
Towards Scalable Meta-Learning

A thesis submitted to

the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Humanities

2021

Sebastian Flennerhag

School of Social Sciences

Supervisors: Prof. Mark Elliot

Prof. John Keane

Prof. Hujun Yin

Internal reviewer: Dr. Xiao-Jun Zeng

Examiners: Dr. Joaquin Vanschoren

Dr. Richard Allmendinger

2

Contents

I Declaration of Authorship 9

II Copyright 10

III Abstract 12

IV Acknowledgements 13

V Abbreviations 14

VI Notation 15

VII Publications 17

1 Introduction 18
1.1 Limitations of Tabula Rasa . 20

1.2 Limitations of Contemporary Meta-Learning 23

1.2.1 Scalability . 24

1.2.2 Generalisation . 26

1.2.3 Exogenous Tasks . 28

1.3 Thesis Outline . 29

I Foundations 31

2 Machines that Learn 32
2.1 Types of Machine Learning . 32

2.2 Machine Learning Problem Definitions 35

2.2.1 Maximum Likelihood Estimation 36

2.2.2 Empirical Risk Minimization 37

2.3 Learning Through Stochastic Gradient Descent 39

2.4 Reinforcement Learning . 41

2.4.1 The Reinforcement Learning Problem 41

2.4.2 Generalised Policy Iteration 44

2.4.3 Reinforcement Learning with Policy Gradients 46

2.5 Summary . 48

3

3 Machines that Learn to Learn 49
3.1 The Meta-Learning Problem 49

3.2 Related Fields . 52

3.3 A Historical Perspective . 54

3.4 The Mechanics of Meta-Learning 57

3.5 Contemporary Meta-Learning with Neural Networks 59

3.6 Summary . 63

II Learning to Learn 65

4 Learning to Dynamically Adapt 66

Breaking the Activation Function Bottleneck

through Adaptive Parameterisation 68

4.1 Introduction . 68

4.2 Adaptive Parameterization . 69

4.2.1 The Adaptive Feed-Forward Layer 71

4.2.2 Adaptation Modules . 71

4.3 Adaptive Parameterization in RNNs 73

4.4 Related Work . 75

4.5 Experiments . 76

4.5.1 Extreme Tail Regression 76

4.5.2 MNIST . 77

4.5.3 Penn Treebank . 77

4.5.4 WikiText-2 . 79

4.5.5 Ablation Study . 79

4.5.6 Robustness . 80

4.6 Conclusions . 81

Appendix 83
4.A NLP Experiment Hyper-Parameters 83

5 Scaling up Meta-Learning On First Principles 84

Transferring Knowledge across Learning Processes 86

5.1 Introduction . 86

5.2 Transferring Knowledge across Learning Processes 87

5.2.1 Gradient Paths on Task Manifolds 88

5.2.2 Meta Learning across Task Manifolds 90

5.2.3 Leap . 92

5.3 Related Work . 95

5.4 Empirical Results . 97

4

5.4.1 Omniglot . 97

5.4.2 Multi-CV . 98

5.4.3 Atari . 100

5.5 Conclusions . 101

Appendix 102
5.A Mathematical Results . 102

5.B Ablation Study: Approximating Jacobians 106

5.C Ablation Study: Leap Hyper-Parameters 107

5.D Experiment Details: Omniglot 108

5.E Experiment Details: Multi-CV 111

5.F Experiment Details: Atari . 113

6 General-Purpose Meta-Learning 116

Meta-Learning with Warped Gradient Descent 117

6.1 Introduction . 117

6.2 Warped Gradient Descent . 119

6.2.1 Gradient-Based Meta-Learning 119

6.2.2 General-Purpose Preconditioning 121

6.2.3 The Geometry of Warped Gradient Descent 123

6.2.4 Meta-Learning Warp Parameters 124

6.2.5 Integration with Learned Initialisations 126

6.3 Related Work . 127

6.4 Experiments . 129

6.4.1 Few-Shot Learning . 129

6.4.2 Multi-Shot Learning . 129

6.4.3 Complex Meta-Learning 131

6.5 Conclusion . 133

Appendix 134
6.A WarpGrad Design Principles for Neural Nets 134

6.B WarpGrad Meta-Training Algorithms 135

6.C WarpGrad Optimisers . 137

6.D Synthetic Experiment . 140

6.E Omniglot . 141

6.F Ablation Study: Layers, Objectives, Algorithms 143

6.G Ablation study: Warped and Natural Gradients 144

6.H miniImageNet and tieredImageNet 146

6.I Maze Navigation . 148

6.J Meta-Learning for Continual Learning 150

5

III Towards Never-Ending Learning 157

7 Lifelong Learning in Autonomous Agents 158

Temporal Difference Uncertainties as a Signal for Exploration . . . 160

7.1 Introduction . 161

7.2 Estimating Value Function Uncertainty 162

7.3 Temporal Difference Uncertainties 164

7.4 Implementing TDU with Bootstrapping 167

7.5 Empirical Evaluation . 169

7.5.1 Behaviour Suite . 169

7.5.2 Atari . 172

7.6 Related Work . 173

7.7 Conclusion . 175

Appendix 176
7.A Implementation and Code . 176

7.B Proofs . 179

7.C Binary Tree MDP . 187

7.D Behaviour Suite . 189

7.D.1 Agents and Hyper-Parameters 189

7.D.2 TDU Experiments . 191

7.E Atari with R2D2 . 194

7.E.1 Bootstrapped R2D2 . 194

7.E.2 Pre-processing . 196

7.E.3 Hyper-Parameter Selection 196

7.E.4 Detailed Results: Main Experiment 198

7.E.5 Full Atari suite . 199

8 Conclusion 202
8.1 Thesis Summary . 202

8.2 Contributions . 204

8.2.1 Scalability . 204

8.2.2 Generalisation . 206

8.2.3 Exogenous Tasks . 207

8.3 Limitations and Future Work 208

Word count: 50,129.

6

List of Figures

3.1 Example . 58

4.1 Adaptation . 70

4.2 Extreme tail regression . 77

4.3 PTB . 79

4.4 Sensitivity analysis . 82

5.1 Loss surface . 88

5.2 Leap . 91

5.3 Omniglot main . 98

5.4 Atari main . 100

5.5 Sensitivity analysis . 106

5.6 Ablation . 108

5.7 Atari full mean results . 113

5.8 Atari full results . 115

6.1 WarpGrad . 119

6.2 Gradient-based meta-learning . 121

6.3 Gradient warping . 122

6.4 WarpGrad main results . 131

6.5 Continueal learning experiment 132

6.6 WarpGrad architectures . 135

6.7 WarpGrad algorithms . 136

6.8 WarpGrad geometries . 141

6.9 Omniglot results . 153

6.10 Omniglot ablation study . 154

6.11 TieredImagenet results . 154

6.12 Maze navigation results . 155

6.13 Continual learning results . 155

6.14 Continual learning detailed results 156

7.1 Deep Sea benchmark . 170

7.2 Deep Sea results . 170

7

7.3 Atari results with distributed training 172

7.4 Binary Tree MDP . 188

7.5 Sensitivity analysis on Binary Tree MDP 188

7.6 Bsuite full results . 189

7.7 Bsuite per-task results . 194

7.8 Atari ablation I . 197

7.9 Atari ablation II . 198

7.10 Atari ablation III . 198

7.11 Atari full results I . 199

7.12 Atari full results II . 200

7.13 Atari full results III . 200

7.14 Atari full results IV . 201

List of Tables

4.1 MNIST . 78

4.2 PTB . 80

4.3 WT2 . 81

4.4 Ablation . 81

5.1 Multi-CV main . 99

5.2 Omniglot test error . 109

5.3 Omniglot hyper-parameters . 110

5.4 Multi-CV hyper-parameters . 110

5.5 Multi-CV full results . 112

5.6 Atari environments . 114

6.1 WarpGrad experimental results 130

6.2 Omniglot results . 142

6.3 Omniglot ablation study: architecture 143

6.4 Omniglot ablation study: random initialisation 145

7.1 Atari benchmark . 174

7.2 Hyper-parameters for Bsuite . 190

7.3 Hyper-parameter grid searches for Bsuite 191

7.4 R2D2 hyper-parameters. 195

7.5 Atari pre-processing hyperparameters. 196

8

List of Algorithms

5.1 Leap . 93

6.1 WarpGrad: online meta-training 126

6.2 WarpGrad: offline meta-training 126

6.1 Online meta-training . 136

6.3 Continual meta-training . 136

6.2 Offline meta-training . 136

7.1 Bootstrapped DQN with TDU . 169

7.2 Bootstrapped TD-loss with TDU. 169

7.3 Pseudo-code for generic TDU loss 177

7.4 Pseudo-code for &-learning TDU loss 177

7.5 JAX implementation of TDU agent under Bootstrapped DQN . . 178

List of Theorems & Lemmas

2.1 Theorem (Bellman Optimality) 43

4.1 Lemma (IO-adaptation) . 72

5.1 Theorem (Pull-forward) . 94

7.1 Lemma (Bellman uncertainty bias) 163

7.1 Theorem (Function approximation bias) 164

7.2 Theorem (Temporal difference uncertainty estimation) 165

7.2 Lemma (Bellman uncertainty bias under diagonal prior) 180

7.3 Lemma (Bellman uncertainty bias under factorised prior) 182

7.4 Lemma (Bias of mean TD error) 183

7.5 Lemma (Bias of TD error variance) 184

9

Declaration of Authorship

I, Sebastian Flennerhag, declares that this thesis titled, ‘Towards Scalable

Meta-Learning’, and the work presented herein are my own. I confirm that:

i. This work was done wholly while in candidature for a research degree at

this University.

ii. No part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution.

iii. Where I have consulted the published work of others, this is always

clearly attributed.

iv. Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own

work.

v. I have acknowledged all main sources of help.

vi. Where the thesis is based on work done by myself jointly with others,

I have made clear exactly what was done by others and what I have

contributed myself.

Signed:

Date:

Sebastian

Sebastian

Sebastian

Sebastian

Sebastian

Sebastian

Sebastian

Sebastian

Sebastian

Sebastian

Sebastian

Sebastian

Sebastian

Sebastian

Sebastian

Sebastian

10

Copyright

i. The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)

and s/he has given The University of Manchester certain rights to use

such Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard

or electronic copy, may be made only in accordance with the Copyright,

Designs and Patents Act 1988 (as amended) and regulations issued under

it or, where appropriate, in accordance with licensing agreements which

the University has from time to time. This page must form part of any

such copies made.

iii. The ownership of certain Copyright, patents, designs, trademarks and

other intellectual property (the “Intellectual Property”) and any repro-

ductions of copyright works in the thesis, for example graphs and tables

(“Reproductions”), which may be described in this thesis, may not be

owned by the author and may be owned by third parties. Such In-

tellectual Property and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available

in the University IP Policy (see http://documents.manchester.ac.uk/

DocuInfo.aspx?DocID=24420), in any relevant Thesis restriction declara-

tions deposited in the University Library, The University Library’s regula-

tions (see http://www.library.manchester.ac.uk/about/regulations/)

and in The University’s policy on Presentation of Theses

11

“How small a thought it takes to fill a whole life.”

— Ludwig Wittgeinstein

12

Abstract

Artificial intelligence questions our understanding of intelligent behaviour

and our own intelligence. Recent advances rely on machine learning, where

intelligence arises through statistical learning. Often, machine learning assumes

agents approach tasks with no prior knowledge. This stands in stark contrast

to how humans approach new problems and is unlikely to yield human-level

intelligence that can learn to solve new, unseen problems as they arise. To this

end, we need a learning paradigm at a higher level of abstraction.

One alternative is agents that learn to learn. Within this framework, agents

learn not to solve a given set of tasks, but how to solve them. Such agents can

generalise prior experiences into abstract concepts for learning and problem

solving. Within the context of neural networks, current methods are limited in

their ability to generalise and scale in terms of task variation and complexity.

This thesis makes four contributions that tackle these challenges. A novel

method is proposed that learns to dynamically adapt an agent’s parameters to

increase its expressive capacity and ability to generalise. Further, a framework

is proposed that grounds meta-learning in differential geometry by learning

shortest solution paths (geodesics) across tasks.

Building on these insights, a novel method for meta-learning is proposed that

is simple, scalable, and effective. It is the first gradient-based meta-learner

that can be directly applied to any form of learning—including supervised,

unsupervised, reinforcement, continual, and online learning—opening up

for meta-learning at the scale and at the level of complexity required for

sophisticated artificial intelligence.

Finally, while the above methods rely on a predefined task distribution, an

artificial intelligence should be able to define its own tasks as needed. To this

end, a novel system for exploration in reinforcement learning is proposed that

creates intrinsic tasks. These drive an agent to explore experiences where it has

high uncertainty and evolves continuously as the agent learns about its world.

13

Acknowledgements

I’m deeply grateful to my supervisor Professor Mark Elliot for the opportunity

to pursue a PhD and the support Mark has given me to explore freely. I’m

also grateful for the support I have received from my co-supervisors Professors

John Keane and Hujun Yin, whose valuable insights have improved this

thesis many times over.

A distinctive feature of my PhD have been the internships and exchanges

I experienced. I’m particularly indebted to Andreas Damianou, whose in-

tellectual curiosity stimulated my own and catapulted my research to much

greater heights than what I would otherwise have reached. I’d also like

to thank Neil Lawrence and Pablo Moreno, as well as my fellow interns at

Amazon’s Machine Learning Lab, for making my time there both intellectually

stimulating and really fun.

My time at the Alan Turing Institute proved that a PhD journey can be rather

action-packed. The amount of diversity and energy at ATI helped push my

PhD forward at a critical time; thank you all for making it so easy to go to work.

I’ve had the great fortune to spend time at DeepMind, whose stimulating

research environment has opened up a whole new world for me. Thank you

Andrei, Jane, Razvan, and Raia for bringing me along! I continue to be amazed

by the creativity and sheer brilliance of my colleagues, as well as the humility,

kindness, and openness that permeates the culture. I could not have hoped

for a better environment to pursue my research in.

Last but not least, this thesis would not have seen the light of day without

the unyielding support of my friends and family. You give me the strength

to pursue my passion and fill my days with laughter. Thank you for putting

up with my antics, such as this one.

14

Abbreviations

AI Artificial Intelligence

CV Computer Vision

ERM Empirical Risk Minimization

BDQN Bootstrapped Deep &-Network

DDQN Double Deep &-Network

DNN Deep Neural Network

DQN Deep &-Network

FF(L) Feed-Forward Layer

LSTM Long Short-Term Memory (model)

MAP Maximum a Posteriori

ML Machine Learning

MLE Maximum Likelihood Estimation

MLP Multi-Layer Perceptron (Feed-Forward Layer)

NLP Natural Language Processing

RL Reinforcement Learning

RHN Recurrent Highway Network

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

TD Temporal Difference

15

Notation

Variables

G variable (scalar or vector)

G (8) 8th sample of G from an empirical distribution

G8 , G 9 8th or 9th element of an ordered set or vector G

G: , GC :th or C th iteration on a variable G

- real-valued matrix

X set, vector space, or Riemannian manifold

\, q, b model parameters

U, V, _, [scalar hyper-parameters

W point or curve on a Riemannian manifold

Operators

� (G;q) smoothly varying matrix � as a function of G and q

〈 · , · 〉 or G) E Euclidean inner product, 〈G, E〉 B ∑=
8=1
G8E8

‖ · ‖
2
or ‖ · ‖ Euclidean norm, ‖G ‖

2
B

√
〈G, G〉

〈 · , · 〉� inner product under metric tensor � , 〈G, E〉� B G)�E

‖ · ‖� norm under metric tensor � , ‖G ‖� B
√
〈G, G〉�

[· ; ·] concatenation, [G ; E] B (G1, . . . , G=, E1, . . . , E<)
� Hadamard product, G � D B (G1D1, . . . , G=D=)
f , i element-wise operator, f (G) B (f (G1), . . . , f (G=))
ω,Ω differentiable mapping, * = ω(-)
5 (· ;\), 5\ a model 5 parameterised by \

� , 5 (8) a Neural Network with layers 5 (8) , � B 5 (!) ◦ · · · ◦ 5 (1)

ℓ scalar-valued objective function, e.g. ℓ (5\ (G), ~) ∈ ℝ
∇, � gradient and Jacobian operator (Frechet derivative)

∇G6(G,D) gradient of a function 6 : ℝ= ×ℝ< → ℝ w.r.t. G

∇2

G6(G,D) Hessian of a function 6 : ℝ= ×ℝ< → ℝ w.r.t. G

�G6(G,D) Jacobian of a function 6 : ℝ= ×ℝ< → ℝ: w.r.t. G

sg [·] stop-gradient operator defined by ∇ sg [6(G)] B 0

16

Statistics

? probability mass or density function

? (G) probability mass or density of a random variable G

? (· ;\), ?\ probability mass or density function parameterised by \

EG [·] ,E? [·] expectation operator over random variable G or distribution ?

EG∼? (G) [·] expectation over G given probability mass or density ?

D dataset of observations, e.g. D = {G (8) }#8=1

L, J stochastic objective over ℓ for some given data distribution

g task index; tasks define distinct optimization objectives

RL

B , 0, A state, action, reward; observed quantity or random variable

W discount factor (not to be confused with geometry notation)

c policy mapping state B into distribution over actions, 0 ∼ c (B)
c (· ;\), c\ policy parameterised by \

+ Value function, + (B) B Ec
[∑∞

C=1
WCAC | B1 = B

]
& Action-Value function, & (B, 0) B Ec

[∑∞
C=1
WCAC | B1 = B, 01 = 0

]
& (· ;\), &\ function approximation parameterised by \ (similarly for +)

A mathematical statement should be a clear expression, the notation the

minimum required to express the idea. A general philosophy of this thesis is to

simplify notation whenever possible. 5 denotes a function or model when the

distinction to � is irrelevant, while G , D, E , and I denotes arbitrary variables. For

random variables, notation is overloaded so that G denotes both the random

variable and a random sample. ? (G) denotes both the distribution and the

probability of observing the value G . In RL, B , 0, A denotes both observations

and random variables. Whenever possible, time subscripts are omitted.

In general, when context permits, indices are dropped. For instance, write

gradient descent as \ B \ − U∇L(\). Stochastic objectives L and J subsume

data distributions and are written as functions of parameters only; a supervised

objective may be defined by L(\) B E(G,~)∼? (G,~) [ℓ (5 (G;\), ~)] for some ? (G,~),
5\ , and ℓ. Thus note that in practice, L(\) and ∇L(\) are estimated.

Occasionally, indexing will be important. The notation G: is reserved to denote

iterations within optimisation algorithms, such as in gradient descent, while GC

denote iterations within a data sequence. G8 or G 9 denotes the 8th or 9 th element

of a vector G while G (8) denotes the 8th observation of G . For functions, 5 (8)

denotes the 8th layer in a composition � B 5 (!) ◦ · · · ◦ 5 (1) . If � is parameterised

by \ , denote by \ (8) the parameters of 5 (8) .

17

Publications

The following list of publications comprise the majority of original research

presented in this thesis. Contributions of co-authors are detailed below.

1. Flennerhag, Sebastian, Yin, Hujun, Keane, John, and Elliot, Mark. Break-

ing the Activation Function Bottleneck Through Adaptive Parameteriza-

tion. In Advances in Neural Information Processing Systems, 2018.

2. Flennerhag, Sebastian, Moreno, Pablo G., Lawrence, Neil D., and Dami-

anou, Andreas. Transferring Knowledge across Learning Processes. In

International Conference on Learning Representations, 2019.

3. Flennerhag, Sebastian, Rusu, Andrei A., Pascanu, Razvan, Visin, Francesco,
Yin, Hujun, and Hadsell, Raia. Meta-learning with Warped Gradient De-

scent. In International Conference on Learning Representations, 2020.

4. Flennerhag, Sebastian, Wang, Jane, Visin, Francesco, Galashov, Alexan-

dre, Sprechmann, Pablo, Heess, Nicolas, Borsa, Diana, Baretto, André,

and Razvan Pascanu. Temporal Difference Uncertainties as a Signal for

Exploration. Under Review, 2020.

The majority of ideas, text, figures, and experiments originated from the first

author, as well as all mathematical results, in all cases. Andreas Damianou

had an important supervisory role on the paper Transferring Knowledge across
Learning Processes. Credit is due to Andrei Rusu for implementing and running

the mini-Imagenet experiment and the continual-learning experiment for the

paper Meta-learning with Warped Gradient Descent. Credit is due to Pablo

Sprechmann for implementing and running the Atari experiments for the

paper Temporal Difference Uncertainties as a Signal for Exploration. All co-authors

provided comments and editorial assistance on drafts of each publication.

18

1 Introduction

Amid all the hyperbole and sensationalism, the field of artificial intelligence is

gradually revolutionising our society. In the past few years, artificial intelligence

has reached a level of sophistication that enables us to train AIs1 that outrival

grand-masters in challenging games such as Chess, Go, Shogi, Dota 2, and

StarCraft II (Silver et al., 2018; Berner et al., 2019; Vinyals et al., 2019). These

breakthroughs speak to the inherent potential of modern approaches to artificial

intelligence. For instance, in the span of a few days, AlphaZero (Silver et al.,

2018) learns to play Go to a level of sophistication that humans have been

unable to reach during the game’s 4000 year long history (Britannica, 2021),

producing novel, hitherto unfathomable moves by humans observers.

The environments in which these AIs live may seem quite simple compared

to the full complexity of the world that we as humans inhabit. However,

the problem of learning—without detailed domain expertise—how to behave

optimally in these environments is profoundly complex. In the board game Go,

for instance, there are 10
170

possible board configurations (Allis, 1994)—more

than the number of atoms in the universe. A computer that exhaustively

searches for the best next move by planning 8 moves ahead must consider

512 quintillion (5.12 · 1020
) possible board configurations to make a move,

yet a single move can exert influence for hundreds of moves (Allis, 1994).

StarCraft II exhibits even greater complexity, with an even greater set of

possible states along with multi-modal data streams that the agent must

reconcile (Vinyals et al., 2019).

To overcome these challenges, modern artificial intelligence relies on machine

learning to extract useful internal representations that allow agents to gen-

eralise without exhaustively searching through every possibility, much like

humans do (Johnson-Laird, 1980). That machine learning allows AIs to play

sophisticated games beyond human capabilities—which they learn primarily

1
Throughout this thesis, the acronym “AI” is reserved to denote a specific instance of a

machine learning system.

19

by playing against themselves—hints at the tantalising possibility of deploying

autonomous systems that learn from a never-ending stream of experiences

as they interact with the world.

Beyond such successes in pure game settings, machine learning has also

demonstrated its potential in a host of real-world commercial settings. It is

largely responsible for the recent excitement around self-driving cars, which is

already offered as a service by reputable car makers (Badue et al., 2019). It

has replaced meticulously curated hand-written rules previously used to power

Google Translate; instead, a neural network powers the translation service (Wu

et al., 2016a), which is used more than 100 billion times per day (Turovsky,

2016). Likewise, Amazon’s popular home-assistant Alexa is powered by a

neural network (Kim et al., 2018b) capable of processing voice commands to

more than 40 000 distinct third-party applications (Kim, 2018).

Recent breakthroughs in natural language processing have produced machine

learning systems that are capable of producing substantial bodies of text

that humans cannot distinguish from human-generated text (Radford et al.,

2019). Moreover, these systems can learn rich linguistic representations that

enable them to perform a wide variety of linguistic tasks, including translation,

question-answering, and numerical computations such as arithmetic (Brown

et al., 2020). Similarly, in computer vision, machine learning systems are now

capable of generating images that are indistinguishable from real photographs

(Brock et al., 2018a). These systems are so powerful that they can generate

believable footage of real people in fabricated scenarios, which has sparked a

heated debate about privacy, integrity, and even national security as artificial

intelligence makes its way into everyday life (Chesney & Citron, 2019).

Yet for all its impressive achievements, human-level artificial intelligence is

still in its infancy. These—and arguably every other machine learning system

to date—represent so-called “narrow” artificial intelligence, in that they are

highly capable at one task, but typically unable to adapt to a wider set of

tasks that require the AI to adapt in some non-trivial way (Hernández-Orallo,
2017). Part of the inability of current systems to generalise can be explained

by the tendency of current systems—most notably those involving neural

networks—to overfit to training data (Szegedy et al., 2014; Zhang et al., 2017;

Novak et al., 2018). Yet the problem runs deeper, most modern machine

learning algorithms train models to solve a specific, narrowly defined task.

These AIs are inherently incapable of exhibiting the type of adaptation that

we associate with human-like intelligence (Chollet, 2019).

1 Introduction 20

The dominant learning paradigm in machine learning relies on optimising a

model to make predictions about a specific task. With sufficient data, we would

expect a powerful model to eventually learn to perform that task. However,

it does not follow that this model, once trained, will do well on a different yet
related task. In fact, most machine learning models fail catastrophically even

on slight modifications of the task they were trained on (for a contemporary

overview, see Sinz et al., 2019). Yet many agree that such adaptability is

a necessary (if not sufficient) condition for intelligence (e.g. Legg & Hutter,

2007; Thórisson & Helgasson, 2012; Lake et al., 2017; Wang, 2019; Chollet,

2019). To imbue a machine with a notion of intelligence, we would expect it

to demonstrate an ability to learn new concepts and skills as required when

facing new challenging problems.

While the exact definition of artificial intelligence is a long-standing debate, it is

safe to say that contemporary machine learning falls short of these requirements.

This thesis takes the view that the ability of an AI to learn new tasks in a

cumulative manner, building on its previous skills, throughout its life will be

central to any AI that exhibits human-level intelligence. This view stands in

contrast to the dominant tabula rasa paradigm in machine learning, where an

AI is trained on each task independently from a blank slate.

1.1 Limitations of Tabula Rasa

This thesis focuses on inductive biases that define the agent’s process of learning,
in particular those that define the AI’s learning rule itself. That we tend

to equate contemporary machine learning models that solve a single task

with artificial intelligence dates back to classical works in artificial intelligence,

which largely conceived of AI as a static assembly of logical constructs from

which intelligence would emerge (Chollet, 2019). Minsky (1985), for instance,

defined artificial intelligence as “the ability to solve complex problems.” This

definition lends itself to an interpretation of AI as a machine that can “solve

a task” (Hernández-Orallo, 2017). In fact, the narrow view of an AI as a

logical construct that can solve complex tasks was so dominant in the past

that learning was often not even mentioned in textbooks (Chollet, 2019). In a

recent survey of its history, Hernández-Orallo (2017) concluded that "the field

of artificial intelligence has been very successful in developing artificial systems

that perform these tasks without featuring intelligence.”

Such a view of artificial intelligence is not only narrow, it is also static: it

essentially equates artificial intelligence with computation (Wang, 2019). Mod-

1.1 Limitations of Tabula Rasa 21

ern machine learning puts considerably more emphasis on learning, but has

largely maintained the narrow notion of artificial intelligence (Chollet, 2019).

An alternative view, originated by Turing (Turing, 1950), maintains that it is

the ability to learn to solve unseen tasks that we should strive for in artificial

intelligence. In a recent effort to provide a working definition of artificial

intelligence, Wang (2019) proposed the following definition of intelligence (the

artificial part being uncontroversial):

“intelligence is the capacity of an information-processing system to adapt to its

environment while operating with insufficient knowledge and resources.”

Here, intelligence is the capacity to adapt within a set of constraints. Notwith-

standing certain issues with this definition (Monett et al., 2020), this notion of

artificial intelligence is embodied in pioneering works that proposed artificial

learning systems that could learn to learn (Hinton & Plaut, 1987; Schmidhuber,

1987; Bengio et al., 1991). These early works demonstrated that it is not only

possible but also favourable to design algorithms that internalise their own

learning rule. Since then, through a growing body of work it is becoming

increasingly clear that the paradigm of training a model on a narrowly defined

task is unlikely to yield an artificial intelligence except in the narrow sense.

While some argue that defining large enough a task and large enough a neural

network could produce a general AI (as opposed to a narrow AI; Brown

et al., 2020), this approach is unlikely to yield intelligence as defined above

since the system is constrained to a single set of parameters that must contain

all knowledge the AI will ever need. This seems very unlikely given that

neural networks are brittle (Szegedy et al., 2014), generalise poorly (Zhang

et al., 2017; Novak et al., 2018), even to moderately new tasks (Sinz et al.,

2019), and learning such networks require a large amount of data (in terms

of bits) (Brown et al., 2020). These limitations cast doubt on the feasibility

of the tabula rasa approach to artificial intelligence. For instance, Chollet

(2019) questions the feasibility of constructing a single training set and then

training a model that, once trained on it, can exhibit human-level artificial

intelligence without further need for learning.

We can contrast the tabula rasa approach with findings from developmental

psychology. Spelke & Kinzler (2007) summarise the literature as refuting

both extremes: the human brain is neither a collection of static rules nor a

blank slate, but a combination of innate priors through which we can learn

skills needed throughout our lives, from motor control (Braun et al., 2009)

to abstract concept acquisition (Lake et al., 2015). While it is not necessary

1 Introduction 22

for an AI to mimic the human brain, a notion of artificial intelligence relates

to human intelligence in the sense that we are the judges—to deem an entity

intelligent we typically relate it to ourselves (Turing, 1950). Human intelligence,

in turn, is perhaps the best source of inspiration available to us (Jankowski

et al., 2011). The developmental view of human intelligence certainly suggests

that adaptability is central to intelligence. From this perspective, intelligence

refers not to the current capabilities of a system, but its ability to acquire

new capabilities as necessitated by its environment and goals (Thórisson &

Helgasson, 2012; Wang, 2019). As Chollet (2019, p. 40) observes, “intelligence

is, in a way, a conversion rate between information about part of the situation

space, and the ability to perform well over a maximal area of future situation

space, which will invoke novelty and uncertainty.” The key words here are

novelty and uncertainty; an AI cannot be certain about what knowledge it might

need in the future, nor is it guaranteed to have enough experience at any point

in time to obtain that knowledge, hence it must always have the capability to

learn. In stark contrast to Minsky’s view of an AI as something that solves

a complex task, here, an AI is a cumulative, never-ending learning process

(Thórisson et al., 2019; Wang, 2019).

Perhaps somewhat surprisingly, we can adopt this perspective within machine

learning without much change. Early works that took this perspective for-

malised the notion of learning to learn as an embedded mechanism within the

model (Schmidhuber, 1987; Hinton & Plaut, 1987). In this way, the model inter-

nalises its own learning rule, but the system itself is trained within the standard

machine learning framework. Other approaches use optimisation as an induc-

tive bias and meta-learn certain aspects of the update rule (Bengio et al., 1991).

These ideas have since been expanded in various ways under the umbrella of

meta-learning, often characterised as a bi-level optimisation problem, where the

higher level of abstraction meta-learns how to learn across a distribution of tasks,

while the lower level is the standard machine learning problem of learning to

solve a task (Lake et al., 2011; Vinyals et al., 2016; Santoro et al., 2016).

Meta-learning formalises the notion of learning at two levels. Meta-knowledge

encodes general knowledge about a class of problems as well as the process of

learning such tasks. It refers to the process of accumulating such knowledge

so that when the AI is faced with a new (but related) task, it can learn to

perform this task rapidly. Hence, in this way, we can understand meta-learning

as the problem of learning useful inductive biases from data. These biases

are then brought to bear when the AI learns a new task. While the tools of

meta-learning largely remain the same as in traditional machine learning, the

1.2 Limitations of Contemporary Meta-Learning 23

perspective and the philosophy shifts from the problem of learning a given

task, to the problem of learning to learn over many tasks (Thrun & Pratt,

1998). It therefore has the potential to bring us one step closer to a more

general form of artificial intelligence.

Recent works have demonstrated the potential of meta-learning to further

advance the state-of-the-art in machine learning; successful demonstrations

include few-shot image recognition (Vinyals et al., 2016), continual learning

(Javed & White, 2019; Flennerhag et al., 2020a), adversarial robustness (Yin

et al., 2018), unsupervised learning (Metz et al., 2019), exploration in reinforce-

ment learning (Alet et al., 2020), and even the possibility to learn the concept of

neural networks as well as gradient descent itself purely from data (Real et al.,

2020). With that said, contemporary meta-learning faces a set of constraints

that must be overcome in order to unlock its potential for artificial intelligence.

1.2 Limitations of Contemporary Meta-Learning

Contemporary meta-learning covers a wide range of research topics as different

communities have cultivated a notion of meta-learning in their respective

contexts and thus assigned slightly different meanings to the term. In its

broadest sense, the term is taken to mean any form of meta-knowledge that

is brought to bear on a given problem. Meta-learning has been used in the

context of transfer learning (Thrun & Pratt, 1998), multi-task learning (Vilalta

& Drissi, 2002), and autoML (Yao et al., 2018a; Vanschoren, 2018). In this

thesis, meta-learning is restricted to mean learning a learning rule, whereby a

learning rule defines the means by which an AI adapts to its current context.

While earlier literature tended to focus on the online learning setting (Schmid-

huber, 1987; Hochreiter et al., 2001), where both meta-learning and learning

happen concurrently in a single stream of data, contemporary meta-learning

has gravitated towards few-shot learning as its canonical problem formulation.

In this setting, a “task” is defined as a pair of data sets: a small training set with

at most a handful of samples (for instance, few-shot classification often uses 1

or 5 samples per task-specific class) and a test set (Lake et al., 2011; Vinyals

et al., 2016). Given a handful of examples of a task, the goal of the learner is

to quickly adapt so that it can perform on further data from the new task.

In contrast to a tabula rasa approach, few-shot meta-learning meta-learns an

inductive bias for the learner from related tasks (Lake et al., 2015) so that

the learner can achieve this form of adaptation on new tasks that has not

yet seen. Meta-learning in this context refers to the problem of learning this

1 Introduction 24

inductive bias over a distribution of related tasks (Vinyals et al., 2016). Because

most contemporary works in meta-learning, whether implicitly or explicitly,

assume a few-shot problem setting, recent works share certain properties

that limit their general applicability. First, they tend to scale poorly with the

training set size; second, they require expressive models to generalise, rendering

them computationally expensive to meta-learn; third, they assume tasks are

exogenously given, which introduces a challenging engineering problem.

1.2.1 Scalability

A pervasive limitation of contemporary meta-learning is its inability to scale

meta-learning systems beyond the few-shot learning paradigm. Because

most algorithms are developed for few-shot learning, they accept a high

computational complexity in terms of learning, assuming that the learner will

only engage in a relatively short burst of learning. To see this more concretely,

consider two common approaches to few-shot learning.

One approach treats the meta-learner as a complete black box (Schmidhuber,

1987; Li & Malik, 2016; Ravi & Larochelle, 2017) and is motivated by choosing

a Turing complete model as the meta-learner (Schmidhuber, 1987; Hochreiter

et al., 2001) so that it can represent any learning rule, at least in theory.

Recurrent Neural Networks (RNNs), which are known to be Turing complete

(Siegelmann & Sontag, 1995), are often the architecture of choice. In a black-

box meta-learner, the update rule is represented by the forward computation

of the model, while its output represents the update itself.

For RNN-based meta-learners, this immediately implies quadratic complexity

in the number of parameters of the task learner, since the RNN is composed of

a set of matrix operations. Further, in the case of RNNs, the cost of training

the meta-learner also increases in the number of training steps and can cause

various forms of instability issues (Pascanu et al., 2013; Balduzzi & Ghifary,

2016; Miller & Hardt, 2019). An alternative is to rely on convolutional neural

networks (Mishra et al., 2018), but these come with their own limitations.

A general challenge for black-box approaches is that the learning rule is defined

by a meta-learned model. Hence they rely on the generalisation properties of

the model class. Their complexity fundamentally limits black-box approaches

to relatively small meta-learners and in practice, they tend to generalise worse

to new tasks than meta-learners that are built on top of stronger inductive

biases, such as gradient descent (Finn & Levine, 2018).

1.2 Limitations of Contemporary Meta-Learning 25

As an alternative to black-box meta-learning, Finn et al. (2017) proposed Model-

Agnostic Meta-Learning (MAML), an algorithm that uses gradient descent as

the learning rule and meta-learns the initialisation of the gradient descent

process. This initialisation is shared across tasks and meta-learned to maximise

the expected final performance across a given task distribution (defined in

Section 3.5; see also Vinyals et al. (2016); Zamir et al. (2018); Triantafillou

et al. (2020); Yu et al. (2020); Hospedales et al. (2020)). MAML relies on the

notion that there exists a good initialisation of gradient descent for related tasks,

such that a few gradient steps are sufficient to find optimal task performance.

MAML-based algorithms have been very popular within few-shot learning due

to their simplicity and performance (Yao et al., 2018a). Yet, in recent years,

few-shot learning domains designed specifically for domain generalisation,

MAML-based approaches have shown themselves to be less efficient than

simpler but more scalable alternatives (Tian et al., 2020; Doersch et al., 2020).

A limitation of MAML-based approaches is that they backpropagate from

the final performance on a task to the learner’s initial parameters. As this

requires computing Hessians at each parameter point on the trajectory, MAML-

based approaches are subject to quadratic complexity both in the number of

parameters in the model and in the number of training steps taken on a task.

As such, it is rarely applicable to problems where task adaptation requires less

than a handful of adaptation steps (Flennerhag et al., 2019).

This thesis presents a set of gradient-based meta-learning algorithms that do

not require this form of backpropagation. This allows them to scale beyond

few shot learning and open up to new learning paradigms, such as continual

meta-learning (Javed & White, 2019; Flennerhag et al., 2020a).

The first contribution to this line of work tackles scalability in gradient-based

meta-learning of an initialisation. To avoid backpropagating through the final

performance, as in MAML, Flennerhag et al. (2019) exploit the Riemannian

geometry underlying learning. In particular, this work leverages the fact

that rapid adaptation implies fast convergence in parameter space. Hence,

rather than looking at final performance, the proposed method meta-learns an

initialisation such that adaptation converges as rapidly as possible.

The meta-objective this work introduces can be solved iteratively using only

statistics encountered during task adaptation and thus avoids backpropagating

through the adaptation process. Meta-updates can therefore be computed

almost free of charge. This is the first meta-learner that enjoys both such

scalability and guarantees of convergence.

1 Introduction 26

The second contribution to scalable gradient-based meta-learning introduces a

framework for meta-learning the update rule, as opposed to the initialisation.

This work is motivated by a key limitation of meta-learning the initialisation

of a learner: it is a relatively passive form of knowledge transfer that interacts

with the task learner only at initialisation. For the meta-learner to have a

stronger influence over learning, it needs to interact with the learner at each

learning step, as black-box meta-learners do.

In the context of gradient-based meta-learning, a natural way for the meta-

learner to interact with the gradient update is to project the gradient using a

meta-learned projection operator (in the context of MAML; Lee & Choi, 2018;

Park & Oliva, 2019). For positive-definite preconditioners, gradient precondi-

tioning retains the inductive bias of gradient descent (most notably, guarantees

of convergence) while it allows us to re-formulate gradient-based meta-learning

in terms of an operator that projects the gradient at every step of learning.

Flennerhag et al. (2020a) show that meta-learning this projection is equiv-

alent to meta-learning a geometry, which is agnostic to the trajectory used

to generate data. Thus, meta-learning a gradient-based update rule can be

achieved without backpropagation through the adaptation process while avoid-

ing dependence on the initialisation. Leveraging these properties, the proposed

meta-learner is guaranteed to converge, scales beyond few-shot learning, and is

readily applicable to any form of learning, including supervised, unsupervised,

reinforcement, and continual learning.

1.2.2 Generalisation

Meta-learning faces two generalisation challenges. The first is the more typical

generalisation within a task; to generalise from the training data to new unseen

samples from the same task data distribution. The second form is specific to

meta-learning and requires the meta-learner to generalise across tasks, in the

sense that meta-knowledge learned on a set of training tasks should generalise

to learning new tasks from the same task distribution. These are both open

research questions in the literature that in part rely on the question of what

representations of learners and meta-learner tend to generalise better than

others (Hospedales et al., 2020).

The architectural design matters greatly since this fundamentally determines

how task-specific and task agnostic knowledge interact. It also determines an

agent’s ability to adapt. More generally, understanding properties of neural

networks that cause or prevent generalisation is a very active area of research

1.2 Limitations of Contemporary Meta-Learning 27

(e.g. Canziani et al., 2016; Neyshabur et al., 2017; Zhang et al., 2017; Novak

et al., 2018; Achille & Soatto, 2018; Liang et al., 2019). In terms of meta-

learning specifically, it has been observed that the meta-learners benefit from

greater expressive capacity in the learner (Rusu et al., 2019). A likely reason

for this is that it allows the meta-learner to efficiently encode meta-knowledge

in the learner’s feature representation (Tseng et al., 2019; Raghu et al., 2020).

Large models for meta-learning are problematic because of the computational

cost they are associated with, especially as meta-learning involves training the

learner on several tasks. It is therefore pertinent to discover architectures that

enable efficient meta-learning. This thesis contributes towards this strand of

the literature by investigating the means by which standard neural network

layers can be made more expressive for a given parameter count (in the context

of meta-learning, this allows a learner to express greater adaptive capacity

and thus improve its generalisation across a task distribution, as demonstrated

in Flennerhag et al. (2020a)).

In particular, Flennerhag et al. (2018) leverage that neural networks (typically)

use fixed activation functions that are linear over large parts of their domain.

This limits the degree of non-linearity that can be expressed in any one output

dimension, thus throttling the network’s expressive capacity. The proposed

method relies on inducing non-linearity in the linear transformation directly.

This is achieved by adaptively parameterising a layer, which can be efficiently

implemented as a sequence of element-wise gating mechanisms within the

layer. Such adaptive parameterisation induces greater expressive capacity in a

layer and can outperform carefully tuned baselines. The proposed adaptation

mechanism is a prime candidate for a meta-learning mechanism and—because

it only needs to output an element-wise scaling vector—it scales gracefully

with the number of parameters in the model.

Previously, gradient-based meta-learning had no such option. To meta-learn an

initialisation means that the number of meta-parameters is equal to the size of

the model. Worse still, while the number of meta-parameters increases linearly

in the number of task-adaptable parameters, computational complexity grows

quadratically. This thesis provides contributions to the literature that largely

remove this limitation. In terms of meta-learning an initialisation, this thesis

proposes a method that has almost no computational cost for meta-updates

and thus entirely skirts the issue. For meta-learning a gradient-based update

rule, the proposed method de-couples meta- and task-parameters, and hence

increasing the latter does not increase the former.

1 Introduction 28

1.2.3 Exogenous Tasks

A common assumption in contemporary meta-learning is the existence of a task

distribution. The role of meta-learning, put simply, is to learn inductive biases

that speed up learning over this task distribution. This puts meta-learning at

the mercy of the task distribution since a poorly defined task-distribution will

effectively prevent the meta-learner from generalising to at least some unseen

tasks. Gradient-based meta-learning is somewhat less exposed to the task

distribution since its learning rule—gradient descent—is at heart a converging

process (this also applies to meta-learners that are based on other forms of

optimisation (e.g. Chen et al., 2017)). However, it can still perform poorly if

the initialisation is very far away from the global optima causing the learner to

be attracted to poor local minima, or if a meta-learned gradient preconditioner

projects gradients away from the true solution space. For black-box meta-

learners, the situation is more dire. Since a black-box meta-learner defines

the update rule, its ability to generalise relies entirely on the properties of the

function class underpinning the meta-learner.

Ultimately, a key limitation of current meta-learning is the assumption of

an exogenous task distribution. In general, we would expect an AI to learn

continuously from its own experiences. Hence the AI is itself responsible

for both how to define tasks, and how to sample them. This is still largely

untouched in the literature, in part because it is not clear how to define

the meta-learning problem. This problem has previously been studied in

reinforcement learning, where past experience can be used to construct “tasks”

(Andrychowicz et al., 2017; Sukhbaatar et al., 2018). More generally, there

is a long line of work that studies how to automatically generate curricula of

learning problems to progressively introduce to the agent during the course

of learning (Schmidhuber, 1991; Oudeyer et al., 2007; Jaderberg et al., 2017c;

Riedmiller et al., 2018).

This thesis’s final contribution builds on these works and considers systems

that define their own tasks internally. Flennerhag et al. (2020b) consider this

problem outside of the current meta-learning paradigm, taking a reinforcement

learning perspective. How might an agent propose its own tasks, such that

learning from such tasks helps the agent to learn for the future? In this work,

this is achieved by defining an agent as composed of two policies. One policy–a

form of meta-policy—is tasked with collecting data that another, a form of

adaptive policy, uses to learn efficiently. This creates an automatic curriculum

of tasks, as the task facing the meta-policy changes as the adaptive policy is

learning from the data the meta-policy has collected previously. Prior works

1.3 Thesis Outline 29

tend to rely on adversarial training (Sukhbaatar et al., 2018; Florensa et al.,

2018; Kachalsky et al., 2019), which yield automatic curricula of progressively

harder tasks, but not necessarily tasks that are useful for learning. The proposed

method is evaluated on a set of hard exploration problems and the results

demonstrate that agents that learn from their own tasks might be a potential

way forward towards large-scale meta-learning.

1.3 Thesis Outline

Part I provides the necessary context for original research presented in this

thesis. Chapter 2 provides a review of relevant tools from machine learn-

ing. It focuses on optimisation as machine learning and provides a brief

introduction to reinforcement learning. Chapter 3 serves as a review of the

field of meta-learning as viewed in this thesis. The remainder of the thesis

presents original research.

Part II contains original research on meta-learning. Chapter 4 presents a

novel method for learning how to dynamically adapt the parameterisation

of a model conditional on the input (Flennerhag et al., 2018). This can

produce a significant increase in model expressiveness for a given parameter

count: it achieves state-of-the-art performance using 30% fewer parameters

than comparable methods. While the original work is not focused on meta-

learning (in the contemporary sense of generalising across task distribution),

Chapter 6 uses this method in a proper meta-learning setting, where the

adaptive mechanism is meta-learned to facilitate learning when a reinforcement

learning agent faces a stream of tasks.

Chapter 5 presents a novel geometric perspective on gradient-based meta-

learning and derives an algorithm for meta-learning an initialisation (Flenner-

hag et al., 2019). The method aims to make gradient descent trajectories as short

as possible in terms of the distance learning travelled on the model’s parameter

manifold. This approach can scale beyond few-shot learning and achieve strong

results on problems hitherto outside the scope of gradient-based meta-learners.

Given these findings, Chapter 6 pursues the geometric perspective further still.

While the above method optimises for an initialisation over a distribution of

geometries, this work uses Riemannian geometry to derive an algorithm for

meta-learning the task geometry (Flennerhag et al., 2020a). The resulting

meta-learner is both flexible and scalable. This work demonstrates that a

single algorithm can learn-to-learn across several learning problems, including

few-shot, supervised, and reinforcement learning. Further, it introduces a novel

1 Introduction 30

form of meta-learning—meta-continual learning (also independently proposed

by Javed & White (2019))—and demonstrates that the proposed method can

meta-learn how to avoid catastrophic forgetting (French, 1999).

Finally, Part III turns towards the future of meta-learning. Chapter 7 considers

an agent that constructs its own tasks as a means of meta-learning (in some

sense of the word). This work does not rely on the typical meta-learning

formalism and instead considers a pure reinforcement learning setting. It

proposes an agent that is composed of two policies (Flennerhag et al., 2020b).

The first policy learns to solve the task given its own experiences and experiences

collected by the second system. The second policy learns to collect experience

that provides as much learning signal to the first system as possible. This

form of a gradual curriculum lets the agent learn efficiently in a host of

challenging environments, providing a path towards meta-learning without

a task distribution.

Chapter 8 concludes the thesis with a discussion of implications for future

research in meta-learning and artificial intelligence and considers how the

research presented herein can provide stepping stones towards systems that

learn to learn continually by generalising from past experiences.

31

I

Foundations

32

2 Machines that Learn

This chapter formalises the notion of a machine that learns as used in this

thesis. Broadly speaking, there are many ways to formalise machine learning,

for instance through Bayesian inference, stochastic optimisation, or other means

of statistical inference. These approaches offer different viewpoints and bring

to bear different tools for learning. For a full review, the reader is referred

to one of the many excellent books on the topic (e.g. Mitchell, 1997; MacKay,

2003; Bishop, 2006). This thesis relies on framing machine learning as an

optimisation problem and the goal here is to concisely present and discuss the

fundamental tools that underpin original research in later chapters.

The chapter is structured as follows. Section 2.1 provides a brief taxonomy

of the types of machine learning problems that will feature in this thesis.

Section 2.2 formalises machine learning as an optimisation problem and

introduces the notation used throughout the thesis. In particular, Chapter 3

presents historical and contemporary work on meta-learning in light of this

formalism. Section 2.3 presents the gradient descent framework, which is the

main workhorse algorithm used by learners in this thesis to solve machine

learning problems. Finally, Section 2.4 contains a brief presentation of key

concepts from reinforcement learning that will feature in this thesis.

2.1 Types of Machine Learning

A common definition of machine learning is due to Mitchell (1997), whereby a

machine is said to learn “from experience E with respect to some class of tasks

T and performance measure P, if its performance at tasks in T, as measured by

P, improves with experience E”. This notion embodies the idea that, because

the machine will only have access to a limited amount of experience, the

machine must internalise knowledge that generalises to new, unseen data.

This requirement of generalisation separates machine learning from classical

optimisation and statistics (for a more in-depth comparison, see Goodfellow

2.1 Types of Machine Learning 33

et al., 2016, p. 267). Depending on how these quantities are defined, we

obtain distinct machine learning problems. The types of machine learning

problems considered in this thesis are presented below, with the exception of

reinforcement learning, which is introduced separately in Section 2.4.

Experience Throughout this thesis, experience is assumed to be sampled

from some unknown data-generating process, defined by a probability density

? : � ↦→ (0, 1) that is independent of the machine learner (henceforth learner).

The learner is exposed to experience from this data-generating process in the

form of a dataset D B {4 (8) }#
8=1

, where 4 (8) ∼ ? (4) is an independent random

sample from ?. In this thesis, the experience will take the form of a tuple

4 (8) B (G (8) , ~ (8)), where G (8) ∈ ℝ= is an input variable and ~ (8) ∈ ℝ2 is a target

variable. Throughout this chapter, unless otherwise stated, it is assumed

that samples 4 (8) ∼ ? (4) are independently and identically distributed (i.i.d),

meaning that they are independent draws from ?.

Task The class of tasks that this thesis is primarily concerned with is that of

predicting ~ (8) from G (8) . This class of tasks is often called supervised learning
because the learner is being supervised by a ground truth ~ (8) that tells the

learner what it should predict for each G (8) . Within this space, there are many

flavours of tasks. This thesis will consider three specific tasks:

1. Classification: In this task, ~ is a categorical variable that can take on one of

2 values; ~ ∈ {1, 2, . . . , 2}. When class membership is mutually exclusive—

as in this thesis—classification can be formalised by introducing a ground

truth map 6 : G ↦→ ~ that assigns a label ~ to G . The goal in classification

is to learn an approximation 5 of 6 from a dataset D.

2. Regression. Is a similar task to classification, but differs in that the target

~ ∈ ℝ2 is a continuous variable. Regression can be also be formalised by

assuming a ground truth map 6 : G ↦→ ~ that the learner must learn to

approximate under some appropriate metric over ℝ2 .

3. Density estimation. Differs slightly from the previous two tasks in that

the goal of the learner is to approximate the conditional probability

distribution ? (~ | G). Density estimation is more general in that the goal

is to model the full conditional density, or even the full joint density

? (G,~). Given an approximation to the full conditional density ? (~ | G), a
point prediction of ~ at G for regression or classification can be obtained

from the learner by choosing the mean, median, or mode of the learned

model.

2 Machines that Learn 34

A closely related class of tasks is unsupervised learning. In this setting, there

is no target variable (i.e. 4 (8) B G (8)) and instead the goal of the learner is

to extract useful knowledge from the data. These are often harder problems

because it is not always clear how to quantify useful knowledge. While

many techniques for supervised learning have analogues in unsupervised

learning—for instance, density estimation can be applied to estimate ? (G)—
other approaches are distinct from supervised learning. For a full treatment

of unsupervised learning, see for instance Ghahramani (2003).

Performance measure In general, given a learned model 5 , a performance

measure % is constructed by measuring the “closeness” between a prediction

5 (G) and the ground truth ~. The specifics of how to measure the quality of

the prediction differ based on the specific task.

1. Classification. The performance measure used in this thesis is the accuracy

of the learned model. The accuracy measures whether the predicted class

assignment 5 (G) matches with the true class assignment ~. More nuanced

measures of performance are often considered when classification is the

primary object of study (e.g. Fawcett, 2006).

2. Regression. The performance measure is typically a distance measure

3 (5 (G), ~) ∈ [0,∞) between the target ~ and the prediction 5 (G). There

are many choices for 3 , such as any metric function. Other divergence

measures are also useful and the most common choice is the squared

error, ‖ 5 (G) − ~‖2
2
, between the prediction 5 (G) and the target ~. When 5

is a probabilistic model, regression is closely related to density estimation

(Murphy, 2012, pp. 247).

3. Density estimation. As the goal is to approximate the density ? (~ | G),
performance is measured by the distributional similarity of ? and 5 .

There are numerous ways of measuring (dis)similarity, but when ? is

not known, the metric must rely on empirical data. A common choice is

the Cross-Entropy of 5 relative to ? (as measured by D). This measure

is closely related to the (log) likelihood function (cf. Berger & Wolpert,

1988) and the Kullback-Lieblier Divergence. In this thesis, these objects

are mainly used for learning, in which case they reduce to the same

optimisation problem (see Section 2.2).

Importantly, the data used for learning and evaluation are separated. Thus the

performance measure—which is an evaluation metric—is defined over unseen
data sampled from ? , collected in a test set V = {4 (8) | 4 (8) ∉ D}"

8=1
.

2.2 Machine Learning Problem Definitions 35

Machine learning therefore differs from classical optimisation and statistics

in two vital respects. Firstly, the learner is generally unaware of % when

learning. In other words, the learner might be optimising a different quantity.

In contrast, statistics and optimisation typically both learn and evaluate the

model under % . Secondly, % is evaluated on data the learner has not seen. In

contrast, statistics typically make use of all available data and is more concerned

with analytical properties of the estimator (Bzdok et al., 2018), while classical

optimisation studies methods to find the function 5 that maximises % over

some fixed dataset (cf. Nocedal & Wright, 2006).

Example To illustrate a typical machine learning problem in this thesis,

consider the regression example from Chapter 4. The problem is defined by an

input variable G ∈ ℝ2
distributed according to N((0, 0), �2), i.e. the multi-variate

normal distribution. It introduces a ground truth map 6 : G ↦→ ~ given by

6(G) = (2G1)2 − (3G2)4. The target variable is sampled from ? (~ | G) = 6(G) + n ,
with white noise n ∼ N(0, 1). The goal of the learner is to find a model 5

that minimises the squared error between observed targets ~ (8) and predictions

5 (G (8)), i.e. to minimise
1

#

∑#
8=1
‖~ (8) − 5 (G (8))‖2

2
. The learned model is evaluated

under the same metric, but on newly sampled data.

This summarises the taxonomy of machine learning problems a learner will

face in this thesis. Next, these are cast into a general optimisation problem

to compactly express the notion of a machine that learns.

2.2 Machine Learning Problem Definitions

Fundamental to this thesis is the view of machine learning as the process

of solving an optimisation problem. This is by no means the only way of

viewing machine learning (see for instance MacKay, 2003; Bishop, 2006;

Murphy, 2012), but it has proven to be a powerful framework for meta-

learning over a distribution of tasks (to be introduced in Chapter 3). When

casting machine learning problems into optimisation problems, learning is

defined by the process of iteratively searching for a solution given observations

from the data-generating process.

There are several ways of deriving an optimisation problem for a given type

of machine learning problem (Section 2.1). Two common ways are the Maxi-

mum Likelihood Estimation approach and the Empirical Risk Minimization

framework, presented below.

2 Machines that Learn 36

2.2.1 Maximum Likelihood Estimation

This approach is best understood as a means of solving a probability density

estimation problem. The goal of the learner is to approximate the unknown

density ? (~ | G) (or some other density, such as ? (G) and ? (G,~)) given observed

data D. In particular, the learner must choose the parameters \ for a model

5\ from a family of parametric models F = {5\ | \ ∈ Θ}.

Maximum Likelihood Estimation (MLE) relies on the Likelihood Principle,

which states that inference should be based only on observed data—in particular,

it asserts that the likelihood function contains all available information about

the data (Berger & Wolpert, 1988, p. 19). The likelihood function for a model

5\ is defined as !(\ ;D) B 5\ (D), where 5\ (D) denotes the probability density

of D under 5\ . Assuming samples are i.i.d, it follows from standard laws of

probability that 5\ (D) =
∏#
8=1

5\ (G (8)). From an optimisation point of view, it is

more convenient to use the log-likelihood, log 5\ (D) =
∑#
8=1

log 5\ (G (8)).

An immediate consequence of the Likelihood Principle is that a model that

fits the data should have a high likelihood of having generated the data.

Intuitively speaking MLE seeks the model 5\ that is most likely to have

generated the data. A learner solves this problem by maximising !(\ ;D).
Assuming i.i.d. data, the learner’s problem is often formulated as minimizing

the negative log-likelihood function. These are equivalent formulations as

minG −6(G) = maxG 6(G) and the maximiser of a function 6 is also the maximiser

of the function log6. Thus, the form of maximum likelihood estimation used

in this thesis is defined by the problem

min

\ ∈Θ

#∑
8=1

− log 5\ (G (8)). (2.1)

The maximum likelihood estimate—i.e. the solution to Eq. 2.1—need not

exist nor be unique. In machine learning, these are not serious issues because

Eq. 2.1 might still be useful for a learner to improve its model, even if it cannot

compute an exact solution. With that said, the likelihood function and the

maximum likelihood estimator are surprisingly profound statistical objects (for

a summary, see Wasserman, 2013, pp. 153). Assuming there is some \ ∗ such

that 5\ ∗ = ? , under certain regularity conditions on the model, the solution to

Eq. 2.1 can be shown to converge in probability to \ ∗ as # →∞ (Wald, 1949).

It can also be shown to be asymptotically optimal, meaning that it has the

smallest possible asymptotic variance among all well-behaved estimators.

2.2 Machine Learning Problem Definitions 37

MLE is also related to Bayesian inference. The likelihood function influences the

posterior distribution, as ? (\ | D) = 5\ (D)? (\)/? (D). Thus, Bayesian inference

is implicitly compliant with the likelihood principle (Berger & Wolpert, 1988,

p. 23). In particular, MLE is closely related to the maximum a posteriori

(MAP) estimate, defined by max\ 5\ (D)? (\)/? (D). For a uniform prior ? (\),
MLE coincides with MAP estimation; otherwise, the MAP estimate converges

to the maximum likelihood estimate as # → ∞ (Murphy, 2012, p. 71).

MLE is one way of casting a machine learning problem into an optimisation

problem by means of the likelihood principle. Another way to cast a machine

learning problem as an optimisation problem is through Empirical Risk Min-

imization (ERM; Vapnik, 1999). This framework does not assume that the

goal is to estimate a density, and is thus more broadly applicable, but the gain

generality comes at the cost of requiring the user to specify a loss function.

