the observed data. Fol-

lowing Foster et al. (2011) and Huling and Yu (2018), we evaluate the quality of

a subgroup using the bootstrap bias correction approach (Harrell Jr et al., 1996).

Let Ŝ denote the subgroup derived using the full data. In practice some algo-

rithms may identify multiple subgroups, some of which may lead to enhanced

and some to deteriorated effects. Here with Ŝ we denote the sample that has
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an estimated enhanced treatment effect, i.e. it includes all subgroups with an

estimated treatment effect greater than some predefined threshold. The quality

is estimated as follows:

1. Estimate Q̂D(ŜD) = ŜATES − ŜATE, where ŜATES is an estimation of the

treatment effect in the subgroup and ŜATE in the sample D. This quantifies

the excess treatment effect in the subgroup over the whole sample assuming

the data come from a marginally randomised study.

2. Construct B bootstraps by sampling with replacement. For the b-th sample

run the subgroup identification algorithm and calculate Q̂D(Ŝb) and Q̂b(Ŝb).
The first term is the quality of the subgroup estimated using the b-th sample

and evaluated in the full sample. The second term is the quality of the

subgroup derived in the b-th sample and estimated using the same sample.

The bias of the quality is:

bias(Q̂D(ŜD)) =
1

B

B∑
b=1

Q̂b(Ŝb)− Q̂D(Ŝb)

Therefore, here Q̂b(Ŝb) is an estimate of the quality using the same data

that were used to derive the subgroup and Q̂D(Ŝb) is the quality evaluated

in the full data, which acts as the external dataset.

3. The bias corrected estimate of the subgroup quality is:

Q̂D(ŜD)− bias(Q̂D(ŜD))

Foster et al. (2011) propose various approaches for estimating the quality and

find that the bias corrected approach we described above to be the most promis-

ing. Therefore, this is the measure we will use for the rest of this chapter. For

completeness, we describe some alternative choices. One option is to estimate the

above using cross-validation or repeated splitting of the data (Foster et al., 2011;

Huling and Yu, 2018). For example, in the latter case we perform B random

splits of the data intro training/validation sets and estimate the subgroup qual-

ity as (1/B)
∑B

b=1 Q̂
validation
b (Ŝtrainb ), i.e. the quality of the subgroup identified

using the training data, evaluated in the validation set. Another choice would

be to use the out-of-sample data of each bootstrap as the validation set. This
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approach however could also introduce some bias in the estimation (Lipkovich

et al., 2017a). To this end, one may adopt the approach of Efron (1983) proposed

in the context of prediction errors and described for quality estimation in (Lip-

kovich et al., 2017a). The estimation in this case would be a weighted average of

Q̂D(ŜD) and the quality estimated in the out-of-bag data 1
B

∑B
b=1 Q̂−b(Ŝb).

6.2 Measuring the Stability of Subgroups

Clearly the identified subgroups should ideally capture the primary objective of

the analysis, whether this is salvaging a failed study, identifying super responders

or some other objective (Lipkovich et al., 2017a). Any formed hypothesis will

likely need to be tested further e.g. by domain experts and/or by performing a

confirmatory analysis. Since this might be a time-consuming procedure, we would

like to select the most promising hypotheses. These should not only achieve our

primary objective, captured for example by the subgroup quality, but should also

be robust to small changes in the data enhancing their reproducibility.

A subgroup identification algorithm should not vary its preferences with small

changes in the data. The instability of an algorithm can be due to various fac-

tors such as noise, data size, data dimensionality, class imbalance, irrelevant and

redundant covariates etc. To quantify the stability of subgroup identification algo-

rithms due to such changes we borrow concepts from the area of feature/variable

selection stability (Kalousis et al., 2007; Kuncheva, 2007; Nogueira et al., 2017;

Sechidis et al., 2019b).

Suppose we run a subgroup identification algorithm and identify a region Ŝ.

We would like to quantify how robust this result is to small changes in the data.

To this end we repeat the procedure B times, each time performing some change

in the data, e.g. adding some small amount of noise to the outcome. An algorithm

would be stable if such a change does not affect the definition of the identified

subgroup Ŝ. We form a subgroup membership matrix M with B rows and n

columns, where the entries denote whether an example has been selected in a

subgroup in the b-th sample. To fix ideas, consider the following examples of
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membership matrices:

M1 =

M1 M2 M3 M4 M5


0 0 1 1 1

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1

M2 =

M1 M2 M3 M4 M5


0 1 1 0 0

1 0 1 1 1

0 1 0 0 1

1 0 1 1 0

In M1 the observations are consistently either included or not included in the

subgroup, while M2 shows an example of an unstable procedure. Based solely

on the stability of subgroup membership we would trust the first algorithm.

There are many stability measures suggested in the literature. Nogueira et al.

(2017) proposes an axiomatic framework and suggests a novel measure that sat-

isfies a set of desirable properties. According to this measure each column in the

membership matrix can be treated as a Bernoulli variable with B realisations.

