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Abstract

Using Public Cloud Storage (PCS) can help to enhance data accessibility and
availability. However, one of the major PCS concerns is how to address insider threats.
These threats can occur accidentally or intentionally. A PCS provider may hide the
data breach or loss that has happened to protect its reputation. The scope of this thesis
is how to counter insider threats related to data integrity property in the context of
Data Integrity Auditing (DIA). The data verification in DIA may be performed by
either the users or by Third-Party Auditors (TPAs) via the use of integrity tags. To
this end, the thesis has made three novel contributions.

Firstly, the thesis presents a comprehensive threat analysis in the context, specifies
requirements for an effective and efficient DIA service and presents a critical review
of the state-of-the-art solutions in the light of the threats and requirements. The
analysis and literature review have led to the identification of three research questions
in relation to providing a secure, reliable and efficient DIA service, i.e. how to minimise
or eliminate trust in the third-parties (PCS providers and TPAs), how to minimise the
overheads imposed on the users and how to balance the trade-off between costs and
security protection levels. Secondly, it proposes a novel tagging method, the Tagging
of Outsourced Data (TOD) method, for tag generations and verifications required to
facilitate the DIA service. TOD has three main features making it a secure and efficient
solution: it supports both public and private verifiability on the same platform (dual
verification), it preserves data confidentiality and achieves a strong level of resistance to
tag collisions, and it supports dynamic data and tag deduplication. Thirdly, it proposes
a novel DIA framework for providing a secure and reliable DIA service for outsourced
data in a PCS. The framework, called the DIA with Eliminating any Trust in Third
Parties (DIA-ETTP), uses the TOD method along with the following novel ideas: (1)
use entity redundancy (TPAs and PCSes) rather than data redundancy to counter
collusion attacks among PCS providers, (2) use dual verification and collaborative
verification for countering frame and collusion attacks by TPAs, (3) organise PCS
providers and TPAs into a hierarchical architecture and pair TPA/PCS to minimise
costs imposed on the users while working against collusions by the providers, (4) use
two-level (block-level at both user and provider end) data deduplication to further
reduce the users’ costs and (5) use two-level integrity assurance (public verification
in level 1 and dual verification in level 2) to balance the trade-off between protection
strength and cost.

Both the TOD method and the DIA-ETTP framework have been comprehensively
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analysed and evaluated in terms of security and performance. The performance
evaluation is done both theoretically and experimentally. The results indicate that
the framework is more efficient, particularly for end users, while providing a richer set
of functionalities, than related solutions.
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Chapter 1

Introduction

1.1 Research Context

Given the increased data and computing power needs that exist in the modern business
world, individuals and organisations are seeking to satisfy their demands and control
their costs simultaneously. To address the challenges, many of these individuals and
organisations are turning to cloud computing as a solution.

The cloud computing model relies on sharing resources that are hosted in third-
party datacentres over the internet and offers various capabilities to process and store
the data in a way that utilises economies of scale. The cloud computing model helps
avoid upfront infrastructure costs and management needs, allowing the focus to be on
their operations.

Public Cloud Storage (PCS) is a mode of data storage whereby users store their data
remotely on logical pools of multiple physical storage resources that are distributed on,
and hosted by multiple cloud datacentres. PCS services are already available from
numerous providers such as Amazon S3 [1], Microsoft Azure Blob [2], DropBox [3] and
Google Drive [4]. As data volume is expected to continue to increase globally, PCS is
projected to be a highly demanded service due to its many advantages, including cost-
savings, accessibility and availability. In other words, PCS is an increasingly appealing
route for archiving and synchronising data across multiple devices, as the data is easily
accessible anywhere and anytime. It can be used to overcome some of the drawbacks
of traditional storage methods, e.g. low or limited capacities, maintenance costs, etc.
Many researchers predict that PCS will become popular with businesses due to its low
cost, which is generally cheaper than dedicated in-house physical server storage.

1.2 Security Concern in PCS

While PCS has several advantages, such as a pay-per-usage billing model, scalability,
and ubiquitous access; several concerns have nonetheless delayed wider adoption of the
service, especially among enterprises. Concerns include security and privacy issues.
PCS is an Internet-based system. Therefore, it is vulnerable to a large number of
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security threats and attacks 1. According to the Cloud Security Alliance (CSA) report
in 2019, data breaches and losses constitute the top two security threats [5]. These two
threats may occur intentionally by attackers or accidentally due to operational issues
or insufficient authentication and authorisation, etc.

Since providers are third-party service providers, their services are vulnerable to
many security threats and attacks from authorised insiders. A dishonest provider
may delete data intentionally in violation of its contracts to save storage space. Or
it may hide any accidental breaches or data losses to protect their reputation. A
disgruntled employee working for a provider may make unauthorised alterations to
users’ data in an attempt to discredit his/her employer. Therefore, by hosting data in
PCS, users worry about their data because sensitive data (which may include personal
information, financial data, electronic health records, etc.) could be lost, misused or
accessed without authorisation and detection, while they no longer possess a local copy
of the data.

On the other hand, a user may falsely accuse his/her provider of a data integrity
issue or confidentiality breach in an attempt to obtain an unlawful financial gain. These
security concerns are hindering the widespread adoption of cloud services in security-
sensitive areas such as healthcare and cybersecurity collaborations [6] [7] [8].

Data Integrity Auditing (DIA) is a security service used to address these threats
and to ensure the integrity of the outsourced data held in PCS. DIA can offer extensive
protection to users against any hidden losses of, or unauthorised modifications to, their
outsourced data held in PCS, because of hardware failure, dishonest providers and other
issues.

At the centre of DIA is a tagging method through the use tags (also called integrity
authenticators). The tagging method is based on one of cryptographic functions and
used for generating and verifying tags. In DIA, users are responsible for checking their
data, i.e. private DIA or delegating their responsibilities to another party called a
Third-Party Auditor (TPA), i.e. public DIA. The users need to pre-process the data
before uploading to generate their associated tags. The tags can be used later when
the verifier, i.e. users or TPA, want to check the integrity of the outsourced data. The
provider should provide a proof (i.e. it includes some data and/or their associated tags)
to the verifier to indicate that the users’ data have not been corrupted or altered in
any unauthorised way. The verifier is required to verify the proof to ensure an accurate
result is obtained.

Private DIA can overburden the users in terms of storage, computation and
communication overhead costs. As a result, public DIA has been introduced. By
using the TPA, the burden on the users is eliminated. The TPA can have the expertise
to satisfy both the users and the provider. Not only can the users benefit from an

1Appendix A presents a security analysis of Public Cloud Storage. It starts by giving the
background to cloud computing and Public Cloud Storage (PCS), followed by constructing a general
model for PCS. The next part is the security analysis of the model by identifying and investigating
potential security threats and attacks that could compromise data confidentiality, integrity and
availability.
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auditing report that is released by the TPA, but even the provider can benefit. For
example, a provider’s reputation can be enhanced among its competitors when there
is a high-quality auditing report.

1.3 Research Motivation

Over the past few years, there are a good number of DIA related works published in
literature [9–36]. These works can largely be classified into two main groups, the design
of a tagging method for the generation and verification of integrity tags [9–23], and the
design of a DIA system for ensuring the integrity of outsourced files via the use of a
tagging method [24–36]. The state-of-the-art tagging methods can be further classified
into two categories, symmetric-key based [9–13, 37], and public-key based [14–20].
The symmetric-key based methods can only support private verifiability, making them
unsuited to TPA-based DIA (Public DIA) or in an environment where third parties
cannot be trusted unconditionally. The asymmetric-key based methods, such as RSA
based [9, 15, 17] and short Boneh-Lynn-Shacham (BLS) based [18–22, 38], can support
both public and private verifiability, but these methods are costly to the user end,
particularly if users have a large number of files in the PCS.

Most of the state-of-the-art DIAs proposed so far either make use of a
centralised system architecture [24–33] or assume that the providers and/or TPAs are
unconditionally trustworthy [33–36]. The centralised system architecture is vulnerable
to performance and reliability bottleneck. The assumption of providers/TPAs being
unconditionally trustworthy may not be valid in many cases, as indicated by a recent
study that 34% of threats in 2018 are from authorised insiders and it is increasing every
year [39–41]. A few that make use of a distributed system architecture [15, 35, 36] rely
on the use of data redundancy to enhance reliability. This approach imposes a high
level of computational and communication costs on users.

In addition, the existing solutions have not considered how to support dynamic
data with confidentiality preservation and tag collision resistance.

Our work reported in this thesis is set to address these limitations and weaknesses,
for which we have formulated the following research questions:

1. How to minimise trust on the third party service providers?

2. How to provide a DIA service securely and reliably with minimal costs,
particularly for the user end?

3. How to balance the trade-off between costs and security protection levels?

1.4 Research Aim and Objectives

Our research aims to explore how to address insider threats in the context of DIA for
PCS through designing a secure, reliable and efficient DIA solution. Our aim can be
achieved by meeting the following objectives:
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1. To study PCS and DIA systems.

2. To perform a security analysis for PCS and DIA by identifying and investigating
potential security threats and attacks that could compromise the integrity of
outsourced data.

3. To specify sets of functional, security, reliability and efficiency requirements for
the design of DIA.

4. To investigate and critically analyse state-of-the-art solutions to DIA against the
specified requirements to identify knowledge gaps.

5. To design a DIA solution to address the identified knowledge gaps.

6. To perform a security analysis for the designed solution.

7. Evaluate the performance of the solution by comparing it with the related
solutions in literature, in terms of communication, computational and storage
costs.

8. To publish our findings.

1.5 Research Methodology

The research methodology used for our work consists of three key phases: a literature
survey and critical analysis of related work, DIA design, and an analysis and evaluation
of the designed DIA.

1.5.1 Literature Review

The first task carried out in our research was to study PCS and DIA and perform a
security analysis. The purpose was to identify the security insider threats and attacks
and specify the DIA requirements. The second task was to study the relevant literature
on the DIA. It was apparent that there was little existing work on minimising reliance
on the need to trust third parties, and the cost imposed on the user. This gap was
identified through a critically reading and analysis of the literature. This stage of our
work led to the first novel contributions, i.e. security analysis and design requirement
specifications for DIA. Performing security analysis, conducting the literature review
and critically analysing the literature satisfy objectives (1), (2), (3) and (4), listed
above. The literature was investigated throughout the duration of this research, with
recently published work taken into consideration.

1.5.2 Theoretical Work

Following the initial literature review and design requirements specification, DIA
satisfying these requirements was designed. This stage of our work led to the other two
novel contributions. The first one is the design, analysis and evaluation of a novel
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tagging method, Tagging of Outsourced Data (TOD). The TOD integrates public
and private verifiability efficiently and securely. Users can delegate data integrity
verification tasks to a TPA (supporting public verifiability), but still allows the facility
(private verifiability) for them to verify the integrity of the data themselves at any time,
with less overheads to the user. In addition to data integrity protection, TOD also
protects data confidentiality besides supporting the dynamic data, and it is resilient
against tag forgery and tag tampering attacks by authorised insiders. The second
novel contribution is the design, analysis and evaluation of a DIA framework. The
DIA framework deploys the TOD method to support a two-level approach to integrity
verification efficiently. It uses a multi-entity hierarchical structure, the principle of the
separation of duties and collaborative verification to counter collusion/frame attacks
and to enhance data availability. It uses a two-level approach to data deduplication
and integrates the data updating and data deduplication to minimise costs imposed
on the entities involved. The design of the TOD method and the DIA framework
accomplishes objective (5).

1.5.3 Analysis and Evaluation

The next stage of our research was the analysis of the security properties of the designed
method and DIA and evaluating their performance. The analysis was first carried
out to analyse the designed method against the security requirements specified and
attacks identified through problem analysis and a literature survey of the tagging
method. After the completion of the security analysis of the tagging method, its
performance was evaluated in terms of its computational and storage overheads, using
theoretical and experimental analysis. The performance result was compared with
the most relevant work to demonstrate the effectiveness of the ideas in the design.
The same was performed for the DIA; its security and performance was evaluated
in terms of computational, communication and storage overheads, both theoretically
and experimentally. These analyses and evaluations satisfy objectives (6) and (7). To
disseminate the results obtained from the research conducted, we have published our
findings in peer-reviewed journals fulfilling objective (8).

1.6 Novel Contributions

The research work presented in this thesis has led to the following novel contributions.

• Security Analysis of PCS and DIA [42] [43] [44].

– A comprehensive threat analysis has been performed.

– Sets of functional, security, reliability and performance requirements for DIA
have been specified.

• A Novel Tagging Method [43]
A Tagging of Outsourced Data (TOD) method has been proposed. This method
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defines how tags are used as integrity authenticators and verified in an efficient
and secure manner. The following features and ideas have been utilised:

1. Hybrid use of two cryptographic functions, i.e. an asymmetric-key based
signature function and a symmetric-key based integrity-preserving function,
to support both public and private verifiability on the same platform, dual
verificationn.

2. Use efficient signature functions, the algebraic signature [45], to achieve
the property of private verifiability and the BLS signature function [46], to
achieve the property of public verifiability, to support a batch verification,
reducing computational costs.

3. Use of a homomorphic encryption scheme to encrypt data blocks uploaded
onto PCS to preserve data confidentiality while supporting dynamic data.

4. Support tag deduplication to reduce the number of tags generated, thus
reducing computational and storage overheads.

5. A user ID, along with a random number, is used for achieving collision
resistance and counter provider attacks with a less cost at the user.
Furthermore, it allows to apply tag deduplication for the same file or for
different files and support dynamic data more efficiently.

• A Novel DIA Framework [44]
A DIA framework for outsourcing data in a PCS, which called DIA with
Eliminating any Trust on Third Parties (DIA-ETTP) has been proposed. TOD
method with the following features and ideas has been utilised:

– Use entity redundancy (TPAs and PCSes), i.e. Multi-PCS_Multi-TPAs
system model, rather than data redundancy for countering collusion attacks
among providers.

– Use dual verification for countering frame attacks and collaborative
verifications for collusion attacks by TPAs. The result of the data
verification is concluded and approved by multiple TPAs, not one TPA.

– Use hierarchical structures of providers and TPAs and paired TPA/PCS to
minimise users’ costs while against collusions.

– Two data integrity Assurance (LoA) levels to trade-off between security
protection strength (detecting any misbehaviours by either the providers
or TPAs) and costs incurred in providing these protections. The first level
supports the use of public verification and is intended for users with non-
critical/low-sensitivity data or users who have more trust in their service
providers, while the second level supports dual verification and is intended
for users with critical/highly-sensitive data or users who have less trust in
their service providers.
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– Two data deduplication levels (a data-block level data deduplication and at
both the user-end and the PCS-end) to release users from computing tags
for data if the data are duplicated, within the file itself or across different
files.

– Integrate the data deduplication with data updating to allow keeping the
outsourced data non-duplicated when existing files are updated and reduce
the computational cost at the user, where users can be released from
generating tags for updated data if they are duplicated.

– A novel data structure has been devised, which called the Multiple Mapping
Table (M2T), to track the updates of all the files owned by the same user
and facilitate the data deduplication.

1.7 Report Structure

The remainder of this thesis is organised as follows.

Chapter 2 presents DIA classifications then highlights security insider threats in
relation to the data integrity verification in the DIA system. This is followed by
a literature survey on the state-of-the-art tagging methods, and DIA works for
outsourced data in PCS. A number of observations are made on these works
in terms of efficiency and security in order to identify their weaknesses and
limitations.

Chapter 3 presents the design, security analysis and performance evaluation of
the novel tagging method, i.e. TODmethod. The chapter starts by presenting the
design preliminaries (i.e. system model, threat model, etc.), followed by the key
features and ideas of the TOD method, and its building blocks. It then describes
details of the TOD method, i.e. its algorithms. The next part of the chapter
analyses the security of the TOD method against the security requirements,
and evaluates the performance in terms of computational and storage costs and
compares it with the most related work available.

Chapter 4 presents the design of the novel DIA framework, i.e. the DIA-ETTP.
The chapter starts by presenting the high-level ideas that were used to design the
DIA-ETTP framework, followed by the design preliminaries (i.e. system model,
threat model, etc.) and building blocks (i.e. TOD method and M2T). Finally, it
presents the design of the DIA-ETTP by describing the architectures, algorithms
and protocols of its functional blocks. The DIA-ETTP architecture consists of
four functional blocks, namely Data Deduplication and Data Uploading (D3U) for
outsourcing the data through multiple PCSes by eliminating the duplicated data,
LoA1 Data Verification (LoA1DV) for applying verification using the first level
of the data integrity protection, LoA2 Data Verification (LoA2DV) for applying
verification using the second level of the data integrity protection and Data
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Updating (DU) for updating the outsourced data by eliminating any duplicated
data.

Chapter 5 presents the security analysis and performance evaluation of the DIA-
ETTP framework. The chapter starts by analysing the security of the verification
protocols in the DIA-ETTP framework against the security requirements and
the correctness of the protocols, followed by analysing the computational and
communication costs of the four functional blocks in the DIA-ETTP. Then,
analysing the storage cost of DIA-ETTP entities. Finally, the performance of
the DIA-ETTP is compared with the most related work available.

Papers

Reem Almarwani, Ning Zhang and James Garside, “Security Analysis for General
Model of Public Cloud Storage (GMPCS): Threats and Solutions”, in progress.

Reem Almarwani, Ning Zhang and James Garside, “An Effective, Secure and
Efficient Tagging Method for Integrity Protection of Outsourced Data in a Public
Cloud Storage”, Submitted and Under Review.

Reem Almarwani, Ning Zhang and James Garside, “A Novel Framework for Data
Integrity Auditing in PCS: Eliminating any Trust on Third Parties (DIA-ETTP)”,
Submitted and Under Review.
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Chapter 2

Data Integrity Auditing (DIA): A
Literature Survey

2.1 Chapter Introduction

This chapter presents a critical analysis of existing solutions for DIA, including their
tagging methods. The chapter firstly outlines a classification of DIA solutions based on
a technical type, namely Proof Of Retrievability (POR)-based DIA and Provable Data
Possession (PDP)-based DIA. Then, the PDP-based DIA solutions can be classified
based on the type of a verifier into private DIA (i.e. the owner of the data file is a
verifier) and public DIA (a TPA is a verifier). After that, we perform insider threat
analysis in relation to data integrity and its verification in the DIA system, to specify
a set of requirements for an effective, secure and efficient DIA solution and tagging
method, receptively. Based on the requirements, we critically analyse related DIA
solutions and tagging methods published in the literature to identify knowledge gaps.
Then, some ideas are presented to address knowledge gaps.

In detail, the structure of the chapter is as follows: Section 2.2 discusses the DIA
classifications. Section 2.3 presents the threat analysis, while Section 2.4 identifies
the requirements for secure, reliable and efficient DIA of outsourced data in a PCS
environment. Section 2.5 first identifies the requirements for secure and efficient
tagging method and then critically analyse the existing tagging methods against these
requirements. Section 2.6 and Section 2.7 critically analyse the existing private and
public DIAs published in the literature, respectively, thus identifying knowledge gaps
or areas for improvement, which are presented and discussed in Section 2.8. Section
2.9 presents our ideas to address the knowledge gaps. Section 2.10 concludes with the
chapter summary.

2.2 DIA Scheme Classifications

DIA is a type of Remote Data Auditing (RDA). RDA "refers to a sampling of the
collected data in the cloud and evaluating the data against various criteria, such as
validity, accuracy and integrity to verify the reliability of the storage provider" [38].
A DIA can be used to provide users with an assurance that data outsourced to a
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PCS remains correct over time (i.e. data correctness means an outsourced users’ data
at the PCS are intact without loss or unauthorised alteration). In other words, it
offers extensive protection to the users against any hidden losses of, and unauthorised
modifications to, their outsourced data at PCS.

To check the integrity of data stored in PCS, two methods can be used: Checking
On Retrieval (COR) [47], and Remote Data Checking (RDC) [48]. With the COR
method, to verify the integrity of the data, the user (i.e. the verifier) needs to keep
a copy of data locally and verify his data only when being accessed. A user may
have masses of outsourced data, but only accesses or uses a small percentage of the
data frequently, and in such cases, downloading all the data for integrity verification
is particularly resource draining. To overcome this limitation, i.e. to allow a user to
verify the integrity of data without first downloading the entire data from the PCS
provider, the RDC method is proposed. There are two variants of the RDC method:
Proof Of Retrievability (POR) and Provable Data Possession (PDP).

POR is a method for verifying the integrity of data hosted remotely in a PCS
without downloading the data or keeping a copy of the data locally. It was proposed
by Juels and Kaliski [49]. In POR, the data are firstly encrypted, then divided into
multiple data blocks and finally Error Correcting Codes (ECC) [50] technology is
applied to the data blocks. By ECC some redundant blocks - called parity blocks
- are added to the data blocks, so that if a small loss occurs, the original data blocks
can be recovered. A user inserts random values, called sentinels, between the encoded
data blocks and sends them to a provider. To check the integrity of the data at PCS,
the user challenges the provider about a specified sentinel by providing its position.
The provider will respond by sending the value of the sentinel. If there are any lost
data, this will affect the sentinels’ positions and the provider, in this case, will send the
wrong data to the user. Furthermore, the provider cannot cheat the user by sending
any data because the data are encrypted, so the sentinels are indistinguishable from
the original data.

Although POR can provide the guarantee for data integrity along with other
advantages such as data confidentiality preservation and data recovery ability, there
are some drawbacks, which are as follows. Firstly, there is no secure adequacy because
it does not check the data itself, rather, the sentinels are inserted between the encoded
data blocks, as mentioned above. Secondly, support bounded verification numbers:
this is based on the number of sentinels, whereby the users can check one sentinel at
a time. The provider can disclose one of them in each query. In the event the user
needs to reuse them, this gives the provider the opportunity to cheat the user. Thirdly,
there is no support of the dynamic data in an efficient manner. This means that in the
case of updating the data, it can consume users’ bandwidth and resources. If the user
needs to update the outsourced data, in such cases, the entire data are retrieved. Then,
all the above-mentioned steps, i.e. encrypting the data, dividing them into multiple
blocks, applying ECC on the blocks, and inserting new sentinels will be re-applied after
updating the data. Therefore, POR can be more efficient for static data.
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PDP is another variant of the RDC method that can be used as an integrity
checkpoint for remote data. It was proposed by Ateniese et al. in 2007 [48]. The
data are divided into multiple data blocks, and a tag is generated for one or more
data blocks as metadata. Then, a user uploads the data blocks along with their tags
at the PCS. The user challenges a provider about random data blocks to verify their
integrity. To respond, the provider retrieves the data of these random blocks and their
tags to send them as proofs (i.e. the proofs consist of "data proof" which is a value
or a set of data blocks values and "tags proof" which is a value or a set of values of
tags that are assisted to the data blocks in the data proof) to the user. Once the user
receives the proofs, the user will check the correctness of the proofs by performing some
computations.

Unlike POR, PDP can be more accurate and can support unlimited numbers of
verification queries and dynamic data. A user can access and check the integrity of
random portions from the data instead of using the sentinels in the POR. In each
query, the user can challenge the provider by querying a different random number of
the data blocks. PDP can support dynamic data more efficiently where by the user can
retrieve data blocks that are required for updating (i.e. in the case of the modification
operation). After performing the update, the user generates new tags for the updated
blocks and uploads them to the PCS.

To the contrary, RDC is a valuable and efficient method to ensure long-term
reliability of outsourced data in the PCS compared to the COR method, where RDC
is based on a spot-checking technique. Therefore, existing DIA solutions are largely
based on one of the RDC methods (POR or PDP), i.e. they are POR-based, e.g. [49,
51] or PDP-based, e.g. [9, 52]. As we are interested in supporting both static as well
as dynamic data, and the PDP based methods can support dynamic data integrity
verifications more efficiently, hereafter, we only focus on PDP-based DIA methods and
when we use DIA, we mean PDP-based DIA methods.

A typical DIA system consists of three types of entities: users, a PCS provider
and a TPA (see Figure 2.1). The users are customers of the PCS provider and TPA.
They outsource their data management tasks to the PCS and data integrity verification
tasks to the TPA. They are responsible for generating tags (integrity authenticators)
for their respective data files and uploading these files along with the tags onto the
PCS. The PCS provider manages the data and their associated tags for the users, as
part of the PCS service provided to the users. A verifier, an entity that is responsible
for verifying the integrity of data files, can be a user (the owner of the data files), in
the case of private DIA, or the TPA that performs the verifications on behalf of users,
in the case of public DIA. During a verification operation, a verifier requests proofs
from the PCS provider. Upon the receipt of the proofs, the verifier performs some
computations based on the proofs to determine if the integrity of the file is preserved.

In comparison with the private DIA approach, the public DIA has several
advantages. As the user needs to perform all the necessary computations when checking
the integrity of his data and may need to store the tags locally for the integrity check,
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Figure 2.1: The DIA System Model

this approach can consume storage and computational resources at the user end. This
may present a problem if the amount of outsourced data is significant, and/or if the
user uses devices with limited resources. To overcome this limitation, the public DIA
approach is introduced. The user can delegate his/her integrity checking tasks to
a TPA, who has more resources or capabilities to check the data on their behalf
periodically.

In addition to off-loading computational and storage overheads from the user, the
public DIA approach can provide more expert help to data integrity as the TPA can
be an expert in providing continuous assurance that the data are correct. It can also
prevent any bias or unfair results from a user or the provider. To the provider, the use
of the TPA can also be of benefit. For example, the generation of high-quality auditing
reports can enhance the reputation of the provider among its competitors.

To identify desirable requirements to have a secure, reliable and efficient solution
for DIA, we first highlight security threats in related to the data integrity and its
verification and imposed by internal entities in the DIA system in the following section.

2.3 Insider Threat Analysis

In the DIA system model, threats to the data integrity and its verification can come
from external entities as well as internal entities, as mentioned in Section A.5. Threats
imposed by internal entities are more difficult to counter, as they are authorised insiders
and have privileges to manage or access data and/or verify the integrity of data. For
this reason, the following discussion focuses on threats imposed by internal entities,
which are collectively referred to as insider threats. DIA related insider threats can be
largely classified into three groups, data integrity fraud, unauthorised data disclosure
and repudiation of tag generations or data updating.
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• Data Integrity Fraud: Data integrity fraud refers to any attempt to hide the
fact that the integrity of some users’ data has been compromised, e.g. the data
are lost or have been tampered with or modified in an unauthorised manner.
For reasons such as protecting its reputation, the provider may try to hide such
attacks by forging or manipulating tags (that are used in the proofs generation).
There are three possible ways of doing this. The first way, called a forgery
attack, is to forge tag(s) associated to data that have been requested as part of a
data integrity verification process so that the data integrity verification can still
produce a positive result even if the tag used is different from the one generated
by the data owner. For example, the provider may exploit flaws in a tagging
method to achieve this.

The second way is to use a replace attack. In this attack, the provider uses a
tag generated for another piece of data, which is different from the one requested
for the verification. The replace attack can be performed by exploiting collisions
among tags generated for data owned by the same user or by different users.
For example, if two users have identical blocks of data and if the tags generated
for the data blocks are identical too, then the provider may use the tag and the
associated data block owned by one user for the verification of data owned by
another user. Similarly, if there are two different data blocks that have identical
tags, this attack can also be successful. In the dynamic data case, the replace
attack can be performed by using old data blocks and their associated tags in
computing the proofs. In other words, to save computational and communication
resources, the provider attempts to ignore any update of outsourced data on PCS
that user requests. Then, the provider may forge the proofs using old data and
their tags that are no longer valid more.

The third way is to use a replay attack. With this attack, the provider may
cache the proofs of some data and tags. When a verification request is received,
the provider dispatches the cached the values of proofs, rather than proofs that
are freshly generated using actually stored data and tags in the file storage.

Furthermore, in the public verification, a TPA verifies the outsourced data,
then sends a result to a user. Thus, the TPA may attempt to tamper with the
result for reasons such as investing more benefits (e.g. working with provider
competitors to damage the provider’s reputation). There are two possible ways
of doing public verification fraud by the TPA. The first way, called a collusion
attack, is to send a positive result that gives a data integrity confirmation in
spite of exposing their integrity on PCS. In other words, the TPA may try to
hide the fact that data under provider management have been exposed to loss
or unauthorised modifications. The second way is to use a frame attack. In the
frame attack, the TPA abuse the provider and send a negative result that gives
that the data integrity is exposed, where the integrity of data is preserving on
PCS, to destroy the reputation of provider and effect on its business owing to
other competitors.
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• Unauthorised Data Disclosure: Users’ data managed by a provider, if not
protected properly, may be disclosed due to data integrity verification operations.
The provider and the TPA are authorised to manage and verify the integrity
of data. They should not have the privilege to access the (content of) data.
However, if, as part of the integrity verification process, they gain access to data,
the confidentiality of the data and/or the privacy of the owner of the data may
be put at risks. For example, an internal employee of the provider or the TPA
may gain access to users’ data and sell the data to other organisations or people,
or use the data for any other unauthorised purposes, causing harm to the users.
We should not assume that users trust the entities that manage and/or verify
their data; usually, users do not wish to share their data with any other entities.

• Repudiation of Tag Generation/Data Updating: A user may repudiate
(i.e. falsely deny) the generation of tags for some data or the updating of data,
e.g. in an attempt to discredit, or to seek some financial advantages from, the
provider and/or the TPA. It may also be possible that a denial of tag generations
may be genuine, as a user (say user A) may try to learn the data of another user
(user B) by providing evidence that user A has generated some tags that have
actually been generated by B.

2.4 Desirable Requirements for DIA

An effective, secure, reliable and efficient DIA service should be secure against the fraud
or attacks from the system entities. In addition, it should support various usecase
scenarios and user-level requirements. For the latter reason, we have carried out a
comprehensive PCS usecase study, mostly based on literature, e.g. [9–11, 14, 15, 17,
18, 37]. Based on the threat analysis and usecase study, we have specified a set of
requirements for the design of an effective, secure, reliable and efficient DIA. The
requirements can be classified into four groups, functional, security, reliability and
performance requirements.

(F) Functional Requirements: Two functional requirements are specified, F1 and F2.

(F1) Support Data/Tags Deduplication: It should eliminate redundant data over
one file or multiple files and their associated tags. This requirement is
intended for reducing computational and storage overheads as well as saving
a bandwidth.

(F2) Support Dynamic Data/Tags: It should allow a user (i.e. the data owner) to
update (i.e. insert, delete or modify) his data at PCS. The user can perform
dynamic operations on his outsourced data such as insert, delete, and modify
while assuring the integrity of outsourced data files. Furthermore, it should
update data without the need to recompute other unrelated tags as well as
keep the data which are non-duplicated after each update.

(S) Security Requirements: Three security requirements are specified, S1, S2 and S3.
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(S1) Resistance of providers cheating: It should resist cheating attacks by
dishonest providers, i.e. forgery, replace, and replay attacks, and prevent
data confidentiality breach.

(S2) Resistance of TPAs cheating: It should resist cheating attacks by dishonest
TPAs, i.e. collusion and frame attacks, and prevent data confidentiality
breach.

(S3) Resistance of users cheating: It should resist cheating attacks by dishonest
users, i.e. a repudiation attack in tag generation or data updating.

(R) Reliability Requirements: Two reliability requirements are specified, R1 and R2.

(R1) Data Recovery: It should mitigate risks of loss or unauthorised modification
outsourced data and their tags. In the case of losing the data, the user can
recover his data and their tags, and without the need to preprocess data
and generate new tags.

(R2) Elasticity: It should give the ability to cope with a dynamic number of
PCSes and TPAs in the DIA system. As the number of the PCSs can be
variable for some reasons, e.g. shut down or stop, the number of TPAs can
be scaled up or down based on the number of PCSes. In other words, if
the service of one PCS outages for any reason, consequently, the number of
TPAs can be scaled down. On the other hand, if one TPA goes down, a new
TPA can be added to handle the situation. It can provide a more resilient
system, i.e. an available and durable system.

(P) Performance Requirements: Three performance requirements are specified.

(P1) Minimising Computational Cost: The computational cost incurred in data
Uploading (tag generation), data verification (proofs generation and proofs
correctness verification) and data updating (insert, delete or modify) should
be as low as possible.

(P2) Minimising Communication Cost: The communication cost incurred in data
uploading, data verification and data updating should be as low as possible.

(P3) Minimising Storage Overhead Cost: The storage cost incurred at DIA-ETTP
entities, i.e. users, providers and TPAs, should be as low as possible. Efforts
should be made to reduce a user cost as much as possible.

2.5 Tagging Methods

In DIA, the tags serve as the authenticators for the data, protecting the integrity of
data. These tags are generated and verified using a tagging method. A tagging method
typically consists of two algorithms, one for tag generation (tag generation algorithm)
and the other for tag verification (tag verification algorithm). Usually, a tag generation
operation is performed by a user (a data owner) using the tag generation algorithm to
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generate tags for her/his data. A tag verification operation, on the other hand, could
be performed by the data owner him/herself, in which case, the tagging method is said
to support private verifiability, or by a TPA delegated by the data owner, in which
case, it is said to support public verifiability. An effective, secure and efficient DIA
service in a PCS context should use an effective, efficient and secure tagging method.
In the following subsections, we first identify the requirements for efficient and secure
tagging method and then analysis the existing methods against these requirements.

2.5.1 Requirement Specification

The security and efficiency of DIA are based on a tagging method that is used in its
system. Thus, we have specified a set of requirements for an effective, secure and
efficient tagging method (i.e. based on the requirements of DIA in Section 2.4). The
requirements can be classified into three groups, functional, security and efficiency
requirements.

(FM) Functional Requirements: Two functional requirements are specified, FM1 and
FM2.

(FM1) Public and Private Verifiability: The method should support both public
and private verifiability. The concurrent support of both public and private
verifiability allows us to harvest the benefits of both approaches.

(FM2) Dynamic Tag Support: The method should minimise the number of tags
that need to be modified or re-computed when any changes are being made
to a data file. When some data blocks in a file are modified, new data blocks
are inserted, or obsolete data blocks are deleted, the associated tags should
also be changed. Such changes should be kept as small as possible. This
requirement is intended for supporting the dynamic data and reducing the
data updating computational cost.

(SM) Security Requirements: Five security requirements are specified, SM1, SM2, SM3,
SM4 and SM5.

(SM1) Tag Forgery Resistance: It should be computationally infeasible for a
provider to forge a tag for some data, which could produce a positive tag
verification result.

(SM2) Tag Collision Resistance: It should be computationally infeasible to generate
identical tags for different data blocks that are owned by the same user or
tags generated for the same data blocks but owned by different users should
be different too. This is for countering tag replace attacks that may be
launched by a provider.

(SM3) Non-repudiation of Tag Generation: It should be computationally infeasible
for a user to falsely deny that she/he has generated a valid tag for a data
block(s).
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(SM4) Data Confidentiality Preservation: The method should allow the provider
and a TPA to verify the validity of a tag (i.e. in the tags proof) without
them accessing plaintext data blocks (in the data proof). This requirement
is for preserving the confidentiality of data while providing the DIA service.

(SM5) Unbounded Verifiability: The method should be such that the security level
of a tag is independent of the number of times the tag has been verified. In
other words, the verification of tags should not make them more vulnerable
to security attacks (i.e. a replay attack).

(E) Efficiency Requirements: Two efficiency requirements are specified, E1 and E2.

(E1) Minimising Tag Generation Cost: The cost incurred in tag generation should
be as low as possible. This requirement is intended for reducing the data
uploading computational cost.

(E2) Minimising Tag Verification Cost: The cost incurred in tag verification
should be as low as possible. This requirement is intended for reducing
the data verification computational cost.

2.5.2 Existing Tagging methods

This section provides an overview of related tagging methods published in the literature.
Depending on the tagging methods, one or more tags may be generated for a single
data file. If one tag is generated for a data file, then when verifying the tag (i.e. the
integrity of the file), the entire file has to be downloaded from the PCS server. This
could be costly in terms of bandwidth, particularly if the file size is large. To reduce
this cost, a fragmentation approach is used. With this approach, each data file is
divided into multiple data blocks, and a tag is either generated by using multiple data
blocks, i.e. the so-called One Tag for Multiple data Blocks (OTfMB) approach, or by
generated by using a single data block, the One Tag for a Single data Block (OTfSB)
approach. Depending on which of these two approaches they use, existing tagging
methods can largely be classified into two groups: OTfMB based methods and OTfSB
based methods.

2.5.2.1 OTfMB Based Methods

A file to be integrity protected is usually divided into multiple blocks. With the OTfMB
approach, each tag is generated using two or more data blocks, and these data blocks
are randomly selected from the blocks of the file. The number of tags that are generated
for a file is dependent on the number of data blocks the file has and the number of
data blocks that are used in generating each tag. The more the data blocks a file has
and/or the fewer the blocks that are used in generating each tag, the more the tags
that will be generated for the file.

Each integrity verification of a file typically involves the random selection and
verification of one tag of the file. Only the selected tag along with the data blocks
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Figure 2.2: Classification of Existing Tagging Methods.

that are used to generate the tag will need to be downloaded from the PCS server
when carrying out the verification. As the downloaded data blocks are a subset of the
data blocks a file has, this approach is cheaper, in terms of bandwidth cost, than the
non-fragmentation approach. Figure 2.2 shows the classification of the existing tagging
methods.

The two most notable OTfMB-based tagging methods are those proposed in [9,
10]. The two methods differ in the cryptographic algorithms used. In the method
proposed by Ateniese et al. [9], a conventional hash function (hereafter referred to as
the hashing based method), such as MD5 and SHA, and a symmetric cipher, such as
AES, are used. To generate a tag for a file, a randomly selected subset of data blocks
are concatenated and hashed. The hash value is then encrypted using a symmetric key.
To verify the integrity of a file, a tag is randomly selected from the tags of the file, and
a fresh hash value is generated based on the data blocks associated with the tag. The
fresh hash value is then compared with the one decrypted from the selected tag. If the
two hash values are equal, then the integrity of the file is said to be assured. In this
method, the symmetric encryption is used to protect the tags against forgery attacks.
As the symmetric key should only be known to the user, it is computationally hard
for any unauthorised entities to make any alteration to, or forge, the data file or the
tag, such that a freshly computed hash value is identical to the one recovered from the
downloaded tag.

The hashing based method does not support dynamic tagging efficiently. When
there is a change in a data file, the associated tag needs to be recomputed from scratch.
To improve on this, Ateniese et al. revised their method by replacing the concatenation
operation with an XOR operation. In this way, when new data blocks are added,
only the XORing operations involving the hash values of the new data blocks and the
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encryption operation would need to be re-computed.
Longer tags impose a higher storage requirement and also consume more bandwidth

when they are downloaded from the server. To reduce the overhead costs, Chen et al.
[10] proposed to use the algebraic signature function [45] (the AS_1 based method)
to replace the conventional hash function in the hashing based method. The algebraic
signature function, which is, sometimes, also referred to as an algebraic hash function,
differs from a conventional hash function in the following three aspects. Firstly, it is
faster to compute. According to [53], it takes about half of the time SHA-1 takes to
generate a tag. Secondly, it generates a shorter hash value (thus a shorter signature
or tag) than SHA-1. For example, a hash value produced by an algebraic signature
function [45] is 16 bits long, which is one-tenth of the size (160 bits) generated by SHA-
1. Thirdly, it has an algebraic property that allows multiple signatures to be aggregated
in a numerical manner, rather than a simple concatenation of multiple hash values as
in the case of conventional hash functions. This signature aggregation property can
be exploited to support batch verification of multiple tags so that the verifications of
multiple signatures can be carried out by verifying a single aggregated signature.

The above two methods also differ in the size of the verification data, i.e. the
data that are used for verifying a tag, which are also the data transmitted from the
PCS server to a user upon the receipt of a file integrity verification request. With
the hashing based method, the size of the verification data is dependent on the size
of a hash value which, in turn, is dependent on the hash function used, or the data
blocks number used in a tag generation in case of the user who is generating the hash
value, whereas, with the AS_1 method, it is dependent on the size of a data block; it
increases linearly with the data block size.

A major limitation with the OTfMB approach is that, if there are too few tags for a
file, e.g. if a file is short and/or if too many blocks are used for each tag generation, the
approach is vulnerable to replay attacks (i.e. they support bounded verifiability). This
is because, repeated integrity verifications of the file will lead to repeated use of the
same tag(s) and the associated data blocks. This will make it easier for the provider
to guess or cache the hash values, or the aggregated data blocks and their associated
tags. When a verification request is received, the provider could just dispatch the
cached values (i.e. hash value or aggregated data blocks) and the tags, rather than
what are actually stored in the file storage. In such cases, unauthorised alterations
made to a data file and its tags may go undetected.

To make the guesses harder, or to give a stronger resistance to replay attacks, more
tags should be generated for each file. In an extreme case, one tag is generated for
each data block in a file, i.e. only one data block is used in each tag generation. This
leads to the OTfSB approach. With this approach, for countering replay attacks, each
integrity verification can require the use of multiple tags and these tags are typically
randomly selected from the whole set of the tags for the file. Obviously, the more tags
that are generated for each file, the harder it is for the provider to guess the subset of
tags that may be selected for an integrity verification; thus the harder it is to launch
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a successful replay attack, and the stronger the unbounded verifiability of the method.
For this reason, most of the existing methods use the OTfSB approach.

2.5.2.2 OTfSB Based Methods

Tagging methods described in [11–20, 37] are OTfSB based. Depending on the
cryptographic algorithms used, these methods can be further classified into algebraic
signature based, MAC based, and digital signature based methods.

As mentioned above, an algebraic signature function [45] takes a shorter time to
generate a signature (tag), and it also generates shorter signatures, in comparison
with a conventional hash function. In addition, an algebraic signature function has an
additive homomorphic property, i.e. a signature of the sum of multiple data blocks
is equivalent to the sum of the signatures of the corresponding data blocks. By using
an algebraic signature function, we can generate homomorphic verifiable tags, so for
integrity verification, only the sum of the requested data blocks and the sum of the
tags corresponding to the data blocks need to be downloaded. The computational and
communication costs in DIA are, therefore, independent of the number of data blocks
used in verifying a tag. For this reason, it is a popular method used for tagging method
designs. The tagging methods proposed by Luo et al. [37] and by Sookhak et al. [11]
are based on an algebraic signature function [45] (the AS_2 based method and the
AS_3 based method, respectively).

When verifying the integrity of the file using the AS_2 based method [37], the sum
of the random data blocks, i.e. a data value, (each block is encoded into a numerical
value) and their associated tags are taken as inputs. Then, the algebraic signature
function is applied to the data value to generate a fresh algebraic signature (i.e. a
fresh tag) and compares it with the one that is computed using the corresponding tags
stored in the local storage to see if the two values are equal. However, no measure has
been taken to address the issue of tag collisions. If the user in DIA, for reasons such as
short of local storage space, wishes to upload the tags onto the PCS server, the method
can be vulnerable to tag collisions, i.e. tags generated for different files owned by the
same user or by different users may be identical. Because of this, the DIA is vulnerable
to integrity fraud.

To overcome this limitation, Sookhak et al. [11] proposed a revised method (the
AS_3 based method), in which, a file ID and a block index are used to randomise the
input of the tag generation algorithm. In addition, the method uses a sector/block
fragmentation idea to optimise the trade-off between security and costs. For a given
file size, if a larger data block size is used, fewer data blocks thus fewer tags the file
will have. This will reduce the security level and the computational cost but increase
bandwidth cost. The idea is to use a larger data block size, but further divide each
data block into multiple sectors. For each sector, a tag is generated. The tag for a
data block is generated by taking the sum (or the product) of the sector tags in the
block. When verifying the integrity of the file, the sum of the sectors is used instead
of the sum of the data blocks. As the size of a sector is shorter than the size of a data
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block, the bandwidth cost is lower in DIA.
Tags that are generated by using such an unkeyed function, i.e. conventional hash

functions, are not tamper-proof, so they are only suited to trustworthy environments
where integrity drifts are caused by accidental errors or non-malicious intent, such as
channel or system errors or innocent human errors. However, in our problem context
where data are managed by third parties, data integrity drifts may also be caused by
malicious intents. In such cases, tags must be tamper-proof, and this can be done by
using a secret key to protect the values produced by an unkeyed function. The secret
key can either be a symmetric key (of a symmetric-key cipher) or a private key (of a
public-key cipher).

Symmetric key based tagging methods, i.e. [12, 13], are suited to cases where
file integrity verifications are performed by users (i.e. data owners) themselves,
or users trust their TPAs unconditionally. This is because the same key is used
for tag generation and verification. In cases where these two conditions are not
satisfied, asymmetric (public and private) keys should be used, leading to the so-called
asymmetric key (or public-key) based tagging methods. With such a method, a tag is
a digital token signed with a user’s (data owner’s) private key, and the corresponding
public key is used to verify the tag. So these tagging methods are also called digital
signature based tagging methods. There are a number of digital signature algorithms.
The most notable ones are the Rivest–Shamir–Adleman (RSA) algorithm [54], Elliptic
Curve Digital signature algorithm (ECDSA) [55] and Boneh-Lynn-Shacham (BLS)
algorithm [46]. Depending on the digital signature algorithm used, signature based
tagging methods can also be classified into three variants, RSA based, ECDSA based
and BLS based .

The tagging methods proposed by Ateniese et al. [14], Ni et al. [15], and Erway et
al. [16], are RSA-based, (RSA_1 based method, RSA_2 based method and RSA_3
based method, respectively). RSA_1 based method and RSA_3 based method encrypt
the data file before fragmenting into data blocks for data confidentiality preservation.
Furthermore, they use random number and a data block index in each tag generation
for tag collision resistance, whereas RSA_2 based method uses a file ID in addition to
a random number and a data block index for collision resistance. In addition, RSA_2
based and RSA_3 based methods use the blocks/sector fragmentation idea as described
in the AS_3 based method above to optimise the trade-off between cost and security.

The RSA algorithm is relatively expensive in terms of computational complexity
and time it takes to generate and verify a tag. The computational cost increases
sharply as the size of the key increases [56–59]. The average time it takes for the
RSA-1024 algorithm (RSA algorithm with 1024-bit key size) to generate a tag is about
81 milliseconds, and this time increases to about 1254 milliseconds with RSA-2048
[60]. According to the NIST recommendations [61], RSA-2048 should be used for
an enhanced level of security. In addition to the high computational cost, the RSA
algorithm is also relatively more expensive in terms of storage and communication
bandwidth cost; the tag size is 1024 bits with RSA-1024, and 2048 bits with RSA-
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2048.
With the same security level, the ECDSA algorithm [55] costs less to generate tags

and generates shorter tags than the RSA algorithm [56, 57]. For example, it takes
about 41 milliseconds for the 192-ECDSA algorithm to generate a tag of 192-bits,
and 45 milliseconds for 224-ECDSA to generate a tag of 224-bits. For these reasons,
Hanser et al. [17] proposed to use the ECDSA algorithm for tagging method design
(i.e. ECDSA based method).

To further reduce the overhead costs, BLS-based tagging methods were proposed
and the most notable ones are by Li et al. [18] (BLS_1 based method), Liu et al. [19]
(BLS_2 based), Wang et al. [20–22] (the BLS_3 based method) and Yang et al. [23]
(the BLS_4 based method). The BLS short signature [46] scheme, as indicated by its
name, produces short signatures each having a typical length of 160 bits. This length is
shorter than the 192-bits produced by an ECDSA based tagging method and 1024-bits
by an RSA-1024 based method. In terms of tag generation cost, according to [56] [57],
a BLS-based tagging method has a similar level of cost as an ECDSA-based method.
While they are all BLS-based, the three methods differ in terms of how the tag collisions
are addressed and whether a block/sector fragmentation approach is used. The BLS_1
based and BLS_3 based methods use a data block index to resist tag collisions, whereas
BLS_2 based method uses the hash value of the underlying data block along with a
random number to build collision resistance, and the BLS_4 based method uses the
hash value of a secret hash key, file ID and block index addition to a random number.
The BLS_3 based method does not use the block/sector fragmentation approach,
whereas the BLS_1 based, BLS_2 based and BLS_4 based methods do.

In the following, we provide a comprehensive analysis of existing work on the design
of DIA systems, in which tagging methods are deployed (private DIAs (Pri-DIAs) and
public DIAs (Pub-DIAs). Figure 2.3 shows the classification of the existing DIA works.