2.2.2 Empirical Risk Minimization

In ERM, a learner is faced with a generative process ? from which it observes

samples (G (8) , ~ (8)) ∼ ? (G,~). The goal of the learner is to choose a model 5\ from

some hypothesis space F = {5\ | \ ∈ Θ} (this presentation restricts attention to

parametric hypothesis spaces, but ERM applies equally to functional hypothesis

spaces) that approximates the true relationship G ↦→ ~.

This framework requires a user-specified loss function ℓ : ℝ2 ×ℝ2 → ℝ that

measures the fit of the model’s prediction 5\ (G) and the ground truth ~.

The loss function is typically required to satisfy min\ ℓ (5\ (G), ~) ≥ ℓ (~,~) and
ℓ (5\ (G), ~) = ℓ (~,~) =⇒ 5\ (G) = ~. Given ℓ and the probability space on which

? is defined, the risk of a model 5\ ∈ F is defined by

R(\) B E(G,~)∼? (G,~)
[
ℓ
(
5\ (G), ~

)]
. (2.2)

Intuitively, the risk of 5\ measures the expected loss the model incurs when it

fails to predict ~ given G . A model with no risk represents the true relationship

G ↦→ ~. To compare imperfect models, ℓ must additionally be defined such that

the larger the risk, the less likely the model is to be accurate. In practice, the

true risk cannot be measured since the generative process ? is not accessible

to the learner. Consequently, the object of interest is the empirical risk, which

2 Machines that Learn 38

is defined over a dataset D of samples from ?:

L(\ ;D) B
#∑
8=1

ℓ

(
5\ (G (8)), ~ (8)

)
. (2.3)

This measure is motivated by Monte-Carlo estimation: if samples in D are

identically and independently distributed (i.i.d.), meaning that they are inde-

pendent draws from ? , then L is an unbiased and consistent estimator of R
(Vapnik, 1999). The learner’s problem is therefore to find a model 5\ ∈ F with

minimal empirical risk, resulting in the optimisation problem

min

\ ∈Θ
L(\ ;D) . (2.4)

All machine learning problems in this thesis can be written on this form for

some choice of ℓ. In particular, MLE and ERM coincide if ℓ is chosen to be

the negative log-likelihood of 5\ at (G (8) , ~ (8)).2 Thus, from the point of view of

this thesis, the learner is indifferent as to whether the problem is formulated

from the point of view of MLE or ERM.

For classification problems, ℓ is indeed typically the negative log-likelihood

function. For regression problems, ℓ can either be the negative log-likelihood

or some geometric measure of distance between the target ~ and the prediction

5 (G), generally defined by

ℓ (5\ (G), ~) = ‖ 5\ (G) − ~‖� (~) . (2.5)

Often, the metric space is Euclidean, so that ‖ · ‖� = ‖ · ‖2. To ease optimisation,

this is can be simplified to the so-called mean-squared error objective, ‖ · ‖2
2
,

in which case Eq. 2.4 is written

min

\ ∈Θ

1

2

#∑
8=1

(
5\ (G (8)) − ~ (8)

)
2

. (2.6)

While derived from a metric point of view, one can show that the minimiser

2
Similarly, in the machine learning problems defined in this thesis, i.e. under a target function

6 : G ↦→ ~, direct algebraic manipulation shows that minimizing the negative log-likelihood

is equivalent to minimizing the Kullback-Leibler Divergence between the model 5\ and 6

(Wasserman, 2013, p. 154). Further, both of these objectives are equivalent to minimizing the

Cross-Entropy between 5\ and 6.

2.3 Learning Through Stochastic Gradient Descent 39

of the mean-squared error in Eq. 2.6 is the MLE estimate under a Gaussian

model 5\ (Murphy, 2012, pp. 200). Other metrics ‖ 5\ (G) − ~‖� (~) can also be

shown to have sound statistical underpinnings (Hastie et al., 2009, pp. 43).

Going forward, the general definition of a machine learning problem will be

taken to be Eq. 2.4, with the understanding that the problem formulation relies

on sound statistical foundations for appropriate choices of ℓ. Note that—in

contrast to statistics and optimisation—the loss function ℓ need not coincide

with the performance measure % (Section 2.1), as previously discussed.

2.3 Learning Through Stochastic Gradient Descent

Both MLE and ERM provide principled frameworks for learning parameters

\ of a model 5\ given data D. For the optimisation problem in Eq. 2.3 to

involve an amount of learning, the learner must not be able to directly compute

an exact solution, or the problem reduces to mere computation. Instead, the

learning aspect arises as the learner must search through the space F of models

and find an approximately optimal model. Learning in this setting is the process
of iteratively searching for a better model (Rumelhart et al., 1986; Mangasarian

& Solodov, 1994; Cortes & Vapnik, 1995).

As with the problem formulation, there are many ways to formalise such

iterative processes. This thesis focuses on gradient-based learning, as this has

proven to be a particularly efficient class of algorithms for learning when the

model 5\ is a neural network (Bennett & Parrado-Hernández, 2006; Goodfellow
et al., 2016). Similarly, as contemporary meta-learning goes beyond hyper-

parameter tuning and involves high-dimensional parameters space, often just

as large the task learner’s parameter space (Finn et al., 2017), we focus on

gradient-based meta-learning algorithms. While other forms of meta-learning

are possible (Bergstra et al., 2011; Chen et al., 2017; Jaderberg et al., 2017b;

Falkner et al., 2018; Drake et al., 2020), they are generally less efficient in

such high-dimensional search spaces.

With that said, a particular challenge with neural networks is that they define

complex non-linear functions. Thus, optimisation problems under neural

networks are generally not convex, ruling out many efficient optimisation

algorithms that have been designed for convex optimisation (Sutskever et al.,

2013; Martens, 2010). Instead, they exhibit complex loss surfaces (Li &

Hoiem, 2016; Freeman & Bruna, 2017; Garipov et al., 2018) with intriguing

properties. For instance, it seems likely that—due to the high-dimensionality

of the parameter space of neural networks—local minima are relatively low cost

2 Machines that Learn 40

compared to the global minimia (e.g. Saxe et al., 2013). Even so, solutions found

by neural networks are easily perturbed, to the point that n-small perturbations

can completely destroy a model (Szegedy et al., 2014). Czarnecki et al. (2019)

showed that a sufficiently deep and wide neural network contains every low-

dimensional pattern, suggesting that deep neural networks have a fractal-like

quality to them. Arora et al. (2018) showed that over-parameterising neural

networks induces momentum-like dynamics during optimisation, allowing over-

parameterised models to converge faster. Izmailov et al. (2018) demonstrates

that stochastic Polyak Averaging during optimisation finds flatter minimas

than conventional parameter updates, further hinting at the sheer variety and

complexity of local geometries in a neural network’s loss surfaces. Due to this

complexity, neural networks have thus far defied more advanced optimisation

algorithms and tend to favour first-order methods such as gradient descent

(Goodfellow et al., 2016, p. 298). This algorithm is defined by a randomly

chosen initialisation \0, after which parameters evolve by

\:+1 = \: − U:∇L(\: ;B:), (2.7)

where {U: }:∈ℕ is a sequence of learning rates and ∇L is the gradient with

respect to \ evaluated at \: under data B: . Different choices of data result in

slightly different types of algorithms. When B: = D, the algorithm is known

as batch gradient descent. When B: ⊂ D is a randomly sampled subset, the

algorithm is known as stochastic gradient descent, since the gradient becomes

a random variable. If B: is an i.i.d. sample from D, then stochastic gradient

descent is an unbiased estimate of the true gradient and can lead to faster

convergence for the same computational budget (Bottou, 1998).

The exact nature of solutions found by neural networks is subject to much

debate (e.g. Kawaguchi, 2016; Jacot et al., 2018; Allen-Zhu et al., 2018; Arora

et al., 2019), but it is relatively clear that a sufficiently large neural network

can find a perfect solution to the data it is trained on (Du et al., 2018). A

more pressing concern is the ability of a trained neural network to generalise
to unseen data from the same data generating process (Zhang et al., 2017).

Because of the large number of parameters in a neural network, the amount

of data (in terms of bits) required to learn a parameterisation that generalises

reasonably well can be extremely large (Brown et al., 2020).

A reason for this is that the learning process is entirely domain agnostic: the

initialisation \0 has no prior knowledge built into it. Similarly, each parameter

update relies only on the current knowledge embedded in the gradient itself

2.4 Reinforcement Learning 41

but is otherwise agnostic to the task at hand. This level of generality allows

gradient descent to learn on a wide range of problems, but also makes it

relatively inefficient on each of them and sensitive to manual tuning hyper-

parameters, most notably the learning rate. Meta-learning offers a means

of infusing useful inductive biases into the learning process, for instance by

choosing a more efficient initialisation (Finn et al., 2017) or by tuning the

learning rate (Li et al., 2017).

2.4 Reinforcement Learning

Reinforcement Learning (RL) differs from other machine learning problems in

that it does not rely on an exogenously given dataset D. Instead, the learner

has access to a dataset DC at time C that depends on its own behaviour through

some mapping 6 such that DC = 6(5\ (G (8))) ∪ DC−1. Consequently, in contrast to

other forms of machine learning, in RL the learner must account for how its

behaviour affects the data it receives, fundamentally changing the nature of the

learner’s problem. This Section presents the type of RL problem considered in

this thesis, along with tools for learning. It is structured as follows: Section 2.4.1

presents the overall problem setting used in this thesis. Section 2.4.2 presents

the generalised value improvement framework and specifically the &-learning

algorithm. Finally, Section 2.4.3 presents the policy-gradient approach.

2.4.1 The Reinforcement Learning Problem

RL is a behavioural approach to artificial intelligence with strong links to con-

structivist thinking in neurological science (Silvetti & Verguts, 2012; Botvinick

et al., 2020). The central object in RL is a goal-directed agent, which plays the

role of a learner. The agent interacts with an environment by receiving observa-

tions from the environment and in turn taking actions that influences how the

environment’s internal state evolves. The agent must take actions such that it

achieves its predefined goal, defined in terms of the state of the environment.

A core tenet of reinforcement learning is that the agent’s goal can be encoded

in a scalar reward function. The agent receives rewards conditioned on what

action it takes in a given state so that the goal of the agent can be formalised as

maximising rewards by taking appropriate actions (Sutton & Barto, 1998, p. 6).

This introduces a fundamental trade-off for an RL agent that does not (typically)

arise in other forms of machine learning. On the one hand, the agent should

take actions that it believes are going to yield the most rewards; on the other

hand, the agent must also explore other actions so that it can learn what

2 Machines that Learn 42

behaviours lead to the highest amount of rewards. This trade-off between

exploiting what the agent already knows and exploring what it does not is

known—known as the exploration-exploitation dilemma—is central to RL and

separates it from the typical supervised or unsupervised learning problem.

There are several ways to formalise an RL problem. By far the most common

is to rely on formalism from dynamic programming and define the RL problem

as a Markov decision process (for an in-depth treatment, see Puterman, 2014).

The difference between RL and dynamic programming comes down to how

estimates are obtained: dynamic programming assumes the agent has access

to a perfect model of the environment while RL relies on trial-and-error to

construct Monte-Carlo approximations (Sutton & Barto, 1998, p. 91).

This thesis considers fully-observed Markov Decision Processes (MDPs). These

are defined by a tuple M = (S,A,P,R, W, 3) comprising a state-space S, an
action-space A, a transition kernel P : S ×A ×S → [0, 1], a reward function

R : S ×A ×S ×ℝ → [0, 1], a discount factor W ∈ (0, 1], and an initial state

distribution 3 : S → [0, 1]. A stationary policy c : S ×A → [0, 1] maps a state

B ∈ S and an action 0 ∈ A to a probability ? (0 | B) = c (0 |B). Stationarity is not

a major restriction because the state can always be extended to include the

relevant time-varying information (Bertsekas, 1995, p. 12). When the policy is

deterministic, it can be written as a mapping from state to action, c : S → A.

The relevant class of MDPs in this thesis are finite-horizon episodic MDPs. In

this setting, the agent interacts with the environment through episodes. Each

episode lasts for) time-steps, after which the state of the environment is reset

through the initial state distribution. An episode starts with the environment

sampling an initial state B0 ∼ 3 (B0). The agent observes the state B0 and

responds by taking an action 00 ∼ c (00 | B0) according to its policy. Given 00,

the environment evolves a new state according to B1 ∼ P(B0, 00, B1), after which

the agent receives a reward A1 ∼ R(B0, 00, B1). This process is repeated for) steps.

The episode is represented by a trajectory g B (B0, 00, A1, . . . , BC−1, 0C−1, A) , B)) and
an episodic return, defined as the cumulative discounted sum of rewards:

� (g) B
)∑
C=1

WC−1AC . (2.8)

Note that � (g) is a random variable and depends the initial state distribution,

the transition kernel, the reward function, and the policy. The agent’s problem

2.4 Reinforcement Learning 43

is to find the policy c from a set Π that maximise the expected return:

max

c ∈Π
Ec,P,R,3 [� (g)] . (2.9)

This thesis is restricted to finite MDPs where that the state-space and the

action space are countably finite. Define by '(BC , 0C , BC+1) = E[R(BC , 0C , BC+1)] the
expected reward. Under these assumptions, Eq. 2.9 takes the form

max

c ∈Π

∑
B
0
∈S
3 (B0)

)∑
C=1

WC−8
∑
0C ∈A

c (BC , 0C)
∑
BC+1∈S

P(BC , 0C , BC+1)'(BC , 0C , BC+1) . (2.10)

An important fact is that Eq. 2.10 can be written recursively. Define the value

function of c at time 8 and state B8 as

+c (B8) B
)∑
C=8

WC−1
∑
0C ∈A

c (BC , 0C)
∑
BC+1∈S

P(BC , 0C , BC+1)'(BC , 0C , BC+1). (2.11)

It follows by recursion that +c (B8) = E08 ,B8+1 ['(B8, 08, B8+1) + W+c (B8+1)], which is

known as the Bellman (consistency) Equation. This is a profound result in dy-

namic programming in that there exists a stationary policy with maximal value.

Theorem 2.1 (Bellman Optimality). Let Π be the set of all non-stationary and
randomized policies on a given MDPM. Define + ∗ by + ∗(B) B supc ∈Π+c (B) ∀B ∈ S,
which is finite for finite reward functions. There exists a stationary and deterministic

policy c such that +c (B) = + ∗(B) ∀B ∈ S.

This version of the theorem is taken from Agarwal et al. (2020). The core

result is that there exists an optimal policy that is stationary and deterministic.

As a consequence, algorithms in dynamic programming and in RL focus on

learning stationary policies by estimation of value functions, which involves two

distinct learning problems. The first problem is the problem of policy evaluation:
efficiently estimating +c ; the second is that of policy improvement: efficiently

improving c . In an RL setting, policy evaluation is made challenging by the

random nature of the environment and the policy (Sutton & Barto, 1998, p.

91). Policy improvement becomes challenging in the function approximator

setting where convergence guarantees cannot generally be obtained.

2 Machines that Learn 44

2.4.2 Generalised Policy Iteration

A general strategy for finding an optimal policy is to fix some reference policy

c , evaluate its value function, then derive a new policy c ′ that is at least as

good as c , then repeat the process. This class of algorithms is typically called

Generalised Policy Iteration. This Section briefly presents this framework; see

Sutton & Barto (1998, p. 76) for a more detailed presentation. Central to this

class of algorithms is a means of deriving an improved policy. This is done

through the action-value function, which is defined similarly to the value function:

&c (B8, 0) B EB8+1 ['(B8, 0, B8+1) + W+c (B8+1)] ∀(B8, 0) ∈ S ×A . (2.12)

The action-value function, or &-function, evaluates a strategy of taking action 0

in state B8 , and thereafter following policy c . The policy improvement theorem

states that if there exists a c ′ such that &c (B, c ′(B)) ≥ +c (B) for all B ∈ S, then
+c ′ (B) ≥ +c B ∈ S. Thus, policy improvement amounts to finding such a c ′,

which is straightforward under the &-function. Define the deterministic policy

c ′(B8) B argmax

0

&c (B8, 0) ∀B ∈ S . (2.13)

By construction, c ′ must be equal to or better than c since it takes the actions

that maximise the immediate reward and the future value under c (Eq. 2.12).

Now, suppose +c ′ = +c . If this is the case, then c must the optimal policy. This

follows because, for any B8 ∈ S, the following must be true:

+c (B8) = &c (B8, c ′(B)) = max

0
EB8+1 ['(B8, 0, B8+1) + W+c (B8+1)] . (2.14)

Thus, for any B8 , the value of c is given by taking the action that yields the

highest immediate reward and the highest future value under c . But since c is

defined by this in every state B ∈ S, by divide-and-conquer c must be optimal.

More generally, Eq. 2.14 is known as the Bellman Optimality Equation and

a fundamental theorem of dynamic program is that a stationary policy that

satisfies Eq. 2.14 must be optimal in the sense of Theorem 2.1.

These results assume value functions are computed exactly. In RL, this is never

true. Instead, the agent must estimate +c by interacting with the environment.

In particular, both +c and &c can be written as an expectation under c for a

given state (and action) and can be estimated using Monte-Carlo sampling.

2.4 Reinforcement Learning 45

Specific algorithms differ in how they estimate + or & and how they define c ′.

The literature on this class of algorithms is large and constantly growing; a

full review is beyond the scope of this thesis; comprehensive overviews can

be found in (Sutton & Barto, 1998; Szepesvári, 2010; Agarwal et al., 2020).

This thesis is exclusively concerned with a subclass of algorithms that rely

on &-learning (Watkins & Dayan, 1992).

In &-learning policy evaluation and policy improvement are compressed into

a single computation that takes place online as the agent is interacting with

the environment. In a finite MDP, the &-function can be thought of as a table

that stores action-values for each pair (B, 0) ∈ S ×A. Specifically, at any time

C , given state BC , a greedy action is taken under c ′ in Eq. 2.13. The resulting

transition (BC , 0C , AC , BC+1) is used to update the &-value at (BC , 0C) by

& (BC , 0C) ← & (BC , 0C) + U
(
AC +max

0′
& (BC+1, 0′) −& (BC , 0C)

)
. (2.15)

By inspection, this update can be seen as the difference between the left-hand

side and the right-hand side of the Bellman Optimality Equation (Eq. 2.14).

Hence, &-learning can be thought of as directly estimating the optimal &∗,

rather than separating policy evaluation and policy improvement into two

distinct steps. Watkins & Dayan (1992) showed that if each action-state pair is

visited infinitely often, then &-learning converges to the optimal policy.

In large MDPs, & cannot be represented in tabular format and some form

of function approximation is required. Function approximation complicates

learning considerably because parameter updates change the value estimate

in every, not only the state used to compute the update. As such, &-learning

under function approximation is generally not guaranteed to converge.

The standard &-learning algorithm for deep neural networks, and hence of

particular interest in this thesis, is the DQN algorithm (Mnih et al., 2013).

A neural network &\ serves as an approximation of &. A greedy policy is

derived in the usual manner; what differs is the updates to &\ , which now

takes the form of a stochastic gradient update. To ensure that updates to \ stay

true to value estimates in as many states as possible, updates are computed

on mini-batches of transitions. These are sampled from a replay buffer of

historical data, giving rise to the update

\:+1 = \: + U
#∑
8=1

(
max

0′
W& \ (B8+1, 0′) + A8 −&\ (B8, 08)

)
∇&\: (B8, 08), (2.16)

2 Machines that Learn 46

where
\ are target parameters that follow \ at a slower rate to ensure stability.

This is not a proper gradient-descent algorithm and hence lack any guarantees

of convergence. Because of this, deep &-learning is susceptible to unstable learn-

ing dynamics, for which a variety of improvements have been proposed (Mnih

et al., 2015; Schaul et al., 2015; Van Hasselt et al., 2016; Wang et al., 2016b).

2.4.3 Reinforcement Learning with Policy Gradients

Generalised Policy Improvement relies on first constructing a value estimate

and then deriving a policy from the estimate. Another approach—that is

closer in spirit to other forms of machine learning—is to parameterise the

policy directly, denoted c\ , and formulate the agent’s problem (Eq. 2.9) as

an optimisation problem over \ :

max

\ ∈Θ
Ec\ ,P,R,3 [� (g)] . (2.17)

This optimisation problem is similar to the machine learning problem defined

in Eq. 2.3, but differs in that \ features in the expectation. Gradient based

optimisation is therefore more challenging, as the derivative must factor in how

the data distribution changes with \ , which is typically intractable unless the

agent has a perfect (differentiable) model of the environment.

Fortunately, Williams & Peng (1991) showed the gradient of the objective func-

tion in Eq. 2.17 can be computed under a Monte-Carlo estimate, known

as the REINFORCE algorithm. This algorithm leverages that the objec-

tive function can be written in terms of the probability of a trajectory, i.e.

E[� (g)] = ∑
g ? (g)� (g). Since � (g) is a sum of rewards, \ features only in

the probability of the trajectory. This means that the gradient can be written

as ∇\Eg [� (g)] = Eg
[
� (g)∇\ log? (g)

]
, using that ∇5 (G) = 5 (G) log∇5 (G). Since

? (g) B 3 (B0)
∏)−1
C=0

c\ (0C | BC)? (BC+1 | BC , 0C), the policy-gradient can be written as

∇qEcq ,P,R,3 [� (g)] = Ecq ,P,R,3

� (g)
∑
(BC ,0C) ∈g

∇q logcq (0C | BC)
 . (2.18)

REINFORCE estimates the gradient by sampling trajectories under c\ to

compute the right-hand side of Eq. 2.18. While unbiased, it can have high

variance. For this reason, it is often more convenient to instead estimate the

2.4 Reinforcement Learning 47

policy gradient using the equivalent formulations (cf. Agarwal et al., 2020)

∇qEcq ,P,R,3 [� (g)] =
1

1 − W E(B,0)∼`c
[
&c\ (B, 0)∇q logcq (0 | B)

]
(2.19)

=
1

1 − W E(B,0)∼`c
[
�c\ (B, 0)∇q logcq (0 | B)

]
, (2.20)

where �c\ (B, 0) B &c\ (B, 0) − +c\ (B) is the advantage function and `c is the

stationary state distribution under c (the fraction of times the agent is in state

B). When the value function is not known, estimating the policy gradient

involves an estimate of the (action-)value function (Sutton et al., 1999). This

typically introduces a bias, but leads to significantly lower variance and is often

preferred. This class of algorithms is collectively referred to as actor-critic

algorithms (Konda & Tsitsiklis, 2000).

This concludes the presentation of reinforcement learning methods used in

this thesis. There are many more approaches to reinforcement learning

and several fundamental challenges not mentioned in this brief presentation.

For a broader view of the topic, see for instance Sutton & Barto (1998) or

Agarwal et al. (2020).

Irrespective of learning algorithm, reinforcement learning is fundamentally

a problem of delayed feedback. The agent must take a full sequence of

actions (00, . . . , 0C−1) to obtain a full sequence of rewards (A1, . . . , A)) before it

has complete information to evaluate the return its policy is yielding. Thus a

fundamental learning problem in reinforcement learning is the credit-assignment
problem, meaning the agent must infer what actions in the sequence lead to

the return it observed. Similarly, by committing to a certain sequence of actions,

the agent foregoes experiences that it could have obtained under another action

sequence. This results in an exploration problem, in the sense that the agent

must search for the experience required to learn a useful policy.

Both these problems are amenable to meta-learning. For instance, credit

assignment can be tackled by meta-learning the learning rule itself (Xu et al.,

2018b). Similarly, given a distribution of tasks, one can meta-learn an explo-

ration strategy (Alet et al., 2020). There are many more approaches one can

take to meta-learning in the reinforcement learning setting, most of which

bears close resemblance to the typical machine-learning problem. In partic-

ular, reinforcement learning can be viewed as a maximisation problem in

some parameters, allowing a unified view of meta-learning as learning over

a distribution of optimisation problems.

2 Machines that Learn 48

2.5 Summary

To provide a coherent and unified view of a machine that learns, this thesis

takes the perspective of machine learning as an optimisation problem. In terms

of machine learning, this view can be motivated both from the point of view of

maximum likelihood estimation and empirical risk minimisation. In terms of

reinforcement learning, the problem itself is defined as a maximisation problem,

while algorithms differ in terms of how they go about solving the problem.

Given a unified view of a machine that learns as an optimisation problem,

meta-learning can be formalised as the problem of learning how to learn over a

distribution of such problems. Next, Chapter 3 formalises this notion into a

framework amenable to machine learning, as well as place meta-learning in

context of relevant historical and contemporary research.

49

3 Machines that Learn to Learn

As Chapter 2 formalises the notion of a machine that learns, this chapter

formalises the notion of a machine that meta-learns. This chapter builds on

the formalism of a machine learning problem and frames meta-learning as a

learning problem over a distribution of learning problems. From this view,

meta-learning can be formalised as a bi-level optimisation. While not all of

meta-learning fits within this framework, it provides a unifying language from

which to discuss meta-learning as viewed in this thesis.

The chapter is structured as follows. Section 3.1 provides a high-level frame-

work for meta-learning. Section 3.2 surveys related fields while Section 3.3

provides an overview of the literature on meta-learning from a historical

perspective. Section 3.4 discusses the mechanics of meta-learning, while Sec-

tion 3.5 details the specific meta-learning setting used in most contemporary

meta-learning and in this thesis.

3.1 The Meta-Learning Problem

The previous chapter highlights that an important consideration in a machine

learning problem is the inductive bias brought to bear on a learning problem.

Meta-learning can be viewed as learning inductive biases from data—broadly

speaking—act on a learning problem by priming the learner towards certain

solutions. The type of model, loss function, learning rule, and problem

formulation are all inductive biases that can be meta-learned.

At the heart of meta-learning lies the no free-lunch theorem (Wolpert &

Macready, 1997); there is no unique set of inductive biases that will be optimal

for every problem. Rather, each class of problems might have a distinct set of

inductive biases that makes learning efficient. Some of these can be specified

manually by us as designers—itself a form of meta-learning. Others can be

meta-learned from data without human intervention. Broadly speaking, there

are two levels to the meta-learning problem.

3 Machines that Learn to Learn 50

At the highest level, the meta-level, meta-learning is a machine learning

problem defined over a distribution of machine-learning problems. Taking an

optimisation-based view of machine learning, as per Chapter 3, meta-learning

can be formulated in the same form as the canonical machine learning problem

(Eq. 2.4). First, let ω represent the learner’s meta-knowledge. Second, let T
denote a set of tasks, where each task is a machine learning problem (Eq. 2.3).

Meta-learning can then be formalised as a machine learning problem defined

over machine learning problems:

min

ω∈Ω
J (ω,T) . (3.1)

This learning problem is akin to Eq. 2.4, but differs in that learns ω over T . For
learning to be well-defined, ω must be able to influence the solution to machine-

learning problems g in T . Thus, at the lowest level of the meta-learning

problem, ω alters how a solution to a machine-learning problem is found.

Specifically, a machine learning problem can be defined as a tuple g = (L,D, F)
that specifies the objective L, the data available D, and the search space F to

select a model 5\ from. A solution is given by an algorithm A : g → \g that

maps a task g to a solution \g . Meta-learning influences the machine learning

problem by acting on the solution; either the map A itself or its inputs.

For instance, the meta-learner can select the best algorithm from a set of

known algorithms to fit the task at hand (Leite et al., 2012; van Rijn et al.,

2015), or it can learn an algorithm from scratch (Andrychowicz et al., 2016;

Ravi & Larochelle, 2017), or tune a given algorithm’s parameters (Finn et al.,

2017). The learning objective ℓ can be meta-learned (Sung et al., 2018; Kirsch

et al., 2019; Oh et al., 2020), as can the data D, for instance by meta-learning

preprocessing pipelines (Vilalta et al., 2004) or a data-generative process to

expand the amount of training data (Zhang et al., 2018; Seo et al., 2018).

Meta-learning can restrict the search space, for instance by defining the model

5\ in a meta-learned metric space (Vinyals et al., 2016; Snell et al., 2017) or

by meta-learning feature representations (Lee & Choi, 2018).

In summary, meta-learning acts on standard machine learning through the

learning process. Different meta-learners will affect different aspects of the

learning process. In its most general form, a meta-learner ω = (ωA,ωL,ωD,ωF)
act on a machine learning problem in Eq. 2.4 through

argmin

\ ∈Θ
L(\ ;D) ≈ \ (ω) = ωA (A)

(
ωL (L), ωD (D), ωF (F)

)
. (3.2)

3.1 The Meta-Learning Problem 51

Intuitively, the goal of meta-learning is to provide the learner with useful

meta-knowledge that facilitates learning. For instance, meta-learning can help

improve the speed of learning (Andrychowicz et al., 2016; Flennerhag et al.,

2019), the final performance of a learned model (Vinyals et al., 2016; Finn et al.,

2017), or the model’s robustness (O’Sullivan et al., 2000; Zhang et al., 2018).

Meta-learning differs from conventional machine learning in that it contains two

nested learning problems, often referred to as an inner loop and an outer loop.

The inner loop (Eq. 3.2) solves a specific task, i.e. a machine learning problem.

Tasks can differ both in terms of objective, data, solution space, and learning

algorithm. A common assumption in the literature is that tasks differ only

in terms of data, so that a task g can be identified with its data-generating

process ?g : (G,~) ↦→ (0, 1). Methods developed in this thesis do not make such

a stringent assumption. However, it is assumed that the learner’s model class

(i.e. 5) is identical across tasks so that \ is of fixed size.

The outer-loop (Eq. 3.1) is distinct from other forms of machine learning in

that it is a learning problem over some set of tasks. While the inner loop

is concerned with learning a task-specific model, the outer loop is concerned

with finding meta-knowledge that facilitates learning such models on any task

in the designated task space T . Thus the meta-learning problem is akin to

conventional machine learning but operates on a higher level of abstraction.

Whereas the goal of conventional machine learning (e.g. the inner loop)

is to learn a model 5\ that generalises from a set of training data Dg
, the

goal of meta-learning is to learn an algorithm Aω that generalises from a

set of training tasks T .

Not all of meta-learning can be formulated in this way, but this characterisation

provides a clear distinction between conventional machine learning and meta-

learning. In particular, it highlights the role of meta-knowledge: to facilitate

the learning problem faced by the learner. Hence meta-learning is the problem

of learning what this meta-knowledge should be. This can be achieved by,

for instance, meta-learning the initialisation of gradient descent (Finn et al.,

2017), the learning rate (Li et al., 2017) or similar hyper-parameters (Xu

et al., 2018b), meta-learning causal inference mechanisms (Bengio et al., 2019),

exploration strategies for reinforcement learning (Alet et al., 2020), or meta-

learn fundamental machine learning methods such as gradient descent and

neural networks (Real et al., 2020).

3 Machines that Learn to Learn 52

3.2 Related Fields

Transfer learning A related but distinct field, where the goal is to transfer

knowledge from a pre-trained model on a source task to a new model being

trained on a target task (Pratt, 1993; Caruana, 1997). While similar to meta-

learning, it differs in that the source model is trained on the source task without

taking into account that it will later be used for knowledge transfer.

Hence, transfer learning is not a learning to learn paradigm since the source

model does not take into account what information might be useful when

training the target model. While ignoring the transfer process can limit

knowledge transfer (Higgins et al., 2017; Achille et al., 2018), transfer learning

has enjoyed widespread success by training a large model on a very large

source task that forces the model to encode relatively general knowledge about

the domain that can be useful in a range of related tasks. This technique

can be highly efficient in computer vision (e.g. Deng et al., 2009; Donahue

et al., 2014; Sharif Razavian et al., 2014; Russakovsky et al., 2015) and is

also behind recent advances in natural language processing (e.g Howard &

Ruder, 2018; Yang et al., 2019; Brown et al., 2020).

Hyper-parameter tuning A closely related but distinct field that specialises

on hyper-parameter tuning in the single-task setting (Bergstra et al., 2011).

Some work in meta-learning (Xu et al., 2018b; Zahavy et al., 2020) are in fact

closely related to hyper-parameter tuning algorithms (Bengio, 2000; Maclaurin

et al., 2015; van Erven & Koolen, 2016). Hyper-parameter tuning differs

from meta-learning in that it considers a smaller search space, thus allowing

a broader range of optimisation methods, such as evolutionary strategies

(Jaderberg et al., 2017b; Drake et al., 2020) or Bayesian modeling (Feurer et al.,

2019; Klein et al., 2017; Falkner et al., 2018). These methods are generally not

applied in meta-learning with neural networks, where gradient-based methods

have shown greater empirical success to date (Hospedales et al., 2020).

Multi-task learning This field considers a model that must jointly solve

several tasks (Caruana, 1997).This forces the model to learn representations that

generalise across tasks (Rebuffi et al., 2017), as with meta-learning. However,

in contrast to meta-learning, the focus in multi-task learning is the final model

and not the learning rule (Li & Hoiem, 2016; Bilen & Vedaldi, 2017). Instead,

the literature place more emphasis on the structure of tasks, such as task

asymmetry (e.g. Allmendinger et al., 2015). Such methods offer opportunities

for further research in the context of meta-learning.

3.2 Related Fields 53

Domain adaptation and generalisation These are related to transfer learning

but focus primarily on methods that deal with shifts in the data distribution.

Domain adaptation is concerned with cases where the input or target distribu-

tion changes over time when training a model in an online learning fashion,

while domain generalisation is concerned with domain shifts that arise when a

trained model is deployed to a different data set (Pan & Yang, 2009). Domain

generalisation focuses on methods that train the model to be robust to domain

shifts (Muandet et al., 2013), which can be learned through meta-learning (Li

et al., 2018), for instance by meta-learned regularisation (Balaji et al., 2018),

loss functions (Li et al., 2019), or model augmentations such as parametric noise

(Tseng et al., 2019). Domain adaptation has only recently received attention

within meta-learning from an online learning perspective (Finn et al., 2019).

Bayesian modelling Because meta-knowledge is typically thought of as some

a priori accumulated knowledge, meta-learning also has parallels to Bayesian

modelling, insofar as we think of the meta-knowledge as constituting a “prior”.

While some meta-learning frameworks do have a Bayesian interpretation (Fei-

Fei et al., 2003; Lawrence & Platt, 2004; Edwards & Storkey, 2017; Garnelo

et al., 2018; Ravi & Beatson, 2018), in general this is not the case. From

this perspective, meta-learning is an inference process that learns a prior in a

hierarchical Bayesian model. A more common approach in contemporary meta-

learning is to view it as a hierarchical optimisation problem (Grant et al., 2018).

Continual and lifelong learning Typically formulated as a problem of learn-

ing a sequence of tasks continually (Parisi et al., 2019). Continual learning

shares the notion of a task distribution with meta-learning, but differs in that

there is no distinction between meta-training and meta-testing; instead, tasks

are exposed sequentially and the goal is to maximise performance on all tasks,

past and present, simultaneously. The characteristic problem in continual learn-

ing is that of catastrophic forgetting (French, 1999), by which is meant a drastic

loss of performance on past tasks as the agent is training on the current task.

Solutions to this problem are often based on attempting to incrementally build

a multi-task solution, for instance by incrementally growing the network (Rusu

et al., 2016) for each new task (that can be intermittently distilled (Schwarz

et al., 2018)), replaying data from past tasks (Riemer et al., 2018), constraining

parameter updates to lie close to past solutions (Kirkpatrick et al., 2017; Zenke

et al., 2017) or in other ways prevent changing parameters that are important

for past tasks (Serrá et al., 2018), or by learning generative models of task

distributions for replay (Shin et al., 2017), along with Bayesian methods for

3 Machines that Learn to Learn 54

keeping an online posterior over tasks (Nguyen et al., 2018; Ritter et al., 2018).

Continual learning differs from meta-learning in that it is not formulated as a

learning-to-learn problem, though recent work has extended meta-learning to

include tasks that are continual in nature, in which case the meta-learning is

learning to continually learn (Javed & White, 2019; Flennerhag et al., 2020a).

AutoML Broadly speaking, AutoML covers topics that involve automatically

discovering and tuning a model on a single task (Vilalta & Drissi, 2002; Yao

et al., 2018a). As such, AutoML covers topics of automated feature-engineering

and data mining (Vilalta et al., 2004), model selection (Kotthoff et al., 2017),

and hyper-parameter optimisation (Shahriari et al., 2016), to name a few.

These problems are distinct from meta-learning in that they are primarily

focused on automating manual aspects of the machine-learning pipeline on a

given problem. Most of AutoML framed as learning to learn, in the sense that

the meta-learner is trained and evaluation on a single task. However, recent

work lie at the intersection of the two (Vanschoren, 2018; Real et al., 2020).

3.3 A Historical Perspective

Early works in meta-learning, often referred to as algorithms for learning to
learn, thought of meta-learning as a general (i.e. Turing Complete) machine

that would take a description of the current model and current experience as

input and output a new model (Schmidhuber, 1987; Thrun & Pratt, 1998).

Implemented as a Recurrent Neural Network (RNN), 5\ , the parameters of

the network \ corresponds to meta-knowledge while the hidden state ℎ is an

abstract representation of both its history and the current model (Hochreiter

et al., 2001). If the input to this RNN contains its most recent output ~, the RNN

can be interpreted as self-referential in the sense that it can learn to implement

a loss function and an update rule (Schmidhuber et al., 1996; Hochreiter et al.,

2001). What characterises this form of meta-learning, or learning to learn, is

that there is no real distinction between the learning rule and the model; the

model embodies the learning rule. Meta-learning in this context amounts to

unrolling the RNN over a tasks’s dataset. Given a current hidden state ℎ, a past

input G with target ~, the meta-learner adapts to the task by updating its hidden

state ℎ′ while making a prediction ~ ′ for a new datapoint G ′ from the task:

~ ′, ℎ′ = 5\ (G ′, ~, ℎ). (3.3)

Meta-learning arises by learning \ over a dataset; this allows the network to

3.3 A Historical Perspective 55

associate a past input G with its target ~ and relate that to the prediction it

made at the time, ~. This knowledge is captured in the hidden state ℎ and

can be meta-learned so that the network learns to adapt its predictions to fit

the task. Duan et al. (2016) and Wang et al. (2016a) independently extended

this framework to reinforcement learning. In this setting, there is no target

~. Instead, the input to the meta-learner is its previous action 0 along with

the reward A it obtained for the transition (B, 0, A, B ′):

0′, ℎ′ = 5\ (B ′, 0, A, ℎ) . (3.4)

This system can—in principle—learn efficient policy evaluation and policy

improvement strategies, as well as how to trade off exploration and exploitation.

Unrolling 5\ as defined above in an environment corresponds to running

its learned algorithm (Duan et al., 2016; Wang et al., 2016a). However, a

meta-learned RNN algorithm have no guarantees of convergence.

The extent to which a meta-learner 5\ generalises depends both on the properties

of the function approximator and the data it was trained on. If the data it was

trained on is unrepresentative in some way, the meta-learner can be arbitrarily

bad. While this can be addressed by increasing diversity of the meta-training

set (Triantafillou et al., 2020), RNN-based meta-learning is ultimately at the

mercy of the function approximator. In particular, an RNN does not contain

any useful inductive biases for learning, but must learn these from data.

An alternative view on meta-learning that partially circumvent this issue makes

a distinction between the learning rule, ω (e.g. gradient descent), and the

model 5\ . Meta-learning in this form arises by separating meta parameters

q from rapidly adaptable parameters \ . The meta-parameters are learned at

a slower time-scale to account for the dynamics that govern how \ evolves

under the learning rule ω. From this perspective, meta-learning arises as a

partitioning of learning into different time-scales (Thrun & Pratt, 1998).

In the original proposal by Hinton & Plaut (1987), both \ and q resides within

the model and forms a system where each “synapse” has two parameters, one

that is rapidly adapting (i.e. \) and that decays towards zero, and one that

slowly adapts (i.e. q) without decay. The model is parameterised by summation,

5\+q . The rapidly changing \ reflects rapid adaptation to current experiences.

The slowly adapting evolving q integrates over a longer horizon to capture

general knowledge. In a manner akin to plasticity, \ can override default

behaviour in q as and when local context dictates but will fade from memory

3 Machines that Learn to Learn 56

if the effect is not persistent. The idea of fast and slow weights has since been

explored further in a variety of settings (e.g. Schmidhuber, 1992; Gomez &

Schmidhuber, 2005; Ba et al., 2016; Ha et al., 2017; Munkhdalai & Yu, 2017).

Further removed from the self-referential learning to learn system (Eq. 3.3),

Bengio et al. (1991) proposed a form of meta-learning that extricates meta-

parameters from the model entirely and instead places them within a learning

rule ωq . In this setting, the role of adaptable parameters \ and meta-parameters

q are disjoint, as meta-parameters only affect the learning rule but not the

model. In this regime, which is sometimes referred to as learning how to learn,

meta-learning is a means of inferring a learning rule.

While a learning rule can be learned online in a single stream of data (Chen

et al., 2016; Andrychowicz et al., 2016; Xu et al., 2018a), it is typically studied

as the problem of meta-learning a learning rule that generalises across tasks,

as described in Section 3.1. From this perspective, the learning rule acts on the

algorithm, A; typically, A is defined as iteratively applying the learning rule:

Aωq B ωq · · · · · ωq . (3.5)

Meta-learning the learning rule therefore amounts to learning q such that

repeated application of ωq yields good learning on a given task. In particular,

given a task distribution ? (g), the meta-learning problem is typically formulated

as (c.f. Hospedales et al., 2020):

min

q
Eg∼? (g) [Lg (\g ;Dg)]

s.t. \g = Aωq (g).
(3.6)

A limiting factor of this problem formulation is that the meta-learner is only

evaluated in terms of final performance. In complex meta-learning problems,

learning often amounts to thousands of repeated applications of ωq . This gives

rise to a credit assignment problem, where a signal at the very end must be

attributed across many applications of the learning rule. A core tenet of this

thesis is that meta-learning can be directly formulated in terms of the process
of learning, as opposed to the end result. Formulating meta-learning in terms

of the process of learning provides significant benefits of scale (Chapter 5) and

provides a more efficient and flexible form of meta-learning as it does not need

to wait for final task performance (Chapter 6).

3.4 The Mechanics of Meta-Learning 57

Finally, it is worth mentioning a third dominant approach to meta-learning,

which focuses on meta-learning metric spaces for non-parameteric inference

(Koch, 2015; Vinyals et al., 2016; Snell et al., 2017). In this setting, meta-

knowledge is represented as a transformation 6q that induces a metric space

〈·, ·〉6q . To adapt to a new task, the learner is given a so-called support set

of task data. Predictions for other data points, so-called query points, are

constructed in a non-parametric fashion by finding nearest neighbours under

the meta-learned metric. To illustrate in the context of classification, when

faced with a new task for which we have, let’s say, one example of each class,

Dg =
{
(G (8) , ~ (8)

}�
8=1

where ~ (8) = 8. The model makes predictions by making

comparison under the meta-learned metric using some inference procedure,

such as the Boltzmann distribution (Vinyals et al., 2016; Snell et al., 2017):

?
(
~ ′ = 8

��G ′,Dg
)
∝ exp

(
6q (G ′))6q (G (8))

)
. (3.7)

Few-shot metric-learning methods akin to Eq. 3.7 have been an important

driver meta-learning research in the last few years and appear likely to remain

so for the foreseeable future.

3.4 The Mechanics of Meta-Learning

Contemporary works in meta-learning tend to view meta-learning as a means

of abstracting away design choices and to automate as much of learning

as possible (Clune, 2019). This view is partially inspired by computational

evolution (Wang et al., 2019; Arulkumaran et al., 2019), procedural generation

of complexity (Schmidhuber, 2013; Sukhbaatar et al., 2018; Racaniere et al.,

2020; Risi & Togelius, 2020), and partially inspired by the human brain’s

ability to acquire new skills from experience (Jankowski et al., 2011; Lake

et al., 2011). While there is truth to this view, it is important to emphasise that

meta-learning is, by virtue of being a machine learning problem, also subject

to the No Free Lunch Theorem. Hence, the power of meta-learning is not that

it expands the number of solutions a learner can reach, but that it restricts
the number of possible solutions a learner can achieve on a given task by

providing inductive biases that primes the learner towards certain solutions—at

the exclusion of other possibilities. As Schmidhuber (1987, p. 5) put it,

“Meta-capacity probably is also essential for truly flexible learning systems. The

more parts of a system are accessible by the system itself (in a non-destructive

manner), the more senseful self-modification may take place.”

3 Machines that Learn to Learn 58

Figure 3.1: Example of how meta-learning an update rule can facilitate learning

(Flennerhag et al., 2020a, Appendix 6.D). Each task L ∼ ? (L) defines a distinct

loss surface (bottom row). Gradient descent (black) on these surfaces struggles

to find a solution. A meta-learned update rule exploits regularities across tasks

to learn better initialisations and update directions (magenta) by learning a

dual space (top row) where gradient descent is well behaved.

By restricting how a learner interacts with its search space, meta-learning

can discover highly effective inductive biases that allow the learner to tackle

problems of greater complexity. To see this in action, consider the following

problem.
3

The meta-learner is facing a distribution ? (L) of loss functions

L : ℝ= → ℝ. While each loss function is different, they share some underlying

structure; Figure 3.1 shows three examples drawn from this distribution. For

each learning problem L, the learner must solve

min

\
L(\) . (3.8)

The loss functions L are designed such that the loss surfaces are ill-conditioned,

causing gradient descent to struggle, as can be seen by the black curves in

(Figure 3.1). Meta-learning can provide the learner with an inductive bias

that corrects for this ill-conditioning by meta-learning how to correct for

curvature over the distribution of learning problems. One way of doing this is

to introduce a projection Ωq : ℝ= ↦→ ℝ=×= that corrects for the loss surface’s

curvature. With this projection, a meta-learned update rule takes the form

\ = \ −U Ωq (\)∇ L(\). Meta-parameters q control how the learning rule correct

for curvature. Meta-learning q across ? (L) can lead to a learned projection

Ωq that provides a smoother loss surfaces to learn on across ? (L), even those

we have yet to see, as shown on the top row in Figure 3.1.

3
Example from (Flennerhag et al., 2020a); see Section 6.D

3.5 Contemporary Meta-Learning with Neural Networks 59

This example illustrates the two sides of meta-learning. Introducing Ωq expands

the set of learning rules that can be applied to the task distribution. On the

other hand, for any one task, the meta-learned learning rule Ωq introduces

a strong inductive bias that will dictate the process of learning on any task

L. In this way, meta-learning allows greater generality by automating certain

high-level choices. Meanwhile, it provides each task-specific machine learning

problem with a stronger inductive bias for learning. The cost of this is that

meta-learning relies on generalisation: it inherently faces a challenge when

prior experience is not representative of a new task. A task L ′ that is not

from ? (L) can instead suffer from the meta-learned learning rule if that rule

excludes certain solutions relevant to L ′. How to bridge this gap and allow

the meta-learner to generalise to new task distributions is as of yet an open

and exciting research question (Hospedales et al., 2020).

It is important to note that this property is not specific to meta-learning, the

same limitation applies to any statistical process, including us humans (Griffiths

et al., 2019); we are—through evolution—primed to learn certain sets of skills,

while others are beyond our capacity to learn. Meta-learning should not be

understood as a silver-bullet that lets an AI learn anything from data. Rather

the opposite, it is a means by which an AI learns—formalised by some learning

algorithm—can be restricted through relevant inductive biases that enables the

AI to learn and adapt to experiences as it interacts with its environment. As

such, meta-learning is a powerful framework for learning models that generalise

across a class of problems. The relevant class can be playing board-games,

driving cars, or the problems we as humans can solve, or beyond that.

3.5 Contemporary Meta-Learning with Neural Networks

Contemporary meta-learning is distinguished by its heavy use of a task distri-

bution. The notion of a task distribution arose in the setting of # -way- -shot
classification, where a classifier is tasked with solving an # -way classification

problem given examples of each class (Larochelle et al., 2008; Lake et al.,

2011). Earlier works used various forms of pre-training without matching

training and testing conditions (Fei-Fei et al., 2003; Lawrence & Platt, 2004;

Lake et al., 2011; Norouzi et al., 2014).

Protocol Vinyals et al. (2016) proposed to deliberately structure the training

set such that it matched test-time conditions by referring to a task as tuple

g B
(
Dg

train
,Dg

test

)
of data sets; a training set and a test set (also known as

support and query sets, respectively). The meta-learner is trained over tasks

3 Machines that Learn to Learn 60

sampled from a meta-training set T train B {g (8) }#8=1
and later evaluated on

unseen tasks in the meta-test set, T test B {g (9) }"9=1
.

Beyond proposing this paradigm, they also introduced two meta-learning

benchmarks that would become canonical to few-shot learning based on the

Omniglot dataset (Lake et al., 2011) and the ImageNet dataset (Deng et al.,

2009). These benchmarks have been used in a variety of influential works

(Snell et al., 2017; Ravi & Larochelle, 2017; Finn et al., 2017, e.g) that has

served to popularise the view of meta-learning as a map Aωq from Dg
train

to

a task-specific model 5\g that is evaluated on Dg
test

.

Meta-learning under this protocol is a specific instance of Eq. 3.6 where Lg

is the test performance:

min

q

∑
g ∈Ttrain

L(\g ;Dg
test
)

s.t. \g = Aωq (Dg
train
) .

(3.9)

This type of meta-learning can take a wide variety of forms depending on how

ωq is represented and how it produces task-specific parameters \g . In broad

strokes, contemporary research on methods for meta-learning can be divided

into works that view meta-learning as a parameter prediction problem, a means

of learning feature representations, as a black-box function approximator, or

that meta-learn aspects of a known update rule—typically gradient descent.

Meta-learning as parameter prediction Because of the representational ca-

pacity of neural networks, a common approach is to identify ωq with a neural

network that outputs either a description of a model (as in Eq. 3.3), or predicts

the model’s parameters (Bertinetto et al., 2016; Ha et al., 2017; Shaban et al.,

2017; Munkhdalai et al., 2018; Gidaris & Komodakis, 2018; Qiao et al., 2018;

Lee et al., 2019b). The number of parameters in the meta-learner’s neural

network grows exponentially in the number of task-specific parameters to

predict. Thus, these methods pretrain a feature extractor and predict a small

subset of the parameters, often a final linear classifier.

Meta-learned feature representations An alternative approach is to use neu-

ral networks to meta-learn a feature embedding for non-parametric learning

(Koch, 2015; Vinyals et al., 2016; Snell et al., 2017; Sung et al., 2018; Rodríguez

et al., 2020). Others have studied how meta-learning can affect relational

reasoning through attention mechanisms (Mishra et al., 2018; Ren et al., 2019;

3.5 Contemporary Meta-Learning with Neural Networks 61

Hou et al., 2019) or explicit memory (Graves et al., 2014) that the meta-learner

learns to make use of (Santoro et al., 2016; Munkhdalai & Yu, 2017).

Black-box meta-learning These methods parameterise ωq as a deep neu-

ral network such as a recurrent neural network (Hochreiter et al., 2001;

Andrychowicz et al., 2016; Li & Malik, 2016; Ravi & Larochelle, 2017), Neural

Turing Machine (Santoro et al., 2016), or some other form of memory-based

model (Ba et al., 2016; Mishra et al., 2018; Munkhdalai & Yu, 2017). As

mentioned previously, the characteristic feature of these approaches is that that

ωq is a parameterised map from a task training set Dg
that either implicitly

encode a task model in its hidden state (Hochreiter et al., 2001; Wang et al.,

2016b; Duan et al., 2016) or explicitly predict its parameters (Andrychowicz

et al., 2016; Li & Malik, 2016; Ravi & Larochelle, 2017; Ha et al., 2017). Many

of these have the capacity to learn any learning rule by virtue of being universal

function approximators (Cybenko, 1989; Hornik, 1991; Siegelmann & Sontag,

1995; Schäfer & Zimmermann, 2007), but it places the generalisation of that

learning rule at the mercy of the properties of the neural network. Theoretical

work on generalisation properties of neural networks suggests that they are

local approximators primarily (Jo & Bengio, 2017; Justesen et al., 2018). Their

complex loss surfaces (Li & Hoiem, 2016; Freeman & Bruna, 2017; Garipov

et al., 2018) mean that they can easily get attracted to local minima with respect

to the meta-training tasks, preventing them from learning representations that

generalising deeper concepts like physics and grammar (Lake et al., 2017).

Empirically, such full black-box approaches to meta-learning tend to generalise

less well than other methods (Mishra et al., 2018; Finn et al., 2017), which

have provoked questions as to their general feasibility (Finn & Levine, 2018).

Gradient-based meta-learning In contrast to these approaches, an alternative

approach defines ωq as a gradient-based update rule and meta-learns a set of

shared parameters of the gradient descent algorithm, most commonly the

initialisation (Finn et al., 2017; Nichol et al., 2018; Flennerhag et al., 2019).

In contrast to black-box methods, this form of meta-learning does have an

inductive bias that is valid even for tasks that may be distinctly different from

the meta-training set. This approach was popularised by the Model Agnostic

Meta-Learner (MAML; Finn et al., 2017), which is a special form of Eq. 3.9,

where ωq is defined as gradient descent and q B \0 is equal to an initialisation

\0 that is shared across tasks. Under this notation, in the case of one gradient

3 Machines that Learn to Learn 62

step of learning per task, MAML is defined by

min

\
0

Eg∼? (g)
[
L

(
\0 − U∇L(\0;Dg

train
);Dg

test

)]
. (3.10)

Subsequent works have shown that it is beneficial to more directly control

gradient descent by meta-learning parameters that are active at each step of

adaptation. Meta-SGD (MSGD; Li et al., 2017) learns a vector of learning

rates, Meta-Curvature (MC; Park & Oliva, 2019) defines a block-diagonal

preconditioning matrix �, and T-Nets (Lee & Choi, 2018) embed block-diagonal

preconditioning in feed-forward learners via linear projections. These differ

in how the gradient-update rule is defined:

ω(\: ;\0) B \: − U∇L(\:) MAML

ω(\: ;\0, q) B \: − U diag(q)∇ L(\:) MSGD

ω(\: ;\0, q) B \: − U�(q)∇ L(\:) MC

ω(\: ;\0, q) B \: − U∇L(\: ;q) T-Nets.

A common limitation of MAML-based meta-learners is that they backprop-

agate through the gradient descent process in Eq. 3.10, which results in a

trajectory dependence in the meta-objective. This dependence limits them to

few-shot learning as they become (1) computationally expensive, (2) suscep-

tible to exploding/vanishing gradients, and (3) subject to a credit assignment

problem (Wu et al., 2018; Antoniou et al., 2019; Liu et al., 2019). These

limitations are discussed at depth in Chapter 6.

MAML based approaches have since proliferated. Grant et al. (2018) showed

that MAML can be thought of as an Hierarchical Bayesian prior, which has

spurred several extensions of MAML to imbue it with a Bayesian interpretation

(Kim et al., 2018a; Finn et al., 2018; Ravi & Beatson, 2018). MAML has

also been used to meta-learn latent spaces for concept or task inference,

which is an effective approach to blending gradient-based and inference-based

adaptation (Zhou et al., 2018; Oreshkin et al., 2018; Rusu et al., 2019; Lee

et al., 2019a). It has been extended to continual learning (Javed & White, 2019)

and online meta-learning (Finn et al., 2019), and gradient-based meta-learning

has recently been introduced in the context of graph neural networks (Zhou

et al., 2019; Huang & Zitnik, 2020), where they are used to learn metric

spaces for rapid graph inference.

3.6 Summary 63

3.6 Summary

Contemporary meta-learning is typically viewed as a bi-level optimisation

problem. This has proven a powerful framework for understanding the nature

of meta-learning and for developing new methods that tackle increasingly

challenging problems. In the few-shot learning scenario, a natural formulation

is to view the meta-learner as a mapping from task description to a trained

model and to meta-learn this mapping with respect to the trained model’s

generalisation performance. While elegant and powerful, this approach to

meta-learning comes with certain limitations and open research questions.

Scalability In particular, it is an “asymptotic” evaluation that only scores the

meta-learner in terms of the final performance of the trained model. For meta-

learning beyond few-shot learning, this poses serious challenges. First, because

of an intractable credit assignment problem, where the final performance must

be attributed over thousands (if not millions) of learning steps. Second, the

notion of final performance may not be relevant, or even ill-defined. For

long learning processes, one might equally care about the performance during
learning; for never-ending learning process, the only relevant metric is the

learner’s performance while learning.

Generalisation Contemporary meta-learning introduces a complicated inter-

relationship between the algorithm’s parameters and the learner’s parameters.

This interaction is dictated by the properties of the function approximators used

in learning. Currently, it is an open research question as to what representation

of meta-knowledge allows efficient generalisation in meta-learning.

Exogenous Tasks This form of meta-learning relies heavily on the notion of a

task distribution. It is becoming increasingly clear that engineering sufficiently

complex task distribution might not be feasible (Hospedales et al., 2020),

except in certain domains such as natural language processing (Brown et al.,

2020). It is yet unclear what alternatives there are to manually designed

task distributions.

Inspired by these challenges, this thesis aims to provide scalable methods

that take steps towards a truly general meta-learner. Chapter 4 presents a

neural network architecture for rapid adaptation, with the aim of increasing

the flexibility in the task learner. Chapter 5 proposes a geometric view of

meta-learning as an alternative to evaluating a meta-learner in terms of final

performance. The framework provides a principled path to scale up meta-

3 Machines that Learn to Learn 64

learning; Chapter 6 pushes this line of research further by proposing a meta-

learner that avoids dependence on parameter trajectories in the objective.

Instead, a meta-learner is evaluated in expectation over each of its learning

steps, thereby encouraging meta-learners that are efficient through the learning

process. Finally, Chapter 7 takes aim at task distributions and proposes a

method for implicitly defining tasks within a reinforcement learning agent.

Chapter 8 discusses how these strands of research may provide a potential

avenue towards scalable meta-learning.

65

II

Learning to Learn

66

4 Learning to Dynamically Adapt

The first contribution of this thesis is architectural: this work proposes a novel

method for adaptively parameterising a neural network. While neural networks

are powerful function approximators, they are also highly inefficient in terms

of parameter counts. Often, to obtain a model with good performance, the

number of learnable parameters must be greater than the number of datapoints

in the training set (Zhang et al., 2017). This paper focuses on one potential

reason why this may be; the activation function.

Most architectures rely on weakly non-linear activation function, in that they

are in fact linear over large parts of their domain. As a consequence, models

need more and wider layers to increase that perhaps necessary to achieve high

expressive capacity. This work proposes a mechanism for increasing the expres-

sive capacity of a feed-forward layer by adaptively parameterising the layer.

While this paper is not explicitly concerned with meta-learning, thought

the architecture is designed for rapid adaptation. Thus, in Chapter 6, this

architecture is a critical component of a very efficient meta-reinforcement

learning agent. From the perspective of learning to learn, adaptive layers

are meta-learners, they describe how to change the model conditional on

the input, much like how Schmidhuber (1987) envisioned a meta-learner. If

these adaptive layers have low capacity, as is the case with standard activation

function, then the meta-learner has little capacity to adapt to the context.

This reasoning can be applied to LSTMs (Hochreiter & Schmidhuber, 1997). A

hierarchy of LSTMs, where one learns to adapt the parameters of the other,

does significantly better than a standard LSTM. In fact, our adaptive LSTM

even outperform a standard LSTM that has a larger representation space and

30% more learnable parameters.

The results presented herein suggests that learning to adapt can have significant

impact on performance. We will later use these ideas in Chapter 6, where

67

ω is explicitly meta-learned across a distribution of tasks. In that context, 5

is a learning rule for the task at hand in the way imagined by Schmidhuber

(1987). This learning rule is being adapted by ω to be as effective on the

current task as possible. And so rather than compressing a task distribution

into a single learning rule, the architectural advances we make in this paper

allow us to meta-learning a distribution over learning rules that can be learned

online while adapting to a task.