Hence, a key advantage of this measure is its probabilistic definition (as opposed

to the most commonly used set-theoretic definition) which, allows its extension to

other settings, such as correlated variables (Sechidis et al., 2019b). The measure

is defined as:

Φ̂(M) = 1−
1
n

∑n
f=1 s

2
f

E
[

1
n

∑n
f=1 s

2
f | H0

]
where s2

f is the (unbiased) sample variance of the f -th column and H0 denotes the

null model. The null model states that for all rows b in the membership matrix

M, all subsets of size kb have an equal probability of being drawn (Nogueira

et al., 2017).

In particular, the variance of a column under the null model can be expressed

as (Nogueira et al., 2017; Sechidis et al., 2019b):

var
(
Mf

∣∣H0

)
= p0

f (1− p0
f ), ∀f ∈ {1, ..., n}

where p0
f captures the probability an observation being selected in a matrix M

under the null model. Under this model there is a random procedure that gen-

erates a matrix M. We assume that in each row b all permutations are equally

likely. In each row we have kb values set to 1 hence the probability of observing
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the value 1 for a column is equal to (Nogueira et al., 2017, B.2):

p
(
Mf = 1

∣∣b,H0

)
=

#{possible rows with kb 1s and Mf = 1}
#{possible rows with kb 1s}

.

The numerator is
(
n−1
kb−1

)
and the denominator is equal to

(
n
kb

)
. Hence for a given

row this is equal to kb
n

. Since we have B independent rows we can write p0
f =

1
B

∑
b
kb
n

= k̄/n. Putting everything together we can estimate the stability as:

Φ̂(M) = 1−
1
n

∑n
f=1 s

2
f

k̄
n

(
1− k̄

n

) (6.1)

This measure is upper-bounded by 1 when a procedure is perfectly stable (e.g.

matrix M1) and its lower bound is 0 (asymptotically if we use the unbiased

sample variance in the numerator (Nogueira et al., 2017)).

In this chapter we adopt this measure and consider a mechanism that intro-

duces noise to the outcome. For binary outcomes this can be achieved by flipping

the labels of a random sample of the data (in the case of imbalanced classes this is

also discussed in (Wald et al., 2012; Altidor et al., 2011)). From a more practical

perspective, such a mechanism can represent scenarios where the outcome is mea-

sured based on methods that may introduce noise such as questionnaires, manual

labelling or based on devices that may introduce measurement noise. Addition-

ally, this could represent changes in the number of responders when a binary

outcome is formed by dichotomisation of a continuous response. For example,

in Rheumatoid Arthritis a commonly used measure is ACRx which indicates an

improvement of x% in various disease activity measures and assessments (Felson

et al., 1993). In such a scenario we could consider how a change in a small num-

ber of responders (which could be attributed to small changes in the continuous

variables) could affect the resulting subgroups.

Another scenario most commonly found when measuring the stability of fea-

ture selection algorithms, is varying the sample size by performing bootstrapping

or removing a constant number of examples (Nogueira et al., 2017; Sechidis et al.,

2019b). In the case of subgroup identification such a mechanism will introduce

missing values in the membership matrix making the above stability measure

not directly applicable. Suppose we have a constant number of missing values

equal to l, e.g. dropping a percentage of the data. Since the values are missing

completely at random the probability of a Bernoulli variable can be estimated by
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ignoring the missing values:

p̂f =

∑B
b=1 I[M b

f = 1]∑B
b=1

(
I[M b

f = 1] + I[M b
f = 0]

)
Here M b

f denotes the value of the b-th row and f -th column inM. For the denom-

inator we can follow a similar procedure as the one described above (Nogueira

et al., 2017, B.2). In each row b of a matrix we have kb values set to 1 and n− l
observed values, hence the probability for the probability p

(
Mf = 1

∣∣b,H0

)
the

numerator is
(
n−l−1
kb−1

)
and the denominator is equal to

(
n−l
kb

)
. In a matrix M we

have a total of B independent rows, hence we can write p0
f = 1

B

∑
b
kb
n−l = k̄

n−l .

Here we assume that under the null model all permutations of 1s, 0s and missing

values per row are equally likely and missing values are ignored in the estimation.

For the rest of this chapter we will adopt a mechanism that introduces noise and

use the measure of eq. (6.1).