2.6 Private DIAs (Pri-DIAs)

In this section, we analyse the existing DIAs have been proposed in the literature
and support the private verification [9–12]. In the Pri-DIAs, users are responsible for
processing their data to generate the associated tags and uploading them to PCS as
well as verifying the data integrity. The first Pri-DIA was proposed by Ateniese et
al. [9] (i.e. the Ateniese_1 Pri-DIA), where their DIA uses hashing based tagging
method. For the data verification, the user challenges a provider to get proofs (i.e.
data proof and tags proof). In the Ateniese_1 Pri-DIA, the data proof is a hash of the
concatenating of the random data blocks, while the tags proof is the tag value which
is computed for authenticating these blocks. Upon receipt the proofs, their correctness
are checked using a tag verification algorithm in the tagging method. If the verification
holds, the integrity of the data is assured. In the Ateniese_1 Pri-DIA, the user before
applying the tag generation algorithm, she/he applies error-correcting codes (ECCs)
on the data file for data recovery property. The ECCs are techniques which allow extra
data to be added to in original data and gives the ability to recover the original data
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Figure 2.3: Classification of Existing DIAs.

in case of loss happening, e.g. hamming code and erasure code algorithms [62].
Another Pri-DIA was proposed by Chen et al. (the Chen Pri-DIA) [10]. The Chen

Pri-DIA is similar to the Ateniese_1 Pri-DIA except in term of using AS_1 based
tagging method for more efficient DIA. Furthermore, in the Chen Pri-DIA, only the
data proof (i.e. is an aggregated value of the data block) is retrieved from the provider,
where the tags proof can be computed by the user using the tags that are kept locally.

As above the two DIA work using the OTfMB based tagging methods, therefore,
they can be vulnerable to provider cheating (i.e. replay attacks), as mentioned in
Section 2.5.2. Thus, the majority of the existing DIA works use OTfSB based tagging
methods. These methods can allow a random sample strategy to be applied and can
help to prevent replay attacks, as a result.

Sookhak et al. [11] proposed their Pri-DIA (the Sookhak Pri-DIA). The Sookhak
Pri-DIA uses, i.e. AS_3 based tagging method; thus, it can save storage and
computational costs at the user and incur less communication cost at the provider. It
can compute collision resistance tags, so the tags can be uploaded along with data to the
PCS. Furthermore, as the homomorphic property is supported in the tagging method,
only two values, i.e. data proof and tags proof, are sent to the user, regardless of the
number of the selected data blocks, where the user can perform a batch verification.

In the case of the dynamic data, the provider may cheat the verifier using old
data and their associated tags that are no longer valid more in the proofs generation.
Therefore, the existing DIAs use one of data structures to track and authenticate the
data update and so it can detect the cheating provider (i.e. making the DIA more
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Figure 2.4: Index Hash Table (IHT) [63].

resistant to replace attacks). In the Sookhak Pri-DIA, a data structure, which iscalled
Multiple Index Hash Table (MIHT) is used and kept with the verifier. In the MIHT,
each subgroup of data blocks of the data file is associated with one table, called Index
Hash Table (IHT) (see Figure 2.4). The IHT consists of four values in each row, i.e.
(No) which is the serial number, (B) which is the block number (i.e. a block index),
(V) which is a version number (it is the number of modifications performed on the
data blocks) and (R) which is a random number used for collision resistance. Each
data block in a file is associated with a one row in IHT. These values include a secret
value (i.e. a random number), so they should be used in a tag generation of the data
block for preventing the forging attack.

Using multiple tables in the MIHT instead of using one table to save computational
cost at the user end. In case of insertion or deletion operations and use one table for
all data blocks, it can lead to recompute a high number of tags (i.e. in the worst case,
all tags of the file may be recomputed). This is because of the serial numbers of data
blocks under the updated rows should be alighted, and the tags that are associated
should be recomputed, as a result. Therefore, in multiple tables based approach, the
serial numbers that are associated with data blocks in one table only can be affected,
not all the tags of the file.

Inspection of use of the random sample strategy can help in replay attacks
prevention, whereby the minimum number of data blocks should be selected to detect
misbehaviour of the provider in the data verification with a high probability. The user
should choose a number of data blocks that is equal to the minimum number or more.
In case of choosing a large number of data blocks can incur more computational cost or
communication cost at the user end and the provider end, notably if a tagging method
in DIA does not support batch verification. The more selected data blocks, the more
computational and communication costs can be incurred. To solve this trade-off, the
Sookhak Pri-DIA along with the majority of existing DIA works, use some random
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numbers, called nonces, in each data verification time. These nonces are used as a
second security layer to resist a replay attack. The user chooses a different nonce for
each selected data block. The provider should use these nonces in generating proofs.
Therefore, the user can be assured of receiving fresh proof each time, without the need
to choose a large number of the data blocks.

For reducing the cost of updating data, Zhang et al. [12] proposed Pri-DIA (the
Zhang Pri-DIA) and used an another type of the data structure, called Balanced Update
Tree (BUT) (see Figure 2.5). In BUT, each node associated with one update request.
The size of the BUT is independent of the total data blocks number for the file and
grows linearly with the number of dynamic operations, unlike IHT. Therefore, it is more
efficient in the case of the file that has a high number of the data blocks and rarely
updated. The user and the provider should update their trees after each operation. As
shown in Figure 2.5, some information associated with each node. This information
included: (1) node types, insert, delete or modify (Op), i.e. (-1, 0, 1), (2) data blocks
range ([L, U]), i.e. the start and end indices of the data blocks, (3) Version number
(V) which is the number of modifications performed on the data blocks associated
with the node, (4) ID of node (ID), (5) Offset (R) indicates the number of data blocks
that have been added to, or deleted from, the range of data block indices, and (6)
Pointers (Pl) and (Pr) point to the left and right children of the node, respectively.
This information allows the user to ensure that receiving the corresponds the most
recently updated data blocks in each verification.

2.7 Public DIAs (Pub-DIAs)

Using TPA can release users from verification overhead costs. The TPA can check the
integrity of a user’s file on PCS and then inform the user the result. Two of the Pub-
DIAs were proposed by Luo et al. [37] (the Luo Pub-DIA) and Xu et al. [13] (the Xu
Pub-DIA). The Luo Pub-DIA is different from the Xu Pub-DIA by using the tagging
method that is based on the algebraic signature (i.e. AS_2 based method) and the IHT
to support dynamic data, where the Xu Pub-DIA use homomorphic MAC (HomMAC)
based tagging method. In the Luo Pub-DIA and Xu Pub-DIA, the tags of the data
blocks are uploaded to TPA. Once the TPA receives the verification delegation from
the user, it gets the proofs (i.e. the data proof) from the provider to perform the data
verification.

The user and TPA, in above DIAs, should be entirely honest. Therefore, to make
a Pub-DIA more secure against the user cheating (i.e. the dishonest user can launch
non-repudiation attacks), the tagging method of the DIA should support the public
verifiability, where they use an asymmetric key function based, i.e. digital signature
algorithms. Therefore, a number of Pub-DIAs have been proposed, where they use
asymmetric key based method. These works can be classified into two groups based on
the number of PCSes in the system: DIAs for a centralised PCS system (CenPub-DIA)
and DIAs for a decentralised PCS system (DecPub-DIA). The analyses of these works
are presented in the following sections.
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Figure 2.5: Balanced Update Tree (BUT) [12].
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2.7.1 Centralised Pub-DIAs

In the Centralised Pub-DIAs (CenPub-DIAs), users process their data and generate the
associated tags to upload them to one PCS. Based on the number of TPAs in the DIA
system, the CenPub-DIAs are further classified into a single TPA based and multiple
TPAs based. The details of each group are presented in the following sections.

2.7.1.1 Single TPA based

Ateniese et al. [14] proposed their DIAs (the Ateniese_2 CenPub-DIA). It used an
RSA based tagging method (i.e. RSA_1 based method). For data confidentiality
preservation and data recovery, in the Ateniese_2 CenPub-DIA, the user, before
generating tags for a file, first encrypts the file, which is then encoded using an ECC
method. Erway et al. proposed another DIA. [16] (i.e. the Erway CenPub-DIA).
It is similar to the Ateniese_2 CenPub-DIA except in terms of using a Rank-based
Authenticated Skip List (RASL) data structure for supporting the dynamic data (see
Figure 2.6). The RASL is a skip list, but each node has, addition to the two pointers
(i.e. pointers to leftmost and rightmost of the nodes), a hash value of the node value
and the node rank (i.e. the total number of nodes can reachable using the nodes).
The nodes at the bottom level include the tags of the data blocks in the file. Using
RASL can release the user from storing the data structure, where it can be stored in
the PCS, and only its start node (i.e. the root node) is kept locally. Unfortunately,
this data structure can incur heavy storage and communication cost at the provider as
well as the updating and verification computational cost at the user end. The storage
complexity of the RASL is O(t log (t)), where t is the total number nodes in the RASL.
Additionally to the proofs, the provider should send the auxiliary information (i.e. all
nodes values are allocated in the path from the node that associated with the data
block to the root) for each data block in the challenge. The information is used in
checking the correctness of the root and ensuring receiving the recent data blocks,
before checking the integrity of the data.

As the Ateniese_2 CenPub-DIA and the Erway CenPub-DIA use the RSA based
tagging methods, thus, they can lead to higher computational and communication costs
at the user end and storage cost at the provider end. Therefore, Hanser et al. proposed
their CenPub-DIA (the Hanser CenPub-DIA) which is similar to the two above DIAs,
but they use an ECDSA based tagging method alternatively [17].

For more efficiency, Li et al. [18] (the Li_1 CenPCS-DIA), Liu et al. [19] (the
Liu_1 CenPCS-DIA), Wang et al. [20] (the Wang CenPCS-DIA), Tian et al. [63] (the
Tain CenPCS-DIA), Yang et al. [23] (the Yang_1 CenPCS-DIA), and Li et al. [64] (the
Li_2 CenPCS-DIA) proposed their DIAs using BLS based tagging methods to further
reduce uploading communication and storage overheads. The difference between these
DIAs is in a way that is used for preventing the provider cheating (replace attacks), i.e.
tag collision prevention in the tagging methods. In the Liu_1 CenPCS-DIA and the
Yang_1 CenPCS-DIA, the tagging methods uses a hash of the data block is included
in the tag, but in the Li_1 CenPCS-DIA and the Wang CenPCS-DIA, their methods
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Figure 2.6: A Rank based Authenticated Skip List (RASL)[26].

Figure 2.7: Merkle Hash Tree (MHT) [65].

use a block index is used.
Using encryption at file-level may make data updating operations are inefficient.

The user should retrieve the whole file for each update. Therefore, the Liu_1 CenPCS-
DIA, the Wang CenPCS-DIA and the Tian CenPCS-DIA use a random masking
method. The random masking method is used to disguise the content of the data blocks
when they are being released from the PCS upon receipt of an integrity verification
request. Consequently, the TPA can verify the correctness of the proofs and cannot
derive the user’s data plainly and violate their confidentiality. Additionally, the
difference between above DIAs is a type of data structure used to support dynamic
data verification. The Li_1 CenPCS-DIA and Yang_1 CenPCS-DIA use IHT data
structure, the Liu_1 CenPCS-DIA and the Wang CenPCS-DIA use another data
structure, called Merkle Hash Tree (MHT), and the Tian CenPCS-DIA uses Dynamic
Hash Table (DHT), while the Li_2 CenPCS-DIA uses Large Breaching Tree (LBT).

MHT is a binary tree and based on hashing for generating a node value. It consists
of three types of nodes, i.e. root node, inner node and leaf node (see Figure 2.7). Each
node has two child nodes except a leaf node. Thus, the node value is a concatenation
of hash values of its child nodes. A leaf node is a hash value of a data block. The
data blocks in the leaf nodes are authenticated by their parents, these parents are
children nodes for the above nodes, which authenticate them, and the authentication
proceeds recursively up to the root. Before uploading a file to PCS, an MHT that
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Figure 2.8: Large Breaching Tree (LBT) [64].

is associated with the file is constructed to generate its root and then signs it for the
forgery prevention. In each update, the provider needs to construct the MHT using the
updated data blocks and sends the new root the user to sign it. Firstly, the correctness
of the root is checked by reconstructing the tree using the auxiliary information, then
it is signed. This information is associated with the updated data block and is sent
by the provider. On the other hand, in the integrity verification, the verifier access to
each data block and its auxiliary information for an MHT root verification. By the
MHT root verification, the verifier can ensure that the recent version of the data block
is sent from the provider.

LBT is similar to the MHT, but it is based on BLS scheme for node value generation,
and a number of the children nodes for each parent node is large, i.e. more than two
nodes (see Figure 2.8). Using LBT in DIA can save the computational at the user end
in updating data and communication cost at the provider in the verification. Firstly,
Unlike MHT, the root of LBT does not need to update and re-sign after each update.
Secondly, by the LBT, the length of the auxiliary information can be shorter, where
it has more branching (children nodes number), so a less depth and fewer nodes in
the path. Furthermore, the authenticity of a node can be verified given its parent (η)
and its authentication value (f), whose size is independent of the branching factor.
On the other hands, using LBT can incur more cost at the verifier as it is BLS based
comparing with the MHT, which is based on the hashing function. More data blocks in
the verification, the more number of pairing operations. This operation is considered
costly. The sizes of both MHT and LBT grow with the number of data blocks of
the file, unlike the BUT data structure. Therefore, the MHT and LBT can be more
suitable for frequently updated file compared with BUT.

To save communication and computational costs in supporting dynamic data
verification, DHT data structure can be used. In the verification, there is no need
for sending extra data, i.e. the auxiliary information, along with proofs, nor a root
verification. DHT, unlike IHT, has two dimensions (see Figure 2.9). The first one is a
table for listing all data files, while the second one is linked lists for data blocks. Each
data file is associated with one linked list. Each node in the linked list is associated
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Figure 2.9: Dynamic Hash Table (DHT) [63].

with one data block in the data file. DHT is based on pointers to indicate the logical
positions of data blocks instead of the serial numbers in IHT; therefore, there is no
need to re-compute other unrelated tags. Thus, the DHT can save the computational
costs at the user end and the TPA end.

Using ECCs in some of the above DIAs for data recovery, works only on a specified
number of losses, and, if it goes beyond this number, the original data cannot be
recovered. Therefore, Liu et al. [24], Abo-alian et al. [25, 26], and Curtmola et al. [27]
(the Liu_2 CenPub-DIA, the Abo-alian_1 CenPub-DIA, the Abo-alian_2 CenPub-
DIA and the Curtmola CenPub-DIA, respectively) use another approach, i.e. data
replication. In data replication, multiple data replicas are computed for a file and
uploaded them to the PCS. The user uploads multiple replicas for his file to the PCS,
and the TPA can check the integrity of all these replicas. Since a dishonest provider can
delete one of these replicas without knowing the user, these replicas should, therefore,
be distinguished from one another, and different associated tags are computed, as a
result. In the Liu_2 CenPub-DIA, a different random number used in each replica and
then tags for each replica are generated. The Abo-alian_1 CenPub-DIA is similar to
the Liu_2 CenPub-DIA but uses an encryption algorithm alternative to the random
numbers. For each replica, a different key is used for encrypting the data file, so
a different ciphertext is produced, as well as, data confidentiality is preserved. For
supporting dynamic data, the Abo-alian_2 CenPub-DIA uses RASL.

In the above DIAs, the computational and communication costs of data uploading
increases linearly with the number of data replicas at the user end. The more data
replicas, more computational and communication costs. Therefore, in the Curtmola
CenPub-DIA, has been purposed. It allows the user to generate one version of tags
that can authenticate all data replicas using RSA-based tagging method. The user
generates the first replica, which is an encrypted form, and computes its tags, then
compute multiple data replicas using random numbers. On other words, all data file
replicas are derived from the first one. A new replica is generated by adding a random
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number to the first replica. For verifying the integrity of any replica, first, extract
the random numbers. Therefore, the tags can be used to authenticate this replica.
However, in the case of dishonest TPA, it may collude with the provider and share
these random numbers. Consequently, the provider may only keep the first replica
and delete other replicas, then it can generate any requested replica using the random
numbers in the run time of verification.

Data deduplication can bring benefits, which it can release a user from sending a
whole data file and save bandwidth. Furthermore, it helps in minimising the storage
overheads at the PCS, where only one copy of data is kept. Therefore, Yuan et al. [28],
Li et al. [29], Ma et al. [30] and He et al. [31] proposed their DIAs and integrated
them with data deduplication (the Yuan CenPub-DIA, the Li_3 CenPub-DIA, the
Ma CenPub-DIA and the He CenPub-DIA, respectively). The user should provide
evidence that he/she is the owner of the file in the case it is duplicated. To prove the
ownership, the provider asks the user sending the hash value of the file or random data
blocks from the file. Once the user succeed, then he can generate his tags and upload
them to the PCS without the data file.

As the file confidentiality can be vulnerable to compromise when applying the data
deduplication among multiple users in the above DIA; thus, the encryption should
be used. Unfortunately, using conventional encryption with different signing keys
results in different ciphertexts being generated and will outright incapacitate data
deduplication as a result. Therefore, the Li_3 CenPub-DIA, the Ma CenPub-DIA and
the He CenPCS-DIA applied other types of encryption algorithms to preserve data
confidentiality. The Li_3 CenPub-DIA and the Ma CenPub-DIA use a convergent
encryption [66]. In the convergent encryption, the algorithm for a key generation is
deterministic, compared with a probabilistic key generation algorithm used for the
conventional encryption. The key is a hash of the file; thus, each user can generate the
same ciphertext as a result. For handling with the dynamic data, the Ma CenPCS-DIA
uses MHT.

The convergent encryption maybe not secure, whereby attackers may access the
hash value by guessing, i.e. it is vulnerable to brute-force attacks. Therefore, a proxy
encryption [67] is used in the He CenPub-DIA, where each user can use his/her key.
Then, the proxy can re-encrypt the data to allow deduplication to be applied, where
this new entity should be trustworthy for a good security level.

However, the Yune CenPub-DIA, Li_2 CenPub-DIA and He CenPub-DIA incur
a cost in term of computational. When the duplication is detected, the user still
should generate his tags. Therefore, Liu et al. [24] proposed for their DIA to use
re-signature proxy BLS based (Liu_3 CenPub-DIA). The re-signature proxy [68] can
act as a translator who can convert a signature from Alice into a signature from Bob
for the same data without retrieving the secret key. In the Liu_3 CenPub-DIA, the
user, who is the first user who uploads a file, only processes the file, generates their
associated tags and uploads them to the PCS. Thus, when another user has passed
the ownership verification, then he can share his key for the tag generation with the
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provider. Once the provider receives the verification request, it uses the user’s tag
generation key and generates tags from the existing once (the first user’s tags).

2.7.1.2 Multiple TPAs based

Using a single TPA in DIA can make a DIA vulnerable to a bottleneck problem and
cause a delay in response when a high number of verification requests is received.
Thus, using multiple TPAs could be a solution to avoid this issue. Abbdal et al. [32]
proposed a DIA (the Abbdal CenPub-DIA) using an ECDSA based tagging method
and two TPAs types, i.e. main TPA and multiple secondary TPAs. In the Abbdal
CenPub-DIA, when the main TPA is busy, the verification request is forwarded to
the secondary TPA. Sexena et al. [33] also use an algebraic signature based tagging
method and multiple TPAs (the Sexena CenPub-DIA). By the Sexena CenPub-DIA,
the user can be released from tags generation. The user uploads his file to the PCS,
and then the provider generates tags for the data using AS_1 based tagging method.
Therefore, in each data integrity verification, multiple TPAs communicate with the
provider and collaborative in the data verification. Jin et al. [34] (the Jin CenPub-
DIA) proposed another DIA using the BLS based tagging method and multiple TPAs,
one for performing the data verification and another for dynamic data, where it stores
a data structure. The Jin CenPub-DIA uses a new data structure, called an index
switcher.

An index switcher is used to keep a mapping between block indices and tag indices.
Block indices are used to indicate the logical positions of data blocks while tag indices
are used in tag computation only. Therefore, the block update makes the tag index
sequence is not ordered and consecutive, while the block index sequence continues to
be consecutive. As shown in Figure 2.10, tag indices and block indices are the same
sequence 1; 2;...,; etc. After insertion of a new block mi at position 4, the block index
of mi is 5 while the tag index of mi is 9 (five is the block index of m5 before insertion).
After deletion of block m4, the block indices that are following the block mi, i.e. m5;
m6; m7; m8, are incremented by one, while tag indices of these following blocks remain
unchanged. After modification of m6, its tag index is changed to 10. Also, a new tag
index is set for block modification for resisting to replace attacks. As the correctness of
the index switcher can have effect on the verification result, thus, the Jin CenPub-DIA
utilises one TPA by keeping the index switcher; thus, the correctness can be guaranteed
where have to be exchanged upon each dynamic operation. Therefore, the user should
communicate with the first TPA in each update while, in the verification, the second
TPA communicates with this TPA.

2.7.2 Decentralised Pub-DIAs

Using multiple PCSes is in order to enhance the data availability, therefore, Yang et al.
[23], Ni et al. [15], Zhu et al. [35], and Liu et al. [36] proposed their Decentralised PCS
based DIAs (DecPub-DIA), (the Yang_2 DecPub-DIA, the Ni DecPub-DIA, the Zhu
DecPub-DIA and the Liu_4 DecPub-DIA, respectively). In the Yang_2 DecPub-DIA,
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Figure 2.10: Index Switcher Operations [34].

the user communicates with each provider to upload his data file and its associated
tags that are generated using the BLS based tagging method. For the data verification,
the TPA communicates with each provider to check the integrity of the user’s file and
then informs the user of the final result.

The Yang_2 DecPub-DIA can incur communication costs at the user and TPA.
The user uploads a file replica to each PCS, i.e. the more data replicas, the higher
the communication cost incurred. Furthermore, it incurs high computational and
communication costs at TPA, where it should communicate with each provider for
verification. Consequently, to save the communication cost incurred at the user, the
Ni DecPub-DIA was proposed using RSA based tagging and a hierarchical approach.
In the hierarchical approach, one of the providers is used as a leader between other
providers; thus, the user only communicates with the leader to upload his data and their
associated tags. The Zhu DecPub-DIA has been proposed and uses the same approach
to avoid the communication cost at TPA, too, and BLS based tagging. The TPA only
communicates with the leader when checking the integrity of a file at multiple PCSes.
Once the leader receives a verification request, it forwards the challenge message to
other providers, then aggregates the proofs that are generated from the providers, and
finally sends them to the TPA. To preserve data confidentiality from the TPA, the
provider encrypts the proofs before forwarding it to the TPA. Thus, the TPA can
verify this proof without accessing the plain data and breaching confidentiality.

In the Zhu DecPub-DIA, the provider may defraud the TPA and colludes with other
providers. To detect such an attack by the TPA, different replicas and their associated
tags at each PCS can be used as a solution, but this can incur high computational
overhead costs at the user end. Therefore, Liu_4 DecPub-DIA uses another approach.
In this approach, extra data blocks and their associated tags are used rather than
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using multiple replicas. Each PCS has different extra data blocks and their associated
tags, and they should be included in its proof. The providers do not know which
the data blocks are being uploaded on its PCS, and they are used for identification.
For supporting dynamic data, the Yang_2 DecPub-DIA uses IHT, while the Liu_4
DecPub-DIA uses MHT.

2.8 What is Missing?

This section presents some observations based on tagging and DIAs literature review
in the above sections as follows.

Firstly, from the above discussions of existing tagging methods, we can make the
following observations:

1. None of the existing methods support both public and private verifiability on the
same platform securely and efficiently. Symmetric key based methods can only
be used to support private verifiability, making them unsuited to TPA-based DIA
or in environments where third parties should not be trusted unconditionally or
their actions or services should be held accountable. Although asymmetric key
based methods can support both public and private verifiability, they are costly
to users, particularly if they have a high number of files in PCS.

2. There is still room for improvements with regards to protecting data
confidentiality in the design of tagging methods. Some of the existing DIAs
were designed under the assumption that TPAs are trustworthy, so the data
confidentiality requirement was not considered when the methods were designed.
To satisfy this requirement, a few DIAs should use a random masking technique,
which disguises the content of data blocks when they are being released from the
PCS upon the receipt of an integrity verification request. The masking operation
needs to be carried out by the provider whenever a file integrity verification
request is received. This imposes an additional run-time overhead to the provider.
Also, this approach does not protect data confidentiality against providers.
On the other hand, some the tagging methods are designed to support data
confidentiality requirements against the provider and TPA; they use encryption
at a file-level, wherein a data file is encrypted and then divided into multiple
blocks. Unfortunately, by using these methods, the DIAs cannot support the
dynamic tag efficiently, whereby a high computational cost can be introduced at
the user end.

3. None of the existing methods can support dynamic tag efficiently and provide tag
collision resistance at the same time. Some of the methods use a data block index
and/or file ID for the collision, but this leads to incur a computational cost at the
user end in updating tags. On the other hand, other methods use a hash value
of the data block for tag collision resistance and dynamic tags. Unfortunately,
they are not addressing the collision between multiple users.
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Secondly, the above literature survey of existing DIA works has led to the following
observations:

1. Most existing systems are designed under the assumption that TPAs are
trustworthy and integrity threats are mainly from providers and external entities.
However, in many cases, TPAs can be dishonest too. For example, the role of
TPAs may be performed by a provider. TPAs may collude with providers to
defraud users or to forge a verification result to discredit the providers.

2. Most existing DIA systems use a centralised system architecture. They use one
provider and one TPA. Data availability or reliability is enhanced by duplicating
data across multiple servers managed by the same provider. These centralised
solutions require a higher level of trust on the provider and TPA. Although there
are some decentralised DIA systems proposed to support the use of multiple
providers for data recovery and for enhancing data reliability [23] [15] [35] [36],
these systems require users to replicate their data files and tags themselves,
increasing the workload imposed on the users. In addition, most of these systems
only support the replication of data, not their associated tags. Replicated data
have different tags associated to each. When tags are lost or corrupted, they
cannot be recovered from another provider; they need to be recomputed and
re-uploaded onto the PCS. This also imposes additional cost onto users.

3. Existing data deduplication based works only eliminate redundant data at the
file level, i.e. they do not eliminate duplicated data blocks within a file or across
different files. If a user has different files being managed by a provider, and if
there are redundant data blocks across these different files, the existing methods
do not eliminate them. In addition, the existing works only check and eliminate
redundant data blocks when a new data file is being uploaded. They do not check
and eliminate redundant data when a file is being updated.

4. Data structures mostly used in existing DIA systems are rather costly when
being applied to support dynamic data. To protect against integrity threats,
many existing DIA systems employ a file dependent tree based data structure.
The data structure contains some data (e.g. the root of the tree) that are used
in generating tags and proofs for the data file. Every time the file is updated,
the data structure should be recomputed, are as well as the tags and proofs.
This is costly if the file is frequently updated. Furthermore, the existing data
structure cannot be used to support data deduplication. They do not allow for
the provision of mapping information between one or more data files.

2.9 The Way Forward

This section introduces the ideas used in the design of DIA in an effective, secure and
efficient manner. These are as follows.
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• Use a Multi-PCS-Multi-TPA system model, where a hierarchical approach is
applied among TPAs as well as among providers to save the communication cost
by the user in the decentralised DIA.

• Use a novel tagging method to support dual verification with a low level of
overhead at the user end and support tag deduplication only among the user
files. The tagging method uses a hybrid use of cryptographic primitives, namely
homomorphic encryption, algebraic signature and BLS short signature, as well as
the ideas of tag deduplication and decoupling block indices from tag generations.

• Use data deduplication, at both the data block level, both during data uploading
and data updating and at both the user end and the service provider end.

• Use a novel data structure to support the dynamic data verification and data
deduplication in an efficient manner.

• Use two-levels of data integrity protections, the first level supports public
verifiability and the second level supports both public and private verifiability.

• Use a collaborative verification for addressing the TPAs attacks, i.e. collusion
and frame attacks.

2.10 Chapter Summary

The chapter began with a discussion of DIA; its definition and classifications. The
security threats are analysed in relation to data integrity, and, based on the threat
analysis, a set of requirements for an effective, secure and efficient DIA was presented.
Then, a set of requirements for an effective, secure and efficient tagging method was
presented. This was followed by critically analysing a state-of-the-art tagging method
and DIA against the identified requirements to present their strengths and limitations
and identify the knowledge gaps. Then, we proposed some ideas to address the
knowledge gaps, and we will incorporate them into the design of our solution. The
next chapter will present a novel tagging method for data integrity protections in
environments where it is designed to overcome limitations as specified in Section 2.8.
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Chapter 3

TOD (Tagging of Outsourced Data):
A Novel Tagging Method

3.1 Chapter Introduction

This chapter sets out the first step towards the design of our solution for a secure,
reliable and efficient DIA framework for outsourced data in a PCS. This chapter
proposes a novel tagging method, called Tagging of Outsourced Data (TOD). The
novel tagging method reported in this paper is designed to overcome the limitations in
existing works as highlighted in Section 2.8, and, in addition, the method is designed
to be cost-efficient, i.e. imposing as less overhead costs as possible. A major novelty of
the TOD method lies in that it supports both private and public verifiability securely
and efficiently. Comprehensive security analysis and performance evaluation have been
conducted to demonstrate the efficacy and efficiency of the approach taken in the
design.

The chapter is structured as follows. Section 3.2 gives the design preliminaries,
covering the system model and threat model. Section 3.3 and Section 3.4 present the
key features and the building blocks that are used in the design, respectively, before
describing the TOD method in detail in Section 3.5. The correctness and security
analysis are given in Section 3.6, while the performance evaluation of the method is
given in Section 3.7. Finally, Section 3.8 concludes the chapter.

3.2 Design Preliminaries

This section gives the design preliminaries, covering the system model, threat model,
assumptions and notations under which the TOD is designed.

3.2.1 System Model

The TOD system model is identical to the DIA system described in Section 2.3. It
consists of three types of entities, i.e. users, the PCS provider and TPA.
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3.2.2 Threat Model

A threat model specifies the threats against which a security solution is designed to
counter. For the design of the TOD method, the threat model is as follows.

• Users may be malicious. Users may repudiate (i.e. falsely deny) the generation
of tags for some data. In addition, they may try to learn about other users’ data.

• PCS provider may be malicious. The provider normally follows data management
protocols to manage and maintain the integrity of data. However, the provider
may try to cover up a breach of the integrity of data by forging or replacing tags,
or replaying proof. In addition, the provider may also try to learn individual
users’ data out of commercial or other motivations.

• TPA may be malicious. A TPA normally follows their job specifications but may
sometimes try to gain unauthorised access to users’ data out of curiosity or other
commercial motivations.

3.2.3 Assumptions

As the focus of this work is on the design of a tagging method, the following assumptions
are used in the security analysis of the method.

(A1) The cryptographic algorithms and pseudo-random number generator used
in the design are secure.

(A2) Cryptographic keys are securely generated, distributed and stored. All the
public keys are certified and trusted by Certification Authorities (i.e. CAs).

3.2.4 Notations

The notations used in the remaining part of this paper is summarised in Notations
table.

3.3 Key Features and Ideas

The TOD method has five features, and three of these features are novel, i.e. support
both public and private verifiability on the same platform efficiently and securely,
preserve data confidentiality while supporting dynamic data in a more efficient manner,
and support tag deduplication. This section gives these features along with the ideas
used to achieve the features.

1. TOD supports both public and private verifiability on the same platform
efficiently and securely. For to make DIA more secure, it should not assume
that any of the third parties involved in managing and/or verifying users’
data is trustworthy. TOD achieves this by supporting both public and private
verifiability so that routine, or more frequent, verifications of data integrity can
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be delegated to a third party, TPA, but the owner of the data can also verify
the integrity of their data anytime they wish. In this way, we can shift the
burden of data integrity verifications away from data owners, while, at the same
time, giving data owners the option of monitoring the services provided by the
third parties by equipping them with the ability to detect any integrity drift
that may be caused by the provider and/or any forgery of integrity verification
results by the TPA. In other words, by supporting the dual verifiability, we make
the integrity protection more effective, protecting against threats from not only
external entities but also authorised insiders. This feature is achieved through a
hybrid use of two cryptographic functions, i.e. the algebraic signature and BLS
signature. The former supports public verifiability and non-repudiation of tag
generations, while the latter supports private verifiability.

2. TOD supports integrity verification of both plaintext data and ciphertext
(encrypted) data. Tag verifications can be carried without the need to decrypt
any encrypted data. This feature can help to preserve data confidentiality while
supporting data integrity and dynamic data in a more efficient manner. This is
part of the measure to reduce trust on the third parties. This feature is provided
by using a homomorphic encryption scheme to encrypt any data block, that is
used in tag generation, uploaded onto PCS.

3. TOD supports tag deduplication. Tag deduplication means that a single tag can
be used to authenticate multiple copies of the same data can be authenticated by
using a single tag. This can reduce the number of tags generated, thus reducing
computational and storage overheads.

4. TOD achieves tag collision resistance without coupling the tags and files tags
are used to protect. This decoupling allows tag deduplication and also allows
us to support dynamic data more efficiently. To achieve collision resistance,
we use a user ID along with a random number, alternative of using data block
index or a file ID. In this way, different tags for the same file or different files are
completely decoupled. If one tag is to be updated, other tags will not be affected.
Furthermore, for identical data blocks that appear in multiple files, only one tag
needs to be generated. This can help to reduce the number of tags generated
across all the files a user has on the PCS, further reducing computational and
storage overheads.

5. TOD is designed to achieve the above properties with as less overhead costs
(computational, storage and communication costs) as possible, especially for the
user end. This is done by taking the following two measures. The first is, we have
chosen to use more efficient functions, the algebraic signature and BLS signature,
to achieve the property of private and public verifiability. The algebraic signature
and BLS signature functions generate shorter tags, and are also computationally
cheaper than other functions. The second measure is to use signature aggregation
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in supporting private and public verifiability, allowing a user and TPA to verify
multiple tags in one operation, thus reducing verification costs imposed on the
user and TPA.

3.4 Cryptographic Building Blocks

The design of the TOD method has made use of four cryptographic schemes as its
underlying building blocks. The schemes are the LiSHE (it is a symmetric key based
additive homomorphic encryption scheme) [69], the Paillier (it is an asymmetric key
based additive homomorphic encryption scheme) [70], the algebraic signature [45] and
the BLS [46]. The LiSHE scheme is used for protecting the confidentiality of data files,
while the other three schemes are for the generation and verification of tags. In the
following, we give an overview of these schemes and justifications for their selections.

Homomorphic encryption is a type of encryption algorithm [71–73] that allows
computation to be carried out on ciphertext data, thus preserving the confidentiality
of data while them being computed. There are two types of homomorphism, additive
homomorphism and multiplicative homomorphism. In this work, we need additive
homomorphism. An encryption scheme is said to be additively homomorphic if the
encryption of the sum of two (or more) plaintext data blocks is equivalent to the
sum or product of the ciphertexts of the corresponding data blocks. Mathematically,
this can be expressed as: HE(DB1 + DB2) = HE(DB1) + HE(DB2) or HE(DB1) ×
HE(DB2), where DB1 and DB2 are two plaintext data blocks, HE denotes the additive
homomorphic encryption scheme, ’+’ addition operation, and ’×’ multiplication
operation.

Depending on the types of keys used, a homomorphic encryption scheme can
be either a Symmetric Homomorphic Encryption (SHE) scheme or an Asymmetric
Homomorphic Encryption (AHE) scheme. A SHE scheme uses the same key for
encryption and decryption, whereas an AHE scheme uses two different keys, one for
encryption and the other for decryption. To the best of the authors’ knowledge, there
are four SHE schemes published in the literature, and these are respectively proposed by
Li et al. [69], Dasgupta et al. [74], Chan et al. [73] and Xiao et al. [75]. With regard
to AHE schemes, the most popular ones are the RSA [54] and Paillier [70] scheme.
The RSA scheme supports multiplicative homomorphism, whereas the Paillier scheme
supports additive homomorphism.

Generally, SHE schemes are computationally cheaper than AHE schemes. As shown
in Table 3.1, for encryption, the SHE scheme, proposed by Li et al. (hereafter referred
to as the LiSHE scheme) uses one exponentiation operator, whereas the Paillier scheme
uses two exponentiation operators. But an SHE scheme does have downside, i.e. the
need for the key distributions. However, this is not an issue for data files encryptions
in our problem context, as a data file is both encrypted and decrypted by the same
entity, i.e. its data owner (user). For these reasons, we have decided to use an SHE
scheme for confidentiality protection of users’ data files.

The next question is which SHE scheme we should go for. Among the four known
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Table 3.1: Computational Complexities of the Paillier, RSA and LiSHA Schemes.

Paillier RSA LiSHA
Encryption Complexity 2 ×ExpZn2 ExpZn ExpZp

Decryption Complexity ExpZn2 ExpZn ExpZp

Expx: Modular exponentiation in x

SHE schemes [69, 73–75], the LiSHE scheme, proposed by Li et al. [69], is the most
efficient one. The scheme is based on integer operations (with the computational
complexity of matrix operations), which is computationally cheaper than the matrix
multiplication and matrix inversion operations used in the schemes designed by Chan
et al. [73] and Xiao et al. [75] (the computational complexity of a matrix multiplication
operation is O(t3) for multiplying two matrices of size (t× t) [76]). With regard to the
SHE scheme proposed by Dasgupta et al. [74], a bootstrapping process is required after
a certain number of addition/multiplication operations to ensure that ciphertexts can
be decrypted correctly. This requirement is not desirable and also the bootstrapping
process imposes additional overhead.

The Paillier scheme [70] is chosen because it is an asymmetric key based and
supports additive homomorphism. The algebraic signature scheme [45] allows signature
aggregation and aggregated signature verification. The BLS scheme [46] is the most
efficient signature scheme, compared with a set of signature schemes that are used in
existing DIAs (they can support public verifiability), in terms of a tag size, and costs
of tag generation and verification. So these schemes are selected to support public and
private verifiability in a secure and efficient manner.

3.4.1 LiSHE Scheme

The LiSHE scheme consists of three algorithms, a key generation algorithm (LiSHE-
KeyG) for generating a symmetric key used to encrypt and decrypt data files, an
encryption algorithm (LiSHE-Enc) for encrypting plaintext data files, and a decryption
algorithm (LiSHE-Dec) for decrypting ciphertext data files. The details of these
algorithms are given below.

LiSHE-KeyG Algorithm: Given a security parameter, λ, this algorithm generates
a secret key, sk = (s, q), and a public parameter, p, where q and p are prime numbers,
p� q, ′ �′ denoting p should be much greater than q, i.e. the length of q, Lq ≥ λ bits,
and length of p, Lp = 120× d + Lq bits, d is a small positive integer called ciphertext
degree and s is a random number from Z∗p.

LiSHE-Enc Algorithm: Given sk and a plaintext data block (DB) ∈ Fq,
choose a number, r, where r is a large random positive integer called random
ingredient of ciphertext, encrypt the data block to produce the ciphertext output, c,
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as:
c = LiSHE-Enc(sk,DB) = sd × (r × q +DB) mod p (3.1)

LiSHE-Dec Algorithm: Given sk, a ciphertext, c, and d, recover the plaintext data
block, DB, from the ciphertext, c, as:

DB = LiSHE-Dec(sk, c, d) = (c× s−d mod p) mod q (3.2)

3.4.2 Paillier Scheme

The second homomorphic encryption scheme used in the TOD design is the Paillier
scheme which is an asymmetric additive HE scheme. The Paillier scheme consists of
three algorithms, a key generation algorithm (Paillier-KeyG) for generating a pair
of keys, a public key for encryption and a private key for decryption, an encryption
algorithm (Paillier-Enc) for encrypting plaintext data, and a decryption algorithm
(Paillier- Dec) for decrypting ciphertext data. The details of these algorithms are
given below.

Paillier-KeyG Algorithm: Given two prime numbers, p and q, this algorithm
generates a public key, ppkEn = (n, g), and a private key, pkD = (λ, µ), where
n = p× q, and g is an random integer, and g ∈ Z∗n2 . λ = lcm(p− 1, q − 1), where lcm
means least common multiple, and µ = (L(gλ mod n2))−1 mod n, where L(x) = x−1

n
.

Paillier-Enc Algorithm: Given a public key, ppkEn, and a data block (i.e.
the message to be encrypted), DB, where 0 ≤ DB < n, select random integer, r,
where 0 < r < n and r ∈ Z∗n2 , encrypt the message, DB, to produce the ciphertext
output, c, as:

c = E(DB, ppkEn) = gDB × rn mod n2 (3.3)

Paillier-Dec Algorithm: Given a private key, pkD, a ciphertext, c, recover the
plaintext message, DB, from the ciphertext, c, as:

DB = D(c, pkD) = L(cλ mod n2)× µ mod n (3.4)

As mentioned earlier, the Paillier scheme supports the additive homomorphism.
This means that, given ciphertexts of DB1 and DB2, one can compute the ciphertext
of DB1 +DB2, i.e. the following equation holds:

E(DB1 +DB2) = E(DB1)× E(DB2) (3.5)

3.4.3 Algebraic Signature Scheme

The third cryptographic building block used in the TOD design is the algebraic
signature function proposed by Thomas Schauer et al. [45]. This function is defined in
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a Galois field (GF (2m)). For a data block (DB) consisted of w m-bit binary strings,
{si}, 0 � i � w − 1, its algebraic signature is calculated as:

AS(DB) =
w−1∑
i=0

si × αi (3.6)

where α is a primitive element of GF (2m).
The length of a signature generated by this function is equal to the length of α,

which is an element in GF (2m). For example, using GF (216), where the length of α
is 16-bits, the resulting signature would be an element in GF (216) with a signature
length of 16-bits (2 bytes). The algebraic signature scheme is a type of hash function
with an algebraic property: a signature of the sum of data blocks is equivalent to the
sum of the signatures of the corresponding data blocks, i.e., AS(DB1) + AS(DB2) =

AS(DB1 +DB2).

AS(DB1) + AS(DB2) =
w−1∑
i=0

s1,i × αi +
w−1∑
i=0

s2,i × αi

=
w−1∑
i=0

αi × (s1,i + s2,i)

= AS(DB1 +DB2)

(3.7)

3.4.4 BLS Scheme

The fourth cryptographic building block used is the BLS signature scheme [46]. The
BLS signature scheme is based on a bilinear pairing, and generates short signatures.
In addition, it has an important property, i.e. it allows the aggregation of multiple
signatures and the verification of the aggregated signature. In other words, it allows
multiple signatures being verified in one operation, the so called batch verifiability
property.

The bilinear pairing can be defined as follows. Let G1, G2 and GT be three
multiplication cycle groups of prime order p, g1 is a generator of G1 and g2 is a generator
of G2. The bilinear pairing is a map e : G1 × G2→ GT . It has the following properties:

(P1): Bilinear: e(W a, R) = e(W,Ra) for W ∈ G1, R ∈ G2 and a ∈ Zp.

(P2): Non-degeneracy: e(g1, g2) 6= 1.

Given the bilinear pairing definition, the BLS signature scheme can be defined as
follows. Let (G1, G2, GT , g2, p, e, H()) be the system parameters, where G1, G2,
GT , g2, p, e have been defined above, and H() is a hash into a curve (mapping a
value into a point of the curve), i.e. H() =

{
0, 1
}∗ → G1. The BLS signature scheme

consists of three algorithms: a key generation algorithm (BLS-KeyG) for generating
signature signing and verification keys, a signature generation algorithm (BLS-SigG)
for generating a BLS signature, and a signature verification algorithm (BLS-SigV) for
verifying the signature.
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BLS-KeyG Algorithm: Select a random number, x ←R Zp, where x is the
private key, and compute the corresponding public key (ppk), where ppk = gx2 .

BLS-SigG Algorithm: Given a data block, DB ∈
{

0, 1
}∗, and a private key,

x, compute a signature, DBSig, for the data block, DB, where DBSig = BLS-SigG
(DB) = H(DB)x and DBSig ∈ G1.

BLS-SigV Algorithm: Given a data block, DB, its signature, DBSig,
and the public key, ppk, compute and verify if this equation holds, i.e.,
e
(
DBSig, g2

)
= e
(
H(DB), ppk).

The BLS signature scheme can be extended into an aggregated signature scheme by
which multiple BLS signatures can be aggregated into a single aggregated signature,
and the verifications of the multiple signatures are transformed into the verification
of the aggregated signature. This aggregated signature scheme consists of four
algorithms: a key generation algorithm (the BLS-KeyG algorithm) for generating
signature signing and verification keys; a BLS signature signing algorithm (the BLS-
SigG algorithm) for generating a BLS signature, a signature aggregation algorithm
(the BLS-AggSigG algorithm) for aggregating multiple BLS signatures into a single
aggregated BLS signature, and an aggregated signature verification algorithm (the
BLS-AggSigV algorithm) for verifying the aggregated signature. The BLS-KeyG
and BLS-SigG algorithms are defined above, the BLS-AggSigG and BLS-AggSigV
algorithms are defined below.

BLS-AggSigG Algorithm: Given w BLS signatures, i.e. {DBSigi}, where,
0 � i � w − 1, each signed on a distinct data block, {DBi}, using the BLS-SigG
algorithm, this algorithm generates an aggregated BLS signature, AggDBSig, using
the equation:

AggDBSig = BLS-AggSigG({DBSigi}) =
w−1∏
i=0

DBSigi.

BLS-AggSigV Algorithm: Given an aggregated signature, i.e. AggDBSig, a public
key, ppk, and w data blocks, {DBi}, that have been signed, where {0, w − 1}. This
algorithm verifies the aggregated signature by computing a hash value for each of the
w data blocks, i.e. H(DBi), where i ∈ {0, w − 1}, and confirming if this equation
holds, e

(
AggDBSig, g2

)
= e
(∏w−1

i=0 H(DBi), ppk). If yes, the aggregated signature is
accepted. Otherwise, it is rejected.

3.5 The TOD Method in Detail

A major novelty of the TOD method lies in that it supports both private and public
verifiability securely and efficiently. This means that, once tags are generated for a
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Figure 3.1: Four Types of Tags, their Relationship and Inputs and Schemes used to
generate them.

file, both the owner of the file and a third party representing the owner can do the
integrity verification of the file securely and independently at any frequencies. This
property is achieved by using four types of tags that are generated and secured by
making a hybrid use of the algebraic signature (AS) scheme, a MappingFunction, the
BLS signature scheme, and the Paillier scheme. The four types of tags are, respectively,
an identifier tag (IDTag), a data tag (DataTag), a data block tag (DBTag), and a
DBTag tag (DBTagTag). Figure 3.1 shows the relationship of these tags, and the
input and the scheme that are used for generating each.

The IDTag serves as an identifier for differentiating different DBTags. It is also
used as an input for the generation of DBTags to resist tag collisions. IDTags are
generated by using the AS scheme which defined in EQ (3.6), along with two parameter
values, the ID of the user (i.e. the owner of the data block) and a random number
that is unique for each IDTag. In this way, any change made to a data file would only
affect the tag(s) of the data block(s) that have been affected by the change. This can
reduce tag generation overhead. In addition, in our design, the IDTags are encrypted.
The encryption is done by using the Paillier scheme to protect the confidentiality of the
IDTags to counter potential IDTag forgeries by authorised insiders, i.e. the provider
or the TPA.

The DataTag of a data block represents the digest of the data block, whereas the
DBTag of a data block is the digest of the IDTag and DataTag associated to the
data block. Similar to the case for IDTags, DataTags and DBTags are also generated
by using the AS scheme. The DBTags of a data file are used to support the private
verifiability of the data file.
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The DBTagTag of a data block provides an extra layer of protection protecting the
integrity of IDTag and DBTag associated to the data block against fraud that may be
committed by authorised insiders (the provider and the TPA). It is generated by using
the BLS scheme on an encrypted form of the IDTag and the DBTag. DBTagTags
of a data file are used to support the public verifiability of the data file.

In the following, we describe, in detail, four functional components of the TOD
method, namely, data pre-processing, tag generation, tag private verification (for
private verifiability) and tag public verification (for public verifiability). Figure 3.2
shows the functional components of the TOD method and their algorithms (inputs
and outputs).

3.5.1 Data Pre-processing

A data file is first pre-processed before tags are generated for the file. The pre-
processing involves fragmenting the data file into multiple data blocks, eliminating
any redundant (or duplicated) data blocks producing the so-called non-duplicated data
blocks (DBs), and encrypting them producing the encrypted data blocks (En_DBs).
Data deduplication is done by comparing data block values and then removing any
additional blocks that have identical values. The encryption is done by using the
LiSHE-Enc algorithm described in Section 3.4 above. This encryption operation is to
protect the confidentiality of the data file ensuring that the content of the data file can
only be accessed by the user (i.e. the owner of the file) him/erself even if the file is
being managed by third parties.

These data pre-processing operations are implemented in the SetUp algorithm
(Algorithm 1 given in Appendix B). The algorithm takes a data file (DF ) and a
symmetric key, sk, as its input and outputs a set of encrypted data blocks {En_DBi}.

3.5.2 Tag Generation

As mentioned earlier, each data block has four tags, i.e. IDTag, DataTag, DBTag,
and DBTagTag. The math formulas for the generations of these tags are summarised
in Table 3.2. From the Table, it can be seen that an IDTag, IDTagi, for a data
block, DBi, is generated by applying the concatenation of the user’s ID, UserID, and
a random number, RNi to the AS scheme, as shown in EQ (3.8).

A DataTag, DataTagi, is a signature token on the ciphertext of a data block,
En_DBi, generated using EQ(3.9). A DBTag, DBTagi, is a tag generated by taking
the numeric sum of the IDTag, i.e. IDTagi, and the DataTag, i.e. DataTagi, of the
block, as shown in EQ(3.10).