4 Learning to Dynamically Adapt 68

Breaking the Activation Function Bottleneck

through Adaptive Parameterisation

Peer-reviewed publication (Flennerhag et al., 2018); notational modifications.

Published in Advances in Neural Information Processing Systems. 2018.

Authors: Sebastian Flennerhag, University of Manchester,

Hujun Yin, University of Manchester,

John Keane, University of Manchester,

Mark Elliot, University of Manchester.

Abstract. Standard neural network architectures are non-linear only by virtue of
a simple element-wise activation function, making them both brittle and excessively
large. In this paper, we consider methods for making the feed-forward layer more
flexible while preserving its basic structure. We develop simple drop-in replacements
that learn to adapt their parameterisation conditional on the input, thereby increasing
statistical efficiency significantly. We present an adaptive LSTM that advances the
state of the art for the Penn Treebank and WikiText-2 word-modeling tasks while
using fewer parameters and converging in less than half the number of iterations.

4.1 Introduction

While a two-layer feed-forward neural network is sufficient to approximate any

function (Cybenko, 1989; Hornik, 1991), in practice much deeper networks

are necessary to learn a good approximation to a complex function. In fact, a

network tends to generalise better the larger it is, often to the point of having

more parameters than there are data points in the training set (Canziani et al.,

2016; Novak et al., 2018; Frankle & Carbin, 2019).

One reason why neural networks are so large is that they bias towards linear

behavior: if the activation function is largely linear, so will the hidden layer

be. Common activation functions, such as the Sigmoid, Tanh, and ReLU all

behave close to linear over large ranges of their domain. Consequently, for

a randomly sampled input to break linearity, layers must be wide and the

network deep to ensure some elements lie in non-linear regions of the activation

function. To overcome the bias towards linear behavior, more sophisticated

activation functions have been designed (Clevert et al., 2015; He et al., 2015;

Klambauer et al., 2017; Dauphin et al., 2017). However, these still limit all

non-linearity to sit in the activation function.

We instead propose adaptive parameterisation, a method for learning to adapt the

4.2 Adaptive Parameterization 69

parameters of the affine transformation to a given input. We present a generic

adaptive feed-forward layer that retains the basic structure of the standard feed-

forward layer while significantly increasing the capacity to model non-linear

patterns. We develop specific instances of adaptive parameterisation that can be

trained end-to-end jointly with the network using standard backpropagation,

are simple to implement, and run at minimal additional cost.

Empirically, we find that adaptive parameterisation can learn non-linear pat-

terns where a non-adaptive baseline fails, or outperform the baseline using

30–50% fewer parameters. In particular, we develop an adaptive version

of the Long Short-Term Memory model (LSTM; Hochreiter & Schmidhu-

ber, 1997; Gers et al., 2000) that enjoys both faster convergence and greater

statistical efficiency.

The adaptive LSTM advances the state of the art for the Penn Treebank

and WikiText-2 word modeling tasks using ~20–30% fewer parameters and

converging in less than half as many iterations.
4

Section 4.2 presents the

adaptive feed-forward layer, Section 4.3 develops the adaptive LSTM, Section 4.4

discusses related work and Section 4.5 presents empirical results.

4.2 Adaptive Parameterization

To motivate adaptive parameterisation, we show that deep neural networks

learn a family of compositions of linear maps and because the activation

function is static, the inherent flexibility in this family is weak. Adaptive

parameterisation is a means of increasing this flexibility and thereby increasing

the model’s capacity to learn non-linear patterns. We focus on the feed-forward

layer, 5 (G) B f (,G+1), for some activation function f. Define the pre-activation

layer as 0 = �(G) B,G + 1 and denote by 6(0) B f (0)/0 the activation effect of

f given 0, where division is element-wise. Let � B diag(6(0)). We then have

5 (G) = 6(0) � 0 = �0, where “�” denotes element-wise multiplication.
5

For any pair (G,~) ∈ ℝ= ×ℝ: , a deep feed-forward network with ! ∈ ℕ layers,

� B 5 (!) ◦ · · · ◦ 5 (1) , approximates the relationship G ↦→ ~ by a composition of

linear maps because G is sufficient to determine all activation effects G = {� (;) }!;=1
.

Given transformations A = {� (;) }!;=1
, the network can be written

� (G) = (5 (#) ◦ · · · ◦ 5 (1)) (G) = (� (#) ◦� (#) ◦ · · · ◦� (1) ◦� (1)) (G). (4.1)

4
Code available at https://github.com/flennerhag/alstm.

5
We ignore the measure 0 set of exceptions {0 | 08 = 0, 08 ∈ 0}.

4 Learning to Dynamically Adapt 70

�, ,� � (2),� (1) , (2)�, (1)

Figure 4.1: Adaptation. Left: output adaptation shifts the mean row-wise;

center left: input adaptation shifts the mean column-wise; center right: IO-

adaptation shifts mean and variance across sub-matrices; Right: SVA scales

singular values.

A neural network can therefore be understood as learning a “prior” A in

parameter space around which it constructs a family of compositions of linear

maps (as G varies across inputs). The neural network adapts to inputs through

the set of activation effects G. This adaptation mechanism is weak: if f is close

to linear over the distribution of 0, as is often the case, little adaptation can

occur. Moreover, because G does not have any learnable parameters itself, the

fixed prior A must learn to encode both global input-invariant information as

well as local contextual information. We refer to this as the activation function
bottleneck. Adaptive parameterisation breaks this bottleneck by parameterising

the adaptation mechanism in G, thereby circumventing these issues.

To see how the activation function bottleneck arises, note that f is redundant

whenever it is closely approximated by a linear function over some non-trivial

segment of the input distribution. For these inputs, f has no non-linear effect

and such lost opportunities imply that the neural network must be made

larger than necessary to fully capture non-linear patterns. For instance, both

the Sigmoid and the Tanh are closely approximated around 0 by a linear

function, rendering them redundant for inputs close to 0. Consequently, the

network must be made deeper and its layers wider to mitigate the activation

function bottleneck. In contrast, adaptive parameterisation places the layer’s

non-linearity within the parameter matrix itself, thereby circumventing the

activation function bottleneck. Further, by relaxing the element-wise non-

linearity constraint imposed on the standard feed-forward layer, it can learn

behaviours that would otherwise be very hard or impossible to model, such

as contextual rotations and shears, and adaptive feature activation.

4.2 Adaptive Parameterization 71

4.2.1 The Adaptive Feed-Forward Layer

Our goal is to break the activation function bottleneck by generalising G into

a parameterised adaptation module, thereby enabling the network to specialize

parameters in A to encode global, input invariant information while the

adaptation module encode local, contextual information.

Consider the standard feed-forward layer, defined by one adaptation block

5 (G) = (�◦�) (G). As described above, we increase the capacity of the adaptation

mechanism � by replacing it with a parameterised adaptation mechanism

Ω (9) B diag(ω(9) (G)), where ω(9) is a learnable adaptation module. Note that

ω(9) can be made arbitrarily complex. In particular, even if ω(9) is linear, the

adaptive mechanism Ω (9)0 is quadratic in G , and as such escapes the bottleneck.

To ensure that the adaptive feed-forward layer has sufficient capacity, we

generalise it to @ ∈ ℕ adaptation blocks,
6

5ω(G) B f

(
Ω (@), (@−1) · · ·, (1)Ω (1)G + Ω (0)1

)
. (4.2)

We refer to the number of adaptation blocks @ as the order of the layer. Strictly

speaking, the adaptive feed-forward layer does not need an activation function,

but it can provide desirable properties depending on the application. It is

worth noting that the adaptive feed-forward layer places no restrictions on the

form of the adaptation module ω = (ω(0) , . . . ,ω(@)) or its training procedure.

In this paper, we parameterise ω as a neural network trained jointly with the

main model. Next, we discuss adaptive feed-forward layers.

4.2.2 Adaptation Modules

Higher-order adaptation (i.e. @ large) enables expressive adaptation modules,

but because the adaptation module depends on G , high-order layers are less

efficient than a stack of low-order layers. Low-order layers are surprisingly

powerful; a module of order 2 that can express any other adaptation module.

Partial Adaptation The simplest adaptation module (@ = 1) is given by

5ω(G) = , Ω (1)G + Ω (0)1. This module is equivalent to a mean shift and

a re-scaling of the columns of , , or alternatively re-scaling the input. It

can be thought of as a learned contextualized standardization mechanism

that conditions the effect on the specific input. As such, we refer to this

module as input adaptation. Its mirror image, output adaptation, is given by

6
The ordering of, and � matrices can be reversed by setting the first and / or last adaptation

matrix to be the identity matrix.

4 Learning to Dynamically Adapt 72

5ω(G) = Ω (1),G + Ω (0)1. This is a special case of second-order adaptation

modules, where Ω (1) = � , where � denotes the identity matrix. Both these

modules are restrictive in that they only operate on either the rows or the

columns of , (Figure 4.1).

IO-adaptation The general form of second-order adaptation modules inte-

grates input- and output-adaptation into a jointly learned adaptation module.

As such we refer to this as IO-adaptation,

5ω(G) = Ω (2), Ω (1)G + Ω (0)1. (4.3)

IO-adaptation is much more powerful than either input- or output-adaptation

alone, which can be seen by the fact that it essentially learns to identify

and adapt sub-matrices in , by sharing adaptation vectors across rows and

columns (Figure 4.1). In fact, assuming ω is sufficiently powerful, IO-adaptation

can express any mapping from input to parameter space.

Lemma 4.1 (IO-adaptation). Let , be given and fix G. For any � of same dimen-
sionality as , , there are arbitrarily many (Ω (1) ,Ω (2)) such that �G = Ω (2), Ω (1)G.

Proof. Let ~� = �G =
∑
8 G86:,8 , where 6:,8 is the 8th column of �. Recall that

Ω = diag(ω); for B ∈ {1, 2}, let ω(B)
8

= Ω (B)
88

denote the diagonal entry of Ω (B) .

Write

Ω (2), Ω (1)G =
∑
8

G8ω
(1)
8

ω(2)

1
F18

...

ω(2)< F<8

 . (4.4)

Choose some : for which G: ≠ 0 and set ω(1)
:

= 1/G: , with other ω(1)
8≠:

= 0. For

each 9 ∈ {1, . . . ,<}, set ω(2)
9

= ~�9 /F 9: . We have

∑
8

G8ω
(1)
8

ω(2)

1
F18

...

ω(2)< F<8

 =
G:

G:

(~�

1
/F1:)F1:

...

(~�</F<:)F<:

 = ~� . (4.5)

This proves existence of at least one solution. Finally, since this holds for any

G: ≠ 0, every linear combination of such solutions are also solutions. �

4.3 Adaptive Parameterization in RNNs 73

Singular Value Adaptation (SVA) An interesting module arises as a special

case of a third-order module, where Ω (1) = � as before. The resulting module,

5ω(G) =, (2)Ω (2), (1)G + Ω (0)1, (4.6)

is reminiscent of Singular Value Decomposition. However, rather than being

a decomposition, it composes a projection by adapting singular values to

the input. In particular, letting , (1) = +)� and , (2) = �* , with * and +

appropriately orthogonal, Eq. 4.6 can be written as �(*Ω+))�G , with *Ω+)

adapted to G through its singular values. In our experiments with this form

of adaptation, we initialise weight matrices as semi-orthogonal (Saxe et al.,

2013), but do not enforce orthogonality thereafter.

One potential limitation of SVA is that it requires learning two separate matrices

of relatively high rank. For problems where the dimensionality of G is large,

the dimensionality of the adaptation space has to be made small to control

parameter count. This limits the model’s capacity by enforcing a low-rank

factorization, which also tends to impact training negatively (Denil et al., 2013).

SVA and IO-adaptation are simple but flexible modules that can be used as drop-

in replacements for any feed-forward layer. Because they are differentiable,

they can be trained using standard backpropagation. Next, we demonstrate

adaptive parameterisation in the context of Recurrent Neural Networks (RNNs),

where feed-forward layers are predominant.

4.3 Adaptive Parameterization in RNNs

RNNs are common in sequence learning, where the input is a sequence

{G1, . . . , GC } and the target variable either itself a sequence or a single point or

vector. In either case, the computational graph of an RNN, when unrolled over

time, will be of the form in Eq. 4.1, making it a prime candidate for adaptive

parameterisation. Moreover, in sequence-to-sequence learning, the model

estimates a conditional distribution ? (~C | G1, . . . , GC) that changes significantly

from one time step to the next. Because of this variance, an RNN must be

very flexible to model the conditional distribution. By embedding adaptive

parameterisation, we can increase flexibility for a given model size. We consider

the LSTM (Hochreiter & Schmidhuber, 1997; Gers et al., 2000), where a

4 Learning to Dynamically Adapt 74

recurrent layer ℎC , 2C = 5\ (GC , ℎC−1, 2C−1) is defined by the gating mechanism

2C = f (D 5C) � 2C−1 + f (D8C) � i (DIC)
ℎC = f (D>C) � i (2C),

(4.7)

where f and i represent Sigmoid and Tanh activation functions respectively and

each D
B∈{8,5 ,>,I }
C is a linear transformation of the form DBC =,

(B)GC ++ (B)ℎC−1 +1 (B) .
Adaptation in the LSTM can be derived directly from the adaptive feed-

forward layer (Eq. 4.2). We focus on IO-adaptation as this adaptation module

performed better in our experiments. For ω, we use a small neural network to

output a latent variable IC that we map into each sub-module with a projection

* (9) : ω(9) (IC) = i
(
* (9)IC

)
. We test a feed-forward and a recurrent network

as models for the latent variable,

IC = (,EC + 1) , (4.8)

IC = (EC , IC−1) , (4.9)

where EC a summary variable of the state of the system, normally EC = [GC ;ℎC−1].
The potential benefit of using a recurrent model is that it is able to retain a sepa-

rate memory that facilitates learning of local, sub-sequence specific patterns (Ha

et al., 2017). Generally, we find that the recurrent model converges faster

and generalises marginally better. To extend the adaptive feed-forward layer

to the LSTM, index sub-modules with a tuple (B, 9) ∈ {8, 5 , >, I} × {0, 1, 2, 3, 4}
such that Ω (B,9)C = diag(ω(B,9) (IC)). At each time step C we adapt the LSTM’s

linear transformations through IO-adaptation,

DBC = Ω
(B,4)
C , (B)Ω (B,3)C GC + Ω (B,2)C + (B)Ω (B,1)C ℎC−1 + Ω (B,0)C 1 (B) . (4.10)

An undesirable side-effect of the formulation in Eq. 4.10 is that each linear

transformation requires its own modified input, preventing a vectorised imple-

mentation of the LSTM. We avoid this by tying all input adaptations across B:

that is, Ω (B
′, 9) = Ω (B,9) for all (B ′, 9) ∈ {8, 5 , >, I} × {1, 3}. Doing so approximately

halves the computation time and speeds up convergence considerably. When

stacking multiple aLSTM layers, the computational graph of the model becomes

complex in that it extends both in the temporal dimension and along the depth

of the stack. For the recurrent adaptation module (Eq. 4.9) to be consistent,

it should be conditioned not only by the latent variable in its own layer, but

also on that of the preceding layer, or it will not have a full memory of the

4.4 Related Work 75

computational graph. To achieve this, for a layer ; ∈ {1, . . . , !}, we define

E
(;)
C =

[
ℎ
(;−1)
C ;ℎ

(;)
C−1 ; I

(;−1)
C

]
, (4.11)

where ℎ
(0)
C = GC and I

(0)
C = I

(!)
C−1. In doing so, the credit assignment path of

adaption module visits all nodes in the computational graph. The resulting

adaptation model becomes a blend of a standard LSTM and a Recurrent

Highway Network (RHN; Zilly et al., 2017).

4.4 Related Work

Adaptive parameterisation is a special case of having a relatively inexpensive

learning algorithm search a vast parameter space in order to parameterise the

larger main model (Stanley et al., 2009; Fernando et al., 2016). The notion of

using one model to generate context-dependent parameters for another was

suggested by Schmidhuber (1992); Gomez & Schmidhuber (2005). Building

on this idea, Ha et al. (2017) proposed to jointly train a small network to

generate the parameters of a larger network; such HyperNetworks have achieve

impressive results in several domains (Suarez, 2017; Ha & Eck, 2018; Brock

et al., 2018b). The general concept of learning to parameterise a model

has been explored in a variety of contexts, for example Schmidhuber (1992);

Gomez & Schmidhuber (2005); Denil et al. (2013); Jaderberg et al. (2017a);

Andrychowicz et al. (2016); Yang et al. (2018).

Parameter adaptation has also been explored in meta-learning, usually in the

context of few-shot learning, where a meta-learner is trained across a set of tasks

to select task-specific parameters of a downstream model (Bengio et al., 1991,

1995; Schmidhuber, 1992). Similar to adaptive parameterisation, Bertinetto

et al. (2016) directly tasks a meta learner with predicting the weights of

the task-specific learner. Ravi & Larochelle (2017) defines the adaptation

module as a gradient-descent rule, where the meta learner is an LSTM tasked

with learning the update rule to use. An alternative method pre-defines

the adaptation module as gradient descent and meta-learns an initialisation

such that performing gradient descent on a given input from some new task

yields good task-specific parameters (Finn et al., 2017; Lee & Choi, 2018;

Al-Shedivat et al., 2018).

Using gradient information to adjust parameters has also been explored in

sequence-to-sequence learning, where it is referred to as dynamic evalua-

tion (Mikolov, 2012; Graves, 2013; Krause et al., 2017). This form of adaptation

4 Learning to Dynamically Adapt 76

relies on the auto-regressive property of RNNs to adapt parameters at each

time step by taking a gradient step with respect to previous time steps.

Many extensions have been proposed to the RNN and the LSTM (Hochreiter

& Schmidhuber, 1997; Gers et al., 2000), some of which can be seen as

implementing a form of constrained adaptation module. The multiplicative

RNN (mRNN; Sutskever et al., 2011) and the multiplicative LSTM (mLSTM;

Krause et al., 2016) can be seen as implementing an SVA module for the hidden-

to-hidden projections. The mRNN improves upon RNNs in language modeling

tasks (Sutskever et al., 2011; Mikolov et al., 2012), but tends to perform worse

than the standard LSTM (Cooijmans et al., 2016). The mLSTM has been shown

to improve upon RNNs and LSTMs on language modeling tasks (Krause et al.,

2017; Radford et al., 2017). Finally, the multiplicative-integration RNN and

LSTM (Wu et al., 2016b) implement a constrained output-adaptation module.

The implicit modules in the above models condition only on the input, ignoring

the state of the system. In contrast, the GRU (Cho et al., 2014; Chung et al.,

2014) can be interpreted as implementing an input-adaptation module on

the input-to-hidden matrix that conditions on both the input and the state

of the system. Most closely related to the aLSTM are HyperNetworks (Ha

et al., 2017; Suarez, 2017); these implement output adaptation conditioned

on both the input and the state of the system using a recurrent adaptation

module. HyperNetworks have attained impressive results on character level

modeling tasks and sequence generation tasks, including hand-writing and

drawing sketches (Ha et al., 2017; Ha & Eck, 2018). They have also been

used in neural architecture search by generating weights conditional on the

architecture (Brock et al., 2018b), demonstrating that adaptive parameterisation

can be conditioned on some arbitrary context, in this case the architecture itself.

4.5 Experiments

We analyse adaptive feed-forward networks in a controlled regression problem

and on MNIST (LeCun et al., 1998). The aLSTM is tested on the Penn Treebank

and WikiText-2 word modeling tasks. We use the Adam optimiser (Kingma

& Ba, 2015) unless otherwise stated.

4.5.1 Extreme Tail Regression

To study the flexibility of the adaptive feed-forward layer, we sample G = (G1, G2)
from N(0, �) and construct the target variable as ~ = (2G1)2 − (3G2)4 + n with

n ∼ N(0, 1). Most of the data lies on a hyperplane, but the target variable grows

4.5 Experiments 77

−300 0 300
y

−300

0

300

ŷ

x1 −4

4

x2

−4

4

d1

−1

1

x1 −4

4

x2

−4

4

d2

−1

1

Figure 4.2: Extreme Tail Regression. Left: Predictions of the adaptive model

(blue) and the baseline model (green) against ground truth (black). Center &
Right: distribution of adaptive singular values.

or shrinks exponentially as G1 or G2 moves away from 0. We compare a 3-layer

feed-forward network with 10 hidden units to a 2-layer model with 2 hidden

units, where the first layer is adaptive and the final layer is static. We use an

SVA module where ω is a gated linear unit (Dauphin et al., 2017). Models are

trained for 10 000 steps with batch size 50 and a learning rate of 0.003.

The baseline model fails to represent the tail of the distribution despite being

three times larger. In contrast, the adaptive model does a remarkably good

job given how small the model is and the extremity of the distribution. It is

worth noting how the adaptation module encodes local information through

the distribution of its singular values (Figure 4.2).

4.5.2 MNIST

We compare performance of a 3-layer feed-forward model against (a) a single-

layer SVA model and (b) a 3-layer SVA model. We train all models with

Stochastic Gradient Descent with a learning rate of 0.001, a batch size of 128,

and train for 50 000 steps. The single-layer adaptive model reduces to a logistic

regression conditional on the input. In comparison to a logistic regression, the

marginal benefit of SVA is ~1 percentage point gain in accuracy. A sufficiently

large one-layer SVA model can even outperform a deep feed-forward baseline.

4.5.3 Penn Treebank

The Penn Treebank corpus (PTB; Marcus et al., 1993; Mikolov et al., 2010) is a

widely used benchmark for language modeling. It consists of heavily processed

news articles and contains no capital letters, numbers, or punctuation. As

such, the vocabulary is relatively small at 10 000 unique words. We evaluate

4 Learning to Dynamically Adapt 78

Table 4.1: Train and test set accuracy on MNIST

Model Size Train Test

Logistic Regression 8K 92.00% 92.14%

3-layer feed-forward 100K 97.57% 97.01%

1-layer SVA 8K 94.05% 93.86%

1-layer SVA 100K 98.62% 97.14%

3-layer SVA 100K 99.99% 97.65%

the aLSTM on word-level modeling following standard practice in training

setup (e.g. Zaremba et al., 2015). As we are interested in statistical efficiency,

we fix the number of layers to 2, though more layers tend to perform better,

and use a module latent variable size of 100. For details see Appendix 4.A. As

we are evaluating underlying architectures, we do not compare against bolt-on

methods (Grave et al., 2017; Yang et al., 2018; Mikolov, 2012; Graves, 2013;

Krause et al., 2017). These are equally applicable to the aLSTM.

The aLSTM improves upon baselines using roughly 30% fewer parameters, a

smaller hidden state size, and fewer layers while converging in fewer iterations

(Table 4.2). For the standard LSTM to converge at all, gradient clipping is

required and dropout rates must be reduced by ~25%; a percentage point

change to these rates caused either severe overfitting or failure to converge.

Taken together, this indicates that adaptive parameterisation exhibits both

superior stability and increased model capacity; we explore both properties

further in Sections 4.5.5 and 4.5.6. Melis et al. (2018) applies a large-scale

hyper-parameter search to an LSTM version with tied input and forget gates

and inter-layer skip-connections (TG-SC LSTM), making it a challenging

baseline that the aLSTM improves upon by a considerable margin.

Previous state-of-art performance was achieved by the ASGD Weight-Dropped

LSTM (AWD-LSTM; Merity et al., 2018), which uses regularisation, optimisa-

tion, and fine-tuning techniques designed specifically for language modeling
7
.

The AWD-LSTM requires approximately 500 epochs to converge to optimal

performance; the aLSTM outperforms the AWD-LSTM after 144 epochs and

converges to optimal performance in 180 epochs. Consequently, even if the

AWD-LSTM runs on top of the CuDNN implementation of the LSTM, the aL-

STM converges approximately ~25% faster in wall-clock time. In summary, any

7
Public release of their code at https://github.com/salesforce/awd-lstm-lm

4.5 Experiments 79

25 50 75 100 125 150 175
epoch

4.1

4.3

4.5

lo
ss

Figure 4.3: Validation loss on PTB for our LSTM (green), aLSTM (blue),

aLSTM with feed-forward module (dashed), and the AWD-LSTM (orange;

Merity et al., 2018). Drops correspond to learning rate cuts. 1-seed runs.

form of adaptation is beneficial, and a recurrent adaptation model (Eq. 4.9) en-

joys both fastest convergence rate and best final performance in this experiment.

4.5.4 WikiText-2

WikiText-2 (WT2; Merity et al., 2017) is a corpus curated from Wikipedia

articles with lighter processing than PTB. It is about twice as large with three

times as many unique tokens. We evaluate the aLSTM using the same settings

as on PTB, and additionally test a version with larger hidden state size to match

the parameter count of current state of the art models. Without tuning for

WT2, both outperform previously published results in 150 epochs (Table 4.3)

and converge to new state of the art performance in 190 epochs. In contrast,

the AWD-LSTM requires 700 epochs to reach optimal performance. As such,

the aLSTM trains ~40% faster in wall-clock time. The TG-SC LSTM in Melis

et al. (2018) uses fewer parameters, but its hyper-parameters are tuned for

WT2, in contrast to both the AWD-LSTM and aLSTM. We expect that tuning

hyper-parameters specifically for WT2 would yield further gains.

4.5.5 Ablation Study

We isolate the effect of each component in the aLSTM through an ablation study

on PTB. We adjust the hidden state so that every configuration has approxi-

mately 17M learnable parameters. We use the same hyper-parameters for all

models except for (a) the standard LSTM (see above) and (b) the aLSTM with

an output-adaptation module and feed-forward adaptation (this configuration

needed slightly lower dropout rates to converge to good performance).

4 Learning to Dynamically Adapt 80

Table 4.2: Validation and test set perplexities on Penn Treebank. All re-

sults except those from Zaremba et al. (2015) use tied input and output

embeddings (Press & Wolf, 2017).

Model Size Depth Valid Test

LSTM, Zaremba et al. (2015) 24M 2 82.2 78.4

RHN, Zilly et al. (2017) 24M 10 67.9 65.4

NAS, Zoph & Le (2017) 54M — — 62.4

TG-SC LSTM, Melis et al. (2018) 10M 4 62.4 60.1

TG-SC LSTM, Melis et al. (2018) 24M 4 60.9 58.3

AWD-LSTM, Merity et al. (2018) 24M 3 60.0 57.3

LSTM 20M 2 71.7 68.9

aLSTM, feed-forward module (Eq. 4.8) 17M 2 60.2 58.0

aLSTM, recurrent module (Eq. 4.9) 14M 2 59.6 57.2

aLSTM, recurrent module (Eq. 4.9) 17M 2 58.7 56.5

aLSTM, recurrent module (Eq. 4.9) 24M 2 57.6 55.3

As Table 4.4 shows, any form of adaptation yields a significant performance gain.

Going from a feed-forward adaptation model (Eq. 4.8) to a recurrent adaptation

model (Eq. 4.9) yields a significant improvement irrespective of module, and our

hybrid RHN-LSTM (Eq. 4.11) provides a further boost. Similarly, moving from

a partial adaptation module to IO-adaptation leads to significant performance

improvement under any adaptation model. These results indicate that the

LSTM is constrained by the activation function bottleneck and increasing its

adaptive capacity breaks the bottleneck. While we have focused on LSTM

as the base model, Eq. 4.10 applies to any recurrent network. A promising

avenue for further research is to incorporate this form of adaptation with other

architectures, such as convolutional layers (LeCun et al., 1995) and attention

mechanisms (Bahdanau et al., 2015; Vaswani et al., 2017).

4.5.6 Robustness

We further study the robustness of the aLSTM with respect to hyper-parameters.

We limit ourselves to dropout rates and train for 10 epochs on PTB. All other

hyper-parameters are held fixed (c.f. Appendix 4.A). For each model, we draw

100 random samples uniformly from intervals of the form [A −0.1, A +0.1], with

A being the optimal rate found through previous hyper-parameter tuning. The

two models exhibit very different distributions (Figure 4.4). The distribution of

the aLSTM is tight, reflecting robustness with respect to hyper-parameters. In

4.6 Conclusions 81

Table 4.3: Validation and test set perplexities on WikiText-2.

Model Size Depth Valid Test

LSTM, Grave et al. (2017) — — — 99.3

LSTM, Inan et al. (2017) 22M 3 91.5 87.7

AWD-LSTM, Merity et al. (2018) 33M 3 68.6 65.8

TG-SC LSTM, Melis et al. (2018) 24M 2 69.1 65.9

aLSTM, recurrent module (Eq. 4.9) 27M 2 68.1 65.5

aLSTM, recurrent module (Eq. 4.9) 32M 2 67.5 64.5

Table 4.4: Ablation study: perplexities on Penn Treebank.
†
Equivalent to the

HyperNetwork (Ha et al., 2017), except the aLSTM uses one projection from I

to ω instead of nesting two projections.

Model Adaptation model Adaptation module Valid Test

LSTM — — 71.7 68.9

aLSTM feed-forward output-adaptation 66.0 63.1

aLSTM
†

LSTM output-adaptation 59.9 58.2

aLSTM LSTM-RHN output-adaptation 59.7 57.3

aLSTM feed-forward IO-adaptation 61.6 59.1

aLSTM LSTM IO-adaptation 59.0 56.9

aLSTM LSTM-RHN IO-adaptation 58.5 56.5

fact, no sampled model fails to converge. In contrast, approximately 25% of the

population of LSTM configurations fail to converge. In fact, fully 45% of the

LSTM population fail to outperform the worst aLSTM configuration; the 90
th

percentile of the aLSTM distribution is on the same level as the 10
th

percentile

of the LSTM distribution. On WT2 these results are amplified, with half of

the LSTM population failing to converge and 80% of the LSTM population

failing to outperform the worst-case aLSTM configuration.

4.6 Conclusions

By viewing deep neural networks as adaptive compositions of linear maps, we

have showed that standard activation functions induce an activation function

bottleneck because they fail to have significant non-linear effect on a non-trivial

subset of inputs. We break this bottleneck through adaptive parameterization,

which allows the model to adapt the affine transformation to the input.

4 Learning to Dynamically Adapt 82

0

9

100 150 250 400 1000
perplexity

0

9

d
en

si
ty

Figure 4.4: Distribution of validation scores on WikiText-2 (top) and Penn

Treebank (bottom) for randomly sampled hyper-parameters. The aLSTM

(blue) is more robust than the LSTM (red).

We have developed an adaptive feed-forward layer and showed empirically

that it can learn patterns where a deep feed-forward network fails whilst also

using fewer parameters. Extending the adaptive feed-forward layer to s,

we presented an adaptive that significantly increases model capacity and

statistical efficiency while being more robust to hyper-parameters. In particular,

we obtain new state of the art results on the Penn Treebank and the WikiText-2

word-modeling tasks, using ~20–30% fewer parameters and converging in

less than half as many iterations.

83

4 Appendix

4.A NLP Experiment Hyper-Parameters

We base our experiments on the publicly available code-base of the AWD-LSTM

(Merity et al., 2018). In particular, for our aLSTM, we use tied embedding

weights (Press & Wolf, 2017; Inan et al., 2017) and a weight decay rate of

10
−6
. The initial learning rate is set to 0.003 with decay rates V1 = 0 and

V2 = 0.999. The learning rate is cut after epochs 100 and 160 by a factor of

10. We use a batch size of 20 and variable truncated backprogagation through

time centered at 70, as in Merity et al. (2018). Dropout rates were tuned with

a coarse random search. We apply variational dropout (Gal & Ghahramani,

2016) to word and word embedding vectors, the policy latent variable, the

hidden state of the aLSTM and the final aLSTM output with drop probabilities

0.16, 0.6, 0.1, 0.25, and 0.6 respectively.

84

5 Scaling up Meta-Learning On

First Principles

The previous chapter paved the way for meta-learning components of an

architecture. This chapter takes a step towards scalable meta-learning. This

work introduces Riemannian geometry to gradient-based meta-learning and

shows that a distribution of tasks is homeomorphic to a distribution over

manifolds and, ultimately, a distribution over learning trajectories.

A critical advantage of this perspective is that it provides tools from Riemannian

geometry that allow us to reason about task adaptation from a geometrical

perspective. It turns out that this can be used to entirely circumvent the

issue of backpropagating through the adaptation process, which is currently

a main limitation holding gradient-based meta-learning back from scaling

beyond few-shot adaptation.

Most gradient-based meta-learners to date skirt this issue by taking fewer

adaptation steps during meta-training than what is required at meta-test time.

This introduces a short-horizon bias (Wu et al., 2018) that causes the meta-

learner to optimise for the wrong time-horizon. This work shows that such

biases lead to a catastrophic loss of performance when the number of meta-test

time task adaptation steps are an order of magnitude larger than the number

of task adaptation steps taken at meta-training time.

One solution to this issue is a meta-learner that reasons about the process
of adaptation, as opposed to the final performance. Riemannian geometry

provides a principled framework for developing such meta-learners. This work

introduces a framework that relies on a different philosophy from previous

gradient-based meta-learner, which superimpose a computational budget of

steps. The perspective taken here is that any task in a given task distribution

can be solved if we can train sufficiently long on it. Hence the quantity to

minimise during meta-training is not that final performance, but how long

85

it takes to reach convergence. To make this notion concrete, the framework

relies on differential geometry to define “length” in terms of the distance

travelled on a loss surface.

A key result of this work is to rigorously show that task distributions induce a

distribution over gradient trajectories. This provides a powerful and flexible

perspective for gradient-based meta-learning. On the one hand, it can be used

to disentangle task adaptation and meta-gradients, so that we no longer need

to backpropagate through task optimisation problems. On the other hand, it

provides a more general understanding of “task”, so that meta-learning can

be applied to almost any learning problem.

5 Scaling up Meta-Learning On First Principles 86

Transferring Knowledge across Learning Processes

Peer-reviewed publication (Flennerhag et al., 2019); notational modifications.

Published in International Conference on Learning Representations (Oral). 2019.

Authors: Sebastian Flennerhag, University of Manchester,

Pablo G. Moreno, Amazon,

Neil D. Lawrence, Amazon,

Andreas Damianou, Amazon.

Abstract. In complex transfer learning scenarios new tasks might not be tightly linked
to previous tasks. Approaches that transfer information contained only in the final
parameters of a source model will therefore struggle. Instead, transfer learning at a
higher level of abstraction is needed. We propose Leap, a method that achieves this
by transferring knowledge across learning processes. We associate each task with a
manifold on which the training process travels from initialization to final parameters
and construct a meta-learning objective that minimizes the expected length of this path.
Leap leverages only information obtained during training and can be computed on the
fly at negligible cost. We demonstrate that Leap outperforms competing methods, both
in meta-learning and transfer learning, on a set of computer vision tasks. Finally, we
demonstrate that Leap can transfer knowledge across learning processes in demand-
ing reinforcement learning environments (Atari) that involve millions of gradient steps.

5.1 Introduction

Transfer learning is the process of transferring knowledge encoded in one model

trained on one set of tasks to another model that is applied to a new task. Since

a trained model encodes information in its learned parameters, transfer learning

typically transfers knowledge by encouraging the target model’s parameters

to resemble those of a previous (set of) model(s) (Pan & Yang, 2009). This

approach limits transfer learning to settings where good parameters for a

new task can be found in the neighborhood of parameters that were learned

from a previous task. For this to be a viable assumption, the two tasks must

have a high degree of structural affinity, such as when a new task can be

learned by extracting features from a pretrained model (Girshick et al., 2014;

He et al., 2017; Mahajan et al., 2018). If not, this approach has been observed

to limit knowledge transfer since the training process on one task will discard

information that was irrelevant for the task at hand, but that would be relevant

for another task (Higgins et al., 2017; Achille et al., 2018).

We argue that such information can be harnessed, even when the downstream

5.2 Transferring Knowledge across Learning Processes 87

task is unknown, by transferring knowledge of the learning process itself. In

particular, we propose a meta-learner for aggregating information across task

geometries as they are observed during training. These geometries, formalized

as the loss surface, encode all information seen during training and thus avoid

catastrophic information loss. Moreover, by transferring knowledge across

learning processes, information from previous tasks is distilled to explicitly

facilitate the learning of new tasks.

Meta learning frames the learning of a new task as a learning problem itself,

typically in the few-shot learning paradigm (Lake et al., 2011; Santoro et al.,

2016; Vinyals et al., 2016). In this environment, learning is a problem of rapid

adaptation and can be solved by training a meta-learner by backpropagating

through the entire training process (Ravi & Larochelle, 2017; Andrychowicz

et al., 2016; Finn et al., 2017). For more demanding tasks, meta-learning in this

manner is challenging; backpropagating through thousands of gradient steps

is both impractical and susceptible to instability. On the other hand, truncating

backpropagation to a few initial steps induces a short-horizon bias (Wu et al.,

2018). We argue that as the training process grows longer in terms of the

distance traversed on the loss landscape, the geometry of this landscape grows

increasingly important. When adapting to a new task through a single or a

handful of gradient steps, the geometry can largely be ignored. In contrast,

with more gradient steps, it is the dominant feature of the training process.

To scale meta-learning beyond few-shot learning, we propose Leap, a light-

weight method for meta-learning over task manifolds that does not need

any forward- or backward-passes beyond those already performed by the

underlying training process. We find empirically that Leap is superior to

similar methods when learning a task requires more than a handful of training

steps. Finally, we evaluate Leap in a RL environment (Atari 2600; Bellemare

et al., 2013), demonstrating that it can transfer knowledge across learning

processes that require millions of gradient steps to converge.

5.2 Transferring Knowledge across Learning Processes

We start by introducing gradient descent from a geometric perspective in Sec-

tion 5.2.1. We develop a method for transfer learning in Section 5.2.2 and

explain how we can transfer knowledge across learning processes through

geometrical quantities. Section 5.2.3 presents the novel meta-learner Leap.

5 Scaling up Meta-Learning On First Principles 88

θ1

θ2

f (θ)

Figure 5.1: Gradient paths on a loss surface. Leap learns an initialization with

shorter expected gradient path that improves performance.

5.2.1 Gradient Paths on Task Manifolds

Central to our method is the notion of a learning process; the harder a task

is to learn, the harder it is for the learning process to navigate on the loss

surface (Figure 5.1). Our method is based on the idea that transfer learning can

be achieved by leveraging information contained in similar learning processes.

Exploiting that this information is encoded in the geometry of the loss surface,

we leverage geometrical quantities to facilitate the learning process with respect

to new tasks. We focus on the supervised learning setting for simplicity,

though our method applies more generally. Given a learning objective L
that consumes an input G and a target ~ and maps a parameterization \ to

a scalar loss value, L(\) B E(G,~)∼? (G,~) [ℓ (5\ (G), ~)] for some model 5 and loss

ℓ , we define gradient descent by

\ B \ − U∇L(\) . (5.1)

We take the learning rate U as given, but our method can be extended to

learn optimiser hyper-parameters jointly with the initialization. Our method is

well defined under any gradient-based update rule; we focus on (stochastic)

gradient descent for simplicity. Regardless of optimiser, we assume the process

in Eq. 5.1 converges to a stationary point after ∈ ℕ gradient steps.

To distinguish different learning processes originating from the same initial-

ization, we need a notion of their length. The longer the process, the worse

the initialization is (conditional on reaching equivalent performance, discussed

further below). Measuring the Euclidean distance between initialization and

final parameters is misleading as it ignores the actual path taken. This becomes

crucial when we compare paths from different tasks, as gradient paths from

different tasks can originate from the same initialization but take very different

paths. Therefore, to capture the length of a learning process we must associate

it with the loss surface it traversed.

5.2 Transferring Knowledge across Learning Processes 89

The process of learning a task can be seen as a curve on a specific task manifold

M. While this manifold can be constructed in a variety of ways, here we

exploit that, by definition, any learning process traverses the loss surface of

L. To accurately describe the length of a gradient-based learning process, it is

sufficient to define the task manifold as the loss surface. In particular, because

the learning process in Eq. 5.1 follows the gradient trajectory, it constantly

provides information about the geometry of the loss surface. Gradients that

largely point in the same direction indicate a well-behaved loss surface, whereas

gradients with frequently opposing directions indicate an ill-conditioned loss

surface—something we would like to avoid. Leveraging this insight, we

propose a method for transfer learning that exploits the accumulation of

geometric information by constructing a meta objective that minimizes the

expected length of the gradient descent path across tasks. In doing so, the meta

objective intrinsically balances local geometries across tasks and encourages an

initialization that makes the learning process as short as possible.

To formalize the notion of the distance of a learning process, we define a task

manifold M as a submanifold of ℝ=+1 given by the graph of L. Every point

W B [\ ;L(\)] ∈ M is locally homeomorphic to a Euclidean subspace, described

by the tangent space)WM. Taking ℝ=+1 to be Euclidean, it is a Riemann

manifold. By virtue of being a submanifold of ℝ=+1, M is also a Riemann

manifold. As such,M comes equipped with an smoothly varying inner product

6W :)WM×)WM → ℝ on tangent spaces, allowing us to measure the length of a

path on M. In particular, the length (or energy) of any curve W : [0, 1] → M is

defined by accumulating infinitesimal changes along the trajectory,

Length(W) B
∫

1

0

√
6W (C) (¤W (C), ¤W (C)) 3C, (5.2)

Energy(W) B
∫

1

0

6W (C) (¤W (C), ¤W (C)) 3C, (5.3)

where ¤W (C) B 3
3C
W (C) ∈)W (C)M is a tangent vector of W (C) B [\ (C) ;L(\ (C))] ∈ M.

We use parentheses (i.e. W (C)) to differentiate discrete and continuous domains.

With M being a submanifold of ℝ=+1, the induced metric on M is defined

by 6W (C) (¤W (C), ¤W (C)) = 〈 ¤W (C), ¤W (C)〉. Different constructions of M yield different

Riemann metrics. In particular, if the model 5\ admits a predictive probability

distribution ?\ (~ | G), the task manifold can be given an information geometric

interpretation by choosing the Fisher matrix as Riemann metric, in which case

5 Scaling up Meta-Learning On First Principles 90

the task manifold is defined over the space of probability distributions (Amari

& Nagaoka, 2007). If Eq. 5.1 is defined as natural gradient descent, the

learning process corresponds to gradient descent on this manifold (Amari,

1998; Martens, 2010; Pascanu & Bengio, 2014; Luk & Grosse, 2018).

Having a complete description of a task manifold, we can measure the length

of a learning process by noting that gradient descent can be seen as a discrete

approximation to the gradient flow
¤\ (C) = −∇L(\ (C)). This flow describes a

curve that originates in W (0) = [\0 ;L(\0)] and follows the gradient at each

point. We define W to be this unique curve and refer to it as the gradient path
from \0 on M. The metrics in Eqs. 5.2 and 5.3 can be computed exactly, but

in practice we observe a discrete learning process. Analogously to how gradient

descent approximates the gradient flow, the gradient path length or energy can

be approximated by the cumulative chordal distance (Ahlberg et al., 1967),

3? (\0,M) B
 −1∑
:=0

‖W:+1 − W: ‖?
2
, ? ∈ {1, 2}. (5.4)

We write 3 when the distinction between length and energy is immaterial. Using

the energy (Eq. 5.3) yields a slightly simpler objective, but the length (Eq. 5.2)

normalizes each length segment and as such protects against differences in

scale between task objectives. In Appendix 5.C, we conduct an ablation study

and find that they perform similarly, though using the length leads to faster

convergence. Importantly, 3 involves only terms seen during task training. We

exploit this later when we construct the meta gradient, enabling us to perform

gradient descent on the meta objective at negligible cost (Eq. 5.9).

We now turn to meta-learning, where we face a set of tasks, each with a distinct

task manifold. Our method builds on the idea that we can transfer knowledge

across learning processes via the local geometry by aggregating information

obtained along observed gradient paths. In essence, Leap finds an initialization

from which learning trajectories have minimal expected length.

5.2.2 Meta Learning across Task Manifolds

We define a task g B (Lg , ?g , Dg) as the process of learning to approximate the

relationship G ↦→ ~ through samples from the data distribution ?g (G,~). This
process is defined by a gradient update rule Dg (e.g. Eq. 5.1), applied times

to minimize the task objective Lg . A learning process starts at \g
0
= \0 and

progresses via \g
:+1 = Dg (\g

:
). The sequence {\g

:
}
:=0

defines an approximate

gradient path on the task manifold Mg
with distance 3 (\0;Mg).

5.2 Transferring Knowledge across Learning Processes 91

\0

Ψg
1

Ψg
2

Ψg
′

1

Ψg
′

2

kg
4

kg
3

kg
2

kg
1 kg

0

\g
3

\g
2

\g
1 \g

0

Figure 5.2: Left: illustration of Leap (Algorithm 5.1) for two tasks, g and g ′.
From an initialization \0, the learning process of each task generates gradient

paths, Ψg and Ψg
′
, which Leap uses to minimize the expected path length.

Iterating the process, Leap converges to a locally Pareto optimal initialization.

Right: the pull-forward objective (Eq. 5.7) minimizes the expected gradient

path length by pulling each \g
:
towards kg

:+1.

To understand how 3 transfers knowledge across learning processes, consider

two distinct tasks. We can transfer knowledge across these tasks’ learning

processes by measuring how good a shared initialization is. Assuming two

candidate initialisations converge to limit points with equivalent performance

on each task, the initialization with shortest expected gradient path distance

encodes more knowledge sharing. In particular, if both tasks have convex loss

surfaces a unique optimal initialization exists that achieves Pareto optimality in

terms of total path distance. This can be crucial in data sparse regimes where

rapid convergence can avoid overfitting (Finn et al., 2017).

Given a distribution of tasks ? (g), each candidate initialization \0 is associated

with a measure of its expected gradient path distance, Eg∼? (g) [3 (\0;Mg)], that
summarizes the suitability of the initialization to the task distribution. The

initialization (or a set thereof) with shortest expected gradient path distance

maximally transfers knowledge across learning processes and is Pareto optimal

in this regard. Above, we have assumed that all candidate initializations

converge to limit points of equal performance. If the task objective Lg is

non-convex this is not a trivial assumption and the gradient path distance itself

does not differentiate between different levels of final performance.

As such, it is necessary to introduce a feasibility constraint to ensure only

initializations with some minimum level of performance are considered. We

leverage that transfer learning never happens in a vacuum; we always have a

second-best option, such as starting from a random initialization or a pretrained

model. This “second-best” initialization, k0, provides us with the performance

we would obtain on a given task in the absence of knowledge transfer. As

such, performance obtained by initializing from k0 provides us with an upper

5 Scaling up Meta-Learning On First Principles 92

bound for each task: a candidate solution \0 must achieve at least as good

performance to be a viable solution. Formally, this implies the task-specific

requirement that a candidate \0 must satisfy Lg (\g

) ≤ Lg (kg

). As this must

hold for every task, we obtain the canonical meta objective

min

\
0

J (\0) B Eg∼? (g) [3 (\0;Mg)]

s.t. \g
:+1 = D

g (\g
:
), \g

0
= \0,

\0 ∈ Θ B ∩g
{
\0

�� Lg (\g) ≤ Lg (kg) } .
(5.5)

This meta objective is robust to variations in loss surfaces, as it balances

complementary and competing learning processes (Figure 5.2). For instance,

there may be an initialization that can solve a small subset of tasks in a handful

of gradient steps, but would be catastrophic for other related tasks. When

transferring knowledge via the initialization, we must trade off commonalities

and differences between gradient paths. In Eq. 5.5 these trade-offs arise

naturally. As the number of tasks whose gradient paths move in the same

direction increases, so does their pull on the initialization. Conversely, as the

updates to the initialization renders some gradient paths longer, these act as

springs that exert increasingly strong pressure on the initialization. The solution

to Eq. 5.5 thus achieves an equilibrium between these competing forces.

Solving Eq. 5.5 naively requires training to convergence on each task to de-

termine whether an initialization satisfies the feasibility constraint, which can

be very costly. Because we have access to a second-best initialization, we can

solve Eq. 5.5 more efficiently by obtaining gradient paths from k0 and use these

as baselines that we incrementally improve upon. This improved initialization

converges to the same limit points, but with shorter expected gradient paths

(Theorem 5.1). As such, it becomes the new second-best option; Leap (Al-

gorithm 5.1) repeats this process of improving upon increasingly demanding

baselines, ultimately finding a solution to the canonical meta objective.

5.2.3 Leap

Leap starts from a given second-best initialization k0, shared across all tasks,

and constructs baseline gradient paths Ψg B {kg
:
}
:=0

for each task g in a batch

B. These provide a set of baselines Ψ B {Ψg }g ∈B. Recall that all tasks share

the same initialization, kg
0
= k0 ∈ Θ. We use these baselines, corresponding to

task-specific learning processes, to modify the gradient path distance metric

5.2 Transferring Knowledge across Learning Processes 93

Algorithm 5.1 Leap: Transferring Knowledge over Learning Processes

Require: ? (g), g B (Lg , Dg , ?g): distribution over tasks

Require: V: step size

1: randomly initialize \0

2: while not done do
3: ∇J̃ ← 0: initialize meta gradient

4: sample task batch B from ? (g)
5: for all g ∈ B do
6: kg

0
← \0: initialize task baseline

7: for all 8 ∈ {0, . . . , −1} do
8: kg

:+1 ← Dg (kg
:
): update baseline

9: \g
:
← kg

:
: follow baseline (recall kg

0
= \0)

10: increment ∇J̃ using the pull-forward gradient (Eq. 5.9)

11: end for
12: end for
13: \0 ← \0 − V

| B |∇J̃ : update initialization

14: end while

in Eq. 5.4 by freezing the forward point Wg
:+1 in all norms,

3? (\0;Mg ,Ψg) B
 −1∑
:=0

‖ Wg
:+1 − W

g
:
‖?
2
, (5.6)

where Wg
:
B

[
kg
:
;L(kg

:
)
]
represents the frozen forward point from the baseline

and Wg
:
B

[
\g
:
;L(\g

:
)
]
the point on the gradient path originating from \0. This

surrogate distance metric encodes the feasibility constraint; optimizing \0 with

respect to Ψ pulls the initialization forward along each task-specific gradient

path in an unconstrained variant of Eq. 5.5 that replaces Θ with Ψ,

min

\
0

J̃ (\0;Ψ) B Eg∼? (g)
[
3 (\0;Mg ,Ψg)

]
,

s.t. \g
:+1 = D

g (\g
:
), \g

0
= \0.

(5.7)

We refer to Eq. 5.7 as the pull-forward objective. Incrementally improving \0

over k0 leads to a new second-best option that Leap uses to generate a new set

of more demanding baselines, to further improve the initialization. Iterating

this process, Leap produces a sequence of candidate solutions to Eq. 5.5, all in

Θ, with incrementally shorter gradient paths. While the pull-forward objective

can be solved with any optimization algorithm, we consider gradient-based

methods. In Theorem 5.1, we show that gradient descent on J̃ yields solutions

that always lie in Θ. In principle, J̃ can be evaluated at any \0, but a more

5 Scaling up Meta-Learning On First Principles 94

efficient strategy is to evaluate \0 at k0. In this case,
3 = 3 , so that J̃ = J .

Theorem 5.1 (Pull-forward). Define a sequence of initializations {\B
0
}
B∈ℕ by

\B+1
0
B \B

0
− VB∇J̃ (\B

0
;ΨB), (5.8)

with \0

0
∈ Θ and kB

0
= \B

0
for all B. For VB > 0 sufficiently small, there exist learning

rates schedules {Ug
:
}
:=1

for all tasks such that \:→∞
0

is a limit point in Θ.

Proof: Appendix 5.A. Because the meta gradient requires differentiating the

learning process, we adopt an approximation to obtain a meta-gradient that

can be computed analytically on the fly during training. Let J̃? denote the

distance under either the length or the energy. Differentiating J̃? , we have

∇J̃? (\0,Ψ) B −? Eg∼? (g)

 −1∑
:=0

[
�\

0
\g
:

]) (
ΔLg

:
∇Lg (\g

:
) + Δ\g

:

)
(
‖ Wg
:+1 − W

g
:
‖?
2

)
2−?

 , (5.9)

where �\
0
\g
:

denotes the Jacobian of \g
:

with respect to the initialisation;

we define the loss delta ΔLg
:
B Lg (kg

:+1) − L
g (\g

:
) and the parameter delta

Δ\g
:
B kg

:+1−\
g
:
. To render the meta gradient tractable, we need to approximate

the Jacobians, as these are costly to compute. Empirical evidence suggest that

they are largely redundant (Finn et al., 2017; Nichol et al., 2018). Nichol et al.

(2018) further shows that an identity approximation yields a meta-gradient that

remains faithful to the original meta objective. We provide some further support

for this approximation (see Appendix 5.B). First, we note that the learning

rate directly controls the quality of the approximation; for any , the identity

approximation can be made arbitrarily accurate by choosing a sufficiently small

learning rates. We conduct an ablation study to ascertain how severe this

limitation is and find that it is relatively loose. For the best-performing learning

rate, the identity approximation is accurate to four decimal places and shows

no signs of significant deterioration as the number of training steps increases.

As such, we assume �\
0
\g
:
≈ �= for all : throughout. Finally, by evaluating ∇J̃

at \0 = k0, the meta gradient contains only terms seen during standard training

and can be computed asynchronously on the fly at negligible cost.

5.3 Related Work 95

In practice, we use stochastic gradient descent during task training. This

injects noise in L as well as in its gradient, resulting in a noisy gradient path.

Noise in the gradient path does not prevent Leap from converging. However,

noise reduces the rate of convergence, in particular when a noisy gradient

step results in Lg (kg
B+1) − L

g (\g
:
) > 0. If the gradient estimator is reasonably

accurate, this causes the term ΔLg
:
∇Lg (\g

:
) in Eq. 5.9 to point in the steepest

ascent direction. We found that adding a stabilizer to ensure we always follow

the descent direction significantly speeds up convergence and allows us to use

larger learning rates. In this paper, we augment J̃ with a stabilizer

`
(
Lg (\g

:
);Lg (kg

:+1)
)
B

0 if ΔLg

:
< 0,

−2
[
ΔLg

:

]
2

else.

We add ∇` (re-scaled if ? = 2) to the meta-gradient, which is equivalent to

replacing ΔLg
:
with −|ΔLg

:
| in Eq. 5.9. This ensures that we never follow

∇Lg (\g
:
) in the ascent direction, instead reinforcing the descent direction at that

point. This stabilizer is a heuristic, others may prove helpful. In Appendix 5.C

we perform an ablation study and find that the stabilizer is not necessary for

Leap to converge, but it does speed up convergence significantly.

5.3 Related Work

Transfer learning has been explored in a variety of settings, typically by infusing

knowledge in a target model’s parameters by encouraging them to lie close

to those of a pretrained source model (Pan & Yang, 2009). Because such

approaches can limit knowledge transfer (Higgins et al., 2017; Achille et al.,

2018), applying standard transfer learning techniques leads to catastrophic
forgetting, by which the model is rendered unable to perform a previously

mastered task (McCloskey & Cohen, 1989; Goodfellow et al., 2013). These

problems are further accentuated when there is a larger degree of diversity

among tasks that push optimal parameterizations further apart. In these cases,

transfer learning can in fact be worse than training from scratch.

Recent approaches extend standard finetuning by adding regularizing terms to

the training objective. These encourage the model to learn parameters that both

solve a new task and retain high performance on previous tasks and operate

by protecting the parameters that affect the loss function the most (Miconi

et al., 2018; Zenke et al., 2017; Kirkpatrick et al., 2017; Lee et al., 2017; Serrá
et al., 2018). Because these approaches use a single model to encode both

5 Scaling up Meta-Learning On First Principles 96

global task-general information and local task-specific information, they can

over-regularize, preventing the model from learning further tasks. Schwarz et al.

(2018) found that while these approaches mitigate catastrophic forgetting, they

are unable to facilitate knowledge transfer on the benchmark they considered.

Ultimately, if a single model must encode both task-generic and task-specific

information, it must either saturate or grow in size (Rusu et al., 2016).

In contrast, meta-learning aims to learn the learning process itself (Schmidhuber,

1987; Bengio et al., 1991; Santoro et al., 2016; Ravi & Larochelle, 2017;

Andrychowicz et al., 2016; Vinyals et al., 2016; Finn et al., 2017). The literature

focuses primarily on few-shot learning, where a task is some variation on a

common theme, such as subsets of classes drawn from a shared pool of

data (Lake et al., 2015; Vinyals et al., 2016). The meta-learning algorithm

adapts a model to a new task given a handful of samples. Recent attention has

been devoted to three main approaches. One trains the meta-learner to adapt

to a new task by comparing an input to samples from previous tasks (Vinyals

et al., 2016; Mishra et al., 2018; Snell et al., 2017). More relevant to our

framework are approaches that parameterize the training process through a

recurrent neural network that takes the gradient as input and produces a new

set of parameters (Ravi & Larochelle, 2017; Santoro et al., 2016; Andrychowicz

et al., 2016; Hochreiter et al., 2001). The approach most closely related to us

learns an initialization such that the model can adapt to a new task through

one or a few gradient updates (Finn et al., 2017; Nichol et al., 2018; Al-Shedivat

et al., 2018; Lee & Choi, 2018). In contrast to our work, these methods focus

exclusively on few-shot learning, where the gradient path is trivial as only

a single or a handful of training steps are allowed, limiting them to settings

where the current task is closely related to previous ones.

It is worth noting that the Model Agnostic Meta Learner (MAML: Finn et al.,

2017) can be written as Eg∼? (g)
[
Lg (\g

)
]
.
8
The meta-gradient of this objective

takes the form Eg∼? (g)
[[
�\

0
\g

])∇Lg (\g

)
]
. As such, it arises as a special case

of Leap where only the final parameterization is evaluated in terms of its

final performance. Similarly, the Reptile algorithm (Nichol et al., 2018), which

proposes to update rule \0 ← \0 + n
(
Eg∼? (g)

[
\g

]
− \0

)
, can be seen as a naive

version of Leap that assumes all task geometries are Euclidean. In particular,

Leap reduces to Reptile if Lg is removed from the task manifold and the

energy metric without stabilizer is used. We find this configuration to perform

significantly worse than any other (see Section 5.4.1 and Appendix 5.C).

8
MAML differs from Leap in that it evaluates the meta objective on a held-out test set.

5.4 Empirical Results 97

Related work studying models from a geometric perspective have explored how

to interpolate in a generative model’s learned latent space (Tosi et al., 2014;

Shao et al., 2018; Arvanitidis et al., 2018; Chen et al., 2018; Kumar et al., 2017).

Riemann manifolds have also garnered attention in the context of optimization

where preconditioning can be understood as the instantiation of some Riemann

metric (Amari & Nagaoka, 2007; Abbati et al., 2018; Luk & Grosse, 2018).

5.4 Empirical Results

We consider three experiments with increasingly complex knowledge transfer.

We measure transfer learning in terms of final performance and speed of

convergence, where the latter is defined as the area under the training error

curve. We compare Leap to competing meta-learning methods on the Omniglot

dataset by transferring knowledge across alphabets (Section 5.4.1). We study

Leap’s ability to transfer knowledge over more complex and diverse tasks

in a Multi-CV experiment (Section 5.4.2) and finally evaluate Leap on in a

demanding reinforcement environment (Section 5.4.3).