6.3 Experiments

We study five subgroup identification algorithms with diverse characteristics. VT

(Foster et al., 2011) follows the counterfactual modelling approach by first learn-

ing the potential outcomes using random forests and then using a decision tree

with the estimated Individual Treatment Effect as the target in order to derive

the final subgroups. Estimation of the potential outcomes is performed either

with separate models for each treatment group or with a single model using the

treatment as an additional covariate as well as first-order interactions between the

treatment and the covariates. Following the nomenclature of Künzel et al. (2019)

these are referred to as VT-T and VT-S respectively. MCR (Tian et al., 2014)

follows the outcome transformation approach that avoids modelling the main ef-

fect (see also Chapter 3). PRIM (Huang et al., 2017) follows the bump-hunting

procedure (Friedman and Fisher, 1999) to identify the optimal partition that

maximises the treatment effect, while ensuring its statistical significance. SIDES

(Lipkovich et al., 2011) follows a recursive partitioning approach to identify sub-

sets of the data with desirable characteristics. Finally IT (Su et al., 2009) follows

the procedure of CART (Breiman et al., 1984) and builds a decision tree by recur-

sively partitioning the space and maximising the treatment effect heterogeneity.

We discussed this methodology in detail in the previous chapter.
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We will examine synthetic data and a simulated trial in order to show how

the described measures can be used in practice. For the simulated scenarios we

consider the models B1, B2 and B5 based on (Loh et al., 2019). The treatment

is binary and the outcomes are generated as follows:

B1 : logit(p(Y = 1 |X)) = 0.5(X1 +X2 −X5) + 2T I(X6 = odd)

B2 : logit(p(Y = 1 |X)) = 0.5X2 + 2T I(X1 > 0)

B5 : logit(p(Y = 1 |X)) = 0.2(X1 +X2 − 2) + 2T I(X6 = odd ∩X1 < 1)

In all datasets we consider 10 covariates with the following marginal distribu-

tions as described in (Loh et al., 2019): Xj ∼ N (0, 1) for j = 1, 2, 3, 7, 8, 9, 10,

X4 ∼ Exp(1), X5 ∼ Ber(0.5) and X6 ∼ Multi(10). Here N (0, 1) denotes the

standard normal distribution, Exp(1) the exponential distribution with mean 1,

Ber(0.5) Bernoulli with success probability 0.5 and Multi(10) is the multinomial

distribution with values {1, ..., 10} all having equal probability. All covariates are

independent except the pairs X2, X3 and Xj, Xk for j, k = 7, 8, 9, 10, j 6= k, which

have a correlation equal to 0.5. We choose these outcomes due to their diversity,

as they use predictive covariates with different distributions.

6.3.1 Predictive Covariate vs Subgroup Stability

Predictive covariate selection and subgroup identification are two closely related

areas. As we discussed there are methods that perform the first but not the

second, unless additional steps are included in the algorithm (e.g. MCR). On

the other hand, algorithms that perform subgroup identification will also identify

potentially predictive covariates, since the subgroups are defined by these covari-

ates. For algorithms that perform both, an interesting question is to quantify the

stability of the two tasks and explore whether there is a relationship between the

two. Finding one to be much more stable than the other can allow us to form

hypotheses about the algorithm and the data. For example, if the covariate selec-

tion task is stable, but the subgroup definition is unstable, then we could explore

the criteria (e.g. thresholds) used to define the final subgroup. Another example,

is the presence of strongly correlated covariates, in which case the algorithm may

be unstable on the covariate identification task (e.g. see (Sechidis et al., 2019b)

for examples where this can occur and how it can affect the stability) but stable

on the subgroup definition.
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To show an example of how these measures could be used in practice we

generate 100 datasets for each outcome model and plot the predictive covariate

stability versus the subgroup stability estimated using 50 samples (number of

rows in the membership matrix). A sample is formed by changing the label in a

randomly selected 10% of the data. Then for each sample we use VT-S with the

default parameters and retain as final subgroups those that have an effect larger

than ŜATE+0.1 (Foster et al., 2011), where ŜATE is the estimated average effect

in the sample. In figure 6.1 we observe that in the second scenario the algorithm

tends to give more stable results. Additionally, we can observe a statistically

significant correlation (Pearson correlation coefficient) between predictive covari-

ate stability and the subgroup stability measure in all scenarios. Therefore in

these simulations we find that the more often the algorithm identifies the same

predictive covariates it also identifies the same subgroups.

B1 B2 B5

Figure 6.1: Predictive covariate versus subgroup stability in three simulated out-
comes. The stability is estimated by flipping the labels for 10% of the data. Each
point corresponds to a realisation of the outcome function and we report the
stability for a total of 100 realisations.

We repeat the experiment for model B2 but we consider three modifications.

In the first modification we change the threshold, so that we retain the subgroups

that have a positive estimated effect. By reducing the threshold we expect the

algorithm to be less stable with respect to the subgroup membership, particularly

if a large number of observations exhibit a treatment effect close to that threshold.

The results are reported in figure 6.2(a) where we observe that the algorithm has

a lower subgroup stability compared to our initial setting. In particular, when

using ŜATE + 0.1 as the threshold (figure 6.1(b)) the average subgroup stability

is 0.8. By reducing the threshold now this becomes equal to 0.7. We additionally

observe that there is no longer a linear correlation between the two measures and



128 CHAPTER 6. EVALUATION FRAMEWORK

we can observe large predictive covariate stability but low subgroup stability for

some realisations of the data. In the second modification of B2 we reduce the

coefficient of I(X1 > 0) from 2 to 1, hence making the problem more challenging.