The set of data block tags, {DBTagi}, generated for a set of encrypted data blocks,
{En_DBi}, are for integrity verification of the data blocks by the data owner, i.e. for
achieving private verifiability.

DBTagTags are for supporting public verifiability. The generation of aDBTagTag
is by making a hybrid use of the BLS-SigG scheme (defined in Section 3.4 above)
and a MappingFunction defined in Algorithm 2. This MappingFunction uses a hash

65



F
ig
ur
e
3.
2:

T
he

Fu
nc
ti
on

al
C
om

po
ne
nt
s
of

th
e
T
O
D

M
et
ho

d.

66



Table 3.2: Math Equations for the Generations of Different Tags.

Tags Equations

Identifier Tag
IDTagi = AS(UserID||RNi) (3.8)

Data Tag
DataTagi = AS(En_DBi) (3.9)

Data Block Tag
DBTagi = IDTagi +DataTagi (3.10)

DBTag Tag
DBTagTagi = [H(En_IDTagi)× υDBTagMapV aluei ]x (3.11)

En_DBi is an encrypted data block, En_IDTagi is an encrypted form of IDTagi, H() is a
hash into a curve, υ is chosen uniformly at random from G1, AS() is the function defined in
EQ(3.6), DBTagMapV aluei is the output from the MappingFunction algorithm, and x is

the file owner’s BLS private key.
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function, H1() (e.g. SHA256), to generate a hash value of DBTag concatenated with
a secret key, MappingSecretKey, and then converts the hash value into an element
in Zp. In detail, given an encrypted IDTag, En_IDTagi, a Map value of DBTagi,
DBTagMapV aluei, a random number from G1, υ, and the file owner’s BLS private
key, x, the associated DBTagTag is generated using EQ (3.11) as shown in Table 3.2.

The tag generation methods for all the four types of tags are implemented in the
TagGen algorithm (Algorithm 3).
{IDTagi} should be kept secret (known only to the file owner, i.e. the generator

of the tags) and their encrypted copies, i.e. {En_IDTagi}, can be uploaded onto
TPA for public verifiability. The following three sets: {En_DBi}, {DBTagi} and
{DBTagTagi}, are loaded onto the PCS server. {En_DBi}, {IDTagi} and {DBTagi}
are used for file integrity private verifications, whereas {En_IDTagi}, {En_DBi},
{DBTagi} and {DBTagTagi} are used for file integrity public verifications.

3.5.3 File Integrity Private Verification

The private verification of the integrity of the data file refers to the verification of
the integrity of the data file by the owner of the data file. This is also referred to as
tag private verification. The verification can either be performed on per tag basis, in
which case, it is called Single Tag Private Verification (STagPriVer), or in an aggregated
manner (i.e. multiple tags are verified in one verification operation), in which case, it
is called Batch Tag Private Verification (BTagPriVer).

Table 3.3: Math Equations for Tag Verifications (Private and Public).

Equations

An aggregated En_DB value of C
En_DBs, {En_DBi}

AggEn_DB =

C−1∑
i=0

En_DBi (3.12)

A tag of AggEn_DB AggEn_DBTag = AS(AggEn_DB) (3.13)

An aggregated IDTag value of C
IDTags, {IDTagi}

AggIDTag =

C−1∑
i=0

IDTagi (3.14)
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An aggregated DBTag value of C
DBTags, {DBTagi}

AggDBTag =

C−1∑
i=0

DBTagi (3.15)

A fresh value of AggDBTag
AggDBTag′ = AggIDTag +AggEn_DBTag (3.16)

A fresh value of En_DBTagi
En_DBTag′i = En_IDTagi × En_DataTagi (3.17)

DBTagTagi verification

e(DBTagTagi, g2) =

e(H(En_IDTagi)× υDBTagMapV aluei , ppk) (3.18)

An aggregated En_IDTag value of C
En_IDTags, {En_IDTagi}

AggEn_IDTag =

C−1∏
i=0

En_IDTagi (3.19)

A fresh value of En_AggDBTag

En_AggDBTag′ =

AggEn_IDTag × En_AggEn_DBTag (3.20)

An aggregated DBTagTag value of C
DBTagTags, {DBTagTagi}

AggDBTagTag =

C−1∏
i=0

DBTagTagi (3.21)

AggDBTagTag verification

e(AggDBTagTag, g2) =

e(

C−1∏
i=0

H(En_IDTagi)× υ
∑C−1

i=0 DBTagMapV aluei , ppk) (3.22)

A tag private verification involves the use of three data items, i.e. En_DBi, IDTagi
andDBTagi, in the STagPriVer case, or three sets of items, i.e. {En_DBi}, {IDTagi}
and {DBTagi}, in the BTagPriVer case. The math formulas for these verifications are
summarised in Table 3.3. In a tag private verification operation, a secret item involved
is IDTagi that should only be known to the verifier, i.e. the user. The rest of the items
are fetched from the provider. The verification process of STagPriVer is as follows.
The user computes a fresh DataTag, DataTag′i, by applying En_DBi to EQ(3.9),
then computes a fresh DBTag′i by applying IDTagi and DataTag′i to EQ(3.10), and
compares the freshly computed DBTag′i with the one retrieved, DBTagi. If the two
values are equal, then the verification is positive or true (denoted as 1). Otherwise, it is
negative or false (0). The algorithm for this verification is summarised in STagPriVer
algorithm (Algorithm 4).

Different from that of STagPriVer, in a BTagPriVer process, multiple tags,
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{DBTagi}, are verified in a single verification operation. In such a verification, three
aggregated data items are freshly computed based on {En_DBi}, {IDTagi} and
{DBTagi}, respectively. These aggregated data items are AggEn_DB (an aggregated
data value of C data blocks, {En_DBi}, computed using EQ(3.12)), AggIDTag
(an aggregated identifier tag value of C IDTags, {IDTagi}, are computed using
EQ(3.14)), and AggDBTag (an aggregated data block tag value, AggDBTag, of the
set {DBTagi} using EQ(3.15)), where 0 ≤ i ≤ C − 1, C is the number of tags being
selected randomly for this verification and C ≤ d, where d is the total number of data
blocks. AggEn_DB and AggDBTag are calculated based on the respective items, i.e.
{En_DBi} and {DBTagi}, by the provider, while AggIDTag is computed based on
the secret items, i.e. {IDTagi}, by the user. Based on AggEn_DB and EQ(3.13),
AggEn_DBTag is computed. Using the computed AggIDTag and AggEn_DBTag
and EQ(3.16), a fresh AggDBTag′ is computed, and then compare it with the one
retrieved, AggDBTag. If the two values are equal, then the integrity of the file is
preserved. This verification operation is summarised in the BTagPriVer algorithm
(Algorithm 5).

3.5.4 File Integrity Public Verification

The public verification of the integrity of a data file refers to the verification of the
integrity of a data file by a third party on behalf of the user. This is also referred to
as tag public verification. Different from the tag private verification method described
above, a tag public verification is performed by verifying a BLS signature that has
been signed with the user’s private key, x, with the corresponding public key, ppk.
Similar to tag private verifications, tag public verifications can also be performed on
per tag basis, in which case, it is called Single Tag Public Verification (STagPubVer),
or in an aggregated manner, in which case, it is called Batch Tag Public Verification
(BTagPubVer).

A tag public verification involves the use of four data items, i.e. En_IDTagi,
En_DBi, DBTagi and DBTagTagi, in the STagPubVer case, or four sets of items,
i.e. {En_DBi}, {En_IDTagi}, {DBTagi} and {DBTagTagi}, in the BTagPubVer
case, where En_IDTagi is the encrypted form of IDTagi, and DBTagTagi is the tag
of DBTagi (See Figure 3.2).

It should be emphasised that as {IDTagi} are confidential items, so tag public
verifications involved the use of encrypted IDTags, i.e. {En_IDTagi}. The detailed
verification process where is performed by the TPA is as follows. DataTagi is
computed by applying En_DBi to AS(), while En_DataTagi and En_DBTagi are
computed by applyingDataTagi andDBTagi to EQ(3.3), and a fresh En_DBTag, i.e.
En_DBTag′i, is computed by applying En_IDTagi and En_DataTagi to EQ(3.17).
It then confirms if the freshly computed En_DBTag′i is equal to the encrypted form
of the retrieved DBTagi, i.e. En_DBTagi. If this verification is positive, it computes
DBTagMapV aluei using DBTagi and MappingSecretKey, as shown in Algorithm
2, and then applies En_IDTagi, DBTagMapV aluei, DBTagTagi and the public
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key, ppk, to EQ(3.18). If EQ(3.18) holds, then the verification is positive or true (1).
Otherwise, it is negative or false (0). The algorithm for this verification is detailed in
Algorithm 6 (i.e. STagPubVer algorithm).

Similar to the case of BTagPriVer, batch tag public verification (BTagPubVer) also
allows multiple tags (i.e. {DBTagTagi}) to be verified in a single verification operation
(See Figure 3.2). The algorithm for this verification is summarised in Algorithm 7 (i.e.
BTagPubVer algorithm).

3.6 Correctness and Security Analysis

In this section, we analyse the correctness and security of the TOD method. The
security analysis makes use of the security requirements specified in section 2.5.1.

3.6.1 Correctness

Theorem 4.1: Given a data file and its tags, the verifier can verify the integrity of
the data file.

Proof: Proving the correctness of the TOD method is equivalent to proving
the correctness of equations, EQ(B.4), EQ(B.6), and EQ(3.22). Based on property of
the algebraic signature, i.e. AS(DB1) + AS(DB2) = AS(DB1 +DB2) as indicated in
EQ(3.7), the homomorphic addition property in Paillier as indicated in EQ(3.5) and the
bilinear pairing described in Section 3.4, all the three equations, as verified below, hold.

EQ(B.4): AggDBTag′ = AggDBTag

Left Side: AggDBTag′

= AggIDTag + AggEn_DBTag, (based on EQ(3.16))

=
C−1∑
i=0

IDTagi + AS(AggEn_DB), (based on EQ(3.13) and EQ(3.14))

=
C−1∑
i=0

IDTagi + AS(
C−1∑
i=0

En_DBi), (based on EQ(3.12))

=
C−1∑
i=0

IDTagi +
C−1∑
i=0

AS(En_DBi), (based on EQ(3.7))

=
C−1∑
i=0

IDTagi +
C−1∑
i=0

DataTagi, (based on EQ(3.9))

=
C−1∑
i=0

[IDTagi +DataTagi]

=
C−1∑
i=0

DBTagi, (based on EQ(3.10))

= AggDBTag, (based on EQ(3.15))
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EQ(B.4) holds.

EQ(B.6): En_AggDBTag′ = En_AggDBTag

Left Side: En_AggDBTag′

= AggEn_IDTag × En_AggEn_DBTag, (based on EQ(3.20))

=
C−1∏
i=0

En_IDTagi × E(AggEn_DBTag), (based on EQ(3.19) and EQ(3.3))

=
C−1∏
i=0

En_IDTagi × E(AS(AggEn_DB)), (based on EQ(3.13))

=
C−1∏
i=0

En_IDTagi × E(AS(
C−1∑
i=0

En_DBi)), (based on EQ(3.12))

=
C−1∏
i=0

En_IDTagi × E(
C−1∑
i=0

AS(En_DBi)), (based on EQ(3.7))

=
C−1∏
i=0

En_IDTagi × E(
C−1∑
i=0

DataTagi), (based on EQ(3.9))

=
C−1∏
i=0

En_IDTagi ×
C−1∏
i=0

En_DataTagi, (based on EQ(3.5))

= E(
C−1∑
i=0

(IDTagi +DataTagi)), (based on EQ(3.5))

= E(
C−1∑
i=0

DBTagi), (based on EQ(3.10))

= E(AggDBTag), (based on EQ(3.15))

= En_AggDBTag, (based on EQ(3.3))

EQ (B.6) holds.

EQ(3.22): e(AggDBTagTag, g2) = e(
C−1∏
i=0

H(En_IDTagi)× υ
∑C−1

i=0 DBTagMapV aluei , ppk)

Right Side: e(
∏C−1

i=0 H(En_IDTagi)× υ
∑C−1

i=0 DBTagMapV aluei , ppk)

= e(
C−1∏
i=0

H(En_IDTagi)×
C−1∏
i=0

υDBTagMapV aluei , ppk),

based on ppk = gx2 , as described in the BLS-KeyG Algorithm in section 3.4:

= e(
C−1∏
i=0

[H(En_IDTagi)× υDBTagMapV aluei ], gx2 ),

based on property (P1) of the bilinear pairing, as described in the BLS scheme

in section 3.4:
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= e(
C−1∏
i=0

[H(En_IDTagi)× υDBTagMapV aluei ]x, g2)

= e(
C−1∏
i=0

DBTagTagi, g2), (based on EQ(3.11))

= e(AggDBTagTag, g2), (based on EQ(3.21))

EQ (3.22) holds.

3.6.2 Tag Forgery Resistance

In this section, we analyse the cost for circumventing private verifiability via tag
forgeries. The notations used in this security analysis are summarised in Table 3.4.

Table 3.4: Notations used in the Security Analysis.

Notation Description
LX Bit-length of X
BFAX Computational cost on brute force attack on X
PZ Probability of finding a collision in Z
m Degree of GF (2m)

PE Primitive elements in GF (2m)

TCSC Total number of Cycles per Second per Core
TCP Total number of Cores per Processor
TPD Total number of Processors per Device
TSY Total number of Seconds per Year
NY Total Number of all possible combinations of Y, i.e. the space size

of Y
ECN Estimated Cycle Number per combination check
DY Device-Year

There are two general approaches to attacking a cryptographic scheme to recover the
key, followed by recovering the plaintext of a single ciphertext, namely Cryptanalysis
and Brute Force Attack (BFAs) [77, 78]. Cryptanalysis is the process of attempting to
recover the plaintext and/or key from a ciphertext by exploring any design flaws in the
scheme used. The success rate of this form of attacks is also dependent on the amount
of information known to the cryptanalyst. Taking into account that (1) AS, LiSHA,
BLS signature and Paillier have been proven to be secure under the hardness of Solving
Polynomial Systems over Finite Fields [69] [79], the computational Diffie-Hellman [46,
80], and Decisional Composite Residuosity [70] assumptions, respectively, and (2) keys
are securely distributed and stored, the security analysis in this section only focuses on
the BFAs. The computational cost of forging a tag using the BFAs is measured in
terms of the server-years required to successfully forge a tag. The server-year metric
measures, given one server or one device, the number of years that it takes for an attack
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to succeed.
The BFA cost can be calculated by using EQ(3.23), which converts the number

of all possible combinations (N) into one that is measured in the unit of server-year,
and this is done by dividing the value of N multiplied by the Estimated Cycle Number
(ECN) per combination check by the Device-Year (DY ), i.e.

BFA Cost = (N × ECN)/DY (server-years) (3.23)

where DY is a unit used to measure the performance of a device per year; it is defined
as the number of cycles per year a device can execute.

Typically, each instruction execution requires a number of cycles. DY can be
computed by multiplying the following values: the Total number of Cycles per Second
per Core (TCSC), the Total number of Cores per Processor (TCP ), the Total number
of Processors per Device (TPD) and the Total number of Seconds per Year (TSY ),
i.e.

DY = TCSC × TCP × TPD × TSY (3.24)

To give a more detailed idea about the BFA cost, we here use two types of devices as
examples to calculate the cost in the unit of server-years: device type 1 is a server with
four (=22) processors (4ProcDevice), and device type 2 is a PC with one processor
(1ProcDevice). Each processor is assumed to have 16 (=24) cores, and each core
has a speed of 2.6 GHz (=231). According to EQ(3.24), the DY for 4ProcDevice is
231 × 24 × 22 × 225 = 262, while the DY for 1ProcDevice is 231 × 24 × 1 × 225 = 260.
It should be emphasised that the BFA cost decreases as the value of DY of the used
device increases.

The forgery attack may be performed by using multiple devices. In this case,
the attack is a distributed BFA attack. The BFA with distributed attacks can be
estimated by using the following equation, where NUD is the number of devices used
in the attack.

Distributed BFA Cost = BFA/NUD (3.25)

It should be emphasised that while the Distributed BFA cost decreases as the
number of devices used increases, the monetary cost in mounting the attack will increase
too. For example, using one 4ProcDevice for an hour from the AWS Amazon service
costs around £ 0.23 [81]. Using the device for one year, the cost would be £0.23
× £8,760 = £2,014.8. Using 100 4ProcDevice for one year would put this cost at
about 100 × £2,014.8 = £201,480 in one year. The following analysis is based on the
assumption that non-distributed BFA attacks and 4ProcDevice are used.

IDTags are secret and they are kept by the data owners themselves. Depending
on whether the provider knows the public parameter value, m (the degree of GF(2m)),
used in IDTag generations and how the attack is performed, the BFA cost will be
different. There are three scenarios:

• IDTag-Scenario-1: The provider tries to guess IDTag without knowing m.
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• IDTag-Scenario-2: The provider tries to guess IDTag with the knowledge m.

• IDTag-Scenario-3: The provider tries to guess IDTag via guessing RN , the secret
random number and a primitive element used in its generation.

In IDTag-Scenario-1, the attacker needs to guess the length, as well as the value of
the tag. The length of an IDTag, i.e. m for GF (2m), can be set to different values,
e.g. m= 8, 16, 32, ..., etc. Given m, the length of an AS tag is m-bits long, thus there
are 2LAS= 2m possible values of an IDTag (and this is also referred to as the space of
IDTag or AS tags, denoted as NAS). Using EQ(3.23) and EQ(3.24), we can calculate
the BFA for each of the m values, m0, m1, ..., mn as BFAm0 , BFAm1 ,..., and BFAmn .
Then the total cost for Scenario-1 is the sum of the BFA s, i.e.

BFAIDTag-Scenario-1 =
n∑
i=0

BFAmi
(3.26)

In IDTag-Scenario-2, the provider knows the length of an IDTag, i.e. the m value
in GF (2m), so only need to guess this value of the tag. The BFA cost in this case is:

BFAIDTag-Scenario-2 = BFAmi
(3.27)

In IDTag-Scenario-3, the provider tries to guess IDTag via guessing its input values,
RN , the secret random number, and the primitive element used in IDTag generation as
shown in EQ(3.8). As shown in EQ(3.8), IDTagi is computed by applying the algebraic
signature to the concatenation of the user’s ID, UserID, and a random number, RNi,
and this random number is unique for each data block. The random number is a secret
value, i.e. it is only known to the user (the data owner). As UserID is not secret, the
provider needs to guess RNi as well as the primitive element chosen by the user. Given
m, the total number of primitive elements (NPE) in GF (2m) can be computed using
the following equation:

NPE =
Φ (2m − 1)

m
(3.28)

where Φ(n) is the Totient function [82]. For example, GF (28) has 16 primitive elements,
GF (216) has 2048 ' 211 primitive elements and GF (232) has 67108864 ' 226 primitive
elements, etc.

Under the assumption that the provider knows the degree of GF (2m) (the weakest
link principle), the BFAIDTag can be calculated using EQ(3.23), where, N = NRN ×
NPE, NRN is the range size of the random number, i.e. NRN= 2LRN , where LRN is the
bit-length of the random number and NPE is the total number of primitive elements
of GF (2m). NPE can be computed by using EQ (3.28).

Based on the above analysis and the weakest link principle, we denote the lowest
cost of the three scenarios as the BFA cost for IDTags, i.e.

BFAIDTag = min(BFAIDTag-Scenario-1,

BFAIDTag-Scenario-2,

BFAIDTag-Scenario-3)

(3.29)
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Figure 3.3: Costs of Brute-Force Attack on IDTag vs the Value of m.

As cost for IDTag-Scenario-1 is the most expensive scenario, so EQ(3.29) can be written
as:

BFAIDTag = min(BFAIDTag-Scenario-2, BFAIDTag-Scenario-3)

∝ min(2m, 2LRN ×NPE)
(3.30)

Figure 3.3, plotted based on EQ(3.23) and EQ(3.30), shows the costs of two scenarios,
i.e. Scenario-2 and Scenario-3, for forging IDTag vs the value of m using LRN = 64
bits and 160 bits. Based on the figure, we can see that, given other parameter values
fixed, BFA is determined by N which is, in turn, dependent on the length of binary
value concerned. This means that IDTag-Scenario-2 is dependent on m, the length of
IDTag, and IDTag-Scenario-3 is dependent on LRN , the length of RN , addition to m.
The cost of Scenario-2 increases as the value of m increases. For example, the cost
for IDTag-scenario-2 increases from 7.379 × 1019 to 1.361 × 1039, when the value of
m increases from 64 to 128. The case for IDTag-scenario-3 is similar as LRN and m

increase. For example, given m = 64, the cost of scenario-3 increases from 5.317× 1036

to 9.808 × 1055, where the bit-length of RN increases from 64 to 160. Furthermore,
the figure shows that using the scenario-2 can incur the minimum cost compared with
the scenario-3, where the bit-length of RN is not shorter than m. As IDTag-scenario-2
can produce the lower cost,

BFAIDTag = BFAIDTag-Scenario-2 (3.31)

Therefore, from the results in Figure 3.3, it can be seen that, to resist BFA attack on
IDTags with the cost more 7.379×1019 server-years, the m value should be more than
64 bits, e.g. 128 bits or more should be chosen for m.

As shown in EQ(3.9), DataTagi is computed by applying the algebraic signature
to the ciphertext of the data block, En_DBi, for which the tags are used to protect.
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As En_DBi is public, so as long as the provider knows the length of DataTagi and
IDTagi is compromised, it can compute the tag. In other words, the minimum BFA

cost for DataTags is zero, i.e. BFADataTag = 0.
Based on EQ(3.10), DBTag is the numerical sum of the corresponding IDTag and

DataTag, i.e. DBTagi = IDTagi + DataTagi. As, to the provider, DataTagi is a
known value, if IDTagi is compromised, then DBTagi will be compromised. In other
words, the BFA cost for a DBTag is identical to that of an IDTag, i.e. BFADBTag=
BFAIDTag.

DBTagTag is a BLS tag. As shows in EQ(3.11), the generation of DBTagTagi for
a data block, En_DBi, involves the use of four items, the hash value of the encrypted
IDTagi, i.e. H(En_IDTagi), a public random element, i.e. υ, a map value ofDBTagi,
i.e. DBTagMapV aluei, and the user’s BLS private key, x. Among these items, three
of them are, or involve the use of, secrets, and these are IDTagi, a mapping key,
MappingSecretKey, used in DBTagMapV aluei generation, and the BLS private key,
x. There are three possible ways in which the provider may forge a DBTagTag. These
scenarios are:

• DBTagTag-Scenario-1: The provider tries to guess the three secrets, i.e. IDTagi,
MappingSecretKey, and the BLS private key, x.

• DBTagTag-Scenario-2: The provider tries to find a collision in H(En_IDTag)

(rather than guessing the IDTagi), and guess MappingSecretKey, and x.

• DBTagTag-Scenario-3: The provider tries to find a collision in DBTagTagi.

In DBTagTag-Scenario-1, the provider needs to brute-force attack on the three
secret items, IDTagi, MappingSecretKey, and x, to successfully forge DBTagTagi.
The BFA cost on IDTagi, i.e. BFAIDTag, has been devised above and is
expressed in EQ(3.31). MappingSecretKey is a randomly selected value with the
length of LMappingSecretKey bits, its range space is NMappingSecretKey, which is equals
2LMappingSecretKey . With regard to x, the BLS private key, it is randomly chosen from Zp.
Given a prime p, Zp= {0, 1, 2, ..., p− 1}, the total number of elements in Zp is (p− 1),
i.e. Nx = (p − 1). The cost for DBTagTag-Scenario-1, i.e. BFADBTagTag-Scenario-1,
can be calculated using EQ(3.23), where N = NIDTag × NMappingSecretKey × Nx =

2m×2LMappingSecretKey×(p−1)), wherem is the length of the tag. BFADBTagTag-Scenario-1
can be expressed as follows:

BFADBTagTag-Scenario-1 ∝ [2m ×NMappingSecretKey ×Nx]

= 2m × 2LMappingSecretKey × (p− 1)
(3.32)

With regard to the cost in DBTagTag-Scenario-2, the difference between this
scenario and DBTagTag-Scenario-1 is that, in this scenario, H(En_IDTagi) is guessed
via finding collisions, rather than the brute forace attack on IDTagi, i.e. finding
H(En_IDTagj) for a different En_IDTag (En_IDTagj) that is diffrent from
En_IDTagi, but H(En_IDTagj)= H(En_IDTagi). H(En_IDTagi) is an element
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in G1, its length is LEG1
, and the average number of trials for finding a collision is

2
(LEG1

/2). So, we now have:

BFADBTagTag-Scenario-2 ∝ [2
(LEG1

/2) × 2LMappingSecretKey × (p− 1)] (3.33)

In DBTagTag-Scenario-3, the provider tries to guess DBTagTag via finding a
collision, i.e. finding DBTagTagj for a different data block, En_DBj, that is different
from En_DBi, but DBTagTagj = DBTagTagi. DBTagTagi is an element in G1, its
length is LEG1

. So, the cost for DBTagTag-Scenario-3 is:

BFADBTagTag-Scenario-3 ∝ 2
(LEG1

/2) (3.34)

Considering the costs estimated for the three scenarios and the weakest link
principle, we have the BFA cost for DBTagTag, i.e. BFADBTagTag, as shown in
EQ(3.35).

BFADBTagTag = min(BFADBTagTag-Scenario-1, BFADBTagTag-Scenario-2,

BFADBTagTag-Scenario-3)

∝ min(2m × 2LMappingSecretKey × (p− 1), 2(LEG1
/2)

×2LMappingSecretKey×(p−1), 2(LEG1
/2))

(3.35)

Figure 3.4, plotted based on EQ(3.32) and EQ(3.33), shows the costs of two
scenarios, i.e. Scenario-1 and Scenario-2, for forging DBTagTag vs the value of p
using GF (2128), LEG1

= 192 bits, and LMappingSecretKey = 160 bits. The two costs
increase as the value of p increases. The figure shows that using DBTagTag-scenarios-
2, the BFA cost is the lowest cost, where LEG1

/2 is shorter than m. On the other
hand, Figure 3.5, plotted based on EQ(3.33) and EQ(3.34), shows the costs of two
scenarios for DBTagTag, i.e. Scenario-2 and Scenario-3, for forging DBTagTag vs
the bit-length of the element in G1, LEG1

, using the value of p ≈ 2160. The two costs
increase as the value of LEG1

increases. The two figures show that, by finding collisions,
i.e. DBTagTag-scenarios-3, the BFA cost is the lowest cost. From the results in Figure
3.5, it can be seen that, to resist BFA attack on DBTagTags using Scenario-3 with
the cost more 3.169× 1029 server-years, LEG1

should be more 192 bits long, This means
that, in this case, the length of an DBTagTag should be longer than 192-bits, e.g. 256
bits.

As indicated in Algorithms 4 and 5, private verifications involve the use of three
data items, En_DBi, IDTagi and DBTagi, in the case of single tag verification (the
STagPriVer case), or three sets of items, i.e. {En_DBi}, {IDTagi} and {DBTagi}, in
the case of batch tag verification (the BTagPriVer case). Among the three sets of tags,
only {IDTagi} are secrets. The computational cost for circumvent private verification
is thus dependent on how many IDTags are used in a file integrity verification, how
the tags are chosen and how hard it is to compromise each.

In the STagPriVer case, only a single IDTag is used per verification and it is chosen
randomly. The probability for choosing the right IDTag is dependent on the number
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Figure 3.4: BFADBTagTag Cost: Scenarios-1 vs Scenarios-2.
(GF (2128), LEG1

= 192 bits and LMappingSecretKey = 160 bits)

of such tags that are generated for the file. Assuming that there are d sets of tags
generated for a file, then the probability for selecting the right IDTag is Ps = 1

d
[83].

The Average Number of Trials attempted (ANT ) before selecting the right IDTag
can computed by the following equation: ANT = 1−Ps

Ps
[84]. Taking into account that

BFAIDTag ∝ 2m, the cost for circumvent STagPriVer is:

BFASTagPriV er ∝ ANT × 2m (3.36)

Obviously, the higher the value of d, the higher the cost of the attack for given
values of m.

Figure 3.6, plotted based on EQ(3.23) and EQ(3.36), shows the effects of the total
number of IDTags, d, that are generated for a data file and the bit-length of the tag,
m, on BFASTagPriV er. By increasing the number of IDTags generated per file or the
length of the tag, the BFA cost increases. This is because the more the IDTags that
are generated per file, d, the lower the chance a correct set of IDTags will be selected,
and the longer the bit-length of the tags, the more possible combination number of
tags. For example, given m = 64, the BFASTagPriV er increases from 1.327 × 10154

to 2.568 × 10154 as the value of d increases from 500 to 1000. Furthermore, given
d = 500, the BFABTagPriV er increases from 1.327 × 10154 to 5.31 × 10154 as the value
of m increases from 64 to 256.

With regard to the BTagPriVer case, there are two ways to circumvent the
verification process, one is via finding the values of individual IDTags that are used
in a BTagPriVer verification, and the other is via finding the value of the AggDBTag
via collisions. In the former case, in addition to the need for finding the values of the
set of IDTags used in a verification, one also need to find the right set of IDTags.
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Figure 3.5: BFADBTagTag Cost: Scenarios-2 vs Scenarios-3.
(LMappingSecretKey = 160 bits)

Figure 3.6: BFASTagPriV er vs the Length of Tag (m) and the Total Number of IDTags
for a Data File (d).
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Given that the bit-lengths of an IDTag and an AggDBTag are identical, and IDTag-
scenario-2 is the minimum cost and proportional to 2m, the minimum BFA cost for
BTagPriVer is equal to the BFA cost for finding a collision in AggDBTag, which is
proportional to 2m.

Based on the above analysis, we can remark that the security level of private
verifiability is determined by the security of IDTags, which is, in turn, determined
by the bit-length of the IDTags. This means that the bit-length of the tag should be
sufficiently long, e.g. 256-bits.

As tag public verification are based on tags that are all public (i.e. that all can be
accessible by the third parties), attempts to circumvent public verifications can only be
performed via finding collisions in the tags. The analysis with regard to tag resistance
to collision is given in the next section.

3.6.3 Tag Collision Resistance

In this section, we analyse the level of tag resistance to collisions and this is done by
estimating the probabilities for having collisions. A collision refers to two (or more)
identical tags that are generated for different data blocks of different users (Collision
Type 1, or CT1) or for different data blocks of the same user (Collision Type 2 or
CT2). If there are collisions, then it is possible for the provider to use tags that are
generated for one data block (of the same user or a different user) for the verification
of another data block. Such an attempt is also called a replace attack. As Collision
Type 2 is a subset of Collision Type 1, in the following, our analysis will be based on
Collision Type 1. Tag collisions may be exploited by third parties to circumvent public
verifications.

We use PZ to denote the probability for finding a collision in Z in the worse-case
scenario (i.e. the scenario with the highest probability), where Z can be any of these
tags, En_DB, En_IDTag, DBTag, DBTagTag. For each such tag, there are two
ways of finding a collision, one is via finding collisions in their respective inputs (the
resulting probability is denoted as Input-PZ), and the other is via finding collisions in
the Z value itself (this probability is denoted as Output-PZ). What we are interested
in is the factors that influence the values of these probabilities, and the probability,
PZ , for the most likely avenue, where

PZ = max(Input-PZ , Output-PZ) (3.37)

Probability for Finding Collisions in En_DB (Z= En_DB)

The generation of a ciphertext data block, En_DBi, involves the use of the
LiSHE scheme and a secret key, sk. Each user chooses his/her own secret key
independently. Encrypting the same plaintext data block with a different secret key
will generate a different ciphertext data block. Given two identical plaintext blocks
and assuming that the bit-length of the secret key, sk, is Lsk and that the secret key
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are selected uniformly and randomly, the probability for two or more users to select
the same secret key thus generating the same ciphertext data block can be estimated
based on the generalised birthday problem [85] and can be calculated as follows:

Input-PEn_DB = 1− e(−NU×(NU−1))/(2×Nsk) ≈ 1− e(−(NU )2)/(2×Nsk) (3.38)

where NU is the total number of users managed by the provider and Nsk is the space
(i.e. range size) of sk.

With regard to the value of Nsk, this can be calculated as follows. As mentioned in
Section 3.6.2, the secret key, sk, in the LiSHE scheme, consists of two values, s and q.
So the number of possible combinations (i.e. Nsk) is Ns×Nq, where Ns is the space of
s and Nq is the space of q.

For a given block length, LEn_DB, of En_DB, there are NEn_DB possible values
of En_DB, where NEn_DB= 2LEn_DB . If the total number of encrypted data blocks
managed by the provider is NDB, and it is larger than NEn_DB, the space of En_DBs,
then it is possible that there are two or more En_DBs with the same value (i.e.
En_DB collisions) regardless of their inputs. Also, as NDB � 1, we have this
probability as follows:

Output-PEn_DB = 1− e(−NDB×(NDB−1))/(2×NEn_DB) ≈ 1− e(−(NDB)2)/(2×NEn_DB)

(3.39)
Based on EQ(3.38) and EQ(3.39), we have the worse-case probability of En_DB

collisions as shown in EQ(3.40). It is reasonable to assume that NDB � NU , as each
user typically has multiple files and each file is typically divided into multiple data
blocks.

PEn_DB = max(1− e(−(NU )2)/(2×Nsk), 1− e(−(NDB)2)/(2×NEn_DB)) (3.40)

Probability for Finding Collisions in DataTag (Z= DataTag)

DataTags are used for computing DBTags, as indicated in EQ(3.10). DataTags

are computed by applying the algebraic signature to encrypted data blocks,
En_DBs, using the primitive elements chosen by the user. The probability
of having collision on these inputs is, Input-PDataTag = PEn_DB × PPE =
max(1− e(−(NU )2)/(2×Nsk), 1− e(−(NDB)2)/(2×NEn_DB))× (1− e(−(NU )2)/(2×NPE)).

The probability of finding a collision in DataTags is via finding collisions in the
values of these tags is, Output-PDataTag ≈ (1− e(−(NDB)2)/(2×NAS)). As an easier way to
find a collision in DataTags is via finding collisions in the values of these tags, rather
than via finding collisions in their input values, so we have,

PDataTag = max(Input-PDataTag, Output-PDataTag)

= Output-PDataTag ≈ (1− e(−(NDB)2)/(2×NAS))
(3.41)
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Probability for Finding Collisions in DBTag (Z= DBTag)

For the similar reasons as stated for DataTags above, the worse-case probability for
finding a collision in DBTags is as follows:

PDBTag = Output-PDBTag = Output-PDataTag ≈ 1− e(−(NDB)2)/(2×NAS) (3.42)

Probability for Finding Collisions in En_IDTag (Z= En_IDTag)

En_IDTags are produced based on IDTags and using Paillier scheme, so an
easier way to find a collision in En_IDTags is via finding collisions in the values
of these En_IDTags, rather than via finding collisions in their input values. The
probability for finding collisions in En_IDTags is dependent on the number of tags
that are generated, NDB, and the total number of possible values an En_IDTag may
be set to, NPaillier. Paillier scheme can produce a ciphertext ∈ Z2×n∗ , so NPaillier =
2× n− 1, as shown in EQ(3.3). So, the probability is:

PEn_IDTag = 1− e(−(NDB)2)/(2×NPaillier) = 1− e(−(NDB)2)/(2×(2×n−1)) (3.43)

Probability for Finding Collisions in DBTagTag (Z= DBTagTag)

DBTagTags are BLS tags. Similar to the analysis of AS tags (i.e. DBTags),
there are also two ways of generating two identical BLS tags for two different data
blocks. One is by finding collisions in the inputs of the tag generation algorithm (the
probability is denoted as Input-PDBTagTag), and the other is by finding collisions in
DBTagTag values (the probability is denoted as Output-PDBTagTag).

The generation ofDBTagTag involves the use of the following items (see EQ(3.11)):
(1) H(En_IDTag) which is an element in G1, (2) DBTagMapV alue which is a hash
value of DBTag using MappingFunction, (3) a random number, υ, which is an element
in G1, and (4) a user-dependent private BLS key, x. Successfully mounting a replace
attack via finding collisions on the input values requires one to find collisions on the
values of all the four items. This probability, Input-PDBTagTag, is the multiplication of
four further probabilities. As NH(En_IDTag) = NDBTagMapV alue = NDB and Nυ = Nx =
NU , so the Input-PDBTagTag can be as follows.

Input-PDBTagTag = PH(En_IDTag) × PMappingFunction × Pυ × Px

= (1− e(−(NDB)2)/(2×2
LEG1 ))× (1− e(−(NDB)2)/(2×p−1))

×(1− e(−(NU )2)/(2×2
LEG1 ))× (1− e(−(NU )2)/(2×p−1))

(3.44)

The probability of having a collision in the value ofDBTagTag is: Output-PDBTagTag =

1 − e(−(NDB)2)/(2×2
LEG1 ), where LEG1

is the bit-length of DBTagTag. As
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Output-PDBTagTag produces a bigger value than Input-PDBTagTag, so we have,

PDBTagTag = max(Input-PDBTagTag, Output-PDBTagTag)

= Output-PDBTagTag ≈ 1− e(−(NDB)2)/(2×2
LEG1 )

(3.45)

Probability for Circumventing Public Verification via Collisions

To successfully mount a replace attack on the public verification of a data block,
En_DBi, the provider needs to find another ciphertext data block, En_DBj, where
En_DBj 6= En_DBi, that is tagged with En_IDTagj, DBTagj and DBTagTagj,
but the tags satisfy the following condition, i.e. En_IDTagj = En_IDTagi,
DBTagj = DBTagi and DBTagTagj = DBTagTagi. The probability for satisfying
this condition can be expressed as PPubV er and it is:

PPubV er = PEn_IDTag × PDBTag × PDBTagTag

= (1− e(−(NDB)2)/(2×NPaillier))× (1− e(−(NDB)2)/(2×NAS))× (1− e(−(NDB)2)/(2×NEG1
)
)

(3.46)
It can be seen from the equation that the collision probability is dependent on four

parameter values. The first is the total number of data blocks (NDB) managed by the
provider, and this number is, in turn, dependent on the total number of the users (NU)
served by the system and the average number of data blocks uploaded per user (NADB

),
i.e. NDB = NU ×NADB

. The second is the length of AS tag, i.e. m, where NAS= 2m.
The third is the length of EG1 , where, NEG1

= 2
LEG1 . The fourth is the total possible

number of the ciphertexts can be produced using Paillier scheme, NPaillier.
Figure 3.7 shows the collision probability vs the bit-length of the tags, under the

assumptions that the number of users managed by the provider are respectively, 50,000
and 500,000 (so the NDB values are respectively 2.5× 108 and 2.5× 109 given NADB

=
5,000). Based on the figures, we can see that, the probability of collision increases
as the bit-lengths of the tags decreases and the total number of data blocks, NDB,
increases, which is, in turn, dependent on the total number of the user, NU , and the
average of data blocks of each user, NADB

.

3.6.4 Non-repudiation of Tag Generation

In this section, we analyse how a repudiation attack may be mounted by a user and
the level of efforts required in resisting such an attack.

A dishonest user may repudiate (i.e. falsely deny) the generation of some tags in
an attempt such as seeking some benefits from the service provider. In TOD, this can
be thwart by using the BLS tags, i.e. DBTagTags. As the key used to generate a
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Figure 3.7: PPubV er vs the Bit-Lengths of DBTag, En_IDTag and DBTagTag.

DBTagTags is a BLS private key that is only known to its owner, a user, and the
verification key is the corresponding BLS public key, provided that (i) each public key
is certified, (ii) that there is a public key certificate revocation system so that any
compromised or suspected to have been compromised keys can be revoked promptly,
and (iii) that the hash functions used in the tag generations are strong collision resistant
[86], it is hard for the user to repudiate the generation of DBTagTags. Conditions (i)
and (ii) can be satisfied by implementing proper key management procedures and
facilities. In the following, we discuss satisfying condition (iii).

However, if the hash functions used in the DBTagTags generation are not strong
collision resistant, it is possible for a user to exploit hash value collisions to repudiate
the generation of a DBTagTag. A user may construct an alternative explanation [87]
to argue that a DBTagTag is mathematically valid, but she/he has never generated
the tag, thus succeeding in repudiating the generation of the tag. The alternative
explanation attack is via finding collisions in hash values used inDBTagTag generation
(the resulting cost is denoted as BFA for the Alternative Explanation via finding
Collisions in Hash values (BFAAECH)).

Based on EQ(3.11), two hash values are used in DBTagTag generation, i.e.
H(En_IDTag) and DBTagMapValue. H(En_IDTag) is an element in G1 and
its length is LEG1

, and DBTagMapV alue is a map value of DBTag using
MappingFunction, which is ∈ Zp. The BFAAECH can be calculated using EQ(3.23),
where, N = 2

(LEG1
)/2 × (p− 1)/2.

Figure 3.8 shows the cost, BFAAECH , versus the bit-lengths for EG1 and the value
of p. The cost increases as the length of the LEG1

and the value of p increase. Therefore,
for a given the larger the values of LEG1

and (p− 1), the higher cost of BFAAECH .
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Figure 3.8: Cost of BFAAECH vs the Bit-Lengths of the Element in G1 and p.

Furthermore, as DBTags are used in generating and verifying DBTagTags,
DBTags can also help to protect against repudiation attacks.

3.6.5 Data Confidentiality Preservation

Each of the data blocks in a data file is encrypted with a symmetric key, and this
key is only known to the user (i.e. the data owner). In addition, tag verifications do
not require the access of plaintext data (as shown in Algorithms 4 and 6). Provided
that the symmetric key is secure, it is computationally hard for any entities, including
the provider and TPA, to access the plaintext data. Also, in TOD, a user does not
need to share the symmetric key with other entity, eliminating the need for symmetric
key distribution, making the protection of the confidentiality of the data blocks more
secure.

However, one may try to guess the symmetric key using a brute-force method.
The LiSHE scheme, the encryption algorithm used to protect the confidentiality of
data blocks in TOD, is an existential forgery-secure under known-plaintext attacks as
proved in [69]. As mentioned in Section 3.6.3, the secret key, sk, in this scheme, consists
of two values s and q. So, the number of possible combinations (i.e. key space) Nsk

is Ns × Nq, where Ns is the space of s and Nq is the space of q. For estimating the
cost for brute-force attack on sk, EQ(3.23) can be used. By increasing the length of
the key, the key space will increase and so is the cost of cracking it (Figure 3.9). For
example, with an 80 bit security level (Nsk= 2280), the cost is 9.046×1074 server-years.
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Figure 3.9: Level of Efforts on Brute-Force Attack on a LiSHE key vs the Key Length
and the Key Space.

Figure 3.10: Given C=50 Blocks: Selection Space (Number of Possible Combinations)
vs File Size (Number of Data Blocks).
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3.6.6 Unbounded Verifiability

Unbounded verifiability is the property for resisting tag replay attacks. In such an
attack, the provider dispatches cached aggregated values, AggEn_DB, AggDBTag,
and AggDBTagTag for batch verification (private or public), rather than freshly
compute values. To reduce the success rate of such attacks, in TOD, a random
sampling strategy is used when selecting data blocks and their associated tags in
each verifications. The selections are made by the verifier, the user in the private
verifications and the TPA in the case of public verifications. Each file is divided into
K data blocks. In each verification, C out of K blocks are randomly select, where
1 � C � K. The number of possible combinations in the selection (i.e. selection
space) is K!/C!(K −C)!, where ! is a factorial notation [83]. For example, given a file
size of 100 data blocks, the maximum number of possible combinations for randomly
selecting C = 30 data blocks in the verification is 100!/30!(100 − 30)!= 2.93 × 1025.
Obviously, the selection space is dependent on the size of a file and the length of each
block. The bigger the file size or the smaller the data block, the larger the K, which
means the bigger the selection space, thus the higher the resistance against the tag
replay attacks.

Figure 3.10 shows selection space versus of the file size, assuming C= 50 blocks. It
is worth mentioning that C can be a variable, in which case the selection space can
further increased.

3.7 Performance Analysis

This section evaluates the overhead cost of the TOD method. The evaluation is
performed by using the following metrics, TagGenerationCost (the computational cost
incurred in generation a tag), TagVerificationCost (the computational cost incurred in
verifying a tag), and TagSize (the size of one tag). The last metric is for measuring
storage cost at entities in DIA.

In this evaluation, we assume that there are K data blocks in each data file, DF .
After removing any redundant data block (as we only keep one copy of each data block,
should there be multiple identical data blocks, the redundant or duplicated ones will
be removed), the number of data blocks in a data file is reduced to d blocks. In each
tag verification, the verifier requests C data blocks and the associated tags, which are
randomly chosen from d data blocks, from the provider.

When generating a tag, a number of operations are performed. The operations
are for encryption (symmetric and asymmetric), algebraic signature signing, BLS
signature signing and modular additions in GF . These operations each consist of
different types of basic operations, and each basic operation imposes a different level
of computational cost. Table 3.5 lists the basic operations. The computational
cost of each TOD operation is measured in terms of the numbers of different basic
operations. Based on EQs (3.3), (3.8), (3.9), (3.10), (B.1), and (3.11), we have
TagGenerationCost for d without data blocks excluding the block encrytion opertions
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Table 3.5: Basic Operations: Symbols and Meanings.

Notation Descriptions
MultG1 Multiplication in G1

EXPG1 Exponentiation in G1

PairG1,G2 Bilinear pairing e(x, y), x ∈ G1 , y ∈ G2

H1 Cryptographic hashing, i.e. H1()

HG1 Hashing to G1, i.e H())
AddZp Addition in Zp
MultZp Multiplication in Zp
ExpZp Exponentiation in Zp
MultZn2 Multiplication in Zn2

ExpZn2 Exponentiation in Zn2

AddAS Addition in GF (2m)

AS-G Cost of tag generation in AS

Figure 3.11: TOD Method vs the OTfMB and OTfSB Approaches: the Number of
Tags Generated against Data Redundancy Percentage.
(K= 1000, total number of blocks in a data file, 4 Data Blocks are used in generating one

tag in OTfMB approach)
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as: d× (2×AS-G+AddAS +2×ExpZn2 +MultZn2 +H1+HG1 +MultG1 +2×ExpG1),
where d is the number of data blocks in a file. When the data block encryption
operations are included, TagGenerationCost is d× (2×AS-G+AddAS +ExpZp + 2×
MultZp + AddZp + 2 × ExpZn2 + MultZn2 + H1 + HG1 + MultG1 + 2 × ExpG1). The
computational complexity is O(d).

The effect of tag deduplication on TagGenerationCost is captured by (K − d).
In other words, the reduction in overhead cost as the result of tag deduplication is
(K−d)×(2×AS-G+AddAS+2×ExpZn2 +MultZn2 +H1+HG1 +MultG1 +2×ExpG1)

in the cases where encryption operations are included. Figure 3.11 illustrates overhead
reductions due to the use of data deduplication in TOD by the total number of tags
generated per file using our TODmethod aginst two existing tag generation approaches,
OTfMB and OTfSB. As shown in the figure, if there is no redundant data in a file, the
total number of tags generated by the TOD method is identical to that by the OTfSB
method. The more the redundant data it contains, the fewer the tags the TOD method
generates. With the highest redundancy rate, the number of tags generated by the TOD
method is closer to that with the OTfMB method. This indicates that TOD, by using
data deduplication, can harvest the merits from both OTfSB and OTfMB. OTfSB offers
a better level of security, in terms of unbounded verifiability, but produces more tags,
whereas OTfMB produces less tags but is weak in assuring unbounded verifiability.
TOD offers the same level of security, in terms of unbounded verifiability, as that by
OTfSB but keeping the number of tags that need to be generated to the lowest level.
It is worth mentioning that the cost saving by tag deduplication can also be applied
across different files owned by the same users. Excluding file ID and data block index
number from tag generations allows us to achieve tag deduplication, which brings us
the benefit of overhead cost reduction.

As both the algebraic signature and BLS signature algorithms have homomprphic
property, the TOD method can perform both private and public tags verifications
in an efficient and secure (without the need to access plaintext data) manner. A
private tag verification only involves an algebraic signature generation cost and an
addition operation to GF elements, which is considered fast and low cost, as it does
not use any costly operations, such as modular exponentiation as in the case of RSA or
pairing operations as in the case of BLS. According to EQ(3.9), (3.14) and (3.16), the
computational cost incurred to a user in verifying a single private tag, STagPriVerCost,
is AS-G+AddAS and the computational cost incurred to a user in verifying C private
tags, BTagPriVerCost, is AS-G + C × AddAS. The computational cost incurred to
a TPA in verifying a single tag, STagPubVerCost, is AS-G + 2 × EXPZn2 + 2 ×
MultZn2 +H1 +HG1 +ExpG1 +MultG1 + 2×PairG1G2 , and in verifying C public tags,
BTagPubVerCost, is AS-G+ (C − 1)× AddAS + (C + 2)×MultZn2 + 4× EXPZn2 +

C × H1 + C ×MultiG1 + C × HG1 + ExpG1 + (C − 1) × AddZp + 2 × PairG1G2 . So
the computation complexity is O(C) for both the private verification and the public
verification. Furthermore, applying the encryption operation for data confidentiality
do not introduce any verification cost, as tags can be verified without decryption. Table
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Table 3.7: Comparing the TOD Method with Existing Tagging Methods against the
Specified Requirements in Section 2.5.1.