5.4.1 Omniglot

The Omniglot (Lake et al., 2015) dataset consists of 50 alphabets, which we

define to be distinct tasks. We hold 10 alphabets out for final evaluation and

use subsets of the remaining alphabets for meta-learning or pretraining. We

vary the number of alphabets used for meta-learning / pretraining from 1

to 25 and compare final performance and rate of convergence on held-out

tasks. We compare against no pretraining, multi-headed finetuning, MAML,

the first-order approximation of MAML (FOMAML; Finn et al., 2017), and

Reptile. We train on a given task for 100 steps, with the exception of MAML

where we backpropagate through 5 training steps during meta-training. For

Leap, we report performance under the length metric (31); see Appendix 5.C for

an ablation study on Leap parameters. For further details, see Appendix 5.D.

All baselines significantly improves upon a random initialization. MAML

exhibits a considerable short-horizon bias (Wu et al., 2018). While FOMAML

is trained full trajectories, but because it only leverages gradient information at

final iteration, which may be arbitrarily uninformative, it does worse. Multi-

headed finetuning is a tough benchmark to beat as tasks are very similar.

Nevertheless, for sufficiently rich task distributions, both Reptile and Leap

outperform finetuning, with Leap outperforming Reptile as the complexity

grows. That Leap and Reptile achieve similar performance underscores that

Reptile is a special case under a simplified geometry. That the AUC gap between

5 Scaling up Meta-Learning On First Principles 98

20 40 60 80 100
Training steps

1

2

4
T

ra
in

in
g

lo
ss

1 5 10 15 20 25
Training tasks

0.4

0.5

0.6

0.7

0.8

0.9

A
U

C

No pretraining

FOMAML

MAML

Finetuning

Reptile

Leap

Figure 5.3: Results on Omniglot. Left: Comparison of average learning curves

on held-out tasks (across 10 seeds) for 25 tasks in the meta-training set. Curves

are moving averages with window size 5. Shading: standard deviation within

window. Right: AUC across number of tasks in the meta-training set. Shading:

standard deviation across 10 seeds.

Reptile and Leap grows in the number of meta-training tasks (i.e. meta-learning

complexity; see Figure 5.3)—reaching a 4 percentage point difference in final

validation error for 25 meta-training tasks (Table 5.2)—supports our hypothesis

that accounting for learning dynamics via geometric information can facilitate

meta-learning as the meta-learning problem grows increasingly complex.

5.4.2 Multi-CV

Inspired by Serrá et al. (2018), we consider a set of computer vision datasets

as distinct tasks. We pretrain on all but one task, which is held out for

final evaluation. For details, see Appendix 5.E. To reduce the computational

burden during meta training, we pretrain on each task in the meta batch for

one epoch using the energy metric (32). We found this to reach equivalent

performance to training on longer gradient paths or using the length metric.

This indicates that it is sufficient for Leap to see a partial trajectory to correctly

infer shared structures across task geometries.

We compare Leap against a random initialization, multi-headed finetuning, a

non-sequential version of HAT (Serrá et al., 2018) (i.e. allowing revisits) and a

non-sequential version of Progressive Nets (Rusu et al., 2016), where we allow

lateral connection between every task. Note that this makes Progressive Nets

over 8 times larger in terms of learnable parameters (leading to a computational

and memory overhead of approximately 8G).

5.4 Empirical Results 99

Table 5.1: Results on Multi-CV benchmark. All methods are trained until

convergence on held-out tasks. Finetuning is multiheaded.
†
Area under

training error curve; scaled to 0–100.
‡
Our implementation. MNIST results

omitted; see Appendix 5.E, Table 5.5.

Held-out task Method Test (%) Train (%) AUC
†

Facescrub Leap 19.9 0.0 11.6

Finetuning 32.7 0.0 13.2

Progressive Nets
‡ 18.0 0.0 8.9

HAT
‡

25.6 0.1 14.6

No pretraining 18.2 0.0 10.5

Cifar10 Leap 21.2 10.8 17.5
Finetuning 27.4 13.3 20.7

Progressive Nets
‡

24.2 15.2 24.0

HAT
‡

27.7 21.2 27.3

No pretraining 26.2 13.1 23.0

SVHN Leap 8.4 5.6 7.5
Finetuning 10.9 6.1 10.5

Progressive Nets
‡

10.1 6.3 13.8

HAT
‡

10.5 5.7 8.5

No pretraining 10.3 6.9 11.5

Cifar100 Leap 52.0 30.5 43.4
Finetuning 59.2 31.5 44.1

Progressive Nets
‡

55.7 42.1 54.6

HAT
‡

62.0 49.8 58.4

No pretraining 54.8 33.1 50.1

Traffic Signs Leap 2.9 0.0 1.2
Finetuning 5.7 0.0 1.7

Progressive Nets
‡

3.6 0.0 4.0

HAT
‡

5.4 0.0 2.3

No pretraining 3.6 0.0 2.4

The Multi-CV experiment is more challenging both due to greater task diversity

and greater complexity among tasks. We report results on held-out tasks

in Table 5.1. Leap outperforms all baselines on all but one transfer learning

tasks (Facescrub), where Progressive Nets does marginally better than a random

initialization owing to its increased parameter count. Notably, while Leap does

marginally worse than a random initialization, finetuning and HAT leads to a

substantial drop in performance. On all other tasks, Leap converges faster to

optimal performance and achieves superior final performance.

5 Scaling up Meta-Learning On First Principles 100

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

AirRaid

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Alien

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

UpNDown

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

SpaceInvaders

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

RoadRunner

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

WizardOfWor

Figure 5.4: Mean normalized episode scores on Atari games across training

steps. Shaded regions depict two standard deviations across ten seeds. Leap

(orange) generally outperforms a random initialization (blue), even when the

action space is twice as large as during pretraining (Table 5.6, Appendix 5.F).

5.4.3 Atari

To demonstrate that Leap can scale to large problems, both in computational

terms and in task complexity, we apply it in a reinforcement learning envi-

ronment, specifically Atari 2600 games (Bellemare et al., 2013). We use an

actor-critic architecture (Sutton & Barto, 1998) with the policy and the value

function sharing a convolutional encoder. We apply Leap to the encoder using

the energy metric (32). During meta training, we sample mini-batches from

27 games that have an action space dimensionality of at most 10, holding out

two games with similar action space dimensionality for evaluation, as well as

games with larger action spaces (Table 5.6). During meta-training, we train on

each task for five million training steps. See Appendix 5.F for details.

Due to high computational cost, we are restricted to train for 100 meta training

steps. This is sufficient to see a distinct improvement over the baseline, but with

only 100 meta-training steps we do not generally obtain statistical significance.

We expect a longer meta-training phase to yield further gains; our results

should be interpreted as an initial indication of the general feasibility of

meta-learning in large-scale environments.

We find that Leap generally outperforms a random initialization. This per-

formance gain is primarily driven by less volatile exploration, as seen by the

confidence intervals in Figure 5.4 (see also Figure 5.8). Leap finds a useful

exploration space faster and more consistently, suggesting that it can find

shared structures across a diverse set of complex learning processes.

5.5 Conclusions 101

These gains may not cater equally to all tasks. In the case of WizardOfWor

(meta-training task), Leap exhibits two modes: in one it performs on par

with the baseline, in the other exploration is protracted (Figure 5.8). This

stems from noisy gradients, which renders an observed gradient path less

representative. Such randomness can be marginalized by training for longer.

That Leap can outperform a random initialization on the pretraining set

(AirRaid, UpNDown) is perhaps not surprising. More striking is that it exhibits the

same behavior on out-of-distribution tasks. In particular, Alien, Gravitar and

RoadRunner all have at least 50% larger state space than anything encountered

during pretraining (Appendix 5.F, Table 5.6), yet Leap outperforms a random

initialization. This suggests that transferring knowledge at a higher level of

abstraction, such as in the space of gradient paths, generalizes to unseen task

variations as long as underlying learning dynamics agree.

5.5 Conclusions

Transfer learning typically ignores the learning process itself, restricting knowl-

edge transfer to scenarios where target tasks are very similar to source tasks.

In this paper, we present Leap, a framework for knowledge transfer at a higher

level of abstraction. By formalizing knowledge transfer as minimizing the

expected length of gradient paths, we propose a method for meta-learning

that scales to highly demanding problems. We find empirically that Leap can

provide useful inductive biases that improve the rate of learning, as well as

final performance, both compared to a random initialisation, finetuning, and

similar meta-learners. We substantive support in the supervised learning setting

and our results on the extremely challenging Atari suite provides indicative

evidence that meta-learning is feasible in this regime. Delving deeper in this

direction is an exciting area for future research.

102

5 Appendix

5.A Mathematical Results

We now establish the proof of Theorem 5.1, re-stated below for convenience:

Theorem 5.2. Define a sequence of initializations {\B
0
}
B∈ℕ by

\B+1
0
B \B

0
− VB∇J̃ (\B

0
;ΨB), (5.10)

with \0

0
∈ Θ and kB

0
= \B

0
for all B. For VB > 0 sufficiently small, there exist learning

rates schedules {Ug
:
}
:=1

for all tasks such that \:→∞
0

is a limit point in Θ.

Proof. We proceed as follows. First, we establish that, for all B ,

Eg∼? (g)
[
3 (\B+1

0
,Mg)

]
= J (\B+1

0
) (5.11)

= J̃ (\B+1
0

;ΨB+1) (5.12)

≤ J̃ (\B
0
;ΨB) (5.13)

= J (\B
0
) (5.14)

= Eg∼? (g)
[
3 (\B

0
,Mg)

]
, (5.15)

with strict inequality for at least some B; note that Eqs. 5.11 and 5.15 follow by

definition (Eqs. 5.5 and 5.7), while Eqs. 5.12 and 5.14 hold by assumption

kB
0
= \B

0
∀B (in which case

3 and 3 coincide; see Eqs. 5.4 and 5.6).

Next, because {VB}∞B=1
satisfies the gradient descent criteria, the sequence {\B

0
}∞
B=1

is convergent. To complete the proof we show its limit point lies in Θ: for

VB sufficiently small, for all B , lim:→∞ \
B+1
:

= lim:→∞ \
B
:
. That is, each updated

initialization incrementally reduces the expected gradient path length while

converging to the same limit point as \0

0
. Since \0

0
∈ Θ by assumption, we

obtain \B
0
∈ Θ for all B as an immediate consequence.

5.A Mathematical Results 103

To establish Eq. 5.13, with strict inequality for some B , we define need to keep

track of two sequences, the inner loop iterates in : while the outer loop is

indexed by B. To simplify notation, we use I and ℎ to map into the point at on

task g , iteration : and : + 1, respectively, for a given B. Similarly, we use G and

~ for the corresponding points at iteration B + 1. These are defined by

I (g, :) B
[
\g
B,:

;Lg (\g
B,:
)
]

G (g, :) B
[
\g
B+1,: ;Lg (\g

B+1,:)
]

ℎ(g, :) B
[
kg
B,:+1 ;Lg (kg

B,:+1)
]

~ (g, :) B
[
kg
B+1,:+1 ;Lg (kg

B+1,:+1)
]
.

(5.16)

Recall that kg
B,:+1 = \

g
B,:+1 by assumption. We drop arguments and it is implicitly

understood that I refers to I (g, :) and similarly for ℎ, G,~. Denote by Eg
:
B

Eg∼? (g)
∑
:=1

the expectation over gradient paths. We write

J̃ (\B
0
,ΨB) = Eg

:
‖ℎ − I‖?

2
J̃ (\B

0
,ΨB+1) = Eg

:
‖~ − I‖?

2

J̃ (\B+1
0
,ΨB) = Eg

:
‖ℎ − G ‖?

2
J̃ (\B+1

0
,ΨB+1) = Eg

:
‖~ − G ‖?

2
,

(5.17)

where the notation Eg
:
‖ℎ − I‖?

2
means Eg∼? (g)

∑
:=1
‖ℎ(g, :) − I (g, :)‖?

2
and ? = 2

defines the meta objective in terms of the gradient path energy and ? = 1 in

terms of the gradient path length. As we are exclusively concerned with the

Euclidean norm, we omit the subscript. By assumption, every VB is sufficiently

small to satisfy the gradient descent criteria J̃ (\B
0
;ΨB) ≥ J̃ (\B+1

0
;ΨB). Adding

and subtracting J̃ (\B+1
0
,ΨB+1) to the RHS, we have

Eg
:
‖ℎ − I‖? ≥ Eg

:
‖ℎ − G ‖?

= Eg
:
‖~ − G ‖? + ‖ℎ − G ‖? − ‖~ − G ‖? .

(5.18)

It follows that Eg 3 (\B
0
,Mg) ≥ Eg 3 (\B+1

0
,Mg) if Eg

:
‖ℎ−G ‖? ≥ Eg

:
‖~ −G ‖? . As our

main concern is existence, we will show something stronger, namely that there

exists U (g, :) B Ug
:
such that

‖ℎ − G ‖? ≥ ‖~ − G ‖? ∀g, :, B, ? (5.19)

with at least one such inequality strict for some g, :, B (and all ?), in which

case 3? (\B+1
0
,Mg) < 3? (\B

0
,Mg) for any ? ∈ {1, 2}. We proceed by establishing

the inequality for ? = 2 and obtain ? = 1 as an immediate consequence of

5 Scaling up Meta-Learning On First Principles 104

monotonicity of the square root. Expanding ‖ℎ − G ‖2 we have

‖ℎ − G ‖2 − ‖~ − G ‖2 = ‖(ℎ − I) + (I − G)‖2 − ‖~ − G ‖2

= ‖ℎ − I‖2 + 2〈ℎ − I, I − G〉 + ‖I − G ‖2 − ‖~ − G ‖2.
(5.20)

Every term except ‖I − G ‖2 can be minimized by choosing U small, whereas

‖I − G ‖2 is controlled by VB . Thus, our strategy is to make all terms except

‖I − G ‖2 small, for a given VB , by placing an upper bound on U . We first show

that ‖ℎ−I‖2 − ‖~ −G ‖2 = $
(
U2

)
. Some care is needed as the (= + 1)th dimension

is the loss value associated with the other = dimensions. Define I (g, :) B \g
B,:
,

so that I = [I ;Lg (I)]. Similarly define G, ℎ, and ~ to obtain

‖ℎ − I‖2 = ‖ ℎ − I‖2 + (Lg (ℎ) − Lg (I))2

‖~ − G ‖2 = ‖ ~ − G ‖2 + (Lg (~) − Lg (G))2

2〈ℎ − I, I − G〉 = 2〈 ℎ − I, I − G〉 + (Lg (ℎ) − Lg (I)) (Lg (I) − Lg (G)) .

(5.21)

Consider ‖ ℎ − I‖2 − ‖ ~ − G ‖2. Since
ℎ = I − U∇L(I) and ~ = G − U∇L(G), it

follows that ‖ ℎ − I‖2 = U2‖∇ L(I)‖2 and similarly for ‖ ~ − G ‖2, so

‖ ℎ − I‖2 − ‖ ~ − G ‖2 = U2

(
‖∇ L(I)‖2 − ‖∇L(G)‖2

)
= $

(
U2

)
. (5.22)

Now consider (Lg (ℎ) − Lg (I))2 − (Lg (~) − Lg (G))2. Using the above identities

and first-order Taylor series expansion, we have

(Lg (ℎ) − Lg (I))2 =

(
〈∇Lg (I), (ℎ − I)〉 +$ (U)

)
2

=

(
−U ‖∇Lg (I)‖2 +$ (U)

)
2

= $

(
U2

)
,

(5.23)

and similarly for (Lg (~) − Lg (G))2. As such, ‖ℎ − I‖2 − ‖~ − G ‖2 = $
(
U2

)
.

From this it follows that 〈ℎ − I, I − G〉 = −U 〈∇ L(I), I − G〉 +$ (U2). Returning to

the quantity of interest, ‖ℎ − G ‖2 − ‖~ − G ‖2, we have

‖ℎ − G ‖2 − ‖~ − G ‖2 = ‖I − G ‖2 + 2〈ℎ − I, I − G〉 +$
(
U2

)
= ‖I − G ‖2 − 2U 〈∇ L(I), I − G〉 +$

(
U2

)
.

(5.24)

5.A Mathematical Results 105

The first term is non-negative, and importantly, always non-zero whenever

VB ≠ 0. Furthermore, U can always be made sufficiently small for ‖I − G ‖2 to

dominate the residual, so we can focus on the inner product 〈∇ L(I), I − G〉. If

it is negative, all terms are positive and we have ‖ℎ − G ‖2 ≥ ‖~ − G ‖2 as desired.

If not, ‖I − G ‖2 dominates if

U ≤ ‖I − G ‖2
2〈∇ L(I), I − G〉 ∈ (0,∞). (5.25)

Thus, for U sufficiently small, we have ‖ℎ − G ‖2 ≥ ‖~ − G ‖2 ∀g, :, B , with strict

inequality whenever 〈∇ L(I), I − G〉 < 0 or the bound on U holds strictly. This

establishes 32(\B+1
0
,Mg) ≤ 32(\B

0
,Mg) for all g, B , with strict inequality for at

least some g, B. To also establish it for the gradient path length (? = 1), taking

square roots on both sides of ‖ℎ − G ‖2 ≥ ‖~ − G ‖2 yields the desired results, and

so ‖ℎ − G ‖? ≥ ‖~ − G ‖? for ? ∈ {1, 2}, and therefore

3 (\B+1
0
,Mg) = J̃ (\B+1

0
;ΨB+1) ≤ J̃ (\B

0
;ΨB) = 3 (\B

0
,Mg) ∀g, B (5.26)

with strict inequality for at least some g, B; in particular, for some VB ≠ 0 and

some Ug
:
sufficiently small.

Then, to see that the limit point of ΨB+1 is the same as that of ΨB for VB

sufficiently small, we use that the distance between ℎ ∈ ΨB and I ∈ ΨB is

greater than between ℎ and G ∈ ΨB+1 by virtue of gradient descent (Eq. 5.18).

Hence ΨB+1 is bound to ΨB and the inner loop is convergent, this means that

ΨB+1 must be converging to the same limit point. To establish this, note that

G (g, :) = ~ (g, : − 1) and write Eq. 5.18 as

Eg
:
‖ℎ(g, :) − G (g, :)‖? = Eg

:
‖ℎ(g, :) − ~ (g, : − 1)‖? (5.27)

≤ Eg
:
‖ℎ(g, :) − I (g, :)‖? (5.28)

= Eg
:
U? ‖∇ L(I (g, :))‖? +$ (U?). (5.29)

Define n (g, :) as the noise residual from the expectation; each ~ (g, : − 1) is
bounded by ‖ℎ(g, :) − ~ (g, : − 1)‖? ≤ U? ‖∇ L(I)‖? + n (g, :). For VB small this

noise component vanishes, and since {Ug
:
}∞
:=1

is a converging sequence, the

bound on ~ (g, : − 1) grows increasingly tight in :. Hence {\B+1
:
}8=1

∞ converges

to the same limit point as {\B
:
}8=1

∞ , yielding \B+1
0
∈ Θ for all B , as desired. �

5 Scaling up Meta-Learning On First Principles 106

1 5 10 15 20
step

10−2

10−3

10−4

10−5

10−6

p
re

ci
si

on

0.01 0.1 0.5

Figure 5.5: Precision of Jacobian approximation. Precision is calculated for the

Jacobian of the first layer across learning rates (colors) and gradient steps.

5.B Ablation Study: Approximating Jacobians

First, note that (we drop task subscripts for simplicity)

�\
0
\:+1 =

(
�= − U∇2

\:
L(\:)

)
�\

0
\: (5.30)

=

:∏
B=0

(
�= − U∇2

\B
L(\B)

)
(5.31)

= �= − U
(
:∑
B=0

∇2

\B
L(\B)

)
+$

(
U2

)
. (5.32)

Thus, we can directly control the quality of the approximation via U (or

more generally, {U: } :=1
). In particular, changes to \:+1 are translated into

\0 via intermediary Hessians. This makes these Jacobians memoryless up to

second-order curvature, motivating this approximation beyond the fact that

it works well in practice (c.f. Finn et al., 2017; Nichol et al., 2018). As a

practical matter, if the alternative is some other approximation to the Hessians,

the amount of noise injected grows exponentially with every iteration. The

problem of devising an accurate low-variance estimator for the ∇2

\:
L(\:) is

highly challenging and beyond the scope of this paper.

To understand how this approximation limits our choice of learning rates U −: ,
we conduct an ablation study in the Omniglot experiment setting. We are

5.C Ablation Study: Leap Hyper-Parameters 107

interested in the relative precision of the identity approximation under different

learning rates and across time steps, defined under the Schatten-1 norm as

d (:, U) =
‖�= − �\

0
\: ‖1

‖�\
0
(\:)‖1

. (5.33)

We use the same four-layer convolutional neural network as in the Omniglot

experiment (Appendix 5.D). For each choice of learning rate, we train a model

from a random initialization for 20 steps and compute d every 5 steps. Due to

exponential growth of memory consumption, we were unable to compute d

for more than 20 gradient steps. We report the relative precision of the first

convolutional layer. We do not report the Jacobian with respect to other layers,

all being considerably larger, as computing their Jacobians was too costly. We

computed d for all layers on the first five gradient steps and found no significant

variation in precision across layers. Consequently, we prioritize reporting how

precision varies with the number of gradient steps. As in the main experiments,

we use stochastic gradient descent. We evaluate U ∈ {0.01, 0.1, 0.5} across 5

different tasks. Figure 5.5 summarizes our results.

Reassuringly, we find the identity approximation to be accurate to at least the

fourth decimal for learning rates we use in practice, and to the third decimal

for the largest learning rate (0.5) we were able to converge with. Importantly,

except for the smallest learning rate, the quality of the approximation is constant

in the number of gradient steps. The smallest learning rate that exhibits some

deterioration on the fifth decimal, however larger learning rates provide an

upper bound that is constant on the fourth decimal, indicating that this is of

minor concern. Finally, we note that while these results suggest the identity

approximation to be a reasonable approach on the class of problems we consider,

other settings may put stricter limits on the effective size of learning rates.

5.C Ablation Study: Leap Hyper-Parameters

We have several degrees of freedom in specifying a meta learner. In particular,

we are free to choose the task manifold structure, the gradient path distance

metric, 3? , and whether to incorporate stabilizers. These are non-trivial choices

and to ascertain the importance of each, we conduct an ablation study. We vary

(a) the task manifold between using the full loss surface and only parameter

space, (b) the gradient path distance metric between using the energy or length,

and (c) inclusion of the stabilizer ` in the meta objective. We stay as close

as possible to the set-up used in the Omniglot experiment (Appendix 5.D),

5 Scaling up Meta-Learning On First Principles 108

0 100 200 300 400 500
Meta training steps

0.5

1.0

1.5

2.0

2.5
A

ve
ra

ge
tr

ai
n

in
g

lo
ss

p=2, µ=0, fτ=1

p=2, µ=1, fτ=1

p=2, µ=0, fτ=0

p=1, µ=0, fτ=1

p=1, µ=1, fτ=1

p=1, µ=0, fτ=0

Figure 5.6: Average task training loss over meta-training steps. ? denotes the

3? used in the meta objective, ` = 1 the use of the stabilizer, and Lg = 1 the

inclusion of the loss in the task manifold.

fixing the number of pretraining tasks to 20. We perform 500 meta gradient

updates; other hyper-parameters are the same.

Our ablation study indicates that the richer the task manifold and the more ac-

curate the gradient path length is approximated, the better Leap performs (Fig-

ure 5.6). Further, adding a stabilizer has the intended effect and leads to

significantly faster convergence. The simplest configuration, defined in terms

of the gradient path energy and with the task manifold identifies as parameter

space, yields a meta gradient equivalent to the update rule used in Reptile.

We find this configuration to be less efficient in terms of convergence and we

observe a significant deterioration in performance. Extending the task manifold

to the loss surface does not improve meta-training convergence speed, but

does cut prediction error in half. Adding the stabilizer significantly speeds up

convergence. These conclusions also hold under the gradient path length as

distance measure, and in general using the gradient path length does better

than using the gradient path energy as the distance measure.

5.D Experiment Details: Omniglot

Omniglot contains 50 alphabets, each with a set of characters that in turn have

20 unique samples. We treat each alphabet as a distinct task and pretrain

on up to 25 alphabets, holding out 10 out for final evaluation. We use data

augmentation on all tasks to render the problem challenging. We augment

any image with a random affine transformation by (a) random sampling a

5.D Experiment Details: Omniglot 109

Table 5.2: Mean test error after 100 training steps on held out evaluation

tasks.
†
Multi-headed finetuning.

‡
No pretraining. No. tasks refers to number of

meta-training tasks.

Method Leap Reptile FT
†

MAML FOMAML NP
‡

No. tasks

1 62.3 59.8 46.5 64.0 64.5 82.3

3 46.5 46.5 36.0 56.2 59.0 82.3

5 40.3 41.4 32.5 50.1 53.0 82.5

10 32.6 35.6 28.7 49.3 49.6 82.9

15 29.6 33.3 26.9 45.5 47.8 82.6

20 26.0 30.8 24.7 41.7 45.4 82.6

25 24.8 29.4 23.5 42.9 44.0 82.8

scaling factor between [0.8, 1.2], (b) random rotation between [0, 360], and (c)

randomly cropping the height and width by a factor between [−0.2, 0.2] in
each dimension. Our setup differs significantly from other protocols (Vinyals

et al., 2016; Finn et al., 2017), where tasks are defined by selecting different

permutations of characters (irrespective of alphabet) and restricting the number

of samples available for each character.

We use a similar convolutional neural network architecture as in previous

works (Vinyals et al., 2016; Schwarz et al., 2018). The networks stacks a

convolutional module four times, where each model is comprised of a 3 × 3

convolution with 64 filters, followed by 2×2 max-pooling, batch-normalization,

and ReLU activation. All images are downsampled to 28 × 28, resulting in a

1× 1× 64 feature map that is passed on to a final linear layer. We define a task

as a 20-class classification problem with classes drawn from a distinct alphabet.

For alphabets with more than 20 characters, we pick 20 characters at random,

alphabets with fewer characters (4) are dropped from the task set. On each

task, we train a model using stochastic gradient descent. For each model, we

evaluated learning rates in the range [0.001, 0.01, 0.1, 0.5]; we found 0.1 to be

the best choice in all cases. See Table 5.3 for further hyper-parameters.

We meta-train for 1000 steps unless otherwise noted; on each task we train

for 100 steps. Increasing the number of steps used for task training yields

similar results, albeit at greater computational expense. For each character in

an alphabet, we hold out 5 samples in order to create a task validation set.

5 Scaling up Meta-Learning On First Principles 110

Table 5.3: Summary of hyper-parameters for Omniglot. “Meta” refers to the

outer training loop, “task” refers to the inner training loop.

Leap Finetuning Reptile MAML FOMAML

Meta training

Learning rate 0.1 — 0.1 0.5 0.5

Training steps 1000 1000 1000 1000 1000

Batch size (tasks) 20 20 20 20 20

Task training

Learning rate 0.1 0.1 0.1 0.1 0.1

Training steps 100 100 100 5 100

Batch size (samples) 20 20 20 20 20

Task evaluation

Learning rate 0.1 0.1 0.1 0.1 0.1

Training steps 100 100 100 100 100

Batch size (samples) 20 20 20 20 20

Table 5.4: Summary of hyper-parameters for Multi-CV.“Meta” refers to the

outer training loop, ‘task” refers to the inner training loop.

Leap Finetuning Progressive Nets HAT

Meta training

Learning rate 0.01 — — —

Training steps 1000 1000 1000 1000

Batch size 10 10 10 10

Task training

Learning rate 0.1 0.1 0.1 0.1

Max epochs 1 1 1 1

Batch size 32 32 32 32

Task evaluation

Learning rate 0.1 0.1 0.1 0.1

Training epochs 100 100 100 100

Batch size 32 32 32 32

5.E Experiment Details: Multi-CV 111

5.E Experiment Details: Multi-CV

Architectures differ between tasks through different final linear layers. We use

the same convolutional encoder as in the Omniglot experiment (Appendix 5.D).

Leap learns an initialization for the convolutional encoder; on each task, the

final linear layer is always randomly initialized. We compare Leap against

(a) a baseline with no pretraining, (b) multitask finetuning, (c) HAT (Serrá
et al., 2018), and (d) Progressive Nets (Rusu et al., 2016). For HAT, we use the

original formulation, but allow multiple task revisits (until convergence). For

Progressive Nets, we allow lateral connections between all tasks and multiple

task revisits (until convergence). Note that this makes Progressive Nets over 8

times larger in terms of learnable parameters than the other models.

We train using SGD with cosine annealing (Loshchilov & Hutter, 2017). During

meta training, we sample a batch of 10 tasks at random from the pretraining

set and train until the early stopping criterion is triggered or the maximum

amount of epochs is reached (see Table 5.4). We used the same interval

for selecting learning rates as in the Omniglot experiment (Appendix 5.D).

Only Leap benefited from using more than 1 epoch as the upper limit on

task training steps during pretraining.

In the case of Leap, the initialization is updated after all tasks in the meta

batch has been trained to convergence; for other models, there is no distinction

between initialization and task parameters. On a given task, training is stopped

if the maximum number of epochs is reached (Table 5.4) or if the validation

error fails to improve over 10 consecutive gradient steps. Meta training is

stopped once the mean validation error fails to improve over 10 consecutive

meta training batches. We use Adam (Kingma & Ba, 2015) for the meta

gradient update with a constant learning rate of 0.01. We use no dataset

augmentation. MNIST images are zero padded to have 32 × 32 images; we

use the same normalizations as Serrá et al. (2018).

5 Scaling up Meta-Learning On First Principles 112

Table 5.5: Transfer learning results on Multi-CV benchmark. All methods are

trained until convergence on held-out tasks.
†
Area under training error curve;

scaled to 0–100.
‡
Our implementation.

Held-out task Method Test (%) Train (%) AUC
†

Facescrub Leap 19.9 0.0 11.6

Finetuning 32.7 0.0 13.2

Progressive Nets
‡ 18.0 0.0 8.9

HAT
‡

25.6 0.1 14.6

No pretraining 18.2 0.0 10.5

NotMNIST Leap 5.3 0.6 2.9
Finetuning 5.4 2.0 4.4

Progressive Nets
‡

5.4 3.1 3.7

HAT
‡

6.0 2.8 5.4

No pretraining 5.4 2.6 5.1

MNIST Leap 0.7 0.1 0.6
Finetuning 0.9 0.1 0.8

Progressive Nets
‡

0.8 0.0 0.7

HAT
‡

0.8 0.3 1.2

No pretraining 0.9 0.2 1.0

Fashion MNIST Leap 8.0 4.2 6.8
Finetuning 8.9 3.8 7.0

Progressive Nets
‡

8.7 5.4 9.2

HAT
‡

9.5 5.5 8.1

No pretraining 8.4 4.7 7.8

Cifar10 Leap 21.2 10.8 17.5
Finetuning 27.4 13.3 20.7

Progressive Nets
‡

24.2 15.2 24.0

HAT
‡

27.7 21.2 27.3

No pretraining 26.2 13.1 23.0

SVHN Leap 8.4 5.6 7.5
Finetuning 10.9 6.1 10.5

Progressive Nets
‡

10.1 6.3 13.8

HAT
‡

10.5 5.7 8.5

No pretraining 10.3 6.9 11.5

Cifar100 Leap 52.0 30.5 43.4
Finetuning 59.2 31.5 44.1

Progressive Nets
‡

55.7 42.1 54.6

HAT
‡

62.0 49.8 58.4

No pretraining 54.8 33.1 50.1

Traffic Signs Leap 2.9 0.0 1.2
Finetuning 5.7 0.0 1.7

Progressive Nets
‡

3.6 0.0 4.0

HAT
‡

5.4 0.0 2.3

No pretraining 3.6 0.0 2.4

5.F Experiment Details: Atari 113

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

AirRaid

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Alien

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

UpNDown

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

SpaceInvaders

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

RoadRunner

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

WizardOfWor

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Asteroids

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Gravitar

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Breakout

Figure 5.7: Mean normalized episode scores on Atari games across training

steps. Scores are reported as moving average over 500 episodes. Shaded regions

depict two standard deviations across ten seeds. KungFuMaster, RoadRunner

and Krull have action state spaces that are twice as large as the largest action

state encountered during pretraining. Leap (orange) generally outperforms a

random initialization, except for WizardOfWor, where a random initialization

does better on average due to outlying runs under Leap’s initialization.

5.F Experiment Details: Atari

We use the same network as in Mnih et al. (2013), adopting it to actor-critic

algorithms by estimating both value function and policy through linear layers

connected to the final output of a shared convolutional network. Following

standard practice, we use downsampled 84 × 84 × 3 RGB images as input.

Leap is applied with respect to the convolutional encoder (as final linear layers

vary in size across environments).

We use all environments with an action space of at most 10 as our pretraining

pool, holding out Breakout and SpaceInvaders. During meta training, we

sample a batch of 16 games at random from a pretraining pool of 27 games.

On each game in the batch, a network is initialized using the shared initialization

and trained independently for 5 million steps, accumulating the meta gradient

across games on the fly. Thus, the baseline and Leap differs only with respect

5 Scaling up Meta-Learning On First Principles 114

Table 5.6: Evaluation environment characteristics.
†
Standard Deviation; calcu-

lated on baseline (no pretraining) data.

Environment Action Space Mean Reward
†

St. Dev.
†

Pretraining Env

AirRaid 6 2538 624 Y

UpNDown 6 52417 2797 Y

WizardOfWor 10 2531 182 Y

Breakout 4 338 13 N

SpaceInvaders 6 1065 103 N

Asteroids 14 1760 139 N

Alien 18 1280 182 N

Gravitar 18 329 15 N

RoadRunner 18 29593 2890 N

to the initialization of the convolutional encoder. We trained Leap for 100

steps, equivalent to training 1600 agents for 5 million steps.

The meta learned initialization was evaluated on the held-out games, a random

selection of games seen during pretraining, and a random selection of games

with action spaces larger than 10 (Table 5.6). On each task, we use a batch size

of 32, an unroll length of 5 and update the model parameters with RMSProp

(using n = 10
−4, U = 0.99) with a learning rate of 10

−4
. We set the entropy

cost to 0.01 and clip the absolute value of the rewards to maximum 5.0. We

use a discounting factor of 0.99.

5.F Experiment Details: Atari 115

0 1 2 3 4

2000

4000

6000

AirRaid

0 1 2 3 4

500

1000

1500

2000

2500

Alien

0 1 2 3 4

1250

1500

1750

2000

2250

2500

Asteroids

0 1 2 3 4

1000

2000

3000

4000

5000

WizardOfWor

0 1 2 3 4

500

1000

1500

2000

2500

SpaceInvaders

0 1 2 3 4

0

100

200

300

400

500

Breakout

0 1 2 3 4

0

10000

20000

30000

40000

50000

RoadRunner

0 1 2 3 4

200

300

400

500

Gravitar

Figure 5.8: Mean episode scores on Atari games across training steps for

different runs. Scores are reported as moving average over 500 episodes. Leap

(orange) outperforms a random initialization by being less volatile.

116

6 General-Purpose Meta-Learning

The previous two chapters proposed a method for adaptive parmeterisation

and a geometric perspective on gradient-based meta-learning, respectively. In

this chapter, these two pieces are put together into a general-purpose gradient-

based meta-learner. This work formalises the notion that separate layers in a

network serve different purposes. This form of modular meta-learning embeds

meta-knowledge into a task learner’s hidden representation that serves as a

form of gradient preconditioning.

By preconditioning gradients, learning is projected into a space that is meta-

learned to facilitate learning over a certain class of problems. Meta-learned

hidden layers in a neural network control this space. These meta-learned

layers are equivalent to learning a mapping Ω : P →M from a meta-learned

space P onto the task’s loss surface M. The proposed method maps a task

distribution into a shared geometry P where task solutions are easier to find.

Because the meta-learner layers act on gradients as preconditioning matrices,

this work leverages Riemmanian geometry to derive a meta-objective that

avoids backpropagation through the task adaptation process on first principles.

To the best of our knowledge, this is the only gradient-based meta-learner that

enjoys this property. Appealingly, because meta-knowledge is represented as

hidden layers in a neural network, our proposed method becomes extremely

flexible. It makes very few assumptions on the structure of the task; all that is

requires is a task objective, a meta-objective defined under the task, and a task

learner defined under the meta-learner. It makes no assumption about the type

of task learning (online, offline, continual, etc.) or the length of task adaptation

trajectories—in fact it does not assume the existence of such trajectories. Instead,

it relies on inducing an empirical distribution over parameter space without

imposing restriction on the form of the distribution. This paper demonstrates

that it directly applicable to many forms of learning, including few-shot and

many-shot learning, as well as continual learning and reinforcement learning.

6.1 Introduction 117

Meta-Learning with Warped Gradient Descent

Peer-reviewed publication (Flennerhag et al., 2020a); notational modifications.

Published in International Conference on Learning Representations (Oral). 2020.

Authors: Sebastian Flennerhag, University of Manchester,

Andrei A. Rusu, DeepMind,

Razvan Pascanu, DeepMind,

Francesco Visin, DeepMind,

Hujun Yin, University of Manchester,

Raia Hadsell, DeepMind,

Abstract. Learning an efficient update rule from data that promotes rapid learning
of new tasks from the same distribution remains an open problem in meta-learning.
Typically, previous works have approached this issue either by attempting to train a
neural network that directly produces updates or by attempting to learn better initiali-
sations or scaling factors for a gradient-based update rule. Both of these approaches
pose challenges. On one hand, directly producing an update forgoes a useful inductive
bias and can easily lead to non-converging behaviour. On the other hand, approaches
that try to control a gradient-based update rule typically resort to computing gradients
through the learning process to obtain their meta-gradients, leading to methods that
can not scale beyond few-shot task adaptation. In this work, we propose Warped

Gradient Descent (WarpGrad), a method that intersects these approaches to mitigate
their limitations. WarpGrad meta-learns an efficiently parameterised preconditioning
matrix that facilitates gradient descent across the task distribution. Preconditioning
arises by interleaving non-linear layers, referred to as warp-layers, between the layers
of a task-learner. Warp-layers are meta-learned without backpropagating through the
task training process in a manner similar to methods that learn to directly produce
updates. WarpGrad is computationally efficient, easy to implement, and can scale to
arbitrarily large meta-learning problems. We provide a geometrical interpretation of
the approach and evaluate its effectiveness in a variety of settings, including few-shot,
standard supervised, continual and reinforcement learning.

6.1 Introduction

Learning (how) to learn implies inferring a learning strategy from some set

of past experiences via a meta-learner that a task-learner can leverage when

learning a new task. One approach is to directly parameterise an update

rule via the memory of a recurrent neural network (Andrychowicz et al.,

2016; Ravi & Larochelle, 2017; Li & Malik, 2016; Chen et al., 2017). Such

memory-based methods can, in principle, represent any learning rule by virtue of

6 General-Purpose Meta-Learning 118

being universal function approximators (Cybenko, 1989; Hornik, 1991; Schäfer

& Zimmermann, 2007). They can also scale to long learning processes, but

they lack an inductive bias as to what constitutes a reasonable learning rule.

This renders them hard to train and brittle to generalisation as their parameter

updates have no guarantees of convergence.

An alternative approach defines a gradient-based update rule and meta-learns a

shared initialisation that facilitates task adaptation across a distribution of tasks

(Finn et al., 2017; Nichol et al., 2018; Flennerhag et al., 2019). Such methods are

imbued with a strong inductive bias—gradient descent—but restrict knowledge

transfer to the initialisation. Recent work has shown that it is beneficial to

more directly control gradient descent by meta-learning an approximation of

a parameterised matrix (Li et al., 2017; Lee & Choi, 2018; Park & Oliva, 2019)

that preconditions gradients during task training, similarly to second-order and

Natural Gradient Descent methods (Nocedal & Wright, 2006; Amari & Nagaoka,

2007). To meta-learn preconditioning, these methods backpropagate through

the gradient descent process, limiting them to few-shot learning.

In this paper, we propose a novel framework called Warped Gradient Descent

(WarpGrad),
9
that relies on the inductive bias of gradient-based meta-learners

by defining an update rule that preconditions gradients, but that is meta-

learned using insights from memory-based methods. In particular, we leverage

that gradient preconditioning is defined point-wise in parameter space and

can be seen as a recurrent operator of order 1. We use this insight to define a

trajectory agnostic meta-objective over a joint parameter search space where

knowledge transfer is encoded in gradient preconditioning.

To achieve a scalable and flexible form of preconditioning, we take inspiration

from works that embed preconditioning in task-learners (Desjardins et al.,

2015; Lee & Choi, 2018), but we relax the assumption that task-learners are

feed-forward and replace their linear projection with a generic neural network

ω, referred to as a warp layer. By introducing non-linearity, preconditioning is

rendered data-dependent. This allows WarpGrad to model preconditioning

beyond the block-diagonal structure of prior works and enables it to meta-

learn over arbitrary adaptation processes.

We evaluate WarpGrad empirically in a variety of learning paradigms, span-

ning supervised, continual and reinforcement learning. We show that it

surpasses baseline gradient-based meta-learners on standard few-shot learning

tasks (miniImageNet, tieredImageNet; Vinyals et al., 2016; Ravi & Larochelle,

9
Open-source implementation available at https://github.com/flennerhag/warpgrad.

6.2 Warped Gradient Descent 119

G

� (G)

5 (1)

ω(1)

5 (2)

ω(2)

\

\ (1)

q (1)

\ (2)

q (2)

∇� (G) L(\ ;q)

% (1)∇\ (1)L

�ω(1)

% (2)∇\ (2)L

�ω(2)

\

\
′

\
′′

∇L

%∇LminE\ [� (q)]

q

Task Adaptation Meta-Learning

Task-learners Shared Warp

Figure 6.1: Schematics of WarpGrad. WarpGrad preconditioning is embedded

in task-learners � by interleaving warp-layers (ω(1) ,ω(2)) between each task-

learner’s layers (5 (1) , 5 (2)). WarpGrad achieve preconditioning by modulating

layer activations in the forward pass and gradients in the backward pass by

backpropagating through warp-layers (�ω), which implicitly preconditions

gradients by some matrix (%). Warp parameters (q) are meta-learned over the

joint search space induced by task adaptation (E\ [� (q)]) to form a geometry

that facilitates task learning.

2017; Ren et al., 2018), while scaling beyond few-shot learning to standard

supervised settings on the “multi”-shot Omniglot benchmark (Flennerhag

et al., 2019) and a multi-shot version of tieredImageNet. We further find that

WarpGrad outperforms competing methods in a reinforcement learning setting

where previous gradient-based meta-learners fail (maze navigation with recur-

rent neural networks; Miconi et al., 2019) and can be used to meta-learn an

optimiser that prevents catastrophic forgetting in a continual learning setting.

6.2 Warped Gradient Descent

6.2.1 Gradient-Based Meta-Learning

WarpGrad belongs to the family of optimisation-based meta-learners that pa-

rameterise an update rule \ ← * (\ ; b) with some meta-parameters b. Gradient-

based meta-learners define an update rule by relying on the gradient descent,

* (\ ; b) B \ − U∇L(\) for some objective L and learning rate U. A task is

defined by a training set Dg
train

and a test set Dg
test

, which defines learning

objectives LDg (\) B E(G,~)∼Dg [ℓ (�\ (G), ~)] over the task-learner � for some loss

ℓ. MAML (Finn et al., 2017) meta-learns a shared initialisation \0 by backprop-

6 General-Purpose Meta-Learning 120

agating through steps of gradient descent across a task distribution ? (g),

�MAML(b) B
∑
g∼? (g)

LDg
test

(
\0 − U

 −1∑
:=0

*Dg
train

(\g
:
; b)

)
. (6.1)

Subsequent works on gradient-based meta-learning differ in the parameterisa-

tion of * . Meta-SGD (MSGD; Li & Malik, 2016) learns a vector of learning

rates, Meta-Curvature (MC; Park & Oliva, 2019) defines a block-diagonal pre-

conditioning matrix �, and T-Nets (Lee & Choi, 2018) embed block-diagonal

preconditioning in feed-forward learners via linear projections,

* (\: ;\0) B \: − U∇L(\:) MAML (6.2)

* (\: ;\0, q) B \: − U diag(q)∇ L(\:) MSGD (6.3)

* (\: ;\0, q) B \: − U�(q)∇ L(\:) MC (6.4)

* (\: ;\0, q) B \: − U∇L(\: ;q) T-Nets. (6.5)

These methods optimise meta-parameters b = {\0, q} by backpropagating

through the gradient descent process (Eq. 6.1), which results in a trajectory

dependence in the meta-objective. This limits them to few-shot learning as they

become (1) computationally expensive, (2) susceptible to exploding/vanishing

gradients, and (3) subject to a credit assignment problem (Wu et al., 2018;

Antoniou et al., 2019; Liu et al., 2019).

Our goal is to develop a meta-learner that overcomes all three limitations. To

do so, we depart from the paradigm of backpropagating to the initialisation and

exploit the fact that learning to precondition gradients can be seen as a Markov

Process of order 1 that depends on the state but not the trajectory (Li et al., 2017).

That is, * can be seen as a recurrent operator * : \, q ↦→ \ and if * defines

gradient preconditioning, this takes the form * (\ ;q) B \ − U% (\ ;q)∇ L(\).
Hence, learning q does not require backpropagation through the entire gradient

descent process, just the expected one-step gradient update.

To develop this notion formally, we first establish a general-purpose form of

preconditioning (Section 6.2.2). Based on this, we obtain a canonical meta-

objective from a geometrical point of view (Section 6.2.3), from which we

derive a trajectory-agnostic meta-objective (Section 6.2.4).

6.2 Warped Gradient Descent 121

\0 \0

Figure 6.2: Gradient-based meta-learning. Colours denote different tasks (g),

dashed lines denote backpropagation through the adaptation process, and

solid black lines denote optimiser parameter (q) gradients w.r.t. one step of

task parameter (\) adaptation. Left: A meta-learned initialisation compresses

trajectory information into a single initial point (\0). Middle: MAML-based

optimisers interact with adaptation trajectories at every step and backpropagate

through each interaction. Right: WarpGrad is trajectory agnostic. Task

adaptation defines an empirical distribution ? (g, \) over which WarpGrad

learns a geometry for adaptation by optimising for steepest descent directions.

6.2.2 General-Purpose Preconditioning

A preconditioned gradient descent rule, * (\ ;q) B \ − U% (\ ;q)∇ L(\), defines a

geometry via % . To disentangle the expressive capacity of this geometry from

the expressive capacity of the task-learner � , we take inspiration from T-Nets

that embed linear projections) in feed-forward layers, 5 = f (),G + 1). This
in itself is not sufficient to achieve disentanglement due to linearity in) and

, , but it can be achieved under non-linear preconditioning.

To this end, we relax the assumption that the task-learner is feed-forward

and consider an arbitrary neural network, � = 5 (!) ◦ · · · ◦ 5 (1) . We insert

warp-layers that are universal function approximators parameterised by neural

networks into the task-learner without restricting their form or how they

interact with � . In the simplest case, we interleave warp-layers between layers

of the task-learner to obtain � = ω(!) ◦ 5 (!) ◦ · · · ◦ ω(1) ◦ 5 (1) , but other forms

of interaction can be beneficial (see Appendix 6.A for practical guidelines).

Backpropagation automatically induces gradient preconditioning, as in T-Nets,

but in our case via the Jacobians of the warp-layers:

mL
m\ (8)

= E

∇ℓ) ©«
!−(8+1)∏
9=0

�Gω
(!−9)�G 5

(!−9)ª®¬�Gω(8)�\ 5 (8)
 , (6.6)

where �G and �\ denote the Jacobian with respect to input and parameters,

respectively. In the special case where � is feed-forward and each ω a linear

6 General-Purpose Meta-Learning 122

Pg

Wg

Pg′

Wg′

\ \ ′

W

W ′

ω
ω

∇(
L ◦
ω)
(\)

�
−1∇ L(W)

Figure 6.3: Left: synthetic experiment illustrating how WarpGrad warps gradi-

ents (see Appendix 6.D for full details). Each task 5 ∼ ? (5) defines a distinct

loss surface (W, bottom row). Gradient descent (black) on these surfaces

struggles to find a minimum. WarpGrad meta-learns a warp ω to produce better

update directions (magenta; Section 6.2.4). In doing so, WarpGrad learns a

meta-geometry P where standard gradient descent is well behaved (top row).

Right: gradient descent in P is equivalent to first-order Riemannian descent in

W under a meta-learned Riemann metric (Section 6.2.3).

projection, we obtain an instance of WarpGrad that is akin to T-Nets since

preconditioning is given by �Gω =) . Conversely, by making warp-layers non-

linear, we can induce interdependence between warp-layers, allowing WarpGrad

to model preconditioning beyond the block-diagonal structure imposed by

prior works. Further, this enables a form of task-conditioning by making

Jacobians of warp-layers data dependent. As we have made no assumptions

on the form of the task-learner or warp-layers, WarpGrad methods can act on

any neural network through any form of warping, including recurrence.

We show that increasing the capacity of the meta-learner by defining warp-

layers as Residual Networks (He et al., 2017) improves performance on clas-

sification tasks (Section 6.4.1). We also introduce recurrent warp-layers for

agents in a gradient-based meta-learner that is the first, to the best of our

knowledge, to outperform memory-based meta-learners on a maze navigation

task that requires memory (Section 6.4.3).

Warp-layers imbue WarpGrad with three powerful properties. First, due

to preconditioned gradients, WarpGrad inherits gradient descent properties,

importantly guarantees of convergence. Second, warp-layers form a distributed

representation of preconditioning that disentangles the expressiveness of the

geometry it encodes from the expressive capacity of the task-learner. Third,

warp-layers are meta-learned across tasks and trajectories and can therefore

capture properties of the task-distribution beyond local information. Figure 6.3

illustrates these properties in a synthetic scenario, where we construct a family

6.2 Warped Gradient Descent 123

of tasks 5 : ℝ2 → ℝ (see Appendix 6.D for details) and meta-learn across the

task distribution. WarpGrad learns to produce warped loss surfaces (illustrated

on two tasks g and g ′) that are smoother and more well-behaved than their

respective native loss-surfaces.

6.2.3 The Geometry of Warped Gradient Descent

If the matrix % is invertible, it defines a valid Riemann metric (Amari, 1998)

and therefore enjoys similar convergence guarantees to gradient descent. Thus,

if warp-layers represent a valid (meta-learned) Riemann metric, WarpGrad is

well-behaved. For T-Nets, it is sufficient to require) to be full rank, since

) defines % as a block-diagonal matrix with block entries))) . In contrast,

non-linearity in warp-layers precludes such an explicit identification.

Instead, we must consider the geometry that warp-layers represent. For this,

we need a metric tensor, � , which is a positive-definite, smoothly varying

matrix that measures curvature on a manifoldW. The metric tensor defines

the steepest direction of descent by −�−1∇L (Lee, 2003), hence our goal is to

establish that warp-layers approximate some �−1. Let Ω represent the effect of

warp-layers by a reparameterisation 5 (8) (G;Ω(\ ;q) (8)) = ω(8) (5 (8) (G;\ (8));q) ∀G, 8
that maps from a space P onto the manifoldW with W = Ω(\ ;q). We induce

a metric � on W by push-forward (Figure 6.2):

Δ\ B ∇ (L ◦Ω) (\ ;q) = [�GΩ(\ ;q)])∇L (W) P -space (6.7)

ΔW B �GΩ(\ ;q) Δ\ = � (W ;q)−1∇L(W) W -space, (6.8)

where �−1B [�GΩ] [�GΩ]) . Provided Ω is not degenerate (� is non-singular),

�−1 is positive-definite, hence a valid Riemann metric. While this is the

metric induced onW by warp-layers, it is not the metric used to precondition

gradients since we take gradient steps in P which introduces an error term

(Figure 6.2). We can bound the error by first-order Taylor series expansion to

establish first-order equivalence between the WarpGrad update in P (Eq. 6.7)

and the ideal update in W (Eq. 6.8),

(L ◦Ω) (\ − UΔ\)︸ ︷︷ ︸
P -space

= L(W − UΔW)︸ ︷︷ ︸
W -space

+ O(U2). (6.9)

6 General-Purpose Meta-Learning 124

Consequently, gradient descent under warp-layers (in P-space) is first-order

equivalent to warping the native loss surface under a metric � to facilitate

task adaptation. Warp parameters q control the geometry induced by warping,

and therefore what task-learners converge to. By meta-learning q we can

accumulate information that is conducive to task adaptation but that may not

be available during that process. This suggests that an ideal geometry (in

W-space) should yield preconditioning that points in the direction of steepest

descent, accounting for global information across tasks,

min

q
EL,W∼? (L,W)

[
L

(
W − U � (W ;q)−1∇L(W)

)]
. (6.10)

In contrast to MAML-based approaches (Eq. 6.1), this objective avoids back-

propagation through learning processes. Instead, it defines task learning

abstractly as optimising the expected gradient update over the joint task param-

eter distribution. Hence while preconditioning is locally defined, the expectation

over tasks and parameters is global. This decoupling allows us to scale beyond

few shot-learning and opens up for general-purpose meta-learning.

6.2.4 Meta-Learning Warp Parameters

The canonical objective in Eq. 6.10 describes a meta-objective for learning

a geometry on first principles that we can render into a trajectory-agnostic

update rule for warp-layers. We define a task g = (�g ,Lg
meta

,Lg
task
) by a task-

learner � that is embedded with a shared WarpGrad optimiser, a meta-training

objective Lg
meta

, and a task adaptation objective Lg
task

. We use Lg
task

to adapt

task parameters \ and Lg
meta

to adapt warp parameters q . Note that we allow

meta and task objectives to differ in arbitrary ways, but both are expectations

over some data, as above. In the simplest case, they differ in terms of validation

versus training data, but they may differ in terms of learning paradigm as well,

as we demonstrate in continual learning experiment (Section 6.4.3).

To obtain our meta-objective, we recast the canonical objective (Eq. 6.10) in

terms of \ using first-order equivalence of gradient steps (Eq. 6.9). Next, we

factorise ? (g, \) into ? (\ | g)? (g). Since ? (g) is given, it remains to consider a

sampling strategy for ? (\ | g). For meta-learning of warp-layers, we assume

this distribution is given. We show how to incorporate meta-learning of a prior

? (\0 | g) in Section 6.2.5. While any sampling strategy is valid, in this paper

we exploit that task learning under stochastic gradient descent can be seen as

sampling from an empirical prior ? (\ | g) (Grant et al., 2018); in particular,

each iterate \g
:
can be seen as a sample from ? (\g

:
| \g

:−1, q). Thus, -steps

6.2 Warped Gradient Descent 125

of gradient descent forms a Monte-Carlo chain \g
0
, . . . , \g

and sampling such

chains define an empirical distribution ? (\ | g) around some prior ? (\0 | g),
which we will discuss in Section 6.2.5. The joint distribution ? (g, \) defines
a joint search space across tasks. Meta-learning therefore learns a geometry

over this space with the steepest expected direction of descent. This direction

is however not with respect to the objective that produced the gradient, Lg
task

,

but with respect to Lg
meta

,

!(q) B
∑
g∼? (g)

∑
\g∼? (\ |g)

Lg
meta

(
\g − U∇Lg

task
(\g ;q);q

)
. (6.11)

Decoupling the task gradient operator ∇Lg
task

from the geometry learned by

Lg
meta

lets us infuse global knowledge in warp-layers, a promising avenue

for future research (Metz et al., 2019; Mendonca et al., 2019). For example,

in Section 6.4.3, we meta-learn an update-rule that mitigates catastrophic for-

getting by defining Lg
meta

over current and previous tasks. In contrast to other

gradient-based meta-learners, the WarpGrad meta-objective is an expectation

over gradient update steps sampled from the search space induced by task

adaptation (for example, steps of stochastic gradient descent; Figure 6.2).

It is therefore trajectory agnostic and hence compatible with arbitrary task

learning processes. Because the meta-gradient is independent of the number

of task gradient steps, it avoids vanishing/exploding gradients and the credit

assignment problem by design. It does rely on second-order gradients, a

requirement we can relax by detaching task parameter gradients (∇Lg
task

),

!(q) B
∑
g∼? (g)

∑
\g∼? (\ |g)

Lg
meta

(
sg

[
\g − U∇Lg

task
(\g ;q)

]
;q

)
, (6.12)

where sg is the stop-gradient operator. In contrast to the first-order approxi-

mation of MAML (Finn et al., 2017), which ignores the entire trajectory except

for the final gradient, this approximation retains all gradient terms and only

discards local second-order effects, which are typically dominated by first-order

effect in long parameter trajectories (Flennerhag et al., 2019). Empirically, we

find that our approximation only incurs a minor loss of performance in an

ablation study (Appendix 6.F). Interestingly, this approximation is a form of

multitask learning with respect to q (Li & Hoiem, 2016; Bilen & Vedaldi, 2017;

Rebuffi et al., 2017) that marginalises over task parameters \g .

6 General-Purpose Meta-Learning 126

6.2.5 Integration with Learned Initialisations

WarpGrad is a method for learning warp layer parameters q over a joint

search space defined by ? (g, \). Because WarpGrad takes this distribution as

given, we can integrate WarpGrad with methods that define or learn some

form of “prior” ? (\0 | g) over \g
0
. For instance, (a) Multi-task solution: in

online learning, we can alternate between updating a multi-task solution and

tuning warp parameters. We use this approach in our Reinforcement Learning

experiment (Section 6.4.3); (b) Meta-learned point-estimate: when task adaptation

occurs in batch mode, we can meta-learn a shared initialisation \0. Our few-

shot and supervised learning experiments take this approach (Section 6.4.1);

(c) Meta-learned prior: WarpGrad can be combined with Bayesian methods that

define a full prior (Rusu et al., 2019; Oreshkin et al., 2018; Lacoste et al.,

Algorithm 6.1 WarpGrad: online

meta-training

Require: ? (g): distribution over tasks

Require: U, V, _: hyper-parameters

1: initialise q and ? (\0 | g)
2: while not done do
3: sample mini-batch of tasks T

from ? (g)
4: 6q , 6\

0
← 0

5: for all g ∈ T do
6: \g

0
∼ ? (\0 | g)

7: for all : in 0, . . . , g−1 do
8: \g

:+1 ← \g
:
− U∇Lg

task

(
\g
:
;q

)
9: 6q ← 6q + ∇!(q;\g

:
)

10: 6\
0
← 6\

0
+ ∇� (\0;\

g
0::
)

11: end for
12: end for
13: q ← q − V6q
14: \0 ← \0 − _V6\

0

15: end while

Algorithm 6.2 WarpGrad: offline

meta-training

Require: ? (g): distribution over tasks

Require: U, V, _, [: hyper-parameters

1: initialise q , ? (\0 | g)
2: while not done do
3: initialise B = {Bg }g ,Bg = {}
4: sample mini-batch of tasks T

from ? (g)
5: for all g ∈ T do
6: \g

0
∼ ? (\0 | g)

7: B[g] = [\g
0
]

8: for all : in 0, . . . , g−1 do
9: \g

:+1 ← \g
:
− U∇Lg

task

(
\g
:
;q

)
10: Bg = Bg ∪\g:+1
11: end for
12: end for
13: 8, 6q , 6\

0
← 0

14: for all (g, :) ∈ B do
15: 6q ← 6q + ∇!(q;\g

:
)

16: 6\
0
← 6\

0
+ ∇� (\g

0
;\g

0::
)

17: 8 ← 8 + 1

18: if 8 = [then
19: q ← q − V6q
20: \0 ← \0 − _V6\

0

21: 8, 6q , 6\
0
← 0

22: end if
23: end for
24: end while

6.3 Related Work 127

2018; Kim et al., 2018a). We incorporate such methods by some objective �

(potentially vacuous) over \0 that we optimise jointly with WarpGrad,

J (q, \0) B !(q) + _� (\0), (6.13)

where ! can be substituted for by ! and _ ∈ [0,∞) is a hyper-parameter. We

train the WarpGrad optimiser via stochastic gradient descent and solve Eq. 6.13

by alternating between sampling task parameters from ? (g, \) given the current

parameter values for q and taking meta-gradient steps over these samples to

update q. As such, our method can also be seen as a generalised form of

gradient descent in the form of Mirror Descent with a meta-learned dual space

(Desjardins et al., 2015; Beck & Teboulle, 2003). The details of the sampling

procedure may vary depending on the specifics of the tasks (static, sequential),

the design of the task-learner (feed-forward, recurrent), and the learning

objective (supervised, self-supervised, reinforcement learning). In Algorithm 6.1

we illustrate a simple online algorithm with constant memory and linear

complexity in , assuming the same holds for �. A drawback of this approach

is that it is relatively data inefficient; in Appendix 6.B we detail a more complex

offline training algorithm that stores task parameters in a replay buffer for

mini-batched training of q. The gains of the offline variant can be dramatic:

in our Omniglot experiment (Section 6.4.1), offline meta-training allows us to

update warp parameters 2000 times with each meta-batch, improving final

test accuracy from 76.3% to 84.3% (Appendix 6.F).