In figure 6.2(b) we observe that both measures are reduced when compared to

figure 6.1(b). Lastly, in the third modification we replace the term I(X1 > 0) with

X1. The results (figure 6.2(c)) indicate that when the subgroup is not defined by

a clear cut-off value in the covariate space the correlation between the measures

we observed in the initial dataset is no longer present. Therefore, the observed

linear correlation could be a combination of factors such as retaining subgroups

that have a large effect and defining the subgroups by a partition of the space,

which can be identified by a tree-based algorithm like VT.

(a) (b) (c)

Figure 6.2: Predictive covariate versus subgroup stability for three modifications
of outcome model B2. In all scenarios the stability is estimated by flipping the
label for 10% of the data. In (a) we reduce the threshold of VT that controls the
final subgroup selection, in (b) we reduce the effect in the subgroup and in (c)
the subgroup is not defined by a clear cut-off.

6.3.2 Subgroup Quality vs Stability

In this section we explore how stability can be used in conjunction with existing

measures to perform hyper-parameter selection. We consider VT with different

number of trees (100, 500, 1000) as well as different types of modelling, i.e using a

Two-model approach (T) or Single-model (S). We use 50 bootstraps and estimate

the subgroup quality as described in this chapter. The stability is estimated by

flipping the labels for 10% of the data and using again 50 samples. In figure 6.3

we report the quality versus subgroup stability for two realisations of outcome

models B1 and B2. The annotated points (triangles) correspond to the pareto
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front, i.e. no other point achieves both a higher quality and higher stability.

Focusing on the first plot we notice that using a Two-model approach with

1000 trees achieves the highest quality. However, we observe that also a T-learner

with 100 trees and a S-learner with 500 or 1000 trees are practically equivalent in

terms of subgroup quality. If we were to use this measure to identify the optimal

method then any of the above could be selected. However, once we consider

the subgroup stability then a T-learner with 100 trees becomes the clear choice,

since it achieves a higher stability without sacrificing quality. In figure 6.3 we also

show an example using B2 where we observed that the algorithm tends to achieve

large values of subgroup stability. In this case a Single-model approach with 500

trees is clearly the optimal choice since it achieves the highest stability while its

quality is close the largest value. This is an example of how plotting the quality

and stability can allow us to identify an algorithm with the desirable operational

characteristics. We will now describe how these measures can be used to select

an algorithm in a simulated clinical trial.

B1 B2

Figure 6.3: Examples of how subgroup quality and stability can be used to per-
form hyper-parameter selection for VT. We notice that we may choose an algo-
rithm that achieves slightly lower quality compared to the optimal but comes
with a much higher stability.

6.3.3 Algorithm Selection

We evaluate five subgroup identification algorithms with different characteristics

on the simulated study the details of which we discussed in Chapter 4. Here the

outcome of interest will indicate survival. For MCR and VT we keep the sub-

groups that have an estimated treatment effect larger than the estimated SATE
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in the overall sample. For SIDES we keep the subgroups that have both larger

effect than the estimated SATE and exhibit a statistically significant effect with

p− value ≤ 0.01 or p− value ≤ 0.05. We report results for both cases, which will

be denoted by SIDES-01 and SIDES-05 respectively. We expect the first approach

to lead to higher quality since it will retain subgroups with higher statistical sig-

nificance. For IT we use the bootstrap-based approach to identify the final tree

(Su et al., 2009, 2008; Calhoun et al., 2018). We consider different values for the

parameter ρ in eq. (5.6). Larger values penalise heavier the complexity of the

final tree, resulting in smaller trees. We report results using ρ = 1 as well as

using the 1-SE rule as described in the previous chapter. The former tends to

lead to trees with many subgroups, while the latter is more conservative. These

two approaches are denoted as IT-1 and IT-SE respectively.

In figure 6.4(a) we report the subgroup quality versus subgroup stability. The

quality is estimated as described in the previous section and using 100 bootstraps.

The stability of the algorithms is estimated by changing the labels for 10% of the

data. This is repeated 100 times and the estimated stability is reported. We

notice that VT-T and IT-SE are in the pareto front. The results indicate that we

could choose IT-SE since we can sacrifice a small amount of quality in order to get

a much more stable algorithm. We can also validate that SIDES-01 and IT-SE

lead to higher values of quality compared to their less conservative counterparts

SIDES-05 and IT-1.

(a) (b)

Figure 6.4: (a) Comparison of subgroup identification algorithms with respect
to subgroup quality and stability on a simulated trial and (b) Comparison of
subgroup identification algorithms with respect to MAE and subgroup stability.
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What happens if we consider the error of the estimated treatment

effect?