Tagging Methods FM1 FM2 SM1 SM2 SM3 SM4 SM5

A PCS User A PCS User + TPA

Hashing based method [9]* Private No Yes Yes No No No O(T×NT) O(1)/O(NT) -
AS_1 based method [10]* Private No Yes Yes No No No O(T×NT) O(1) -
AS_2 method [37]** Private No Yes No No No Yes O(K) O(C) -
AS_3 method [11]** Private No No No No No Yes O(K×S) O(1) -
MAC based method [12]** Private No Yes Yes No No Yes O(K) O(C) -
HomMAC based method[13]** Private No Yes Yes No No Yes O(K×S) O(1) -
RSA_1 based method [14]** Public No Yes Yes Yes Yes Yes O(K) - O(1)
RSA_2 based method [15] ** Public No Yes Yes Yes No Yes O(K×S) - O(1)
RSA_3 based method[16] ** Public Yes Yes Yes Yes Yes Yes O(K×S) - O(1)
ECDSA based method [17]** Public No Yes Yes Yes Yes Yes O(K) - O(1)
BLS_1 based method [18]** Public No Yes Yes Yes No Yes O(K×S) - O(C)
BLS_2 based method[19]** Public Yes Yes Yes Yes No Yes O(K×S) - O(C)
BLS_3 based method [20][21][22]** Public No Yes Yes Yes No Yes O(K) - O(C)
BLS_4 based method [23]** Public Yes Yes Yes Yes No Yes O(K×S) - O(C)
TOD method Both Yes Yes Yes Yes Yes Yes O(d) O(C) O(C)

* OTfMB approach, ** OTfSB approach approach, + in private verification

3.6 summarises the computational cost introduced to verifiers, i.e. the user and TPA,
in the TOD method. Table 3.7 compares TOD method with related tagging methods
based on the specified requirements specified in Section 2.5.1.

Addition to the above theoretical analysis, we have also carried out experiments to
evaluate the computational costs of the TOD method further and compared the costs
with those of related tagging methods. For this, we have produced a prototype of the
TOD method using Java. The experiment is run on a system with Intel Core i5 at
2.4 GHz and 4GB RAM. For implementing cryptographic primitives required in the
TOD, e.g. a secure random number generator, a hash function (e.g. SHA3-384), and
digital signatures (e.g. RSA and BLS), Java Cryptography Extension (JCE) [88] and
Java Pairing-Based Cryptography (JPBC) [89] are used. The data block size used is
25 kilobytes (KB). We have evaluated the benefit brought by data deduplication by
measuring the times required for encrypting 1000 data blocks, i.e. K=1000, versus
different levels of data redundancy. Figure 3.12 shows the effect of data deduplication
on reducing the encryption time under different data redundant percentages.

We have evaluated the tag generation times for a single tag and for a whole file
(consisted of 1000 data blocks) and compared the results from the TOD method with
those from the related tag generation methods. The results are shown in Table 3.8.
From the table, it can be seen that among the eight tag generation methods, the
RSA based method takes the longest time, so it is the most expensive method. The
cheapest methods are those symmetric key based, e.g. MAC and AS based methods.
However, these methods do not provide non-repudiation service. In comparison with
other public key based methods, such as the BLS based, the TOD method is more
expensive, 3.27 times higher. This is the price for providing enhanced functionality, as
TOD offers both public and private verifiability. Furthermore, Figure 3.13 compares
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Table 3.8: Comparing the TOD Method and the Related Works: the Required Time
of Tag Generation (in Seconds).

Methods One Tag 1000 Tags
Hashing based 4.95× 10−2 1.27× 10

AS based * 4.13× 10−2 1.06× 10

AS based** 2.10× 10−3 2.05

MAC based 9.60× 10−3 9.55

RSA based 4.08× 10−1 4.08× 102

ECDSA based 3.55× 10−2 3.55× 10

BLS based 7.5× 10−3 7.50

TOD 2.45× 10−2 2.45× 10

* OTfMB approach, ** OTfSB approach

Figure 3.12: The Required Time of Encryption vs Data Redundancy Percentage.
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Figure 3.13: Tag Generation Cost vs Data Blocks Number (* Using Encrypted Data
Blocks).

Table 3.9: TOD method vs BLS based Tagging Method: the Required Time (in
Seconds) of Private and Public Tag Verification.

TOD BLS-based
Public Verification 5.14× 10−2 2.59× 10−2

Private Verification 1× 10−4 2.59× 10−2

the tag generation times with and without encrypting the data blocks. The results
show that the additional cost introduced by the encryption operation is negligible.

Table 3.9 compared the TOD method with the BLS based method in terms of tag
verification times. From the figure, it can be seen that the times taken about twice as
much as what is taken by the BLS method for public verifications, but only 0.39% of
the time taken by the BLS method for private verifications.

Figure 3.14 compares the batch tag public verification time with single tag public
verification time. From the figure it can be seen that, by using batch verifications, the
time taken in verifying the integrity of a file can be reduced significantly; the more
the data blocks a file consisted of, the higher the reduction. For example, for a file
consisted of 1000 data blocks, the verification time is reduced by nearly 45% when
batch verification is used. Figure 3.15 compares batch tag private verification time
with that of batch tag public verifications. The results show that batch tag private
verification time is virtually independent of the number of tags involved, whereas batch
tag public verification time increases linearly as the number of tags involved increases,
and the former is only a fraction of the latter.

The above results are significant. It indicates that, in supporting both public and
private verifiability, TOD mainly introduces additional cost to the TPA. The integrated
support of private verifiability, which allows users to monitor the integrity of their
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Figure 3.14: Public Tag Verification Cost: Individual vs Batch Verifications.

service provider, only imposes a negligible level of verification cost on the users. In
other words, TOD does not require that users should trust the service providers and
additional cost introduced to the users as the result of having this feature is negligible.

The sizes of tags influence security levels as well as storage and communication costs.
In TOD, each data block is tagged with five tags, i.e. IDTagi, En_IDTagi, DBTagi
and DBTagTagi, where {IDTagi}, {DBTagi} are used for private verifications
and {En_IDTagi}, {DBTagi} and {DBTagTagi} are used for public verifications.
IDTagi, and DBTagi are generated using the AS scheme, using GF (2m), meaning
that each tag size is m-bits long. En_IDTagi is encrypted IDTag. DBTagTagi is
generated using the BLS signature, and its length varies with the security level the
signature provides. As discussed in Section 3.6, the sizes of these tags should also take
into account of forgery and collision resistance levels. Based on the security analyisis,
to ensure a strong level of collision resistance, both tags (i.e each AS tag and BLS
tags) are assumed to have the length of 0.03 Kilobytes (KB) long (i.e. m = 256 bits
and LEG1

= 256 bits). {IDTagi} are stored locally at the user-side and {En_IDTagi}
with TPA, thus, the total size of a tag that is stored at the PCS server is DBTagi +
DBTagTagi = 0.03 + 0.03 = 0.06 KB. Table 3.10 compares the tag size in KB of the
TOD method with those of existing methods. In this comparison, the SHA3-384 (i.e.
0.04 KB) is used as the underlying hash function for MAC-based tags. As shown in
the table, algebraic signature and BLS based methods generate the shortest tag size,
whereas RSA based method generates the longest. The tag size of our TOD method
is 0.06 KB which is higher than the tag sizes produced by the algebraic signature
based and BLS based methods. However, different from the algebraic signature and
BLS based methods, which only supports private verifiability and public verifiability,
receptively, the TOD method supports integrated public and private verifiability.
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Figure 3.15: Batch Verification Cost: Private vs Public.

Table 3.10: TOD Method vs the Related Work: the Tag Size Generated (in KB).

Works Tag Size
Hashing based 0.04
AS based * 0.03
AS based ** 0.03
MAC based 0.04
RSA based 0.38
ECDSA based 0.06
BLS based 0.03
TOD Method 0.06

* is OTfMB approach, ** is OTfSB approach
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3.8 Chapter Summary

The chapter has presented the design of a novel method to address the issue of how
to the tags (the integrity authentication) can be generated and verified. This novel
method, called Tagging of Outsourced Data (TOD). The method has a number of
novel features, which have described in detail. e.g. support dual verification and tag
deduplication. Furthermore, the chapter has described four cryptographic algorithms,
i.e. LiSHE, Paillier, algebraic signature and BLS signature, that are used as building
blocks, before presenting the method in details. The chapter has also presented a
comprehensive security analysis and theoretical and experimental evaluation of the
overhead costs of the method. The evaluation results are compared with those of related
tagging methods. The analysis and comparison results indicate that, in comparison
with related methods, TOD is more efficient, particularly for the user ends, and provides
richer functionality.

The following chapter includes the design of a novel framework DIA that employ
the TOD method for the integrity protection of data.
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Chapter 4

DIA with Eliminating any Trust on
Third Parties (DIA-ETTP): A Novel
DIA Framework

4.1 Chapter Introduction

This chapter presents the design of a novel DIA framework for the outsourcing of data in
a PCS. This is referred to as a DIA with Eliminating any Trust on Third Parties (DIA-
ETTP). The DIA-ETTP that is reported on in this chapter is designed to overcome
the limitations in existing DIA works as highlighted in Chapter 2. Besides that, it is
designed to be cost-efficient, i.e. it imposes as little overhead costs as possible. The
DIA-ETTP employs the TOD method described in Chapter 3 and four novel ideas:
(1) the Multi-PCS_Multi-TPAs system model, (2) Two-level data integrity protection
(LoA1/LoA2), (3) Two-level data deduplication and (4) an integrated approach to
data updating and data deduplication to make DIA a more efficient, secure and reliable
service. To support the data updating and data deduplication, a novel data structure is
proposed called Multiple Mapping Tables (M2T). The DIA-ETTP architecture consists
of four functional blocks, namely Data Deduplication and Data Uploading (D3U) for
outsourcing the data through multiple PCSes by eliminating the duplicated data, LoA1
Data Verification (LoA1DV) for applying verification using the first level of the data
integrity protection, LoA2 Data Verification (LoA2DV) for applying verification using
the second level of the data integrity protection and Data Updating (DU) for updating
the outsourced data by eliminating any duplicated data.

The structure of the chapter is as follows: Section 4.2 presents the four novel ideas
that are implemented in the DIA-ETTP, while Section 4.3 gives the design preliminaries
covering the system architecture, threat model, assumptions and notations. Section 4.4
presents the building blocks used in the design, i.e. the M2T data structure. Section
4.5 gives an overview of the functional blocks of DIA-ETTP. A detailed description
of the four blocks, i.e. D3U, LoA1DV, LoA2DV and DU, have been in Sections 4.6,
4.7, 4.8, and 4.9, respectively, with an emphasis on their architecture, algorithms and
protocols. Finally, Section 4.10 summarises the chapter.
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4.2 Novel Ideas

In this section, details of our vision of the DIA, i.e. DIA-ETTP, are presented by
discussing the four novel ideas that are used in its design.

4.2.1 The Multi-PCS_Multi-TPAs System Model

The DIA-ETTP implements the idea of using entity redundancy to make the service
more reliable and secure. It uses multiple PCSes that are each managed by an
independent provider for data storage. There are multiple TPAs for data integrity
verification on behalf of the users. Multiple PCSes can help to address data recovery
and data availability. A data replication among multiple PCSes can overcome the
limitations of the other techniques that are used in the existing works such as either
encoding methods (i.e. ECCs) or data replication in a single PCS. The data can be
recovered using one of the copies on other PCSes. This may resist complete data loss
or modification and an outage service. In the event of a service outage or security
attack in a single PCS such as a distributed denial-of-service (DDoS) attack, the users
are not able to access the service. However, data replication among multiple PCSes
can help the users to access their data by using another PCS.

For the same reasons as described above, we have also used multiple TPAs (i.e.
the multi-TPA approach) in the DIA-ETTP design. Using multiple TPAs can help
to reduce the risk of creating a performance bottleneck which can occur in the case
of using one TPA to verify the data in a distributed provider system. The approach
of using multiple TPAs and pairing each TPA with a separate PCS distributes data
verification tasks as it allows each TPA to only communicate with one PCS during
a data verification process. This can reduce data verification delays, speeding up
the response times to users. In addition, this approach introduces TPA service
redundancies for public verification, as each such verification involves the participation
of multiple TPAs and their verification results are collated to produce the final result
delivered to the user, thus protecting against collusions among the PCS providers,
collusions among TPAs/providers and frame attacks by TPAs.

While the Multi-PCS_Multi-TPAs approach can provide benefits related to service
reliability and security, it may increase the communication cost. To reduce this cost as
much as possible, we have adopted a hierarchical approach to entity connections. We
have classified multiple PCSes into one leader PCS and multiple non leader PCSes. We
apply the same approach to multiple TPAs. In other words, there is a leader provider
and a leader TPA. These leaders act as a gateway to their respective non leader entities.
These leader entities operate during the data uploading and integrity checking options.
The leader entities mainly play the role of managing and coordinating the users to
ensure that they only communicate with leader entities, i.e. the leader provider and
leader TPA. There is no direct communication between the users and the non leader
providers in the TPAs.
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4.2.2 Two-Level Data Integrity Protection

To better balance the trade-off between security protection levels and the costs incurred
by providing the protections, thus optimising performance, DIA-ETTP implements two
Levels of data integrity Assurance (LoA), namely LoA1 (level 1) and LoA2 (level 2).
LoA1 supports the use of public verification and it is intended for users with non-
critical/low-sensitive data or users who have more trust in their service providers.
LoA2 supports the use of both public and private verification (dual verification) and it
is intended for users with critical/highly-sensitive data or users who have less trust in
their service providers. By supporting dual verification, the users can also verify the
integrity of their data directly, thus detecting any misbehaviours through either the
providers or the TPAs. This private verification can be performed at any time and at
any frequency.

4.2.3 Two-Level Data Deduplication

Data deduplication refers to the process of eliminating any redundant data. Eliminating
redundant data can help to reduce computational, storage and communication costs.
This is because tag generations and data encryption are only applied to non-duplicated
data. As a result, the number of tags that should be generated and the number of data
blocks that should be encrypted can be reduced, thus lowering the computational cost
imposed on users and the storage cost imposed on the PCS. In addition, the amount of
data poured onto the channel when the data are being uploaded can also be reduced,
thus reducing the bandwidth and/or communication cost.

Data deduplication can be applied at both the block-level and the file-level [90].
Block-level data deduplication refers to the identification and elimination of redundant
data blocks in one or more files. File-level data deduplication refers to the identification
and elimination of completely redundant file(s). File-level data deduplication can only
be applied to files that are 100% identical. Both deduplication operations are applied to
files owned by the same user. Due to brute-force attacks and confidentiality concerns,
the deduplication operations are not applied to files owned by different users [90] [91].

Data deduplication operations may be performed by a user, i.e. user-end data
deduplication, and/or by a provider, i.e. PCS-end data deduplication [90]. User-
end data deduplication is applied to data blocks/files that are to be uploaded by a
user, whereas PCS-end data deduplication is applied to all of the data blocks/files
that are being managed by the PCS for the user. To maximise cost reduction, DIA-
ETTP employs block-level data deduplication and both user-end and PCS-end. DIA-
ETTP supports two data deduplication levels, namely Data DeDuplication Level 1
(D3L1) and Data DeDuplication Level 2 (D3L2). D3L1 is a form of user-end data
deduplication, while D3L2 is a form of PCS-end data deduplication. With this two-
level data deduplication support, users may not need to compute any tags for the data
if the data to be uploaded is duplicated.
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4.2.4 Integrated Data Updating and Data Deduplication

Implementing the idea of integration of the data updating and data deduplication
makes DIA more efficient. As the outsourced data cannot only be static data files,
users need to update their data at any time. Therefore, they should keep the data that
are non-duplicated after each update. Furthermore, it can lessen the computational
costs of the user, which can release him/her from computing a tag for the updated
data block in a case where it is duplicated. Using the one data structure approach, i.e.
a single data structure for tracking update all data files that are owned by one user,
can help to implement this idea more efficiently than using a data structure for each
file, i.e. file dependent data structure. The first approach allows for the provision of
mapping information between one or more data files. Furthermore, it allows for the
implementation of batch update operations, i.e. updating one or more data blocks in
one or more files efficiently. In the latter approach, for batch updating, it should update
each data structure that is associated with a file separately. This can consume more
communication and computational costs on part of both the user and the provider.

To lessen the computational and communication costs during the data update
and verification, each entity in the DIA-ETTP system has its own respective data
structure, i.e. User-DS, TPA-DS, PCS-DS (i.e. the distributed data structure). It
allows for the tracking of the data update and the mapping of the information of the
data deduplication by all system entities, unlike using a centralised data structure,
i.e. where only the entity that has the data structure can track the data update
and deduplication. With a distributed data structure, the user or the verifier can
be released from verifying or re-signing a root of a tree in the data updating or
verification process. On the other hand, the provider can be released from sending
auxiliary information during the data update or verification.

In addition to providing the properties described above, DIA-ETTP also preserves
data confidentiality and resists replay attacks. Data confidentiality preservation is
achieved using a block level encryption method that has been implemented in the
TOD method. The block level encryption method relieves a provider from applying
another method, i.e. random masking, to prevent the TPAs from accessing the
content of the data that are to be verified. As mentioned in Section 2.7.1, the masking
operation needs to be carried out by the provider every time a file integrity verification
request is received. This imposes an additional run-time overhead on the provider. In
addition, this approach does not protect the data confidentiality present against the
providers. Replay resistance is provided using nonces. A nonce is generated and used
in the verification request initiated by a verifier. The responder, a provider, should
include this nonce in the reply (as proof of data integrity preservation). In this way,
the verifier can be assured that the proof received from the provider is fresh.
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Figure 4.1: DIA-ETTP High-Level Architecture.

4.3 Design Preliminaries

This section provides the design preliminaries, i.e. system architecture, threat model,
assumptions and notations, under which the DIA-ETTP framework is designed and
described.

4.3.1 System Architecture

DIA-ETTP supports the use of n providers and n TPAs. Each PCS is associated with
a separate TPA. As mentioned in Section 4.2, the PCSes and TPAs are layered into
two levels, a leader level and a non leader level. One of the providers is designated as
the leader provider. The leader provider is responsible for managing the storage service
provided by all of the n providers and for coordinating with the users and other (n-1)
providers during their data uploading, updating and verifying operations. Similarly,
one of the TPAs is designated as the leader TPA (L-TPA). L-TPA is responsible for
managing the data integrity verifications collaboratively performed by the n TPAs for
the users and for coordinating with both the users and other (n-1) TPAs during the
verification operations. Users only need to communicate with the leader provider during
their data uploading and updating operations and they only need to communicate with
the L-TPA during the data verification operations. The same provider and TPA are
used as the leaders for all the users in the system. Figure 4.1 shows the high-level
architecture of the DIA-ETTP.
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4.3.2 Threat Model

The threat model used in the DIA-ETTP design, in addition to the threat model
mentioned in Section 3.2.2, is as follows:

1. Providers are malicious. Providers seek to save on their computational and
communication resources. They may ignore any update request or try to cover a
breach of the data integrity. They may use old versions of their data where their
tags are no longer valid in forging proof of their verification.

2. TPAs are malicious. TPAs may send an unreliable data integrity verification
result to a user. They may collude with providers to defraud users through the
lie that the integrity of the outsourced data is preserved or manipulate a result
of the data verification to discredited providers.

3. Users are malicious. Users may repudiate updating their data in an attempt to
try to discredit the providers or TPAs or in order to seek a financial advantage.

4.3.3 Assumption

To scope out the work, in addition to the assumptions mentioned in Section 3.2.3, the
following assumptions are used for the design of the DIA-ETTP.

(A3) The focus of this work is on tackling insider threats in relation to data
integrity. Some of the external attacks, such as impersonation, are outside of
the scope of this work. In other words, communication channels linking the
DIA-ETTP entities are assumed to be authenticated. This can be achieved
by using off-the-shelf technologies such as a Secure Socket Layer (SSL) [92].

(A4) The providers and the TPAs may misbehave by committing fraud and
forgery in relation to the data integrity. They should follow the protocol
specifications correctly.

4.3.4 Notations

The notations used in the remaining part of this chapter is have been summarised in
the Notations table.

4.4 Building Blocks

The design of DIA-ETTP has made use of the two main building blocks, including a
novel tagging method, the TOD method, and a novel data structure, Mapping Multiple
Tables (M2T). As TOD has been described, analysed and evaluated in detail in Chapter
3, the following describes M2T.

The M2T is used for tracking data file updates and facilitating data deduplication.
When data is uploaded by the user, the provider uses the M2T that is associated with a
user to identify if there is any data that has been duplicated. If there is no duplication,

103



F
ig
ur
e
4.
2:

T
he

M
2T

D
at
a
St
ru
ct
ur
e
T
yp

es
.

104



F
ig
ur
e
4.
3:

D
at
a
In
se
rt
io
n
in

P
C
S-
M
2T

.

105



then the data will be stored and the respective entries in the tables created. Otherwise,
if any duplication is detected, then the respective entries will be updated and there
will be no new data or tag insertions. The M2T is a tag-independent data structure.
Unlike hashing-based tables (e.g. IHT), the M2T information (i.e. sequential values)
is not to be used in tag generation. This means that updating a data block and its tag
does not lead to updating unrelated tags.

Furthermore, the M2T can support the distributed data structure. There are three
types of M2Ts: User-M2T, PCS-M2T and TPA-M2T. User-M2T is used by the user
to manage the updating of his/her data files in PCS and to provision their mapping
information when data deduplication is performed. PCS-M2T is used by a provider to
manage the updating of a user’s data files and to facilitate the L2 data dedupliaction,
i.e D3L2. TPA-M2T is used by a TPA to manage the updating of the user’s data files
and the provision of their mapping information. The provider manages one M2T for
each user. Similarity, the TPA manages one M2T for each user. There are three M2Ts
associated with a user; one with the user, one with the provider and one with the
TPA. Figure 4.2 shows the three M2T types that are associated with one user. As the
DIA-ETTP supports the multiple PCSes, then there is a PCS-M2T associated with
the user in each PCS.

M2T consists of three tables; a UserFile, a NonDuplicatedDB/Tag and a Linker.
The UserFile shows all of the data files that are owned by the user. The
NonDuplicatedDB/Tag shows all of the non-duplicated data blocks and/or tags present
among the data files. The Linker shows the linkages between the data blocks, the data
files and the non-duplicated data blocks and their respective tag values (Figure 4.2).
As mentioned above, each entity in the DIA-ETTP has its own M2T, i.e. User-M2T,
PCS-M2T and TPA-M2T. The content of the UserFile is identical between User-M2T,
PCS-M2T and TPA-M2T. The contents of the NonDuplicatedDB/Tag and the Linker
from among the three types are different based on the type of tag and if the data
blocks values are stored by an entity that manages the M2T or not. The UserFile
consists of two columns; the ID of a data file (FileID) and the total DBs number in the
data file (DBsTotalNumber). The NonDuplicatedDB/Tag in User-M2T consists of two
columns, namely the ID of the IDTag (IDTagID) and the IDTag value (IDTagValue).
Regarding TPA-M2T, the NonDuplicatedDB/Tag is similar to the one in User-M2T.
However, the IDs of the En_IDTags and their values are stored as an alternative to
the IDs of IDTags and their values. The NonDuplicatedDB/Tag in PCS-M2T consists
of four columns: (1) an ID of the data block (DBID), (2) the DB value (DBValue), (3)
its associated DBTag value (DBTagValue) and (4) its associated DBTagTag value
(DBTagTagValue). The Linker table consists of three columns: (1) the Index of DB
among the data file (DBIndex ), (2) the ID of the file in which its value is one of the
IDs in the UserFile, (FileID), and (3) the ID of IDTag, IDDB, or En_IDTag in the
NonDuplicatedDB/Tag of User-M2T, PCS-M2T or TPA-M2T, respectively.

To update the data, there are three operation types, i.e. a data block insertion,
a data block modification and a data block deletion. Their details have been given
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below. Figures 4.3, 4.4 and 4.5, show how PCS-M2T is used and updated when the
data are uploaded (inserted), modified and deleted.

To insert a new data block into a file, one should first check if the data block is
duplicated, i.e. Insertion Case 1 (Ins-Case_1) or not, i.e. Insertion Case 2 (Ins-Case_2)
is done using the NonDuplicatedDB/Tag. Figure 4.3 shows that the PCS-M2T content
changes when a new data block is inserted.

1. Ins-Case_1: In the case where the insertion of a data block is duplicated, the
operations of the insertion are as follows: (1) insert a new row that is associated
with the data block in the Linker, (2) link the data block to its associated data
file using FileID in the UserFile, and (3) link it to its associated DB or tags
values using IDTagID, DBID or En_IDTagID in the NonDuplicatedDB/Tag
in the case of using User-M2T, PCS-M2T or TPA-M2T, respectively.

2. Ins-Case_2: In the case of the inserting a data block that is non-duplicated, the
operations of the insertion are as follows: (1) insert a new row that is associated
with the data block in the Linker, (2) insert the values of its associated data
block and/or tags in the NonDuplicatedDB/Tag, (3) link the data block to its
associated data file using the FileID of the data file in the UserFile, and (4) link
the data block to its associated values regarding the non-duplicated data block
or tags using their IDs in the NonDuplicatedDB/Tag.

To modify an existing data block, it should first be checked whether or not the
value of the old version of the data block is associated with other data blocks as
well as whether its new version value is duplicated or not using the Linker and the
NonDuplicatedDB/Tag. There are four cases: (1) the old version of the data block
is associated with other existing blocks and its new version is non-duplicated, i.e.
Modification case 1 (Mod-Case_1), (2) the old version of the data block is associated
with other existing blocks and its new version is duplicated, i.e. Modification case 2
(Mod-Case_2), (3) the old version of the data block is not associated with any existing
blocks and its new version is non-duplicated, i.e. Modification case 3 (Mod-Case_3),
and (4) the old version of the data block is not associated with any existing blocks and
its new version is duplicated, i.e. Modification case 4 (Mod-Case_4). Figure 4.4 shows
the content changes in PCS-M2T before and after an existing data block is modified.

1. Mod-Case_1: In the case where the old version of the data block is associated
with other blocks and the new version is non-duplicated, the operations of the
modification are as follows: (1) Insert the new version of DB and its tag values
in the NonDuplicatedDB/Tag, and (2) Link the data block in the Linker with
its new associated values concerning DB and/or the tags using their IDs in the
NonDuplicatedDB/Tag.

2. Mod-Case_2: In the case where the old version of the data block is associated
with other blocks and its new version is duplicated, the operations of the
modification involve: linking the data block with its new associated DB and/or
tag values using their ID in the NonDuplicatedDB/Tag.
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3. Mod-Case_3: In the case where the old version of the existing data block is not
associated with any existing blocks and the new version is non-duplicated, the
operations of the modification are as follows: (1) delete the DB and/or tag values
that are associated with the old version in the NonDuplicatedDB/Tag, (2) insert
the new values for the DB and/or tags in the NonDuplicatedDB/Tag and (3)
link the data block in the Linker to the DB and/or the tag values of the new
version using their IDs in the NonDuplicatedDB/Tag.

4. Mod-Case_4: In the case where an old version of the data block is not associated
with any other blocks and the new version is duplicated, the operations of the
modification are as follows: (1) delete the DB and tag values that are associated
with the old version in the NonDuplicatedDB/Tag and (2) link the data block in
the Linker with its new associated data block and/or the tag values using their
IDs in the NonDuplicatedDB/Tag.

To delete an existing data block in the file, it should first be checked using the
Linker table to see if its value is associated with any other existing blocks as either in
deletion case 1 (Del-Case_1) or deletion case 2 (Del-Case_2). Figure 4.5 shows the
content changes in PCS-M2T before and after an existing data block is deleted.

1. Del-Case_1: To delete a data block that is associated with one of the other blocks,
only the row that is associated with the data block in the Linker is deleted.

2. Del-Case_2: To delete a data block that is not associated with any other block,
the operations of deletion are as follows: (1) delete the row that is associated with
the deleted data block in the Linker, and (2) delete the values of the DB and/or
tags that are associated with the data block in the NonDuplicatedDB/Tag.

The value of DBsTotalNumber that is associated with the updated data file should
be increased or decreased by one in the case of either an insertion or deletion operation
being performed, respectively.

4.5 DIA-ETTP Functional Blocks

The DIA-ETTP consists of four major functional blocks, namely Data Deduplication
and Data Uploading (D3U), LoA1 Data Verification (LoA1DV), LoA2 Data Verification
(LoA2DV) and Data Updating (DU). The D3U is used for uploading data and the
associated tags to multiple PCSes while applying two-levels of data deduplication.
The LoA1DV is used for performing public verification (i.e. LoA1) concerning the
data that have been outsourced to PCSes. The LoA2DV is used for performing both
private and public verification (i.e. LoA2) related to the outsourced data files in PCSes
and the DU is used for updating the data and their associated tags in PCSes. Each
block has a group of components which work collaboratively to achieve their duties.
Each subgroup of components is managed by one of the entities. The major functional
blocks, i.e. their entities and their associated components, have been outlined in Figure
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4.6. The details of the DIA-ETTP functional blocks, i.e. D3U, LoA1DV, LoA2DV and
DU, have been detailed in the following sections.

4.6 Data Deduplication and Data Uploading (D3U)

This section provides a detailed description of the D3U functional block with an
emphasis on its architecture, algorithms and protocols.

4.6.1 The Architecture

The architecture of D3U is as shown in Figure 4.7. It is a group of components and
four types of entities, i.e. the user, the leader provider, the non leader provider and
the L-TPA. Each entity manages its associated components in order to perform its
duties optimally. The entities have two essential components, an Entity-Agent (i.e.
UserAgent, LPCSAgent, PCSjAgent, LTPAAgent, TPAjAgent) and Entity-M2T (i.e.
User-M2T, LPCS-M2T, PCSj-M2T, LTPA-M2T, TPAj-M2T). This is in addition to
other components that will be described below. The Entity-Agent is responsible for
managing and controlling the processing operations between the other components
and fetching/storing data from/in the entity’s storage. Furthermore, it is responsible
for receiving or sending requests/responses from/to other entities. Entity-M2T is
responsible for managing and controlling an entity’s data structure.

The user, in this architecture, needs to perform several operations which contain
three components: DataPre-processing, Tags-Generator, and FileTagSignature-
Generator in addition to the components that have described above (i.e. UserAgent
and User-M2T). The DataPre-processing is responsible for pre-processing the data
files before uploading them to the PCSes. This involves fragmenting the data file into
multiple data blocks, eliminating any redundant (or duplicated) data blocks (i.e. D3L1)
to produce non-duplicated data blocks (DBs), and encrypting the non-duplicated data
blocks in order to produce the encrypted data blocks (En_DBs). The Tags-Generator
is responsible for generating tags for non-duplicated data blocks based on a result of the
L2 data deduplication, i.e. D3L2. As the TOD method is used, each data block has four
types of tags: IDTag, En_IDTag, DBTag and DBTagTag. The IDTags are stored
locally. En_IDTags are stored with the L-TPA, while DBTags and DBTagTags

along with the data blocks are stored in the PCSes. The FileTagSignature-Generator
is responsible for generating the signature of the file tag, i.e. the FileTagSig,
of the uploaded data file. The file tag (FileTag) includes information about the
uploaded file, the ID of a file (FileID) and the total number of data blocks in the file.
The DataPre-processing, Tags-Generator and FileTagSignature-Generator operations
are implemented using the FileSetUp, BlockTagGen and FileTagSigGen algorithms,
respectively. All of the algorithms of D3U are described in Section 4.6.2.

The leader provider, in the architecture, needs to perform operations that contain
an L2DataDeduplication component. The L2DataDeduplication is responsible for
performing D3L2. The uploaded data blocks that have recently received are compared
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with all of the outsourced data blocks in the L-PCS that owned by the user in order to
check for duplication and to eliminate the duplicated data blocks. The non-duplicated
data blocks can only be stored in the LPCS-M2T. The L2DataDeduplication operations
are implemented using the L2DataDedup algorithm.

In D3U, there are multiple non leader providers where the leader provider
communicates with each one in order to send a copy of the data and the associated
tags. Each provider is responsible for managing and storing one copy of the data files
and the associated tags. The L-TPA is another entity that is responsible for managing
and storing tags, En_IDTags, which are used in the public verification.

The following explains how a D3U request is processed, as shown in Figure
(4.7). It can be divided into three phases:

1. The first phase is for uploading data blocks and performing the D3L2. It has the
following steps:

1.1 The UserAgent submits the user’s data file to the DataPre-processing.

1.2 The DataPre-processing first pre-processes the data file and outputs non-
duplicated encrypted data blocks. It then submits the data blocks to the
UserAgent.

1.3 The UserAgent sends an L2DataDeduplication request to the LPCSAgent.
The request contains the non-duplicated encrypted data blocks of the file.
The message formats have been described in detail in Section 4.6.3.

1.4 Once the LPCSAgent receives the request, it retrieves the outsourced data
blocks from the LPCS-M2T.

1.5 The LPCSAgent submits two sets of data blocks, the data blocks set in the
L2DataDeduplication request and the outsourced data blocks set, to the
L2DataDeduplication.

1.6 The L2DataDeduplication checks the duplication and eliminates any
redundant data blocks in the first set by comparing them with the
outsourced data block set. It then submits the duplication result and the
non-duplicated data blocks to the LPCSAgent.

1.7 The LPCSAgent sends the non-duplicated data blocks from the first set to
the LPCS-M2T.

1.8 The LPCSAgent sends the result to the UserAgent as a response.

2. The second phases is for generating and uploading the tags. It has the following
steps:

2.1 The UserAgent submits the non-duplicated data blocks of the file based on
the duplication result to the Tags-Generator.
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2.2 The Tags-Generator generates the tags for the data blocks, i.e. {IDTagi},
{En_IDTagi}, {DBTagi} and {DBTagTagi}, and then submits them to
the UserAgent.

2.3 The UserAgent submits the total number of data blocks in the file and its
ID to the FileTagSignature-Generator.

2.4 The FileTagSignature-Generator generates FileSigTag and submits it to the
UserAgent.

2.5 The UserAgent sends the {IDTagi} to the User-M2T.

2.6 The UserAgent sends a TagsUploading request to the LPCSAgent. This
request includes tags, i.e. {DBTagi} and {DBTagTagi} of the non-
duplicated data blocks.

2.7 Upon receiving the request, the LPCSAgent sends the tags, {DBTagi} and
{DBTagTagi}, to the LPCS-M2T for outsourcing.

2.8 The the LPCSAgent then retrieves the data blocks that are associated with
the tags from the LPCS-M2T.

2.9 The LPCSAgent sends a DataTagsUploading request for each non leader
provider (i.e. PCSjAgent). The request contains the data blocks and the
associated tags of the file.

2.10 Once each PCSjAgent receives the request from the LPCSAgent, it sends
the data blocks and their tags to the PCS-M2T for outsourcing.

2.11 Each PCSjAgent sends an acknowledgement to the LPCSAgent to confirm
that the data and their tags have been stored correctly.

2.12 Once the LPCSAgent receives the responses from all of the providers, it
sends a final acknowledgement to the UserAgent.

3. The third phase is for uploading the En_IDTags to L-TPA. It has the following
steps:

3.1 After uploading data and their tags to the PCSes, the UserAgent sends a
request to the LTPAAgent to upload En_IDTags that are associated with
the non-duplicated data blocks {En_IDTagi}.

3.2 Once the LTPAAgent receives {En_IDTagi} from the UserAgent, it sends
them to the LTPA-M2T.

3.3 The LTPAAgent then sends an acknowledgement to the UserAgent to
confirm that the tags have been stored correctly.

4.6.2 D3U Algorithms

This section provides a detailed description of the four algorithms used
for implementing the operations of the D3U components, namely FileSetUp,
L2DataDeduplication, BlockTagGen and FileTagSigGen.
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• FileSetUp Algorithm: The FileSetUp algorithm is used for implementing the
operations of the DataPre-processing functional component. This algorithm is
similar to the Setup algorithm of the TOD method described in Section 3.5. The
algorithm takes the data file (DF ) and the user’s encryption key, sk, and outputs
a set called the D3L1 Result (D3L1R). The user uses sk to encrypt all of the
outsourced data files. The D3L1R consists of K items, i.e. K is a total blocks
number of the data file. Each item in the D3L1R can be either En_DB value or
an ID of the data block. The ID of the data block is one of the identifiers (indexes)
of data blocks in the data file. It is associated with a data block that is identical
to the given data block. In other words, if a data block in the D3L1Ri (DBi) is
identical to another data block in the file (DBj), then the value of D3L1Ri is the
ID of DBj rather than the DBi value. Thus, D3L1Ri contains non-duplicated
data blocks or the associated links of the duplicated data blocks. The details
of this algorithm are given in Algorithm 8 (see the DIA-ETTP algorithms in
Appendix C).

• L2DataDedup Algorithm: The L2DataDedup algorithm is used for
implementing the operations of the L2DataDeduplication component. As
mentioned in Section 4.6.1, it first checks to see if there is any duplicated data
between the data blocks, i.e. the recently received data blocks from the user and
the outsourced data blocks in the L-PCS. The duplicated data blocks are then
eliminated and only the non-duplicated data blocks are kept. The algorithm takes
two sets, D3L1R, and the outsourced data blocks hash values set (ODBH) as
the inputs and outputs three sets: the D3L2 Result (D3L2R), the non-duplicated
data blocks set (NDB) and the non-duplicated data blocks hash values set
(NDBH). The D3L2R is a set in which its items number is equal to the items
number in D3L1R, i.e. K. Each item in D3L2R is associated with one data
block. It can refer to either an empty value or ID of one of the non-duplicated
data blocks (in NonDuplicatedDB/Tag table). When its value is empty, this
means that its associated data block is a non-duplicated block. Otherwise, the
data block is a duplicated block and its value is an ID of the data block that
it is identical to the data block in the LPCS-M2T. The details of L2DataDedup
algorithm are given in Algorithm 9.

• BlockTagGen Algorithm: The BlockTagGen algorithm is used for
implementing the operations of the Tags-Generator component. It uses the
TagGen algorithm of the TOD method described in Section 3.5 for generating
tags for the non-duplicated data blocks that are indicated in the D3L2R. The
algorithm takes the data blocks, {En_DBi}, the ID of the user (UserID), a
BLS private key, x, a random number, υ, and Paillier public key, ppkEn, D3L1R

and D3L2R and outputs five sets, i.e. {IDTagi}, {En_IDTagi}, {DBTagi},
{DBTagTagi} and D3L1R′. The user uses x, υ, and ppkEn, to generate tags of
all of the outsourced data files. D3L1R′ is another version of D3L1R but with
the elimination of the data block values. The details of this algorithm are given
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in Algorithm 10.

• FileTagSigGen Algorithm: The FileTagSigGen algorithm is used to
implement the operations of the FileTagSignature-Generator component. It is
used for generating a signature for the file tag (FileTag) of the data file, i.e.
FileTagSig. The algorithm takes the total number of the data blocks of the
data file, K, the ID of the file, FileID, and a private key (Pkey) for signing, as
the inputs. Its output is FileTagSig. It is used to authenticate the identifier of
the data file and its total number of data blocks. The details of the FileTagSigGen
algorithm have been given in Algorithm 11.

Table 4.1: Sub-protocols in DIA-ETTP: Protocol IDs and Header Message Sizes.

Protocols Protocol ID Message
Header Size

L2DataDeduplication 0 64 bits
TagsUploading 1 64 bits
DataTagsUploading 2 32 bits
En_IDTagsUploading 3 64 bits
PublicDataVerification 4 64 bits
PublicProofsFromTPA 5 32 bits
PublicProofsFromPCS 6 32 bits
DBTagProofVerification 7 32 bits
PrivateProofsFromLPCS 8 64 bits
PrivateProofsFromPCS 9 32 bits
DataUpdating 10 64 bits
TagsOfUpdatedDataUploading 11 64 bits
DataTagsUpdating 12 32 bits
En_IDTagOfUpdatedDataUpdating 13 64 bits

4.6.3 D3U Protocol Suite

This section first provides an overview of the D3U protocol and then offers a detailed
description of its protocols.

4.6.3.1 Protocol Suite Overview

Using the D3U protocol, the user uploads the non-duplicated data with its associated
tags to multiple PCSes. As illustrated in Figure 4.8, the execution of the D3U
protocol suite is performed in three phases: there is the L2DataDeduplication
protocol execution (Phase 1), the TagsUploading protocol execution (Phase 2), and
the En_IDTagsUploading protocol execution (Phase 3). The L2DataDeduplication
protocol is executed to allow the user to perform the D3L2 by sending the data blocks
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of the file to the leader provider. The uploading data should be non-duplicated by
performing the D3L1. The user uses the FileSetUp algorithm to eliminate redundant
data (D3L1) and to encrypt them before communicating with the leader provider to
check for redundancy to eliminate any further redundancy blocks (D3L2). Once the
leader provider finds a duplication result, it stores only the non-duplicated blocks of
the data file. The users can execute the TagsUploading protocol. In this protocol,
the user performs the BlockTagGen algorithm to generate tags for the data blocks
and the FileTagSigGen algorithm to generate a FileTag signature (FileTagSig). The
user then communicates with the leader provider to upload the tags. When the
leader provider receives the data blocks and their tags from the user, it executes
the DataTagsUploading protocol n-1 times (i.e. Phase 2.1). The leader provider
communicates with each provider and sends a copy of the data blocks and their
associated tags for outsourcing them to its PCS. Finally, in the En_IDTagsUploading
protocol, the user communicates with the L-TPA to upload En_IDTags to use in the
data verification protocols later.

4.6.3.2 Protocols

Each protocol has two types of message transactions: a request message (Req) and a
response (Res). Figure 4.9 depicts the protocol message format. From the figure, it can
be seen that a protocol message is divided into two parts. The message header is used
as the control information and the message payload contains the data. The message
header contains (1) the ID of the protocol (ProID) which could be from one of the 13
protocols (Table 4.1), (2) the ID of the message (MsgID) which could be the request
message (Req.) with a value of 0 or the response message (Res.) with a value of 1,
(3) the ID of the sender (SenderID) and (4) the ID of the receiver (ReceiverID). The
payload area contains the request or response data (R-Data). The size of the message
header differs according to whether the user is involved in the protocol, i.e. as a sender
or receiver. In the PCS environment, the number of users served can be huge. Thus,
in order to represent a user’s ID, it could need three bytes or more. For example, using
three bytes can represent 224 user’ IDs. In this case, the size of the message header can
be 64 bits. Otherwise, the header message’s size can be 32 bits. The size of the R-Data
is the size of the request or response data. The size of the R-Data differs according to
the protocol type and message type. The message items concatenations (which are the
delimiters) can be presented as: {ProID||MsgID||SenderID||ReceiverID||R-Data}. To
determine the length of the message header and the length of the R-Data, two additional
fields can be added, e.g. at the beginning of the header and at the beginning of the
payload to indicate the length of the header or payload.

As shown in Figure 4.10, the D3U protocol consists of four sub-
protocols, namely L2DataDeduplication, TagsUploading, DataTagsUploading, and
En_IDTagsUploading. A detailed description has been given below.

The L2DataDeduplication protocol is executed between the user (the owner of
the data) and the leader provider. In this protocol, two messages are exchanged
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Figure 4.9: Message Format.

between the entities, Req.L2DataDeduplication and Res.L2DataDeduplication.
Req.L2DataDeduplication is sent by the user to the leader provider, while
Res.L2DataDeduplication is sent by the leader provider to the user. The header
area of the Req.L2DataDeduplication contains, ProID(0), MsgID(0), UserID, and
L-PCSProviderID. The payload area contains the D3L1R and a data file identifier,
FileID. The Req.L2DataDeduplication can be represented as: {ProID(0)||MsgID(0)||
UserID|| L-PCS providerID ||D3L1R||FileID}. Once the leader provider receives
the Req.L2DataDeduplication, it stores the non-duplicated data blocks from D3L1R,
and responds to the user by sending the Res.L2DataDeduplication. The header
area contains ProID(0), MsgID(1), L-PCSProviderID and UserID. The payload
contains the D3L2R. The Res.L2DataDeduplication can be represented as {ProID(0)||
MsgID(1)|| L-PCS providerID ||UserID||D3L2R}.

Once the user receives D3L2R, the TagsUploading protocol is executed between
the user and the leader provider. In this protocol, two messages are exchanged
between the entities, Req.TagsUploading and Res.TagsUploading. The user
sends Req.TagsUploading to the leader provider, while the leader provider sends
Res.TagsUploading to the user. The header area of the Req.TagsUploading contains
ProID(1), MsgID(0), UserID, and L-PCSProviderID. Its payload area contains
FileID and two sets of tags that are associated with non-duplicated data blocks,
i.e. {DBTagi} and {DBTagTagi}. The Req.TagsUploading can be represented as
{ProID(1) || MsgID(0) || UserID || L-PCS providerID || FileID || {DBTagi} ||
{DBTagTagi}}.

The leader provider receives the Req.TagsUploading from the user and stores the
tags in its storage (i.e. LPCS-M2T). It then shares the data blocks and their tags
with other PCSes before receiving a response from all of the providers and then
sending the Res.TagsUploading. The header area contains ProID(1), MsgID(1),
L-PCS providerID and UserID. The payload contains, an acknowledgement that
indicates the data blocks and their associated tags have been shared with other PCSes,
ACK. The message can be represented as {ProID(1) ||MsgID(1)|| L-PCS providerID
|| UserID || ACK}.

Upon the leader provider receiving the data blocks and their tags,
DataTagsUploading is executed between the leader provider and each non leader
provider. In this protocol, two messages are exchanged between the entities,
Req.DataTagsUploading and Res.DataTagsUploading. In the Req.DataTagsUploading
message, the header area contains ProID(2), MsgID(0), L-PCS providerID, and
PCS providerID. The payload area contains FileID, D3L1R, D3L2R, and the sets of
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tags, {DBTagi} and {DBTagTagi}. Req.DataTagsUploading can be represented as
{ProID(2) || MsgID(0) || L-PCS providerID || PCS providerID || FileID || D3L1R ||
D3L2R || {DBTagi} || {DBTagTagi}}. Upon receiving the Req.DataTagsUploading
message, the provider responds by sending Res.DataTagsUploading to the leader
provider. The header area of the message contains ProID(2), MsgID(1),
L-PCSProviderID and PCSProviderID. The payload contains an acknowledgement
that indicates that the data blocks and their associated tags have been stored in its
M2T, ACK. Res.DataTagsUploading can be represented as: {ProID(2)|| MsgID(1)||
PCS providerID || L-PCS providerID || ACK}.

After the user uploads his data blocks and their tags to the PCSes and
keeps the IDTags locally in his User-M2T, the En_IDTagsUploading protocol
is executed between the user and the L-TPA. This protocol consists of
two messages, Req.En_IDTagsUploading and Res.En_IDTagsUploading. The
user sends Req.En_IDTagsUploading to the L-TPA, while the L-TPA sends
Res.En_IDTagsUploading to the user. The header area of Req.En_IDTagsUploading
contains ProID(3), MsgID(0), UserID, and L-TPAID. The payload area
contains FileID, D3L1R′, D3L2R and a set of En_IDTags, {En_IDTagi}.
Req.IDTagsUploading can be represented as {ProID(3)|| MsgID(0)|| UserID||
L-TPAID|| FileID|| D3L1R′ || D3L2R || {En_IDTagi}}. Upon receiving the
En_IDTags, the L-TPA stores them in its storage (LTPA-M2T) and sends
Res.En_IDTagsUploading to the user. The header area of Res.En_IDTagsUploading
contains, ProID(3), MsgID(1), L-TPAID and UserID. The payload contains,
an acknowledgement that the En_IDTags have been stored correctly, ACK.
Res.IDTagsUploading can be represented as {ProID(3)|| MsgID(1)|| L-TPAID
||UserID||ACK}.

4.7 LoA1 Data Verification (LoA1DV)

This section provides a detailed description of the LoA1DV functional block with an
emphasis on its architecture, algorithms and protocols.

4.7.1 The Architecture

The LoA1DV architecture shown in Figure 4.11 includes a group of components and the
following four types of entities, i.e. the user, L-TPA, the non leader TPA and the non
leader provider. Each entity manages its associated components in order to perform its
duties. The entities have two essential components, the EntityAgent (i.e., PCSjAgent,
LTPAAgent, TPAjAgent, UserAgent) and Entity-M2T (i.e., PCSj-M2T, LTPA-M2T)
in addition to the other components that will be described below. The functions of
these components are similar to ones in the D3U architecture. The user, in LoA1DV,
is only responsible for delegating the L-TPA to perform the public verification.