6.3 Related Work

Learning to learn, or meta-learning, has previously been explored in a variety

of settings. Early work focused on evolutionary approaches (Schmidhuber,

1987; Bengio et al., 1991; Thrun & Pratt, 1998). Hochreiter et al. (2001)

introduced gradient descent methods to meta-learning, specifically for recurrent

meta-learning algorithms, extended to RL by Wang et al. (2016a) and Duan

et al. (2016). A similar approach was taken by Andrychowicz et al. (2016)

and Ravi & Larochelle (2017) to meta-learn a parameterised update rule in

the form of a Recurrent Neural Network (RNN).

A related separates parameters into “slow” and “fast” weights, where the former

captures meta-information and the latter encapsulates rapid adaptation (Hinton

& Plaut, 1987; Schmidhuber, 1992; Ba et al., 2016). This can be implemented by

embedding a neural network that dynamically adapts the parameters of a main

6 General-Purpose Meta-Learning 128

architecture (Ha et al., 2017). WarpGrad can be seen as learning slow warp-

parameters that precondition adaptation of fast weights. Recent meta-learning

focuses almost exclusively on few-shot learning, where tasks are characterised

by severe data scarcity. In this setting, tasks must be sufficiently similar that

a new task can be learned from a single or handful of examples (Lake et al.,

2015; Vinyals et al., 2016; Snell et al., 2017; Ren et al., 2018).

Several meta-learners have been proposed that directly predict the parameters

of the task-learner (Bertinetto et al., 2016; Munkhdalai et al., 2018; Gidaris &

Komodakis, 2018; Qiao et al., 2018). To scale, such methods typically pretrain

a feature extractor and predict a small subset of the parameters. Closely

related to our work are gradient-based few-shot learning methods that extend

MAML by sharing some subset of parameters between task-learners that is

fixed during task training but meta-learner across tasks, which may reduce

overfitting (Mishra et al., 2018; Lee & Choi, 2018; Munkhdalai et al., 2018) or

induce more robust convergence (Zintgraf et al., 2019). It can also be used to

model latent variables for concept or task inference, which implicitly induce

gradient modulation (Zhou et al., 2018; Oreshkin et al., 2018; Rusu et al., 2019;

Lee et al., 2019a). Our work is also related to gradient-based meta-learning

of a shared initialisation that scales beyond few-shot learning (Nichol et al.,

2018; Flennerhag et al., 2019).

Meta-learned preconditioning is closely related to parallel work on second-

order optimisation methods for high dimensional non-convex loss surfaces

(Nocedal & Wright, 2006; Saxe et al., 2013; Kingma & Ba, 2015; Arora

et al., 2018). In this setting, second-order optimisers typically struggle to

improve upon first-order baselines (Sutskever et al., 2013). As second-order

curvature is typically intractable to compute, such methods resort to low-

rank approximations (Nocedal & Wright, 2006; Martens, 2010; Martens &

Grosse, 2015) and suffer from instability (Byrd et al., 2016). In particular,

Natural Gradient Descent (Amari, 1998) is a method that uses the Fisher

Information Matrix as curvature metric (Amari & Nagaoka, 2007). Several

proposed methods for amortising the cost of estimating the metric (Pascanu

& Bengio, 2014; Martens & Grosse, 2015; Desjardins et al., 2015).

As noted by Desjardins et al. (2015), expressing preconditioning through

interleaved projections can be seen as a form of Mirror Descent (Beck & Teboulle,

2003). WarpGrad offers a new perspective on gradient preconditioning by

introducing a generic form of model-embedded preconditioning that exploits

global information beyond the task at hand.

6.4 Experiments 129

6.4 Experiments

We evaluate WarpGrad in a set of experiments designed to answer three

questions: (1) do WarpGrad methods retain the inductive bias of MAML-

based few-shot learners? (2) Can WarpGrad methods scale to problems

beyond the reach of such methods? (3) Can WarpGrad generalise to complex

meta-learning problems?

6.4.1 Few-Shot Learning

For few-shot learning, we test whether WarpGrad retains the inductive bias

of gradient-based meta-learners while avoiding backpropagation through the

gradient descent process. To isolate the effect of the WarpGrad objective, we

use linear warp-layers that we train using online meta-training (Algorithm 6.1)

to make WarpGrad as close to T-Nets as possible. For a fair comparison, we

meta-learn the initialisation using MAML (Warp-MAML) with � (\0, q) B !(q)+
_�MAML(\0). We evaluate the importance of meta-learning the initialisation in

Appendix 6.G and find that WarpGrad achieves similar performance under

random task parameter initialisation.

All task-learners use a convolutional architecture that stacks 4 blocks made

up of a 3 × 3 convolution, max-pooling, batch-norm, and ReLU activation. We

define Warp-MAML by inserting warp-layers in the form of 3 × 3 convolutions

after each block in the baseline task-learner. All baselines are tuned with

identical and independent hyper-parameter searches (including filter sizes—

full experimental settings in Appendix 6.H), and we report best results from

our experiments or the literature. Warp-MAML outperforms all baselines (Ta-

ble 6.1), improving 1- and 5-shot accuracy by 3.6 and 5.5 percentage points

on miniImageNet (Vinyals et al., 2016; Ravi & Larochelle, 2017) and by 5.2

and 3.8 percentage points on tieredImageNet (Ren et al., 2018), which indicates

that WarpGrad retains the inductive bias of MAML-based meta-learners.

6.4.2 Multi-Shot Learning

Next, we evaluate whether WarpGrad can scale beyond few-shot adaptation on

similar supervised problems. We propose a new protocol for tieredImageNet that

increases the number of adaptation steps to 640 and use 6 convolutional blocks

in task-learners, which are otherwise defined as above. Since MAML-based

approaches cannot backpropagate through 640 adaptation steps for models

of this size, we evaluate WarpGrad against two gradient-based meta-learners

that meta-learn an initialisation without such backpropagation, Reptile (Nichol

6 General-Purpose Meta-Learning 130

Table 6.1: Mean test accuracy after task adaptation on held out evaluation tasks.

†
Multi-headed.

‡
No meta-training; see Appendix 6.E and Appendix 6.H.

miniImageNet

5-way 1-shot 5-way 5-shot

Reptile 50.0 ± 0.3 66.0 ± 0.6

Meta-SGD 50.5 ± 1.9 64.0 ± 0.9

(M)T-Net 51.7 ± 1.8 −
CAVIA (512) 51.8 ± 0.7 65.9 ± 0.6

MAML 48.7 ± 1.8 63.2 ± 0.9

Warp-MAML 52.3 ± 0.8 68.4 ± 0.6

tieredImageNet

5-way 1-shot 5-way 5-shot

MAML 51.7 ± 1.8 70.3 ± 1.8

Warp-MAML 57.2 ± 0.9 74.1 ± 0.7

Multi-Shot
tieredImageNet Omniglot

10-way 640-shot 20-way 100-shot

SGD
‡

58.1 ± 1.5 51.0

KFAC
‡ − 56.0

Finetuning
† − 76.4 ± 2.2

Reptile 76.52 ± 2.1 70.8 ± 1.9

Leap 73.9 ± 2.2 75.5 ± 2.6

Warp-Leap 80.4 ± 1.6 83.6 ± 1.9

et al., 2018) and Leap (Flennerhag et al., 2019), and we define a Warp-Leap

meta-learner by � (\0, q) B !(q) + _�Leap(\0). Leap is an attractive complement

as it minimises the expected gradient descent trajectory length across tasks.

Under WarpGrad, this becomes a joint search for a geometry in which task

adaptation defines geodesics (shortest paths, see Appendix 6.C for details).

While Reptile outperforms Leap by 2.6 percentage points on this benchmark,

Warp-Leap surpasses both, with a margin of 3.88 to Reptile (Table 6.1).

We further evaluate Warp-Leap on the multi-shot Omniglot (Lake et al.,

2011) protocol proposed by Flennerhag et al. (2019), where each of the

50 alphabets is a 20-way classification task. Task adaptation involves 100

gradient steps on random samples that are preprocessed by random affine

transformations. We report results for Warp-Leap under offline meta-training

(Algorithm 6.2), which updates warp parameters 2000 times per meta step (see

6.4 Experiments 131

1 5 10 15 20 25
Number of tasks in meta-training set

0.4

0.5

0.6

0.7

0.8
T

es
t

ac
cu

ra
cy

on
h

el
d

-o
u

t
ta

sk
s

Warp-Leap Leap Reptile FT† SGD‡ KFAC‡

0 20000 40000 60000 80000 100000

Number of Episodes

0

25

50

75

100

125

150

175

R
ew

ar
d

Warp-RNN Hebb-RNN† Hebb-RNN‡ RNN

Figure 6.4: Left: Omniglot test accuracies on held-out tasks after meta-training

on a varying number of tasks. Shading represents standard deviation across 10

independent runs. We compare Warp-Leap, Leap, and Reptile, multi-headed

finetuning, as well as SGD and KFAC which used random initialisation but

with 4x larger batch size and 10x larger learning rate. Right: On a RL maze

navigation task, mean cumulative return is shown. Shading represents inter-

quartile ranges across 10 independent runs.
†
Simple modulation and

‡
retroactive

modulation are used (Miconi et al., 2019).

Appendix 6.E for experimental details). Warp-Leap enjoys similar performance

on this task as well, improving over Leap and Reptile by 8.1 and 12.8 points

respectively (Table 6.1). We also perform an extensive ablation study varying

the number of tasks in the meta-training set. Except for the case of a single task,

Warp-Leap substantially outperforms all baselines (Figure 6.4), achieving a

higher rate of convergence and reducing the final test error from ~30% to ~15%.

Non-linear warps, which go beyond block-diagonal preconditioning, reach ~11%

test error (refer to Appendix 6.F and Table 6.2 for the full results). Finally, we

find that WarpGrad methods behave distinctly different from Natural Gradient

Descent methods in an ablation study (Appendix 6.G). It reduces final test error

from ~42% to ~19%, controlling for initialisation, while its preconditioning

matrices differ from what the literature suggests (Desjardins et al., 2015).

6.4.3 Complex Meta-Learning

(c.1) Reinforcement Learning To illustrate how WarpGrad may be used

both with recurrent neural networks and in meta-reinforcement learning, we

evaluate it in a maze navigation task proposed by Miconi et al. (2018). The

environment is a fixed maze and a task is defined by randomly choosing a

goal location. The agent’s objective is to find the location as many times as

possible, being teleported to a random location each time it finds it.

We use advantage actor-critic with a basic recurrent neural network (Wang et al.,

2016a) as the task-learner, and we design a Warp-RNN as a HyperNetwork (Ha

6 General-Purpose Meta-Learning 132

Figure 6.5: Continual learning experiment. Average log-loss over 100 randomly

sampled tasks, each comprised of 5 sub-tasks. Left: learned sequentially as

seen during meta-training. Right: learned in random order [sub-task 1, 3, 4, 2,

0].

et al., 2017), specifically, an adaptive LSTM (Flennerhag et al., 2018). We use

a meta-LSTM that is fixed during task training to modulate the weights of the

RNN that learns on each task (see Appendix 6.I for details), which in turn is

trained on mini-batches of 30 episodes for 200 000 steps. We accumulate the

gradient of fixed warp-parameters continually (Algorithm 6.3, Appendix 6.B)

at each task parameter update. Warp parameters are updated on every 30
th

step on task parameters (we control for meta-LSTM capacity in Appendix 6.I).

We compare against Learning to Reinforcement Learn (Wang et al., 2016a)

and Hebbian meta-learning (Miconi et al., 2018, 2019). Notably, linear warps

(T-Nets) do worse than the baseline RNN on this task while the Warp-RNN

converges to a mean cumulative reward of ~160 in 60 000 episodes, compared

to baselines that reach at most a mean cumulative reward of ~125 after 100

000 episodes (Figure 6.4), reaching ~150 after 200 000 episodes (6.I).

(c.2) Continual Learning We test if WarpGrad can prevent catastrophic for-

getting (French, 1999) in a continual learning scenario. To this end, we design

a continual learning version of the sine regression meta-learning experiment

in Finn et al. (2017) by splitting the input interval [−5, 5] ⊂ ℝ into 5 consecu-

tive sub-tasks (an alternative protocol was recently proposed independently

by Javed & White, 2019). Each sub-task is a regression problem with the

target being a mixture of two random sine waves.

We train 4-layer feed-forward task-learner with interleaved warp-layers in-

crementally on one sub-task at a time (see Appendix 6.J for details). To

isolate the behaviour of WarpGrad parameters, we use a fixed random initiali-

sation for each task sequence. Warp parameters are meta-learned to prevent

catastrophic forgetting by defining Lg
meta

to be the average task loss over

current and previous sub-tasks, for each sub-task in a task sequence. This

forces warp-parameters to disentangle the adaptation process of current and

6.5 Conclusion 133

previous sub-tasks. We train on each sub-task for 20 steps, for a total of

100 task adaptation steps.

We evaluate WarpGrad on 100 random tasks and find that it learns new sub-

tasks well, with mean losses on an order of magnitude 10
−3
. When switching

sub-task, performance immediately deteriorates to ~10
−2

but is stable for the

remainder of training (Figure 6.5). Our results indicate that WarpGrad can

be an effective mechanism against catastrophic forgetting, a promising avenue

for further research. For detailed results, see Appendix 6.J.

6.5 Conclusion

We propose WarpGrad, a novel meta-learner that combines the expressive

capacity and flexibility of memory-based meta-learners with the inductive bias of

gradient-based meta-learners. WarpGrad meta-learns to precondition gradients

during task adaptation without backpropagating through the adaptation process

and we find empirically that it retains the inductive bias of MAML-based few-

shot learners while being able to scale to complex problems and architectures.

Further, by expressing preconditioning through warp-layers that are universal

function approximators, WarpGrad can express geometries beyond the block-

diagonal structure of prior works.

WarpGrad provides a principled framework for general-purpose meta-learning

that integrates learning paradigms, such as continual learning, an exciting

avenue for future research. We introduce novel means for preconditioning,

for instance with residual and recurrent warp-layers. Understanding how

WarpGrad manifolds relate to second-order optimisation methods will further

our understanding of gradient-based meta-learning and aid us in designing

warp-layers with stronger inductive bias.

In their current form, WarpGrad share some of the limitations of many popular

meta-learning approaches. While WarpGrad avoids backpropagating through

the task training process, as in Warp-Leap, the WarpGrad objective samples

from parameter trajectories and has therefore linear computational complexity

in the number of adaptation steps, currently an unresolved limitation of

gradient-based meta-learning. Algorithm 6.2 hints at exciting possibilities

for overcoming this limitation.

134

6 Appendix

6.A WarpGrad Design Principles for Neural Nets

WarpGrad is a model-embedded meta-learned optimiser that allows for sev-

eral implementation strategies. To embed warp-layers given a task-learner

architecture, we may either insert new warp-layers in the given architecture

or designate some layers as warp-layers and some as task layers. We found

that WarpGrad can both be used in a high-capacity mode, where task-learners

are relatively weak to avoid overfitting, as well as in a low-capacity mode

where task-learners are powerful and warp-layers are relatively weak. The best

approach depends on the problem at hand. We highlight three approaches to

designing WarpGrad optimisers, starting from a given architecture:

(a) Model partitioning. Given a desired architecture, designate some operations

as task-adaptable and the rest as warp-layers. Task layers do not have

to interleave exactly with warp-layers as gradient warping arises both

through the forward pass and through backpropagation. This was how we

approached the tieredImageNet and miniImageNet experiments.

(b) Model augmentation. Given a model, designate all layers as task-adaptable

and interleave warp-layers. Warp-layers can be relatively weak as backprop-

agation through non-linear activations ensures expressive gradient warping.

This was our approach to the Omniglot experiment; our main architecture

interleaves linear warp-layers in a standard architecture.

(c) Information compression. Given a model, designate all layers as warp

and interleave weak task layers. In this scenario, task-learners are prone

to overfitting. Pushing capacity into the warp allows it to encode general

information the task-learner can draw on during task adaptation. This

approach is similar to approaches in transfer and meta-learning that restrict

the number of free parameters during task training (Rebuffi et al., 2017;

Lee & Choi, 2018; Zintgraf et al., 2019).

6.B WarpGrad Meta-Training Algorithms 135

G

warp

task

conv block

conv

~

(a) Warp-ConvNet

G

conv block

conv

BN

⊕

BN

~

(b) Warp-ResNet

G ℎ I

LSTM

LSTM

ℎ

linear

~

(c) Warp-LSTM

G 2 ℎ

� �

linear linear

� �

�

ℎ

linear

~

(d) Warp-HyperNet

Figure 6.6: Illustration of possible WarpGrad architectures. Orange represents

task layers and blue represents warp-layers. ⊕ denotes residual connections

and � any form of gating mechanism. We can obtain warped architectures

by interleaving task- and warp-layers (a, c) or by designating some layers in

standard architectures as task-adaptable and some as warp-layers (b, d).

Note that in either case, once warp-layers have been chosen, standard back-

propagation automatically warps gradients for us. Thus, WarpGrad is fully

compatible with any architecture, for instance, Residual Neural Networks (He

et al., 2016) or LSTMs. For convolutional neural networks, we may use any

form of convolution, learned normalization (e.g. Ioffe & Szegedy, 2015), or

adaptor module (e.g. Rebuffi et al., 2017; Perez et al., 2018) to design task and

warp-layers. For recurrent networks, we can use stacked LSTMs to interleave

warped layers, as well as any type of HyperNetwork architecture (e.g. Ha et al.,

2017; Suarez, 2017; Flennerhag et al., 2018) or partitioning of fast and slow

weights (e.g. Mujika et al., 2017). Figure 6.6 illustrates this process.

6.B WarpGrad Meta-Training Algorithms

In this Section (Figure 6.7), we provide the variants of WarpGrad training al-

gorithms used in this paper. Algorithm 6.1 describes a simple online algorithm,

which accumulates meta-gradients online during task adaptation. This algo-

rithm has constant memory and scales linearly in the length of task trajectories.

While simple, it may not make the most efficient use of collected data.

6 General-Purpose Meta-Learning 136

Figure 6.7: WarpGrad algorithms. In Algorithm 6.1, meta-training occurs

online in tandem with task adaptation; Algorithm 6.2 relies on using a replay

buffer; Algorithm 6.3 outlines meta-training for meta-continual learning.

Algorithm 6.1 Online meta-training

Require: ? (g): distribution over tasks

Require: U, V, _: hyper-parameters

1: initialise q and \0

2: while not done do
3: Sample mini-batch of tasks B

from ? (g)
4: 6q , 6\

0
← 0

5: for all g ∈ B do
6: \g

0
← \0

7: for all : in 0, . . . , g−1 do
8: \g

:+1 ← \g
:
− U∇Lg

task

(
\g
:
;q

)
9: 6q ← 6q + ∇!(q;\g

:
)

10: 6\
0
← 6\

0
+ ∇� (\g

0
;\g

0::
)

11: end for
12: end for
13: q ← q − V6q
14: \0 ← \0 − _V6\

0

15: end while

Algorithm 6.3 Continual meta-

training

Require: ? (g): distribution over tasks

Require: U, V, _, [: hyper-parameters

1: initialise q and \

2: 8, 6q , 6\ ← 0

3: while not done do
4: Sample mini-batch of tasks B

from ? (g)
5: for all g ∈ B do
6: 6q ← 6q + ∇!(q;\)
7: 6\ ← 6\ + ∇� (\ ;q)
8: end for
9: \ ← \ − _V6\
10: 6\ , 8 ← 0, 8 + 1

11: if 8 = [then
12: q ← q − V6q
13: 8, 6\ ← 0

14: end if
15: end while

Algorithm 6.2 Offline meta-training

Require: ? (g): distribution over tasks

Require: U, V, _, [: hyper-parameters

1: initialise q and \0

2: while not done do
3: Sample mini-batch of tasks B

from ? (g)
4: T ← {T g }g ∈B, T g ← {\0}
5: for all g ∈ B do
6: \g

0
← \0

7: for all : in 0, . . . , g−1 do
8: \g

:+1 ← \g
:
− U∇Lg

task

(
\g
:
;q

)
9: T g ← T g ∪\g:+1
10: end for
11: end for
12: 8, 6q , 6\

0
← 0

13: while T not empty do
14: sample g, : without replace-

ment

15: 6q ← 6q + ∇!(q;\g
:
)

16: 6\
0
← 6\

0
+ ∇� (\g

0
;\g

0::
)

17: 8 ← 8 + 1

18: if 8 = [then
19: q ← q − V6q
20: \0 ← \0 − _V6\

0

21: 8, 6q , 6\
0
← 0

22: end if
23: end while
24: end while

6.C WarpGrad Optimisers 137

In Algorithm 6.2, we describe an offline meta-training algorithm. This algo-

rithm is similar to Algorithm 6.1 in many respects, but differs in that we do not

compute meta-gradients online during task adaptation. Instead, we accumulate

them into a replay buffer of sampled task parameterisations.

This buffer is a Monte-Carlo sample of the expectation in the meta objec-

tive (Eq. 6.13) that can be thought of as a dataset in its own right. Hence,

we can apply standard mini-batching with respect to the buffer and perform

mini-batch gradient descent on warp parameters. This allows us to update

warp parameters several times for a given sample of task parameter trajectories,

which can greatly improve data efficiency. In our Omniglot experiment, we

found offline meta-training to converge faster: in fact, a mini-batch size of 1

(i.e. [= 1 in Algorithm 6.2 converges rapidly without any instability.

Finally, in Algorithm 6.3, we present a continual meta-training process where

meta-training occurs throughout a stream of learning experiences. Here, � rep-

resents a multi-task objective, such as the average task loss, �multi =
∑
g∼? (g) Lgtask.

Meta-learning arises by collecting experiences continuously (across different

tasks) and using these to accumulate the meta-gradient online. Warp parame-

ters are updated intermittently with the accumulated meta-gradient. We use

this algorithm in our maze navigation experiment, where task adaptation is

internalised within the RNN task-learner.

6.C WarpGrad Optimisers

In this Section, we detail WarpGrad methods used in our experiments.

Warp-MAML We use this model for few-shot learning (Section 6.4.1), under

with the full warp-objective in Eq. 6.11 and the MAML objective (Eq. 6.1),

JWarp-MAML B !(q) + _�MAML(\0), (6.14)

where �MAML
is the original MAML (Eq. 6.2). In our experiments, we trained

Warp-MAML using the online training algorithm (Algorithm 6.1).

Warp-Leap We use this model for multi-shot meta-learning. It is defined

by applying Leap (Flennerhag et al., 2019) to \0 (Eq. 6.16),

JWarp-Leap B !(q) + _�Leap(\0), (6.15)

6 General-Purpose Meta-Learning 138

where the Leap objective is defined by minimising the expected cumulative

chordal distance,

�Leap(\0) B
∑
g∼? (g)

 g∑
:=1

sg

[
og
:

]
− og

:−1

2
, og

:
B

[
\g
:
;Lg

task

(
\g
:
;q

)]
. (6.16)

Note that the Leap meta-gradient makes a first-order approximation to avoid

backpropagating through the adaptation process. It is given by

∇�Leap(\0) ≈ −
∑
g∼? (g)

 g∑
:=1

ΔLg
task

(
\g
:
;q

)
∇Lg

task

(
\g
:−1;q

)
+ Δ\g

:og
:
− og

:−1

2

, (6.17)

where ΔLg
task

(
\g
:
;q

)
B Lg

task

(
\g
:
;q

)
− Lg

task

(
\g
:−1;q

)
and Δ\g

:
B \g

:
− \g

:−1. In

our experiments, we train Warp-Leap using Algorithm 6.1 in the multi-shot

tieredImageNet experiment and Algorithm 6.2 in the Omniglot experiment. We

perform an ablation study for training algorithms, comparing exact (Eq. 6.11)

versus approximate (Eq. 6.12) meta-objectives, and several implementations

of the warp-layers on Omniglot in Appendix 6.F.

Warp-RNN For our Reinforcement Learning experiment, we define a Warp-

Grad optimiser by meta-learning an LSTM that modulates the weights of the

task-learner (see Appendix 6.I for details). For this algorithm, we face a contin-

uous stream of experiences (episodes) that we meta-learn using our continual

meta-training algorithm (Algorithm 6.3). In our experiment, both Lg
task

and

Lg
meta

are the advantage actor-critic objective (Wang et al., 2016a); � is com-

puted on one batch of 30 episodes, whereas ! is accumulated over [= 30 such

batches, for a total of 900 episodes. As each episode involves 300 steps in the

environment, we cannot apply the exact meta objective, but use the approximate

meta objective (Eq. 6.12). Specifically, let �g = {B0, 01, A1, B1, . . . , B) , 0) , A) , B)+1} de-
note an episode on task g , where B denotes state, 0 action, and A instantaneous re-

ward. Denote a mini-batch of randomly sampled task episodes by E = {�g }g∼? (g)
and an ordered set of : consecutive mini-batches by E: = {E:−8}:−18=0

. Then

!(q;E:) = 1

=

∑
E8 ∈E:

∑
�g
8,9
∈E8

Lg
meta
(q;\, �g8, 9) (6.18)

6.C WarpGrad Optimisers 139

and

�multi(\ ; E:) =
1

=′

∑
�g
:,9
∈E:

Lg
task
(\ ;q, �g

:,9
), (6.19)

where =, =′ are normalising constants. We define the Warp-RNN objective

JWarp-RNN B

!(q; E:) + _�multi(\ ; E:) if : = [

_�multi(\ ; E:) otherwise.
(6.20)

WarpGrad for Continual Learning For this experiment, we focus on meta-

learning warp-parameters. Hence, the initialisation for each task sequence is

a fixed random initialisation, (i.e. _� (\0) = 0). For the warp meta-objective,

we take expectations over # task sequences, where each task sequence is a

sequence of) = 5 sub-tasks that the task-learner observes one at a time; thus

while the task loss is defined over the current sub-task, the meta-loss averages

of the current and all prior sub-tasks, for each sub-task in the sequence. See

Appendix 6.J for detailed definitions.

Importantly, because WarpGrad defines task adaptation abstractly by a prob-

ability distribution, we can readily implement a continual learning objective

by modifying the joint task parameter distribution ? (g, \) that we use in the

meta-objective (Eq. 6.11). A task defines a sequence of sub-tasks over which

we generate parameter trajectories)g . Thus, the only difference from multi-

task meta-learning is that parameter trajectories are not generated under a

fixed task, but arise as a function of the continual learning algorithm used

for adaptation. We define the conditional distribution ? (\ | g) as before by

sampling sub-task parameters \gC from a mini-batch of such task trajectories,

keeping track of which sub-task C it belongs to and which sub-tasks came

before it in the given task sequence g . The meta-objective is constructed,

for any sub-task parameterisation \gC , as Lg
meta
(\gC) = 1

C

∑C
B=1
Lg

task
(\gB ,DB ;q),

where DB is data from sub-task B (Appendix 6.J). The meta-objective is an

expectation over task parameterisations,

!CL(q) B
∑
g∼? (g)

)∑
C=1

∑
\gC ∼? (\ |gC)

Lg
meta
(\gC ;q) . (6.21)

6 General-Purpose Meta-Learning 140

6.D Synthetic Experiment

To build intuition for what it means to warp space, we construct a simple 2-D

problem over loss surfaces. A learner is faced with the task of minimising

an objective function of the form

5 g (G1, G2) = 6g1 (G1) exp(6g
2
(G2)) − 6g

3
(G1) exp(6g

4
(G1, G2)) − 6g

5
exp(6g

6
(G1)),

where each function 5 g is defined by scale and rotation functions 6g that are

randomly sampled from a predefined distribution. Specifically, each task is

defined by the objective function

5 g (G1, G2) = 1g1 (0
g
1
− G1)2 exp(−G2

1
− (G2 + 0g

2
)2)

− 1g
2
(G1/Bg − G3

1
− G5

2
) exp(−G2

1
− G2

2
)

− 1g
3
exp(−(G1 + 0g

3
)2 − G2

1
)),

(6.22)

where each 0, 1 and B are randomly sampled parameters from

Bg ∼ Cat(1, 2, . . . , 9, 10)
0g8 ∼ Cat(−1, 0, 1)
1g8 ∼ Cat(−5,−4, . . . , 4, 5).

(6.23)

The task is to minimise the given objective from a randomly sampled ini-

tialisation, G {8=1,2} ∼ * (−3, 3). During meta-training, we train on a task for

100 steps using a learning rate of 0.1. Each task has a unique loss-surface

that the learner traverses from the randomly sampled initialisation. While

each loss-surface is unique, they share an underlying structure. Thus, by

meta-learning to warp loss surfaces across the task distribution, we expect

WarpGrad to learn a warped surface that is close to invariant to spurious

descent directions. In particular, WarpGrad should produce a smooth warped

space that is quasi-convex for any given task to ensure that the task-learner

finds a minimum as fast as possible regardless of initialisation.

To visualise the geometry, we use an explicit warp Ω defined by a 2-layer

feed-forward network with a hidden-state size of 30 and tanh non-linearities.

We train warp parameters for 100 meta-training steps; in each meta-step

we sample a new task surface and a mini-batch of 10 random initialisations

that we train separately. We train to convergence and accumulate the warp

meta-gradient online (Algorithm 6.1). We evaluate against gradient descent

on randomly sampled loss surfaces (Figure 6.8). Both optimisers start from

the same initialisation, chosen such that standard gradient descent struggles;

6.E Omniglot 141

Figure 6.8: Example trajectories on three task loss surfaces. We start Gradient

Descent (black) and WarpGrad (magenta) from the same initialisation; while

SGD struggles with the curvature, the WarpGrad optimiser has learned a warp

such that gradient descent in the representation space (top) leads to rapid

convergence in model parameter space (bottom).

we expect the WarpGrad optimisers to learn a geometry that is robust to the

initialisation (top row). This is indeed what we find; the geometry learned

by WarpGrad smoothly warps the native loss surface into a well-behaved space

where gradient descent converges to a local minimum.

6.E Omniglot

We follow the protocol of Flennerhag et al. (2019), including the choice

of hyper-parameters unless otherwise noted. In this setup, each of the 50

alphabets that comprise the dataset constitutes a distinct task. Each task is

treated as a 20-way classification problem. Four alphabets have fewer than

20 characters in the alphabet and are discarded, leaving us with 46 alphabets

in total. 10 alphabets are held-out for final meta-testing; which alphabets are

held out depend on the seed to account for variations across alphabets; we

train and evaluate all baselines on 10 seeds. For each character in an alphabet,

there are 20 raw samples. Of these, 5 are held out for final evaluation on

the task while the remainder is used to construct a training set. Raw samples

are pre-processed by random affine transformations in the form of (a) scaling

between [0.8, 1.2], (b) rotation [0, 360], and (c) cropping height and width

by a factor of [−0.2, 0.2] in each dimension. This ensures tasks are too hard

for few-shot learning. During task adaptation, mini-batches are sampled at

random without ensuring class-balance (in contrast to few-shot classification

protocols (Vinyals et al., 2016)). Note that benchmarks under this protocol

are not compatible with few-shot learning benchmarks.

We use the same convolutional neural network architecture and hyper-parameters

6 General-Purpose Meta-Learning 142

Table 6.2: Mean test error after 100 training steps on held out evaluation tasks.

†
Multi-headed.

‡
No meta-training, but 10x larger learning rates. # refers to

number of meta-training tasks.

Warp-Leap Leap Reptile FT
†

MAML KFAC
‡

SGD
‡

#

1 49.5 ± 7.8 37.6 ± 4.8 40.4 ± 4.0 53.8 ± 5.0 40.0 ± 2.6 56.0 51.0

3 68.8 ± 2.8 53.4 ± 3.1 53.1 ± 4.2 64.6 ± 3.3 48.6 ± 2.5 56.0 51.0

5 75.0 ± 3.6 59.5 ± 3.7 58.3 ± 3.3 67.7 ± 2.8 51.6 ± 3.8 56.0 51.0

10 81.2 ± 2.4 67.4 ± 2.4 65.0 ± 2.1 71.3 ± 2.0 54.1 ± 2.8 56.0 51.0

15 82.7 ± 3.3 70.0 ± 2.4 66.6 ± 2.9 73.5 ± 2.4 54.8 ± 3.4 56.0 51.0

20 82.0 ± 2.6 73.3 ± 2.3 69.4 ± 3.4 75.4 ± 3.2 56.6 ± 2.0 56.0 51.0

25 83.8 ± 1.9 74.8 ± 2.7 70.8 ± 1.9 76.4 ± 2.2 56.7 ± 2.1 56.0 51.0

as in Flennerhag et al. (2019). This learner stacks a convolutional block com-

prised of a 3 × 3 convolution with 64 filters, followed by 2 × 2 max-pooling,

batch-normalisation, and ReLU activation, four times. All images are down-

sampled to 28 × 28, resulting in a 1 × 1 × 64 feature map that is passed on to a

final linear layer. We create a Warp Leap meta-learner that inserts warp-layers

between each convolutional block, , ◦ ω(4) ◦ 5 (4) ◦ · · · ◦ ω(1) ◦ 5 (1) , where each

5 (8) is defined as above. In our main experiment, each ω(8) is simply a 3 × 3

convolutional layer with zero padding; in Appendix 6.F we consider both

simpler and more sophisticated versions. We find that relatively simple warp-

layers do quite well. However, adding capacity does improve generalisation

performance. We meta-learn the initialisation of task parameters using the

Leap objective (Eq. 6.16), detailed in Appendix 6.C.

Both Lg
meta

and Lg
task

are defined as the negative log-likelihood loss; importantly,

we evaluate them on different batches of task data to ensure warp-layers

encourage generalisation. We found no additional benefit in this experiment

from using held-out data to evaluate Lg
meta

. We use the offline meta-training

algorithm (Appendix 6.B, Algorithm 6.2); during meta-training, we sample

mini-batches of 20 tasks and train task-learners for 100 steps to collect 2000

task parameterisations into a replay buffer. Task-learners share a common

initialisation and warp parameters that are held fixed during task adaptation.

Once collected, we iterate over the buffer by randomly sampling mini-batches of

task parameterisations without replacement. Unless otherwise noted, we used

a batch size of [= 1. For each mini-batch, we update q by applying gradient

descent under the canonical meta-objective (Eq. 6.11), where we evaluate

Lg
meta

on a randomly sampled mini-batch of data from the corresponding task.

Consequently, for each meta-batch, we take (up to) 2000 meta-gradient steps

6.F Ablation Study: Layers, Objectives, Algorithms 143

on warp parameters q. This form of mini-batching causes the meta-training

loop to converge much faster and induces no discernible instability.

We compare Warp-Leap against no meta-learning with SGD or KFAC (Martens

& Grosse, 2015). We also benchmark against baselines provided in Flennerhag

et al. (2019); Leap, Reptile (Nichol et al., 2018), MAML, and multi-headed

fine-tuning. All learners benefit substantially from large batch sizes as this

enables higher learning rates. To render no-pretraining a competitive option

within a fair computational budget, we allow SGD and KFAC to use 4x larger

batch sizes, enabling 10x larger learning rates.

Table 6.3: Ablation study on WarpGrad hyper-parameters. Mean test error

after 100 training steps on held out evaluation tasks. Mean and standard

deviation over 4 independent runs. Offline refers to offline meta-training (Ap-

pendix 6.B), online to online meta-training Algorithm 6.1; full denotes Eq. 6.11

and approx denotes Eq. 6.12; full, U denotes full with a meta-learned U; †Batch
Normalization (Ioffe & Szegedy, 2015);

‡
equivalent to FiLM layers (Perez

et al., 2018);
§
Residual connection (He et al., 2016), when combined with BN,

similar to the Residual Adaptor architecture (Rebuffi et al., 2017);
¶
FiLM task

embeddings.

Architecture Algorithm Objective Accuracy

None (Leap) Online None 74.8 ± 2.7

3 × 3 conv (default) Offline full 84.4 ± 1.7

3 × 3 conv Offline approx 83.1 ± 2.7

3 × 3 conv Online full 76.3 ± 2.1

3 × 3 conv Offline full, U 83.1 ± 3.3

Scaling
‡

Offline full 77.5 ± 1.8

1 × 1 conv Offline full 79.4 ± 2.2

3 × 3 conv + ReLU Offline full 83.4 ± 1.6

3 × 3 conv + BN
†

Offline full 84.7 ± 1.7

3 × 3 conv + BN
†
+ ReLU Offline full 85.0 ± 0.9

3 × 3 conv + BN
†
+ Res

§ + ReLU Offline full 86.3 ± 1.1

2-layer 3 × 3 conv + BN
†
+ Res

§
Offline full 88.0 ± 1.0

2-layer 3 × 3 conv + BN
†
+ Res

§ + TA
¶

Offline full 88.1 ± 1.0

6.F Ablation Study: Layers, Objectives, Algorithms

WarpGrad provides a principled approach for model-informed meta-learning

and offers several degrees of freedom. To evaluate these design choices, we

conduct an ablation study on Warp-Leap where we vary the design of warp-

layers as well as meta-training approaches (Table 6.3). For the ablation study,

we fixed the number of pretraining tasks to 25 and report final test accuracy

6 General-Purpose Meta-Learning 144

over 4 independent runs. All ablations use the same hyper-parameters, except

for online meta-training which uses a learning rate of 0.001.

First, we vary meta-training by (a) using the approximate objective (Eq. 6.12),

(b) using online meta-training (Algorithm 6.1), and (c) whether meta-learning

the learning rate used for task adaptation is beneficial in this experiment. We

meta-learn a single scalar learning rate (as warp parameters can learn layer-

wise scaling). Meta-gradients for the learning rate are clipped at 0.001 and we

use a learning rate of 0.001. Note that when using offline meta-training, we

store both task parameterisations and the momentum buffer in that phase and

use them in the update rule when computing the canonical objective (Eq. 6.11).

Further, we vary the architecture used for warp-layers. We study simpler

versions that use channel-wise scaling and more complex versions that use

non-linearities and residual connections. We also evaluate a version where

each warp-layer has two stacked convolutions, where the first warp convolution

outputs 128 filters and the second warp convolution outputs 64 filters. Finally,

in the two-layer warp-architecture, we evaluate a version that inserts a FiLM

layer between the two warp convolutions. These are adapted during task

training from a 0 initialisation; they amount to task embeddings that condition

gradient warping on task statistics. Full results are reported in Table 6.3.

6.G Ablation study: Warped and Natural Gradients

Here, we perform ablation studies to compare the geometry that a WarpGrad

optimiser learns to the geometry that Natural Gradient Descent (NGD) methods

represent (approximately). For consistency, we run the ablation on Omniglot.

As computing the true Fisher Information Matrix is intractable, we can compare

WarpGrad against two common block-diagonal approximations, KFAC (Martens

& Grosse, 2015) and Natural Neural Nets (Desjardins et al., 2015).

First, we isolate the effect of warping task loss surfaces by fixing a random

initialisation and only meta-learning warp parameters. That is, in this experi-

ment, we set _� (\0) = 0. We compare against two baselines, stochastic gradient

descent (SGD) and KFAC, both trained from a random initialisation. We use

task mini-batch sizes of 200 and task learning rates of 1.0, otherwise we use

the same hyper-parameters as in the main experiment. For WarpGrad, we

meta-train with these hyper-parameters as well.

We evaluate two WarpGrad architectures, in one, we use linear warp-layers,

which gives a block-diagonal preconditioning, as in KFAC. In the other, we

6.G Ablation study: Warped and Natural Gradients 145

Table 6.4: Ablation study: mean test error after 100 training steps on held

out evaluation tasks from a random initialisation. Mean and standard devi-

ation over 4 seeds.
†
Preconditioning acts only on gradients in the backward

pass.
‡
Preconditioning acts both in the forward and backward-pass.

Method Initialisation Preconditioning Action Accuracy

SGD random none b
†

40.1 ± 6.1

KFAC (NGD) random linear (block-diagonal) b
†

58.2 ± 3.2

WarpGrad random linear (block-diagonal) f
‡
/b
†

68.0 ± 4.4

WarpGrad random non-linear (full) f
‡
/b
†

81.3 ± 4.0

use our most expressive warp configuration from the ablation experiment

in Appendix 6.F, where warp-layers are two-layer convolutional block with

residual connections, batch normalisation, and ReLU activation. We find that

warped geometries facilitate task adaptation on held-out tasks to a greater

degree than either SGD or KFAC by a significant margin (Table 6.4). We further

find that going beyond block-diagonal preconditioning yields a significant

improvement in performance.

Second, we explore whether the geometry that we meta-learn under in the

full Warp-Leap algorithm is approximately Fisher. In this experiment, we

use the main Warp-Leap architecture. We use a meta-learner trained on 25

tasks and that we evaluate on 10 held-out tasks. Because warp-layers are

linear in this configuration, if the learned geometry is approximately Fisher,

post-warp activations should be zero-centred and the layer-wise covariance

matrix should satisfy Cov(ω(8) (5 (8) (G)),ω(8) (5 (8) (G))) = � , where � is the identity

matrix (Desjardins et al., 2015). If true, Warp-Leap would learn a block-

diagonal approximation to the Inverse Fisher Matrix, as Natural Neural Nets.

To test this, during task adaptation on held-out tasks, we compute the mean

activation in each convolutional layer pre- and post-warping. We also compute

the Shatten-1 norm of the difference between layer activation covariance and

the identity matrix pre- and post-warping, as described above. We average

statistics over task and adaptation step (we found no significant variation

in these dimensions).

Figure 6.10 summarise our results. We find that, in general, WarpGrad-Leap

has zero-centered post-warp activations. That pre-warp activations are positive

is an artefact of the ReLU activation function. However, we find that the

correlation structure is significantly different from what we would expect if

Warp-Leap were to represent the Fisher matrix; post-warp covariances are

significantly dissimilar from the identity matrix and varies across layers.

6 General-Purpose Meta-Learning 146

These results indicate that WarpGrad methods behave distinctly different from

Natural Gradient Descent methods. One possibility is that WarpGrad methods

do approximate the Fisher Information Matrix, but with higher accuracy than

other methods. A more likely explanation is that WarpGrad methods encode a

different geometry since they can learn to leverage global information beyond

the task at hand, which enables them to express geometries that standard

Natural Gradient Descent cannot.

6.H miniImageNet and tieredImageNet

miniImageNet This dataset is a subset of 100 classes sampled randomly

from the 1000 base classes in the ILSVRC-12 training set, with 600 images

for each class. Following (Ravi & Larochelle, 2017), classes are split into

non-overlapping meta-training, meta-validation and meta-tests sets with 64,

16, and 20 classes in each respectively.

tieredImageNet As described in (Ren et al., 2018), this dataset is a subset

of ILSVRC-12 that stratifies 608 classes into 34 higher-level categories in the

ImageNet human-curated hierarchy (Deng et al., 2009). In order to increase the

separation between meta-train and meta-evaluation splits, 20 of these categories

are used for meta-training, while 6 and 8 are used for meta-validation and

meta-testing respectively. Slicing the class hierarchy closer to the root creates

more similarity within each split, and correspondingly more diversity between

splits, rendering the meta-learning problem more challenging. High-level

categories are further divided into 351 classes used for meta-training, 97 for

meta-validation and 160 for meta-testing, for a total of 608 base categories. All

the training images in ILSVRC-12 for these base classes are used to generate

problem instances for tieredImageNet, of which there are a minimum of 732

and a maximum of 1300 images per class.

For all experiments, # -way -shot classification problem instances are sampled

following the standard image classification protocol for meta-learning (Vinyals

et al., 2016). A subset of # classes was sampled at random from the cor-

responding split. For each class, arbitrary images were chosen without

replacement to form the training dataset of that problem instance. As usual, a

disjoint set of ! images per class were selected for the validation set.

Few-shot classification We use established experimental protocols for evalu-

ation in meta-validation and meta-testing: 600 task instances were selected, all

using # = 5, = 1 or = 5, as specified, and ! = 15. During meta-training

6.H miniImageNet and tieredImageNet 147

we used # = 5, = 5 or = 15 respectively, and ! = 15.

Task-learners used 4 convolutional blocks defined by with 128 filters (or less,

chosen by hyper-parameter tuning), 3 × 3 kernels and strides set to 1, followed

by batch normalisation with learned scales and offsets, a ReLU non-linearity

and 2×2 max-pooling. The output of the convolutional stack (5×5× 128) was

flattened and mapped, using a linear layer, to the 5 output units. The last 3

convolutional layers were followed by warp-layers with 128 filters each. Only

the final 3 task-layer parameters and their corresponding scale and offset batch-

norm parameters were adapted during task-training, with the corresponding

warp-layers and the initial convolutional layer kept fixed and meta-learned

using the WarpGrad objective. Note that, with the exception of CAVIA, other

baselines do worse with 128 filters as they overfit; MAML and T-Nets achieve

46% and 49 % 5-way-1-shot test accuracy with 128 filters, compared to their

best reported results (48.7% and 51.7%, respectively).

Hyper-parameters were tuned independently for each condition using random

grid search for highest test accuracy on meta-validation left-out tasks. Grid

sizes were 50 for all experiments. We choose the optimal hyper-parameters

(using early stopping at the meta-level) in terms of meta-validation test set

accuracy for each condition and we report test accuracy on the meta-test set

of tasks. 60000 meta-training steps were performed using meta-gradients

over a single randomly selected task instances and their entire trajectories of

5 adaptation steps. We use SGD without momentum for task adaptation and

Adam (Kingma & Ba, 2015) for updates to meta-parameters.

Multi-shot classification We use # = 10, = 640 and ! = 50. Task-learners

are defined similarly as above, but stack 6 convolutional blocks defined by

3× 3 kernels and strides set to 1, followed by batch normalisation with learned

scales and offsets, a ReLU non-linearity and 2 × 2 max-pooling (first 5 layers).

The sizes of convolutional layers were chosen by hyper-parameter tuning to

{64, 64, 160, 160, 256, 256}. The output of the convolutional stack (2 × 2 × 256)

was flattened and mapped, using a linear layer, to the 10 output units.

Hyper-parameters were tuned independently for each algorithm, version, and

baseline using random grid search for highest test accuracy on meta-validation

left-out tasks. Grid sizes were 200 for all multi-shot experiments. We choose

the optimal hyper-parameters in terms of mean meta-validation test set accuracy

AUC (using early stopping at the meta-level) for each condition and we report

test accuracy on the meta-test set of tasks. 2000 meta-training steps were

performed using averaged meta-gradients over 5 random task instances and

6 General-Purpose Meta-Learning 148

their entire trajectories of 100 adaptation steps with batch size 64, or inner-

loops. Task-specific adaptation was done using stochastic gradient descent with

momentum (0.9). Meta-gradients were passed to Adam in the outer loop.

We test WarpGrad against Leap, Reptile, and training from scratch with

large batches and tuned momentum. We tune all meta-learners for optimal

performance on the validation set. WarpGrad outperforms all baselines both in

terms of rate of convergence and final test performance (Figure 6.11).

6.I Maze Navigation

To illustrate both how WarpGrad may be used with RNNs in an online meta-

learning setting, as well as in an RL environment, we evaluate it in a maze

navigation task proposed by Miconi et al. (2018). The environment is a fixed

maze and a task is defined by randomly choosing a goal location in the maze.

During a task episode of length 200, the goal location is fixed but the agent

gets teleported once it finds it. Thus, during an episode the agent must first

locate the goal, then return to it as many times as possible, each time being

randomly teleported to a new starting location. We use an identical setup

as Miconi et al. (2019), except our grid is of size 11 × 11 as opposed to 9 × 9.

We compare our Warp-RNN to Learning to Reinforcement Learn (Wang et al.,

2016a) and Hebbian meta-learners (Miconi et al., 2018, 2019).

The task-learner in all cases is an advantage actor-critic (Wang et al., 2016a),

where the actor and critic share an underlying basic RNN, whose hidden state

is projected into a policy and value function by two separate linear layers. The

RNN has a hidden state size of 100 and tanh non-linearities. Following (Miconi

et al., 2019), for all benchmarks, we train the task-learner using Adam with a

learning rate of 14 − 3 for 200 000 steps using batches of 30 episodes, each

of length 200. Meta-learning arises in this setting as each episode encodes

a different task, as the goal location moves, and by learning across episodes

the RNN is encoding meta-information in its parameters that it can leverage

during task adaptation (via its hidden state (Hochreiter & Schmidhuber, 1997;

Wang et al., 2016a)). See Miconi et al. (2019) for further details.

We design a Warp-RNN by introducing a warp-layer in the form of an LSTM

that is frozen for most of the training process (c.f. Figure 6.6, Appendix 6.A).

Following Flennerhag et al. (2018), we use this meta-LSTM to modulate the

6.I Maze Navigation 149

task RNN. Given an input vector GC , the task RNN is defined by

ℎC = tanh

(
*
(2)
ℎ,C
+*

(1)
ℎ,C

ℎC−1 +* (2)G,C ,*
(1)
G,C GC +*

(1)
C 1

)
, (6.24)

where ,, + , 1 are task-adaptable parameters; each *
(8)
9,C

is a diagonal warp

matrix produced by projecting from the hidden state of the meta-LSTM,

*
(8)
9,C

= diag(tanh(% (8)
9
IC)), where I is the hidden-state of the meta-LSTM. For

details, see Flennerhag et al. (2018). Because the meta-LSTM is frozen for

most of the training process, task adaptable parameters correspond to those

of the baseline RNN.

To control for the capacity of the meta-LSTM, we train a HyperRNN where the

LSTM is updated with every task adaptation; we find this model does worse

than the WarpGrad-RNN. We also compare the non-linear preconditioning

that we obtain in our Warp-RNN to linear forms of preconditioning defined

in prior works. We implement a T-Nets-RNN meta-learner by embedding

linear projections)ℎ ,)G and)1 that are meta-learned in the task RNN, ℎC =

tanh()ℎ+ℎC +)G,GC + 1). We cannot backpropagate to these meta-parameters

as per the T-Nets (MAML) framework; instead, we train)ℎ,)G ,)1 with the

meta-objective and meta-training algorithm we use for the Warp-RNN. The

T-Nets-RNN does worse than the baseline RNN and generally fails to learn.

We meta-train the Warp-RNN using the continual meta-training algorithm (Al-

gorithm 6.3, see Appendix 6.B for details), which accumulates meta-gradients

continuously during training. Because task training is a continuous stream of

batches of episodes, we accumulating the meta-gradient using the approximate

objective (Eq. 6.12, where Lg
task

and Lg
meta

are both the same advantage actor-

critic objective) and update warp-parameters on every 30th task parameter

update. We detail the meta-objective in Appendix 6.C (see Eq. 6.20). Our

implementation of a Warp-RNN can be seen as meta-learning “slow” weights

to facilitate learning of “fast” weights (Schmidhuber, 1992; Mujika et al., 2017).

Implementing Warp-RNN requires four lines of code on top of the standard

training script. The task-learner is the same in all experiments with the

same number of learnable parameters and hidden state size. Compared to all

baselines, we find that the Warp-RNN converges faster and achieves a higher

cumulative reward (Figure 6.4 and Figure 6.12).

6 General-Purpose Meta-Learning 150

6.J Meta-Learning for Continual Learning

Online SGD and related optimisation methods tend to adapt neural network

models to the data distribution encountered last during training, usually

leading to what has been termed “catastrophic forgetting” (French, 1999). We

investigate whether WarpGrad optimisers can meta-learn to avoid this problem

altogether and directly minimise the joint objective over all tasks with every

update in the fully online learning setting where no past data is retained.

Continual Sine Regression We propose a continual learning version of the

sine regression meta-learning experiment in Finn et al. (2017). We split the

input interval [−5, 5] ⊂ ℝ evenly into 5 consecutive sub-intervals, corresponding

to 5 regression tasks. These are presented one at a time to a task-learner,

which adapts to each sub-task using 20 gradient steps on data from the given

sub-task only. Batch sizes were set to 5 samples. Sub-tasks thus differ in their

input domain. A task sequence is defined by a target function composed of

two randomly mixed sine functions of the form 508 ,18 (G) = 08 sin(G − 18) each
with randomly sampled amplitudes 08 ∈ [0.1, 5] and phases 18 ∈ [0, c]. A task

g = (01, 11, 02, 12, >) is therefore defined by sampling the parameters that specify

this mixture; a task specifies a target function 6g by

6g (G) = i> (G)601,11
(G) + (1 − i> (G))60

2
,1

2
(G), (6.25)

where i> (G) = f (G + >) for a randomly sampled offset > ∈ [−5, 5], with f being

the sigmoid activation function.

Model We define a task-learner as 4-layer feed-forward networks with hidden

layer size 200 and ReLU non-linearities to learn the mapping between inputs

and regression targets, � (·, \, q). For each task sequence g , a task-learner is

initialised from a fixed random initialisation \0 (not meta-learned). Each

non-linearity is followed by a residual warping block consisting of 2-layer

feed-forward networks with 100 hidden units and tanh non-linearities, with

meta-learned parameters q which are fixed during the task adaptation process.

Continual learning as task adaptation The task target function 6g is parti-

tioned into 5 sets of sub-tasks. The task-learner sees one partition at a time

and is given = = 20 gradient steps to adapt, for a total of = 100 steps of

online gradient descent updates for the full task sequence; recall that every

such sequence starts from a fixed random initialisation \0. The adaptation is

completely online since at step : = 1, . . . , we sample a new mini-batch �:
task

of

6.J Meta-Learning for Continual Learning 151

5 samples from a single sub-task (sub-interval). The data distribution changes

after each = = 20 steps with inputs G coming from the next sub-interval and

targets form the same function 6g (G). During meta-training we always present

tasks in the same order, presenting intervals from left to right. The online

(sub-)task loss is defined on the current mini-batch �:
task

at step ::

Lg
task

(
\g
:
, �:

task
;q

)
=

1

2| D:
task
|

∑
G ∈�:

task

(
� (G, \g

:
;q) − 6g (G)

)
2

. (6.26)

Adaptation to each sub-task uses sub-task data only to form task parameter

updates \ ← \ − U∇Lg
task

(
\, �:

task
;q

)
. We used a constant learning rate U =

0.001. Warp parameters q are fixed across the full task sequence during

adaptation and are meta-learned across random samples of task sequences.

Meta-learning an optimiser for continual learning To investigate the abil-

ity of WarpGrad to learn an optimiser for continual learning that mitigates

catastrophic forgetting, we fix a random initialisation prior to meta-training

that is not meta-learned; every task-learner is initialised with these parameters.

To meta-learn an optimiser for continual learning, we need a meta-objective

that encourages such behaviour. Here, we take a first step towards a framework

for meta-learned continual learning.

We define the meta-objective Lg
meta

as an incremental multitask objective that,

for each sub-task gC in a given task sequence g , averages the validation sub-task

losses (Eq. 6.26) for the current and every preceding loss in the task sequence.

The task meta-objective is defined by summing over all sub-tasks in the task

sequence. For some sub-task parameterisation \gC , we have

Lg
meta
(\gC ;q) =

C∑
8=1

1

=() − C + 1) L
g
task

(
\g8 , �8

val
;q

)
. (6.27)

As before, the full meta-objective is an expectation over the joint task pa-

rameter distribution (Eq. 6.11); for further details on the meta-objective, see

Appendix 6.C, Eq. 6.21. This meta-objective gives equal weight to all the tasks

in the sequence by averaging the regression step loss over all sub-tasks where

a prior sub-task should be learned or remembered. For example, losses from

the first sub-task, defined using the interval [−5,−3], will appear =) times in

the meta-objective. Conversely, the last sub-task in a sequence, defined on the

interval [3, 5], is learned only in the last = = 20 steps of task adaptation, and

6 General-Purpose Meta-Learning 152

hence appears = times in the meta-objective. Normalising on number of ap-

pearances corrects for this bias. We trained warp-parameters using Adam and

a meta-learning rate of 0.001, sampling 5 random tasks to form a meta-batch

and repeating the process for 20 000 steps of meta-training.

Results Figure 6.13 shows a breakdown of the validation loss across the 5

sequentially learned tasks over the 100 steps of online learning during task

adaptation. Results are averaged over 100 random regression problem instances.

The meta-learned WarpGrad optimiser reduces the loss of the task currently

being learned in each interval while also largely retaining performance on

previous tasks. There is an immediate relatively minor loss of performance,

after which performance on previous tasks is retained. We hypothesise that

this is because the meta-objectives averages over the full learning curve, as

opposed to only the performance once a task has been adapted to. As

such, the WarpGrad optimiser may allow for some degree of performance

loss. Intriguingly, in all cases, after an initial spike in previous sub-task

losses when switching to a new task, the spike starts to revert back some

way towards optimal performance, suggesting that the WarpGrad optimiser

facilitates positive backward transfer, without this being explicitly enforced in

the meta-objective. Deriving a principled meta-objective for continual learning

is an exciting area for future research.

6.J Meta-Learning for Continual Learning 153

1 5 10 15 20 25
Number of tasks in meta-training set

0.4

0.5

0.6

0.7

0.8

T
es

t
ac

cu
ra

cy
on

h
el

d
-o

u
t

ta
sk

s

Warp-Leap Leap Reptile FT† SGD‡ KFAC‡

1 5 10 15 20 25
Number of tasks in meta-training set

0.3

0.4

0.5

0.6

0.7

T
ra

in
A

cc
A

U
C

on
h

el
d

-o
u

t
ta

sk
s

Warp-Leap Leap Reptile FT† SGD‡ KFAC‡

Figure 6.9: Omniglot results. Top: test accuracies on held-out tasks after meta-

training on a varying number of tasks. Bottom: AUC under accuracy curve

on held-out tasks after meta-training on a varying number of tasks. Shading

represents standard deviation across 10 independent runs. We compare

between Warp-Leap, Leap, and Reptile, multi-headed finetuning, as well as

SGD and KFAC which used random initialisation but with a 10x larger learning

rate.