Some of the algorithms described in this chapter provide estimations of the indi-

vidual treatment effect as part of their process. These include VT (Foster et al.,

2011) and MCR (Tian et al., 2014) the details of which can be found in Chapter

3. Also, in the previous chapter we discussed how IT (Su et al., 2009) can be

used for this task. Therefore, a relevant question is how these algorithms would

perform if they were to be used for individual treatment effect estimation. Using

the Mean Absolute Error (MAE), the error of the estimated ITE can be expressed

as:

MAE =
1

neval

neval∑
i=1

|ÎTE(xi)− ITE(xi)|

where neval is the size of the subset of the data on which the algorithm is evaluated,

ÎTE(xi) is the estimated treatment effect for xi and ITE(xi) is the true treatment

effect.

The main challenge comes from the fact that ITE(xi) is never observed. To

this end, some recent works focus on replacing it with an estimate derived from

the data. For example, Shalit et al. (2017) use a nearest-neighbour matching

estimator to approximate the ground truth in order to perform hyper-parameter

selection. In these cases the counterfactual of an observation is approximated

by the factual outcome of its nearest neighbour that belongs to the opposite

treatment group. In (Schuler et al., 2018) the authors focus on the MSE of ITE

and discuss several approaches for approximating ITE(xi) using a model fitted on

the evaluation dataset. Some choices include using matching and IPW estimators.

Here we will follow a similar approach and use a plug-in estimate of ITE(xi). We

note however that this comes with certain limitations. Clearly this requires the

plug-in estimates to be close to the ground truth. To this end, Alaa and Van

Der Schaar (2019) propose a method for correcting the potential bias that may

arise from the above procedure, considering that the true loss will be close (but

not equal) to the one estimated using the plug-in model. In particular, they

express the loss (with parameters the conditional potential outcomes, propensity

score and distribution of the covariates) as the von Mises expansion around the

loss that uses plug-in estimates for its parameters and show how the relevant

influence functions can be calculated.

In order to evaluate the algorithms with respect to their surrogate MAE, we
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use 90% of the data for training the subgroup identification algorithm and 10% of

the data for evaluation and report the average value over 100 random splits. We

choose CF as the plug-in model as implemented in the grf package (Tibshirani

et al., 2020). In particular the surrogate MAE is estimated as:

1

neval

neval∑
i=1

|ÎTE(xi)− ÎTECF (xi)|

where ÎTECF (·) is an estimate using the CF model trained on the evaluation

dataset. Due to the small sample size we do not use the “honest” splitting

procedure suggested in (Wager and Athey, 2018a). For VT we use the estimated

ITE derived from the final tree and not the one derived in the first step. This

is in order to evaluate the whole subgroup identification algorithm in terms of

treatment effect estimation. The interested reader can also find information about

a similar subject in (Makar et al., 2019) where the final tree is referred to as the

distilled model and the procedure of training a simpler and easier to interpret

model is called distillation. In figure 6.4(b) we plot the surrogate MAE and

subgroup stability. Based on the results we could choose VT-S as the algorithm

that minimises the estimated error while achieving the second largest stability.

We note that the quality as a measure could be misleading if the treatment effect

is not estimated correctly, which is particularly important if we were to perform

subgroup identification in observational data. We highlight, however, that the

results should be interpreted with caution, since the MAE acts here solely as a

surrogate based on the estimations of CF.

6.4 Summary

We introduced a multi-objective evaluation framework for subgroup identification

algorithms based on two desirable characteristics: subgroup quality and subgroup

stability. We showed how predictive covariate and subgroup stability can be used

to get insights about the task at hand. Furthermore, we showed how we can use

our framework to tune the hyper-parameters of a popular subgroup identification

algorithm. Lastly, we studied how quality and subgroup stability can guide the se-

lection of an algorithm in a simulated trial and explored an alternative evaluation

framework suited for algorithms that give estimates of the individual treatment
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effect. We emphasise that in this chapter we used outcome noise as our mech-

anism for illustrative purposes but also due its wide applicability in real-world

settings. As we discussed other mechanisms may require revisiting the definition

of the stability measure and this would dependent on the specific application.

In this chapter we focused on marginally randomised studies and the subgroup

identification algorithms that were discussed have been introduce in this setting.

If we were to apply this framework in the case of observational studies we would

first need to ensure that for the measure of quality we get unbiased estimations

of the treatment effect, while we also use subgroup identification algorithms that

give unbiased estimates within the subgroups. We discussed some approaches

for ATE estimation in observational studies under the assumption of no hidden

confounders in Chapter 2 and some approaches for subgroup identification in the

previous chapter.



Chapter 7

Conclusions and Future

Directions

7.1 Conclusions

In the beginning of this thesis we posed a number of questions regarding predic-

tive covariate selection, subgroup identification in the presence of confounders and

evaluation of subgroup identification algorithms. In order to tackle these ques-

tions we proposed new methods and evaluated them in a number of scenarios.