The L-TPA in this architecture needs to perform operations which include three
components, namely the PublicChellange-Generator, the DBProofTag-Generator, and
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the DBTagTagProof-Verification. The PublicChallenge-Generator is responsible for
generating a public challenge message. In the public challenge message, a random
C-element subset of the set data blocks is chosen using the indexes of the data
blocks. A non leader provider should use the data blocks that are associated with
these positions and their associated tags when generating public proofs. The public
proofs consist of three types: a proof of the data blocks (DBPoof), a proof of the
DBTags (DBTagProof), and a proof of the DBTagTags (DBTagTagProof). The
DBProofTag-Generator is responsible for generating a tag for the DBProof . The tag
is used to verify the DBTagProof by the non leader TPAs. The DBTagTagProof-
Verification is responsible for verifying the DBTagTagProof and then concluding
the public verification result. The operations of the PublicChallenge-Generator, the
DBProofTag-Generator and the DBTagTagProof-Verification are implemented using
the PubChalGen, DBProofTagGen and DBTagTagProofVer algorithms, respectively.

In the LoA1DV, as mentioned in Section 4.3, multiple non leader TPAs collaborate
with the L-TPA in performing the public verification and each non leader TPA,
i.e. TPAj, communicates with one non leader provider, PCSj provider. The
TPA (TPAj) in this architecture needs to perform operations which include two
components, DBTagProof-Verification and DBTagProof-Mapping. The DBTagProof-
Verification is responsible for verifying the DBTagProof using items from the L-TPA,
namely the DBProofTag and the aggregated values of the associated En_IDTag
(AggEn_IDTag), and the DBTagProof from the non leader provider. The
DBTagProof-Mapping is responsible for generating a DBTagProofMapV alue for the
DBTagProof. The DBTagProof-Verification and the DBTagProof-Mapping operations
are implemented using the DBTagProofVer and the DBTagProofMap algorithms,
respectively.

In the LoA1DV, similar to the non leader TPAs, there are multiple non leader
providers. The PCSj provider, in this architecture, needs to perform operations
which includes one functional component, PublicProofs-Generator. The PublicProofs-
Generator is responsible for generating the public proofs, DBProof , DBTagProof
and DBTagTagProof , using the data blocks and their associated tags in its storage.
Then, it sends them to its associated TPA, TPAj. The PublicProofs-Generator
operations are implemented using the PubProofsGen algorithm.

The following explains how a LoA1DV request is processed, as shown in Figure
4.11.

1.1 The UserAgent sends a public data verification request to the LTPAAgent in
order to check the integrity of the data file in PCSes.

1.2 Once the LTPAAgent receives the user’s request, it submits the request to the
PublicChallange-Generator.

1.3 The PublicChallange-Generator generates public challenge messages and submits
them to the LTPAAgent.

124



1.4 The LTPAAgent sends a request which includes the public challenge message to
the TPAjAgent to get public proofs.

1.5 Once TPAjAgent receives the request, it sends a request to its associated provider,
PCSjAgent, to get the public proofs.

1.6 PCSjAgent receives the request and then retrieves the data blocks and their
associated tags that are determined in the challenge message from its storage,
i.e. the PCSj-M2T.

1.7 The PCSjAgent submits the data blocks and their associated tags to the
PublicProofs-Generator.

1.8 The PublicProofs-Generator computes the public proofs using the data blocks
and their associated tags and submits them to the PCSjAgent.

1.9 The PCSjAgent sends the public proofs to its associated TPAjAgent as a
response.

1.10 TPAjAgent sends the DBProof and DBTagTagProof values from the public
proofs to the LTPAAgent.

1.11 Once the LTPAAgent receives the DBProofs from all TPAjAgents, it retrieves
the set of En_IDTags that are associated with the chosen data blocks from its
storage resources, i.e. the LTPA-M2T.

1.12 The LTPAAgent submits the DBProofs and the set of En_IDTags to
DBProofTag-Generator.

1.13 DBProofTag-Generator computes two values, the DBProofTag and
AggEn_IDTag, and submits them to the LTPAAgent.

1.14 The LTPAAgent sends a DBTagProof verification request to each TPAjAgent.
This request contains the DBProofTag and AggEn_IDTag.

1.15 Once TPAjAgent receives the verification request, it submits the DBProofTag,
AggEn_IDTag and DBTagProof to the DBTagProof-Verification.

1.16 The DBTagProof-Verification verifies DBTagProof and submits the result to
the TPAjAgent.

1.17 The TPAjAgent sends DBTagProof to the DBTagProof-Mapping.

1.18 The DBTagProof-Mapping computes a map value of the DBTagProof , i.e.
DBTagProofMapV alue and submits it to the TPAjAgent.

1.19 Finally, TPAjAgent sends the verification result of DBTagProof and its
associated DBTagProofMapValue to the LTPAAgent.
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1.20 Once the LTPAAgent receives all of the verification results from all TPAs, i.e.
{TPAjAgent} and their DBTagProofMapV alues, it submits the results and
two sets, i.e. a set of DBTagProofMapV alues and a set of DBTagTagProofs
to the DBTagTagProof-Verification.

1.21 The DBTagTagProof-Verification verifies the DBTagTagProofs and then
submits the result to the LTPAAgent.

1.22 The LTPAAgent finally sends this result as the response to the public verification
request to the UserAgent.

4.7.2 LoA1DV Algorithms

This section describes in detail the algorithms used to implement the components
of the LoA1DV. There are six algorithms, namely PubChalGen, PubProofsGen,
DBProofTagGen, DBTagProofVer, DBTagProofMap and DBTagTagProofVer.

• PubChalGen Algorithm: The PubChalGen algorithm is used for
implementing the operations of the PublicChallange-Generator component. It
is used for generating public verification challenges. Before generating the public
verification challenges, the signature of FileTag should be verified to authenticate
a file ID and its total number of data blocks. Thus the algorithm takes file tag
signature, i.e. FileTagSig, and a public key used for decrypting FileTagSig,
Pbkey, as the inputs, and it outputs public challenges, {PubChallj} (which
each TPA has one PubChall), and a tag of an aggregated value of nonces (i.e.
{ProofNoncei}), AggProofNonceTag. The PubChallj consists of two sets,
i.e., a set of indexes of C data blocks, {Ii}, 0 ≤ i < C, and a set of the nonces
({ProofNoncei}), and the following three items: a nonce value (PCSNoncej),
its tag (PCSNonceTagj) and the ID of File (FileID). The {Ii} values are
used to indicate the positions of the chosen data blocks among the file blocks.
As mentioned above, each provider should use the data blocks that have these
positions and their associated tags when computing the public proofs. For each
Ii, ProofNoncei is chosen and for each PCS, PCSNoncej, is chosen. The two
sets of nonces, {ProofNoncei} and {PCSNoncej}, are used to help to the replay
attack prevention and the frame attack detection. The details of the PubChalGen
algorithm have been given in Algorithm 12.

• PubProofsGen Algorithm: The PubProofsGen algorithm is used for
implementing the operations of the PublicProofs-Generator component. It is
used for generating public proofs. The algorithm takes PubChallj and three
sets of items, a set of the chosen data blocks, {En_DBi} and their associated
tags, {DBTagi} and {DBTagTagi}, as the inputs. It outputs public proofs,
i.e. PubDBProofj, PubDBTagProofj, and DBTagTagProofj. The details of
PubProofsGen algorithm are given in Algorithm 13.
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• DBProofTagGen Algorithm: The DBProofTagGen algorithm is used for
implementing the operations of the DBProofTag-Generator component. It is
used for generating a tag of PubDBProof . Thus, the algorithm takes a set of
PubDBProofs, {PubDBProofj}, where PubDBProofj is generated by PCSj
provider, and a set of En_IDTags, {En_IDTagi}, that are associated with
the chosen data blocks in the PubChall as the inputs. Its outputs are the tag
of PubDBProof , BDProofTag, and an aggregated value of {En_IDTagi},
AggEn_IDTag. The details of the DBProofTagGen algorithm are given in
Algorithm 14.

• DBTagProofVer Algorithm: The DBTagProofVer algorithm is used for
implementing the operations of DBTagProof-Verification component. It is
for verifying the PubDBTagProof . This algorithm takes DBProofTag,
PubDBTagProofj, AggEn_IDTag, PCSNonceTagj, AggProofNonceTag,
and the Paillier encryption key (ppkEn), as the inputs. It outputs the
DBTagProof verification result (DBTagProofV erResultj), i.e. 0/1. The
details of the DBTagProofVer algorithm have been given in Algorithm 15.

• DBTagProofMap Algorithm: The DBTagProofMap algorithm is used for
implementing the operations of the DBTagProof-Mapping component. It is used
for computing a map value of DBTagProof , DBTagProofMapV aluej. The
algorithm takes PubDBTagProofj, MappingSecertkey, PCSNonceTagj and
{ProofNoncei} as the inputs. It outputs the DBTagProofMapV aluej. The
details of the DBTagProofMap algorithm have been given in Algorithm 16.

• DBTagTagProofVer Algorithm: The DBTagTagProofVer algorithm is
used for implementing the operations of the DBTagTagProof-Verification
component. The algorithm takes five sets of items: {DBTagProofV erResultj},
{DBTagProofMapV aluej}, {PCSNoncej}, {En_IDTagi}, and
{ProofNoncei}, as the inputs. It outputs the result of the DBTagTagProof
verification, DBTagTagProofV erResultj. The algorithm has been detailed in
Algorithm 17.

4.7.3 LoA1DV protocol suite

This section first provides the overview of the LoA1DV protocol and then puts forward
a detailed description of its protocols.

4.7.3.1 Protocol Suite Overview

The PublicDataVerification protocol is executed to allow the user to delegate the L-
TPA to perform, control and manage the public verification among multiple non leader
TPAs. The L-TPA forwards the result to the user. As illustrated in Figure 4.12,
the execution of the LoA1DV protocol suite is performed (Phase 1), and consists
of two sub-phases, i.e. Phase 1.1 and Phase 1.2. In Phase 1.1, n-1 executions
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of PublicProofsFromTPA protocol are performed between L-TPA and other TPAs
(non leader TPAs). The L-TPA starts the public verification using the PubChalGen
algorithm to generate a public challenge message. It sends it to each TPA to
get the public proofs. To respond to the L-TPA request, each TPA (non leader)
challenges its associated PCS and requests the public proofs, i.e. n-1 executions
of the PublicProofsFromPCS protocol (Phase 1.1.1). Each provider computes its
public proofs using the PubProofGen algorithm and responds by sending the public
proofs. Once the L-TPA receives the proofs from all TPAs, the L-TPA performs n-1
executions of DBTagProofVerification protocol (Phase 1.2). The L-TPA executes the
DBTagProofVerification protocol to ask each TPA to perform the PubDBTagProof
verification using the DBTagProofVer algorithm. It computes its associated map
value using the DBTagProofMap algorithm where the L-TPA can then perform the
DBTagTagProof verification using the DBTagTagProofVer algorithm.

4.7.3.2 Protocols

The LoA1DV protocol consists of four sub-protocols, namely PublicDataVerification,
PublicProofsFromTPA, PublicProofsFromPCS and DBTagProofVerification, as
mentioned above. A detailed description of the protocols is presented below.

The PublicDataVerification protocol, as shown in Figure 4.13, is executed between
the user and the L-TPA. Two messages in the protocol are exchanged between
the entities, Req.PublicDataVerification and Res.PublicDataVerification. The user
delegates the L-TPA by sending the Req.PublicDataVerification. The header area of
the message contains, ProID(4), MsgID(0), UserID, and L-TPAID. Its payload area
contains FileTagSig and a level of Assurance (LoA). In the LoA1DV protocol, the
value of LoA is 0 to indicate that level 1 of integrity protection assurance is required,
i.e. LoA1. Thus the Req.PublicDataVerification can be represented as {ProID(4)||
MsgID(0)|| UserID|| L-TPAID|| FileTagSig|| LoA}. Once The L-TPA generates the
verification result, it sends the result in the Res.PublicDataVerification as a response to
the user. The Res.PublicDataVerification header area contains ProID(4), MsgID(1),
L-TPAID, and UserID. The payload area contains DBTagTagProofV erResult.
Thus the Res.PublicDataVerification can be represented as: {ProID(4) || MsgID(1)

|| L-TPAID || UserID || DBTagTagProofV erResult}.
To generate the verification result, the L-TPA first executes the

PublicProofsFromTPA protocol and then the DBTagProofVerification protocol n-1
times where the L-TPA communicates with each TPAj. The PublicProofsFromTPA
consists of two messages: Req.PublicProofsFromTPA and Res.PublicProofsFromTPA.
The Req.PublicProofsFromTPA is sent by the L-TPA to TPAj. The header
area of Req.PublicProofsFromTPA contains ProID(5), MsgID(0), L-TPAID,
and TPAjID . The payload area contains PubChallj, AggProofNonceTag and
LoA. The Req.PublicProofsFromTPA be represented as {ProID(5) || MsgID(0)||
L-TPAID || TPAjID || PubChallj ||AggProofNonceTag || LoA}. The TPAj

sends the Res.PublicProofsFromTPA to the L-TPA as a response. The header
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area of the message contains, ProID(5), MsgID(1), TPAjID , and L-TPAID. The
payload area contains two values, PubDBProofj and PubDBTagTagProofj. The
Res.PublicProofsFromTPA can be represented as {ProID(5) || MsgID(1) || L-PAID ||
TPAjID || PubDBProofj || PubDBTagTagProofj}.

Each TPA, TPAj, executes the PublicProofsFromPCS protocol in order to
get the public proofs from its associated PCS. Req.PublicProofsFromPCS and
Res.PublicProofsFromPCS are two messages within the PublicProofsFromPCS
protocol. The header area of Req.PublicProofsFromPCS, which is sent to
PCSj provider by the TPA, contains, ProID(6), MsgID(0), TPAjID and
PCSj providerID. The payload area contains PubChallj, and LoA. The
Req.PublicProofsFromPCS can be represented as {ProID(6) || MsgID(0)||
TPAjID || PCSj providerID || PubChallj || LoA}. The PCSj provider sends
the Res.PublicProofsFromPCS to the TPAj. The header area of the
Req.PublicProofsFromPCS contains, ProID(6), MsgID(1), PCSj providerID, and
TPAjID . The payload area contains PubDBProofj, PubDBTagProofj and
PubDBTagTagProofj. The Res.PublicProofsFromPCS can be represented as
{ProID(6) || MsgID(1) || PCSj providerID || TPAjID || PubDBProofj ||
PubDBTagProofj || PubDBTagTagProofj}.

Before the L-TPA can verify the PubDBTagTagProof value, it needs
to get the result of the PubDBTagProof verification and its map value,
DBTagProofMapV alue, by executing the DBTagProofVerification protocol. This
protocol is executed n-1 times where the L-TPA communicates with each TPA,
{TPAj}. Req.DBTagProofVerification and Res.DBTagProofVerification are the
two messages in the DBTagProofVerification protocol. The L-TPA sends the
Req.DBTagProofVerification in order to ask TPAj to perform the PubDBTagProof
verification. The header area of Req.DBTagProofVerification contains, ProID(7),
MsgID(0), L-TPAID, and TPAjID . The payload area contains DBProofTag and
AggEn_IDTag. The Req.DBTagProofVerification can be represented as {ProID(7)

|| MsgID(0) || L-TPAID || TPAjID || DBProofTag || AggEn_IDTag}. Upon
receiving the request, TPAj sends to the L-TPA the Res.DBTagProofVerification.
The header area of Res.DBTagProofVerification contains ProID(7), MsgID(1),
TPAjID and L-TPAID. The payload area contains DBTagProofV erResult and
DBTagProofMapV alue. The Res.DBTagProofVerification can be represented
as {ProID(7)|| MsgID(1) || TPAjID || L-TPAID || DBTagProofV erResultj ||
DBTagProofMapV aluej}.

4.8 LoA2 Data Verification (LoA2DV)

This section provides a detailed description of the LoA2DV functional block with an
emphasis on its architecture, algorithms and protocols.
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4.8.1 The Architecture

The LoA2DV is used for performing both verification types, public and private. The
LoA2DV architecture, as shown in Figure 4.14, consists of two sub-blocks. The first
one is identical to the LoA1DV architecture which contains the same entities and
components used for performing public verification. The second block is used for
performing private verification. The second sub-block involves three types of entities;
the user, the leader provider and the non leader provider. As in the above architectures,
each entity consists of two essential components: Entity-Agent and Entity-M2T. This
is in addition to the other components that will be described below.

The user, in this architecture, needs to perform operations which contain
two components: PrivateChallenge-Generator and FPrivateProofs-Verification.
PrivateChallenge-Generator is responsible for generating a private challenge message.
The message is sent to the leader provider and to the non leader providers in order to
request their private proofs. FPrivateProofs-Verification is responsible for verifying
the finalised private proofs that the user has received from the leader provider.
The PrivateChallenge-Generator and the FPrivateProofs-Verification operations are
implemented using the PriChalGen and the FPriProofsVer algorithms, respectively, as
described in Section 4.8.2.

The leader provider, in this architecture, needs to perform operations which
contains two components, PrivateProofs-Generator and FPrivateProofs-Generator.
The PrivateProofs-Generator is responsible for generating private proofs. The private
proofs, Private DBProof (PriDBProof ) and Private DBTagProof (PriDBTagProof ),
are computed using the chosen data blocks that are determined in the challenge message
and their associated tags, respectively. The FPrivateProofs-Generator is responsible
for computing the finalised private proofs, a final PriDBProof (FPriDBProof ) and a
final PriDBTagProof (FPriDBTagProof ) using the private proofs that are generated
from all of the providers including the leader provider. The PrivateProofs-Generator
and the FPrivateProofs-Generator operations are implemented using the PriProofsGen
and the FPriProofsGen algorithms, respectively.

In the LoA2DV, there are multiple non leader providers {PCSj}. Each provider
computes its private proofs and sends them to the leader provider. The PCSj provider,
in this architecture, needs to perform operations which contain one component,
PrivateProofs-Generator. It is identical to the leader provider’s component.

The process of the verification request in the first block of the LoA2DV architecture
is similar to the one described in the LoA1DV architecture above. The process of
private verification in the second block, as shown in Figure 4.14 is as follows:

2.1 After the UserAgent receives the result of the public verification from the
LPCSAgent, the UserAgent submits it to the PrivateChallenge-Generator.

2.2 The PrivateChallenge-Generator generates a challenge message for the private
verification and submits it to the UserAgent.
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2.3 The UserAgent sends a request, which contains the private challenge message, to
the LPCSAgent.

2.4 Once the LPCSAgent receives the request from the UserAgent, it forwards this
request to each PCSjAgent to get their private proofs.

2.5 The PCSjAgent retrieves the data blocks and their associated tags that are
determined in the challenge message from the PCSj-M2T.

2.6 The PCSjAgent submits the data blocks and their tags to the PrivateProofs-
Generator.

2.7 The PrivateProofs-Generator computes the private proofs and submits them to
the PCSjAgent.

2.8 The PCSjAgent sends its private proofs to the LPCSAgent as a response.

2.9 Once receiving all of the responses from all non leader providers, {PCSjAgent},
the LPCSAgent retrieves the data blocks and their associated tags from the
LPCS-M2T.

2.10 The LPCSAgent submits the data blocks and their associated tags to the
PrivateProofs-Generator to generate the private proofs.

2.11 The PrivateProofs-Generator computes the private proofs and then submits them
to the LPCSAgent.

2.12 The LPCSAgent submits its private proofs along with the private proofs of all
non leader providers, {PCSjAgent}, to the FinalisedPrivateProofs-Generator.

2.13 The FinalisedPrivateProofs-Generator computes the final private proofs and
submits them to the LPCSAgent.

2.14 The LPCSAgent then sends the final private proofs to the UserAgent as a
response.

2.15 When the UserAgent receives the final private proofs from the LPCSAgent, it
retrieves the {IDTagi} that is associated with the chosen data blocks from the
User-M2T.

2.16 The UserAgent submits the final private proofs and {IDTagi} to the
FPrivateProof-Verification.

2.17 The FPrivateProof-Verification verifies the final private proofs and submits the
result to the UserAgent.
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4.8.2 LoA2DV Algorithms

This section describes in detail the algorithms used to implement the components of the
LoA2DV. There are ten algorithms. The first six algorithms are identical to the ones
of the LoA1DV, while the latter four algorithms, namely, PriChalGen, PriProofsGen,
FPrivateProofsGen and FPrivateProofsVer, and their details have been given below.

• PriChalGen Algorithm: The PriChalGen algorithm is used for implementing
the operations of PrivateChallenge-Generator. It is used for the purpose of
generating a challenge message for private verification. To generate the private
proofs, it should determine which data blocks and their associated tags are used
for their computing. The user and all of the TPAs ask the providers about
the same data blocks. Thus the algorithm takes the indexes of the data blocks
and their associated nonces that are in PubChall, {Ii, P roofNoncei}, as the
inputs. It outputs a private challenge (PriChall) and a random value is used
as a nonce for the leader provider (LPCSNonce). The PriChall consists of the
following items: (1) {Ii}, (2) {ProofNoncei}, and (3) a tag of LPCSNonce, i.e.
LPCSNonceTag. The details of the algorithm have been given in Algorithm 18.

• PriProofsGen Algorithm: The PriProofsGen algorithm is used for
implementing the operations of the PrivateProofs-Generator. It is used for
generating private proofs. The algorithm takes two sets from the private
challenge ({Ii} and {ProofNoncei}), the requested data blocks, {En-DBi}, their
associated tags ({DBTagi}) and PCSNonceTagj, as the inputs. It outputs the
private proofs, PriDBProofj and PriDBTagProofj. The algorithm has been
detailed in Algorithm 19.

• FPriProofsGen Algorithm: The FPriProofsGen algorithm is used for
implementing the operations of the FinalisedPrivateProofs-Generator component.
It is used for generating the final private proofs. The algorithm takes
the private proofs from all the non leader providers ({PriDBProofj}, and
{PriDBTagProofj}, 0 ≤ j < n−1), the private proofs from the leader provider
(PriDBProofL and PriDBTagProofL), as the inputs. The outputs are the
final private proofs, FPriDBProof and FPriDBTagProof . The details of the
algorithm have been given in Algorithm 20.

• FPriProofsVer Algorithm: The FPriProofsVer algorithm is used for
implementing the operations of the FPriProof verification. It is used for
verifying the correctness of the final private proofs. The algorithm takes the
following: FPriDBProof, FPriDBTagProof, LPCSNonceTag, AggPCSNonceTag
and DBTagTagProofVerResult, in addition to the set of IDTags, i.e. {IDTagi},
as the inputs. It outputs the final verification result, FV erResult. The
FV erResult is either positive or true (denoted as 1) which means that the
integrity of the file is said to be assured. Otherwise, it is negative or false (0).
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This means that the integrity of the file is said to be unassured. The details of
the FPriProofsVer algorithm have been given in Algorithm 21.

4.8.3 LoA2DV Protocol Suite

This section first gives an overview of the LoA2DV protocol and then provides a detailed
description of its protocols.

4.8.3.1 Protocol Suite Overview

The integrity checking of the data on PCSes be done using one of two integrity
protection levels. The user can choose the integrity protection level, i.e. LoA1 or LoA2.
In the LoA2DV, the LoA2 is chosen. As illustrated in Figure 4.15, the execution of
the LoA2DV suite is performed in two phases. The first phase (Phase 1) is similar
to the one in the LoA1DV protocol. It is used for performing the public verification.
Meanwhile, in the second phase (Phase 2), the PrivateProofsFromLPCS protocol is
executed between the user and the leader provider for the private verification. In the
PrivateProofsFromLPCS protocol, the user sends the private challenge message that is
generated using the PriChalGen algorithm to the leader provider. The leader provider,
in response, first performs n-1 executions of the PrivateProofsFromPCS protocol (Phase
2.1). The PrivateProofsFromPCS protocol is executed between the leader provider
and one non leader provider. The provider computes its private proofs using the
PriProofsGen algorithm and sends them to the leader. Thus the leader can compute
the final private proofs using the PriProofsGen and FPriProofsGen algorithms. It then
forwards these proofs to the user. The user checks the correctness of the proofs in order
to get a final verification result using the FPriProofsVer algorithm.

4.8.3.2 Protocols

The LoA2DV protocol consists of six sub-protocols. The former four protocols are
similar to those of the LoA1DV protocol except in the PublicDataVerification protocol,
the L-TPA sends further items, used by the user to generate the private challenge
message as shown in Figure 4.16. Thus Req.PublicDataVerification can be represented
as {ProID(4)|| MsgID(1) || L-TPAID || UserID || DBTagTagProofV erResult ||
AggPCSNonceTag || {Ii}||{ProofNoncei}}. A detailed description of the latter
two protocols, i.e. PrivateProofsFromLPCS and PrivateProofsFromPCS, has been
presented below.

The PrivateProofsFromLPCS protocol is executed between the user and the leader
provider. Req.PrivateProofsFromLPCS and Res.PrivateProofsFromLPCS are the
two messages of the protocol. The user sends the Req.PrivateProofsFromLPCS to
the leader provider. The header area of the Req.PrivateProofsFromLPCS contains
ProID(8), MsgID(0), UserID, and L-PCS providerID. The payload area contains
PriChall and FileID. The Req.PrivateProofsFromLPCS can be represented as
{ProID(8)|| MsgID(0)|| UserID || L-PCS providerID || PriChall || FileID}. The
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leader provider sends the Res.PrivateProofsFromLPCS to the user. The header area
of Res.PrivateProofsFromLPCS contains, ProID(8), MsgID(1), L-PCS providerID,
and UserID. The payload area contains FPriDBProof and FPriDBTagProof .
Thus, the Res.PrivateProofsFromLPCS can be represented as {ProID(8) || MsgID(1)

|| L-PCS providerID || UserID || FPriDBProof || FPriDBTagProof}.
The leader provider is to compute the final private proofs, it executes the

PrivateProofsFromPCS protocol n-1 times. The protocol has the following two
messages: Req.PrivateProofsFromPCS and Res.PrivateProofsFromPCS. The leader
provider sends Req.PrivateProofsFromPCS to the PCSj provider. The header area
of Req.PrivateProofsFromPCS contains ProID(9), MsgID(0), L-PCS providerID,
and PCSj providerID. The payload area contains {Ii}, {ProofNoncei} and
FileID. Req.PrivateProofsFromPCS can be represented as {ProID(9) || MsgID(0) ||
L-PCS providerID || PCSj providerID || {Ii} || {ProofNoncei} || FileID}. Once the
provider receives the request, it sends the Res.PrivateProofsFromPCS to the leader
provider. The header area of the Res.PrivateProofsFromPCS contains, ProID(9),
MsgID(1), PCSj providerID, and L-PCSproviderID. The payload area contains two
values: PriDBProofj and PriDBTagProofj. The Res.PrivateProofsFromPCS be
represented as follows: {ProID(9)||MsgID(1)|| PCSj providerID || L-PCS providerID
|| PriDBProof || PriDBTagProof}.

4.9 Data Updating (DU)

This section provides a detailed description of the DU functional block with an emphasis
on its architecture, algorithms and protocols.

4.9.1 The Architecture

The architecture of the DU as shown in Figure 4.17 includes four types of entities,
the user, the leader provider, the non leader provider and the L-TPA. As in the above
architectures, each entity has two essential components: the Entity-Agent and Entity-
M2T, in addition to other components that will be described below.

The user is responsible for updating the data on the PCSes and generating
the tags for the updated data. Thus, the user, in this architecture, needs to
perform several operations which contain two components, DataUpdateRequest-
Generator and TagsOfUpdatedData-Generator. The DataUpdateRequest-Generator
is responsible for generating an update request which is sent to the leader
provider. The request involves an update operation type (i.e. insert or modify
or delete data blocks), the ID of a data file, a data block position in the data
file, etc. The TagsOfUpdatedData-Generator is similar to the Tags-Generation
component in the D3U, which is responsible for generating IDTags, En_IDTags,
DBTags and DBTagTags, for the updated data (i.e. in the case of the
operation type is insert or modify) to send them to the leader provider. The
DataUpdateRequestGenerator and the TagsOfUpdatedDataGenerator operations are
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implemented using the DataUpdateReqGen and the DataUpdateReqGen algorithms,
respectively, (described in Section 4.9.2).

The leader provider is the second entity in the DU. The leader provider in
the architecture needs to perform operations which contain two components, Data-
Update and PCSUpdateRequest-Generator. The Data-Update is similar to the
L2DataDeduplication component in the D3U. It is responsible for performing D3L2 and
updating the M2T in the leader provider. It eliminates any duplicated data blocks, and
only the non-duplicated data blocks are kept. The PCSUpdateRequest-Generator is
responsible for generating an updated request for the other PCSes. The request involves
the operation type, the updated data block and its tags. The Data-Update and the
PCSUpdateRequest-Generator operations are implemented using the DataUpdate and
the PCSUpdateReqGen algorithms, respectively.

In the DU, there are multiple non leader providers, and the leader provider
communicates with each one. Each non leader provider in the architecture needs to
perform operations which contain one component, DataTags-Update. The DataTags-
Update is responsible for updating the PCSjprovider’s M2T and storing the updated
data using the received updated data block and its associated tags from the leader. The
DataTags-Update operations are implemented using the DataTagsUpdate algorithm.

The L-TPA needs to perform operations that contain one component,
En_IDTagUpdate. The En_IDTagUpdate is responsible for updating the M2T
of the L-TPA and storing the En_IDTag of the updated data using the data that
have been received from the user. The En_IDTagUpdate operations are implemented
in the En_IDTagUpdate algorithm.

The following explains how a DU request is processed, as shown in Figure 4.17.
It can be divided into three phases.

1. The first phase is for Uploading the updated data and has the following steps:

1.1 The UserAgent submits the data block that it wants to update at the PCSes
to the DataUpdateRequest-Generator. In the case of modify operation, the
user can download this block from the L-PCS.

1.2 The DataUpdateRequest-Generator processes the data block and outputs a
data update request. Then it submits the request to the UserAgent.

1.3 The UserAgent sends the request to the LPCSAgent.

1.4 Once the LPCSAgent receives the user’s request, it submits the request to
the Data-Update.

1.5 The Data-Update checks the duplication, eliminates redundancy by
comparing the updated data block and the outsourced data and updates
LPCS-M2T. Then, it submits the result and the non-duplicated updated
data block to the LPCSAgent.

1.6 The LPCSAgent sends the non-duplicated updated data block to the LPCS-
M2T.
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1.7 The LPCSAgent sends the duplication result to the UserAgent as a response
to the request.

2. The second phase is for uploading the updated tags and has the following steps:

2.1 The UserAgent submits the duplication result that has been received
from the LPCSAgent and the non-duplicated data block to the
TagsOfUpdatedData-Generator.

2.2 The TagsOfUpdatedData-Generator generates the tags for the updated data
block, IDTagi, En_IDTagi, DBTagi and DBTagTagi, and then submits
them to the UserAgent.

2.3 The UserAgent sends the IDTagi to the User-M2T for storing it.

2.4 The UserAgent sends a request to the LPCSAgent to upload the DBTagi
and DBTagTagi of the updated data.

2.5 Upon receiving the request, the LPCSAgent sends the DBTagi and
DBTagTagi to the LPCS-M2T for storing them.

2.6 The LPCSAgent retrieves the data block that is associated with the
tags from its storage. It then submits them to the PCSUpdateRequest-
Generator.

2.7 The PCSUpdateRequest-Generator generates an update request for the non
leader providers and submits it to the LPCSAgent.

2.8 The LPCSAgent sends a request to each PCSjAgent. The request contains
the updated data block and its tags.

2.9 PCSjAgent receives the request from the LPCSAgent, and sends it to the
DataTags-Update.

2.10 The DataTags-Update performs the update and sends the data block and
its associated tags to the PCSjAgent.

2.11 The PCSjAgent sends the data block and its tags to the PCSj-M2T for
storing them.

2.12 PCSjAgent sends an acknowledgement to the LPCSAgent to confirm that
the outsourced data has been updated.

2.13 Once the LPCSAgent receives responses from all of the providers
{PCSjAgent}, it sends a final acknowledgement to the UserAgent.

3. The third phase is for uploading the updated En_IDTag and has the following
steps:

3.1 The UserAgent, after uploading the updated data and its tags to the PCSes,
sends a request to the LTPAAgent to upload the En_IDTag of the updated
data.
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3.2 Once the LTPAAgent receives the En_IDTag from the UserAgent, it
submits it to the En_IDTag-Update.

3.3 The En_IDTag-Update updates the M2T.

3.4 The LTPAAgent sends the En_IDTag to the LTPA-M2T.

3.5 The LTPAAgent sends an acknowledgement to the UserAgent.

4.9.2 DU Algorithms

This section describes in detail the algorithms used to implement the
components of DU. There are six algorithms: DataUpdateReqGen,
DataUpdate, TagsOfUpdatedDataGen, PCSUpdateReqGen, DataTagsUpdate
and En_IDTagUpdate. Their details have been given below.

• DataUpdateReqGen: The DataUpdateReqGen algorithm is used for
implementing the operations of the DataUpdateRequestGenerator. It is used
for generating an update request. The update request, DataUpdateReq, involves
some of the information that providers needs for updating the outsourced data
in the PCSes, e.g. the type of update operation, insert, modify or delete, a data
block, a position of the data block among the data file, etc. Thus, the algorithm
takes a data file identifier (FileID), a secret user key that is used for encryption
and decryption of the data block (sk), a data block (DB), its position (Index),
and operation type, OpType, (modify= 0, insert= 1, and delete= 2), as the
inputs. It outputs DataUpdateReq. In the case of modification operation, DB is
the old version of the data block that has position Index= i in the data file, i.e.
En_DBi. This data block should first be decrypted using sk, modified to the
new version and then encrypted using the same key, En_DB′i. For the insertion
operation, DB is a new data block that should be inserted after position, i, which
is encrypted using sk to have En_DBi+1. Regarding the deletion case, DB is
an empty value. To delete En_DBi, there are no encryption or decryption
operations that need to be performed. The algorithm has been detailed in
Algorithm 22.

• DataUpdate: The DataUpdate is used for implementing the operations of the
DataUpdate. It is used for executing an update request that has been received
from the user. First, it checks to see if the updated data block is duplicated
and/or linked to other existing blocks. Following this, it can update the M2T
data structure. In the case where the request is a modification, it checks to see
if the old version of the data block is linked to the files or not and if the new
version data block is duplicated or not. Then one of the modification cases (Mod-
Case_1, Mod-Case_2, Mod-Case_3, and Mod-Case_4) mentioned in Section 4.4
can be performed. This is true of both the insertion and deletion requests. Based
on the duplication or linking result of the new or deleted data block, one of
the insertion or deletion cases (i.e. Ins-Case_1, Ins-Case_2, Del-Case_1, Del-
Case_2) is performed for the process of updating. Thus the algorithm takes

143



DataUpdateReq, as the input and outputs UpdateResult. The UpdateResult
involves the duplication result and its associated ID in the case where its updated
data block is duplicated (in the case of modification or insertion). The algorithm
has been detailed in Algorithm 23.

• TagsOfUpdatedDataGen: The TagsOfUpdatedDataGen is used for
implementing the operations of the TagsOfUpdatedDataGenerator. It is used
for generating tags for the updated data blocks, in the case of modification or
insertion. Based on the UpdateResult, tags for the updated data block can be
generated as well as updating User-M2T (by performing one of insert, modify and
delete cases) and generating an update request for updating LTPA-M2T. Thus
the algorithm takes DataUpdateReq, UpdateResult, the user ID (UserID), the
user BLS private key (x), the random number (υ), the Paillier encryption key
(ppkID), and the total number of data blocks in the data file (K), as the inputs. It
outputs UpdatedTags, En_IDTagUpdateReq. The UpdatedTags contains the
DBTagi and DBTagTagi of the updated data block or a value 1 in the case of
having the duplicated data block, while the En_IDTagUpdateReq involves the
En_IDTagi for updated data block, the operation type, the ID of En_IDTagi
in the case where the updated data block is duplicated and whether one of the
existing En_IDTags should be deleted or not. The algorithm has been detailed
in Algorithm 24.

• PCSUpdateReqGen: The PCSUpdateReqGen is used for implementing the
operations of the PCSUpdateRequest-Generator. It is used for generating an
update request that is sent to the non leader providers to update their M2Ts. The
algorithm takes DataUpdateReq, UpdateResult and UpdatedTags as the inputs,
and it outputs PCSUpdateReq. The PCSUpdateReq involves information,
e.g. the operation type, the ID of DB in the case of the updated data block
is duplicated, or the data block value and its associated tags, in the case of
the updated data block is non-duplicated. The algorithm has been detailed in
Algorithm 25.

• DataTagsUpdate: The DataTagsUpdate is used for implementing the
operations of the in DataTags-Update. It is used for updating the non leader
provider’s M2T. The algorithm takes PCSUpdateReq as the input, and it outputs
ACK. Based on the information in PCSUpdateReq, one of the modification,
insertion and deletion cases is performed. The algorithm has been detailed in
Algorithm 26.

• En_IDTagUpdate: The En_IDTagUpdate is used for implementing the
operations of the En_IDTag-Update. It is used for updating the LTPA’s M2T.
The algorithm takes En_IDTagUpdateReq as the input, and it outputs ACK.
Based on the information in En_IDTagUpdateReq, one case of the modification,
insertion and deletion cases is performed. The algorithm has been detailed in
Algorithm 27.
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4.9.3 DU Protocol Suite

This section first gives an overview of the DU protocol and then provides a detailed
description of its protocols.

4.9.3.1 Protocol Suite Overview

With the DU protocol, the user updates the outsourced data with
associated tags on multiple PCSes. Thus, as illustrated in Figure 4.18,
the execution of the DU protocol suite is performed in three phases: the
DataUpdating protocol, the TagsOfUpdatedDataUploading protocol, and the
En_IDTagOfUpdatedDataUploading protocol. The DataUpdating protocol is
executed to allow a user to upload the updated data by sending an updated request
to the leader provider. The user performs the DataUpdateReqGen algorithm in order
to generate the updated request and to then communicate with the leader provider to
check the redundancy and to keep the data in PCSes that are non-duplicated after
the update. The leader provider performs the DataUpdate algorithm to find the
duplication result so then it can store only the non-duplicated block. The user can
then generate tags for only the updated block that needs new tags in the next phase.
In Phase 2, the user performs the TagsOfUpdatedDataGen algorithm to generate
tags for the data block before communicating with the leader provider to upload
the tags. The leader provider communicates with n-1 providers (i.e. non leader
providers) and sends a copy of the updated data block and its tags to the providers
to allow them to update their PCS-M2Ts when it receives the data block and its
corresponding tags from the user. Thus, the leader provider executes n-1 executions
of the DataTagsUpdating protocol (Phase 2.1). Then the user can communicate with
the L-TPA to upload the En_IDTag of the updated data block by executing the
En_IDTagOfUpdatedDataUploading protocol (Phase 3).

4.9.3.2 Protocols

The DU protocol, as shown in Figure 4.19, consists of the following four sub-
protocols: DataUpdating, TagsOfUpdatedDataUploading, DataTagsUpdating, and
En_IDTagOfUpdatedDataUploading. A detailed description has been given below.

The DataUpdating protocol is executed between the user (the owner of the
data) and the leader provider. In this protocol, two messages are exchanged
between the entities, Req.DataUpdating and Res.DataUpdating. Req.DataUpdating
is sent by the user to the leader provider, while Res.DataUpdating is sent by
the leader provider to the user. The header area of Req.DataUpdating contains
ProID(10), MsgID(0), UserID, and L-PCSProviderID. Its payload area contains the
DataUpdateReq. Req.DataUpdating can be represented as {ProID(10)|| MsgID(0)||
UserID|| L-PCS providerID ||DataUpdateReq}. Once the leader provider receives
Req.DataUpdating, it sends the Res.DataUpdating to the user. The header area of this
message contains ProID(10), MsgID(1), L-PCS providerID and UserID. The payload
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contains the UpdateResult. Res.DataUpdating can be represented as {ProID(10) ||
MsgID(1) || L-PCS providerID || UserID || UpdateResult}.

Once the user receives the UpdateResult, the TagsOfUpdatedDataUploading
protocol is executed between the user and the leader provider. In
this protocol, two messages are exchanged between the entities, i.e.
Req.TagsOfUpdatedDataUploading and Res.TagsOfUpdatedDataUploading. The
user sends Req.TagsOfUpdatedDataUploading to the leader provider, while the leader
provider sends, to the user, the Res.TagsOfUpdatedDataUploading. The header area
of the first message contains ProID(11), MsgID(0), UserID, and L-PCS providerID.
Its payload area contains UpdatedTags. Req.TagsOfUpdatedDataUploading can
be represented as {ProID(11) || MsgID(0) || UserID || L-PCS providerID ||
UpdatedTags}. The leader provider shares the data block and its associated tags
with the non leader providers and then sends Res.TagsOfUpdatedDataUploading
to the user. The header area of the message contains ProID(11), MsgID(1),
L-PCS providerID and UserID. Its payload contains ACK. The message can be
represented as {ProID(11) || MsgID(1) || L-PCS providerID || UserID || ACK}.

Upon the leader provider receiving the data block and the associated tags,
the DataTagsUpdating protocol is executed between the leader provider and each
provider. In this protocol, two messages are exchanged between the entities,
Req.DataTagsUpdating and Res.DataTagsUpdating. In Req.DataTagsUpdating, the
header area contains ProID(12),MsgID(0), L-PCS providerID, and PCSj providerID.
Its payload area contains PCSUpdateReq. Req.DataTagsUpdating can be
represented as {ProID(12) || MsgID(0) || L-PCS providerID || PCSj providerID ||
PCSUpdateReq}. When receiving Req.DataTagsUpdating, the provider sends the
Res.DataTagsUpdating to the leader provider. The header area of the message contains
ProID(12), MsgID(1), PCSj providerID and L-PCS providerID. Its payload contains
an acknowledgement that indicates the data blocks and their associated tags have been
stored in its resources correctly (ACK). Res.DataTagsUpdating can be represented as
{ProID(12)|| MsgID(1)|| PCSj providerID ||L-PCS providerID||ACK}.

After the user updates the data and their tags on the PCSes and has stored
the IDTags locally, then she/he executes En_IDTagOfUpdatedDataUploading
protocol for the purpose of uploading the En_IDTag of the updated
data block on the L-TPA. The En_IDTagOfUpdatedDataUploading
protocol consists of Req.En_IDTagOfUpdatedDataUploading and
Res.En_IDTagOfUpdatedDataUploading messages. The user sends
the Req.En_IDTagOfUpdatedDataUploading to the L-TPA, while
Res.En_IDTagOfUpdatedDataUploading is sent by the L-TPA to the user.
The header area of the first message contains ProID(13), MsgID(0), UserID,
and L-TPAID. Its payload area contains En_IDTagUpdateReq. The
message be represented as {ProID(13) || MsgID(0) || UserID || L-TPAID ||
En_IDTagUpdateReq}. Upon receiving En_IDTag, the L-TPA sends the
response, Res.En_IDTagOfUpdatedDataUploading. The header area of this message
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contains ProID(13), MsgID(1), L-TPAID and UserID. Its payload contains, an
acknowledgement that indicates that the En_IDTags have been updated in its
LTPA-M2T (ACK). The message can be represented as: {ProID(13) || MsgID(1) ||
L-TPAID || UserID || ACK}.

4.10 Chapter Summary

This chapter presents the design of the DIA-ETTP framework which employs the TOD
method and four novel ideas. The details of the novel ideas have also been presented.
The DIA-ETTP, to support the dynamic nature of the data and data deduplication,
used the novel data structure M2T. Thus the chapter has described M2T in detail.
Furthermore, this chapter has described the functional blocks of the DIA-ETTP, D3U,
LoA1DV, LoA2DV and DU and their architectures, algorithms and protocols in detail.

In the next chapter, we present the security analysis and performance evaluation
of the DIA-ETTP.
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Chapter 5

DIA-ETTP: Security Analysis and
Performance Evaluation

5.1 Chapter Introduction

This chapter presents the security analysis, and performance evaluation of the DIA-
ETTP presented in Chapter 4. The security of the DIA-ETTP is analysed against
the security requirements given in Section 2.4. Then, the correctness of verification
protocols (i.e. LoA1DV and LoA2DV) is analysed, followed by the details of the
evaluation of the DIA-ETTP performance. Finally, the evaluation result is compared
with related work.

In detail, Section 5.2 presents the security analysis of the DIA-ETTP. The
correctness of the verification protocols and the performance evaluation of the DIA-
ETTP framework are presented in Section 5.3 and Section 5.4, respectively. Section
5.5 compares the DIA-ETTP with the existing approaches. Section 5.6 presents the
chapter summary.

5.2 Security Analyses of LoA1DV and LoA2DV Protocols

In this section, we analyse the security of the verification protocols in DIA-ETTP,
LoA1DV and LoA2DV. The security analysis makes use of the security requirements
specified in Section 2.4.

5.2.1 Data Confidentiality Preservation

In DIA-ETTP, the providers and TPAs are authorised to manage and verify the
integrity of the data. However, they should not have the privilege to access the
content of the data. Taking into account that: (1) the use of the TOD method,
(2) the assumption that the cryptographic keys are securely generated and stored (i.e.
A2 in Section 3.2.3), and (3) the assumption that the communication channels that
connect the entities in the DIA-ETTP are secure and authenticated (i.e. A3 in Section
4.3.3). Our two protocols, LoA1DV and LoA2DV, can provide data confidentiality
preservation. The data blocks in a data file are encrypted with a symmetric key, and
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this key is only known to the user (the data owner) before being sent to the PCSes.
Without this key, any other entities, including the providers or TPAs, are not able to
access the plain-text data. Additionally, the encrypted data are used in tags generation.
When verifying the integrity of the data file, the provider and the verifier (TPA) do
not have access to the plain-text of the data file, or any of its data blocks.

5.2.2 Resistance to Cheating Attacks by Providers

The providers can launch attacks, forgery, replace and replay, as mentioned in Section
2.3, in order to cheat a verifier (a user or TPA). This is to hide the fact that the data
integrity was compromised to allow it to pass verification. We need to prove that our
verification protocols are secure against these attacks, where providers cannot generate
proofs without querying the real data or where they cannot modify the data and the
associated tags without detection. In other words, the providers can compute proofs
related to passing the data integrity verification only if all of the requested data and
their associated tags are correctly stored in PCSes. The following subsections discuss
these attacks and how our protocols can satisfy the requirement (S1).

5.2.2.1 Forgery Attack Resistance

In a forgery attack, the providers try to forge proofs by forging the tags used by and
that have been generated by a user, who in this case is the data owner. Taking into
account that: (1) use the TOD method, and (2) assuming that the cryptographic keys
are securely generated and stored (A2 in Section 3.2.3), therefore, our two protocols,
LoA1DV and LoA2DV, can resist the forgery attack. The TOD method can generate
forgery resistant tags, private tags ({DBTagi}) and public tags ({DBTagTagi}), as
shown in Section 3.6.

5.2.2.2 Replace Attack Resistance

For the data verification, a provider can use data blocks and their associated tags when
computing public or private proofs that are different from those that user or L-TPA
has determined in a challenge message or use an old version of the data blocks and
their associated tags. Thus, they launch the replace attack. Taking into account that:
(1) use the TOD method, and (2) the same data blocks are requested from multiple
PCSes in each verification time, (3) use the distributed data structures, i.e. M2Ts. Our
two protocols, LoA1DV and LoA2DV, can provide resistance against replace attacks.

In this attack, the provider can exploit the collisions between the outsourced
tags. The TOD method can generate collision resistant tags that are either private,
{DBTagi}, or public, {DBTagTagi}, as shown in Section 3.6. The identifier of the
tags, i.e. IDTags or their encrypted forms, i.e. En_IDTags for each data block, are
used for collision resistance. This is where each data block has a unique IDTags and
En_IDTags. Furthermore, in both protocols, all TPAs request the same data blocks
from all providers each verification time. This means that they should be identical. The
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L-TPA compares all of these values when generating a tag for the PubDBProofs, that
have been received from the TPAs. If the data blocks are different in the PubDBProofs
then consequently, different PubDBProofs are received.

In the DIA-TTP, each entity has its data structure (User-M2T, PCS-M2T and
LTPA-M2T). In each update, these data structures should be updated. As mentioned
in Section 4.4, the linkages between the data blocks of the data files and their associated
IDTags or En_IDTags are updated, in the case of duplicated data blocks. On the
other hand, if updated data blocks are not duplicated, new tags should be generated.
Each entity, that of the user, the L-TPA and the provider, should update its associated
M2T by storing the tags in the NonDuplicatedDB/Tag table and linking the data blocks
of the data file in the Linker table with these tags. All entities can track the update
operation, not only the provider. This can help to detect if the provider is cheating.