6 General-Purpose Meta-Learning 154

1 2 3 4
Layer

0.1

0.0

0.1

0.2

0.3

0.4

0.5
E

xp
ec

te
d

Ac
tiv

at
io

n
pre-warp
post-warp

1 2 3 4
Layer

0

2

4

6

8

10

Sh
at

te
n-

1
N

or
m

 o
f C

ov
 -

I

pre-warp
post-warp

Figure 6.10: Ablation study. Left: Comparison of mean activation value

E[5 (G)] across layers, pre- and post-warping. Right: Shatten-1 norm of

Cov(5 (G), 5 (G)) − � , pre- and post-norm. Statistics are gathered on held-out test

set and averaged over tasks and adaptation steps.

Figure 6.11: Multi-shot tieredImageNet results. Top: mean learning curves

(test classification accuracy) on held-out meta-test tasks. Bottom: mean test

classification performance on held-out meta-test tasks during meta-training.

Training from scratch omitted as it is not meta-trained.

6.J Meta-Learning for Continual Learning 155

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Number of Episodes

0

25

50

75

100

125

150

175

R
ew

ar
d

Warp-RNN

HyperRNN

Hebb-RNN†

Hebb-RNN‡

RNN

T-Nets-RNN

Figure 6.12: Mean cumulative return for maze navigation task, for 200 000

training steps. Shading represents inter-quartile ranges across 10 independent

runs.
†
Simple modulation;

‡
retroactive modulation (Miconi et al., 2019).

(a) Task order during meta-training (b) Random task order

Figure 6.13: Continual learning experiment: average log-loss over 100 ran-

domly sampled tasks. Each task contains 5 sub-tasks learned (a) sequentially

as seen during meta-training or (b) in random order [sub-task 1, 3, 4, 2, 0].

We train on each sub-task for 20 steps, for a total of = 100 task adaptation

steps.

6 General-Purpose Meta-Learning 156

(a) Task order during meta-training (b) Random task order

Figure 6.14: Continual learning: evaluation after partial task adaptation.

Ground truth (black), task-learner prediction before adaptation (dashed green),

and task-learner prediction after adaptation (red). Each row illustrates how

task-learner predictions evolve (red) after training on sub-tasks up to and

including that sub-task (current task illustrate in plot). (a) sub-tasks are

presented in the same order as seen during meta-training; (b) sub-tasks are

presented in random order at meta-test time in sub-task order [1, 3, 4, 2 and

0].

157

III

Towards Never-Ending Learning

158

7 Lifelong Learning in

Autonomous Agents

This chapter tackles the assumption of an exogenous task distribution. One

might argue that the best meta-learner we know—i.e. humans—are able to

integrate information from a continuous stream of data without being told

what constitutes a “task”. In fact, the notion of a task is intrinsic to each of us,

we construct tasks to provide a meaningful demarcation of a learning problem.

Ideally, an AI should be able to do learn to the same from its own experiences.

In order for an AI to do so, it must have some mechanism by which it can

define some abstract notion of a task. This work proposes one such approach

that relies on defining two types of behaviours in a reinforcement learning

agent, formalised into two distinct policies. One policy is rewarded for collecting

experience that the other policy is highly uncertain about; the other is rewarded

for reducing its uncertainty on the experience it sees. In this way, each policy

defines a task for the other, and their continual evolution gives rise to a form

of task distribution or automatic curriculum.

While the paper focuses on the statistical properties of the proposed method

as a means of reducing bias in uncertainty estimation, the connection to meta-

learning is discussed from the point of view of a multi-agent game. This

discussion hints at a more general point, that the task distribution in meta-

learning can be generated from a multi-agent game between two players, one

that proposes tasks and one that tries to solve them. There is some evidence

suggesting this view might have the potential to fully overcome the need for

exogenous tasks (Sukhbaatar et al., 2018; Wang et al., 2019; Zheng et al., 2020).

Prior works tend to focus on adversarial approaches (Sukhbaatar et al., 2018;

Florensa et al., 2018; Kachalsky et al., 2019). In this setting tasks are proposed

in an adversarial way to make them as hard as possible for the learner. This

can fail to meet a central criteria of meta-learning, that tasks should be useful

159

be optimised for learning. Our approach reverses the direction: our goal is

to construct tasks that are efficient for learning—progressively harder tasks

arises as a consequence of the agent learning. Chapter 8 discusses this point

of view in the context of the contributions of this thesis.

7 Lifelong Learning in Autonomous Agents 160

Temporal Difference Uncertainties

as a Signal for Exploration

Under review for publication; notational modifications.

Under Review.

Authors: Sebastian Flennerhag, University of Manchester,

Jane X. Wang, DeepMind,

Pablo Sprechmann, DeepMind,

Francesco Visin, DeepMind,

Alexandre Galashov, DeepMind,

Steven Kapturowski, DeepMind,

Diana Borsa, DeepMind,

Nicolas Heess, DeepMind,

André Baretto, DeepMind,

Razvan Pascanu, DeepMind.

Abstract. An effective approach to exploration in reinforcement learning is to rely
on an agent’s uncertainty over the optimal policy, which can yield near-optimal
exploration strategies in tabular settings. However, in non-tabular settings that
involve function approximators, obtaining accurate uncertainty estimates is almost as
challenging as the exploration problem itself. In this paper, we highlight that value
estimates are easily biased and temporally inconsistent. In light of this, we propose a
novel method for estimating uncertainty over the value function that relies on inducing
a distribution over temporal difference errors. This exploration signal controls for
state-action transitions so as to isolate uncertainty in value that is due to uncertainty
over the agent’s parameters. Because our measure of uncertainty conditions on state-
action transitions, we cannot act on this measure directly. Instead, we incorporate it
as an intrinsic reward and treat exploration as a separate learning problem, induced
by the agent’s temporal difference uncertainties. We introduce a distinct exploration
policy that learns to collect data with high estimated uncertainty, which gives rise
to a “curriculum” that smoothly changes throughout learning and vanishes in the
limit of perfect value estimates. We evaluate our method on hard-exploration tasks,
including Deep Sea and Atari 2600 environments and find that our proposed form of
exploration facilitates efficient exploration.

7.1 Introduction 161

7.1 Introduction

Striking the right balance between exploration and exploitation is fundamental

to the reinforcement learning problem. A common approach is to derive

exploration from the policy being learned. Dithering strategies, such as n-

greedy exploration, render a reward-maximising policy stochastic around

its reward maximising behaviour (Williams & Peng, 1991). Other methods

encourage higher entropy in the policy (Ziebart et al., 2008), introduce an

intrinsic reward (Singh et al., 2005), or drive exploration by sampling from

the agent’s belief over the MDP (Strens, 2000).

While greedy or entropy-maximising policies cannot facilitate temporally ex-

tended exploration (Osband et al., 2013, 2016a), the efficacy of intrinsic rewards

depends crucially on how they relate to the extrinsic reward that comes from

the environment (Burda et al., 2018a). Typically, intrinsic rewards for explo-

ration provide a bonus for visiting novel states (e.g Bellemare et al., 2016) or

visiting states where the agent cannot predict future transitions (e.g Pathak

et al., 2017; Burda et al., 2018a). Such approaches can facilitate learning an

optimal policy, but they can also fail entirely in large environments as they

prioritise novelty over rewards (Burda et al., 2018b).

Methods based on the agent’s uncertainty over the optimal policy explicitly

trade off exploration and exploitation (Kearns & Singh, 2002). Posterior

Sampling for Reinforcement Learning (PSRL; Strens, 2000; Osband et al., 2013)

is one such approach, which models a distribution over Markov Decision

Processes (MDPs). While PSRL is near-optimal in tabular settings (Osband

et al., 2013, 2016b), it cannot be easily scaled to complex problems that

require function approximators. Prior work has attempted to overcome this

by instead directly estimating the agent’s uncertainty over the policy’s value

function (Osband et al., 2016a; Moerland et al., 2017; Osband et al., 2019;

O’Donoghue et al., 2018; Janz et al., 2019). While these approaches can scale

posterior sampling to complex problems and nonlinear function approximators,

estimating uncertainty over value functions introduces issues that can cause

a bias in the posterior distribution (Janz et al., 2019).

In response to these challenges, we introduce Temporal Difference Uncertainties
(TDU), which derives an intrinsic reward from the agent’s uncertainty over the

value function. Concretely, TDU relies on the Bootstrapped DQN (Osband et al.,

2016a) and separates exploration and reward-maximising behaviour into two

separate policies that bootstrap from a shared replay buffer. This separation

allows us to derive an exploration signal for the exploratory policy from esti-

7 Lifelong Learning in Autonomous Agents 162

mates of uncertainty of the reward-maximising policy. Thus, TDU encourages

exploration to collect data with high model uncertainty over reward-maximising

behaviour, which is made possible by treating exploration as a separate learn-

ing problem. In contrast to prior works that directly estimate value function

uncertainty, we estimate uncertainty over temporal difference (TD) errors. By

conditioning on observed state-action transitions, TDU controls for environment

uncertainty and provides an exploration signal only insofar as there is model

uncertainty. We demonstrate that TDU can facilitate efficient exploration in

challenging exploration problems such as Deep Sea and Montezuma’s Revenge.

7.2 Estimating Value Function Uncertainty

We begin by highlighting that estimating uncertainty over the value function

can suffer from bias that is very hard to overcome with typical approaches

(see also Janz et al., 2019). Our analysis shows that biased estimates arise

because uncertainty estimates require an integration over unknown future

state visitations. This requires tremendous model capacity and is in general

infeasible. Our results show that we cannot escape a bias in general, but we

can take steps to mitigate it by conditioning on an observed trajectory. Doing

so removes some uncertainty over future state-visitations and we show in

Section 7.3 that it can result in a substantially smaller bias.

We consider a Markov Decision Process (S,A,P,R, W) for some given state

space (S), action space (A), transition dynamics (P), reward function (R)
and discount factor (W). For a given (deterministic) policy c : S ↦→ A, the

action value function is defined as the expected cumulative reward under the

policy starting from state B with action 0:

&c (B, 0) B Ec

[∞∑
C=0

WCAC+1

����� B0 = B, 00 = 0

]
= EA∼R(B,0)

B′∼P(B,0)
[A + W&c (B ′, c (B ′))] , (7.1)

where C index time and the expectation Ec is with respect to realised rewards A

sampled under the policy c ; the right-hand side characterises & recursively

under the Bellman Equation. The action-value function &c is estimated

under a function approximator &\ parameterised by \ . Uncertainty over &c

is expressed by placing a distribution over the parameters of the function

approximator, ? (\). We overload notation slightly and write ? (\) to denote the

probability density function ?\ over a random variable \ . Further, we denote

by \ ∼ ? (\) a random sample \ from the distribution defined by ?\ . Methods

that rely on posterior sampling under function approximators assume that the

7.2 Estimating Value Function Uncertainty 163

induced distribution, ? (&\), is an accurate estimate of the agent’s uncertainty

over its value function, ? (&c), so that sampling &\ ∼ ? (&\) is approximately

equivalent to sampling from &c ∼ ? (&c).

For this to hold, the moments of ? (&\) at each state-action pair (B, 0) must

correspond to the expected moments in future states. In particular, moments

of ? (&c) must satisfy a Bellman Equation akin to Eq. 7.1 (O’Donoghue et al.,

2018). We focus on the mean (E) and variance (V):

E\ [&\ (B, 0)] = E\
[
EA,B′ [A + W&\ (B ′, c (B ′))]

]
, (7.2)

V\ [&\ (B, 0)] = V\
[
EA,B′ [A + W&\ (B ′, c (B ′))]

]
. (7.3)

If E\ [&\] and V\ [&\] fail to satisfy these conditions, the estimates of E[&c]
and V [&c] are biased, causing a bias in exploration under posterior sampling

from ? (&\). Formally, the agent’s uncertainty over ? (&) implies uncertainty

over the MDP (Strens, 2000). Given a belief over the MDP, i.e., a distribution

? ("), we can associate each " ∼ ? (") with a distinct value function &"c .

Lemma 7.1 below shows that, for ? (\) to be interpreted as representing some

? (") by push-forward to ? (&\), the induced moments must match under

the Bellman Equation.

Lemma 7.1 (Bellman uncertainty bias). If E\ [&\] and V\ [&\] fail to satisfy
Eqs. 7.2 and 7.3, respectively, they are biased estimators of E"

[
&"c

]
and V"

[
&"c

]
for any choice of ? (").

All proofs are deferred to Appendix 7.B. Lemma 7.1 highlights why estimating

uncertainty over value functions is so challenging; while the left-hand sides

of Eqs. 7.2 and 7.3 are stochastic in \ only, the right-hand sides depend

on marginalising over the MDP. This requires the function approximator to

generalise to unseen future trajectories. Lemma 7.1 is therefore a statement

about scale; the harder it is to generalise, the more likely we are to observe

a bias—even in deterministic environments.

This requirement of “strong generalisation” poses a particular problem for

neural networks that tend to interpolate over the training data (e.g. Li et al.,

2020; Liu et al., 2020; Belkin et al., 2019), but the issue is more general.

In particular, we show that factorising the posterior ? (\) will typically cause

estimation bias for all but tabular MDPs. This is problematic because it is often

computationally infeasible to maintain a full posterior; previous work either

maintains a full posterior over the final layer of the function approximator

7 Lifelong Learning in Autonomous Agents 164

(Osband et al., 2016a; O’Donoghue et al., 2018; Janz et al., 2019) or maintains

a diagonal posterior over all parameters (Fortunato et al., 2018; Plappert et al.,

2018) of the neural network. Either method limits how expressive the function

approximator can be with respect to future states, thereby causing an estimation

bias. To establish this formally, let &\ B F ◦qo , where \ = (F1, . . . ,F=, o1, . . . , oE),
with F ∈ ℝ= a linear projection and q : S ×A → ℝ= a function approximator

with parameters o ∈ ℝE
.

Theorem 7.1 (Function approximation bias). If the number of state-action pairs
with unique predictions E\ [&\ (B, 0)] ≠ E\ [&\ (B ′, 0′)] and non-zero Temporal Differ-
ence error &\ (B, 0) ≠ EA,B′ [A + W&\ (B ′, c (B ′))] is greater than = + 1, where F ∈ ℝ=,
then E\ [&\] and V\ [&\] are biased estimators of E"

[
&"c

]
and V"

[
&"c

]
for any

choice of ? (").

This result is a consequence of the function approximator q mapping into

a co-domain that is larger than the space spanned by F ; the bias results

from function approximation errors qi (B, 0) − EB′,A [A + Wqi (B ′, c (′B))] in more

state-action pairs than there are degrees of freedom in F . The implication

is that function approximators under factorised posteriors cannot generalise

uncertainty estimates across states (a similar observation in tabular settings was

made by Janz et al., 2019)—they can only produce temporally consistent uncer-

tainty estimates if they have the capacity to memorise point-wise uncertainty

estimates for each (B, 0), which defeats the purpose of a function approximator.

This is a statement about the structure of ? (\) and holds for any estimation

method. Thus, common approaches to uncertainty estimation with neural

networks generally fail to provide unbiased uncertainty estimates over the value

function in non-trivial MDPs. Theorem 7.1 shows that to accurately capture

value function uncertainty, we need a full posterior over parameters, which is

often infeasible. It also underscores that the main issue is the dependence on

future state visitation. This motivates Temporal Difference Uncertainties as an

estimate of uncertainty conditioned on observed state-action transitions.

7.3 Temporal Difference Uncertainties

While Theorem 7.1 states that we cannot remove this bias unless we are willing

to maintain a full posterior ? (\), we can construct uncertainty estimates that

control for uncertainty over future state-action transition. In this paper, we

propose to estimate uncertainty over a full transition g B (B, 0, A, B ′) to isolate

uncertainty due to ? (\). Fixing a transition, we induce a conditional distribution

? (X | g) over Temporal Difference (TD) errors, X (\, g) B W&\ (B ′, c (B ′)) + A −

7.3 Temporal Difference Uncertainties 165

&\ (B, 0), that we characterise by its mean and variance:

EX [X | g] = E\ [X (\, g) | g] and VX [X | g] = V\ [X (\, g) | g] . (7.4)

Estimators over TD-errors is akin to first-difference estimators of uncertainty

over the action-value. They can therefore exhibit smaller bias if that bias is tem-

porally consistent. To illustrate, for simplicity assume that E\ [&\] consistently
over/under-estimates E"

[
&"c

]
by an amount 1 ∈ ℝ. The corresponding bias

in E\ [X (\, g) | g] is given by Bias(E\ [X (\, g) | g]) = Bias(WE\ [&\ (B ′, c (B ′))] + A −
E\ [&\ (B, 0)]) = (W − 1)1. This bias is close to 0 for typical values of W—notably

for W = 1, E\ [X (\, g) | g] is unbiased. More generally, unless the bias is constant

over time as in the above example, we cannot fully remove the bias when

constructing an estimator over a quantity that relies on &\ . However, as the

above example shows, by conditioning on a state-action transition, we can

make it significantly smaller. We formalise this logic in the following result.

Theorem 7.2 (Temporal difference uncertainty estimation). For any g B

(B, 0, A, B ′) and any ? ("), given ? (\), define the following ratios:

d =
Bias (E\ [&\ (B ′, c (B ′))])

Bias (E\ [&\ (B, 0)])
q =

Bias

(
E\

[
&\ (B ′, c (B ′))2

])
Bias

(
E\

[
&\ (B, 0)2

])
^ =

Bias (E\ [&\ (B ′, c (B ′))&\ (B, 0)])
Bias

(
E\

[
&\ (B, 0)2

]) U =
E"

[
&"c (B ′, c (B ′))

]
E"

[
&"c (B, 0)

] .

If d ∈ (0, 2/W), then EX [X | g] has lower bias than E\ [&\ (B, 0)]. Moreover, if
d = 1/W, then EX [X | g] is unbiased. If d ∈ (0, 2/W), U ∈ (0, 2/W), ^ ∈ (0, 2/W)
and q ∈ (1 − 2W^, (2/W)2), then V\ [X (\, g) | g] have less bias than V\ [&\ (B, 0)]. In
particular, if d = q = ^ = U = 1, then

|Bias(V\ [X (\, g) | g]) | = | (W − 1)2 Bias(V\ [&\ (B, 0)]) |
< |Bias(V\ [&\ (B, 0)]) |.

(7.5)

Further, d = 1/W, ^ = 1/W, q = 1/W2, then V\ [X (\, g) | g] is unbiased for any U.

The first part of Theorem 7.2 generalises the example above to cases where the

bias 1 varies across action-state transitions. It is worth noting that the required

“smoothness” on the bias is not very stringent: the bias of E\ [&\] (B ′, c (B ′)) can
be twice as large as that of E\ [&\] (B, 0) and EX [X | g] can still produce a less

7 Lifelong Learning in Autonomous Agents 166

biased estimate. Importantly, it must have the same sign, and so Theorem 7.2

requires temporal consistency.

To establish a similar claim for VX [X | g], we need a bit more structure to capture

the second-order nature of the estimator. The ratios d , q , and ^ describe the

temporal structure of the bias in second-order estimators. Analogous to the

mean, given sufficient temporal consistency in these biases, V\ [X (\, g) | g] will

have less bias. Again, the temporal consistency is not overly stringent; the

bias of estimates at consecutive states must agree on sign but is their relative

magnitudes can vary significantly. For most transitions, it is reasonable to

assume that these conditions hold true. In some MDPs, large changes in the

reward can cause these requirements to break. Because Theorem 7.2 only

establishes sufficiency, violating this requirement does not necessarily mean that

VX [X | g] has greater bias than V\ [&\ (B, 0)]. Finally, it is worth noting that these

are statements about a given transition g . In most state-action transitions, the

requirements in Theorem 7.2 will hold, in which case EX [X | g] and VX [X | g]
exhibit less overall bias. We provide direct empirical support that Theorem 7.2

holds in practice through careful ceteris paribus comparisons in Section 7.5.1.

To obtain a concrete signal for exploration, we follow O’Donoghue et al. (2018)

and derive an exploration signal from the variance V\ [X (\, g) |g]. Because

? (X | g) is defined per transition, it cannot be used as-is for posterior sampling.

Therefore, we incorporate TDU as a signal for exploration via an intrinsic

reward. To obtain an exploration signal that is on approximately the same scale

as the extrinsic reward, we use the standard deviation f (g) B
√
V\ [X (\, g) | g]

to define an augmented reward function

R(g) B R((B, 0) ∈ g) + V f (g), (7.6)

where V ∈ [0,∞) is a hyper-parameter that determines the emphasis on

exploration. Another appealing property of f is that it naturally decays as the

agent converges on a solution (as model uncertainty diminishes); TDU defines

a distinct MDP (S,A,P, R, W) under Eq. 7.6 that converges on the true MDP in

the limit of no model uncertainty. For a given policy c and distribution ? (&\),
there exists an exploration policy ` that collects transitions over which ? (&\)
exhibits maximal uncertainty, as measured by f. In hard exploration problems,

the exploration policy ` can behave fundamentally differently from c . To

capture such distinct exploration behaviour, we treat ` as a separate exploration

policy that we train to maximise the augmented reward R, along-side training

a policy c that maximises the extrinsic reward R.

7.4 Implementing TDU with Bootstrapping 167

This gives rise to a natural separation of exploitation and exploration in

the form of a cooperative multi-agent game, where the exploration policy

is tasked with finding experiences where the agent is uncertain of its value

estimate for the greedy policy c . As c is trained on this data, we expect

uncertainty to vanish (up to noise). As this happens, the exploration policy

` is incentivised to find new experiences with higher estimated uncertainty.

This induces a particular pattern where exploration will reinforce experiences

until the agent’s uncertainty vanishes, at which point the exploration policy

expands its state visitation further. This process can allow TDU to overcome

estimation bias in the posterior—since it is in effect exploiting it—in contrast

to previous methods that do not maintain a distinct exploration policy. We

demonstrate this empirically both on Montezuma’s Revenge and on Deep

Sea (Osband et al., 2020).

7.4 Implementing TDU with Bootstrapping

The distribution over TD-errors that underlies TDU can be estimated using

standard techniques for probability density estimation. In this paper, we

leverage the statistical bootstrap as it is both easy to implement and provides a

robust approximation without requiring distributional assumptions. TDU is

easy to implement under the statistical bootstrap—it requires only a few lines

of extra code. It can be implemented with value-based as well as actor-critic

algorithms (we provide generic pseudo code in Appendix 7.A); in this paper, we

focus on &-learning. &-learning alternates between policy evaluation (Eq. 7.1)

and policy improvement under a greedy policy c\ (B) = argmax 0 &\ (B, 0).
Deep &-learning (Mnih et al., 2015) learns &\ by minimising its TD-error by

stochastic gradient descent on transitions sampled from a replay buffer. Unless

otherwise stated, in practice we adopt a common approach of evaluating the

action taken by the learned network through a target network with separate

parameters that are updated periodically (Van Hasselt et al., 2016).

Our implementation starts from the bootstrapped DQN (Osband et al., 2016a),

which maintains a set of function approximators Q = {&\: } :=1
, each parame-

terised by \: and regressed towards a unique target function using bootstrapped

sampling of data from a shared replay memory. The Bootstrapped DQN derives

a policy c\ by sampling \ uniformly from Q at the start of each episode. We

provide an overview of the Bootstrapped DQN in Algorithm 7.1 for reference.

To implement TDU in this setting, we make a change to the loss function

(Algorithm 7.2, changes highlighted in green). First, we estimate the TDU

signal f using bootstrapped value estimation. We estimate f through observed

7 Lifelong Learning in Autonomous Agents 168

TD-errors {X: } :=1
incurred by the ensemble Q on a given transition:

f (g) ≈

√√√
1

 − 1

 ∑
:=1

(
X (\: , g) − X (g)

)
2

, (7.7)

where
X = W & ′ + A − & , with G B 1

∑
8=1
G8 and &

′ B & (B ′, c (B ′)). An important

assumption underpinning the bootstrapped estimation is that of stochastic

optimism (Osband et al., 2016b), which requires the distribution over Q to

be approximately as wide as the true distribution over value estimates. If

not, uncertainty over Q can collapse, which would cause f to also collapse.

To prevent this, Q can be endowed with a prior (Osband et al., 2018) that

maintains diversity in the ensemble by defining each value function as &\: +_%: ,
_ ∈ [0,∞), where %: is a random prior function.

Rather than feeding this exploration signal back into the value functions in Q,
which creates a positive feedback loop (uncertainty begets higher reward, which

begets higher uncertainty ad-infinitum), we introduce a separate ensemble of

exploration value functions
Q = {& \: }#:=1

that we train over the augmented

reward (Eq. 7.6). We derive an exploration policy ` \ by sampling exploration

parameters
\ uniformly from

Q, as in the standard bootstrapped DQN.

In summary, our implementation of TDU maintains + # value functions.

The first defines a standard Bootstrapped DQN. From these, we derive an

exploration signal f , which we use to train the last # value functions. At

the start of each episode, we proceed as in the standard Bootstrapped DQN

and randomly sample a parameterisation \ from Q ∪ Q that we act under for

the duration of the episode. All value functions are trained by bootstrapping

from a single shared replay memory (Algorithm 7.1); see Appendix 7.A for

a complete JAX (Bradbury et al., 2018) implementation. Consequently, we

execute the (extrinsic) reward-maximising policy c\∼Q with probability /(+#)
and the exploration policy ` \∼ Q with probability #/(+#). While c visits states

around current reward-maximising behaviour, ` searches for data with high

model uncertainty. While each population Q and & can be seen as performing

Bayesian inference, it is not immediately clear that the full agent admits a

Bayesian interpretation. We leave this question for future work.

There are several equally valid implementations of TDU (see Appendix 7.A

for generic implementations for value-based learning and policy-gradient

methods). In our case, it would be equally valid to define only a single

exploration policy (i.e. # = 1) and specify the probability of sampling this

7.5 Empirical Evaluation 169

Algorithm 7.1 Bootstrapped DQN with TDU

Require: ",L: MDP to solve, TDU loss

Require: V, , # , d: hyper-parameters

1: Initialise B: replay buffer

2: Initialise + # value functions, Q ∪ Q
3: while not done do
4: Observe B and choose value function for acting: &: ∼ Q ∪ Q
5: while episode not done do
6: Take greedy action under &: : 0 = argmax

0&: (B, 0)
7: Sample bootstrapping mask < = (<0, . . . ,< +#) with

<8 ∼ Binomial(= = 1, ? = d) ∀8 ∈ 1, . . . , + #
8: Enqueue transition (B, 0, A, B ′,<) to B
9: Optimise L({\: }

1
, { \: }#

1
,W, V,D∼B)

10: end while
11: end while

Algorithm 7.2 Bootstrapped TD-loss with TDU.

Require: {\: }
1
, { \: }#

1
: parameters for Q and

Q, respectively
Require: W, V,D: hyper-parameters, mini-batch of transitions

1: Initialise mini-batch loss ℓ ← 0

2: for B, 0, A, B ′,< ∈ D do
3: g ← (B, 0, A, B ′, W)
4: Compute TD-errors for Q: {X8} 8=1

= {X (\ 8, g)}
8=1

5: Compute f from {X: } :=1
(Eq. 7.7)

6: Update g by A ← A + V sg[f], where sg stops gradients

7: Compute TD-errors for
Q: { X 9 }#9= +1 = {X (\

9 , g)}#
9= +1

8: Increment bootstrapped loss: ℓ ← ℓ +∑
8=1
<8X

2

8 +
∑#
9=1
< +9 X2

9

9: end for
10: return: ℓ / (2(# +) | D |)

policy. While this can result in faster learning, a potential drawback is that

it restricts the exploratory behaviour that ` can exhibit at any given time.

Using a full bootstrapped ensemble for the exploration policy leverages the

behavioural diversity of bootstrapping.

7.5 Empirical Evaluation

7.5.1 Behaviour Suite

Bsuite (Osband et al., 2020) was introduced as a benchmark for characterising

core capabilities of RL agents. We focus on a Deep Sea, which is explicitly

designed to test for deep exploration. This is a simple isntance of problems

7 Lifelong Learning in Autonomous Agents 170

QEX CTS RND TDU BDQN SU NNS
0

0.25

0.50

0.75

1
sc

or
e

Deep Sea Deterministic

QEX CTS RND TDU BDQN SU NNS
0

0.25

0.50

0.75

1
Deep Sea Stochastic

Figure 7.1: Deep Sea Benchmark. QEX, CTS, and RND use intrinsic rewards;

BDQN, SU, and NNS use posterior sampling (Section 7.5.1). Posterior sampling

does well on the deterministic version, but struggles on the stochastic version,

suggesting an estimation bias (Section 7.2). TDU performs (near-)optimally on

both the deterministic and the stochastic version of Deep Sea.

0.0 0.01 0.1 0.5 1.0 2.0 3.0 5.0
0

0.25

0.50

0.75

1

Sc
or

e

Deep Sea Stochastic, = 3

0.0 1.0 3.0

= 1

0.0 1.0 5.0

= 0

Qa Qb TDU
Agent

= 3

Figure 7.2: Deep Sea results. All models solve the deterministic version for

prior scale _ = 3 (dashed line). TDU also solves it for _ = 1. Left: introducing

stochasticity substantially deteriorates baseline performance; including TDU

(V > 0) recovers close to full performance. Center left: effect of varying _,

TDU benefits from diversity in & estimates. Center right: effect of removing

prior (_ = 0). Increasing V improves exploration, but does not reach full

performance. Right: Qa replaces f (X) with f (Q), Qb acts by argmax0 (& +
f (Q))(B, 0). Estimating uncertainty over & fails to match TDU.

that require persistent and directed exploration in the absence of positive

reward signals, which can happen for sparse reward problems like strategic

games, theorem proving, etc.. In Deep Sea, only one out of 2
#

policies yields

any positive reward. Performance is compared over environment grid sizes

∈ {10, 12, . . . , 50}, with an overall “score” that is the percentage of # for which

average regret goes to below 0.9 faster than 2
#
. The stochastic version generates

a ‘bad’ transition with probability 1/# . This is a relatively high degree of

uncertainty since the agent cannot recover from a bad transition in an episode.

7.5 Empirical Evaluation 171

For all experiments, we use a standard MLP with &-learning, off-policy replay

and a separate target network. See Appendix 7.D for details and TDU results on

the full suite. We compare TDU on Deep Sea to a battery of exploration methods,

broadly divided into methods that facilitate exploration by (a) sampling from

a posterior (Bootstrapped DQN, Noisy Nets (Fortunato et al., 2018), Successor

Uncertainties (Janz et al., 2019)) or (b) use an intrinsic reward (Random

Network Distillation (RND; Burda et al., 2018b), CTS (Bellemare et al., 2016),

and Q-Explore (QEX; Simmons-Edler et al., 2019)). We report best scores

obtained from a hyper-parameter sweep for each method. Overall, performance

varies substantially between methods; only TDU performs (near-)optimally on

both the deterministic and stochastic version. Methods that rely on posterior

sampling do well on the deterministic version, but suffer a substantial drop

in performance on the stochastic version. As the stochastic version serves to

increase the complexity of modelling future state visitation, this is clear evidence

that these methods suffer from the estimation bias identified in Section 7.2. We

could not make Q-explore and NoisyNets perform well in the default Bsuite

setup, while Successor Uncertainties suffers a catastrophic loss of performance

on the stochastic version of DeepSea.

Examining TDU, we find that it facilitates exploration while retaining overall

performance except on Mountain Car where V > 0 hurts performance (Appendix

7.D). For Deep Sea (Figure 7.2), prior functions are instrumental, even for

large exploration bonuses (V >> 0). However, for a given prior strength, TDU

does better than the BDQN (V = 0). In the stochastic version of Deep Sea,

BDQN suffers a significant loss of performance (Figure 7.2). As this is a ceteris

paribus comparison, this performance difference can be directly attributed to

an estimation bias in the BDQN that TDU circumvents through its intrinsic

reward. That TDU is able to facilitate efficient exploration despite environment

stochasticity demonstrates that it can correct for such estimation errors.

Finally, we verify Theorem 7.2 experimentally. We compare TDU to versions

that estimate uncertainty directly over Q (full analysis in Section 7.D). We

compare TDU to (a) a version where f is defined as standard deviation

over Q and (b) where f (Q) is used as an upper confidence bound in the

policy instead of as an intrinsic reward (Figure 7.2). Neither matches TDU’s

performance across Bsuite an in particular on Deep Sea. Being ceteris paribus

comparisons, this demonstrates that estimating uncertainty over TD-errors

provides a stronger signal for exploration, as per Theorem 7.2.

7 Lifelong Learning in Autonomous Agents 172

0.00 0.25 0.50 0.75 1.00
Environment steps1e10

0

2000

4000

6000

sc
or

e
montezuma_revenge

0.00 0.25 0.50 0.75 1.00
Environment steps1e10

-20

-10

0

10

20

tennis

0.00 0.25 0.50 0.75 1.00
Environment steps1e10

0.5

1.0

1.5

hard exploration games

TDU-R2D2-PRIOR

TDU-R2D2

R2D2

B-R2D2

Figure 7.3: Atari results with distributed training. We compare TDU with and

without additive prior functions to R2D2 and Bootstrapped R2D2 (B-R2D2).

Left: Results for montezuma_revenge. Center: Results for tennis. Right: Mean

HNS for the hard exploration games in the Atari2600 suite (including tennis).
TDU achieves a higher performance than baselines.

7.5.2 Atari

Theorem 7.1 shows that estimation bias is particularly likely in complex

environments that require neural networks to generalise across states. In recent

years, such domains have seen significant improvements from running on

distributed training platforms that can process large amounts of experience

obtained through agent parallelism. It is thus important to develop exploration

algorithms that scale gracefully and can leverage the benefits of distributed

training. Therefore, we evaluate whether TDU can have a positive impact when

combined with the Recurrent Replay Distributed DQN (R2D2) (Kapturowski

et al., 2018), which achieves state-of-the-art results on the Atari2600 suite by

carefully combining a set of key components: a recurrent state, experience

replay, off-policy value learning and distributed training.

As a baseline we implemented a distributed version of the bootstrapped DQN

with additive prior functions. We present full implementation details, hyper-

parameter choices, and results on all games in Section 7.E. For our main

results, we run each agent on 8 seeds for 20 billion steps. We focus on

games that are well-known to pose challenging exploration problems (Machado

et al., 2018): montezuma_revenge, pitfall, private_eye, solaris, venture,

gravitar, and tennis. Following standard practice, Figure 7.3 reports Human

Normalized Score (HNS),

HNS =
Agent

score
− Randomscore

Humanscore − Randomscore

,

7.6 Related Work 173

as an aggregate result across exploration games as well as results on tennis and

montezuma_revenge, which are both known to be particularly hard exploration

games (Machado et al., 2018).

Generally, we find that TDU facilitates exploration substantially, improving

the mean HNS score across exploration games by 30% compared to baselines

(right panel, Figure 7.3). An ANOVA analysis yields a statistically significant

difference between TDU and non-TDU methods, controlling for game (� =

8.17, ? = 0.0045). Notably, TDU achieves significantly higher returns on

montezuma_revenge and is the only agent that consistently achieves the maximal

return on tennis. We report all per-game results in Section 7.E.4. We observe

no significant gains from including prior functions with TDU and find that

bootstrapping alone produces relatively marginal gains. Beyond exploration

games, TDU can match or improve upon the baseline, but exhibits sensitivity

to TDU hyper-parameters (V , number of explorers (#); see Section 7.E.3 for

details). This finding is in line with observations made by (Puigdomènech Badia

et al., 2020); combining TDU with online hyper-parameter adaptation (Schaul

et al., 2019; Xu et al., 2018a; Zahavy et al., 2020) are exciting avenues for

future research. See Section 7.E for further comparisons.

In Table 7.1, we compare TDU to recently proposed state-of-the-art exploration

methods. While comparisons must be made with care due to different training

regimes, computational budgets, and architectures, we note a general trend that

no method is uniformly superior. Methods that are good on extremely sparse

exploration games (montezuma_revenge and pitfall!) tend to do poorly on

games with dense rewards and vice versa. TDU is generally among the top 2

algorithms in all cases except on montezuma_revenge and pitfall!, state-based

exploration is needed to achieve sufficient coverage of the MDP. TDU generally

outperforms both Pixel-CNN (Ostrovski et al., 2017), CTS, and RND. TDU is the

only algorithm to achieve super-human performance on solaris and achieves

the highest score of all baselines considered on venture.

7.6 Related Work

Bayesian approaches to exploration typically use uncertainty as the mechanism

for balancing exploitation and exploration (Strens, 2000). A popular instance of

this form of exploration is the PILCO algorithm (Deisenroth & Rasmussen, 2011).

While we rely on the bootstrapped DQN (Osband et al., 2016a) in this paper,

several other uncertainty estimation techniques have been proposed, such as by

placing a parameterised distribution over model parameters (Fortunato et al.,

7 Lifelong Learning in Autonomous Agents 174

Table 7.1: Atari benchmark on exploration games.
†
Ostrovski et al. (2017),

‡
Bellemare et al. (2016),

�
Burda et al. (2018b),

∗
Choi et al. (2018),

§
Puigdomènech Badia et al. (2020),

+
With prior functions.

Algorithm Gravitar

Montez.

Revenge

Pitfall!

Private

Eye

Solaris Venture

Avg. Human 3,351 4,753 6,464 69,571 12,327 1,188

R2D2 15,680 2,061 0 5,322 3,787 1,971

DQN-

PixelCNN
† 859 2,514 0 15,807 5,502 1,356

DQN-CTS
‡

498 3,706 0 8,359 82 –

RND
�

3,906 10,070 -3 8,666 3,282 1,859

CoEx
∗

– 11,618 – 11,000 – 1,916

NGU
§

14,100 10,400 8,400 100,000 4,900 1,700

TDU-R2D2 13,000 5,233 0 40,544 14,712 2,000

TDU-R2D2
+

10,916 2,833 0 61,168 15,230 1,977

2018; Plappert et al., 2018) or by modeling a distribution over both the value

and the returns (Moerland et al., 2017), using Bayesian linear regression on the

value function (Azizzadenesheli et al., 2018; Janz et al., 2019), or by modelling

the variance over value estimates as a Bellman operation (O’Donoghue et al.,

2018). The underlying exploration mechanism in these works is posterior

sampling from the agent’s current beliefs (Thompson, 1933; Dearden et al.,

1998); our work suggests that estimating this posterior is significantly more

challenging that previously thought.

An alternative to posterior sampling is to facilitate exploration via learning by

introducing an intrinsic reward function. Previous works typically formulate

intrinsic rewards in terms of state visitation (Lopes et al., 2012; Bellemare et al.,

2016; Puigdomènech Badia et al., 2020), state novelty (Schmidhuber, 1991;

Oudeyer & Kaplan, 2009; Pathak et al., 2017), or state predictability (Florensa

et al., 2017; Burda et al., 2018b; Gregor et al., 2016; Hausman et al., 2018).

Most of these works rely on properties of the state space to drive exploration

while ignoring rewards. While this can be effective in sparse reward settings

(e.g. Burda et al., 2018b; Puigdomènech Badia et al., 2020), it can also lead

to arbitrarily bad exploration (see analysis in Osband et al., 2019).

A smaller body of work uses statistics derived from observed rewards (Nachum

et al., 2016) or TD-errors to design intrinsic reward functions; our work is

particularly related to the latter. Tokic (2010) proposes an extension of n-

greedy exploration, where the TD-error modulates n to be higher in states with

higher TD-error. Gehring & Precup (2013) use the mean absolute TD-error,

7.7 Conclusion 175

accumulated over time, to measure controllability of a state and reward the

agent for visiting states with low mean absolute TD-error. In contrast to our

work, this method integrates the TD-error over time to obtain a measure of

irreducibility. Simmons-Edler et al. (2019) propose to use two &-networks,

where one is trained on data collected under both networks and the other

obtains an intrinsic reward equal to the absolute TD-error of the first network

on a given transition. In contrast to our work, this method does not have a

probabilistic interpretation and thus does not control for uncertainty over the

environment. TD-errors have also been used in White (2015), where surprise

is defined in terms of the moving average of the TD-error over the full variance

of the TD-error. Kumaraswamy et al. (2018) rely on least-squares TD-errors

to derive a context-dependent upper-confidence bound for directed exploration.

Finally, using the TD-error as an exploration signal is related to the notion of

“learnability” or curiosity as a signal for exploration, which is often modelled

in terms of the prediction error in a dynamics model (e.g. Schmidhuber, 1991;

Oudeyer et al., 2007; Gordon & Ahissar, 2011; Pathak et al., 2017).

7.7 Conclusion

We present Temporal Difference Uncertainties (TDU), a method for estimat-

ing uncertainty over an agent’s value function. Obtaining well-calibrated

uncertainty estimates under function approximation is non-trivial and we

show that popular approaches, while in principle valid, can fail to accurately

represent uncertainty over the value function because they must represent

an unknown future.

This motivates TDU as an estimate of uncertainty conditioned on observed state-

action transitions, so that the only source of uncertainty for a given transition

is due to uncertainty over the agent’s parameters. This gives rise to an intrinsic

reward that encodes the agent’s model uncertainty, and we capitalise on this

signal by introducing a distinct exploration policy. This policy is incentivised to

collect data over which the agent has high model uncertainty and we highlight

how this separation gives rise to a form of cooperative multi-agent game. We

demonstrate empirically that TDU can facilitate efficient exploration in hard

exploration games such as Deep Sea and Montezuma’s Revenge.

176

7 Appendix

7.A Implementation and Code

In this Section, we provide code for implementing TDU in a general policy-

agnostic setting and in the specific case of bootstrapped &-learning. Algo-

rithm 7.3 presents TDU in a policy-agnostic framework. TDU can be im-

plemented as a pre-processing step (Algorithm 7.3, Line 9) that augments

the reward with the exploration signal before computing the policy loss. If

Algorithm 7.3 is used to learn a single policy, it benefits from the TDU explo-

ration signal but cannot learn distinct exploration policies for it. In particular,

on-policy learning does not admit such a separation. To learn a distinct

exploration policy, we can use Algorithm 7.3 to train the exploration policy,

while the another policy is trained to maximise extrinsic rewards only using

both its own data and data from the exploration policy. In case of multiple

policies, we need a mechanism for sampling behavioural policies. In our

experiments we settled on uniform sampling; more sophisticated methods

can potentially yield better performance.

In the case of value-based learning, TDU takes a special form that can be

implemented efficiently as a staggered computation of TD-errors (Algorithm 7.4).

Concretely, we compute an estimate of the distribution of TD-errors from some

given distribution over the value function parameters (Algorithm 7.4, Line 3).

These TD-errors are used to compute the TDU signal f , which then modulates

the reward used to train a & function (Algorithm 7.4, Line 7). Because the only

quantities being computed are TD-errors, this can be combined into a single

error signal (Algorithm 7.4, Line 11). When implemented under bootstrapping,

Qparams denotes the ensemble Q and Qtilde_distribution_params denotes

the ensemble
Q; we compute the loss as in Algorithm 7.2.

Finally, Algorithm 7.5 presents a complete JAX (Bradbury et al., 2018)

implementation that can be used along with the Bsuite (Osband et al.,

7.A Implementation and Code 177

2020) codebase.
10

We present the corresponding TDU agent class (Algo-

rithm 7.4), which is a modified version of the BootstrappedDqn class in

bsuite/baselines/jax/boot_dqn/agent.py and can be used by direct swap-in.

Algorithm 7.3 Pseudo-code for generic TDU loss

1 def loss(transitions , pi_params , Qtilde_distribution_params , beta):
2 # Estimate TD-error distribution.
3 td = array([td_error(p, transitions) for p in sample(

Qtilde_distribution_params)])
4

5 # Compute critic loss.
6 td_loss = mean(0.5 * (td ** 2))

7

8 # Compute exploration bonus.
9 transitions.r_t += beta * stop_gradient(std(td, axis=1))

10

11 # Compute policy loss on transition with augmented reward.
12 pi_loss = pi_loss_fn(pi_params , transitions)

13

14 return pi_loss, td_loss

Algorithm 7.4 Pseudo-code for &-learning TDU loss

1 def loss(transitions , Q_params, Qtilde_distribution_params , beta):
2 # Estimate TD-error distribution.
3 td_K = array([td_error(p, transitions) for p in sample(

Qtilde_distribution_params)])
4

5 # Compute exploration bonus and Q-function reward.
6 transitions.reward_t += beta * stop_gradient(std(td_K, axis=1))

7 td_N = td_error(Q_params , transitions)

8

9 # Combine for overall TD-loss.
10 td_errors = concatenate((td_ex, td_in), axis=1)
11 td_loss = mean(0.5 * (td_errors) ** 2))

12 return td_loss

10
Available at: https://github.com/deepmind/bsuite.

7 Lifelong Learning in Autonomous Agents 178

Algorithm 7.5 JAX implementation of TDU agent under Bootstrapped DQN

1 # Copyright 2020 the Temporal Difference Uncertainties as a Signal for Exploration authors. Licensed under
2 # the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
3 # the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0.
4 # Unless required by applicable law or agreed to in writing, software distributed under the License is
5 # distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
6 # See the License for the specific language governing permissions and limitations under the License.
7

8 class TDU(bsuite.baselines.jax.boot_dqn.BootstrappedDqn):
9

10 def __init__(self, K: int, beta: float, **kwargs: Any):
11 """TDU under Bootstrapped DQN with randomized prior functions."""
12 super(TDU, self).__init__(**kwargs)
13 network, optimizer , N = kwargs[’network’], kwargs[’optimizer’], kwargs[’

num_ensemble’]
14 noise_scale , discount = kwargs[’noise_scale’], kwargs[’discount’]
15

16 def td(params: hk.Params, target_params: hk.Params,
17 transitions: Sequence[jnp.ndarray]) -> jnp.ndarray:
18 """TD-error with added reward noise + half-in bootstrap."""
19 o_tm1, a_tm1, r_t, d_t, o_t, z_t = transitions
20 q_tm1 = network.apply(params, o_tm1)
21 q_t = network.apply(target_params , o_t)
22 r_t += noise_scale * z_t
23 return jax.vmap(rlax.q_learning)(q_tm1, a_tm1, r_t, discount * d_t, q_t)
24

25 def loss(params: Sequence[hk.Params], target_params: Sequence[hk.Params],
26 transitions: Sequence[jnp.ndarray]) -> jnp.ndarray:
27 """Q-learning loss with TDU."""
28 # Compute TD-errors for first K members.
29 o_tm1, a_tm1, r_t, d_t, o_t, m_t, z_t = transitions
30 td_K = [td(params[k], target_params[k],
31 [o_tm1, a_tm1, r_t, d_t, o_t, z_t[:, k]]) for k in range(K)]
32

33 # TDU signal on first K TD-errors.
34 r_t += beta * jax.lax.stop_gradient(jnp.std(jnp.stack(td_K, axis=0), axis=0))
35

36 # Compute TD-errors on augmented reward for last K members.
37 td_N = [td(params[k], target_params[k],
38 [o_tm1, a_tm1, r_t, d_t, o_t, z_t[:, k]]) for k in range(K, N)]
39

40 return jnp.mean(m_t.T * jnp.stack(td_K + td_N) ** 2)
41

42 def update(state: TrainingState , gradient: Sequence[jnp.ndarray]) ->
TrainingState:

43 """Gradient update on ensemble member."""
44 updates, new_opt_state = optimizer.update(gradient, state.opt_state)
45 new_params = optix.apply_updates(state.params, updates)
46 return TrainingState(params=new_params , target_params=state.target_params ,
47 opt_state=new_opt_state , step=state.step + 1)
48

49 @jax.jit
50 def sgd_step(states: Sequence[TrainingState],
51 transitions: Sequence[jnp.ndarray]) -> Sequence[TrainingState]:
52 """Does a step of SGD for the whole ensemble over ‘transitions ‘."""
53 params, target_params = zip(*[(state.params, state.target_params) for state in

states])
54 gradients = jax.grad(loss)(params, target_params , transitions)
55 return [update(state, gradient) for state, gradient in zip(states,

gradients)]
56

57 self._sgd_step = sgd_step # patch BootDQN sgd_step with TDU sgd_step.
58

59 def update(self, timestep: dm_env.TimeStep, action: base.Action,
60 new_timestep: dm_env.TimeStep):
61 """Update the agent: add transition to replay and periodically do SGD."""
62 if new_timestep.last():
63 self._active_head = self._ensemble[np.random.randint(0, self._num_ensemble)

]
64

65 mask = np.random.binomial(1, self._mask_prob , self._num_ensemble)
66 noise = np.random.randn(self._num_ensemble)
67 transition = [timestep.observation , action, np.float32(new_timestep.reward),
68 np.float32(new_timestep.discount), new_timestep.observation ,mask,

noise]
69 self._replay.add(transition)
70 if self._replay.size < self._min_replay_size:
71 return
72

73 if self._total_steps % self._sgd_period == 0:
74 transitions = self._replay.sample(self._batch_size)
75 self._ensemble = self._sgd_step(self._ensemble , transitions)
76

77 for k, state in enumerate(self._ensemble):
78 if state.step % self._target_update_period == 0:
79 self._ensemble[k] = state._replace(target_params=state.params)

7.B Proofs 179

7.B Proofs

We begin with the proof of Lemma 7.1. First, we show that if Eq. 7.2 and

Eq. 7.3 fail, ? (\) induce a distribution ? (&\) whose first two moments are

biased estimators of the moments of the distribution of interest ? (&c), for any
choice of belief over the MDP, ? ("). We restate it here for convenience.

Lemma 7.1. If E\ [&\] and V\ [&\] fail to satisfy Eqs. 7.2 and 7.3, respectively,
they are biased estimators of E"

[
&"c

]
and V"

[
&"c

]
for any choice of ? (").

Proof. Assume the contrary, that E"
[
&"c (B, c (B))

]
= E\ [&\ (B, c (B))] for all

(B, 0) ∈ S ×A. If Eqs. 7.2 and 7.3 do not hold, then for any M ∈ {E, V},

M"

[
&"c (B, c (B))

]
= M\ [&\ (B, c (B))] (7.8)

≠ M\

[
EB′∼P(B,c (B))
A∼R(B,c (B))

[A + W&\ (B ′, c (B ′))]
]

(7.9)

= EB′∼P(B,c (B))
A∼R(B,c (B))

[A + WM\ [&\ (B ′, c (B ′))]] (7.10)

= EB′∼P(B,c (B))
A∼R(B,c (B))

[
A + WM"

[
&"c (B ′, c (B ′))

]]
(7.11)

= M"

[
EB′∼P(B,c (B))
A∼R(B,c (B))

[
A + W&"c (B ′, c (B ′))

]]
(7.12)

= M"

[
&"c (B, c (B))

]
, (7.13)

a contradiction; conclude that M"

[
&"c (B, c (B))

]
≠ M\ [&\ (B, c (B))]. Eqs. 7.9

and 7.13 use Eqs. 7.2 and 7.3; Eqs. 7.8, 7.9 and 7.11 follow by assumption;

Eqs. 7.10 and 7.12 use linearity of the expectation operator EA,B′ by virtue of

M being defined over \ . As (B, 0, A, B ′) and ? (") are arbitrary, the conclusion

follows. �

Methods that take inspiration from by PSRL but rely on neural networks

typically approximate ? (") by a parameter distribution ? (\) over the value

function. Lemma 7.1 establishes that the induced distribution ? (&\) under
push-forward of ? (\) must propagate the moments of the distribution ? (&\)
consistently over the state-space to be unbiased estimate of ? (&"c), for any ? (").

With this in mind, we now turn to neural networks and their ability to estimate

value function uncertainty in MDPs. To prove our main result, we establish

two intermediate results. Recall that we define a function approximator

&\ = F ◦ qo , where \ = (F1, . . . ,F=, o1, . . . , oE); F ∈ ℝ= is a linear layer and

7 Lifelong Learning in Autonomous Agents 180

q : S ×A → ℝ= is a function approximator with parameters o ∈ ℝE
. We

denote by 4 (B, 0) = qi (B, 0) − EB′,A
[
A + Wqi (B ′, c (B ′))

]
its function approximation

error, i.e. the Temporal Difference error in terms of q. Note that if &\ (B, 0) ≠
EA,B′ [A + W&\ (B ′, c (B ′))], then 4 (B, 0) is non-zero by linearity in F .

As before, let " be an MDP (S,A,P,R, W) with discrete state and action

spaces. We denote by # the number of states and actions with E\ [&\ (B, 0)] ≠
E\ [&\ (B ′, 0′)] and &\ (B, 0) ≠ EA,B′ [A + W&\ (B ′, c (B ′))], with N ⊂ S ×A ×S ×A
the set of all such pairs (B, 0, B ′, 0′). This set can be thought of as a minimal

MDP—the set of states within a larger MDP where the function approximator

generates unique predictions. It arises in an MDP through dense rewards,

stochastic rewards, or irrevocable decisions, such as in Deep Sea. Our first

result is concerned with a very common approach, where o is taken to be

a point estimate so that ? (\) = ? (F). This approach is often used for large

neural networks, where placing a posterior over the full network would be

too costly (Osband et al., 2016a; O’Donoghue et al., 2018; Azizzadenesheli

et al., 2018; Janz et al., 2019).

Lemma 7.2 (Bellman uncertainty bias under diagonal prior). Let ? (\) = ? (F).
If # − 1 > =, with F ∈ ℝ=, then E\ [&\] fail to satisfy the first moment Bellman
Equation (Eq. 7.2). Further, if # > =2, then V\ [&\] fail to satisfy the second
moment Bellman Equation (Eq. 7.3).

Proof. Write the first condition of Eq. 7.2 as

E\
[
F)qo (B, 0)

]
= E\

[
EA,B′

[
A + WF)qo (B ′, c (B ′))

]]
. (7.14)

Using linearity of the expectation operator along with ? (\) = ? (F), we have

EF [F]) qo (B, 0) = ` (B, 0) + WEF [F]) EB′ [qo (B ′, c (B ′))] , (7.15)

where ` (B, 0) = EA∼R(B,0) [A]. Rearrange to get

` (B, 0) = EF [F])
(
qo (B, 0) − WEB′ [qo (B ′, c (B ′))]

)
. (7.16)

By assumption E\ [&\ (B, 0)] ≠ E\ [&\ (B ′, 0′)], which implies qo (B, 0) ≠ qo (B ′, c (B ′))
by linearity in F . Hence qo (B, 0) − WEB′ [qo (B ′, c (B ′))] is non-zero and unique

for each (B, 0). By definition of 4 , qo (B, 0) = ` (B, 0) 1+WEB′ [qo (B ′, c (B ′))] + 4q (B, 0),

7.B Proofs 181

where 1 ∈ ℝ= is a vector of ones. By assumption, 4 (B, 0) ∈ ℝ= is a random

vector. Thus, qo (B, 0) − WEB′ [qo (B ′, c (B ′))] = ` (B, 0) 1+4 (B, 0). Repeating this for

all (B, 0) forms a system of linear equations over S ×A, which can be reduced to

a full-rank system over N : ` = ΦEF [F], where ` ∈ ℝ#
stacks expected reward

` (B, 0) and Φ = ` 1
) +� ∈ ℝ#×=

stacks qo (B, 0) −WEB′ [qo (B ′, c (B ′))] row-wise, with

� a random matrix, hence full rank. Because � is full rank, Φ is at least of

rank # − 1. If # − 1 > =, this system has no solution. The conclusion follows

for E\ [&\]. If the estimator of the mean is used to estimate the variance, then

the estimator of the variance is biased. For an unbiased mean, using linearity

in F , write the condition of Eq. 7.3 as

E\

[[
(F − EF [F]))qo (B, 0)

]
2

]
= E\

[[
W (F − EF [F]))EB′ [qo (B ′, c (B ′))]

]
2

]
. (7.17)

Let F =
(
F) − EF [F]

)
, G = F)qo (B, 0), ~ = W F)EB′ [qo (B ′, 0′)]. Rearrange to get

E\
[
G2 − ~2

]
= EF [(G − ~) (G + ~)] = 0. (7.18)

Expanding terms, we find

0 = E\

[(
F) [qo (B, 0) − WEB′ [qo (B ′, 0′)]]

) (
F) [qo (B, 0) + WEB′ [qo (B ′, 0′)]]

)]
(7.19)

=

=∑
8=1

=∑
9=1

EF
[
F8 F 9

]
3−8 3

+
9 =

=∑
8=1

=∑
9=1

Cov

(
F8,F 9

)
3−8 3

+
9 . (7.20)

where we define 3− = qo (B, 0) −WEB′ [qo (B ′, 0′)] and 3+ = qo (B, 0) +WEB′ [qo (B ′, 0′)].
As before, 3− and 3+ are non-zero by assumption of unique &-values. Perform

a change of variables ωU (8, 9) = Cov(F8,F 9), _U (8, 9) = 3−8 3+9 to write Eq. 7.20 as

0 = _)ω. Repeating the above process for every state and action we have a

system 0 = Λω, where 0 ∈ ℝ#
and Λ ∈ ℝ#×=2

are defined by stacking vectors _

row-wise. This is a system of linear equations and if # > =2
no solution exists;

thus, the conclusion follows for V\ [&\], concluding the proof. �

Note that if E\ [&\] is biased and used to construct the estimator E\ [&\], then
this estimator is also biased; hence if # − 1 > =, ? (\) induce biased estimators

E\ [&\] and V\ [&\] of E"
[
&"c

]
and V"

[
&"c

]
, respectively.

Lemma 7.2 can be seen as a statement about linear uncertainty. While

the result is not too surprising from this point of view, it is nonetheless a

frequently used approach to uncertainty estimation. We may hope then that

by placing uncertainty over the feature extractor as well, we can benefit from

7 Lifelong Learning in Autonomous Agents 182

its nonlinearity to obtain greater representational capacity with respect to

uncertainty propagation. Such posteriors come at a price. Placing a full

posterior over a neural network is often computationally infeasible, instead a

common approach is to use a diagonal posterior, i.e. Cov(\8, \ 9) = 0 (Fortunato

et al., 2018; Plappert et al., 2018). Our next result shows that any posterior

of this form suffers from the same limitations as placing a posterior only over

the final layer. We establish something stronger: any posterior of the form

? (\) = ? (F)? (o) suffers from the limitations described in Lemma 7.2.

Lemma 7.3 (Bellman uncertainty bias under factorised prior). Let ? (\) =
? (F)? (o); if # − 1 > =, with F ∈ ℝ=, then E\ [&\] fail to satisfy the first moment
Bellman Equation (Eq. 7.2). Further, if # > =2, then V\ [&\] fail to satisfy the
second moment Bellman Equation (Eq. 7.3).