Here we summarise the answers to these questions and our findings.

Q1 : “How should we adapt information theoretic criteria to identify predictive

covariates?”

We phrased the problem of predictive covariate selection as an optimisa-

tion problem involving two log-likelihood functions – the log-likelihood of

the outcome given the interaction between covariates and treatment and

the log-likelihood of the outcome given only the covariates (Definition 1).

Identifying the covariates that maximise the difference between the two

functions corresponds to optimising an information theoretic quantity (eq.

(4.1)). Borrowing concepts from the information theoretic feature selection

literature we focused on low-dimensional criteria that are better suited for

the small-sample scenarios we often encounter in randomised studies (Sec-

tion 4.2). We then identified a limitation of the approach: it can be biased

in non-marginally randomised studies, i.e. when the treatment assignment

134
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depends on the covariates (eq. (4.5)). To this end, we proposed simple pre-

processing steps that can ameliorate this issue and validated them empiri-

cally (Section 4.6). In particular we propose INFO+S, which applies INFO+

in strata with different values of the propensity score and INFO+W, which

applies INFO+ in a new sample derived from over-sampling observations

based on IPW.

Q2 : “How do information theoretic criteria compare to subgroup identification

approaches on the task of predictive covariate selection in marginally ran-

domised studies and how do they perform when the treatment assignment

depends on the covariates?”

As we discussed most existing approaches do not tackle the problem of

predictive covariate selection directly, but this is commonly part of their

objective, which can be individual treatment effect estimation and/or sub-

group identification. We compared a low dimensional information theoretic

criterion (INFO+) with various methods from the literature designed for

subgroup identification, namely VT (Foster et al., 2011) and SIDES (Lip-

kovich et al., 2011), as well as a method designed for identifying treatment-

covariate interactions and modelling the individual treatment effect (Tian

et al., 2014). The results show that INFO+ is a strong competitor when the

covariates are categorical and is only influenced by the predictive strength

(Section 4.4.2). When the covariates carry both prognostic and predictive

information VT achieves the highest TPR, however it is also influenced by

the prognostic strength (Section 4.4.2) and may be biased towards identi-

fying prognostic covariates as predictive (Section 4.4.3, 4.4.4). INFO+ suc-

cessfully distinguishes between prognostic and predictive covariates (Section

4.4.4) and is more computationally efficient than VT and SIDES (Section

4.4.5). The simulations that consider the presence of confounders show

that INFO+ can be influenced by the treatment assignment mechanism.

The proposed extensions, INFO+S and INFO+W can ameliorate these is-

sues and in some studied scenarios they perform as if the data were from a

marginally randomised study.

Q3 : “How can we modify existing recursive partitioning approaches for sub-

group identification in order to account for the presence of confounders in

the data?”
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In order to answer this question we studied a methodology based on IT (Su

et al., 2009) that uses non-parametric weighting estimators of the treatment

effect in order to optimise clearly defined quantities (Kallus et al., 2021).

In particular, this methodology uses estimators that optimise either the

worst-case conditional biases of the potential outcomes (B-IT) or the worst-

case conditional MSE of the sample average treatment effect (MSE-IT).

This method overcomes some limitations of existing methodologies, such as

those that use IPW estimators, which become particularly important in the

context of subgroup identification.

Q4 : “What are the benefits from using weighting estimators in the context of

subgroup identification?”

We validate the proposed method in simulated scenarios and a real-world

study. By varying the confounding strength we show that using weighting

methods can reduce the error of the estimated effects and achieve higher

proportion of correct trees (Section 5.4.1). In Section 5.4.2 we explored

using a simple example the properties of our modifications to IT compared

to performing subgroup identification with IPW estimators. In Section

5.4.3 we studied what happens under incorrect specification of the out-

come model. In the absence of subgroups, a method that uses unadjusted

estimators tends to identify subgroups defined by the confounders, while

weighting estimators can overcome these issues (Section 5.4.4). In Section

5.5 we firstly consider a simulated study and introduce artificially imbalance

in the data. We observe that MSE-IT can identify the correct tree, while

this is not the case when using unadjusted estimators. We then revisited a

real-world case study and validated that similarly to previous findings, the

suggested approach does not identify a subgroup.

Q5 : “How should we evaluate subgroup identification algorithms in order to

account their robustness to small changes?”

The stability of subgroup identification algorithms refers to their ability

to reproduce similar subgroups under small changes in the data. This is

closely connected with the well-studied problem of feature selection stability

(Nogueira et al., 2017). We show how such measures can be used for various

tasks, such as hyper-parameter selection and algorithm selection. Since, we

would additionally like the subgroups to show some desirable properties
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such as enhanced effects, we propose a multi-objective framework and show

how an algorithm can be selected using the pareto optimal solution rather

than a single criterion.