5.2.2.3 Replay Attack Resistance

A replay attack can be launched by sending previously generated proofs. In other
words, if the TPA re-requests the same data, then the provider can send the old proofs
that have been generated in any previous challenge, without real access to the data
and their associated tags. Taking account of using: (1) the random sample strategy,
and (2) nonces (i.e. {ProofNoncei} and {PCSNoncej}). This is so then the attack
can be detected in the process of the data verification. Our two protocols, LoA1DV
and LoA2DV, can be secured against the replay attack. The L-TPA chooses the data
blocks randomly each data integrity verification time. Consequently, there is a high
number of combinations that can be selected before re-choosing the same data blocks.
On the other hand, in the case where the L-TPA re-requests the same data blocks,
the use of {ProofNoncei} and {PCSNoncej} can help to prevent the attack. The
nonces are different each data verification time. The L-TPA chooses these nonces and
all providers should use refreshed ones and include them in the proof generation as
shown in EQ(C.3), EQ(C.4) and EQ(C.5) in Algorithm 13.

5.2.3 Resistance to Cheating Attacks by TPAs

TPAs can launch some types of attacks, i.e. collusion attacks and frame attacks to
cheat a user. This is as mentioned in Section 2.3. The TPAs generate an unreliable
verification result. We need to prove that our protocols are secure against these attacks
to satisfy (S2).

5.2.3.1 Collusion Attack Resistance

In a collusion attack, the TPA works with its associated provider to commit fraud.
Even if the data integrity that is compromised, the TPA lies and sends the data is
correctly stored in the PCS without any integrity violations. Thus, the data in the
PCS has been unauthorised altered and lost without detection.
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Taking into account that: (1) the use of the collaborative verification approach, (2)
the use of nonces ({ProofNoncei}) in the verification, (3) the use of dual verification,
public and private, and (4) the assumption of the keys are securely shared (A2 in Section
3.2.3), consequently, our two protocols (LoA1DV and LoA2DV) can be secured against
collusion attacks.

In the LoA1DV protocol, the process of checking the correctness of the proof are
distributed between multiple TPAs (the non leader TPAs) and the L-TPA. In other
words, the data verification result is not approved by one entity (the L-TPA or TPAs).
Public verification consists of two sub-verifications; PubDBTagProof verification and
PubDBTagTagProof verification. Each TPA verifies its associated PubDBTagProof,
while the L-TPA verifies all of the PubDBTagTagProofs. The TPA cannot verify
PubDBTagProof without having the DBProofTag. This value only can be generated
by the L-TPA. The L-TPA computes the DBProofTag using the algebraic signature
that its parameters system only shared with the L-TPA. The same is true when
verifying the PubDBTagTagProof. The L-TPA cannot verify it without having the
DBTagProofMapValue. This value only can be generated using a key-based hash
function, DBTagProofMap algorithm. The key is used in the algorithm and it can
only be shared with the TPA, thus the L-TPA cannot generate this value.

The TPA may try to defraud the L-TPA by sending a positive result for
the DBTagProof verification regardless of whether the verification holds or not
or an old generated DBTagProofMapValue. However, the TPA should send the
DBTagProofMapValue, along with the result verification of PubDBTagProof to the
L-TPA. Furthermore, the TPA should use {ProofNoncei} when generating the
DBTagProofMapValue where they are different {ProofNoncei} each verification time.
This can help the L-TPA to detect replay attacks from the TPA.

The LoA2DV protocol can be more resistant to a collusion attack compared to the
LoA1DV protocol. In addition to the above mentioned remarks, the user performs the
private verification along with public verification using the TPAs in the LoA2DV. In
the private verification, the user requests the same data blocks and their associated
tags from the providers that are used in computing the public proofs.

5.2.3.2 Frame Attack Resistance

The frame attack may be launched by the TPA to destroy the provider’s reputation
even if the data integrity at the PCS is preserved. The data at the PCS has not been
changed, but the TPA lies and sends the proof of the provider failing the verification
as in EQ(C.10) or EQ(C.15).

Taking account of using: (1) the collaborative verification approach, (2) nonces
({PCSNoncej}), and (3) the dual verification, the LoA1DV and LoA2DV protocols
can be secured against frame attacks.

In the LoA1DV protocol, as mentioned above, the data verification is approved
using multiple entities (L-TPA and TPAs). Therefore, it can help to have a low
probability of an attack occurring. In the LoA2DV protocol, in addition to the
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collaborative verification approach, the dual verification and nonces ({PCSNoncej})
are used. These can help the user to detect a frame attack and they can make the
LoA2DV protocol more frame attack resistant. {PCSNoncej} are generated by the
L-TPA, and each TPA should send PCSNoncej to its associated provider, which are
different for each separate verification time. The user does not send the nonces, and the
providers should include the receiving ones in their proofs (both private and public).
Furthermore, the user has a tag of an aggregated value of the nonces to prevent their
forgery. These nonces can thus be used as evidence that the TPAs have communicated
with their associated providers and sent fresh nonces.

5.2.4 Resistance to Cheating Attacks by Users

Dishonest users may repudiate the generation of tags or updating the data at PCSes
and they can also refuse a data verification result that has been received from the
L-TPA in an attempt to maximise their benefits, such as by trying to discredit the
providers and/or TPAs to seek financial advantages.

Taking into account that use: (1) the TOD method, and (2) the distributed data
structures, the LoA1DV and LoA2DV protocols can be secured against the cheating
attacks conducted by a user. As mentioned in Section 3.6, the TOD method uses a
BLS signature in the tag generation, thus, it can provide a non-repudiation property.
If this verification holds when using the user’s public key as in EQ(C.15), then the
user cannot deny that he does not sign the DBTagTags further. Furthermore, as
{DBTagi} is used when generating and verifying DBTagTags, thus, the user cannot
falsely deny that he has generated the tags, i.e. {DBTagi}, too.

In a dynamic data case, the user may cheat by refusing to update the data. However,
each entity in the DIA-ETTP system has its M2T for tracking the update operations.
Furthermore, for each updated item of data, the user generates tags for the data using
the TOD method. Therefore, the user cannot repudiate the updated data.

5.3 Correctness of LoA1DV and LoA2DV

In this section, we have analysed the correctness of the DIA-ETTP verification
protocols, LoA1DV and LoA2DV, by providing a proof for the following theorem.

Theorem 6.1: Given the proofs (DBProof (private and public), DBTagProof
(private and public) and DBTagTagProof ), the verifier (i.e. the user or the TPA)
can verify the integrity of the data file using either the LoA1DV or LoA2DV protocols.

Proof : Proving the correctness of our protocols, LoA1DV and LoA2DV, is
equivalent to proving the correctness of the following equations: EQ(C.10), EQ(C.15),
and EQ(C.26). Based on the property of the algebraic signature, the homomorphic
addition property in the Paillier algorithm and the bilinear property described in
Section 3.4, all three equations hold (see Appendix D).
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Table 5.1: Cryptographic Operations and their Computational Time (in Seconds).

Notation Description Timing measurements
MultG1 Multiplication in G1 6.2× 10−4

EXPG1 Exponentiation in G1 4.7× 10−3

PairG1,G2 Bilinear pairing e(x, y), x ∈ G1, y ∈ G2 1.2× 10−2

H1 Cryptographic hashing, i.e. H1() 2.5× 10−4

HG1 Hashing to G1, i.e. H() 2.9× 10−3

AddZp Addition in Zp 2.1× 10−5

MultZp Multiplication in Zp 3.8× 10−5

ExpZp Exponentiation in Zp 6.9× 10−4

MultZn2 Multiplication in Zn2 2.3× 10−5

ExpZn2 Exponentiation in Zn2 1× 10−2

AddAS Addition in GF (2m) 2× 10−6

AS-G Cost of GF (2m) 6.8× 10−5

5.4 Performance Evaluation of the DIA-ETTP

This section first analysed detection probability and then evaluated the overhead cost
of the DIA-ETTP. The overhead cost evaluation for the DIA-ETTP was performed by
measuring introduced costs in terms of computation and communication according to
each functional block (i.e. D3U, LoA1DV, LoA2DV and DU) and the storage cost of
the entities of the DIA-ETTP.

We have also carried out experiments to investigate the performance costs of DIA-
ETTP, the computational costs. The experiments were implemented using a desktop
computer running a system with Intel Core i5 at 2.4 GHz and 4GB RAM (a single-
machine set-up). Furthermore, the experiment was based on a single user data request
to verify one data file. The software used to implement the DIA-ETTP was Java
Platform, Standard Edition (Java SE). This uses the Java programming language [93].
Java was chosen because it supports a set of standard security interfaces. To implement
the cryptographic primitives required in the DIA-ETTP such as, a secure random
number generator, a hash function (e.g. SHA256), and digital signatures (e.g. RSA and
BLS), Java Cryptography Extension (JCE) [88] and Java Pairing-Based Cryptography
(JPBC) [89] were used. MySQL [94] was used to implement the M2T data structure.
It handles the functionality of the most expensive and powerful database packages.
MySQL uses a standard form of the well-known SQL data language. It works on many
operating systems and with many languages, including Java. It works very quickly.

We conducted two experiments. In the first experiment (Exp1), we measured
the computational cost by calculating the time of the execution of the cryptographic
operations, e.g. multiplication in G1, hashing, etc. Table 5.1 lists the basic operations:
their symbols and timing measurement. In the second experiment (Exp2), we measured
the computational cost by calculating the time that it took each entity from receiving
a request message up until before a response was sent.
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Figure 5.1: Data Corruption Probability vs the Number of Requested Blocks under
Different Detection Probabilities.

5.4.1 Detection Probability

Both of the data verification protocols, LoA1DV and LoA2DV, have been constructed
as a random sampling strategy from efficient and security perspectives. As mentioned in
Section 2.6, the random sampling strategy is used to reduce the workload of the provider
in terms of a proof generation and communication cost, in addition to preventing the
provider from cheating the verifier, i.e. the user or TPAs, using replay attacks. In the
random sampling technique, the data file is divided into multiple data blocks (K) and a
number of blocks (C) are chosen randomly by the verifier to perform data verification.
We analyse the probability of misbehaviour in the detection of our protocols, LoA1DV
and LoA2DV data verification, based on the blocks sampling.

Suppose the provider tries to hide the modification of MD blocks out of the K
outsourced blocks. The probability of corrupted blocks at PCSj is equal to PMDPCSj

=

MD/K. Let V indicate the number of blocks chosen by the verifier matching the blocks
modified by the provider. According to [11], we computed the probability that at least
one of the blocks picked by the verifier matches one of the modified blocks at PCSj,
which is PVPCSj

(V ≥ 1), as follows:

PVPCSj
(V ≥ 1) = 1− (1− PMDPCSj

)C

The probability of misbehaviour detection at n PCSes, PDIA−ETTP , can be calculated
as follows:

PDIA−ETTP =
n−1∏
j=0

PVPCSj
= 1−

n−1∑
j=0

(1− PMDPCSj
)C

Suppose the verifier divides the data file into 1000 blocks and outsources them to 10
PCSes. Figure 5.1 shows the required number of picked data blocks for verification, C,
that are used to detect different numbers of modified blocks (MD) when the probability
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Table 5.2: Number of Encrypted Data Blocks and their associated Tags: With/Without
the Data Deduplication Approach.

D3L1
Encrypted DBs Number

D3L2
Tags Number

DIA-ETTP DIA work* DIA work** DIA-ETTP DIA work* DIA work**

0% 1000 1000 1000 0% 1000 1000 1000
20% 801 1000 1000 20% 641 1000 1000
50% 501 1000 1000 50% 250 1000 1000
70% 301 1000 1000 70% 90 1000 1000

(* DIAs do not support data deduplication , ** DIAs support file-level deduplication)

of misbehaviour detection for one provider is selected from a set of PDIA−ETTP =

{0.70, 0.80, 0.99}. For example, if each provider modifies 1% of the outsourced blocks,
then the verifier needs to randomly select 458 blocks from each provider as a challenge
to achieve a probability of at least 0.99. By increasing the number of modified blocks,
the lowest number of challenge blocks possible is required to achieve such a probability
of detection.

5.4.2 Introduced Cost by the D3U

In the DIA-ETTP evaluation, we assume that there is a data file (DF) with K data
blocks. After cutting out the redundant data blocks (we only kept one copy of each
data block), the number of data blocks in a data file can be reduced to d1 (d1 ≤ K) by
applying D3L1 among the data blocks of the file itself, and to d2 (d2 ≤ d1) by D3L2
applied to the data blocks of all of the outsourced files in the PCSes. In the following
subsections, the computational and communication costs of the D3U that incurred at
each entity are presented in details.

5.4.2.1 Computational Cost of the D3U

We measured the computational cost introduced by the user, providers and TPAs in
the D3U and the details have been given below.

The computational cost incurred by the user in the D3U comes from executing
two sub protocols, i.e. L2DataDeduplication and TagsUploading. In the
L2DataDeduplication protocol, the user pre-processes his data and generates d1 non-
duplicated and encrypted data blocks (Pre-processing Cost). In the TagsUploading
protocol, the user computes d2 tags for the non-duplicated data blocks (Tag Generation
Cost).

In prepossessing the data file, the highest incurred cost is due to the encryption.
The user divides the data file into multiple data blocks (K) and then encrypts them
using the LiSHE scheme. The encryption cost can be reduced, by applying the D3L1
among the data blocks, from K to d1. Instead of encrypting K data blocks, it can only
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Table 5.3: Complexities of Computational Cost of the User in the D3U.

Pre-processing Cost Tag Generation Cost
Without Data Deduplication based K×(2×MultiZp+AddZp+ExpZp) K× (2×AS-G+AddAS +2×ExpZn2 +

MultiZn2 +H1 +HG1 +MultiG1 + 2×
ExpG1) +H1 + ExpZn

D3L1 based d1×(2×MultiZp+AddZp+ExpZp) d1×(2×AS-G+AddAS +2×ExpZn2 +

MultiZn2 +H1 +HG1 +MultiG1 + 2×
ExpG1) +H1 + ExpZn

D3L2 based K×(2×MultiZp+AddZp+ExpZp) d2×(2×AS-G+AddAS +2×ExpZn2 +

MultiZn2 +H1 +HG1 +MultiG1 + 2×
ExpG1) +H1 + ExpZn

D3L1/D3L2 based d1×(2×MultiZp+AddZp+ExpZp) d2×(2×AS-G+AddAS +2×ExpZn2 +

MultiZn2 +H1 +HG1 +MultiG1 + 2×
ExpG1) +H1 + ExpZn

encrypt d1 data blocks. In other words, the cost of the data block encryption can be
reduced by (K − d1).

Upon receiving the duplication result of D3L2 from the leader provider, the user
can generate the tags for the non-duplicated data blocks. Using the TOD method,
each data block is associated with a set of four tags, IDTag, DBTag, DBTagTag
and En_IDTag. The number of tags (i.e. sets) can be reduced by applying the D3L2
to d2. It is clear that the tag generation cost is affected by the two levels of data
deduplication (D3L1 and D3L2). This is where the tag number reduced by ((K- d1)+
(d1- d2)).

Table 5.2 compares the number of encrypted data blocks and their associated tags
with/without applying deduplication. It shows that using block-level deduplication can
lead to reducing the pre-processing cost as the number of identical data blocks increases
by reducing the total number of data blocks in the file. In the file-level deduplication
based and non-deduplication based works, the DFProCost remains constant regardless
of the number of identical data blocks. For example, in the case of uploading one
data file that has 1000 data blocks where the redundant data blocks percentage is
50%, the user only needs to encrypt 501 data blocks using DIA-ETTP instead of
1000 data blocks using the other works, i.e. file-level deduplication based and non-
deduplication based works. The table emphasises that the DFProCost complexity is
based on the redundant data block percentages (D3L1), O(d1). On the other hand,
the tag generation cost complexity is based on redundant data blocks percentages in
D3L2, O(d2). For example, for uploading one data file and the redundant data blocks
parentage 20% in both levels of data deduplication (i.e. D3L1 and D3L2), the user
only needs to generate tags for 641 data blocks instead of 1000 data blocks. When the
number of the excluded data blocks increased under the two levels of deduplication, the
number of tags decreased, and consequently, the tag generation cost can be reduced.
Table 5.3 summarises the computational cost incurred by the user when calculating
the number of operations in the pre-processing cost and tag generation cost.

For each block size, from 2KB to 1024KB, we firstly fragmented the data file into
multiple blocks and generated their tags. We then calculated the time taken for the
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Table 5.4: Computational Cost of Tag Generation against Different Sizes of Data File
and Data Block (in Seconds).

Block Size 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB 128 KB 256 KB 512 KB 1024 KB
Block numbers (106

KB)
5.2× 105 2.6× 105 1.3× 105 6.6× 104 3.3× 104 1.6× 104 3.2× 103 4.1× 103 2.1× 103 1× 103

Time of 106 KB 2.8× 104 1.4× 104 7× 103 3.5× 103 1.7× 103 8.7× 102 4.4× 102 2.2× 102 1.1× 102 5.4× 10

Block numbers (107

KB)
5.2× 106 2.6× 106 1.3× 106 6.6× 105 3.3× 105 1.6× 105 8.2× 104 4.1× 104 2.1× 104 1× 104

Time of 107 KB 2.8× 105 1.4× 105 7× 104 3.5× 104 1.7× 104 8.7× 103 4.4× 103 2.2× 103 1.1× 103 5.4× 102

Figure 5.2: Computational cost of the User in the D3U vs the Number of Data Blocks.

tag generation of the data file by multiplying the total number of blocks by the time
taken for the generation of one tag for one data block. As illustrated in Table 5.4, the
computational cost of the tag generation for the same data file decreases almost linearly
with the increasing block size. The number of data blocks decreases accordingly. We
tested the tag generation cost of 106 KB and 107 KB data files. We found that, under
the same block size, the cost of a 106 KB data file is nearly ten times the cost of a
107 KB data file. This also demonstrates that the number of data blocks dominates
the computational cost of the tag generation. A small fragmentation refers to a large
number of data blocks. Therefore, it is better to choose a big block size for data
fragmentation to an outsourced largesize data file.

Figure 5.2 compares the computational cost of the user in D3U against the
data block number using Exp1 and Exp2. It shows how the costs increase as the
number of data blocks increases. Figure 5.3 compares the computational cost in D3U
with/without the data deduplication approaches. The figure shows that applying two
levels in the deduplication approach (D3L1/D3L2) can make the cost more efficient
when compared with other approaches. With the increasing redundant data rate, in
both levels, the time of execution of D3U for the user decreases as a result.
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Figure 5.3: Computational Cost of the User in D3U vs the Number of Redundant Data
Blocks.

(K=1000, using Exp2)

With DIA-ETTP, there can be multiple PCSes. Each one manages a copy of the
user’s data and the associated tags. As mentioned in Section 2.7.2, in the case of
using one TPA and a hierarchical approach, the user may need to generate distinctive
replicas of the data blocks and their associated tags for making DIA more secure
against the collusion attack between the providers. This is where each provider has a
distinctive replica, data and tags. Thus, the computational cost of the user in D3U =
n×(Pre−ProcessingCost+TagGenerationCost), where n is the number of providers.
However, using multiple TPAs in DIA-ETTP, it can help to reduce the cost. As one
TPA communicates with one provider, therefore, the user only needs to generate one
replica for data blocks and their associated tags. Thus, the cost is constant regardless
of the number of PCSes.

In D3U, the computational cost that is introduced by the leader provider comes
from the L2DataDeduplication protocol execution. The leader provider performs D3L2
to eliminate any identical data blocks among the uploading data blocks. In order to
check the duplication, the leader provider first generates a hash value for each of the
data blocks and then compares the values with the hash values of the outsourced data.
Therefore, the overhead cost comes from the hashing.

Figure 5.4 compares the computational cost of the leader provider in the D3U
against the data block number using two experiments, Exp1 and Exp2. The figure
shows that the costs increase as the number of data blocks increases. In the DIA-ETTP,
the user applies D3L1 before sending the data blocks to the leader provider. This can
help to reduce the cost by (K−d1). Figure 5.5 shows how applying data deduplication
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Figure 5.4: Computational Cost of the Leader Provider in the D3U vs the Total Number
of Data Blocks in the File.

can help to lessen the computational cost of the leader provider. Under the settings
with 500 data blocks and where the data redundancy in D3L1 is 10% and 20%, the
cost with deduplication can be reduced by about 15% and 23%, respectively, compared
with non-deduplication. The more data redundancy there is under the same or more
data blocks or the more data blocks there are under the same the data redundancy,
the more there is a reduction in cost.

With regard to the computational cost incurred at other providers (non leaders),
each provider in the D3U protocol only receives data and their associated tags from
the leader provider and stores in its storage. Figure 5.6 compares the computational
cost in the D3U of all providers with and without applying the hierarchical approach
using Exp1. The figure shows that use this approach can help in terms of saving the
cost incurred by the providers end, where it is constant regardless of the number of
PCSes.

In the D3U protocol, only the L-TPA is involved. The L-TPA receives the
En_IDTags from the user and it stores them. Therefore, the L-TPA has not incurred
any costly operations.

5.4.2.2 Communication Cost of D3U

We measured the communication cost of each entity in the D3U. This was done by
accounting how many kilobytes (KB) of R-Data (see Figure 4.9) are sent from this
entity. The headers of all messages in the DIA-ETTP have fixed sizes as shown in
Table 4.1.

The user communicates with the leader provider and the L-TPA in the
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Figure 5.5: Computational Cost of the Leader Provider in D3U: With/Without the
Data Deduplication Approach.

Figure 5.6: Computational Cost of the Providers (Leader and Non Leaders) in D3U:
With/Without the Hierarchical Approach.

(K=1000 data blocks)
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Table 5.5: Complexities of Communication Cost of the User in D3U.

Total Communication Costs
Non-deduplication and Hierarchical based K × (|En_DB| + |DBTag| + |DBTagTag| +

|En_IDTag|)= K × (|p|+ |m|+ |G1|+ |n2|)
Deduplication and Hierarchical based d1×(|En_DB|)+d2×(|DBTag|+|DBTagTag|+

|En_IDTag|)= d1×(|p|)+d2×(|m|+|G1|+|n2|)
Non-Deduplication and Non-Hierarchical
based

n×K× (|En_DB|+ |DBTag|+ |DBTagTag|+
|En_IDTag|) = n×K× (|p|+ |m|+ |G1|+ |n2|)

Figure 5.7: Communication Cost of the User in D3U: With/Without Data
Deduplication.

D3U protocol, where three messages are sent, Req.L2DataDeduplication in the
L2DataDeduplication protocol, Req.TagsUploading in the TagsUploading protocol, and
Req.En_IDTagsUploading in the En_IDTagsUploading protocol. The data blocks of
the data file are sent, {En_DBi}, in the Req.L2DataDeduplication. The associated
tags, DBTags and DBTagTags, in Req.TagsUploading are sent to the leader
provider. The user sends En_IDTags in Req.En_IDTagsUploading to the L-TPA.
The communication cost of the user in D3U is therefore the sum of the three messages:
Req.L2DataDeduplication + Req.TagsUploading + Req.En_IDTagsUploading. The
size of all three messages is based on the number and size of the items involved, which
in this case is the data blocks and their tags. Each data block is encrypted using the
LiSHA algorithm. DBTag is computed using the algebraic signature and DBTagTag
is computed using the BLS signature and En_IDTag is an encrypted form of IDTag
using the Paillier scheme.

Using data deduplication as well as the hierarchical approaches can help to save
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the communication cost of the user. The number of data blocks and their tags can
be reduced as the redundant data rate increases using D3L1 and D3L2, respectively.
Furthermore, the DIA-ETTP system involves multiple PCSes. But the user sends the
data blocks and their tags only to the leader provider who is responsible for distributing
the copies to each provider.

Table 5.5 summaries the communication cost of the user in D3U complexities
by considering the number and bit-length of the items that are involved in the
three approaches, (1) non-deduplication and hierarchical based, (2) deduplication and
hierarchical based, and (3) non-deduplication and non-hierarchical based. Figure 5.7,
plotted based on Table 5.5, compares the cost with and without data deduplication
using p= 200 bits, m= 256 bits, G1= 256 bits, and n2= 2048 bits. Without using data
deduplication, the cost is constant regardless of the redundant data rate. In contrast,
with data deduplication, the cost decreases as the redundant data rate increases.
Furthermore, the figure shows how the communication cost of the user in D3U can
be reduced more when using the two levels of the data deduplication (D3L1 and D3L2)
compared to only using D3L1. For example, with a 2% redundant data rate, the cost
was reduced by 0.15 % using D3L1, while it was reduced by 2.46 % using both D3L1
and D3L2. The higher the redundant data rate, the more that the cost can be reduced.
Figure 5.8 compares the communication cost of the user in D3U using the hierarchical
and non-hierarchical approaches. The figure shows that the cost increases linearly
according to the number of PCSes/TPAs involved when using the non-hierarchical
approach. On the other hand, when using the hierarchical approach, the cost is constant
regardless of the number of PCSes and TPAs.

In the D3U protocol, the leader provider receives the data blocks and their
associated tags from the user in Req.L2DataDeduplication and Req.TagsUploading,
receptively. Upon receiving Req.L2DataDeduplication, the leader provider first
responds to the user by sending Res.L2DataDeduplication. Then, it can send
Req.DataTagsUploading to each non leader provider when it has the tags. Finally,
it sends Res.TagsUploading to confirm that the data blocks and their associated tags
are distributed and stored in all PCSes correctly. Res.L2DataDeduplication includes
the duplication result. As shown in algorithm 9, in the case where the data block is
duplicated, the non leader provider sends the ID of a data block in M2T that is identical
to the received data block. Otherwise, it sends empty value to indicate that the data
block is non-duplicated. In the PCS environment, the number of data blocks can be
huge. We can use 64 bits or more to represent the IDs of the data blocks in M2T for
each user. The size of Res.L2DataDeduplication is based on the data redundancy rate.
Res.TagsUploading includes the acknowledgement that is used to indicate that the data
are stored in the PCS correctly. It can be represented using one bit, i.e. 1. Regarding
the Req.DataTagsUploading message, it includes three sets of En_DBs, DBTags and
DBTagTags or the IDs of the data blocks in the case where they are duplicated. Upon
receiving Req.DataTagsUploading, each non leader provider stores the data blocks,
{En_DBi}, and their associated tags, {DBTagi} and {DBTagTagi} in its M2Ts. The
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Figure 5.8: Communication cost of the User in D3U : Hierarchical Approach vs Non-
hierarchical Approach.

(K=1000)

Table 5.6: Complexities of the Communication Cost of the Leader Provider and the
Non Leader Provider in D3U.

The leader provider The non leader
provider

Non-Deduplication and Hierarchical based K × (|En_DB|+ |DBTag|+ |DBTagTag|)
+ |ACK|= K × (|p|+ |m|+ |G1|) + |ACK|

|ACK|

Deduplication and Hierarchical based n× (d1− d2)×LDBID + (n− 1)× d2× (|p|+
|m|+ |G1|) + |ACK|

|ACK|

Non-Deduplication and Non-Hierarchical
based

|ACK| |ACK|

((d1− d2) is the total number of duplicated data blocks and LDBID is the bit-length of the ID
of the data block)

provider then sends Res.DataTagsUploading as a response. Res.DataTagsUploading is
similar to the Res.TagsUploading sent by the leader provider. Therefore, the non leader
provider has incurred a constant communication cost regardless of the number of data
blocks and their tags.

Table 5.6 illustrates the complexities of the communication cost introduced by the
D3U protocol for the leader provider and for each individual non leader provider
under the three approaches: (1) non-deduplication and non-hierarchical based, (2)
deduplication and hierarchical based, and (3) non-deduplication and non-hierarchical
based.
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Figure 5.9: Communication Costs for the Providers vs the Number of Data Blocks:
With/Without a Hierarchical Approach.

(n=6 PCSes, * is Non-Hierarchical approach)

Figure 5.9, plotted based on Table 5.6, compares the communication cost incurred
by the leader provider and the individual non leader provider using two approaches:
Hierarchical and Non-Hierarchical (without data deduplication). The figure shows
that the communication cost incurred by the leader provider increases as the data
block number increases using the hierarchical approach. It is a constant using the
Non-Hierarchical approach and it is similar to the non leader provider. Figure 5.10
shows that the the communication cost incurred by the leader provider increases as the
number of data blocks and the number of PCSes increase. However, this lessens the
communication cost for the user.

In the D3U protocol, only the L-TPA communicates with the user. The L-
TPA receives the set of En_IDTags, {En_IDTagi} in Req.En_IDTagsUploading.
Then, it responds by sending the Res.En_IDTagsUploading message. The
Res.En_IDTagsUploading includes an acknowledgement that the {En_IDTagi} are
stored in the L-TPA correctly. As mentioned above, the acknowledgement can be
represented using one bit, 1. This means that L-TPA incurred a negligible and constant
communication cost in the D3U protocol regardless of the number of the uploaded data
blocks.

5.4.3 Introduced Cost by LoA1DV

In the following section, the computational and communication costs for each entity in
LoA1DV have been presented in detail.
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Figure 5.10: Communication Cost incurred by the Leader Provider Regarding the
Number of Data Blocks and PCSes.

5.4.3.1 Computational Cost of LoA1DV

We measured the computational cost that has been introduced for each entity (the
user, the providers, and the TPAs) in LoA1DV. The details have been given below.

As mentioned in Section 4.7, in LoA1DV, only public verification is performed.
This means that the user is not involved and so she/he has not incurred any cost
in LoA1DV. The user delegates the L-TPA and the non leader TPAs to perform the
verification and send the verification result to him/her.

The leader provider, like the user, as mentioned in Section 4.7, is not involved in
the LoA1DV protocol and so it has not incurred any cost. Thus, the non leader
providers are involved in LoA1DV. Each provider computes public proofs to send
them to the associated TPA. Therefore, the computational cost of the provider in
LoA1DV, is the cost of the public proofs generation, PubProofGenCost. As mentioned
in the PubProofsGen algorithm, three types of the public proofs, PubDBProof,
PubDBTagProof and PubDBTagTagProof, are calculated based on the respective items,
{En_DBi}, {DBTagi} and {DBTagTagi}, where, 0 ≤ i < C. Furthermore, for
replay attack prevention, the provider should use fresh nonces that have been sent
by the TPA in the proofs generation. Table 5.7 illustrates the computational cost
complexities incurred by the providers in LoA1DV by calculating the number of
operations performed with and without nonces. Figure 5.11, plotted based on the Table
5.7, compares the computational cost of the provider in LoA1DV with and without
nonces. The figure shows that the costs increase as the number of data blocks increases.
Furthermore, an additional cost is introduced when using nonces is negligible.

The public verification in LoA1DV is distributed between the L-TPA and the
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Table 5.7: Complexities of the Computational Cost incurred by the Leader Provider
and the Non Leader Provider in LoA1DV: With/Without Nonces.

With nonces Without nonces
The leader provider - -
The non leader
provider

(2× C − 1)× AddZp + C ×
AddAS+(C−1)×MultiG1 +

(C + 1)× ExpG1

(C−1)× (AddZp +AddAS +

MultiG1)

Figure 5.11: Computational Cost of PCS in LoA1DV: With/Without Nonces.

non leader TPAs. The cost incurred by the L-TPA can be measured using three
metrics: a cost incurred in generating a public challenge, a cost incurred in generating
a tag for PubDBProof ) and a cost incurred in verifying PubDBTagTagProof ). The
computational cost of the L-TPA in LoA1DV is the sum of costs earned value in the
above metrics.

As shown in the PubChalGen algorithm, the L-TPA computes a tag for the
aggregated value of {ProofNoncei} as well as the tags for {PCSNoncej} using the
algebraic signature. As seen in the DBProofTagGen algorithm, the L-TPA uses the
algebraic signature to compute a tag for PubDBProof . The L-TPA receives the
PubDBProofs from all TPAs, but it generates a tag for only one copy of PubDBProof .
The Cost is a constant regardless of the number of receiving PubDBProofs, i.e. O(1).
Furthermore, the L-TPA should compute an aggregated En_IDTag value for the
set {En_IDTagi}. {En_IDTagi} are associated with {DBTagi} that are used for
computing the PubDBTagProof .

As shown in the DBTagTagProofVer algorithm, the PubDBTagTagProof
verification can be performed in a batch manner. This in order to optimise the cost.
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Table 5.8: Complexities of the Computational Cost incurred by the TPAs in LoA1DV
(using Nonces).

Computational cost
The L-TPA (C +n− 3)×AddZp + (n+ 2)×AS-G+ (C− 1)×MultiZn2 + (C +

n− 2)×MultiG1 + 2× PairG1,G2 + 3× ExpG1 + C ×HG1

The non leader
TPA

2×C×AddAS + 4×ExpZn2 + 3×MultiZn2 +C× (H1 +ExpZp) +

(C − 1)× AddZp

This is where the L-TPA can verify all PubDBTagTagProofs that are received from all
of the TPAs in one operation. the cost is based on the number of pairing operations
(PairG1,G2). This is which is the most costly operation. In batch verification, the
number of the pairing operations is constant regardless of the number of received
DBTagTagProofs (the total number of TPAs), 2 × PairG1,G2 . In the individual
verification, the number of pairing operations increases with the number of TPAs,
2 × n × PairG1,G2 . By increasing the number of TPAs, the number of PairG1,G2

increases and the computational cost of the PubDBTagTagProof verification increases,
accordingly.

For the non leader TPAs, the incurred cost for each TPA can be measured using
two metrics, a cost incurred when verifying PubDBTagProof and a cost incurred when
generating a map value for PubDBTagProof. The computational cost is incurred on
part of the TPA, in the LoA1DV, is the sum of costs earned value in the above
metrics. PubDBTagProof is a set that consists of C items according to EQ(C.4)
where each item is a proof of one DBTag. The TPA computes a map value for each
item of PubDBTagProof according to EQ(C.11). The cost is based on the number of
PubDBTagProof, i.e. C. Table 5.8 illustrates the complexities of the computational
costs incurred at the L-TPA and the non leader TPA. This was done by calculating
the total number of operations.

Using the collaborative verification approach can help lessen the
cost of the verification protocol. As mentioned above, the L-TPA
verifies PubDBTagTagProofs, while the other TPAs verify their associated
PubDBTagProofs. By applying this approach, the total cost of the
verification protocol (LoA1DV) incurred at the TPAs including L-TPA is
(n − 1) × (PublicChallengeGenerationCost + DBTagProofverificationCost +

DBTagProofMappingCost) + DBProofTagGenerationCost +

DBTagTagProofV erificationCost, compared to the cost without the
aforementioned approach, i.e. n × (PublicChallengeGenerationCost +

DBProofTagGenerationCost + DBTagProofverificationCost +

DBTagProofMappingCost + DBTagTagProofV erificationCost). Table 5.9
illustrates the complexities of the computational costs of L-TPA and the TPAs with
and without the collaborative verification and nonce approaches.
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Table 5.9: Complexities of the Computational Cost incurred by the TPAs end in
LoA1DV: With/Without the Collaborative and Nonces Approaches.

With nonces Without nonces
With
collaborative
verification

(C + n− 3)× AddZp + (n + 2)×
AS-G+(C−1)×MultiZn2 +(C+

n−2)×MultiG1 +2×PairG1,G2 +

3×ExpG1 +C ×HG1 + (n− 1)×
(2×C×AddAS+4×ExpZn2 +3×
MultiZn2 +C×H1+C×ExpZp+

(C − 1)× AddZp)

AS-G+(C−1)×MultiZn2 +(C+

n−2)×MultiG1 +2×PairG1,G2 +

ExpG1 +C×HG1 +(n−1)×((C−
1) × AddAS + 4 × ExpZn2 + 3 ×
MultiZn2 + C × H1 + (C − 1) ×
AddZp)

Without
collaborative
verification

n × ((2 × C + n − 4) × AddZp +

(n+2)×AS-G+2×C×AddAS +

4×ExpZn2 +(C+3)×MultiZn2 +

C ×H1 +C ×ExpZp + (C + n−
2)×MultiG1 +2×PairG1,G2 +3×
ExpG1 + C ×HG1)

n× (AS-G + (C − 1)× AddAS +

4×ExpZn2 +(C+3)×MultiZn2 +

C×H1 + (C− 1)×AddZp + (C+

n−2)×MultiG1 +2×PairG1,G2 +

ExpG1 + C ×HG1)

5.4.3.2 Communication Cost of LoA1DV

We measured the communication cost of each entity in LoA1DV. This was done by
accounting for how many kilobytes (KB) there were in the R-Data part.

In the LoA1DV protocol, the user sends Req.PublicDataVerification to the L-TPA
to instruct it to perform the public verification. This message includes the signature of
the FileTag which is associated with the file that the user wants to verify its integrity.
This is in addition to whichever verification level is required, i.e. LoA1 or LoA2. Thus,
the communication cost that is incurred by the user is |FileTagSig | + |LoA|. The
FileTagSig can be computed using any public key encryption, e.g. RSA. One bit can
be used to represent the verification level; 0 for LoA1 and 1 for LoA2. For example,
when using the 1024-RSA algorithm, the cost is 1024 + 1= 1025 bits ≈ 0.13 KB. Thus,
the total communication cost for the user in LoA1DV is a negligible constant cost.

In LoA1DV, as mentioned above, only the non leader providers are
involved. Each provider sends Res.PublicProofsFromPCS to its associated
TPA. The Res.PublicProofsFromPCS includes PubDBProof, PubDBTagProof, and
PubDBTagTagProof. PubDBProof and PubDBTagTagProof are aggregated values of
C of En_DBs and DBTagTags, respectively. PubDBTagProof consists of C items,
{PubDBProofi}, as in EQ(C.4). Thus, the communication cost of the provider,
CommPCSLoA1DVCost, is |En_DB| + (C × |DBTag|) + |DBTagTag|. This cost
is based on the total number and the size of {DBTagi}. This means that the cost
increases as the number of DBTagi and its size increase.

The L-TPA sends three messages in LoA1DV, Req.PublicProofsFromTPA,
Req.DBTagProofVerification, and Res.PublicDataVerification to the non leader TPAs
and to the user, respectively. The Req.PublicProofsFromTPA, which is sent to each non
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leader TPA, includes two sets. The first set is made up of the indexes of the chosen data
blocks. These values are used to indicate the positions of the data block. The second set
is their associated ProofNonces. In addition to these sets, there is AggProofNonceTag,
PCSNoncej and PCSNonceTagj. The Req.DBTagProofVerification message
includes two values DBProofTag and AggEn_IDTag. The DBProofTag is
computed using the algebraic signature, and the AggEn_IDTag is aggregated
value using C of En_IDTags. Res.PublicDataVerification in the LoA1DV
protocol includes DBTagTagProofV erResult (i.e. the public data verification
result, 0/1). The communication cost of the L-TPA in the LoA1DV is
(n − 1) × (Req.PublicProofsFromTPA + Req.DBTagProofVerification) +
Res.PublicDataVerification = (n − 1) × (C × (|Ii| + |ProofNoncei|) +

|AggProofNonceTag| + |PCSProofj| + |PCSProofTagj| + |DBProofTag| +

|AggEn_IDTag|) + |DBTagTagProofV erResult|. Figure 5.12 compares the
communication cost of the L-TPA against the number of TPAs and the data blocks.
The cost increases significantly as the number of the TPAs and the chosen data blocks
increases. However, this is in order to save the bandwidth cost of the user.

To lessen the communication cost of the L-TPA, the L-TPA can send a key to the
TPA, which can be used to generate the values of the data block indexes set and their
associated ProofNonces, which is an alternative to sending the two sets separately.
Figure 5.13 compares the communication cost of the L-TPA in the LoA1DV against
the number of challenged blocks using two approaches (NonKey-based and Key-based).
From the result in the figure, it can be seen that the cost using the NonKey-based
approach increases as the data block number increases. The cost using the Key-based
approach is constant regardless of the number of data blocks. Furthermore, It incurs
less of a cost compared to the NonKey-based approach.

Regarding the communication cost of a non leader TPA
in the LoA1DV, the cost comes from sending the following
messages, Req.PublicProofsFromPCS, Res.PublicProofsFromTPA and
Res.DBTagProofVerification. Req.PublicProofsFromPCS is similar to
Req.PublicProofsFromTPA. The second message, Res.PublicProofsFromTPA, includes
PubDBProof and PubDBTagTagProof. These are the aggregated values, as mentioned
above. The Res.DBTagProofVerification includes PubDBTagProofVerResult and
DBTagProofMapValue. The PubDBTagProofVerResult can be 1 or 0 bit. The
DBTagProofMapValue is an aggregated value of {DBTagProofMapV alueji}
as shown in EQ(C.12). Thus, the communication cost of a non leader TPA
in the LoA1DV is Req.PublicProofsFromPCS + Res.PublicProofsFromTPA +
Res.DBTagProofVerification = (C × (|Ii| + |ProofNoncei|) + |PCSNoncej|+
|PCSNonceTagj| + |PubDBTagProofVerResult | + |DBTagProofMapValue| +
|PubDBProof | + |PubDBTagTagProof |. Using the Key-based approach, the cost can
be constant regardless of the number of data blocks, i.e. |Key| + |PCSNoncej|+
|PCSNonceTagj| + |PubDBTagProofVerResult | + |DBTagProofMapValue| +
|PubDBProof | + |PubDBTagTagProof |.
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Figure 5.12: Communication Cost of the L-TPA in LoA1DV vs the TPAs and the
Number of Data Blocks.

(|En_DB|= 0.025 KB and |DBTag|= 0.032 KB)

Figure 5.13: Communication Cost of the L-TPA in LoA1DV against the Number of
Data Blocks.

(∗ is Key-based approach, n=2).
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Table 5.10: Computational Cost of User in LoA2DV Complexities: With/Without
Nonces.

With nonces Without nonces
With hierarchical approach (3× C + 2× n− 1)×

AddAS + AS-G
(C+n−1)×AddAS +

AS-G
Without hierarchical approach (3 × (C + n) − 2 ×

AddAS +AS-G+ (n−
1)× AddZp

(C+2×n−1)AddAS+

AS-G+(n−1)×AddZp

5.4.4 Introduced Cost by LoA2DV

In the following section, the computational and communication costs for each entity in
LoA2DV have been presented in detail.

5.4.4.1 Computational Cost of LoA2DV

We measured the computational cost introduced for each entity (the user, the providers
and the TPAs) in LoA2DV. The details have been given below.

In the LoA2DV, the user is involved. The total cost incurred by the user in LoA2DV
is (Private Challenge Generation Cost + FPriProof Verification Cost). The private
challenge, as shown in the PriChalGen algorithm, depends on the public verification
that has been received from L-TPA. The user, in addition to using the public challenge
items, chooses a random number for the leader provider and then generates its tag using
the algebraic signature. As shown in the FPriProofsVer algorithm, the user computes
a fresh FPriDBTagProof using FPriDBProof and aggregated value of the IDTags
that is associated with the data blocks in the proof (FPriDBProof) in order to compare
it with the received FPriDBTagProof .

Table 5.10 illustrates the complexities of the computational cost of the user in
LoA2DV with/without nonces and with/without a hierarchical approach by counting
the number of operations. The table shows how using the hierarchical approach can
help to reduce the cost for the user, where it is not including AddZp . It is a more costly
operation when compared with AddAS and AS-G as shown in Table 5.1. The cost in
the second approach, i.e. without the hierarchical approach, increases as the number of
AddZp increases by increasing the number of PCSes. Without the hierarchical approach,
the user should first retrieve all of the proofs from all providers. He/she can then verify
them either collectively or individually.

In LoA2DV, the leader provider is involved in the data verification, unlike in
LoA1DV. Thus, the leader provider generates its proofs and then computes the final
proofs using its own proofs and the proofs of other providers. Regarding the non leader
providers, each provider in the LoA2DV in addition to the public proofs generation,
should generate private proofs to send to the leader provider. Table 5.11 illustrates the
computational costs incurred by the providers (leader and non leader) with/without the
nonce approach by calculating the number of involved operations. Figure 5.14, plotted
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Table 5.11: Complexities of the Computational Cost incurred by Providers in the
LoA2DV: With/Without Nonces.

With nonces Without nonces
The leader provider 2 × C + n − 2 × (AddZp +

AddAS)

2× (C + n− 2)× (AddZp +

AddAS)

The non leader provider (4× C − 2)×AddZp + (3×
C − 1)×AddAS + (C − 1)×
MultiG1 + (C + 1)×ExpG1

(2 × C − 2) × (AddZp +

AddAS +MultiG1)

Figure 5.14: Computational Costs for the Leader Provider and the Non Leader Provider
in LoA1DV and LoA2DV vs the Number of Data Blocks.

(n=20)
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Figure 5.15: Communication Cost for the User in LoA1DV and LoA2DV.
(* the NonKey-based approach, and C=20 data blocks)

based on Table 5.7 and Table 5.11, compares the computational cost of the leader
provider and the computational costs incurred by the non leader provider in both
LoA1DV and LoA2DV. These costs increase as the number of data blocks increases.
Based on the results shown in the figure, we can see that the cost introduced by
the non leader provider in LoA1DV is less than the cost introduced in the LoA2DV.
Additionally, the cost of generating the final proofs incurred by the leader provider is
not a high cost. It is nearly equal to the cost of the non leader provider in LoA1DV.

In the LoA2DV protocol, the public and private verifications are performed where
the costs incurred by the L-TPA and non leader TPAs are identical to the cost in the
LoA1DV protocol. They have incurred the same cost regardless of which verification
protocol is executed, i.e. LoA1DV or LoA2DV.

5.4.4.2 Communication Cost of LoA2DV

We measured the communication cost of each entity in LoA2DV as above protocols.
This was done by accounting for how many kilobytes (KB) of R-Data were sent.

As mentioned above, the user in LoA2DV sends a delegation message to L-
TPA as in the LoA1DV. In addition to this message (Req.PublicDataVerification),
the user communicates with the leader provider by sending the private challenge
message, Req.PrivateProofsFromLPCS, in order to receive the private proofs from all
providers. The private challenge message consists of a set of data block identifiers and
their associated nonces, ProofNonces and a tag of LPCSNonce (LPCSNonceTag).
Figure 5.15 compares the communication cost for the user in LoA1DV and LoA2DV.
From the results shown in the figure, it can be seen that the user incurs a cost in
LoA1DV that is about 16% of the cost in LoA2DV using the NonKey-based approach.
However, when using the Key-based approach, the cost of LoA2DV on the user is about
double its cost in LoA1DV. This means that when using this approach in LoA2DV, it
releases the user from being burdened with a high communication cost. When using the
hierarchical and Key-based approaches, this cost is constant regardless of the number
of PCSes.

In the LoA2DV protocol, before the leader provider responds to the user’s
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Table 5.12: Complexities of the Communication Cost for Providers in LoA1DV and
LoA2DV.

LoA1DV LoA2DV
The leader provider - (n-1)×C × (|Ii| + |ProofNoncei|) +

|FPriDBProof | + |FPriDBTagProof |=
(n-1) ×C × (|Ii|+ |p|) +|p|+ |m|

The non leader provider |PubDBProof | +

|PubDBTagProof | +

|PubDBTagTagProof |=
|p|+ C × (|m|) + |G1|

|PriDBProof | + |PriDBTagProof | +

|PubDBProof | + |PubDBTagProof | +

|PubDBTagTagProof |= 2× |p|+ (C + 1)×
|m|+ |G1|

Figure 5.16: Communication Cost for the Leader Provider and the Non Leader Provider
in LoA1DV and LoA2DV.

(C=100, n=2, |m|=|G1|= 0.032 KB, consider only the proofs cost)

request (Req.PrivateProofsFromLPCS), it first communicates with each provider to
get its private proofs by sending Req.PrivateProofsFromPCS. Then it sends the
Res.PrivateProofsFromLPCS. This message includes the items of the private challenge,
except the LPCSNonceTag. The Res.PrivateProofsFromLPCS includes the final
private proofs. As mentioned in Algorithm 20, the final private proofs consist of
PriDBProof and PriDBTagProof. The private proofs do not include DBTagTagProof
as the public proofs do. Furthermore, they are also a constant size because they are
all aggregated values. Thus the private proofs can be of a smaller size compared with
the public proofs. Table 5.12 shows the complexities of the communication costs for
the providers in both protocols, LoA1DV and LoA2DV.

Figure 5.16, plotted on Table 5.12, compares the communication costs of the leader
provider and of a non leader provider in both LoA1DV and LoA2DV. From the results
in the figure, we can see that the leader provider has incurred a lesser cost compared
to the non leader provider. Figure 5.17, compares the communication cost for the non
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Figure 5.17: Communication Cost of the Non Leader Provider in LoA1DV and LoA2DV
vs the Data Block Number.

(1: LoA1DV and 2: LoA2DV)

Figure 5.18: Communication Costs of the L-TPA and the Non Leader TPA in LoA1DV
and LoA2DV.

(n=10, |m|= |G1|= 0.032 KB, |p|= 0.025 KB, using Key-based approach)

leader provider in LoA1DV and LoA2DV against the number of data blocks. Both
costs increase as the data block number increases. Additionally, the LoA2DV does not
incur a high cost on part of the non leader provider, as the cost is nearly equal to the
cost in the LoA1DV.