Proof. The proof largely proceeds as in the proof of Lemma 7.2. Re-write

Eq. 7.15 as

EF [F]) Eo [qo (B, 0)] = ` (B, 0) + WEF [F]) EB′ [Eo [qo (B ′, c (B ′))]] . (7.21)

Perform a change of variables
q = Eo [qo] to obtain

` (B, 0) = EF [F])
(
q (B, 0) − WEB′

[
q (B ′, c (B ′))

])
. (7.22)

Because E\ [&\ (B, 0)] ≠ E\ [&\ (B ′, 0′)], by linearity in F we have that
q (B, 0) −

q (B ′, 0′) is non-zero for any (B ′, 0′), and similarly by assumption 4 (B, 0) is non-

zero, hence Eq. 7.22 has no trivial solutions. Proceeding as in the proof of

Lemma 7.2 obtains ` = ΦEF [F], where Φ is analogously defined. Note that

if # − 1 > = there is no solution EF [F] for any admissible choice of Φ (with

rank at least # − 1), and hence the conclusion follows for the first part. For

the second part, using that E\ = EFEo in Eq. 7.20 yields

0 =

=∑
8=1

=∑
9=1

EF
[
F8 F 9

]
Eo

[
3−8 3

+
9

]
=

=∑
8=1

=∑
9=1

Cov

(
F8,F 9

)
Eo

[
3−8 3

+
9

]
. (7.23)

Perform a change of variables
_U (8, 9) = Eo

[
3−8 3

+
9

]
. Again, by E\ [&\ (B, 0)] ≠

E\ [&\ (B ′, 0′)] we have that
_ is non-zero; proceed as before to complete the

proof. �

7.B Proofs 183

We are now ready to prove our main result. We restate it here for convenience:

Theorem 7.1. If the number of state-action pairs with unique predictions E\ [&\ (B, 0)] ≠
E\ [&\ (B ′, 0′)] and non-zero TD error &\ (B, 0) ≠ EA,B′ [A + W&\ (B ′, c (B ′))] is greater
than =+1, where F ∈ ℝ=, then E\ [&\] and V\ [&\] are biased estimators of E"

[
&"c

]
and V"

[
&"c

]
for any choice of ? (").

Proof. Let ? (\) be of the form ? (\) = ? (F) or ? (\) = ? (F)? (o). By Lemmas 7.2

and 7.3, ? (\) fail to satisfy Eq. 7.2. By Lemma 7.1, this causes E\ [&\] to be

a biased estimator of E"
[
&"c

]
. This in turn implies that V\ [&\] is a biased

estimator of V"
[
&"c

]
. Further, if # > =2

, V\ [&\] is biased independently of

E\ [&\]. �

We now turn to analysing the bias of our proposed estimators. As before, we

will build up to Theorem 7.2 through a series of lemmas. For the purpose

of these results, let � : S ×A → ℝ denote the bias of E\ [&\] in any tuple

(B, 0) ∈ S ×A, so that Bias(E\ [&\ (B, 0])) = �(B, 0).

Lemma 7.4 (Bias of mean TD error). Given a transition g B (B, 0, A, B ′), for any
? ("), given ? (\), if

�(B ′, c (B ′))
�(B, 0) ∈ (0, 2/W) (7.24)

then E\ [X (\, g) | g] has less bias than E\ [&\ (B, 0)].

Proof. From direct manipulation of E\ [X (\, g) | g], we have

E\ [X (\, g) | g] = E\ [W&\ (B ′, c (B ′)) + A −&\ (B, 0)] (7.25)

= WE\ [&\ (B ′, c (B ′))] + A − E\ [&\ (B, 0)] (7.26)

= WE"
[
&"c (B ′, c (B ′))

]
+ A − E"

[
&"c (B, 0)

]
(7.27)

+ W�(B ′, c (B ′)) − �(B, 0) (7.28)

= E"
[
X"c (g)

]
+ W�(B ′, c (B ′)) − �(B, 0) . (7.29)

Consequently, Bias(E\ [X (\, g) | g]) = W�(B ′, c (B ′)) −�(B, 0) and for this bias to be

less than Bias(E\ [&\ (B, 0)]) = �(B, 0), we require |W�(B ′, c (B ′))−�(B, 0) | < |�(B, 0) |.
Let d = �(B ′, c (B ′))/�(B, 0) and write | (Wd − 1)�(B, 0) | < |�(B, 0) | from which it

follows that for this to hold true, we must have d ∈ (0, 2/W), as to be proved. �

We now turn to characterising the conditions under which V\ [X (\, g) | g] enjoys
a smaller bias than V\ [&\ (B, 0)]. Because the variance term involves squaring

7 Lifelong Learning in Autonomous Agents 184

the TD-error, we must place some restrictions on the expected behaviour of the

&-function to bound the bias. First, as with �, let � : S ×A → ℝ denote the

bias of E\
[
&2

\

]
for any tuple (B, 0) ∈ S ×A, so that Bias(E\

[
&\ (B, 0)2

]
) = � (B, 0).

Similarly, let � : S ×A ×S → ℝ denote the bias of E\ [&\ (B ′, c (B ′))&\ (B, 0)] for
any transition (B, 0, B ′) ∈ S ×A ×S.

Lemma 7.5 (Bias of TD error variance). For any g and any ? ("), given ? (\),
define relative bias ratios

d =
�(B ′, c (B ′))
�(B, 0) , q =

� (B ′, c (B ′))
� (B, 0) ,

^ =
� (B, 0, B ′)
� (B, 0) , U =

E"
[
&"c (B ′, c (B ′))

]
E"

[
&"c (B, 0)

] .

(7.30)

There exists d ≈ 1, q ≈ 1, ^ ≈ 1, U ≈ 1 such that V\ [X (\, g) | g] have less bias than
V\ [&\ (B, 0)]. In particular, if d = q = ^ = U = 1, then

|Bias(V\ [X (\, g) | g]) | = | (W − 1)2 Bias(V\ [&\ (B, 0)]) |
< |Bias(V\ [&\ (B, 0)]) |.

(7.31)

Further, if d = 1/W, ^ = 1/W, q = 1/W2, then |Bias(V\ [X (\, g) | g]) | = 0 for any U.

Proof. We begin by characterising the bias of V\ [&\ (B, 0)]. Write

V\ [&\ (B, 0)] = E\

[
& (B, 0)2

]
− E\ [& (B, 0)]2 (7.32)

= E"

[
&"c (B, 0)

2

]
+� (B, 0) −

(
E"

[
&"c (B, 0)

]
+ �(B, 0)

)
2

. (7.33)

The squared term expands as

(
E"

[
&"c (B, 0)

]
+ �(B, 0)

)
2

=

E"
[
&"c (B, 0)

]
2 + 2E"

[
&"c (B, 0)

]
�(B, 0) + �(B, 0)2.

(7.34)

Let �(B, 0) = E"
[
&"c (B, 0)

]
�(B, 0) and write the bias of V\ [&\ (B, 0)] as

Bias(V\ [&\ (B, 0)]) = � (B, 0) + 2�(B, 0) + �(B, 0)2. (7.35)

7.B Proofs 185

We now turn to V\ [X (\, g) | g]. First note that the reward cancels in this

expression:

X (\, g) − E\ [X (\, g)] =
W&\ (B ′, c (B ′)) −&\ (B, 0) − (WE\ [&\ (B ′, c (B ′))] − E\ [&\ (B, 0)]) .

(7.36)

Denote by G\ = W&\ (B ′, c (B ′)) − &\ (B, 0) with E\ [G\] = WE\ [&\ (B ′, c (B ′))] −
E\ [&\ (B, 0)]. Write

V\ [X (\, g) | g] = E\

[
(X (\, g) − E\ [X (\, g)])2

]
(7.37)

= E\

[
(G\ − E\ [G\])2

]
(7.38)

= E\
[
G2

\

]
− E\ [G\]2 (7.39)

= E\

[
(W&\ (B ′, c (B ′)) −&\ (B, 0))2

]
(7.40)

− (WE\ [&\ (B ′, c (B ′))] − E\ [&\ (B, 0)])2. (7.41)

Eq. 7.38 uses Eq. 7.36 and Eq. 7.40 substitutes back for G\ . We consider each

term in the last expression in turn. For the first term, E\

[
(W&\ (B ′, c (B ′)) −&\ (B, 0))2

]
,

expanding the square yields

W2E\
[
&\ (B ′, c (B ′))2

]
− 2WE\ [&\ (B ′, c (B ′)&\ (B, 0)] + E\

[
&\ (B, 0)2

]
. (7.42)

From this, we obtain the bias as

Bias

(
E\

[
(W&\ (B ′, c (B ′)) −&\ (B, 0))2

])
= W2� (B ′, c (B ′)) − 2W� (B, 0, B ′) +� (B, 0) (7.43)

=

(
W2q − 2W^ + 1

)
� (B, 0) . (7.44)

We can compare this term to � (B, 0) in the bias of of V\ [&\ (B, 0)] (Eq. 7.35). For
the bias term in Eq. 7.44 to be smaller, we require |

(
W2q − 2W^ + 1

)
� (B, 0) | <

|� (B, 0) | from which it follows that

(
W2q − 2W^ + 1

)
∈ (−1, 1). In terms of q , this

means

q ∈
(
2:W − 2

W2

,
2:

W

)
. (7.45)

If the bias term � is close to � (^ ≈ 1), this is approximately the same condition

as for d in Lemma 7.4. Generally, as ^ grows large, q must grow small and

vice-versa. The gist of this requirement is that the biases should be relatively

balanced ^ ≈ q ≈ 1.

7 Lifelong Learning in Autonomous Agents 186

For the second term in Eq. 7.40, recall that E\ [&\ (B ′, c (B ′))] = E"
[
&"c (B ′, c (B ′))

]
+

�(B ′, c (B ′)) and E\ [&\ (B, 0)] = E"
[
&"c (B, 0)

]
+ �(B, 0). We have

(E\ [&\ (B ′, c (B ′))] − E\ [&\ (B, 0)])2 =(
(WU − 1)E"

[
&"c (B, 0)

]
+ (Wd − 1)�(B, 0)

)
2

,
(7.46)

where U = E"
[
&"c (B ′, c (B ′))

]
/E"

[
&"c (B, 0)

]
. Expanding the square,

(E\ [&\ (B ′, c (B ′))] − E\ [&\ (B, 0)])2 =

(WU − 1)2E"
[
&"c (B, 0)

]
2

+ 2(WU − 1) (Wd − 1)E"
[
&"c (B, 0)

]
�(B, 0)

+ (Wd − 1)2�(B, 0)2.

(7.47)

Then from Eq. 7.31;

(
E"

[
&"c (B ′, c (B ′))

]
− E"

[
&"c (B, 0)

])
2

= (WU−1)2E"
[
&"c (B, 0)

]
2

and so the bias of V\ [X (\, g) | g] can be written as

Bias(V\ [X (\, g) | g]) = F1(q,^)� (B, 0) +F2(U, d)2�(B, 0) +F3(d)�(B, 0)2 (7.48)

where F1(q,^) =
(
W2q − 2W^ + 1

)
, F2(U, d) = (WU − 1) (Wd − 1), F3(d) = (Wd − 1)2.

Note that the bias in Eq. 7.48 involves the same terms as the bias of V\ [&\ (B, 0)]
(Eq. 7.35) but are weighted. Hence, there always exist as set of weights such that

|Bias(V\ [X (\, g) | g]) | < |Bias(V\ [&\ (B, 0)]) |. In particular, if d = 1/W , ^ = 1/W ,
q = 1/W2

, then Bias(V\ [X (\, g) | g]) | = 0 for any U . Further, if d = U = ^ = q = 1,

then we have that F1(q,^) = F2(U, d) = F3(d) = (W − 1)2 and so

|Bias(V\ [X (\, g) | g]) | = | (W − 1)2 Bias(V\ [&\ (B, 0)]) |
< |Bias(V\ [&\ (B, 0)]) |,

(7.49)

as desired. �

Theorem 7.2. For any g and any ? ("), given ? (\), if d ∈ (0, 2/W), then EX [X | g]
has lower bias than E\ [&\ (B, 0)]. If d ∈ (0, 2/W), then EX [X | g] has lower bias than
E\ [&\ (B, 0)]. Moreover, if d = 1/W, then EX [X | g] is unbiased. If d ∈ (0, 2/W), U ∈
(0, 2/W), ^ ∈ (0, 2/W) and q ∈ (1 − 2W^, (2/W)2), then V\ [X (\, g) | g] have less bias
than V\ [&\ (B, 0)]. In particular, if d = q = ^ = U = 1, then |Bias(V\ [X (\, g) | g]) | =
| (W − 1)2 Bias(V\ [&\ (B, 0)]) | < |Bias(V\ [&\ (B, 0)]) |. Further, if d = 1/W, ^ = 1/W,
q = 1/W2, then |Bias(V\ [X (\, g) | g]) | = 0 for any U.

Proof. The first part follows from Lemma 7.4, the second from Lemma 7.5. �

7.C Binary Tree MDP 187

7.C Binary Tree MDP

In this Section, we make a direct comparison between the Bootstrapped DQN

and TDU on the Binary Tree MDP introduced by Janz et al. (2019). In this

MDP, the agent has two actions in every state. One action terminates the

episode with 0 reward while the other moves the agent one step further up

the tree. At the final branch, one leaf yields a reward of 1. Which action

terminates the episode and which moves the agent to the next branch is

randomly chosen per branch, so that the agent must learn an action map for

each branch separately. This is a similar environment to Deep Sea, but simpler

in that an episode terminates upon taking a wrong action and the agent does

not receive a small negative reward for taking the correct action. We include

the Binary Tree MDP experiment to compare the scaling property of TDU as

compared to TDU on a well-known benchmark.

We use the default Bsuite implementation
11

of the bootstrapped DQN, with

the default architecture and hyper-parameters from the published baseline,

reported in Table 7.2. The agent is composed of a two-layer MLP with RELU

activations that approximate & (B, 0) and is trained using experience replay. In

the case of the bootstrapped DQN, all ensemble members learn from a shared

replay buffer with bootstrapped data sampling, where each member &\: is

a separate MLP (no parameter sharing) that is regressed towards separate

target networks. We use Adam (Kingma & Ba, 2015) and update target

networks periodically (Table 7.2).

We run 5 seeds per tree-depth, for depths ! ∈ {10, 20, . . . , 250} and report

mean performance in Figure 7.4. Our results are in line with those of Janz et al.

(2019), differences are due to how many gradient steps are taken per episode

(our results are between the reported scores for the 1× and 25× versions

of the bootstrapped DQN). We observe a clear beneficial effect of including

TDU, even for small values of V. Further, we note that performance is largely

monotonically increasing in V , further demonstrating that the TDU signal is

well-behaved and robust to hyper-parameter values.

We study the properties of TDU in Figure 7.5, which reports performance

without prior functions (_ = 0). We vary V and the number of exploration

value functions # . The total number of value functions is fixed at 20, and

so varying # is equivalent to varying the degree of exploration. We note

that # has a similar effect to V , but has a slightly larger tendency to induce

over-exploration for large values of # .

11https://github.com/deepmind/bsuite/tree/master/bsuite/baselines/jax/bootdqn.

7 Lifelong Learning in Autonomous Agents 188

0

1000

2000

3000
#

ep
is

od
es

 u
nt

il
<

 9
0%

 b
ad

 e
pi

so
de

s
experiment: BootDQN

beta: 0.0
experiment: TDU

beta: 0.1

0 50 100 150 200 250

experiment: TDU
beta: 0.5

0 50 100 150 200 250
0

1000

2000

3000

experiment: TDU
beta: 1.0

0 50 100 150 200 250
Tree MDP problem size

experiment: TDU
beta: 5.0

Figure 7.4: Performance on Binary Tree MDP. Top left: BootDQN (V = 0).

Others: TDU with varying strenghts of intrinsic reward (V > 0). Results with

prior strength _ = 3. Mean performance over 5 seeds for each tree depth.

0

1000

2000

3000

4000

5000

#
ep

is
od

es
 u

nt
il

<
 9

0%
 b

ad
 e

pi
so

de
s

experiment: TDU
beta: 0.5

num_explorers: 1

experiment: TDU
beta: 0.5

num_explorers: 5

experiment: TDU
beta: 0.5

num_explorers: 10

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

experiment: TDU
beta: 1.0

num_explorers: 1

0 50 100 150 200 250

experiment: TDU
beta: 1.0

num_explorers: 5

0 50 100 150 200 250
Tree MDP problem size

experiment: TDU
beta: 1.0

num_explorers: 10

Figure 7.5: Hyper-parameter sensitivity analysis on Binary Tree MDP. Top:
Sweep over number of exploration policies (#) for V = 0.5. Top: Sweep over

number of exploration value functions (#) for V = 1. All results without prior

functions (_ = 0). Mean performance over 5 seeds for each tree depth.

7.D Behaviour Suite 189

Basic

Credit Assignment

Exploration

Generalization

Memory

Noise

Scale

.25 .5 .75 1

0.0
0.01
0.5

Basic

Credit Assignment

Exploration

Generalization

Memory

Noise

Scale

.25 .5 .75 1

agent
Q+UCB
QU
TDU

Figure 7.6: Overall performance scores on Bsuite. Left: Effect of varying V.

Right: comparison of TDU to exploration under f = f (Q) as intrinsic reward

(QU) or as an immediate bonus (Q+UCB).

7.D Behaviour Suite

From Osband et al. (2020): “The Behaviour Suite for Reinforcement Learning

(Bsuite) is a collection of carefully-designed experiments that investigate core

capabilities of a reinforcement learning agent . The aim of the Bsuite project is

to collect clear, informative and scalable problems that capture key issues in the

design of efficient and general learning algorithms and study agent behaviour

through their performance on these shared benchmarks.”

7.D.1 Agents and Hyper-Parameters

All baselines use the default Bsuite DQN implementation
12
. We use the default

architecture and hyper-parameters from the published baseline, reported in

Table 7.2, and sweep over algorithm-specific hyper-parameters, reported in

Table 7.3. The agent is composed of a two-layer MLP with RELU activations

that approximate & (B, 0) and is trained using experience replay. In the case of

the bootstrapped DQN, all ensemble members learn from a shared replay buffer

with bootstrapped data sampling, where each member &\: is a separate MLP (no

parameter sharing) that is regressed towards separate target networks. We use

Adam (Kingma & Ba, 2015) and update target networks periodically (Table 7.2).

QEX Uses two networks &\ and &o , where &\ is trained to maximise the

extrinsic reward, while &o is trained to maximise the absolute TD-error of &\

(Simmons-Edler et al., 2019). In contrast to TDU, the intrinsic reward is given

as a point estimate of the TD-error for a given transition, and thus cannot

be interpreted as measuring uncertainty as such.

12https://github.com/deepmind/bsuite/tree/master/bsuite/baselines/jax/dqn.

7 Lifelong Learning in Autonomous Agents 190

Table 7.2: Hyper-parameters for Bsuite.

discount factor (W) 0.99

batch size 32

num hidden layers 2

hidden layer sizes [64, 64]

ensemble size 20

learning rate 0.001

mask prob 1.0

replay size 10000

env steps per gradient step 1

env steps per target update 4

CTS Implements a count-based reward defined by 8 (B, 0,H) = (# (B, 0,H) +
0.01)−1/2, where H is the history and # (B, 0,H) = ∑

g ∈H 1(B,0) ∈g is the number

of times (B, 0) has appeared in a transition g B (B, 0, A, B ′). This intrinsic reward

is added to the extrinsic reward to form an augmented reward A = A + V8 used
to train a DQN agent (Bellemare et al., 2016).

RND Uses two auxiliary networks 5o and 5 o that map a state into vectors

G = 5o (B) and G = 5 o (B), G, G ∈ ℝ<. While
o is a random parameter vector

that is fixed throughout, o is trained to minimise the mean squared error

8 (B) = ‖G − G ‖. This error is simultaneously used as an intrinsic reward in the

augmented reward function A (B, 0) = A (B, 0) + V8 (B) and is used to train a DQN

agent. Following Burda et al. (2018b), we normalise intrinsic rewards by an

exponential moving average of the mean and the standard deviation that are

being updated with batch statistics (with decay U).

BDQN Trains an ensemble Q = {&\: } :=1
of DQNs (Osband et al., 2016a). At

the start of each episode, one DQN is randomly chosen from which a greedy

policy is derived. Data collected is placed in a shared replay memory, and all

ensemble members have some probability d of training on any transition in

the replay. Each ensemble member has its own target network. In addition,

each DQN is augmented with a random prior function 5o , where
o is a fixed

parameter vector that is randomly sampled at the start of training. Each DQN

is defined by &\: + _5o: , where _ is a hyper-parameter regulating the scale of

the prior. Note that the target network uses a distinct prior function.

SU Decomposes the DQN as &\ (B, 0) = F)ko (B, 0). The parameters o are

trained to satisfy the Success Feature identity while F is learned using Bayesian

linear regression; at the start of each episode, a new F is sampled from the

7.D Behaviour Suite 191

Table 7.3: Hyper-parameter grid searches for Bsuite. Best values in bold.

Algorithm Hyper-parameter Sweep set

Q-Explore Intrinsic reward scale (V) {10−3, 0.01, 0.1, 1, 5, 10, 102, 103}
CTS Intrinsic reward scale (V) {10−3, 0.01,0.1, 1, 5, 10, 102, 103}
RND Intrinsic reward scale (V) {0.01, 0.1, 0.5, 1, 5, 10, 100}

G-dim (<) {10, 64, 128}
Moving average decay (U) {0.9, 0.99,0.999}
Normalise intrinsic reward {True,False}

BDQN Prior scale (_) {0, 1,3, 5, 10, 50, 100}

SU Hidden size {20,64}
Likelihood variance (V) {0.01, 0.1, 1, 10, 102}
Prior variance (\) {0.001, 0.01, 0.1, 1, 10, 103}

NNS Noise scale (V) {0.01, 0.1, 1, 10, 100}

TDU Prior scale (_) {0, 1,3}
Intrinsic reward scale (V) {10−3, 0.01, 0.1, 1, 5, 10}

posterior ? (F | history) (Janz et al., 2019).
13

NNS NoisyNets replace feed-forward layers ,G + 1 by a noisy equivalent

(, +Σ�n,)G + (1+f �n1), where � is element-wise multiplication; n,
8 9
∼ N(0, V)

and n18 ∼ N(0, V) are white noise of the same size as , and 1, respectively.

The set (,, Σ, 1, f) are learnable parameters that are trained on the normal

TD-error, but with the noise vector re-sampled after every optimisation step.

Following Fortunato et al. (2018), sample noise separately for the target and

the online network.

TDU We fix the number of explorers to 10 (half of the number of value

functions in the ensemble), which roughly corresponds to randomly sam-

pling between a reward-maximising policy and an exploration policy. Our

experiments can be replicated by running the TDU agent implemented in

Algorithm 7.5 in the Bsuite GitHub repository.
14

7.D.2 TDU Experiments

Effect of TDU Our main experiment sweeps over V to study the effect of

increasing the TDU exploration bonus, with V ∈ {0, 0.01, 0.1, 0.5, 1, 2, 3, 5};
13
See https://github.com/DavidJanz/successor_uncertainties_tabular.

14https://github.com/deepmind/bsuite/blob/master/bsuite/baselines/jax.

7 Lifelong Learning in Autonomous Agents 192

V = 0 corresponds to default bootstrapped DQN. We find that V reflects the

exploitation-exploration trade-off: increasing V leads to better performance on

exploration tasks (see main paper) but typically leads to worse performance

on tasks that do not require further exploration beyond n-greedy (Figure 7.6).

In particular, we find that V > 0 prevents the agent from learning on Mountain

Car, but otherwise retains performance on non-exploration tasks. Figure 7.7

provides an in-depth comparison per game.

Because f is a principled measure of concentration in the distribution ? (X | B, 0, A, B ′),
V can be interpreted as specifying how much of the tail of the distribution

the agent should care about. The higher we set V , the greater the agent’s

sensitivity to the tail-end of its uncertainty estimate. Thus, there is no reason

in general to believe that a single V should fit all environments, and recent

advances in multi-policy learning (Schaul et al., 2019; Zahavy et al., 2020;

Puigdomènech Badia et al., 2020) suggests that a promising avenue for further

research is to incorporate mechanisms that allow either V to dynamically adapt

or the sampling probability over policies. To provide concrete evidence to that

effect, we conduct an ablation study that uses bandit policy sampling below.

Effect of prior functions We study the inter-relationship between additive

prior functions (Osband et al., 2019) and TDU. We sweep over _ ∈ [0, 1, 3],
where prior functions define value function estimates by &: = &\: + _%: for

some random network %: . Thus, _ = 0 implies no prior function. We

find a general synergistic relationship; increasing _ improves performance

(both with and without TDU), and for a given level of _, performance on

exploration tasks improve for any V > 0. It should be noted that these effects

do no materialise as clearly in our Atari settings, where we find no conclusive

evidence to support _ > 0 under TDU.

Ablation: exploration under non-TD signals To empirically support the-

oretical underpinnings of TDU, we conduct an ablation study where f is

re-defined as the standard deviation over value estimates:

f (Q) B

√√√
1

 − 1

 ∑
:=1

&: − &. (7.50)

In contrast to TDU, this signal does not condition on the future and conse-

quently is a biased estimate of epistemic uncertainty. We apply this signal

both as in intrinsic reward (QU), as in TDU, and as an UCB-style exploration

bonus (Q+UCB), where f is instead applied while acting by defining a policy

7.D Behaviour Suite 193

by c (·) = argmax 0& (·, 0) + Vf (Q; ·, 0). Note that TDU cannot be applied in this

way because the TDU exploration signal depends on A and B ′. We tune each

baseline over the same set of V values as above (incidentally, these coincide to

V = 1) and report best results in Figure 7.6. We find that either alternative

is strictly worse than TDU. They suffer a significant drop in performance on

exploration tasks, but are also less able to handle noise and reward scaling.

These findings are in line with theory, as noise makes bias more likely in

uncertainty estimates over Q. Moreover, biased uncertainty estimates will

negatively impact the agent’s ability to explore.

Ablation: bandit policy sampling Our main results indicate, unsurprisingly,

that different environments require different emphasis on exploration. To test

this more concretely, in this experiment we replace uniform policy sampling

with the UCB1 bandit algorithm. However, in contrast to that example, where

UCB1 is used to take actions, here it is used to select a policy for the next

episode. We treat each # + value function as an “arm” and estimate its

mean reward + : ≈ Ec: [A], where the expectation is with respect to rewards A

collected under policy c: (·) = argmax 0&
: (·, 0). The mean reward is estimated

as the running average

+ : (=) = 1

=(:)

= (:)∑
8=1

A8, (7.51)

where =(:) is the number of environment steps for which policy c: has

been used and A8 are the observed rewards under policy c: . Prior to an

episode, we choose a policy to act under according to: argmax :=1,...,#+ +
: (=) +

[
√

log=/=(:), where = is the total number of environment steps taken so far and

[is a hyper-parameter that we tune. As in the bandit example, this sampling

strategy biases selection towards policies that currently collect higher reward,

but balances sampling by a count-based exploration bonus that encourages the

agent to eventually try all policies. This bandit mechanism is very simple as our

purpose is to test whether some form of adaptive sampling can provide benefits;

more sophisticated methods (e.g. Schaul et al., 2019) can yield further gains.

We report full results in Figure 7.7; we use V = 1 and tune [∈ {0.1, 1, 2, 4, 6, 8}.
We report results for the hyper-parameter that performed best overall, [= 8,

though differences with [> 4 are marginal. While TDU does not impact

performance negatively in general, in the one case where it does—Mountain

Car—introducing a bandit to adapt exploration can largely recover performance.

The bandit yields further gains in dense reward settings, such as in Cartpole

7 Lifelong Learning in Autonomous Agents 194

0
0.25
0.50
0.75

1

sc
or

e

bandit

0.0
0.01
0.5
1.0
1.0 + bandit

mnist catch mountain_car cartpole

0
0.25
0.50
0.75

1
bandit_noise mnist_noise catch_noise mountain_car_noise cartpole_noise

0
0.25
0.50
0.75

1
bandit_scale mnist_scale catch_scale mountain_car_scale cartpole_scale

0
0.25
0.50
0.75

1
deep_sea deep_sea_stochastic cartpole_swingup

0.00.01 0.5 1.0

1.0 + bandit

umbrella_length

0.00.01 0.5 1.0

1.0 + bandit

umbrella_distract

0.00.01 0.5 1.0

1.0 + bandit
0

0.25
0.50
0.75

1
discounting_chain

0.00.01 0.5 1.0

1.0 + bandit

memory_len

0.00.01 0.5 1.0

1.0 + bandit

memory_size

Figure 7.7: Bsuite per-task results. Results reported for different values of V

with prior _ = 3. We also report results under UCB1 policy sampling (“bandit”)

for V = 1, _ = 3, [= 8.

and Catch, with an outlying exception in the bandit setting with scaled rewards.

7.E Atari with R2D2

7.E.1 Bootstrapped R2D2

We augment the R2D2 agent with an ensemble of dueling action-value heads

&8 . The behavior policy followed by the actors is an n-greedy policy as before,

but where the greedy action is determined according to a single &8 for a fixed

length of time (100 actor steps in all of our experiments), before sampling

a new &8 uniformly at random. The evaluation policy is also n-greedy with

n = 0.001, where the Q-values are averaged only over the exploiter heads.

7.E Atari with R2D2 195

Table 7.4: R2D2 hyper-parameters.

Ensemble size 10

Optimizer Adam (Kingma & Ba, 2015)

Learning rate 0.0002

Adam epsilon 0.001

Adam beta1 0.9

Adam beta2 0.999

Adam global clip norm 40

Discount 0.997

Batch size 64

Trace length 80

Replay period 40

Burn in length 20

_ for RL loss 0.97

R2D2 reward transformation sign(G) · (
√
|G | + 1 − 1) + 0.001 · G

Replay capacity (num of sequences) 145

Replay priority exponent 0.9

Importance sampling exponent 0.6

Minimum sequences to start replay 5000

Actor update period 100

Target Q-network update period 400

Evaluation n 0.001

Each trajectory inserted into the replay buffer is associated with a binary mask

indicating which &8 will be trained from this data, ensuring that the same

mask is used every time the trajectory is sampled. Priorities are computed as

in R2D2, except that TD-errors are now averaged over all heads.

Instead of using reward clipping, R2D2 estimates a transformed version of

the state-action value function to make it easier to approximate for a neural

network. One can define a transformed Bellman operator given any squashing

function ℎ : ℝ → ℝ that is monotonically increasing and invertible. We use

the function ℎ : ℝ ↦→ ℝ defined by

ℎ(I) = sign(I) (
√
|I | + 1 − 1) + nI, (7.52)

ℎ−1(I) = sign(I)
((√

1 + 4n (|I | + 1 + n) − 1

2n

)
− 1

)
, (7.53)

for n small. In order to compute the TD errors accurately we need to account

for the transformation,

X (\, B, 0, A, B ′) B Wℎ−1(&\ (B ′, c (B ′))) + A − ℎ−1(&\ (B, 0)). (7.54)

7 Lifelong Learning in Autonomous Agents 196

Similarly, at evaluation time we need to apply ℎ−1 to the output of each

head before averaging.

When making use of a prior we use the form &: = &:
\
+ _%: , where %: is of the

same architecture as the &:
\
network, but with the widths of all layers cut to

reduce computational cost. Finally, instead of n-step returns we utilise & (_)
(Peng & Williams, 1994) as was done in (Guez et al., 2020). In all variants

we used the hyper-parameters listed in Table 7.4.

7.E.2 Pre-processing

We used the standard pre-process of the frames received from the Arcade

Learning Environment.
15

See Table 7.5 for details.

7.E.3 Hyper-Parameter Selection

Table 7.5: Atari pre-processing hyperparame-

ters.

Max episode length 30 min

Num. action repeats 4

Num. stacked frames 4

Zero discount on life loss 5 0;B4

Random noops range 30

Sticky actions 5 0;B4

Frames max pooled 3 and 4

Grayscaled/RGB Grayscaled

Action set Full

In the distributed setting

we have three TDU-specific

hyper-parameters to tune

namely: V , # and the prior

weight _. For our main

results, we run each agent

across 8 seeds for 20 bil-

lions steps. For ablations

and hyper-parameter tun-

ing, we ran agents across 3

seeds for 5 billion environ-

ment steps on a subset of 8

games: frostbite,gravitar,

hero, montezuma_revenge, ms_pacman, seaquest, space_invaders, venture. This

subset presents quite a bit of diversity including dense-reward games as well

as three hard exploration games: gravitar, montezuma_revenge and venture.

To minimise the computational cost, we started by setting _ and # while main-

taining V = 1. We employed a coarse grid of _ ∈ {0., 0.05, 0.1} and # ∈ {2, 3, 5}.
Figure 7.8 summarises the results in terms of the mean Human Normalised

Scores (HNS) across the set. We see that the performance depends on the type

of games being evaluated. Specifically, hard exploration games achieve a signifi-

cantly lower score. Performance does not significantly change with the number

of explorers. The largest differences are observed for the exploration games

15
Publicly available at https://github.com/mgbellemare/Arcade-Learning-Environment.

7.E Atari with R2D2 197

when # = 5. We select best performing sets of hyper parameters for TDU with

and without additive priors: (# = 2, _ = 0.1) and (# = 5, _ = 0), respectively.

0

2

4

6

8

10

0

2

4

6

8

10 ablation games

0

2

4

6

8

10

0 2 4
Environment steps 1e9

0.0

0.5

1.0

1.5

2.0

: 0.0, N: 2
: 0.05, N: 2
: 0.1, N: 2

0 2 4
Environment steps 1e9

0.0

0.5

1.0

1.5

2.0
exploration games

: 0.0, N: 3
: 0.05, N: 3
: 0.1, N: 3

0 2 4
Environment steps 1e9

0.0

0.5

1.0

1.5

2.0

: 0.0, N: 5
: 0.05, N: 5
: 0.1, N: 5

Figure 7.8: Ablation for prior scale, _ and the number of explorers, # , on the

distributed setting. We fix V = 1. Refer to the text for details on the ablation

and exploration set of games.

We evaluate the influence of the exploration bonus strength by fixing (# =

5, _ = 0) and choosing V ∈ {0.1, 1., 2.}. Figure 7.9 summarises the results. The

set of dense rewards is composed of the games in the ablation set that are not

considered hard exploration games. We observe that larger values of V help

on exploration but affect performance on dense reward games. We plot jointly

the performance in mean HNS acting when averaging the Q-values for both,

the exploiter heads (solid lines) and the explorer heads (dotted lines). We

can see that higher strengths for the exploration bonus (higher V) renders the

explorers “uninterested” in the extrinsic rewards, preventing them to converge

to exploitative behaviours. This effect is less strong for the hard exploration

games. Figure 7.10 we show how this effect manifests itself on the performance

on three games: gravitar, space_invaders, and hero. This finding also applies

to the evaluation performed on our evaluation using all 57 games in the Atari

suite, as shown below. We conjecture that controlling for the strength of the

exploration bonus on a per game manner would significantly improve the

results. This finding is in line with observations made by (Puigdomènech Badia

et al., 2020); combining TDU with adaptive policy sampling (Schaul et al.,

7 Lifelong Learning in Autonomous Agents 198

0 2 4
Environment steps 1e9

0

2

4

6

8

10 ablation games

0 2 4
Environment steps 1e9

0.0

2.5

5.0

7.5

10.0

12.5

15.0
dense reward games

exploit

explore

0 2 4
Environment steps 1e9

0.0

0.5

1.0

1.5

2.0
exploration games

: 0.1
: 1.0
: 2.0

Figure 7.9: Ablation for the exploration bonus strength, V , on the distributed

setting. We fix (# = 5, _ = 0). We report the mean HNS for the ensemble of

exploiter (solid lines) and the ensemble of explorers (dotted lines). All runs

are average over three seeds per game. Refer to the text for details on ablation

and exploration set of games.

0 1 2 3 4
Environment steps 1e9

0

2000

4000

6000

8000

10000

12000

gravitar

0 1 2 3 4
Environment steps 1e9

0

10000

20000

30000

40000

50000

60000

space_invaders

exploit

explore

0 1 2 3 4
Environment steps 1e9

0

10000

20000

30000

40000

hero

: 0.1
: 1.0
: 2.0

Figure 7.10: Ablation for the exploration bonus strength, V , on the distributed

setting. We fix (# = 5, _ = 0). We report the score on three different games for

the ensemble of exploiter (solid lines) and the ensemble of explorers (dotted

lines). All runs are average over three seeds per game.

2019) or online hyper-parameter tuning (Xu et al., 2018a; Zahavy et al., 2020)

are exciting avenues for future research.

7.E.4 Detailed Results: Main Experiment

In this Section we provide more detailed results from our main experiment

in Section 7.5.2. We concentrated our attention on the subset of games that

are well-known to pose challenging exploration problems (Machado et al.,

2018): montezuma_revenge, pitfall, private_eye, solaris, venture, gravitar,

and tennis. We also add a varied set of dense reward games.

Figure 7.11 shows the performance for each game. We can see that TDU

7.E Atari with R2D2 199

0.0 0.5 1.0 1.5 2.0
1e10

0

200000

400000

600000

800000

1000000
seaquest

0.0 0.5 1.0 1.5 2.0
1e10

0

25000

50000

75000

100000

frostbite

0.0 0.5 1.0 1.5 2.0
1e10

0

10000

20000

30000

40000
ms_pacman

0.0 0.5 1.0 1.5 2.0
1e10

0

20000

40000

60000

space_invaders

0.0 0.5 1.0 1.5 2.0
1e10

0

5000

10000

15000

gravitar

0.0 0.5 1.0 1.5 2.0
1e10

10000

20000

30000

40000
hero

0.0 0.5 1.0 1.5 2.0
1e10

0

500

1000

1500

2000

2500
venture

0.0 0.5 1.0 1.5 2.0
1e10

0

2000

4000

montezuma_revenge

0.0 0.5 1.0 1.5 2.0
1e10

0

5000

10000

15000

solaris

0.0 0.5 1.0 1.5 2.0
1e10

0

20000

40000

60000

80000

private_eye

0.0 0.5 1.0 1.5 2.0
1e10

?10

0

10

20

tennis

TDU-R2D2-PRIOR

TDU-R2D2

R2D2

B-R2D2

Figure 7.11: Performance on each game in the main experiment in Section 7.5.2.

Shading depicts standard deviation over 8 seeds.

always performs on par or better than each of the baselines, leading to sig-

nificant improvements in data efficiency and final score in games such as

montezuma_revenge, private_eye, venture, gravitar, and tennis. Gains in

exploration games can be substantial, and in montezuma_revenge, private_eye,

venture, and gravitar, TDU without prior functions achieves statistically signif-

icant improvements. TDU with prior functions achieve statistically significant

improvements on montezuma_revenge, private_eye, and gravitar. Beyond

this, both methods improve the rate of convergence on seaquest and tennis,

and achieve higher final mean score. Overall, TDU yields benefits across both

dense reward and exploration games, as summarised in Figure 7.12. Note that

R2D2’s performance on dense reward games is deflated due to particularly low

scores on space_invaders. Our results are in line with the original publication,

where R2D2 does not show substantial improvements until after 35 Bn steps.

7.E.5 Full Atari suite

In this Section we report the performance on all 57 games of the Atari suite.

In addition to the two configurations used to obtain the results presented in

the main text (reported in Section 5.2), in this Section we included a variant of

7 Lifelong Learning in Autonomous Agents 200

0.0 0.5 1.0 1.5 2.0
Environment steps 1e10

0

2

4

6

8

ablation games

0.0 0.5 1.0 1.5 2.0
Environment steps 1e10

0

5

10

15

dense reward games

0.0 0.5 1.0 1.5 2.0
Environment steps 1e10

0.5

1.0

1.5

exploration games

TDU-R2D2-PRIOR

TDU-R2D2

R2D2

B-R2D2

Figure 7.12: Performance across all games in the main experiment in Sec-

tion 7.5.2. We report mean HNS over the full set of games used in the main

experiment, dense reward games, and exploration games. Shading depicts

standard deviation over 8 seeds.

0.00 0.25 0.50 0.75 1.00
Environment steps1e10

10

20

30

mean HNS

0.00 0.25 0.50 0.75 1.00
Environment steps1e10

2

4

6

8

10

median HNS

0.00 0.25 0.50 0.75 1.00
Environment steps1e10

0.50

0.75

1.00

1.25

1.50

mean HNS exploration

TDU-R2D2-PRIOR

TDU-R2D2-PRIOR-L

TDU-R2D2

TDU-R2D2-L

R2D2

B-R2D2

Figure 7.13: Performance over the 57 atari games. We report mean and median

HNS over the full suite, and mean HNS over the exploration games.

each of them with lower exploration bonus strength of _ = 0.1. In all figures

we refer to these variants by adding an L (for lower _) at the end of the

name, e.g. TDU-R2D2-L. In Figure 7.13 we report a summary of the results

in terms of mean HNS and median HNS for the suite as well as mean HNS

restricted to the hard exploration games only. We show the performance on

each game in Figure 7.14. Reducing the value of V significantly improves the

mean HNS without strongly degrading the performance on the games that are

challenging from an exploration standpoint. The difference in performance in

terms of mean HNS can be explained by looking at a few high scoring games,

for instance: assault, asterix, demon_attack and gopher (see Figure 7.14).

We can see that incorporating priors to TDU is not crucial for achieving high

performance in the distributed setting.

7.E Atari with R2D2 201

20000

40000

60000

80000

100000
alien

10000

20000

30000
amidar

0

100000

200000

asteroids

500000

750000

1000000

1250000

1500000

atlantis

20000

40000

60000

80000

assault

200000

400000

600000

800000

1000000
asterix

0

10000

20000

30000

40000

bank_heist

200000

400000

600000

800000

battle_zone

40000

60000

80000

100000

beam_rider

0

20000

40000

60000

berzerk

100

150

200

250

bowling

85

90

95

boxing

400

600

800

breakout

200000

400000

centipede

200000

400000

600000

800000

1000000
chopper_command

100000

150000

200000

250000

crazy_climber

200000

300000

400000

500000

defender

50000

75000

100000

125000

demon_attack

0

10

20

double_dunk

2000

2100

2200

2300

2400
enduro

20

40

60

80

fishing_derby

25

30

freeway

10000

20000

30000

40000

frostbite

100000

105000

110000

115000

120000

gopher

2500

5000

7500

10000

12500
gravitar

20000

30000

40000

hero

0

20

40

60
ice_hockey

5000

10000

15000

20000

jamesbond

10000

12000

14000

kangaroo

50000

100000

150000

200000

krull

100000

150000

200000

kung_fu_master

0

2000

4000

6000

montezuma_revenge

10000

20000

30000

ms_pacman

20000

30000

40000
name_this_game

0

200000

400000

600000

800000

phoenix

-40

-20

0

pitfall

-10

0

10

20

pong

0

20000

40000

60000
private_eye

0

100000

200000

300000

400000

qbert

15000

20000

25000

30000

riverraid

200000

300000

400000

500000

600000
road_runner

25

50

75

100

robotank

250000

500000

750000

1000000
seaquest

-30000

-29500

-29000

-28500
skiing

5000

10000

solaris

0

20000

40000

60000

space_invaders

100000

150000

200000

250000

300000
star_gunner

0

5

10
surround

0

10

20

tennis

100000

200000

300000

400000

time_pilot

200

300

400
tutankham

300000

400000

500000

up_n_down

1600

1800

2000
venture

250000

500000

750000

1000000
video_pinball

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e10

20000

40000

60000

80000

100000
wizard_of_wor

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e10

200000

400000

600000

800000

yars_revenge

0.0 0.2 0.4 0.6 0.8 1.0
Environment steps 1e10

30000

40000

50000

zaxxon

TDU-R2D2-PRIOR

TDU-R2D2-PRIOR-L

TDU-R2D2

TDU-R2D2-L

R2D2

B-R2D2

Figure 7.14: Results for each individual game. Shading depicts standard

deviation over 3 seeds.

202

8 Conclusion

This thesis has considered ways of producing learning systems that can learn

to learn at scale. The contributions in the thesis are well situated within

the burgeoning literature on neural network-based meta-learning. This final

chapter begins by summarising the point of view taken in the thesis and the

analyses and methods that have developed from that. It concludes by outlining

contributions of this thesis before turning to limitations of the proposed methods.

Finally, it looks ahead to future research needed to overcome these limitations.

8.1 Thesis Summary

This thesis has been based on the premise that meta-learning is a critical

component for reaching human-level intelligence in an AI (Chapter 1). By

synthesising a body of work that aims to define artificial intelligence, a key

component was found to be the ability to perform future, unknown problems in

a cumulative, never-ending process (Section 1.1). This in turn implies learning

must incorporate the adaptive nature of intelligence. A natural way to do so

is through the perspective of meta-learning (Chapter 3).

Historically, meta-learning was thought of as a general machine that would take

a description of the current model and current experience and produce a new

model (Section 3.3). From this perspective, learning and meta-learning are two

continuous, intertwined processes. Contemporary meta-learning has instead

favoured a sharp distinction between learning a model and meta-learning

how to learn that model (Section 3.5). This formalism provides a rigorous

framework for applying conventional machine learning protocols (Chapter 2)

to meta-learning and has generated substantial momentum for meta-learning

research (Chapter 3). Within this space, this thesis is motivated by three key

limitations of current meta-learning (Section 1.2): scalability, generalisation,

and the need of a task distribution. The contributions of the thesis are steps

towards scalable solutions to these limitations.

8.1 Thesis Summary 203

Generalisation Chapter 4 studies the expressive capacity of neural networks

and identifies a bottleneck stemming from typical activation functions. As

these are predominantly linear over their domains, they reduce the adaptive

capacity of neural networks over the data domain. Based on this insight,

this work develops a method to adaptively parameterise neural networks and

proved that very simple forms of adaptive parameterisation can carry universal

representational capacity. Empirically, adaptive parameterisation leads to

greater efficiency in a variety of domains; as evidenced by achieving state-of-

the-art performance on two common natural language processing datasets and

by achieving state-of-the-art performance on a challenging meta-reinforcement

learning benchmark (Chapter 6).

Scalability Chapter 5 studies the typical meta-learning protocol (Section 3.5)

where the goal is to meta-learn over a distribution of tasks. The meta-learner

has access to a set of tasks for meta-training and is evaluated on held-out

tasks once meta-training is complete. Motivated by the goal to scale beyond

few-shot learning, this work proposes an alternative perspective of gradient-

based meta-learning derived from geometrical properties of gradient descent.

It derives a novel algorithm whose meta-gradient can be approximated with

low error without backpropagating through the task adaptation process. This

allows the proposed algorithm to scale far beyond few-shot learning, opening

up for meta-learning at scale.

Chapter 6 builds on the insights of Chapters 4 and 5. Based on Riemannian

geometry, this work proposes a method for meta-learning a gradient based

learning rule that is embedded in a task-adaptive model. This method is

first-order equivalent to meta-learning a metric tensor across a distribution of

tasks; in other words, it is equivalent to learning a warped gradient field (or

more generally, vector field) for learning across a distribution of tasks. The

method is the first gradient-based meta-learner whose meta-objective does not

rely on evaluating a full learning trajectory, and thus avoids back-propagating

through the adaptation process without the need for approximations. This

work introduces a single algorithm which—to the best of our knowledge is

the first of its kind—that can learn-to-learn across several learning problems,

including few-shot, supervised, and reinforcement learning. Finally, this work

introduces a novel form of meta-learning, meta-learning to continually learn,

and demonstrates that the proposed method can meta-learn how to avoid

catastrophic forgetting.

8 Conclusion 204

Exogenous Tasks Chapter 7 removes task distributions and instead focuses

on an agent that must construct its own abstract tasks. Focusing on exploration

as a means of inducing tasks, this work analyses challenges that arise when

estimating uncertainty over value functions. Based on insights from this

analysis, it instead proposes a method for estimating uncertainty over temporal

difference errors. By conditioning on an observed transition, the estimator

can leverage the temporal structure in the value estimate to reduce the bias

in its estimate of uncertainty.

The proposed signal requires some algorithmic advances, as it cannot be used

for posterior sampling (Strens, 2000), nor as an intrinsic reward (Singh et al.,

2005). Instead, this work introduces a special form of a multi-agent game,

where an exploration policy is tasked with finding data where an exploitation

policy has maximal uncertainty. This form of exploration can be highly efficient

in hard exploration games, in particular under environment stochasticity,

and generally outperforms other state-of-the-art exploration methods on the

environments considered. A striking implication is that this “exploration game”

implicitly gives rise to a task distribution, or rather, an automatic curriculum.

The implication of this is discussed momentarily in Section 8.3.

8.2 Contributions

8.2.1 Scalability

Issues of scalability are arguably the most pressing concern for the field today.

These issues have arisen because most meta-learning with neural networks

is designed for the few-shot learning scenario. The scalability problem is

characterised by tasks that exhibit extreme data-scarcity. Because of such

scarcity, learning is by necessity lightweight in that it must rely on non-

parametric approaches, a few steps of adaptation, or in some other way rely

heavily on a (typically meta-learned) prior. Because the task learning process

is assumed to be lightweight, meta-learning can be computationally expensive.

MAML, for instance, requires backpropagating through the entire learning

process for each task in a mini-batch of tasks to compute a single meta-gradient.

Unfortunately, many real-world applications are not few-shot in nature, partic-

ularly so when they involve reinforcement learning. For instance, personalised

technological services can be seen as a meta-learning problem, but in general

it will take more than a few seconds of human interaction for the model to

adapt to its user. At present, there appears to be no meta-learning system that

can scale to such problems, although this thesis has taken a first initial step.

8.2 Contributions 205

Indeed one goal of this thesis is to develop methods for meta-learning that

are scalable and can be applied to large-scale problems. Leap, presented in

Chapter 5, is a first step in this direction. Inspired by MAML, Leap is primarily

designed to meta-learn an initialisation that is useful across a distribution

of tasks. While MAML is defined within the few-shot paradigm, Leap is

moulded from an altogether different philosophy. Instead of meta-learning

the initialisation for optimal performance within a -step adaptation budget,

Leap is derived in terms of the characteristics of an arbitrary learning process.

Leap learns about gradient fields over a distribution of manifolds, with the

goal of finding an initialisation from which learning does not have to travel

“far” on any one task from the given task distribution, irrespective of how

many steps are actually taken on any one task.

Because it is derived based on first principles of geometrical quantities that

arise naturally during task adaptation, the resulting algorithm can circumvent

the need to backpropagate through the adaptation process. Thus, Leap

can be scaled to learning problems whose complexity goes far beyond those

that previous works have considered. While Leap provides us with means

of scaling gradient-based meta-learning of an initialisation beyond few-shot

learning, a key limitation of this class of algorithms is that they compress

all meta-knowledge into a single point that interacts with task learning only

once—at initialisation. This limits meta-learning both in that it imposes a

potentially severe bottleneck—by compressing full trajectories into a single

point—and because it renders the inductive bias provided by meta-learning

passive: after the initialisation, the meta-learner has no means by which it

can steer the learning process.

In response to these limitations, Chapter 6 develops a stronger form of meta-

learning explicitly designed for meta-learning at scale. The WarpGrad frame-

work presents a principled approach to blending black-box meta-learning

with gradient-based meta-learning. By fusing the meta-learner with the task

learner, WarpGrad is always interacting with—and therefore has far greater

influence over—the learning process.

Because warp-layers are generic, they can be represented by universal func-

tion approximators and can therefore, in principle, represent any gradient-

based learning rule. Moreover, WarpGrad explicitly avoids backpropagating

through the learning process by leveraging its interaction on a meta-learned

Riemannian manifold.

8 Conclusion 206

A consequence of this is that WarpGrad can readily be applied to problems

for which an adaptation from a shared initialisation is not a well-defined

concept, such as in continual learning. WarpGrad is directly applicable to any

form of learning, including supervised, unsupervised, reinforcement, online,

and continual learning. The work in this thesis demonstrates developments

in several of these learning paradigms, paving the way for a comprehensive

meta-learner that can be made relevant to real-world applications.

8.2.2 Generalisation

One outcome from WarpGrad is that more expressive forms of meta-learning

yield better results (Section 6.F). The ablation studies showed that non-linear

interaction between the learned update rule and the task learner’s parameters

greatly improved performance, and indeed the meta-learned update rule could

empirically outperform efficient algorithms such as Natural Gradient Descent

when starting from the same initialisation.

Moreover, in the meta-reinforcement learning setting, it demonstrated that it is

possible to achieve strong gains over the learning to reinforcement learn algo-

rithm (Wang et al., 2016a; Duan et al., 2016). This algorithm parameterises the

meta-learner as an RNN, and while Turing Complete, limits the interaction be-

tween the algorithm and the learner to the hidden state of the RNN. WarpGrad

demonstrates that—by utilising the architecture proposed in Chapter 4—more

complex interactions can vastly improve performance. What makes the pro-

posed architecture powerful in the meta-learning setting is that it provides a

means of adapting not only the learner but the meta-learner. In particular,

since the parameters of the RNN defines the algorithm, dynamically adapting

those parameters amounts to dynamically adapting the algorithm itself.

In general, the question of what architectures provide stronger meta-learners

has received far less attention and is still a largely unanswered question

(Chapter 3). Chapter 4 provides some answers in this direction by noting that

neural networks are typically relatively inefficient: each layer behaves as a linear

operator over large parts of their domain. By factorising neural networks into

a composition of linear maps, this work suggests that the expressive capacity of

a layer can be increased by adaptively parameterising the layer. An immediate

consequence of the proposed mechanism is to provide a natural avenue for

slow and fast weights in neural networks that embed a meta-learner.

8.2 Contributions 207

8.2.3 Exogenous Tasks

Above contributions rely on an exogenously given task or task distribution.

A potential issue for modern meta-learning is the reliance on a predefined

task distribution. This is particularly challenging in the reinforcement learning

domain, where the number of tasks in current task distributions are in the

singular or double digits range (Finn et al., 2017; Packer et al., 2018; Cobbe

et al., 2019; Yu et al., 2020), far too few to enable meta-generalisation.
16

One

possible solution to this problem is to place the definition of a task within the

meta-learner itself. In particular, in reinforcement learning, we can provide

an agent with a single environment that the agent can use to induce its own

distribution of tasks (Silver et al., 2018; Vinyals et al., 2019; Al-Shedivat et al.,

2018; Sukhbaatar et al., 2018).

The final contribution of this thesis (Chapter 7) takes steps in this direction by

developing a reinforcement learning system that can be seen as simultaneously

proposing and solving abstract “tasks” induced by the set of value functions

currently in the distribution. The proposed algorithm, TDU, defines two jointly

learnable policies, c and `, where c is learned to maximise rewards on its own

data and data collected by the exploration policy `.

The exploration policy, `, is tasked with collecting data where the greedy policy,

c , has high uncertainty over the value of its policy, as measured by a learned

distribution ? (&c). This distribution induces a task for ` by defining a specific

intrinsic reward function. For any given parameterisation of ? (&c), there will

be regions in the state-space where uncertainty is maximised: the task for ` is

to collect data from these regions. This data is then used to evaluate uncertainty

over c ; the goal of c (or rather, of ? (&c)), is to minimise this uncertainty. Thus

as the estimate ? (&c) fit to the data collected by `, its uncertainty will decrease

and ` must seek out other regions with higher uncertainty, thus inducing a new

task for `. In this way, TDU proposes a never-ending learning system where c

and ` define task distributions for one another via a form of multi-player game.

Because c implicitly defines the task facing `, the notion of task in this system

is well defined and meaningful, solving a task means collecting data where the

agent is maximally uncertain over the value of its reward-maximising policy.
17

Notably, these policies are defined in terms of parameter space. Therefore, these

16
A notable concurrent exception is (Metz et al., 2020), which presents a meta-training set of

1000s of tasks. They demonstrate strong benefits to meta-generalisation from increasing the

number of meta-training tasks. Collecting thousands of reinforcement learning domains seems

very unlikely.

17
Conversely, for c to solve a task means maximally reducing uncertainty over the value of c

on the data collected by itself and by `.

8 Conclusion 208

tasks implicitly define a distribution ? (\) that can be used for meta-learning.

The benefit of inducing tasks in the manner of TDU is that we may benefit

from constructing tasks in a more structured—and potentially smaller—space

than an abstract high-dimensional parameter space.

While each of the contributions in this thesis target basic components for an

AI that achieves the properties identified in Chapter 1, they each have certain

limitations that must be addressed before they can give rise to an AI powered

by a scalable gradient-based meta-learning system.

8.3 Limitations and Future Work

This thesis relies on the notion of optimisation as machine learning, and thus

inherits limitations that arise by formulating learning as an optimisation prob-

lem (Eq. 2.4). In particular, taking an optimisation-view on meta-learning, it is

a conventional machine learning problem but over an unconventional quantity;

a distribution of machine learning problems (as opposed to a distribution of

data). A central limitation of this perspective is that of generalisation, indeed

all frameworks considered in this thesis assume access to an i.i.d. sampled of

data, an assumption that becomes burdensome in meta-learning.

A meta-learner samples tasks. Manually building i.i.d. task distributions can be

just as challenging as engineering machine learning solutions. As an example

of the monumental effort that goes into defining task (or task distributions),

in order to train autonomous vehicles, car manufacturers have built a 32-acre

uninhabited metropolis just for autonomous vehicles’ research.
18

Currently,

scaling meta-learning to complex tasks is hampered by a lack of suitable task

distributions (Hospedales et al., 2020). One possible solution is to simply create

ever-larger task distributions, but not only does this seem infeasible, it also

appears to run counter to the notion of a continually adapting AI.

While the TDU algorithm (Chapter 7) proposes one way to internalise an

abstract task distribution, it does not leverage the structure of the world to

generate meaningful tasks. In particular, tasks are only interesting insofar that

they force the agent to try new behaviours, but there are no guarantees that

the tasks that arise have this property. One possible way forward would be to

explicitly meta-learn the task distribution under a model of the data-generating

process. In supervised learning, this would mean learning a distribution over

data-generative processed (Such et al., 2020); for reinforcement learning, it

would mean learning a distribution over models (Ferreira et al., 2021).

18
Home page: https://mcity.umich.edu/our-work/mcity-test-facility/.

8.3 Limitations and Future Work 209

There are two critical challenges with this approach. The first is the computa-

tional complexity of meta-learning a data-generating process; it is difficult to

imagine how a task parameterised as a neural network would be a small, simple

architecture. More likely, such neural tasks would require very large networks

and enormous amounts of computation. The second challenge is to define

a coherent meta-learning objective that promotes learning of a well-behaved

task distribution. The approach taken in previous works is to learn a data-

generative process with respect to some reference machine learning problem.

This approach however falls into the trap of requiring a task distribution, this

time to evaluate the meta-learned task distribution.

Perhaps a more promising way forward would be to, instead of defining

tasks, define a consistent environment within which tasks naturally arise.

The problem is then to train an AI that lives in this consistent environment

indefinitely while facing a continuous stream of experience as it interacts with

the world. At its most extreme, we can imagine an AI that lives in the real

world, say through a digital interface with access to the internet. Researchers

have already started to make inroads into this problem space (Mahdavinejad

et al., 2018; Yao et al., 2018b). One immediate challenge for AIs that learn

from humans is that such interaction might not provide useful learning signals

and can instead derail learning—a famous example of such failures being

Microsoft’s chat bot (Wolf et al., 2017).

The benefit of introducing a large, consistent environment for learning is that

it implicitly defines a class of tasks without requiring us to explicitly define the

tasks themselves. In many cases, a single learning signal would be sufficient

to engender a task distribution. For instance, suppose Amazon embedded an

AI assistant on their website, whose goal it is to provide helpful assistance to

customers. Each customer interaction would essentially give rise to a task, as

the assistance needed would differ from case to case. Some might need help

navigating a website, some might need help claiming a refund, or some might

want a dictionary-style look-up. The learning signal in this case could be the

reported level of satisfaction at the end of the interaction.

In this example, by simply defining a large environment—the Amazon internet

domain—a single learning signal is sufficient to generate distinct, well-defined

tasks that number in the millions. Such examples abound; for instance, Spotify,

YouTube, Facebook, or government digital domains are just a few examples

of potential applications. While research in this direction requires simpler

environments, we can—and should—introduce meta-learning domains that

do not explicitly provide the agent with tasks.