Overall the thesis describes tools and methodologies for evaluating the exis-

tence of heterogeneous effects given randomised as well as observational studies

with no hidden confounders. Table 7.1 summarises the results of this thesis.

Task What is new in this thesis?

Chapter 4 Identifying predictive
covariates in potentially
high-dimensional studies

Information theoretic
approaches for randomised
studies along with
modifications that use the
propensity score when the
treatment assignment depends
on the covariates

Chapter 5 Identifying subgroups of
heterogeneous effects in the
presence of confounders in the
data

Modifications to a recursive
partitioning approach using
weighting methods for
treatment effect estimation in
the subgroups

Chapter 6 Evaluation of subgroup
identification algorithms

A multi-objective evaluation
framework that uses the
stability of the selected
subgroups as a measure that
captures their robustness to
small changes in the data

Table 7.1: Summary of topics studied in this thesis and the methodologies sug-
gested in each chapter.

7.2 Future Work

The methods described in this thesis can be extended and further improved to

handle different types of data and tasks. Also, the results of this thesis suggest

a number of interesting research avenues for future work. Here we discuss some

methodological improvements and potential new directions.

An interesting problem is the extension of the predictive covariate selection

criterion presented in Chapter 4 in order to handle mixed data. In Chapter 4 we
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discretised continuous covariates using unsupervised methods such as K-means

and histogram-based approaches in order to estimate the mutual information.

Information theoretic approaches, such as INFO+, can be influenced by how

continuous covariates are handled, while other methods can be applied directly

using all the information provided in the data. Therefore, it would be interesting

to explore the role of the used estimator. Recent works have proposed estimators

suited for continuous and mixed data that can outperform common baselines, such

as those used in this thesis. Some examples include estimators that build on the

nearest neighbour principle and extend the commonly used Kraskov-Stögbauer-

Grassberger estimator (Kraskov et al., 2004; Gao et al., 2017), while others make

use of kernel density estimators (Beknazaryan et al., 2019). It could be interesting

to explore how these estimators could be adopted to extend INFO+ in the context

of mixed covariates, continuous outcomes and treatments.

The methodology described in Chapter 5 results in multiple non-overlapping

subgroups that share common covariates. In practice we may have potentially

overlapping subgroups that are defined by different sets of covariates. A potential

solution to handle such scenarios is to retain in each node the best split identified

for a number of covariates, which can be a parameter specified by the user (Lip-

kovich et al., 2011). This procedure would result in multiple trees with different

root nodes. Another concern comes from the multiple comparisons that may need

to be performed. This also concerns the final subgroups that may be retained

as discussed in the last section of Chapter 5. Additionally, as the sample size

decreases (e.g. by performing multiple splits), the overlap between the treatment

groups may be poor. To this end an interesting approach is explored in (Kallus

and Santacatterina, 2019b), where the target population for which SATE is going

to be estimated is optimised.

Another interesting extension is to modify the splitting criterion regarding the

subgroup identification algorithm in order to identify subgroups with pre-defined

characteristics. Dusseldorp and Van Mechelen (2014) propose a splitting criterion

that identifies subgroups defined by qualitative interactions. For the two subsets

derived by each possible split, the evaluation criterion is analogous to maximising

the effect in one subset and minimising it in the other. The primary objective

is to split in the data so that in one subgroup there is enhanced effect while in

the other the opposite holds. In the initial algorithm unadjusted estimators of

the treatment effect are used. To this end, we can explore the use of weighting
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methods as described in Chapter 5 in order to handle the presence of confounders.

We would like to highlight that this thesis has focused on problems where there

is a binary treatment. Even though this is a very common setting, extensions

of the described methodology, particularly regarding the subgroup identification

algorithm of Chapter 5 are not straightforward and require further research. If the

treatment is categorical then the procedure might need to be repeated multiple

times in order to account for the different comparisons or could require defining

the treatment effect differently (Feng et al., 2012; Lopez et al., 2017). In any

case, both the methodology and the weighting methods will need to be revisited.

Extensions to the case of a continuous treatment is more challenging since both

the recursive partitioning procedure and the estimation of the effects will need to

be adjusted (Kallus and Santacatterina, 2019a; Fong et al., 2018).

Lastly, throughout this thesis we considered either marginally randomised or

observational studies, where the latter were effectively treated as conditionally

randomised. As we described the latter comes from making assumptions that are

not guaranteed to hold in real-world scenarios. In particular, the assumption of no

hidden confounders can be considered particularly strong in a real-world setting.

In our context violations of this assumption can affect the results in both the

predictive covariate selection problem, since we model the treatment assignment,

and the subgroup identification problem, since we estimate treatment effects for

the splitting criterion. There is a long literature on this problem in the context of

treatment effect estimation, with different methods for assessing how unmeasured

confounders can affect the conclusions such as performing sensitivity analysis (e.g.