In the LoA2DV protocol, in addition to the verification result that sent in
Res.PublicDataVerification, the L-TPA shares the challenge items, i.e. the indexes
of the challenging data blocks and their associated ProofNonces or use a key to use in
generating these values, and the aggregated value, AggPCSNonceTag.

Regarding the communication cost of the other TPAs (non leaders), they incurred a
cost that is equal to the cost in the LoA1DV. In other words, the LoA1DV and LoA2DV
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protocols have introduced the same cost as the TPAs in the DIA-ETTP. Table 5.13
summarises the complexities of the communication costs for the L-TPA and the non
leader TPA. Figure 5.18, plotted based on Table 5.13, compares the communication
cost of the L-TPA and the communication cost of the non leader TPA in both LoA1DV
and LoA2DV. The communication cost incurred in the L-TPA in LoA2DV is a little
more compared to the cost in the LoA1DV. Furthermore, the communication cost of
the non leader TPA is less than the communication cost of the L-TPA in both LoA1DV
and LoA2DV.

5.4.5 Introduced Cost by DU

In the following section, the computational and communication costs for each entity in
the DU have been presented in details.

5.4.5.1 Computational Cost of DU

We measured the computational cost that was introduced in each entity (the user, the
providers and the TPAs) in the DU and their details have been given below.

In the DU, the user incurs a cost that is similar to the one in the D3U. As shown
in Algorithm 22, to insert data block, the user first encrypts the data block using the
LiSHE scheme. Then it is sent the data block to the leader provider to store in its
M2T and for it to distribute its copies to other providers. Meanwhile, to modify the
existing data block, the user first decrypts the data block, modifies, and then encrypts
it again. In the data block deletion case, the user does not incur a cost. Furthermore,
the user computes a tag for the updated data block as in modification and insertion
cases. The DIA-ETTP supports a data update with data deduplication. Therefore, the
user does not generate a tag for the updated data block in the case that it is duplicated,
as shown in Algorithm 24. Table 5.14 illustrates the computational cost complexities
incurred by the user for uploading, inserting and modifying a data block with/without
data deduplication.

Figure 5.19 compares the computational cost of user in DU against the data block
number in three cases: data uploading (the first time a data file is being uploaded),
data insertion and data modification. The data blocks are updated individually as a
part of non-batch operations. Their costs increase linearly with the data block number.
However, the costs in all cases (upload, insert, and modify) can be reduced by applying
data deduplication. From the results of the figure, we can see that the data modification
without a deduplication case can incur a higher cost compared to the cost of the
modification with the deduplication and the data uploading and inserting with/without
deduplication. The costs that are introduced in the uploading and insertion of the
data block, with and without deduplication, are identical. Furthermore, the cost of
the modification with the deduplication (where only the decryption and encryption
operations are performed) is much less than the uploading/insertion of the data block
without deduplication (where is in addition to the encryption operation, the tag of the
data block should be generated). This means that the highest cost for the user comes
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Table 5.14: Complexities of the Computational Cost incurred by the User in D3U and
DU: With/Without Data Deduplication.

Cost
Uploading Non-duplicated data
block

2×MultiZp +AddZp +ExpZp +2×AS-G+AddAS+

2× ExpZn2 + MultiZn2 + H1 + HG1 + MultiG1 +

2× ExpG1

Uploading duplicated data block 2×MultiZp + AddZp + ExpZp

Inserting Non-duplicated data
block

2×MultiZp +AddZp +ExpZp +2×AS-G+AddAS+

2× ExpZn2 + MultiZn2 + H1 + HG1 + MultiG1 +

2× ExpG1

Inserting duplicated data block 2×MultiZp + AddZp + ExpZp

Modifying Non-duplicated data
block

3 ×MultiZp + AddZp + 2 × ExpZp + 2 × AS-G +

AddAS + 2 × ExpZn2 + MultiZn2 + H1 + HG1 +

MultiG1 + 2× ExpG1

Modifying duplicated data block 3×MultiZp + AddZp + 2× ExpZp

Figure 5.19: Computational Cost of the User in DU vs the Number of Data Blocks.
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from the tag generation operation. Thus this shows how to integrate the data update
and data deduplication to help to reduce the cost for the user.

The providers in the DU incur a cost that is similar to one in the D3U. The leader
provider receives the updated data from the user and checks the duplication. In other
words, the leader provider performs data deduplication to eliminate any redundant
data blocks by generating hash values for the updated data blocks, comparing them
with hash values of the outsourced data. Then, the leader provider sends the result
to the user. Therefore, the computational cost for the leader provider in the DU,
the computational cost for the leader provider in the DU is based on the number of
data blocks. The more updated data blocks there are, the higher the cost. The non
leader providers, like in the D3U protocol, receive the updated data and their tags from
the leader provider. Therefore, the computational cost for the non leader provider is
negligible compared with the cost to the leader provider.

The TPAs in the DU perform the same functions as in the D3U protocol. The
L-TPA receives the En_IDTag of the updated data block and stores it in its M2T.
Therefore, the L-TPA does not execute any costly operations and computational cost
in the DU can be negligible. Regarding the computational cost of the non leader TPAs,
they are not involved in the DU so they have not introduced a cost.

5.4.5.2 Communication Cost of DU

We measured the communication cost within each entity in the DU. This was done by
accounting for how many kilobytes (KB) were in the R-Data part.

In the DU, the user sends three messages, two to the leader provider,
Req.DataUpdating and Req.TagsUpdating, and one to the L-TPA,
Req.En_IDTagOfUpdatedDataUploading. The three messages are similar to
Req.L2DataDeduplication, Req.TagsUploading and En_IDTagsUploading in the D3U
protocol. In Req.DataUpdating, the user sends the updated data block to store in
the PCSes, while in the Req.TagsUpdating, the associated tags, i.e. DBTag and
DBTagTag, are sent. The En_IDTag of the updated data block is sent in the
Req.En_IDTagOfUpdatedDataUploading. In data block deletion, the user does not
need to the send the data blocks or their tags, only their positions in a given data file.
Furthermore, by applying the data deduplication, it can save the user communication.
The user can be released from sending the tags in a case where the updated data
blocks are duplicated.

The leader provider sends the Req.DataTagsUpdating in the DU to each provider
for them to update their storage (M2Ts) while the Res.TagsUpdating is sent to the
user. Req.DataTagsUpdating includes the updated data block and its associated tags,
while Res.TagsUpdating includes the acknowledgement to confirm that the outsourced
data are updated on all PCSes. Therefore, the communication cost incurred by the
leader provider in the DU is (n-1) × Req.DataTagsUpdating + Res.TagsUpdating. As
the acknowledgement can be represented using one bit, 1, the cost is based on the size
of the data block and their tags as well as the number of PCSes.
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In the DU, each non leader provider only sends one message, i.e.
Res.DataTagsUpdating to the leader provider. This message is similar to
Res.DataTagUploading in the D3U protocol. It includes the acknowledgement in order
to confirm that outsourced data have been updated in the PCS.

The communication costs that are introduced to the L-TPA and non leader TPAs
in the DU are similar to the costs in the D3U. Only the L-TPA stores the En_IDTag
and then sends the Res.En_IDTagOfUpdatedDataUploading as a response to confirm
that the En_IDTag has been updated correctly. One bit is used for its representation.
The communication cost at the L-TPA in the DU is negligible and constant regardless
of the number of updated data blocks.

5.4.6 Storage Overhead for the Entities in the DIA-ETTP

To measure the storage cost incurred by each entity in the DIA-ETTP system, we
counted the number of kilobytes (KB) that the entity stored locally.

The user uploads the data along with the associated tags, i.e. DBTags and
DBTagTags to the PCSes and En_IDTags in the L-TPA for the public verification.
He/she keeps IDTags locally to use in the private verification. Thus, the storage
overhead incurred by the user for each uploaded data file is dependent on the number
and size of the IDTags for one data file. The IDTags are generated using the algebraic
signature scheme. The cost is K × |IDTag| = K × |m|. The cost increases as the tags
number and bit-length increase.

In the DIA-ETTP, each provider has two sets of tags: DBTags and DBTagTags.
Thus, the provider’s storage cost which is K× (|DBTag|+ |DBTagTag|) = K×|m|+
|G1|. On the other hand, the leader provider has an additional set, hash values of the
data blocks set, to save on its computational cost. This set is used for performing D3L2
in the L2DataDeduplication protocol. Thus, the storage cost of the leader provider is
K × (|DBTag|+ |DBTagTag|+ |DBHash|). Without the hash values being set, the
leader provider should compute the hash values for the outsourced data blocks for each
uploading time. This can lead to an increase in the computation cost for the leader
provider as the number of blocks increases.

Regarding the storage overheard incurred by the TPAs in the DIA-ETTP, the TPA
stores En_IDTags. The tag set is uploaded to the TPAs to save the computational
and communication costs on the user side. Without the En_IDTags, the user should
generate En_IDTags for each verification and send them to the TPAs or store them
locally. In other words, keeping the En_IDTags with the TPAs can release the user
from being involved in the public verification.

By applying the collaborative verification approach in the DIA-ETTP, it can save
on the storage cost incurred by the TPAs. The L-TPA only keeps the En_IDTags.
For each verification, an aggregated value of the requested the En_IDTags that
are associated with the challenging data blocks, is sent to each TPA. As it is an
aggregated value, it does not burden the L-TPA communication cost regardless of
the number of requested En_IDTags. Thus, the storage cost for the L-TPA is
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Figure 5.20: Storage Cost at the TPAs: With/Without the Collaborative Verification
Approach.

(10 TPAs, |n2|= 0.256 KB)

K × |En_IDTag|. Without this approach, each TPA, along with the L-TPA, should
keep the En_IDTags. This can lead to increasing the storage cost on the TPAs side,
i.e. K×n×|En_IDTag|, where K is the total data block number, and n is the TPAs
number in the system.

Figure 5.20 compares the storage costs at the point of the TPAs (leader and non
leaders) with/without the collaborative verification approach. The figure shows how
collaborative verification can succeed in saving on the storage cost at TPAs side. With
the collaborative verification approach, the storage cost is about 10% of the cost
without the approach. The DIA-ETTP can incur of a less storage cost by keeping
the En_IDTags with the L-TPA. Figure 5.21 compares the storage costs of the DIA-
ETTP entities against the number of data blocks. Based on the results in the figure,
we can see that the user incurred the lowest cost.

As the data deduplication is applied in the DIA-ETTP, it can minimise the storage
costs. Thus, the user storage cost, PCS storage cost and L-TPA storage cost can be
reduced by (K−d2)×|IDTag|, (K−d2)× (|DBTag|+ |DBTagTag|) and (K−d2)×
|En_IDTag|, respectively. Figure 5.22 compares the storage cost for each entity of
the DIA-ETTP with and without data deduplication. It shows that when using the
two levels of data deduplication (D3L1 and D3L2), it can save more of a cost compared
with using only D3L1.

5.5 Comparison with Related Approaches

This section compares the DIA-TTP to related works in terms of the functional,
security and reliability properties that were identified in Section 2.4. It also compares
the performance of the DIA-ETTP, in terms of the computational, communication,
and storage complexities, to the related work.

Table 5.15 presents a summary of the functional, security and reliability properties
comparison. The table shows that in compression with the existing DIA, the DIA-
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Figure 5.21: Storage Cost for the DIA-ETTP Entities with a Different Number of Data
Blocks.
(10 TPAs, |m|= |G1|= 0.032 KB, |n2|= 0.256 KB, * without the collaborative verification

approach)

Figure 5.22: Storage Cost for the DIA-ETTP Entities: With/Without Data
Deduplication.

(The redundancy data rate 20%)
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ETTP can satisfy all of the requirements. In terms of the functional requirements, the
DIA-ETTP supports data deduplication at the block-level, while the existing works
apply the data deduplication at the file-level. The DIA-ETTP uses data deduplication
in data updating cases as well as when data uploading. For the security requirements,
the DIA-ETTP can address TPA attacks, in addition to provider attacks. The DIA-
ETTP uses multiple PCSes and multiple TPAs to address the data recovery and
elasticity requirements.

For the elasticity property, the DIA-ETTP can provide it more effectively. The
non leader TPAs do not keep any data locally, only the L-TPA send the aggregated
value of En_IDTag each verification time. This means that it is easy to add a new
TPA. Furthermore, in the DIA-ETTP, identical data replicas are used. The user does
not incur any overheads in terms of computational and communication costs if a new
PCS is added. The leader provider can send a copy of the outsourced data and their
associated tags to the PCS. This means that unlike existing works, the user in the
DIA-ETTP does not need to re-process the data to generate a new replica and its
associated tags, nor does it needs to communicate with the new PCS to upload them.

Table 5.16 presents a summary of the computational, communication and storage
complexities of the DIA-ETTP and existing works. For the computational and
communication costs that are introduced to the user for uploading, the Curtmola
CenPub-DIA, Saxena CenPub-DIA and the DIA-ETTP are most efficient compared
with other works. Unfortunately, Curtmola CenPub-DIA and Saxena CenPub-DIA do
not address the TPA attacks, as shown in Table 5.15. The TPA should be entirely
honest. Furthermore, they do not support data deduplication and dynamic data like
the DIA-ETTP.

For storage cost complexities, we only considered the number of tags of one data
file. As shown in the table, the DIA-ETTP can introduce more storage overheads in
comparison with the existing DIAs on a part of the user. The cost is used for enhancing
the DIA’s security. However, through the data deduplication, this cost can be reduced.

5.6 Chapter Summary

This chapter has presented the security and correctness analysis and performance
evaluation of the DIA-ETTP framework. In the security analysis, several threats were
considered that the internal entities might launch, e.g. a replay attack, collusion attack,
and frame attack. The correctness of the verification protocols was analysed. The
performance was evaluated. Firstly, the detection probability was analysed. Then,
the computational cost, communication cost, and storage cost introduced by each
functional block, D3U, LoA1DV, LoA2DV, and DU, for each entity in the system
were analysed. Finally, the DIA-ETTP was compared against related solutions. The
comparison results show that it is the most efficient in the literature.

The following chapter concludes this thesis and provides recommendations for
further research.
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Chapter 6

Conclusion and Future Work

This thesis aims to investigate how to improve the security of outsourced data in
the PCS environment in the context of DIA by addressing authorised insider threats
with as little of an effect on performance as possible. This chapter first summaries
the contributions and the research findings presented in the thesis and then gives the
conclusion drawn from the research findings and provides recommendations for future
work.

6.1 Contributions

The contributions of this thesis have been summarised below on a chapter by chapter
basis.

Chapter 2: In the first part of this chapter, a comprehensive threats analysis
was first conducted to identify insider security threats in the DIA context.
Secondly, based on a comprehensive PCS use case study and this analysis, a
set of functional, security, reliability and performance requirements for the DIA
and the tagging method have been specified. In the second part, the related DIA
solutions and their tagging methods in the literature have been critically analysed
based on the aforementioned requirements to identify the knowledge gaps.

Chapter 3: In this chapter, a novel tagging method, i.e. the TOD method,
has been designed and evaluated in order to address the issue of how tags
can be generated and verified. It achieves this by supporting dual verifiability,
specifically public and private verifiability, in an integrated manner. In this way,
the method allows a user to delegate the task of data integrity verification to
a third-party verifier through the support of public verifiability. At the same
time, it also allows the user to monitor the integrity of the verifier through the
support of private verifiability. The design of the method has also taken into
account a number of measures used to minimise the computational as well as
communication costs. These measures include using a tag deduplication measure
to prevent the generation of duplicated tags and the selection and a hybrid use
of multiple and more efficient cryptographic algorithms (algebraic signature (AS)
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and BLS). TOD is more efficient, particularly at the user end, and it provides
richer functionality including a stronger level of security protection for the data.
These features make the TOD method particularly suited to environments where
the users outsource their data to a third party data manager such as a public
cloud and/or where the users handle their data using relatively resource-limited
devices such as mobile phones. The security aspect of the TOD method has been
analysed to demonstrate that the TOD method satisfies the security requirements
specified.

The performance of the TOD method has been evaluated in terms of the
computational and storage costs, both theoretically and experimentally. It has
also been compared to the most related and relevant work. In this evaluation, the
tag generation cost, tag verification cost and tag numbers have been determined
and compared against the existing works with (1) different data block numbers,
(2) different tag lengths and (3) different data redundancy rates being taken into
consideration. The results show that the TOD has the highest tag generation
cost compared to the other methods that support private verifiability, but the
TOD supports dual verification securely. On another hand, TOD provides the
lowest cost for tag generation compared to the RSA-based methods. The TOD
cost is about 7% of the cost in the RSA-based method. Compared with the
RSA, BLS and ECDSA-based public verification methods, TOD has the lowest
cost for achieving dual verification. It is around 0.39% of the cost when using
the BLS-based method (BLS is the most efficient method that supports public
verification). Furthermore, the more duplications that a file has, the more savings
that the TOD can provide in terms of the computational and communication
costs. The cost decreases as the rate of the redundant data increases. This is
where the number of tags decreases. The cost of the existing methods can be
high and constant regardless of the redundant data. Additionally, under the same
security level, the TOD provides tags (that are stored in PCS) with the highest
bit-length found compared to the methods that support private verifiability. The
tag size is double the tag size in the AS-based method but the tag size in TOD
is lowest compared to the tag length of the RSA-based methods. It is 17% of the
tag size in the RSA-based method.

Chapter 4: In this chapter, a novel framework for DIA, DIA-ETTP, has been
designed. The framework deploys the TOD method to support a two-level
approach to integrity verification (optimising the trade-off between the security
protection levels and costs). It uses two block-level data deduplication (only
among the data owned by the user), and a multi-entity hierarchical structure and
collaborative verification in order to minimise the costs imposed on the entities
involved to enhance the data availability and to counter collusion/frame attacks.
Furthermore, in order to support the dynamic data with the minimised costs
imposed on the entities involved, an integrated approach of data updating and
data deduplication has been used, thus a novel data structure has been designed.
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The four functional blocks of the DIA-ETTP, D3U, LoA1DV, LoA2DV and DU
have been described in detail where the architectures, algorithms and protocols
have been presented.

Chapter 5: In this chapter, the security and performance of the DIA-ETTP
have been evaluated. The security of the verification protocols of the DIA-ETTP
(LoA1DV and LoA2DV) have been analysed to demonstrate that the protocols
satisfy the security requirements specified.

The performance of the DIA-ETTP protocols, D3U, LoA1DV, LoA2DV
and DU, have been evaluated in terms of their computational, communication
and storage costs for each entity, namely the user, providers and TPAs, both
theoretically and experimentally. This has been compared to most of the related
work. DIA-ETTP reduces both the computational and communication costs as
a result of using the two block-level deduplication approach. When the TOD
method is used, the number of tags decreases not only within a file but also
within all of the outsourced data for a user. The higher the redundancy in the
data of a user, the more that the cost can be reduced. Under a redundancy data
rate of 160 out of 1000 data blocks as an example, the cost imposed on the user
using a two-level data deduplication approach decreases by 22%.

The user incurs a constant cost in D3U regardless of the number of data replicas
(PCSes/TPAs number) as the hierarchical structures of the PCS providers and
TPAs and paired TPA/PCS are used. The cost is the same as the cost in the case
using the centralised DIA. The user does not incur a high cost in the LoA2DV as
the TOD method supports batch verification and a hierarchical approach used in
the framework. The communication cost in the LoA2DV at the user-end is around
double that of the LoA1DV cost, so it is not too high when the user is not involved
in LoA1DV. The TPAs incur similar costs (computational and communication) in
both LoA1DV and LoA2DV. The computational and communication costs for a
non-leader provider increase slightly as the challenge data block number increases
in both the LoA1DV and LoA2DV. The communication cost in LoA2DV increases
by 14% compared to the cost in LoA1DV under the same number of challenge data
blocks. The highest cost for the user comes from the tag generation operation.
Integrating updating the data and data deduplication helps to reduce the cost
for the user. The cost of the data modification with deduplication in the DU is
much less than the uploading/insertion of the data block without deduplication.

The DIA-ETTP introduces the lowest storage cost at the user-end compared
to the cost of the other entities. This is the highest cost compared with existing
works. The user cost is about 1.25% of the TPA cost and 50% of the provider
cost.

6.2 Conclusions

From this research, we can draw the following conclusions:
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• The security of the TODmethod in terms of counting forgery and collision attacks
depends on the bit-length of tag, the number of users and their associated data
blocks in the PCS. The higher the number of users and their associated data
blocks, the higher the bit-length of the tag. Not all PCS services have the same
number of users/data blocks. In this case, the bit-length of the tag can be different
from one PCS service to another where it can be chosen as either higher or lower
regarding the total number of data blocks in PCS (total number of data blocks
of all users in PCS) when TOD is implemented.

• In the DIA-ETTP, all of the data files that are owned by the user are
encrypted using one key to protect data confidentiality as well as to apply data
deduplication. However, the compromising the key can affect the confidentiality
of all data files. In such case, it would better to find a solution related to how to
renew the key and update the associated tags without introducing high overhead
costs for the user.

• The DIA-ETTP can support the n of PCSes and TPAs. All the users have the
same number of PCSes/TPAs and the same leaders (the leader provider and L-
TPA). However, it may not always be the users that have the same trust levels
in the providers and TPAs. In such cases, it would be best to make the user have
the ability to select his/her leaders based on their level of trust. Furthermore,
the number of PCSes/TPAs can be tailored per user depending on the level of
trust that the user has in the service provider(s) when implementing LoA2DV.

• The performance evaluation of the DIA-ETTP presented was based on a single
user request (verifying one data file and updating one data block at time). The
evaluation should also be carried out using multiple files and multiple concurrent
users, making data verification/updating requests for an improvement in the level
of performance. In such a case, to save on the cost at the point of the TPAs, the
tagging method can be enhanced to support the batch verification of multiple
files from multiple users. Furthermore, a protocol should be designed for batch
updating where multiple data blocks in one or more files can be updated in one
operation. Our data structure, M2T, can support this property more efficiently,
as mentioned in Section 4.2.

• In DIA-ETTP, a user should keep the {IDTagi} locally. It would be best to use
another solution, e.g. using a proxy-based approach, for storing the {IDTagi}
and saving on the storage cost at the user end. In every verification, the user can
retrieve {IDTagi} from the proxy. The algebraic signature used in the IDTag
generation means that the user only needs the aggregated value of {IDTagi}.
Thus the computational cost is not high. The communication cost is also not
high, and it is constant. However, it should address the security issue of using a
proxy in the system.

• As mentioned in Chapter 5, most of the storage cost is introduced in the L-TPA.
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This is because it uses the Paillier scheme. This scheme generates a cipher-text
for IDTag with a long bit-length. The more En_IDTags there are, the higher
the storage cost in the L-TPA. It would be best to find another scheme with the
same properties as the Paillier scheme with a lower bit-length (i.e. more efficient)
or another solution.

• The DIA-ETTP provides a general result for integrity checking, i.e. true or false
(0/1). Identifying which data block is corrupted and in which PCS can help to
apply the data recovery process or to assess the trust level of PCS. In such a case,
it would be better to provide a report with a result that goes into more detail
concerning where the corrupted data blocks and their locations are.

• The DIA-ETTP provides a solution to verify the integrity of the data that is
owned and accessed only by its owner. The DIA-ETTP framework could be
extended to provide the DIA for the purpose of sharing the data where multiple
users can access and update the same data in the PCS. In this case, it would
need to specify more security requirements.
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Appendix A

Public Cloud Storage (PCS):
Background and Security Analysis

A.1 Chapter Introduction

This chapter provides an overall background to our research notably in the field of cloud
computing, and covers its definitions, characteristics, deployment models and service
models. As our research focus is how to improve the security of outsourcing data in
a Public Cloud Storage (PCS), which is a particular type of cloud service model, our
discussions later on in this chapter will focus on the system architecture of the PCS.
We have developed a generic model to use in addressing security concerns in the PCS,
where three use cases of PCS model have participated to bridge its construction. The
security analysis of the generic model is performed by examining threats and attacks
to which it is vulnerable.

In detail, the structure of this chapter is as follows: Section A.2 presents a high-level
overview of cloud computing, its definitions, characteristics, deployment and service
models. The PCS architecture and its use cases are discussed in Section A.3. In
Section A.4, a Generic Model of the PCS (GMPCS) is constructed using the use cases
of PCS, then the model is simplified, which called (S-GMPCS). The S-GMPCS at its
security analysis by illustrating a number of its security threats in Section A.5. The
scope of our research are introduced and identified in Section A.6; and finally, the
chapter is summarised in Section A.7.

A.2 Cloud Computing

Cloud computing is an emerging model in the business world. It has become widely used
in recent years owing to its ability to provide users with many facilities (e.g. storage
and processing power) at reduced costs. This model provides its services through the
Internet on-demand and uses a virtualisation-based concept. Cloud computing also is
regarded as Location-Device Independent [97], where services can be accessed remotely
and on-demand, as opposed to residing on a user’s own laptop or an organisation’s
server. Users are able to utilise any device that is capable of connecting to the internet
to access the services.
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When seeking to define the concept of cloud computing, according to [98], more than
20 definitions have been proposed so far. A recent definition has been offered by the
International Organisation for Standardisation (ISO), which defines cloud computing
as ‘a paradigm for enabling network access to a scalable and elastic pool of shareable
physical or virtual resources with self-service provisioning and administration on-
demand’.

ISO describes six main features recognised as differentiating cloud computing from
other computing models. These features are detailed below:

1. Broad network access: Cloud resources (physical and virtual) are available over
a network (e.g. web-based), thereby leading to an increase in the level of
convenience where users can access resources anytime and anywhere through
a wide variety of devices, e.g. mobile phones, tablets and laptops.

2. Measured service: Cloud resource usage is featured as a Metered Delivery (i.e.
the resources can be controlled, monitored and billed). Users only need to pay
for what they have used.

3. Multi-tenancy: Cloud resources are used and shared by multiple tenants (i.e.
users). Users’ data, along with their computations, are isolated (in other words,
they are inaccessible to others). This feature is notable in two types of cloud
deployment model: Public Cloud and Community Cloud.

4. On-demand self-service: Cloud resources are automatically provisioned to users
when they access services or have minimal interaction with a cloud provider;
therefore, users’ time, cost and effort requirements can be reduced. This feature
offers users the ability to access and pay for their requirements at any time, along
with an added advantage that they pay no further overhead costs.

5. Rapid elasticity and scalability: Resources made available to users can be
unlimited. Users can rapidly automatically scale these resources based on their
needs, with users, therefore unconcerned about reaching the limits of either their
resources or capacity planning.

6. Resource pooling: A cloud provider aggregates resources to serve multiple users
whilst using an abstraction feature to hide the complexity of the process from
the users. Users are not required to understand the infrastructure or working of
these resources, nor their locations (e.g. country, datacentre, etc.) as they do
not exercise any control over these factors.

In an effort to provide facilitate understanding of the deployment and service models
of cloud computing to be introduced in the following sections, we first explain the
entities involved in the cloud environment and their roles.

1. Cloud Datacentre Provider (CDP) is an entity providing physical resources that
are hosted in datacentres as utilities for computing. A datacentre hosts multiple
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elements, e.g. IT equipment (e.g. servers, storage hardware), facilities (i.e.
location or white space available to IT equipment) and operational staff (i.e.
employees to monitor and maintain operations). Examples of CDPs include
Amazon, IBM and Google.

2. Cloud provider is an entity offering cloud services to cloud users via the Internet.
Based on the type of service, cloud provider can be Infrastructure Providers (e.g.
Amazon EC2 [99] and Simple Storage Service (S3)) [100], Platform Providers
(e.g. Microsoft Azure [101] and Google App Engine [102]) or Software Providers
(e.g. Salesforce [103]).

3. Cloud partner is an entity hired to offer some auxiliary support for the activities
of a cloud provider or a cloud user, or for both. An example of a cloud partner
is a TPA, who is responsible for assessing issues, e.g. security, performance and
privacy impact on the main cloud provider’s behalf; in other words, the TPA bears
a burden of security responsibility from the cloud provider. A Cloud Service
Broker (CSB) is another example of a cloud partner, which addresses various
activities, e.g. aggregation and integration. The aggregation enables a cloud
user to access a cloud serviced based upon the approval from a cloud provider
by enforcing a service level agreement (SLA) between the cloud provider and a
cloud user. Furthermore, a CSB can bundle multiple services together so as to
present a unified service. The integration allows the exchange data between cloud
applications when a cloud user uses more than one a cloud provider [14].

4. Cloud user is an entity that uses a cloud service, provided from a cloud provider
or a cloud partner.

It is possible that one entity may act in two or more of the above roles. A cloud
provider can also be a cloud user when using the resources or services of another cloud
provider. For instance, Dropbox [106] uses Amazon Simple Storage Service (S3) [107]
to host its own storage service. Likewise, a CDP can become a cloud provider by
hosting its services on its datacentres: for example, Google uses its datacentres to host
its infrastructure service, Google Compute Engine (GCE) [108]. In the remainder of
this chapter, we will use a cloud provider to indicate CDP as well.

A.2.1 Cloud Deployment Models

Cloud deployment models from a deployment viewpoint (e.g. resources location,
ownership, etc.), there are five types of model, namely Public, Private, Hybrid,
Community and Virtual Private Cloud. The first four are basic types, whilst the
fifth one, Virtual Private Cloud, although considered a type, is less studied in the
literature. The classification of the deployment models is based on the manner by
which the physical and virtual resources are controlled and shared and the locations
provided. These models have the following respective characteristics, in terms of
ownership, management, costs and locations:
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Figure A.1: Architecture Layers for Cloud Computing Service Models [104, 105].

1. Public Cloud: A public cloud is the most popular cloud deployment model in
comparison to a Private, Hybrid, Community and Virtual Private Cloud. A
cloud provider operates and manages cloud resources (e.g. Virtual Machine (VM),
application, storage) to offer them as services for use by the general public over
the Internet. Cloud users can use the cloud resources, scale them up or down
based on their needs, and pay only for what they consume. Although scalability
and low-cost features are characterised to a public cloud, such a model is more
vulnerable to malicious activities because it is hosted off-site within a shared
environment. In other words, it is out of a cloud user’s control [109].

2. Private Cloud: Unlike a public cloud, a private cloud serves one organisation
exclusively over a private network. The organisation owns, operates and manages
the cloud resources or alternatively can delegate a third party to do so. Should a
private cloud be hosted on-site, security risks then would be reduced because
sharing issues are eliminated [109]. Implementing such a system requires
purchasing hardware and software, and accordingly managing through proficient
IT technicians; however, the cost of a private cloud then would be increased.

3. Community Cloud: A community cloud, as a public cloud, is shared by multiple
cloud users (i.e. multiple organisations), although they have some common
interests, e.g. academic institutions. The cloud resources can be owned and
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managed by one or more of the organisations participating in the community
cloud or otherwise, a third party may be delegated to do so. As a result, it may
be on-site or off-site. The community cloud can be considered more secure than
the public cloud as it is typically accessed by members of approved organisations.
Notably, the costs of a community cloud may be lower than a private cloud owing
to the fact its implementation and management tasks are divided between all
participating organisations [100].

4. Virtual Private Cloud: A Virtual Private Cloud (VPC) is a Semi-Private cloud
created using a Virtual Private Network (VPN), where isolated resources are
assigned to cloud users. A VPC can be built on any one of the above-mentioned
deployment models; public cloud, private cloud and community cloud. It is
considered a special type of private cloud because it uses other cloud models. As
this model operates outside a public or shared environment, it is appropriate for
organisations requiring a high security level for their services. Amazon VPC is
an example of such a model, and is built on Amazon public cloud [110].

5. Hybrid Cloud: A hybrid cloud combines two or more different cloud deployment
models. Multiple cloud providers may use such a deployment model to cooperate
with one another to harvest mutual benefits whilst overcoming barriers of other
deployment models. A typical example of a hybrid cloud is one that combines
public and a private cloud. In such an instance, the hybrid cloud will be both
on-site and off-site, and will be managed by both a cloud provider and the
participating organisation, or a third party. The cloud provider manages the
public cloud whilst the organisation, or the third party, manages the private
cloud. As a result, the cost and risk level of a hybrid cloud are considered
medium.

A.2.2 Cloud Service Models

Depending on the type of services provided, cloud service models are typically divided
into three models, namely Infrastructure-as-a-Service (IaaS), Platform-as-a-Service
(PaaS) and Software-as-a-Service (SaaS). Figure A.1 illustrates the types of resources
used for providing services in each of these models, along with their management levels,
as compared with those of traditional IT. These service models have the following
characteristics:

1. Infrastructure-as-a-Service (IaaS): This is the layer immediately above the
physical hardware. Cloud providers can invest in their datacentres resources
(i.e. hardware, e.g. servers, internal network devices, storage) by dividing
into multiple virtualised resources (e.g. VMs) and assigning them to meet the
demands of cloud users. Therefore, IaaS acts as a first abstraction level on
physical resources to hide its operation details to the cloud users. The cloud
users can only manage and control virtualised resources; their control is over
an operating system, deploying and running their own application on VMs, etc.
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There are a variety of services offered as IaaS, e.g. Elastic Compute Cloud (EC2),
which is a service provided by Amazon. A cloud user can use the EC2 to rent
VMs.

2. Platform-as-a-Service (PaaS): This is the middle layer and the second abstraction
level. It offers some software development environments (e.g. .NET, JVM,
IDEs) as services. The software development environments include various
facilities, including a source code editor and a compiler, etc., to assist cloud
users in developing and running their own applications. On the other hand,
a cloud provider is responsible for managing and upgrading the hardware
and PaaS software. Google App Engine (GAE) is an instance of a PaaS
[21]. It offers Software Development Kits (SDKs). An SDK includes multiple
software development tools that help cloud users to employ different programming
languages (e.g. Python and Java) to develop own applications under a specific
platform (e.g. a web platform, mobile platform, etc.) at lower costs and time.

3. Software-as-a-Service (SaaS): This layer sits above the PaaS layer. It also may
be referred to as Application-as-a-Service. This service model is used by a
cloud provider to host and deploy applications in a cloud environment. A cloud
user uses a web browser to interact with the hosted applications. With this
model, there is no need to install any application on the local hardware. The
cloud provider is responsible for maintaining and supporting hosted applications.
Therefore, SaaS services are often offered efficiently and with reduced costs
for cloud users. SaaS differs from PaaS: whilst the former is for distributing
applications, the latter, on the other hand, is centred on creating and developing
them. Example applications hosted at this layer include Gmail, Hotmail and
Social Networking (e.g. Facebook [111] and Twitter [112]).

In addition to above-mentioned services models; there also are other models
proposed in the literature. ‘Everything as a Service’ (XaaS) is proposed as one that—as
the name suggests—is able to offer anything as a service, e.g. Data-as-a-Service (DaaS),
Routing-as-a-Service (RaaS) and Security-as-a-Service (SecaaS). This conforms to ISO
standards for cloud computing, as agreed in [100]. ISO classifies cloud capabilities
into three main types taken from the resources employed, and all cloud services into
multiple categories. The capabilities are as below:

1. Application capabilities type: A cloud user utilises any applications that are
offered by a cloud provider.

2. Platform capabilities type: A cloud user utilises any programming language and
execution environment that is supported by a cloud provider to deploy, manage
and run user-created applications.

3. Infrastructure capabilities type: A cloud user utilises any processing, storage and
networking resources.
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The cloud service category is a group of cloud services related to the above-
mentioned three capabilities types, and have various characteristics in common.
Accordingly, many cloud service categories will be expected, with the XaaS used as
a standard descriptor for them. For example, Data Storage-as-a-Service (DSaaS) is a
cloud service category that a cloud user utilises for data storage and related capabilities;
therefore, a DSaaS can include three capability types (Infrastructure, Platform and
Application), whereby a cloud user can be utilised to store data in the cloud resources of
the infrastructure capability through using Virtual Machines (VMs), as well as platform
capability, when developing their application. The cloud user also can store data
through utilising the application’s capability. Table A.1 illustrates the relationships
between the cloud capabilities types and various examples of cloud services category.

Table A.1: Relationship Examples Between Cloud Capabilities Types and Cloud
Services Categories [100]

Cloud Capabilities Types
Cloud Service Categories Infrastructure Platform Application
Compute as Service F

Communication as Service F F

Data Storage as Service F F F

Infrastructure as Service F

Platform as Service F

software as Service F

The remainder of this chapter will focus on the DSaaS in a public cloud environment.
DSaaS hereafter is referred to as a Public Cloud storage (PCS). We will discuss its
architecture and the abstraction of a generic model for the PCS.

A.3 PCS and Use Cases

In a Public Cloud Storage architecture, a PCS provider can use sophisticated
technologies to deliver a storage service on-demand and a high scalability for multiple
PCS users. The sophisticated technologies can include Application Programming
Interface (API), virtualisation, and management tools. The storage service is web-
based, meaning it can use a web API, e.g. the Simple Object Access Protocol (SOAP)
[113] and the Representational State Transfer (REST) [114]. The SOAP and REST
define data that is transmitted over HTTP, in an XML [115] or a JSON [116] format, to
facilitate applications communicating together. However, PCS architecture can include
various traditional hosted storage forms, which are used to store files at a remote server
over a network, e.g. Network-Attached Storage (NAS) [117]. The NAS consists of a
user’s computer, a network (LAN/WAN) and a file server. The user’s computer is
connected to the file server by the network to send and store files. The file server
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hosts a file storage system (e.g. Network File System (NFS) or Common Internet
File System (CIFS)) to store the files, organises them in directories and allows user
access. The user can then view, store or update the files on the server in the same
way as if they were stored on his/her own computer. The user can use the Internet file
transfer protocols (e.g. File Transfer Protocol (FTP) or the Web Distributed Authoring
and Versioning (WebDAV)) to access and update his files that in the NAS through a
CIFS or NFS gateway. This gateway is responsible for connecting these two different
networks (i.e. NAS and the Internet) that utilise different protocols. The PCS has
not yet been afforded a unified standard in terms of architecture. Generally speaking,
however, PCS architecture consists of four layers [118, 119], as illustrated in Figure
A.2 and summarised below.

Figure A.2: Public Cloud Storage (PCS) Architecture Layers.

1. Physical Storage Layer: This first layer includes datacentres that house physical
cloud resources, e.g. servers, storage devices and network devices (i.e. router,
switch). Both wired and wireless networks may be used to interconnect the
cloud resources both within a datacentre and between datacentres. This layer
is responsible for organising and managing the cloud resources at the first layer
through using networks (e.g. Local Area Network (LAN), Wide Area Network
(WAN), VPN over the Internet), building network storage to apply a storage
system over the network storage. Initially, a PCS provider configures a LAN
network to interconnect the physical cloud resources with one another, and
accordingly segments them into multiple zones to balance loads in a datacentre.
In case of using multiple datacentres, the PCS provider can use WAN or VPN
over the Internet to interconnect the datacentres. The storage network may be
used by the PCS provider to pool all storage devices over multiple zones in the
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datacentre.

2. Logical Storage Layer: In this layer, different types of storage devices that over
different locations are interconnected. A virtualisation technology can be applied
over the storage pool to create a datastore, which then can be shared amongst
multiple servers. Then, the PCS provider can apply a storage system to the
datastore (i.e. a virtualised storage). The virtualised storage can be divided into
multiple logical storage entities. A logical entity can be assigned to one user for
outsourcing his/er data.

3. Storage Management Layer: In this layer, a PCS provider can apply
various security and management strategies in mind of data replication, data
deduplication, data protection, and data back-up. Furthermore, it performs and
manages metadata and provides users with shared, coherent access to shared
storage. It enables to scale up or down storage based in the user demand. The
three layers are collectively referred to as the Back-End Layer.

4. Application Interface Layer: This layer represents the Front-End Layer. It
provides PCS users with a uniform interface for accessing data, filtering
unauthorised PCS users out of a system, and making API calls (different API
protocols that can be used include SOAP and REST).

Whilst PCS offers many benefits, e.g. universal access, scalability, and a pay-
per-usage billing model, to date, PCS users’ confidence in this type of storage has
been limited; subsequently, this has resulted in the delayed adoption of the services,
particularly by businesses. The main concerns regarding the PCS include security and
privacy issues, both within and outside of its infrastructures. PCS providers must
ensure measures are in place so as to ensure PCS users that their data are secure from
accidental deletion, hardware crashes, and unauthorised access or alteration. In other
words, PCS providers must ensure data confidentiality, integrity and availability. In
order to achieve appropriate levels of security, a number of issues need to be considered,
e.g. how high availability, reliability, performance, replication and data consistency can
be achieved [120]. In an effort to examine security concerns more in-depth, the following
section describes use cases in a PCS model.

To demonstrate the complexities of implementation in the system of a PCS model
and how a storage service can be provided to PCS users, three use cases are used in
following subsections. The three use cases range from the simplest perspective through
to the most complex: use case_1 focuses on one datacentre that is managed by one
PCS provider; use case_2 concerns multiple datacentres being managed by one PCS
provider; and use case_3 relates to multiple datacentres managed by multiple PCS
providers.

• Use Case_1 (One PCS provider and One Datacentre): Use case_1 is a
simple PCS system model. A PCS provider uses a single datacentre to maintain
the PCS user’s data. The datacentre typically consists of three components:
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Figure A.3: Use Case_1 (One PCS Provider and One Datacentre).

LAN network, a storage network and different types of server. The LAN network
is configured by the PCS provider to interconnect the storage network and
the servers over the datacentre. The LAN is connected to routers to link the
datacentre to the Internet. This allows PCS users to access storage service.
Multiple switches devices can be used in the LAN to segment the datacentre into
multiple zones. Multiple zones can contribute to improving the LAN performance
and security of the LAN by reduced congestion (i.e. distributing local network
traffic) and limiting failure effects (i.e. failure in one zone does not affect all the
network).

In the storage network, all storage devices can be distributed over multiple
zones in the datacentre and are interconnected. Therefore, storage devices are
aggregated as one datastore, with the servers able to access and apply a specific
storage system. The storage network gives the PCS provider various benefits,
including a flexibility in removing an existing storage device or adding a new one
without affecting work in the datacentre, and the ability to construct a high-
capacity storage by adding more storage devices.

The PCS provider uses different server types in providing its service, namely
application servers and storage management servers. In each type of server, there
is one primary server and multiple secondary servers. In the case of failure of
the primary server, one of the secondary servers can be used. The application
servers host a front-end layer. They are a master for controlling operations, e.g.
API requests and responses. The application servers provide PCS users with an
interface to access files hosted on the storage devices. The storage management
servers are used to host a storage system and apply management features related
to security and availability (e.g. encryption and back-up), whereas these servers
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host databases to store metadata. Figure A.3 provides an example of use case_1.

• Use Case_2 (One PCS provider and Multiple Datacentres): Use case_2
can be more complex than the use case_1, where a PCS provider uses multiple
datacentres that are typically distributed over multiple geographical locations.
The datacentres are one primary datacentre and multiple secondary datacentres,
which can be interconnected over multiple routers byWAN network; alternatively,
VPN over Internet can be used to provide a higher level of privacy for transmitted
data. In each datacentre, the PCS provider uses the three above-mentioned
components: a LAN network, a storage network and multiple different types
of servers. Through the multiple datacentres approach, a PCS provider can
improve the overall availability and fault tolerance of a storage service. In contrast
to the use case_1, a storage service could stop in the case of total failure or
crash in a datacentre. Load-balancing is another feature available through the
multiple datacentres approach. Thus, PCS user requests and network traffic
can be distributed across datacentres so as to improve performance. Figure A.4
illustrates an example of the use case_2 where a PCS provider uses multiple
datacentres to host its service.

• Use Case_3 (Multiple PCS providers and Multiple Datacentres): Use
case_3 illustrates a greater level of complexity in the PCS model, with multiple
datacentres managed by multiple PCS providers. In other words, multiple storage
services can be integrated to offer one storage service. Generally, the use case_3
consists of three entities, namely a dependent PCS provider (D-PCS provider),
stand-alone PCS providers (S-PCS providers) and networks. A D-PCS provider
has modest storage capabilities in its datacentres; there is no storage network.
The D-PCS provider datacentres can involve multiple types of servers, whether
application servers, metadata servers or notification servers; whilst application
servers host an interface service, metadata servers host a database for storing
metadata of PCS users and their files, and notification servers work as hubs
to provide synchronised feature between PCS user devices to share PCS user
hosted files in the storage service. Importantly, S-PCS providers have high
storage capabilities and can provide different types of storage service (i.e. a
storage service as software and a storage service as infrastructure). A storage
service as the software is provided as in use case_1 and_2. Whilst a storage
service as infrastructure, the S-PCS providers offer to PCS users various VMs
with configured storage. The PCS users can use the VMs to process and
store their data on the configured storages to make them compatible with their
application. The D-PCS provider, therefore, provides its storage services to its
PCS users, use the storage services as infrastructure from the S-PCS providers;
in other words, the D-PCS provider integrates its storage service with the S-PCS
providers storage services. Thus, the D-PCS provider datacentres are responsible
for providing the storage service interface and management task, whereas the
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S-PCS providers datacentres are for the storage of PCS users files. The D-PCS
provider, when seeking to transmit the data between storage services, needs to
use the Internet or VPN network.

The simplest example of the above approach is two PCS providers, namely a
D-PCS provider and a S-PCS provider, e.g. Dropbox and Amazon [121]. In Dropbox
datacentres, there are the three above-mentioned server types, i.e. application servers,
metadata servers and notification servers. A PCS user firstly sends his file through
an interface service hosted on the application server. Subsequently, the PCS user’s
file is divided into multiple blocks and hashed as metadata. The metadata are stored
in the metadata servers. The file blocks are transmitted for storing in the Amazon
service. Notably, Amazon offers two storage services hosted on its datacentres; storage
service as a software (Amazon Drive) and storage service as infrastructures (Amazon
S3). Thus, Dropbox uses Amazon S3 to process and store the file blocks. Figure ??
illustrates this example of the use case_3 approach, where S-PCS provider uses the
use case_2 approach for providing its service.

A.4 General Model for Public Cloud Storage (GMPCS)

GMPCS is constructed by applying all above approaches of use case_1, use case_2
and use case_3 (see Figure A.6). In other words, multiple PCS providers are in
GMPCS, where a S-PCS provider or D-PCS provider with a single datacentre or
multiple datacentres may be located. The PCS providers in the GMPCS interoperate
with one another to provide a PCS user one interface to store and distribute a PCS
user’s files across their storage services. The PCS user can have an account with each
PCS provider. To manage and control share operations of the GMPCS service, one of
the PCS providers can work as a leader (L-PCS provider) or, alternatively, a CSB can
be used.

Based on the GMPCS model, a number of observations can be made:

1. Multiple PCS providers apply different technologies within their datacentres,
e.g. storage systems and APIs. Thus, the technologies might be disparate
in terms of efficiency and strength. An approach incorporating multiple PCS
providers with single datacentre or multiple datacentres (i.e. Primary Datacentre,
Secondary Datacentres) over different geographical locations can be the best
disaster strategy against events, e.g. lock-in PCS provider. Thus, this can provide
a satisfactory level of availability and reliability across the GMPCS service.

2. A L-PCS provider or a CSB can manage all PCS users accounts on their behalf
through managing and controlling operations between PCS providers in GMPCS,
whereby PCS users’ credentials are also accessed. PCS users can use different
types of device to access a storage service, e.g. a laptop or a mobile phone,
etc. The PCS users can share their files amongst these devices, e.g. through the
synchronisation feature, which can be offered by the GMPCS.
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3. Different types of a database can be used to store and manage files and metadata.
The databases can be relational, e.g. SQL to store metadata, or non-relational,
which are typically used for ‘big data’, i.e. NoSQL.

4. A virtualisation technology can be applied over GMPCS resources (i.e. storage
devices and servers). Thus, a hypervisor is used, which is responsible for
managing and controlling virtualised resources. As mentioned above, this
technique can help in scaling up or down storage space based PCS users’ needs.

5. Different networks can be in the GMPCS, e.g. LAN, WAN, VPN over the
Internet. LAN is used within a datacentre to interconnect storage resources
and servers, whilst WAN or VPN over the Internet is used to interconnect a PCS
provider’s datacentres. The Internet is a link between a PCS user and a storage
service, and among PCS providers.

6. A PCS user can distribute a file in a GMPCS storage service via one of two
strategies. Strategy 1 is concerned with sending a full copy of the file to each
PCS provider by an L-PCS provider. This strategy can help overcome lock-in or
downtime issues. Strategy 2 is centred on dividing the file into multiple blocks.
Sub-blocks are then sent to each PCS provider. In order to retrieve the file, it
is necessary to obtain all the blocks from all the PCS providers. Strategy 2 may
help to overcome a dishonest PCS provider, i.e. file privacy and confidentiality
may be not breached without retrieving all the blocks. Furthermore, Strategy
2 may be more efficient than Strategy 1 in terms of communication and storage
overhead on each PCS provider.