(Stürmer et al., 2005; VanderWeele and Arah, 2011; Hong et al., 2021; Kilbertus

et al., 2020)). An interesting avenue for future work would be to explore how

such methodologies can be adopted to validate the procedures described in this

thesis.
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Appendix A

Supplementary Material

A.1 Proof of Lemma 1

Lemma 1. In marginally randomised experiments and in the absence of treatment

effect JPred-CMI becomes independent of the covariates.

Proof. Under the assumption of no treatment effect we have p(y | x, t = 1) =

p(y | x, t = 0) = p(y | x), ∀x. The following holds.

I(T ;Y |X) =

=
∑
X

∑
Y

∑
T

p(y,x, t)log
p(y, t | x)

p(t | x)p(y | x)
=

=
∑
X

∑
Y

∑
T

p(y,x, t)log
p(y | t,x)

p(y | x)
=

=
∑
X

∑
Y

∑
T

p(y,x, t)log p(y | t,x)−
∑
X

∑
Y

∑
T

p(y,x, t)log p(y | x) =

=
∑
X

∑
Y

p(y | x, t = 1)p(t = 1 | x)p(x)log p(y | t = 1,x)+

+
∑
X

∑
Y

p(y | x, t = 0)p(t = 0 | x)p(x)log p(y | t = 0,x)−

−
∑
X

∑
Y

p(y,x)log p(y | x) =

= p(t = 1)
∑
X

∑
Y

p(y | x, t = 1)p(x)log p(y | t = 1,x)+

+
(
1− p(t = 1)

)∑
X

∑
Y

p(y | x, t = 0)p(x)log p(y | t = 0,x)−
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−
∑
X

∑
Y

p(y | x)p(x)log p(y | x) =

= p(t = 1)
∑
X

∑
Y

p(y | x, t = 1)p(x)log p(y | t = 1,x)+

+
(
1− p(t = 1)

)∑
X

∑
Y

p(y | x, t = 1)p(x)log p(y | t = 1,x)−

−
∑
X

∑
Y

p(y | t = 1,x)p(x)log p(y | t = 1,x) = 0

where the fifth equality follows from randomisation, T ⊥⊥X and the last equality

from the assumption of no treatment effect.

A.2 Varying the Confounding Strength: Larger

Subgroups

We repeat the experiment of section 5.4.1 generating data according to the out-

come function (Foster et al., 2011):

Y = −1 + 0.5(X1 +X2 −X3 +X2X3) + T (0.1 + 0.91(X1 > −0.545 ∩X2 < 0.545)

This defines a subgroup with effect equal to 1 and larger size compared to the

problem studied in Chapter 5. Here the subgroup corresponds to ∼ 50% of the

data. The treatment is generated according to the same model. In figure A.1 we

observe in general similar findings with the main document. However, we also

notice that in this case using the augmented estimator tends to provide worse

results for PCT and increased error for γ = 1 (particularly when using B-IT).

We note again that both the weights and the outcome were generated under

an incorrectly specified model since it does not include the interaction between

X2 and X3 as well as functions of the covariates (in our case indicators). The

weights may balance the means of the covariates, but as has been described this

will not necessarily hold for subsets of the data. From the results it appears that

miss-specification may not be the only reason, but also the definition of PCT.

In particular, we found that often these methods tend to identify meaningful

subgroups (close to the true one) but these are defined using more than two

splits, hence they are not considered by the definition of the metric as correct.
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(a) IT

(b) B-IT

(c) B-IT (augemnted)

(d) MSE-IT

Figure A.1: PCT and TPR (first column), absolute error in the subgroup (second
column) and MSE of the estimated effect in a separate test set (third column)
using IT and the proposed alternatives
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(e) MSE-IT (augmented)

Figure A.1: PCT and TPR (first column), absolute error in the subgroup (second
column) and MSE of the estimated effect in a separate test set (third column)
using IT and the proposed alternatives (cont.)

A.3 Varying the Outcome Specification: Nor-

mally Distributed Covariates

We repeat the experiment of Section 5.4.3 but instead we use normally distributed

covariates. In this case the number of possible splits for each covariate is equal to

the sample size of each node, hence optimising the weights for each possible split

would be computationally expensive. Instead we optimise the weights using 3 and

5 equally spaced cut-off values for each covariate. Then for each possible split of a

covariate we use the estimated weights derived for the nearest cut-off. In this way

the covariates may not be matched in their means, but at least approximately we

can achieve balance between samples with similar values of the covariates. The

PCT is reported in Chapter 5. For completeness here we report the absolute

error in the subgroup in figure A.2 (for the case of using 5 splits) and the average

number of false discoveries in figure A.3.
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(a) MSE-IT (d = 1) (b) MSE-IT (d = 2)

Figure A.2: Absolute error resulting by estimating the weights in the root node,
parent node or for each split.

(a) MSE-IT (d = 1) (b) MSE-IT (d = 2)

Figure A.3: Number of false discoveries averaged over the number of simulations.