7. A D-PCS provider can inherit any security issue from a PCS provider service that
is used (i.e. the S-PCS provider), e.g. a data breach or downtime. Whenever the
number of D-PCS providers is increased, the level of risk may rise in the GMPCS.

8. Data replication or deduplication technologies can be applied by PCS providers.
The multiple replicas for data are stored for a data recovery strategy. On the other
hand, data deduplication can be used to save disk space and network bandwidth
[90]. A single copy of the data is stored rather than many copies from various
PCS users. This may also save power and reduce cooling costs in the datacentres.

Without losing the generality of the above model, and capturing all its features,
we select the most straightforward case involving three PCS providers as a simplified
model. It is known as a Simplified-GMPCS (S-GMPCS). Figure A.7 illustrates three
PCS providers, i.e. an L-PCS provider and two subordinate PCS providers (S-PCS
provider and D-PCS provider). The two subordinate PCS providers work together
under the management of the L-PCS provider so as to offer a storage service to a PCS
user. The S-GMPCS, therefore, is used as a reference model in security analysis for
the storage service. Several threats could affect the overall security of the stored data
in terms of its integrity, confidentiality, availability and privacy. These are discussed
in the following section.
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A.5 Security Analysis for S-GMPCS

The security threats in the S-GMPCS can be classified into four groups: cloud-related
threats, network-related threats, database-related threats and other threats. These are
discussed in the following subsections.

A.5.1 Cloud-related Threats

Although the model has numerous characteristics that satisfy the demands of PCS
users (i.e. particularly in regards the above observations (4, 6, 7)), some attacks can
be created, which have been inherited due to these characteristics, as described below.

1. Man-In-The Cloud (MITC) Attack: An MITC attack [122] targets a
synchronisation feature, as offered in S-GMPCS, to share PCS users’ files between
their devices to breach the files and launch other attacks. Initially, specific
software is provided by the L-PCS provider and installed on the devices to sign a
token for each one. Then, the token is used by a notification server to authenticate
the device. In other words, the notification server does not require a PCS user’s
credentials. An attacker steals the device token by utilising a phishing attack or
other technique. The attacker can then use the token to access all synchronised
files from the PCS user’s account. The files’ confidentiality and integrity can be
compromised as a result of theft or manipulation. Furthermore, the attacker can
add malicious code to the files, e.g. a Macro code (in MS Word) or a script (in a
PDF file); this launched another attack. There are two scenarios for the MITC
attack: in the first, the attacker uses the PCS user’s token on his/her machine.
When the PCS user’s devices are synchronised, the PCS user’s files are added
into the attacker’s device. In the second scenario, the attacker uses his/her device
token on the PCS user’s machine; therefore, the PCS user adds his/her files to the
attacker’s account. When the attacker’s devices are synchronised, the PCS user’s
files can be accessed. However, the attacker does not need to compromise the PCS
user’s credentials as the notification server in L-PCS provider will authenticate
any device with the token. As a result, the PCS user may not notice or detect
this attack. Thus, such an attack can be difficult to defend against and can
demonstrate the difficulty in detection and in denying the attacker further access.

2. Abuse of Cloud Services: This term means a misuse of the cloud service by
illegal or unethical actions of PCS users (i.e. attackers). As S-PCS provider
offers VMs for D-PCS provider to apply its integration process, the attacker then
can use the S-PCS provider service and the VMs capabilities to support and
launch other attacks, thereby compromising PCS users’ accounts with a brute
force attack. The attacker’s launch of a Distributed Denial of Service (DDoS)
can rent a high number of VMs, floods an S-GMPCS service with a huge number
of requests, and disrupts network resources. A legitimate PCS user cannot gain
access, and delayed responses to the PCS user’s requests will result. The CSA’s
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report of 2019 stated abuse of cloud service as one of the top threats in the cloud
environment [5].

3. Shared Technology Vulnerabilities: Multiple PCS users share resources in
the model. Through the application of a virtualisation technology, the PCS users
are isolated at a virtual level; however, the storage resource is not separated.
Although the shared resources are cost effective, the lack of basic protection leads
to some threats. These are being launched by attackers relating to the privacy and
confidentiality of the stored data. Any weakness in shared management strategies
(i.e. a storage hypervisor) are applied by an L-PCS provider, S-PCS provider and
D-PCS provider, with an attacker able to utilise them and take control of the
system. Subsequently, a spam and malware can be spread to other PCS users,
with a breach of or modification to their stored data subsequently witnessed.
Furthermore, data remanence (i.e. ‘residual representation of data that has been
in some way nominally erased or removed’) is another concern in the shared
resources [109]. Either accidentally or through an attack, data remanence could
lead to the disclosure of private data and a breach in its privacy. According to
the CSA’s report, shared technology vulnerabilities are one of the top threats in
the cloud in 2019 [5].

4. Insecure Interface and API: As a PCS user uses interfaces and API when
interacting with the service to deliver and manage data, API is considered the
part of the system most likely to be targeted for attack. Therefore, it must
be secure and protect from any circumvention attempt (accidental or malicious).
This means a weak API contributes to an increase in the number of issues related
to the confidentiality and integrity of data. Some areas should be considered when
implementing API, e.g. transport security, message protection, authentication,
and authorisation. API messages can be exposed, and their sensitive data
stolen during a transmission process. The message can also be tempered by
such malicious code to launch further attacks. A lack of authentication and
authorisation in Interface or API can lead to unauthorised data access and
breaches.

5. Cross-Users Deduplication Attack: The PCS providers might apply a data
deduplication technology on their datacentres with various resulting benefits, e.g.
saving network bandwidth. There are two strategies of data deduplication: file-
level and block-level [90]. Only a single copy of a file is stored at file-level when
the comparison of two files’ hash values show they are identical. At block-level,
each file is divided into many blocks, with only a single block copy of data kept.
There are two approaches to data deduplication architecture: target-based and
source-based [90]. The data deduplication in the former approach acts on the
PCS provider-side, whilst the latter acts on the PCS user-side. In the target-
based approach, a PCS user is unaware that deduplication could occur because
it sends the file data to the PCS provider. The PCS provider applies the data
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deduplication. In source-based architecture, the PCS provider first checks if it
has a copy from the data. If the response is yes, the file data does not need to
be sent. An attacker can utilise the data deduplication feature at file-level and
source-based as a side channel to reveal information about the content of other
PCS users’ files and therefore can breach their privacy [91]. For example, PCS
user_A utilises this feature to reveal PCS user_B’s salary when both work for
the same company. Therefore, PCS user_A possesses knowledge of the contract
template and by utilising a brute force attack can obtain all the possible values.

6. Malicious Insider Attack: The threats not only come from outside; some
threats also come from inside, e.g. in the case of S-GMPCS staff (e.g. a
rogue administrator) gaining unauthorised access to and exposing or stealing
sensitive data [123]. The rogue administrator, who is familiar with the system’s
IT operations, can use their privileges for eavesdropping, stealing, maintaining or
selling unprotected data. As the L-PCS provider access to a PCS user accounts,
the rogue administrator can steal the account credentials and launch additional
attacks. The malicious insider attack is generally difficult to trace or detect
because the rogue administrator is bestowed with trust and access [124].

A.5.2 Network-related Threats

Based on Observation 5, a variety of network types are used (LAN, WAN and Internet,
etc.), with the S-GMPCS also made vulnerable to conventional network attacks that
threaten transmitted data. These are described below.

1. Account or Service Hijacking: Each PCS user has an account to access and
manage stored files. The account’s credentials could be stolen by an attacker
through activities, e.g. phishing, eavesdropping or fraud. The attacker then
uses these credentials to access and accordingly breaches or modifies the PCS
user’s files [97, 118]. Furthermore, the denial of the PCS user to access his/her
account could be achieved by the attacker through changing a password and any
information that helps to recover it. In such a case, a PCS provider cannot detect
unauthorised access to the data.

2. Malware Injection Attack: An attacker may exploit web-based application
vulnerabilities, e.g. insecure interface and API or account hijacking. Following,
the attacker can inject malicious codes into the S-GMCPS system. Therefore,
various attacks can be launched, e.g. eavesdropping on the PCS user’s activities,
or the manipulation or theft of stored data.

3. Man-In-the-Middle Attack (MITM): In the case of MITM, an attacker
exploits a real-time data transfer network used to communicate between a PCS
user and the S-GMCPS (i.e. Internet) or between datacentres (i.e. WAN) or
inside the datacentre (i.e. LAN). Therefore, this can capture sensitive data and
allow the attacker to launch additional attacks. A simple example of MITM can
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be done by a malicious insider. He can steal a PCS user’s data during a transition
process in a datacentre.

A.5.3 Database-related Threats

According to Observation 3, the databases hold sensitive information; this may be
exposed to several different attacks, including some of the following:

1. Database Injection Attack: Generally, the database is vulnerable to attacks,
e.g. injection attacks regardless of its type. For example, SQL injection attacks
target SQL servers. An attacker utilises a web page input and injects an SQL
command into an SQL statement. This allows the attacker to breach data in the
databases through data retrieval or manipulation (e.g. modifying or deleting)
in a database. Furthermore, the attacker could control the application server
to execute further activities. NoSQL injection attacks [125] is another example,
in the case of NoSQL database type is used by a PCS provider. This type of
database, i.e. NoSQL, can be considered better than SQL in terms of security
as it has a simply encoded and decoded query structure. NoSQL query can be
implemented in a variety of programming languages, and can be formatted in
JSON or XML—unlike the SQL query, which has a certain syntax. However,
NoSQL remains vulnerable. The NoSql is based on JavaScript in performing
complicated queries; therefore, an attacker can access and breach the data in the
database by running a JavaScript in the database.

2. Exposure of Back-up Data: Each PCS provider needs to frequently back-
up its databases as a recovery strategy. The theft of database tapes and
data breaches is possible. The case may be worse if the data is unencrypted.
Furthermore, the back-up data can be lost if it is kept on-site. In other words,
any attack in a datacentre can have an effect on the back-up as well.

A.5.4 Other Threats

Some threats cannot be avoided or prevented by PCS providers (i.e. L-PCS provider,
D-PCS provider and S-PCS provider). This is because the threats are out of their
control; therefore, sufficient strategies should be used to mitigate risk if these threats
were seen to occur. Examples of the threats follow:

1. Natural Disasters or Faults in Storage: Both during storage and
transmission, the data are vulnerable to various natural disasters, e.g. fire,
hurricanes, flooding or earthquakes, for example. Furthermore, a crushed
hardware in datacentres can cause data loss or data integrity breach.
Additionally, these disasters could lead to downtime and service outages, whereby
the data are not available for certain periods.

2. Immigration and Laws: As S-GMPCS datacentres could be distributed across
multiple locations, data travels a large distance over the Internet and crosses

224



international borders (i.e. various countries). A PCS user might not be aware of
the location of their data; this means that several laws and regulations may be
applicable that differ from one country to the next. For example, Healthcare
Insurance Portability and Accountability Act (HIPAA) for the protection of
health data. The privacy of sensitive data can be jeopardised; this data is more
vulnerable to attack when certain laws apply. For example, in the USA, the
PATRIOT Act (UPA) allows the US government to access electronic information
and a PCS provider must also disclose certain information in regards to the stored
data [126].

3. Unknown Risk Profile: There are various unknown risks that can impact
data security as a result of a PCS provider providing insufficient information and
details pertaining to an infrastructure, auditing, logging and security policies.
For example, PCS provider does not give details about any third party or any
new security bug identified in its system. Some attacks may occur without a
PCS user being aware [5]. The CSA suggests that PCS providers disclose this
information to their PCS users.

A.6 Security Measurements

As discussed above, many threats to stored data from both inside and outside the
environment can occur maliciously or accidentally. In an effort to keep the data
secure, PCS providers should, therefore, implement and apply sufficient technologies
and appropriate strategies, and accordingly assess the health of their environment in
an effort to address these threats. PCS users might expect a reasonable guarantee that
their data will be placed in reliable PCS. The list provides some security requirements
that PCS providers should consider and apply when designing their service:

1. Place certain restrictions on the synchronisation feature. Any access to the
account from any new device or location will result in a notification email to
a PCS user. It may be the most effective strategy for revoking any stolen token
when an attack is detected; the PCS user can change the account password to
force all of the device’s tokens to be revoked. Any other device using this token
no longer has access to the account.

2. Restrict any abuse by monitoring the network, activities, present privacy laws
and a blacklist. PCS users will be on the blacklist if they send malicious code or
are part of a botnet in a DDOS attack. Use a sanitisation to remove data from
storage media before reuse as a preventative measure for data remanence [24].

3. Use strong encryption technologies on a PCS provider-side. A PCS provider
should encrypt data before storing. Encryption keys should be kept in a safe
place. Use a secure channel (e.g. Secure Socket Layer (SSL)/Transport Layer
Security (TLS)) to protect data or when API messages are transmitted over
networks.
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4. Use strong authentication and authorisation, and prevent account hijacking
through the use of two-factor authentication attributes, encryption, and a PCS
user’s account credential (usernames and passwords). Protect API messages from
tampering through message structure, integrity validation and encoding. Defend
against or reduce database injection attacks by limiting database login permission
and using a web application firewall or Dynamic Application Security Testing
(DAST). DAST is a tool for detecting any injection vulnerabilities [124].

5. Mitigate the risk of applying various laws and regulations on a PCS user’s
data; choose a local datacentre as opposed to outsourcing to another country.
Enforce access controls to meet PCS users’ privacy requirements and implement
information security management standards, e.g. ISO 27002 (detailing controls
for the PCS provider’s staff), to prevent the malicious insider [127]. For example,
monitor staff activities.

6. Make frequent back-ups using encryption and off-site storage as a recovery
strategy as this can be a sufficient strategy to overcome or mitigate the risks
of natural disasters. Use external audit techniques, which are a series of tests
delegated to a third party, to identify appropriate implementation. The party is
a TPA, which analyses service conditions, monitors intrusions, accesses events in
the system, and provides records and detailed descriptions of the suitability of
what happens.

A PCS user cannot fully rely on or trust that the data is secure, even if a PCS
provider follows the above requirements. The PCS provider may hide problems or
refuse to admit to any data loss in order to maintain its reputation. The PCS user
should, therefore, contribute to keeping the data secure in a PCS. In an effort to
maintain privacy and confidentiality, data should be encrypted using a PCS user’s
personal key before uploading because PCS provider-side encryption cannot be secured
against malicious insider attacks. It is possible for the PCS provider to apply certain
data security practices to gain the PCS user’s trust. Furthermore, as the PCS provider
utilises a TPA to assess its environment, it can also allow the TPA to check the integrity
of the PCS user’s stored data frequently. The PCS provider offers this service; this is
known as Data Integrity Auditing (DIA) in PCS services. The DIA service involves a
PCS user, a PCS provider and a TPA. The TPA facilitates secure interaction between
the PCS user and PCS provider, periodically alerting the PCS user of any loss of, or
modification to, data.

The DIA service should be efficient in terms of both correctness and reliability of
results, as well as in fulfilling its purpose without introducing any new threats to any
of the involved parties, e.g. malicious actions or unauthorised exposure. .

A.7 Chapter Summary

In this chapter, an overview of the cloud computing model has been presented. The
chapter began with a discussion on the definitions of the concept of cloud computing,
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along with its characteristics. Various advantages of using service and deployment
models (e.g. elasticity, accessibility, and use and management simplicity) have been
presented. This has been followed by a discussion of PCS, along with a presentation
of its architecture and the GMPCS model. Before concluding the chapter, the security
of the S-GMPCS was explained. The numerous threats and their effect on the data
and their properties (privacy, integrity, etc.) were presented. These threats could
make the adoption of PCS an unlikely expectation. Some requirements for providing a
satisfactory security level for the stored data followed. Finally, we concluded that PCS
users could participate in ensuring their data security by checking their integrity and
availability with assistance from the TPA through a DIA service. Proposing the DIA
service for PCS is our research scope.
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Appendix B

TOD Algorithms

Algorithm 1 SetUp
Input : DF , sk
Output: {En_DBi}, 0 ≤ i < d

1. Divide a data file (DF ) into K data blocks, {DBi}, 0 ≤ i < K.

2. Eliminate any additional identical data blocks among K data blocks, i.e. only keep one copy of any identical
blocks. The output of this step is d non-duplicated data blocks, {DBi}, 0 ≤ i < d.

3. Encrypt each of d non-duplicated data blocks, {DBi}, using the LiSHE-Enc algorithm and a key, sk, to produce
a set of encrypted data blocks, {En_DBi}, 0 ≤ i < d.

for i = 0→ d− 1 do

Compute: En_DBi = LiSHE-Enc(DBi, sk)

end

Algorithm 2 MappingFunction
Input : DBTagi, MappingSecretKey

Output: DBTagMapV aluei

1. Compute: S= DBTagi || MappingSecretkey.

2. Compute:
t = H1(S) (B.1)

3. Convert t to integer, a.

4. Compute:
DBTagMapV aluei = a mod p (B.2)
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Algorithm 3 TagGen
Input : { En_DBi }, 0 ≤ i < d, UserID, υ, x, ppkEn

Output: {IDTagi}, {En_IDTagi}, {DBTagi}, {DBTagTagi}, 0 ≤ i < d

for i = 0→ d− 1 do

1. Generate a random number, RNi, using pseudo-random number generator.

2. Compute IDTagi by applying UserID and RNi to the following equation:

IDTagi = AS(UserID||RNi)

3. Compute DataTagi by applying En_DBi to the following equation:

DataTagi = AS(En_DBi)

4. Compute DBTagi by applying IDTagi and DataTagi to the following equation:

DBTagi = IDTagi +DataTagi

5. Encrypt IDTagi, En_IDTagi, using ppkEn and Paillier-Enc Algorithm.

6. Compute DBTagMapV aluei by using DBTagi and MappingFunction algorithm.

7. Compute DBTagTagi by applying υ, x, En_IDTagi and DBTagMapV aluei to the following equation:

DBTagTagi = [H(En_IDTagi)× υDBTagMapV aluei ]x

end

Algorithm 4 STagPriVer
Input : En_DBi, IDTagi, DBTagi
Output: 0/1

1. Compute a fresh DataTagi, DataTag′i, by applying En_DBi to the following equation:

DataTagi = AS(En_DBi)

2. Compute a fresh DBTagi, DBTag′i, by applying IDTag and DataTag′i to the following equation:

DBTagi = IDTagi +DataTagi

3. if
DBTag′i == DBTagi (B.3)

then

The private verification is positive, i.e. 1.

else

The private verification is negative, i.e. 0.

end
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Algorithm 5 BTagPriVer
Input : AggEn_DB, AggIDTag, AggDBTag
Output: 0/1

1. Compute an algebraic signature of AggEn_DB, producing an aggregated data tag, AggEn_DBTag, using the
following equation:

AggEn_DBTag = AS(AggEn_DB)

2. Compute a fresh AggDBTag, AggDBTag′, by applying AggIDTag and AggEn_DBTag to the following
equation:

AggDBTag′ = AggIDTag +AggEn_DBTag

3. if
AggDBTag′ == AggDBTag (B.4)

then

The private verification is positive, i.e. 1.

else

The private verification is negative i.e. 0.

end

230



Algorithm 6 STagPubVer
Input : En_IDTagi, En_DBi, DBTagi, DBTagTagi, ppk, ppkEn

Output: 0/1

1. Compute DataTagi by applying En_DBi to the following equation:

DataTagi = AS(En_DBi)

2. Encrypt DataTagi, En_DataTagi, using ppkEn and Paillier-Enc Algorithm.

3. Encrypt DBTagi, En_DBTagi, using ppkEn and Paillier-Enc Algorithm.

4. Compute En_DBTag′i by applying En_IDTagi, En_DataTagi, to the following equation:

En_DBTag′i = En_IDTagi × En_DataTagi

5. if
En_DBTag′i == En_DBTagi (B.5)

then

The Verification_1 is positive, i.e. 1.

else

The Verification_1 is negative, i.e. 0.

end

6. if Verification_1==1 then

(a) Compute DBTagMapV aluei using DBTagi and MappingFunction algorithm (Algorithm 2).

(b) Apply En_IDTagi, DBTagMapV aluei, DBTagTagi and ppk to the following equation
(Verification_2):

e(DBTagTagi, g2) = e(H(En_IDTagi)× υDBTagMapV aluei , ppk)

(c) if Verification_2==1 then

The public verification is positive, i.e. 1.

else

The public verification is negative, i.e. 0.

end

else

The public verification is negative, i.e. 0.

end
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Algorithm 7 BTagPubVer
Input : AggEn_DB, AggDBTagTag , {En_IDTagi}, {DBTagi}, where 0 ≤ i < C, ppk, ppkEn

Output: 0/1

1. Compute AggEn_IDTag and AggDBTag by applying {En_IDTagi} and {DBTagi} to the following
equations, respectively:

AggEn_IDTag =

C−1∏
i=0

En_IDTagi

AggDBTag =

C−1∑
i=0

DBTagi

2. Compute a tag for AggEn_DB, i.e. AggEn_DBTag, by applying AggEn_DB to the following equation:

AggEn_DBTag = AS(AggEn_DB)

3. Encrypt AggEn_DBTag and AggDBTag, En_AggEn_DBTag and En_AggDBTag, using and ppkEn and
Paillier-Enc Algorithm.

4. Compute a fresh En_AggDBTag, En_AggDBTag′, by applying AggEn_IDTag and En_AggEn_DBTag
to the following equation:

En_AggDBTag′ = AggEn_IDTag × En_AggEn_DBTag

5. if
En_AggDBTag′ == En_AggDBTag (B.6)

then

The Verification_1 is positive, i.e. 1.

else

The Verification_1 is negative, i.e. 0.

end

6. if Verification_1==1 then

(a) Computes {DBTagMapV aluei} using {DBTagi} and MappingFunction algorithm (Algorithm 2).

(b) Apply {En_IDTagi}, {DBTagMapV aluei}, AggDBTagTag and ppk to the following equation
(Verification_2):

e(AggDBTagTag, g2) = e(

C−1∏
i=0

H(En_IDTagi)× υ
∑C−1

i=0 DBTagMapV aluei , ppk)

(c) if Verification_2==1 then

The public verification is positive, i.e. 1.

else

The public verification is negative, i.e. 0.

end

else

The public verification is negative, i.e. 0.

end
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Appendix C

DIA-ETTP Algorithms

Algorithm 8 FileSetUp
Input : DF , sk
Output: D3L1R

1. Divide a data file (DF) into K data blocks, {DBi}, 0 ≤ i < K.

2. Set L1= L2=D3L1R={DBi}, 0 ≤ i < K.

3. Eliminate any additional identical data blocks among K data blocks, i.e. only keep one copy of any identical
blocks. The output of this step is d1 non-duplicated data blocks, {DBi}, 0 ≤ i < d1.

for i = 0→ L1.size-1 do

for j = 1→ L2.size-1 do

if L1i==L2j then
Set D3L1Ri+j= i // i= is an identifier of the data block that is identical to L1i.

end

end

Delete L2i

end

4. Encrypt each of d1 non-duplicated data blocks, {DBi} in D3L1R, using the LiSHE-Enc algorithm and key,
sk, to produce a set of encrypted data blocks, {En_DBi}, 0 ≤ i < d1.
for i = 0→ K − 1 do

if D3L1Ri not in [0: K-1] then

Compute: En_DBi = LiSHE-Enc(D3L1Ri, sk)

end

end
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Algorithm 9 L2DataDedup
Input : D3L1R, ODBH
Output: D3L2R, NDB, NDBH

1. RDB is a list of the received data blocks in L1D3R.

2. D3L2R, NDB, and NDBH are empty lists.

3. for i = 0 → d1-1 do

Compute a hash of RDBi, i.e. HEn-DBi.

for j = 0→M − 1 // M is the total number of the outsourced data blocks in PCS, do

if HEn-DBi == ODBHj then
Set D3L2Ri= j // j is an ID of data block in M2T that is identical to RDBi.

Stop the inner For

end

end

if D3L2Ri is empty value then

Add RDBi to NDB. // It means the data block is non-duplicated

Add HEn-DBi to NDBH.

end

end

Algorithm 10 BlockTagGen
Input : { En_DBi }, 0 ≤ i < d1, UserID, x, υ, ppkEn, D3L1R, D3L2R

Output: {IDTagi}, {En_IDTagi}, {DBTagi}, {DBTagTagi}, 0 � i ≺ d2, D3L1R′

for i = 0→ d1− 1 do
if D3L2Ri is empty value then

1. Computes tags for En_DBi, i.e. IDTagi, DBTagi, DBTagTagi and En_IDTagi using TagGen algorithm
with UserID, x, υ, ppkEn.

2. Remove data block values in D3L1R, D3L1R′.

end
end

Algorithm 11 FileTagSigGen
Input : K, FileID, Pkey
Output : FileTagSig

1. Compute a file tag FileTag = FileID||K.

2. Compute a hash value for the file tag:

FileTagH = H1(FileTag)

3. Compete a signature for FileTag as follows:

FileTagSig = EPkey(FileTag||FileTagH) (C.1)

//E is an encryption algorithm of one of public-key cryptography schemes, e.g. RSA, Pkey is a private key and
Hash is a hash function, e.g. SHA256.
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Algorithm 12 PubChalGen
Input : FileTagSig, PuKey
Output: {PubChallj}, 0 ≤ j < n− 1, AggProofNonceTag

1. Verify FileTagSig to recover FileTag as follows:

1.1 Decrypt FileTagSig using PuKey and recover two values: FileTag and FileTagH.

1.2 Compute a fresh hash value, i.e. FileTagH′, for FileTag.

1.3 if FileTagH== FileTagH′ then

Set X=1.

else

Set X=0.

end

2. if X == 1 then

2.1 Choose randomly C-element subset of set K data blocks identifiers, {Ii}, 0 ≤ i < C.

2.2 Choose for each Ii, a random value ProofNoncei ∈ Zp, {ProofNoncei}, 0 ≤ i < C.

2.3 Compute an aggregated value of {ProofNoncei}, i.e. AggProofNonce, as follows:

AggProofNonce =

C−1∑
i=0

ProofNoncei (C.2)

2.4 Compute a tag of AggProofNonce using AS scheme, i.e. AggProofNonceTag.

2.5 Choose randomly value for each PCS as nonce, {PCSNoncej}, PCSNoncej ∈ Zp.

2.6 Compute tags for the set {PCSNoncej} using AS scheme, i.e. {PCSNonceTagj}.

2.7 for j = 0→ n− 2 do

Set PubChallj= { {Ii}||{ProofNoncei} ||PCSNoncej ||PCSNonceTagj ||FileID }

end

else
Stop

end

Algorithm 13 PubProofsGen
Input : PubChallj , {En-DBi}, {DBTagi}, {DBTagTagi}, 0 ≤ i <C
Output: PubDBProofj , PubDBTagProofj , PubDBTagTagProofj

1. Compute:

PubDBProofj =

C−1∑
i=0

(En-DBi + ProofNoncei) (C.3)

2. Compute:
PubDBTagProofj = {PubDBTagProofji}, 0 ≤ i < C (C.4)

Where DBTagProofji= DBTagi + PCSNonceTagj

3. Compute:

PubDBTagTagProofj = (

C−1∏
i=0

DBTagTag
ProofNoncei
i )PCSNoncej (C.5)
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Algorithm 14 DBProofTagGen
Input : {PubDBProofj} , 0 ≤ j < n− 1, {En_IDTagi} , 0 ≤ i < C

Output: DBProofTag,AggEn_IDTag

1. Compare all the PubDBProof values, i.e. {PubDBProofj}, if they are equal, set Comparison Result= 1,
otherwise set Comparison Result= 0.

2. if Comparison Result== 1 then

2.1 Compute a tag for PubDBProof , i.e. DBProofTag, using AS scheme.

2.2 Aggregate value of En_IDTags, i.e. AggEn_IDTag, that are associated with the chosen data blocks
in PubChall as the following equation:

AggEn_IDTag =

C−1∏
i=0

En_IDTagi

else
Stop

end

Algorithm 15 DBTagProofVer
Input : PubDBTagProofj , DBProofTag, AggEn_IDTag, PCSNonceTagj , ppkEn, AggProofNonceTag
Output: DBTagProofV erResultj

1. Compute:

AggDBTagProof =

C−1∑
i=0

(PubDBTagProofji) +AggProofNonceTag (C.6)

2. Encrypt AggDBTagProof , i.e. En_AggDBTagProof , using AggDBTagProof and ppkEn in the Paillier-En
algorithm.

3. Compute:
DBProofTag′ = DBProofTagj + (C × PCSNonceTagj) (C.7)

4. Encrypt DBProofTag′, i.e. En_DBProofTag using the Paillier-En algorithm as follows:

En_DBProofTag = En(DBProofTag′) (C.8)

5. Compute:
En_AggDBTagProof ′ = AggEn_IDTag × En_DBProofTag (C.9)

6. if
En_AggDBTagProof == En_AggDBTagProof ′ (C.10)

then

Set DBTagProofV erResultj=1.

else

Set DBTagProofV erResultj=0.

end
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Algorithm 16 DBTagProofMap
Input : PubDBTagProofj , {ProofNoncei}, 0 ≤ i < C , MappingSecretkey, PCSNonceTagj
Output: DBTagProofMapV aluej

1. Set DBTagProofMapV alue=0

2. for 0 to C-1 do

Compute: di = PubDBTagProofji − PCSNonceTagj

Compute:
DBTagMapV alueji =MappingFunction(di,MappingSecretkey) (C.11)

end

3. Compute:

DBTagProofMapV aluej =

C−1∑
i=0

DBTagMapV alue
ProofNoncei
ji (C.12)

Algorithm 17 DBTagTagProofVer
Input : {DBTagProofV erResultj}, {DBTagProofMapV aluej}, {PubDBTagTagProofj}, 0 ≤ i < n − 1,

{PCSNoncej}, {En_IDTagi}, {ProofNoncei}, 0 ≤ i < C, ppk
Output: DBTagTagProofV erResult, AggPCSNonceTag

1. if (All {DBTagProofV erResultj}are equal 1) and (All {DBTagProofMapV aluej} are equal) then

1. Aggregate {PCSNoncej} as:

AggPCSNonce =

n−2∑
j=0

PCSNoncej (C.13)

2. Compute a tag of AggPCSNonce, i.e. AggPCSNonceTag, using AS scheme.

3. Aggregate {DBTagTagProofj}, as follows:

AggDBTagTagProof = (

n−2∏
j=0

PubDBTagTagProofj)
1/AggPCSNonce (C.14)

4. if

e(AggDBTagTagProof, g2) == e(

C−1∏
i=0

H(En_IDTagi)ProofNoncei × υDBTagProofMapV alue, ppk)

(C.15)
then

Set DBTagTagProofV erResult=1

else

Set DBTagTagProofV erResult=0

end

else

Set DBTagTagProofV erResult=0.

end
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Algorithm 18 PriChalGen
Input : {Ii}, {ProofNoncei}, 0 ≤ i < C

Output: PriChall, LPCSNonce

1. Choose randomly value, i.e. LPCSNonce ∈ Zp, as a nonce for the leader provider.

2. Compute a tag of LPCSNonce, using AS scheme, i.e. LPCSNonceTag:

LPCSNonceTag = AS(LPCSNonce) (C.16)

3. Set PriChall= { {Ii}||{ProofNoncei}, 0 ≤ i < C ||LPCSNonceTag}

Algorithm 19 PriProofsGen
Input : {Ii}, {ProofNoncei}, {En-DBi}, {DBTagi}, 0 ≤ i < C, PCSNonceTagj
Output: PriDBProofj , PriDBTagProofj

1. Compute

PriDBProofj =

C−1∑
i=0

(En-DBi + ProofNoncei) (C.17)

2. Compute

PriDBTagProofj =

C−1∑
i=0

(DBTagi + PCSNonceTagj) (C.18)

Algorithm 20 FPriProofsGen
Input : {PriDBProofj}, {PriDBTagProofj}, 0 ≤ j < n− 1, PriDBProofL, PriDBTagProofL
Output: FPriDBProof, FPriDBTagProof

1. Compute a final private DBProof as follows:

FPriDBProof =

n−2∑
j=0

PriDBProofj + PriDBProofL (C.19)

2. Compute a final private DBTagProof as follows:

FPriDBTagProof =

n−2∑
j=0

PriDBTagProofj + PriDBTagProofL (C.20)
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Algorithm 21 FPriProofsVer
Input : FPriDBProof , FPriDBTagProof , {ProofNoncei}, {IDTagi}, LPCSNonceTag, AggPCSNonceTag,

DBTagTagProofV erResult

Output : FV erReslt

1. Compute an aggregated value of {IDTagi}, i.e. AggIDTag as follows:

AggIDTag =

C−1∑
i=0

IDTagi (C.21)

2. Compute:

FPriDBTagProof1 = n×AggIDTag +AS(FPriDBProof) +C × (AggPCSNonceTag +LPCSNonceTag)

(C.22)

3. Compute an aggregated value of {ProofNoncei} as follows:

AggProofNonce =

C−1∑
i=0

ProofNoncei (C.23)

4. Compute a tag for AggProofNonce, i.e. AggProofNonceTag, as follows:

AggProofNonceTag = AS(AggProofNonce) (C.24)

5. Compute:
FPriDBTagProof2 = FPriDBTagProof + n×AggProofNonceTag (C.25)

6. if
FPriDBTagProof1 == FPriDBTagProof2 (C.26)

then

Set FPriProofsVer=1.

else

Set FPriProofsVer=0.

end

8. if FPriProofsVer==DBTagTagProofVerResult==1 then

Set FVerResult=1.

else

Set FVerResult=0.

end
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Algorithm 22 DataUpdateReqGen
Input : FileID, sk, DB, Index, OpType
Output: DataUpdateReq
switch (OpType)

case 0: //Data Block Modification

(a) Set En_DBi = DB is an old version of the data block, and Index is its ID value in the data file.

(b) Decrypt En_DBi using the LiSHE-Dec algorithm and sk, i.e. DBi.

(c) Set DB′i is an new version of the data block.

(d) Encrypt DB′i using the LiSHE-Enc algorithm and sk, i.e. En_DB′i.

(e) Set DataUpdateReq= {OpType || FileID || En_DB′i || Index}.

case 1: // Data Block Insertion

(a) Set DBi+1 = DB is a new inserted data block which it is inserted after a data block that its position is
Index, i.e. i.

(b) Encrypt DBi+1 using the LiSHE-Enc algorithm and sk, i.e. En_DBi+1.

(c) Set DataUpdateReq= {OpType || FileID || En_DBi+1 || Index}.

case 2: // Data Block Deletion

(a) Set DataUpdateReq= {OpType || FileID || Index}

end switch
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Algorithm 23 DataUpdate
Input : DataUpdateReq
Output : UpdateResult
switch (OpType)

case 0: // Data Block Modification

if En_DBi is associated to other data files then

if En_DB′i is duplicated then
1. Execute the operations of Mod-Case_2 for updating LPCS-M2T.

2. Set UpdateResult= 1|| ID // ID is an identifier of the data block that is identical to En_DB′i
in NonDuplicatedDB/Tag table.

else
1. Execute the operations of Mod-Case_1.

2. Set UpdateResult= 1||0.

end

else

if En_DB′i is duplicated then
1. Execute the operations of Mod-Case_4.

2. Set UpdateResult= 0|| ID // ID is an identifier of the data block that is identical to En_DB′i.

else
1. Execute the operations of Mod-Case_3.

2. Set UpdateResult= 0||0.

end

end

case 1: // Data Block Insertion

(a) if En_DBi+1 is duplicated then

1. Execute the operations of Ins-Case_1.

2. Set UpdateResult= ID // ID is an identifier of the data block that is identical to En_DBi+1.

else

1. Execute the operations of Ins-Case_2.

2. Set UpdateResult= 0.

end

case 2: //Data Block Deletion

(a) if a data block, En_DBi, is associated to other files, then

1. Execute the operations of Del-Case_1

2. Set UpdateResult= 1,

else

1. Execute the operations of Del-Case_2.

2. set UpdateResult= 0.

end

end switch
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Algorithm 24 TagsOfUpdatedDataGen
Input : DataUpdateReq, UpdateResult, UserID, x, υ, ppkEn, K
Output: UpdatedTags, En_IDTagUpdateReq
switch (OpType)

case 0: // Data Block Modification

(a) if The first item in UpdateResult= 1 then

if The second item in UpdateResult==0 then

1. Compute new tags for En_DB′i, i.e. IDTagi, DBTagi, DBTagTagi and En_IDTagi, using
TagGen algorithm and UserID, x, υ, ppkEn.

2. Execute the operations of Mod-Case_1 for updating User-M2T.

3. Set UpdatedTags = DBTagi || DBTagTagi
4. Set En_IDTagUpdateReqt={OpType || FileID || UpdateResult || En_IDTagi || Index}.

else
1. Execute the operations of Mod-Case_2 for updating User-M2T and using ID value.

2. Set UpdatedTags = 1.

3. Set En_IDTagUpdateReq={OpType || FileID || UpdateResult || Index }.

end

else

if The second item in UpdateResult==0 then

1. Compute new tags for En_DB′i, i.e. IDTagi, DBTagi, DBTagTagi and En_IDTagi.

2. Execute the operations of Mod-Case_3.

3. Set UpdatedTags = DBTagi || DBTagTagi
4. Set En_IDTagUpdateReqt={OpType || FileID || UpdateResult || En_IDTagi || Index}.

else
1. Execute the operations of Mod-Case_4.

2. Set UpdatedTags = 1.

3. Set En_IDTagUpdateReq={OpType || FileID || UpdateResult || Index }.

end

end

case 1: // Data Block Insertion

if UpdateResult==0 then

1. Compute new tags for En_DB′i, i.e. IDTagi, DBTagi, DBTagTagi and En_IDTagi.

2. Execute the operations of Ins-Case_2.

3. Set UpdatedTags = DBTagi || DBTagTagi
4. Set En_IDTagUpdateReqt={OpType || FileID || UpdateResult || En_IDTagi || Index}.

else

1. Execute the operations of Ins-Case_1.

2. Set UpdatedTags = 1.

3. Set En_IDTagUpdateReq={OpType || FileID || UpdateResult || Index }.

end
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case 2: // Data Block Deletion

(a) if UpdateResult ==1 then

1. Execute the operations of Del-Case_1.

2. Set UpdatedTags = 1.

3. Set En_IDTagUpdateReq={OpType || FileID || UpdateResult || Index }.

else

1. Execute the operations of Del-Case_2.

2. Set UpdatedTags = 1.

3. Set En_IDTagUpdateReq={OpType || FileID || UpdateResult || Index }.

end

end switch

2. Increase the value of K by one in the case of an insert operation or decrease it by one in the case of a delete
operation to update FileTagSig of the data file using Algorithm 11.

Algorithm 25 PCSUpdateReqGen
Input : DataUpdateReq, UpdateResult, UpdatedTags
Output: PCSUpdateReq

1. switch (OpType)

case 0: // Data Block Modification

if The second item in UpdateResult==0 then

Set PCSUpdateReq={OpType || FileID || UpdateResult || En_DB′i || Index || UpdatedTags}

else

Set PCSUpdateReq={OpType || FileID || UpdateResult || || Index || UpdatedTags}

end

case 1: // Data Block Insertion

if UpdateResult==0 then

Set PCSUpdateReq={OpType || FileID || UpdateResult || En_DBi+1 || Index || UpdatedTags}

else

Set PCSUpdateReq={OpType || FileID || UpdateResult || || Index || UpdatedTags }

end

case 2: // Data Block Deletion

if UpdateResult ==0 then

Set PCSUpdateReq={OpType || FileID || UpdateResult || || Index || UpdatedTags }

else

Set PCSUpdateReq={OpType || FileID || UpdateResult || || Index || UpdatedTags}

end

end switch
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Algorithm 26 DataTagsUpdate
Input : PCSUpdateReq
Output: ACK

1. switch (OpType )

case 0 : // Data Block Modification

if The first item in UpdateResult==1 then

if The second item in UpdateResult==0 then
Execute the operations of Mod-Case_1.

else
Execute the operations of Mod-Case_2.

end

else

if The second item in UpdateResult==0 then
Execute the operations of Mod-Case_3.

else
Execute the operations of Mod-Case_4.

end

end

case 1: // Data Block Insertion

if UpdateResult=0 then

Execute the operations of Ins-Case_2.

else

Execute the operations of Ins-Case_1.

end

case 2: // Data Block Deletion

if UpdateResult=0 then

Execute the operations of Del-Case_2.

else

Execute the operations of Del-Case_1.

end

end switch

2. Set ACK= 1
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Algorithm 27 En_IDTagUpdate
Input : En_IDTagUpdateReq
Output: ACK

1. switch (OpType )

case 0 : // Data Block Modification

if The first item in UpdateResult==1 then

if The second item in UpdateResult==0 then
Execute the operations of Mod-Case_1.

else
Execute the operations of Mod-Case_2.

end

else

if The second item in UpdateResult==0 then
Execute the operations of Mod-Case_3.

else
Execute the operations of Mod-Case_4.

end

end

case 1: // Data Block Insertion

if UpdateResult=0 then

Execute the operations of Ins-Case_2.

else

Execute the operations of Ins-Case_1.

end

case 2: // Data Block Deletion

if UpdateResult=0 then

Execute the operations of Del-Case_2.

else

Execute the operations of Del-Case_1.

end

end switch

2. Set ACK= 1
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Appendix D

The Correctness of Verification
Protocols

D.1 DBTagProof Public Verification

The Public verification of DBTagProof is performed using EQ(C.10), i.e.

En_AggDBTagProof ′ = En_AggDBTagProof

The proof of the above equation as follows:

Left side: En_AggDBTagProof ′

= AggEn_IDTag × En_DBProofTag, (based EQ(C.9))

= AggEn_IDTag × E(DBProofTag′), (based EQ(C.8))

=

C−1∏
i=0

En_IDTag × E(DBProofTagj + (C × PCSNonceTagj)), (based EQ(3.19) and EQ(C.7))

= E(

C−1∑
i=0

IDTag +DBProofTagj + C × PCSNonceTagj), (based EQ(3.5))

= E(

C−1∑
i=0

IDTag +AS(DBProof) + C × PCSNonceTagj)

= E(

C−1∑
i=0

IDTag +AS(

C−1∑
i=0

(En_DBi + ProofNoncei)) + C × PCSNonceTagj), (based EQ(C.3))

= E(

C−1∑
i=0

IDTag +

C−1∑
i=0

(AS(En_DBi) +AS(ProofNoncei)) + C × PCSNonceTagj)

= E(

C−1∑
i=0

IDTag +

C−1∑
i=0

DataTagi +

C−1∑
i=0

AS(ProofNoncei) + C × PCSNonceTagj)

= E(

C−1∑
i=0

(IDTag +DataTagi) +

C−1∑
i=0

AS(ProofNoncei) + C × PCSNonceTagj)

= E(

C−1∑
i=0

DBTagi +

C−1∑
i=0

AS(ProofNoncei) + C × PCSNonceTagj), (based EQ(3.10))

= E(

C−1∑
i=0

DBTagi + C × PCSNonceTagj +

C−1∑
i=0

AS(ProofNoncei)), (based EQ(C.4))

= E(

C−1∑
i=0

DBTagProofji +

C−1∑
i=0

AS(ProofNoncei))

= E(

C−1∑
i=0

(DBTagProofji) +AggProofNonceTag)

= E(AggDBTagProof), (based EQ(C.6))

= En_AggDBTagProof, (EQ(C.10) holds)
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D.2 DBTagTagProof Verification

The verifaction of DBTagTagProof is performed using EQ(C.15), i.e.

e(AggDBTagTagProof, g2) = e(

C−1∏
i=0

H(En_IDTagi)ProofNoncei × υDBTagProofMapV alue, ppk)

The proof of the above equation as follows:

AggDBTagTagProof = (

n−2∏
j=0

(

C−1∏
i=0

DBTagTag
ProofNoncei
i )PCSNoncej )1/AggPCSNonce

= ((

C−1∏
i=0

DBTagTag
ProofNoncei
i )

∑n−2
j=0 PCSNoncej )1/AggPCSNonce

= ((

C−1∏
i=0

DBTagTag
ProofNoncei
i )AggPCSNonce)1/AggPCSNonce, (based on EQ(C.13))

=

C−1∏
i=0

DBTagTag
ProofNoncei
i (D.1)

Left Side: e(AggDBTagTagProof, g2) = e(
∏C−1

i=0 DBTagTag
ProofNoncei
i , g2)

Right Side: e(
∏C−1

i=0 H(En_IDTagi)ProofNoncei × υDBTagProofMapV alue, ppk)

= e(

C−1∏
i=0

H(En_IDTagi)ProofNoncei × υ
∑C−1

i=0 DBTagMapV alue
ProofNoncei
i , ppk), (based on EQ(C.12))

= e(

C−1∏
i=0

H(En_IDTagi)ProofNoncei ×
C−1∏
i=0

υDBTagMapV alue
ProofNoncei
i , gx2 ), (Based on ppk = gx2 )

= e(

C−1∏
i=0

[H(En_IDTagi)× υDBTagMapV aluei ]ProofNoncei , gx2 )

= e(

C−1∏
i=0

[H(En_IDTagi)× υDBTagMapV aluei ]ProofNoncei×x, g2),

based on property (P1) of the bilinear pairing

= e(

C−1∏
i=0

[H(En_IDTagi)× υDBTagMapV aluei ]xProofNoncei , g2)

= e(

C−1∏
i=0

DBTagTag
ProofNoncei
i , g2), (based on EQ(C.12))

= e(AggDBTagTagProof, g2), (based on EQ(D.1)), Left-side (EQ(C.15) holds).

D.3 DBTagProof Private Verification

The private verification is based on EQ(C.26), i.e.

FPriDBTagProof1 == FPriDBTagProof2

The proof of the above equation as follows:
Left side: FPriDBTagProof1 = n×AggIDTag+AS(FPriDBProof)+C×(AggPCSNonceTag+LPCSNonceTag),
(based EQ(C.22))

Right side: FPriDBTagProof2 = FPriDBTagProof + n×AggProofNonceTag
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Left Side = n× (

C−1∑
i=0

IDTagi) +AS(

n−2∑
j=0

PriDBProofj + PriDBProofL) + C × (AggPCSNonceTag + LPCSNonceTag)

, (EQ(C.19))

= n× (

C−1∑
i=0

IDTagi) +AS(

n−2∑
j=0

PriDBProofj) +AS(PriDBProofL) + C × (AggPCSNonceTag + LPCSNonceTag)

, (based EQ(C.16))

= n× (

C−1∑
i=0

IDTagi) +AS(

n−2∑
j=0

C−1∑
i=0

(En-DBji + ProofNoncei)) +AS(

C−1∑
i=0

(En-DBLi + ProofNoncei))

+ C × (AggPCSNonceTag + LPCSNonceTag), (based EQ(C.3))

= n× (

C−1∑
i=0

IDTagi) +

n−2∑
j=0

C−1∑
i=0

(AS(En-DBji) +AS(ProofNoncei)) +

C−1∑
i=0

(AS(En-DBLi) +AS(ProofNoncei))

+ C × (AggPCSNonceTag + LPCSNonceTag)

= n× (

C−1∑
i=0

IDTagi) +

n−2∑
j=0

C−1∑
i=0

(DataTagji + ProofNonceTagi) +

C−1∑
i=0

(DataTagLi + ProofNonceTagi)

+ C × (AggPCSNonceTag + LPCSNonceTag), (based EQ(3.9))

=

n−2∑
j=0

(

C−1∑
i=0

(IDTagi +DataTagji) + n− 1×
C−1∑
i=0

ProofNonceTagi

+

C−1∑
i=0

(IDTagi +DataTagLi) +

C−1∑
i=0

ProofNonceTagi) + C × (AggPCSNonceTag + LPCSNonceTag)

=

n−2∑
j=0

(

C−1∑
i=0

(DBTagji) + n− 1×
C−1∑
i=0

ProofNonceTagi +

C−1∑
i=0

(DBTagLi) +

C−1∑
i=0

ProofNonceTagi)

+ C × (AggPCSNonceTag + LPCSNonceTag), (based EQ(3.10))

=

n−2∑
j=0

(

C−1∑
i=0

(DBTagji) + C × (

n−2∑
j=0

PCSNonceTagj) + n− 1×
C−1∑
i=0

ProofNonceTagi +

C−1∑
i=0

(DBTagLi)

+

C−1∑
i=0

ProofNonceTagi) + C × LPCSNonceTag, (based EQ(C.3))

=

n−2∑
j=0

(

C−1∑
i=0

(DBTagji + PCSNonceTagj) +

C−1∑
i=0

(DBTagLi + LPCSNonceTag) + n×
C−1∑
i=0

ProofNonceTagi

, (based EQ(C.3))

=

n−2∑
j=0

PriDBTagProofj + PriDBTagProofL + n×AggProofNonceTag, (based EQ(C.18))

= FPriDBTagProof + n×AggProofNonceTag, (based EQ(C.20)), Right side, EQ(C.26) holds.
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