8 Conclusion 210

This also removes a related limitation that has arisen from the few-shot

learning setup. Here, we have a notion of a meta-test time (Vinyals et al.,

2016). The original intention is sensible: test an AI on tasks it has not yet

seen before. The issue we face in this paradigm is that this introduces an

unrealistic two-phase paradigm. First, we meta-train on a given set of tasks,

then we deploy. This means that we need the full task distribution immediately

at the start of meta-training, and once meta-training is complete no further

meta-learning is allowed. This is both inefficient and rather unrealistic. Recall

the definition of AI from Wang (2019):

“intelligence is the capacity of an information-processing system to adapt to its

environment while operating with insufficient knowledge and resources.”

The key word is adaptation, to continuously change and improve as the en-

vironment evolves. If meta-learning is to deliver on its potential to produce

AIs with human-level intelligence, we need a more general meta-learning

paradigm that allows both task adaptation and meta-learning to happen in

parallel through online interactions with the world.

Recent work has started to make progress in this direction (Denevi et al.,

2019; Finn et al., 2019) by considering a meta-learning problem where tasks

are sequentially sampled from a task distribution. Harrison et al. (2020)

go one step further and consider time-series where tasks are not explicitly

given to the meta-learner and propose a changepoint detection algorithm for

constructing a task distribution.

These works, and virtually all prior research in meta-learning—including the

contributions of this thesis—assume that tasks are discrete. However, in terms

of meta-optimisation, there is no technical reason for why this must be the

case. In a typical meta-objective, the task distribution serves to define the

expectation for the outer objective. A highly promising avenue for future work

comes from our analysis in Chapter 5, where we establish that tasks serve to

induce a distribution over learning process trajectories; that is, a distribution

over gradient vector fields (Chapter 6). It therefore follows that we can replace

the notion of a “task” with the more abstract notion of a distribution over

learning trajectories, or vector fields. These objects commute: a task induces a

learning trajectory, and a learning trajectory identifies some task. Hence, we

are free to choose the representation that benefits us the most.

One possible avenue to realise this abstraction is through the WarpGrad

framework, whose objective can be defined in an entirely task-agnostic fashion.

Since WarpGrad is compatible with any probability distribution ? (\) defined

211

over ΘC , a straightforward approach is to define ΘC = (\0, . . . , \C) as the set

of all observed parameters through a learner’s life and to define tasks as

sub-sequences in ΘC . For instance, choose \B at random from ΘC and define a

“task” as a sub-sequence (\B , . . . , \B+:) ⊂ ΘC for some : ∼ ? (:). This sequence

can be seen as a learner starting learning in \B on some task and progressing

through to its final model \B+: . Assume the meta-learner has a way of sampling

relevant data for a given sequence and let g B (\B , :); one possible WarpGrad

objective in the absence of an exogenous task distribution is

J C (q) B E(\B ,: | ΘC)∼? (\B ,:)

[
:−1∑
8=0

L
(
\B+: − ∇\ L(\B+: ;q,DB+:);q,DB+:+1

)]
.

where J C denotes the meta-objective at time C and L denotes some given

objective. This is just one possibility and most likely further research will

reveal more efficient formulations. Regardless, this form of meta-learning is

closer to how meta-learning was originally perceived, wherein meta-learning

is a continuous process that co-evolves with the model itself. While some

research in meta-reinforcement learning uses this type of meta-learning for

automatic tuning of hyper-parameters (Xu et al., 2018b; Zahavy et al., 2020),

few contemporary research papers have fully embraced a task-agnostic meta-

learning framework (a notable exception being recent work by Xu et al., 2020).

Yet it seems more closely aligned with how we perceive human intelligence and

with contemporary definitions of intelligence (Chapter 1). At a high level, we

typically imagine artificial intelligence as an entity that continuously interacts

with the world. It performs well when it knows what to do, and rapidly learns

when it does not. When we define an AI in terms of a parameterised model,

learning involves alterations to the AI’s parameters: adaptation that does not

involve changes to parameters amount to inference where the AI maps current

experience onto past experience to infer desirable behaviour.

Alterations to parameters can come in many ways. It seems likely—at present—

that this will, to some extent, involve gradient-based learning. Gradient-based

meta-learning seems therefore poised to play an important role in the advance

of artificial intelligence. To deliver on this potential, current methods need

to improve their scalability, be more widely applicable, and increase their

expressive capacity. This thesis has taken some initial steps in this direction.

212

Fin.

213

Bibliography

Abbati, Gabriele, Tosi, Alessandra, Osborne, Michael, and Flaxman, Seth. AdaGeo:

Adaptive Geometric Learning for Optimization and Sampling. In International
Conference on Artificial Intelligence and Statistics, 2018. See p. 97.

Achille, Alessandro and Soatto, Stefano. Emergence of Invariance and Disentanglement

in Deep Representations. The Journal of Machine Learning Research, 19(1):1947–1980,
2018. See p. 27.

Achille, Alessandro, Eccles, Tom, Matthey, Loic, Burgess, Christopher P., Watters,

Nick, Lerchner, Alexander, and Higgins, Irina. Life-long disentangled representation

learning with cross-domain latent homologies. In Advances in Neural Information
Processing Systems, 2018. See pp. 52, 86, and 95.

Agarwal, Alekh, Jiang, Nan, Kakade, Sham M., and Sun, Wen. Reinforcement Learning:

Theory and Algorithms. Technical report, Microsoft Research, 2020. See pp. 43, 45,

and 47.

Ahlberg, J. Harold, Nilson, Edwin Norman, and Walsh, Joseph Leonard. The Theory of
Splines and Their Applications. Academic Press, 1967. p. 51. See p. 90.

Al-Shedivat, Maruan, Bansal, Trapit, Burda, Yuri, Sutskever, Ilya, Mordatch, Igor, and

Abbeel, Pieter. Continuous Adaptation via Meta-Learning in Nonstationary and

Competitive Environments. In International Conference on Learning Representations,
2018. See pp. 75, 96, and 207.

Alet, Ferran, Schneider, Martin F., Lozano-Perez, Tomas, and Kaelbling, Leslie Pack.

Meta-Learning Curiosity Algorithms. In International Conference on Learning Repre-
sentations, 2020. See pp. 23, 47, and 51.

Allen-Zhu, Zeyuan, Li, Yuanzhi, and Song, Zhao. A Convergence Theory for Deep

Learning via Over-Parameterization. arXiv preprint arXiv:1811.03962, 2018. See p.

40.

Allis, Louis Victor. Searching for Solutions in Games and Artificial Intelligence. PhD thesis,

Rijksuniversiteit Limburg, 1994. See p. 18.

Allmendinger, Richard, Handl, Julia, and Knowles, Joshua. Multiobjective Optimization:

When Objectives Exhibit Non-Uniform Latencies. European Journal of Operational
Research, 243(2):497–513, 2015. See p. 52.

Amari, Shun-Ichi. Natural Gradient Works Efficiently in Learning. Neural computation,
10(2):251–276, 1998. See pp. 90, 123, and 128.

214

Amari, Shun-ichi and Nagaoka, Hiroshi. Methods of Information Geometry, volume 191.

American Mathematical Society, 2007. See pp. 90, 97, 118, and 128.

Andrychowicz, Marcin, Denil, Misha, Gómez, Sergio, Hoffman, Matthew W., Pfau,

David, Schaul, Tom, and de Freitas, Nando. Learning to Learn by Gradient Descent

by Gradient Descent. In Advances in Neural Information Processing Systems, 2016. See

pp. 50, 51, 56, 61, 75, 87, 96, 117, and 127.

Andrychowicz, Marcin, Wolski, Filip, Ray, Alex, Schneider, Jonas, Fong, Rachel,

Welinder, Peter, McGrew, Bob, Tobin, Josh, Abbeel, Pieter, and Zaremba, Wojciech.

Hindsight Experience Replay. In Advances in Neural Information Processing Systems,
2017. See p. 28.

Antoniou, Antreas, Edwards, Harrison, and Storkey, Amos J. How to Train Your

MAML. In International Conference on Learning Representations, 2019. See pp. 62

and 120.

Arora, Sanjeev, Cohen, Nadav, and Hazan, Elad. On the Optimization of Deep Networks:

Implicit Acceleration by Overparameterization. In International Conference on Machine
Learning, 2018. See pp. 40 and 128.

Arora, Sanjeev, Du, Simon S., Hu, Wei, Li, Zhiyuan, and Wang, Ruosong. Fine-Grained

Analysis of Optimization and Generalization for Overparameterized Two-Layer

Neural Networks. arXiv preprint arXiv:1901.08584, 2019. See p. 40.

Arulkumaran, Kai, Cully, Antoine, and Togelius, Julian. Alphastar: An Evolutionary

Computation Perspective. In The Genetic and Evolutionary Computation Conference,
2019. See p. 57.

Arvanitidis, Georgios, Hansen, Lars Kai, and Hauberg, Søren. Latent Space Oddity: on

the Curvature of Deep Generative Models. In International Conference on Learning
Representations, 2018. See p. 97.

Azizzadenesheli, Kamyar, Brunskill, Emma, and Anandkumar, Animashree. Efficient

Exploration through Bayesian Deep Q-Networks. arXiv preprint arXiv:1802.04412,
2018. See pp. 174 and 180.

Ba, Jimmy, Hinton, Geoffrey E., Mnih, Volodymyr, Leibo, Joel Z., and Ionescu, Catalin.

Using fast weights to attend to the recent past. In Advances in Neural Information
Processing Systems, 2016. See pp. 56, 61, and 127.

Badue, Claudine, Guidolini, R anik, Carneiro, Raphael Vivacqua, Azevedo, Pedro,

Cardoso, Vinicius Brito, Forechi, Avelino, Jesus, Luan Ferreira Reis, Berriel, Ro-

drigo Ferreira, Paixao, Thiago Meireles, Mutz, Filipe Wall, Oliveira-Santos, Thiago,

and de Souza, Alberto Ferreira. Self-Driving Cars: A Survey. arXiv preprint
arXiv:1901.04407, 2019. See p. 19.

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio, Yoshua. Neural Machine Trans-

lation by Jointly Learning to Align and Translate. In International Conference on
Learning Representations, 2015. See p. 80.

Balaji, Yogesh, Sankaranarayanan, Swami, and Chellappa, Rama. Metareg: Towards

Domain Generalization Using Meta-Regularization. In Advances in Neural Information
Processing Systems, 2018. See p. 53.

Balduzzi, David and Ghifary, Muhammad. Strongly-Typed Recurrent Neural Networks.

In International Conference on Machine Learning, 2016. See p. 24.

215

Beck, Amir and Teboulle, Marc. Mirror Descent and Nonlinear Projected Subgradient

Methods for Convex Optimization. Operations Research Letters, 31:167–175, 2003. See

pp. 127 and 128.

Belkin, Mikhail, Hsu, Daniel, and Xu, Ji. Two Models of Double Descent for Weak

Features. arXiv preprint arXiv:1903.07571, 2019. See p. 163.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. The Arcade Learning

Environment: An Evaluation Platform for General Agents. Journal of Artificial
Intelligence Research, 47:253–279, 2013. See pp. 87 and 100.

Bellemare, Marc, Srinivasan, Sriram, Ostrovski, Georg, Schaul, Tom, Saxton, David,

and Munos, Remi. Unifying Count-Based Exploration and Intrinsic Motivation.

In Advances in Neural Information Processing Systems, 2016. See pp. 161, 171, 174,

and 190.

Bengio, Samy, Bengio, Yoshua, Cloutier, Jocelyn, and Gecsei, Jan. On the Optimization

of a Synaptic Learning Rule. In Optimality in Biological and Artificial Networks, pp.
6–8, 1995. See p. 75.

Bengio, Yoshua. Gradient-Based Optimization of Hyperparameters. Neural computation,
12(8):1889–1900, 2000. See p. 52.

Bengio, Yoshua, Bengio, Samy, and Cloutier, Jocelyn. Learning a Synaptic Learning Rule.
Université de Montréal, Département d’informatique et de recherche opérationnelle,

1991. See pp. 21, 22, 56, 75, 96, and 127.

Bengio, Yoshua, Deleu, Tristan, Rahaman, Nasim, Ke, Nan Rosemary, Lachapelle,

Sébastien, Bilaniuk, Olexa, Goyal, Anirudh, and Pal, Christopher J. A Meta-Transfer

Objective for Learning to Disentangle Causal Mechanisms. In International Conference
on Learning Representations, 2019. See p. 51.

Bennett, Kristin P. and Parrado-Hernández, Emilio. The Interplay of Optimization and

Machine Learning Research. Journal of Machine Learning Research, 7(Jul):1265–1281,
2006. See p. 39.

Berger, James O. and Wolpert, Robert L. The Likelihood Principle. In Lecture Notes—
Monograph Series, volume 6. Institute of Mathematical Statistics, 1988. See pp. 34,

36, and 37.

Bergstra, James, Bardenet, Rémi, Bengio, Yoshua, and Kégl, Balázs. Algorithms for

Hyper-Parameter Optimization. In Advances in Neural Information Processing Systems,
2011. See pp. 39 and 52.

Berner, Christopher, Brockman, Greg, Chan, Brooke, Cheung, Vicki, Dębiak, Prze-

mysław, Dennison, Christy, Farhi, David, Fischer, Quirin, Hashme, Shariq, Hesse,

Chris, Józefowicz, Rafal, Gray, Scott, Olsson, Catherine, Pachocki, Jakub, Petrov,

Michael, de Oliveira Pinto, Henrique Pondé, Raiman, Jonathan, Salimans, Tim,

Schlatter, Jeremy, Schneider, Jonas, Sidor, Szymon, Sutskever, Ilya, Tang, Jie, Wolski,

Filip, and Zhang, Susan. Dota 2 with Large Scale Deep Reinforcement Learning.

arXiv preprint arxiv:1912.06680, 2019. See p. 18.

Bertinetto, Luca, Henriques, Joao F., Valmadre, Jack, Torr, Philip, and Vedaldi, Andrea.

Learning feed-forward one-shot learners. In Advances in Neural Information Processing
Systems, 2016. See pp. 60, 75, and 128.

Bertsekas, Dimitri P. Dynamic Programming and Optimal Control, volume 2. Athena

Scientific, 4 edition, 1995. See p. 42.

216

Bilen, Hakan and Vedaldi, Andrea. Universal Representations: the Missing Link

Between Faces, Text, Planktons and Cat Breeds. arXiv preprint arXiv:1701.07275,
2017. See pp. 52 and 125.

Bishop, Christopher M. Pattern Recognition and Machine Learning. Springer, 2006. See

pp. 32 and 35.

Bottou, Léon. On-line Learning and Stochastic Approximations. In On-line Learning in
Neural Networks, pp. 9–42. Cambridge University Press, 1998. See p. 40.

Botvinick, Matthew, Wang, Jane X., Dabney, Will, Miller, Kevin J., and Kurth-Nelson,

Zeb. Deep Reinforcement Learning and its Neuroscientific Implications. Neuron,
2020. See p. 41.

Bradbury, James, Frostig, Roy, Hawkins, Peter, Johnson, Matthew James, Leary, Chris,

Maclaurin, Dougal, and Wanderman-Milne, Skye. JAX: Composable transformations

of Python+NumPy programs, 2018. URL http://github.com/google/jax. See pp.

168 and 176.

Braun, Daniel A., Aertsen, Ad, Wolpert, Daniel M., and Mehring, Carsten. Motor Task

Variation Induces Structural Learning. Current Biology, 19(4):352–357, 2009. See p.

21.

Britannica, Encyclopaedia. Go. https://www.britannica.com/topic/go-game, 2021.
Accessed: 2021-01-12. See p. 18.

Brock, Andrew, Donahue, Jeff, and Simonyan, Karen. Large Scale GAN Training

for High Fidelity Natural Image Synthesis. In International Conference on Machine
Learning, 2018a. See p. 19.

Brock, Andrew, Lim, Theo, Ritchie, J.M., and Weston, Nick. SMASH: One-Shot Model

Architecture Search through HyperNetworks. In International Conference on Learning
Representations, 2018b. See pp. 75 and 76.

Brown, Tom B., Mann, Benjamin, Ryder, Nick, Subbiah, Melanie, Kaplan, Jared,

Dhariwal, Prafulla, Neelakantan, Arvind, Shyam, Pranav, Sastry, Girish, Askell,

Amanda, Agarwal, Sandhini, Herbert-Voss, Ariel, Krueger, Gretchen, Henighan, Tom,

Child, Rewon, Ramesh, Aditya, Ziegler, Daniel M., Wu, Jeffrey, Winter, Clemens, Hesse,

Christopher, Chen, Mark, Sigler, Eric, Litwin, Mateusz, Gray, Scott, Chess, Benjamin,

Clark, Jack, Berner, Christopher, McCandlish, Sam, Radford, Alec, Sutskever, Ilya,

and Amodei, Dario. Language Models are Few-Shot Learners. arXiv preprin
arXiv:2005.14165, 2020. See pp. 19, 21, 40, 52, and 63.

Burda, Yuri, Edwards, Harrison, Pathak, Deepak, Storkey, Amos J., Darrell, Trevor,

and Efros, Alexei A. Large-Scale Study of Curiosity-Driven Learning. arXiv preprint
arXiv:1808.04355, 2018a. See p. 161.

Burda, Yuri, Edwards, Harrison, Storkey, Amos J., and Klimov, Oleg. Exploration by

Random Network Distillation. arXiv preprint arXiv:1810.12894, 2018b. See pp. 161,

171, 174, and 190.

Byrd, R., Hansen, S., Nocedal, J., and Singer, Y. A Stochastic Quasi-Newton Method

for Large-Scale Optimization. SIAM Journal on Optimization, 26(2):1008–1031, 2016.
See p. 128.

Bzdok, Danilo, Altman, Naomi, and Krzywinski, Martin. Points of Significance:

Statistics versus Machine Learning. Nature Methods, 15:233–234, 2018. See p. 35.

217

Canziani, Alfredo, Paszke, Adam, and Culurciello, Eugenio. An Analysis of Deep

Neural Network Models for Practical Applications. arXiv preprint arXiv:1605.07678,
2016. See pp. 27 and 68.

Caruana, Rich. Multitask Learning. Machine learning, 28(1):41–75, 1997. See p. 52.

Chen, Nutan, Klushyn, Alexej, Kurle, Richard, Jiang, Xueyan, Bayer, Justin, and van der

Smagt, Patrick. Metrics for Deep Generative Models. In International Conference on
Artificial Intelligence and Statistics, 2018. See p. 97.

Chen, Yutian, Hoffman, Matthew W., Colmenarejo, Sergio Gomez, Denil, Misha, Lillicrap,

Timothy P., and de Freitas, Nando. Learning to learn for Global Optimization of

Black Box Functions. In Advances in Neural Information Processing Systems, 2016. See
p. 56.

Chen, Yutian, Hoffman, Matthew W., Colmenarejo, Sergio Gómez, Denil, Misha, Lillicrap,

Timothy P., Botvinick, Matt, and de Freitas, Nando. Learning to Learn Without

Gradient Descent by Gradient Descent. In International Conference on Machine Learning,
2017. See pp. 28, 39, and 117.

Chesney, Bobby and Citron, Danielle. Deep Fakes: a Looming Challenge for Privacy,

Democracy, and National Security. California Law Review, 107:1753, 2019. See p. 19.

Cho, Kyunghyun, van Merrienboer, Bart, Gülçehre, Çaglar, Bougares, Fethi, Schwenk,

Holger, and Bengio, Yoshua. Learning Phrase Representations using RNN Encoder-

Decoder for Statistical Machine Translation. In Proceedings of Emperical Methods in
Natural Language Processing, 2014. See p. 76.

Choi, Jongwook, Guo, Yijie, Moczulski, Marcin, Oh, Junhyuk, Wu, Neal, Norouzi,

Mohammad, and Lee, Honglak. Contingency-Aware Exploration in Reinforcement

Learning. arXiv preprint arXiv:1811.01483, 2018. See p. 174.

Chollet, François. On the Measure of Intelligence. arxiv Preprint arXiv:1911.01547,
2019. See pp. 19, 20, 21, and 22.

Chung, Junyoung, Gülçehre, Çaglar, Cho, Kyunghyun, and Bengio, Yoshua. Empirical

Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv
preprint, arXiv:1412.3555, 2014. See p. 76.

Clevert, Djork-Arné, Unterthiner, Thomas, and Hochreiter, Sepp. Fast and Accu-

rate Deep Network Learning by Exponential Linear Units (Elus). In International
Conference on Learning Representations, 2015. See p. 68.

Clune, Jeff. AI-GAs: AI-Generating Algorithms, An Alternate Paradigm for Producing

General Artificial Intelligence. arXiv preprint arXiv:1905.10985, 2019. See p. 57.

Cobbe, Karl, Klimov, Oleg, Hesse, Chris, Kim, Taehoon, and Schulman, John. Quantify-

ing Generalization in Reinforcement Learning. In International Conference on Machine
Learning, 2019. See p. 207.

Cooijmans, Tim, Ballas, Nicolas, Laurent, César, and Courville, Aaron. Recurrent Batch

Normalization. In International Conference on Learning Representations, 2016. See p.

76.

Cortes, Corinna and Vapnik, Vladimir. Support-Vector Networks. Machine learning, 20
(3):273–297, 1995. See p. 39.

218

Cybenko, George. Approximation by Superpositions of a Sigmoidal Function. Mathe-
matics of Control, Signals and Systems, 2(4):303–314, 1989. See pp. 61, 68, and 118.

Czarnecki, Wojciech Marian, Osindero, Simon, Pascanu, Razvan, and Jaderberg, Max.

A Deep Neural Network’s Loss Surface Contains Every Low-dimensional Pattern.

arXiv preprint arXiv:1912.07559, 2019. See p. 40.

Dauphin, Yann N., Fan, Angela, Auli, Michael, and Grangier, David. Language

Modeling with Gated Convolutional Networks. In International Conference on Machine
Learning, 2017. See pp. 68 and 77.

Dearden, Richard, Friedman, Nir, and Russell, Stuart. Bayesian Q-learning. In

Association for the Advancement of Artificial Intelligence, 1998. See p. 174.

Deisenroth, Marc and Rasmussen, Carl E. PILCO: A Model-Based and Data-Efficient

Approach to Policy Search. In International Conference on Machine Learning, 2011. See
p. 173.

Denevi, Giulia, Stamos, Dimitris, Ciliberto, Carlo, and Pontil, Massimiliano. Online-

Within-Online Meta-Learning. In Advances in Neural Information Processing Systems,
2019. See p. 210.

Deng, Jia, Dong, Wei, Socher, Richard, Li, Li-Jia, Li, Kai, and Fei-Fei, Li. Imagenet: A

Large-Scale Hierarchical Image Database. In Computer Vision and Pattern Recognition,
2009. See pp. 52, 60, and 146.

Denil, Misha, Shakibi, Babak, Dinh, Laurent, Ranzato, Marc’Aurelio, and De Freitas,

Nando. Predicting Parameters in Deep Learning. In Advances in Neural Information
Processing Systems, 2013. See pp. 73 and 75.

Desjardins, Guillaume, Simonyan, Karen, Pascanu, Razvan, and Kavukcuoglu, Koray.

Natural Neural Networks. In Advances in Neural Information Processing Systems, 2015.
See pp. 118, 127, 128, 131, 144, and 145.

Doersch, Carl, Gupta, Ankush, and Zisserman, Andrew. CrossTransformers: Spatially-

Aware Few-Shot Transfer. arXiv preprint arXiv:2007.11498, 2020. See p. 25.

Donahue, Jeff, Jia, Yangqing, Vinyals, Oriol, Hoffman, Judy, Zhang, Ning, Tzeng, Eric,

and Darrell, Trevor. Decaf: A Deep Convolutional Activation Feature for Generic

Visual Recognition. In International Conference on Learning Representations, 2014. See

p. 52.

Drake, John H., Kheiri, Ahmed, Özcan, Ender, and Burke, Edmund K. Recent

Advances in Selection Hyper-Heuristics. European Journal of Operational Research, 285
(2):405–428, 2020. See pp. 39 and 52.

Du, Simon S., Zhai, Xiyu, Póczos, Barnabás, and Singh, Aarti. Gradient De-

scent Provably Optimizes Over-parameterized Neural Networks. arXiv preprint
arXiv:1810.02054, 2018. See p. 40.

Duan, Yan, Schulman, John, Chen, Xi, Bartlett, Peter L., Sutskever, Ilya, and Abbeel,

Pieter. Rl2: Fast reinforcement learning via slow reinforcement learning. arXiv
preprint arXiv:1611.02779, 2016. See pp. 55, 61, 127, and 206.

Edwards, Harrison and Storkey, Amos. Towards a Neural Statistician. In International
Conference on Learning Representations, 2017. See p. 53.

219

Falkner, Stefan, Klein, Aaron, and Hutter, Frank. BOHB: Robust and Efficient

Hyperparameter Optimization at Scale. In International Conference on Machine Learning,
2018. See pp. 39 and 52.

Fawcett, Tom. An Introduction to ROC Analysis. Pattern Recognition Letters, 27(8):
861–874, 2006. See p. 34.

Fei-Fei, Li, Fergus, Rob, and Perona, Pietro. A Bayesian Approach to Unsupervised

One-Shot Learning of Object Categories. In International Conference on Computer
Vision, 2003. See pp. 53 and 59.

Fernando, Chrisantha, Banarse, Dylan, Reynolds, Malcolm, Besse, Frederic, Pfau, David,

Jaderberg, Max, Lanctot, Marc, and Wierstra, Daan. Convolution by Evolution -

Differentiable Pattern Producing Networks. The Genetic and Evolutionary Computation
Conference, 2016. See p. 75.

Ferreira, Fabio, Nierhoff, Thomas, and Hutter, Frank. Learning Synthetic Envi-

ronments for Reinforcement Learning with Evolution Strategies. arXiv preprint
arXiv:2101.09721, 2021. See p. 208.

Feurer, Matthias, Klein, Aaron, Eggensperger, Katharina, Springenberg, Jost Tobias,

Blum, Manuel, and Hutter, Frank. Auto-Sklearn: Efficient and Robust Automated

Machine Learning. In Automated Machine Learning, pp. 113–134. Springer, Cham,

2019. See p. 52.

Finn, Chelsea and Levine, Sergey. Meta-Learning and Universality: Deep Representa-

tions and Gradient Descent can Approximate any Learning Algorithm. In iclr, 2018.
See pp. 24 and 61.

Finn, Chelsea, Abbeel, Pieter, and Levine, Sergey. Model-Agnostic Meta-Learning for

Fast Adaptation of Deep Networks. In International Conference on Machine Learning,
2017. See pp. 25, 39, 41, 50, 51, 60, 61, 75, 87, 91, 94, 96, 97, 106, 109, 118, 119,

125, 132, 150, and 207.

Finn, Chelsea, Xu, Kelvin, and Levine, Sergey. Probabilistic Model-Agnostic Meta-

Learning. In Advances in Neural Information Processing Systems, 2018. See p. 62.

Finn, Chelsea, Rajeswaran, Aravind, Kakade, Sham, and Levine, Sergey. Online Meta-

Learning. In International Conference on Machine Learning, 2019. See pp. 53, 62,

and 210.

Flennerhag, Sebastian, Yin, Hujun, Keane, John, and Elliot, Mark. Breaking the

Activation Function Bottleneck Through Adaptive Parameterization. In Advances
in Neural Information Processing Systems, 2018. See pp. 27, 29, 68, 132, 135, 148,

and 149.

Flennerhag, Sebastian, Moreno, Pablo G., Lawrence, Neil D., and Damianou, Andreas.

Transferring Knowledge across Learning Processes. In International Conference on
Learning Representations, 2019. See pp. 25, 29, 51, 61, 86, 118, 119, 125, 128, 130,

137, 141, 142, and 143.

Flennerhag, Sebastian, Rusu, Andrei A., Pascanu, Razvan, Visin, Francesco, Yin, Hujun,

and Hadsell, Raia. Meta-Learning with Warped Gradient Descent. In International
Conference on Learning Representations, 2020a. See pp. 23, 25, 26, 27, 29, 54, 58,

and 117.

Flennerhag, Sebastian, Wang, Jane, Visin, Francesco, Galashov, Alexandre, Sprech-

mann, Pablo, Heess, Nicolas, Borsa, Diana, Baretto, André, and and, Razvan Pas-

220

canu. Temporal Difference Uncertainties as a Signal for Exploration. arXiv preprint
arXiv:2010.02255, 2020b. See pp. 28 and 30.

Florensa, Carlos, Duan, Yan, and Abbeel, Pieter. Stochastic Neural Networks for Hierar-

chical Reinforcement Learning. In International Conference on Learning Representations,
2017. See p. 174.

Florensa, Carlos, Held, David, Geng, Xinyang, and Abbeel, Pieter. Automatic Goal

Generation for Reinforcement Learning Agents. In International Conference on Machine
Learning, 2018. See pp. 29 and 158.

Fortunato, Meire, Azar, Mohammad Gheshlaghi, Piot, Bilal, Menick, Jacob, Osband,

Ian, Graves, Alex, Mnih, Vlad, Munos, Rémi, Hassabis, Demis, Pietquin, Olivier,

Blundell, Charles, and Legg, Shane. Noisy Networks for Exploration. In International
Conference on Learning Representations, 2018. See pp. 164, 171, 173, 182, and 191.

Frankle, Jonathan and Carbin, Michael. The Lottery Ticket Hypothesis: Training

Pruned Neural Networks. International Conference on Learning Representations, 2019.
See p. 68.

Freeman, C. Daniel and Bruna, Joan. Topology and Geometry of Half-Rectified Network

Optimization. In International Conference on Learning Representations, 2017. See pp.

39 and 61.

French, Robert M. Catastrophic Forgetting in Connectionist Networks. Trends in
Cognitive Sciences, 3(4):128–135, 1999. See pp. 30, 53, 132, and 150.

Gal, Yarin and Ghahramani, Zoubin. A Theoretically Grounded Application of Dropout

in Recurrent Neural Networks. In Advances in Neural Information Processing Systems,
2016. See p. 83.

Garipov, Timur, Izmailov, Pavel, Podoprikhin, Dmitrii, Vetrov, Dmitry P., and Wilson,

Andrew G. Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. In

Advances in Neural Information Processing Systems, 2018. See pp. 39 and 61.

Garnelo, Marta, Rosenbaum, Dan, Maddison, Christopher, Ramalho, Tiago, Saxton,

David, Shanahan, Murray, Teh, Yee Whye, Rezende, Danilo, and Eslami, S.M. Ali.

Conditional Neural Processes. In International Conference on Machine Learning, 2018.
See p. 53.

Gehring, Clement and Precup, Doina. Smart Exploration in Reinforcement Learning

using Absolute Temporal Difference Errors. In Proceedings of the International
Conference on Autonomous Agents and Multi-Agent Systems, 2013. See p. 174.

Gers, Felix A., Schmidhuber, Jürgen, and Cummins, Fred. Learning to Forget:

Continual Prediction with LSTM. Neural Computation, 12(10):2451–2471, 2000. See

pp. 69, 73, and 76.

Ghahramani, Zoubin. Unsupervised learning. In Summer School on Machine Learning,
pp. 72–112. Springer, 2003. See p. 34.

Gidaris, Spyros and Komodakis, Nikos. Dynamic Few-Shot Visual Learning Without

Forgetting. In Computer Vision and Pattern Recognition, 2018. See pp. 60 and 128.

Girshick, Ross, Donahue, Jeff, Darrell, Trevor, and Malik, Jitendra. Rich Feature

Hierarchies for Accurate Object Detection and Semantic Segmentation. In Computer
Vision and Pattern Recognition, 2014. See p. 86.

221

Gomez, Faustino and Schmidhuber, Jürgen. Evolving Modular Fast-Weight Networks

for Control. In International Conference on Artificial Neural Networks, 2005. See pp. 56

and 75.

Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron. Deep Learning. MIT Press,

2016. See pp. 32, 39, and 40.

Goodfellow, Ian J., Mirza, Mehdi, Xiao, Da, Courville, Aaron, and Bengio, Yoshua.

An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural

Networks. arXiv preprint arXiv:1312.6211, 2013. See p. 95.

Gordon, Goren and Ahissar, Ehud. Reinforcement Active Learning Hierarchical Loops.

In International Joint Conference on Neural Networks, 2011. See p. 175.

Grant, Erin, Finn, Chelsea, Levine, Sergey, Darrell, Trevor, and Griffiths, Thomas L.

Recasting Gradient-Based Meta-Learning as Hierarchical Bayes. In International
Conference on Learning Representations, 2018. See pp. 53, 62, and 124.

Grave, Edouard, Joulin, Armand, and Usunier, Nicolas. Improving Neural Lan-

guage Models with a Continuous Cache. In International Conference on Learning
Representations, 2017. See pp. 78 and 81.

Graves, Alex. Generating Sequences With Recurrent Neural Networks. arXiv preprint,
arXiv:1308.0850, 2013. See pp. 75 and 78.

Graves, Alex, Wayne, Greg, and Danihelka, Ivo. Neural Turing Machines. arXiv preprint
arXiv:1410.5401, 2014. See p. 61.

Gregor, Karol, Rezende, Danilo Jimenez, and Wierstra, Daan. Variational Intrinsic

Control. arXiv preprint arXiv:1611.07507, 2016. See p. 174.

Griffiths, Thomas L., Callaway, Frederick, Chang, Michael B., Grant, Erin, Krueger,

Paul M., and Lieder, Falk. Doing More With Less: Meta-Reasoning and Meta-

Learning in Humans and Machines. Current Opinion in Behavioral Sciences, 29:24–30,
2019. See p. 59.

Guez, Arthur, Viola, Fabio, Weber, Théophane, Buesing, Lars, Kapturowski, Steven,

Precup, Doina, Silver, David, and Heess, Nicolas. Value-Driven Hindsight Modelling.

In Advances in Neural Information Processing Systems, 2020. See p. 196.

Ha, David and Eck, Douglas. A Neural Representation of Sketch Drawings. In

International Conference on Learning Representations, 2018. See pp. 75 and 76.

Ha, David, Dai, Andrew, and Le, Quoc V. HyperNetworks. In International Conference on
Learning Representations, 2017. See pp. 56, 60, 61, 74, 75, 76, 81, 128, 131, and 135.

Harrison, James, Sharma, Apoorva, Finn, Chelsea, and Pavone, Marco. Continuous

Meta-Learning without Tasks. In Advances in Neural Information Processing Systems,
2020. See p. 210.

Hastie, Trevor, Tibshirani, Robert, and Friedman, Jerome. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media,

2009. See p. 39.

Hausman, Karol, Springenberg, Jost Tobias, Wang, Ziyu, Heess, Nicolas, and Riedmiller,

Martin. Learning an Embedding Space for Transferable Robot Skills. In International
Conference on Learning Representations, 2018. See p. 174.

222

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Delving Deep into

Rectifiers - Surpassing Human-Level Performance on ImageNet Classification. In

International Conference on Computer Vision, 2015. See p. 68.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep Residual Learning

for Image Recognition. In Computer Vision and Pattern Recognition, 2016. See pp. 135

and 143.

He, Kaiming, Gkioxari, Georgia, Dollár, Piotr, and Girshick, Ross. Mask R-CNN. In

International Conference on Computer Vision, 2017. See pp. 86 and 122.

Hernández-Orallo, José. Evaluation in Artificial Intelligence: From Task-Oriented to

Ability-Oriented Measurement. Artificial Intelligence Review, 48(3):397–447, 2017. See
pp. 19 and 20.

Higgins, Irina, Pal, Arka, Rusu, Andrei A., Matthey, Loic, Burgess, Christopher P.,

Pritzel, Alexander, Botvinick, Matthew, Blundell, Charles, and Lerchner, Alexander.

Darla: Improving Zero-Shot Transfer in Reinforcement Learning. In International
Conference on Machine Learning, 2017. See pp. 52, 86, and 95.

Hinton, Geoffrey E. and Plaut, David C. Using Fast Weights to Deblur Old Memories.

In Cognitive Science Society, 1987. See pp. 21, 22, 55, and 127.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long Short-Term Memory. Neural
Computation, 9:1735–1780, 1997. See pp. 66, 69, 73, 76, and 148.

Hochreiter, Sepp, Younger, A. Steven, and Conwell, Peter R. Learning To Learn Using

Gradient Descent. In International Conference on Artificial Neural Networks, 2001. See

pp. 23, 24, 54, 61, 96, and 127.

Hornik, Kurt. Approximation Capabilities of Multilayer Feedforward Networks. Neural
Networks, 4(2):251–257, 1991. See pp. 61, 68, and 118.

Hospedales, Timothy, Antoniou, Antreas, Micaelli, Paul, and Storkey, Amos. Meta-

Learning in Neural Networks: A Survey. arXiv preprint arXiv:2004.05439, 2020.
See pp. 25, 26, 52, 56, 59, 63, and 208.

Hou, Ruibing, Chang, Hong, Bingpeng, M.A., Shan, Shiguang, and Chen, Xilin. Cross

Attention Network for Few-Shot Classification. In Advances in Neural Information
Processing Systems, 2019. See p. 61.

Howard, Jeremy and Ruder, Sebastian. Universal Language Model Fine-tuning for

Text Classification. In Computational Linguistics, 2018. See p. 52.

Huang, Kexin and Zitnik, Marinka. Graph Meta Learning via Local Subgraphs. In

Advances in Neural Information Processing Systems, 2020. See p. 62.

Inan, Hakan, Khosravi, Khashayar, and Socher, Richard. Tying Word Vectors and

Word Classifiers: A Loss Framework for Language Modeling. In International
Conference on Learning Representations, 2017. See pp. 81 and 83.

Ioffe, Sergey and Szegedy, Christian. Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift. In International Conference on Machine
Learning, 2015. See pp. 135 and 143.

Izmailov, Pavel, Podoprikhin, Dmitrii, Garipov, Timur, Vetrov, Dmitry, and Wilson, An-

drew Gordon. Averaging Weights Leads to Wider Optima and Better Generalization.

In Conference on Uncertainty in Artificial Intelligence, 2018. See p. 40.

223

Jacot, Arthur, Gabriel, Franck, and Hongler, Clément. Neural Tangent Kernel: Con-

vergence and Generalization in Neural Networks. In Advances in Neural Information
Processing Systems, 2018. See p. 40.

Jaderberg, Max, Czarnecki, Wojciech Marian, Osindero, Simon, Vinyals, Oriol, Graves,

Alex, and Kavukcuoglu, Koray. Decoupled Neural Interfaces using Synthetic Gradi-

ents. In International Conference on Machine Learning, 2017a. See p. 75.

Jaderberg, Max, Dalibard, Valentin, Osindero, Simon, Czarnecki, Wojciech M., Donahue,

Jeff, Razavi, Ali, Vinyals, Oriol, Green, Tim, Dunning, Iain, Simonyan, Karen,

Fernando, Chrisantha, and Kavukcuoglu, Koray. Population Based Training of

Neural Networks. arXiv preprint arXiv:1711.09846, 2017b. See pp. 39 and 52.

Jaderberg, Max, Mnih, Volodymyr, Czarnecki, Wojciech Marian, Schaul, Tom, Leibo,

Joel Z., Silver, David, and Kavukcuoglu, Koray. Reinforcement Learning with

Unsupervised Auxiliary Tasks. In International Conference on Learning Representations,
2017c. See p. 28.

Jankowski, Norbert, Duch, Włodzisław, and Grąbczewski, Krzysztof. Meta-Learning in
Computational Intelligence, volume 358. Springer, 2011. See pp. 22 and 57.

Janz, David, Hron, Jiri, Hernández-Lobato, José Miguel, Hofmann, Katja, and Tschi-

atschek, Sebastian. Successor Uncertainties: Exploration and Uncertainty in Temporal

Difference Learning. In Advances in Neural Information Processing Systems, 2019. See

pp. 161, 162, 164, 171, 174, 180, 187, and 191.

Javed, Khurram and White, Martha. Meta-Learning Representations for Continual

Learning. Advances in Neural Information Processing Systems, 2019. See pp. 23, 25,

30, 54, 62, and 132.

Jo, Jason and Bengio, Yoshua. Measuring the Tendency of CNNs to Learn Surface

Statistical Regularities. arXiv preprint arXiv:1711.11561, 2017. See p. 61.

Johnson-Laird, Philip N. Mental Models in Cognitive Science. Cognitive science, 4(1):
71–115, 1980. See p. 18.

Justesen, Niels, Rodriguez Torrado, Ruben, Bontrager, Philip, Khalifa, Ahmed, Togelius,

Julian, and Risi, Sebastian. Illuminating Generalization in Deep Reinforcement

Learning through Procedural Level Generation. In NeurIPS Workshop on Deep
Reinforcement Learning, 2018. See p. 61.

Kachalsky, Ilya, Zabashta, Alexey, Filchenkov, Andrey, and Korneev, Georgiy. Generat-

ing Datasets for Classification Task and Predicting Best Classifiers with Conditional

Generative Adversarial Networks. In International Conference on Advances in Artificial
Intelligence, 2019. See pp. 29 and 158.

Kapturowski, Steven, Ostrovski, Georg, Quan, John, Munos, Remi, and Dabney, Will.

Recurrent Experience Replay in Distributed Reinforcement Learning. In International
Conference on Learning Representations, 2018. See p. 172.

Kawaguchi, Kenji. Deep Learning Without Poor Local Minima. In Advances in Neural
Information Processing Systems, 2016. See p. 40.

Kearns, Michael and Singh, Satinder. Near-Optimal Reinforcement Learning in

Polynomial Time. Machine learning, 49(2-3):209–232, 2002. See p. 161.

Kim, Taesup, Yoon, Jaesik, Dia, Ousmane, Kim, Sungwoong, Bengio, Yoshua, and Ahn,

224

Sungjin. Bayesian Model-Agnostic Meta-Learning. In Advances in Neural Information
Processing Systems, 2018a. See pp. 62 and 127.

Kim, Young-Bum. The Scalable Neural Architecture behind Alexa’s

Ability to Select Skills, 2018. URL https://www.amazon.science/blog/
the-scalable-neural-architecture-behind-alexas-ability-to-select-skills.
See p. 19.

Kim, Young-Bum, Kim, Dongchan, Kumar, Anjishnu, and Sarikaya, Ruhi. Effi-

cient Large-Scale Neural Domain Classification with Personalized Attention. In

Computational Linguistics, 2018b. See p. 19.

Kingma, Diederik P. and Ba, Jimmy. Adam: A Method for Stochastic Optimization. In

International Conference on Learning Representations, 2015. See pp. 76, 111, 128, 147,

187, 189, and 195.

Kirkpatrick, James, Pascanu, Razvan, Rabinowitz, Neil, Veness, Joel, Desjardins, Guil-

laume, Rusu, Andrei A., Milan, Kieran, Quan, John, Ramalho, Tiago, Grabska-

Barwinska, Agnieszka, Hassabis, Demis, Clopath, Claudia, Kumaran, Dharshan, and

Hadsell, Raia. Overcoming Catastrophic Forgetting in Neural Networks. Proceedings
of the National Academy of Sciences, 2017. See pp. 53 and 95.

Kirsch, Louis, van Steenkiste, Sjoerd, and Schmidhuber, Jürgen. Improving General-

ization in Meta Reinforcement Learning using Learned Objectives. In International
Conference on Learning Representations, 2019. See p. 50.

Klambauer, Günter, Unterthiner, Thomas, Mayr, Andreas, and Hochreiter, Sepp. Self-

Normalizing Neural Networks. In Advances in Neural Information Processing Systems,
2017. See p. 68.

Klein, Aaron, Falkner, Stefan, Bartels, Simon, Hennig, Philipp, and Hutter, Frank. Fast

Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets. In

Artificial Intelligence and Statistics, 2017. See p. 52.

Koch, Gregory. Siamese Neural Networks for One-Shot Image Recognition. PhD thesis,

University of Toronto, 2015. See pp. 57 and 60.

Konda, Vijay R. and Tsitsiklis, John N. Actor-Critic Algorithms. In Advances in Neural
Information Processing Systems, 2000. See p. 47.

Kotthoff, Lars, Thornton, Chris, Hoos, Holger H., Hutter, Frank, and Leyton-Brown,

Kevin. Auto-WEKA 2.0: Automatic Model Selection and Hyperparameter Optimiza-

tion in WEKA. The Journal of Machine Learning Research, 18(1):826–830, 2017. See

p. 54.

Krause, Ben, Lu, Liang, Murray, Iain, and Renals, Steve. Multiplicative LSTM for

Sequence Modelling. arXiv preprint, arXiv:1609:07959, 2016. See p. 76.

Krause, Ben, Kahembwe, Emmanuel, Murray, Iain, and Renals, Steve. Dynamic

Evaluation of Neural Sequence Models. arXiv preprint, arXiv:1709:07432, 2017. See
pp. 75, 76, and 78.

Kumar, Abhishek, Sattigeri, Prasanna, and Fletcher, P. Thomas. Improved Semi-

supervised Learning with GANs using Manifold Invariances. In Advances in Neural
Information Processing Systems, 2017. See p. 97.

Kumaraswamy, Raksha, Schlegel, Matthew, White, Adam, and White, Martha. Context-

225

Dependent Upper-Confidence Bounds for Directed Exploration. In Advances in
Neural Information Processing Systems, pp. 4779–4789, 2018. See p. 175.

Lacoste, Alexandre, Oreshkin, Boris, Chung, Wonchang, Boquet, Thomas, Rostamzadeh,

Negar, and Krueger, David. Uncertainty in Multitask Transfer Learning. In Advances
in Neural Information Processing Systems, 2018. See p. 126.

Lake, Brenden, Salakhutdinov, Ruslan, Gross, Jason, and Tenenbaum, Joshua. One

Shot Learning of Simple Visual Concepts. In Annual Meeting of the Cognitive Science
Society, 2011. See pp. 22, 23, 57, 59, 60, 87, and 130.

Lake, Brenden M., Salakhutdinov, Ruslan, and Tenenbaum, Joshua B. Human-Level

Concept Learning through Probabilistic Program Induction. Science, 350(6266):
1332–1338, 2015. See pp. 21, 23, 96, 97, and 128.

Lake, Brenden M., Ullman, Tomer D., Tenenbaum, Joshua B., and Gershman, Samuel J.

Building Machines that Learn and Think Like People. Behavioral and brain sciences,
40, 2017. See pp. 20 and 61.

Larochelle, Hugo, Erhan, Dumitru, and Bengio, Yoshua. Zero-Data Learning of New

Tasks. In AAAI, 2008. See p. 59.

Lawrence, Neil D. and Platt, John C. Learning to Learn with the Informative Vector

Machine. In International Conference on Machine Learning, 2004. See pp. 53 and 59.

LeCun, Yann, Bengio, Yoshua, et al. Convolutional Networks for Images, Speech, and

Time Series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.
See p. 80.

LeCun, Yann, Bottou, Léon, Orr, Genevieve B., and Müller, Klaus-Robert. Efficient

Backprop. In Neural Networks: Tricks of the Trade, pp. 9–50. Springer, 1998. See p.

76.

Lee, John M. Introduction to Smooth Manifolds. Springer, 2003. See p. 123.

Lee, Kwonjoon, Maji, Subhransu, Ravichandran, Avinash, and Soatto, Stefano. Meta-

Learning with Differentiable Convex Optimization. In Computer Vision and Pattern
Recognition, 2019a. See pp. 62 and 128.

Lee, Kwonjoon, Maji, Subhransu, Ravichandran, Avinash, and Soatto, Stefano. Meta-

Learning with Differentiable Convex Optimization. In Computer Vision and Pattern
Recognition, 2019b. See p. 60.

Lee, Sang-Woo, Kim, Jin-Hwa, Ha, JungWoo, and Zhang, Byoung-Tak. Overcoming

Catastrophic Forgetting by Incremental Moment Matching. In Advances in Neural
Information Processing Systems, 2017. See p. 95.

Lee, Yoonho and Choi, Seungjin. Meta-Learning with Adaptive Layerwise Metric and

Subspace. In International Conference on Machine Learning, 2018. See pp. 26, 50, 62,

75, 96, 118, 120, 128, and 134.

Legg, Shane and Hutter, Marcus. Universal Intelligence: A Definition of Machine

Intelligence. arXiv preprint arXiv:0712.3329, 2007. See p. 20.

Leite, Rui, Brazdil, Pavel, and Vanschoren, Joaquin. Selecting classification Algorithms

with Active Testing. In International Conference on Machine Learning and Data Mining
in Pattern Recognition, 2012. See p. 50.

226

Li, Da, Yang, Yongxin, Song, Yi-Zhe, and Hospedales, Timothy M. Learning to Gener-

alize: Meta-learning for Domain Generalization. In Association for the Advancement of
Artificial Intelligence, 2018. See p. 53.

Li, Ke and Malik, Jitendra. Learning to Optimize. In International Conference on Machine
Learning, 2016. See pp. 24, 61, 117, and 120.

Li, Yiying, Yang, Yongxin, Zhou, Wei, and Hospedales, Timothy. Feature-Critic

Networks for Heterogeneous Domain Generalization. In International Conference on
Machine Learning, 2019. See p. 53.

Li, Yujia, Gimeno, Felix, Kohli, Pushmeet, and Vinyals, Oriol. Strong Generalization

and Efficiency in Neural Programs. arXiv preprint arXiv:2007.03629, 2020. See p.

163.

Li, Zhenguo, Zhou, Fengwei, Chen, Fei, and Li, Hang. Meta-SGD: Learning to Learn

Quickly for Few-Shot Learning. arXiv preprint arXiv:1707.09835, 2017. See pp. 41,

51, 62, 118, and 120.

Li, Zhizhong and Hoiem, Derek. Learning Without Forgetting. In European Conference
on Computer Vision, 2016. See pp. 39, 52, 61, and 125.

Liang, Tengyuan, Poggio, Tomaso, Rakhlin, Alexander, and Stokes, James. Fisher-Rao

Metric, Geometry, and Complexity of Neural Networks. In International Conference on
Artificial Intelligence and Statistics, 2019. See p. 27.

Liu, Chaoyue, Zhu, Libin, and Belkin, Mikhail. Toward a Theory of Optimization

for Over-Parameterized Systems of Non-Linear Equations: the Lessons of Deep

Dearning. arXiv preprint arXiv:2003.00307, 2020. See p. 163.

Liu, Hao, Socher, Richard, and Xiong, Caiming. Taming MAML: Efficient Unbiased

Meta-Reinforcement Learning. In International Conference on Machine Learning, 2019.
See pp. 62 and 120.

Lopes, Manuel, Lang, Tobias, Toussaint, Marc, and Oudeyer, Pierre-Yves. Exploration in

Model-Based Reinforcement Learning by Empirically Estimating Learning Progress.

In Advances in Neural Information Processing Systems, 2012. See p. 174.

Loshchilov, Ilya and Hutter, Frank. SGDR: Stochastic Gradient Descent with Restarts.

In International Conference on Learning Representations, 2017. See p. 111.

Luk, Kevin and Grosse, Roger. A Coordinate-Free Construction of Scalable Natural

Gradient. arXiv preprint arXiv:1808.10340, 2018. See pp. 90 and 97.

Machado, Marlos C., Bellemare, Marc G., Talvitie, Erik, Veness, Joel, Hausknecht,

Matthew, and Bowling, Michael. Revisiting the Arcade Learning Environment:

Evaluation Protocols and Open Problems for General Agents. Journal of Artificial
Intelligence Research, 61:523–562, 2018. See pp. 172, 173, and 198.

MacKay, David J.C. Information Theory, Inference, and Learning Algorithms. Cambridge

University Press, 4
th

edition, 2003. See pp. 32 and 35.

Maclaurin, Dougal, Duvenaud, David, and Adams, Ryan. Gradient-Based Hyperpa-

rameter Optimization Through Reversible Learning. In International conference on
machine learning, pp. 2113–2122. PMLR, 2015. See p. 52.

Mahajan, Dhruv, Girshick, Ross B., Ramanathan, Vignesh, He, Kaiming, Paluri,

Manohar, Li, Yixuan, Bharambe, Ashwin, and van der Maaten, Laurens. Ex-

227

ploring the Limits of Weakly Supervised Pretraining. In European Conference on
Computer Vision, 2018. See p. 86.

Mahdavinejad, Mohammad Saeid, Rezvan, Mohammadreza, Barekatain, Moham-

madamin, Adibi, Peyman, Barnaghi, Payam, and Sheth, Amit P. Machine Learning

for Internet of Things Data Analysis: A Survey. Digital Communications and Networks,
4(3):161–175, 2018. See p. 209.

Mangasarian, Olvi L. and Solodov, Mikhail V. Backpropagation Convergence via De-

terministic Nonmonotone Perturbed Minimization. In Advances in Neural Information
Processing Systems, 1994. See p. 39.

Marcus, Mitchell P., Marcinkiewicz, Mary Ann, and Santorini, Beatrice. Building a

Large Annotated Corpus of English: the Penn Treebank. Computational Linguistics,
19(2):313–330, 1993. See p. 77.

Martens, James. Deep Learning via Hessian-Free Optimization. In International
Conference on Machine Learning, 2010. See pp. 39, 90, and 128.

Martens, James and Grosse, Roger. Optimizing Neural Networks with Kronecker-

factored Approximate Curvature. In International Conference on Machine Learning,
2015. See pp. 128, 143, and 144.

McCloskey, Michael and Cohen, Neal J. Catastrophic Interference in Connectionist

Networks: The Sequential Learning Problem. In Psychology of Learning and Motivation,
volume 24, pp. 109–165. Elsevier, 1989. See p. 95.

Melis, Gábor, Dyer, Chris, and Blunsom, Phil. On the State of the Art of Evaluation

in Neural Language Models. In International Conference on Learning Representations,
2018. See pp. 78, 79, 80, and 81.

Mendonca, Russell, Gupta, Abhishek, Kralev, Rosen, Abbeel, Pieter, Levine, Sergey,

and Finn, Chelsea. Guided Meta-Policy Search. In Advances in Neural Information
Processing Systems, 2019. See p. 125.

Merity, Stephen, Xiong, Caiming, Bradbury, James, and Socher, Richard. Pointer

Sentinel Mixture Models. In International Conference on Learning Representations, 2017.
See p. 79.

Merity, Stephen, Keskar, Nitish Shirish, and Socher, Richard. Regularizing and Optimiz-

ing LSTM Language Models. In International Conference on Learning Representations,
2018. See pp. 78, 79, 80, 81, and 83.

Metz, Luke, Maheswaranathan, Niru, Cheung, Brian, and Sohl-Dickstein, Jascha. Meta-

Learning Update Rules for Unsupervised Representation Learning. In International
Conference on Learning Representations, 2019. See pp. 23 and 125.

Metz, Luke, Maheswaranathan, Niru, Sun, Ruoxi, Freeman, C. Daniel, Poole, Ben,

and Sohl-Dickstein, Jascha. Using a Thousand Optimization Tasks to Learn Hy-

perparameter Search Strategies. arXiv preprint arXiv:2002.11887, 2020. See p.

207.

Miconi, Thomas, Clune, Jeff, and Stanley, Kenneth O. Differentiable Plasticity: Training

Plastic Neural Networks with Backpropagation. International Conference on Machine
Learning, 2018. See pp. 95, 131, 132, and 148.

Miconi, Thomas, Clune, Jeff, and Stanley, Kenneth O. Backpropamine: Training

Self-Modifying Neural Networks with Differentiable Neuromodulated Plasticity. In

228

International Conference on Learning Representations, 2019. See pp. 119, 131, 132, 148,

and 155.

Mikolov, Tomas, Karafiat, Martin, Burget, Lukas, Cernocky, Jan, and Khudanpur,

Sanjeev. Recurrent Neural Network Based Language Model. Interspeech, 2:3, 2010.
See p. 77.

Mikolov, Tomáš. Statistical Language Models Based on Neural Networks. PhD thesis, Brno

University of Technology, 2012. See pp. 75 and 78.

Mikolov, Tomáš, Sutskever, Ilya, Deoras, Anoop, Le, Hai-Son, Kombrink, Stefan, and

Cernocky, Jan. Subword Language Modeling with Neural Networks. Preprint, 2012.
See p. 76.

Miller, John and Hardt, Moritz. Stable Recurrent Models. In International Conference on
Learning Representations, 2019. See p. 24.

Minsky, Marvin. The Society of Mind. Simon and Schuster, 1985. See p. 20.

Mishra, Nikhil, Rohaninejad, Mostafa, Chen, Xi, and Abbeel, Pieter. A Simple Neural

Attentive Meta-Learner. In International Conference on Learning Representations, 2018.
See pp. 24, 60, 61, 96, and 128.

Mitchell, Tom M. Machine Learning. McGraw-Hill, New York, 1997. See p. 32.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Graves, Alex, Antonoglou, Ioan-

nis, Wierstra, Daan, and Riedmiller, Martin. Playing Atari with Deep Reinforcement

Learning. arXiv preprint arXiv:1312.5602, 2013. See pp. 45 and 113.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A., Veness,

Joel, Bellemare, Marc G., Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K.,

Ostrovski, Georg, Petersen, Stig, Beattie, Charles, Sadik, Amir, Antonoglou, Ioannis,

King, Helen, Kumaran, Dharshan, Wierstra, Daan, Legg, Shane, and Hassabis, Demis.

Human-Level Control Through Deep Reinforcement Learning. Nature, 518(7540):
529–533, 2015. See pp. 46 and 167.

Moerland, Thomas M., Broekens, Joost, and Jonker, Catholijn M. Efficient Exploration

with Double Uncertain Value Networks. In Advances in Neural Information Processing
Systems, 2017. See pp. 161 and 174.

Monett, Dagmar, Lewis, Colin, and Thórisson, Kristinn. On Defining Artificial

Intelligence—Commentaries and Author’s Response. Journal of Artificial General
Intelligence, 11:1–100, 02 2020. See p. 21.

Muandet, Krikamol, Balduzzi, David, and Schölkopf, Bernhard. Domain Generaliza-

tion via Invariant Feature Representation. In International Conference on Learning
Representations, 2013. See p. 53.

Mujika, Asier, Meier, Florian, and Steger, Angelika. Fast-Slow Recurrent Neural

Networks. In Advances in Neural Information Processing Systems, 2017. See pp. 135

and 149.

Munkhdalai, Tsendsuren and Yu, Hong. Meta Networks. In International Conference on
Learning Representations, 2017. See pp. 56 and 61.

Munkhdalai, Tsendsuren, Yuan, Xingdi, Mehri, Soroush, Wang, Tong, and Trischler,

Adam. Learning Rapid-Temporal Adaptations. In International Conference on Machine
Learning, 2018. See pp. 60 and 128.

229

Murphy, Kevin P. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

See pp. 34, 35, 37, and 39.

Nachum, Ofir, Norouzi, Mohammad, and Schuurmans, Dale. Improving Policy Gradient

by Exploring Under-Appreciated Rewards. In International Conference on Learning
Representations, 2016. See p. 174.

Neyshabur, Behnam, Bhojanapalli, Srinadh, McAllester, David, and Srebro, Nati.

Exploring Generalization in Deep Learning. In Advances in Neural Information
Processing Systems, 2017. See p. 27.

Nguyen, Cuong V., Li, Yingzhen, Bui, Thang D., and Turner, Richard E. Variational

Continual Learning. In International Conference on Learning Representations, 2018. See

p. 54.

Nichol, Alex, Achiam, Joshua, and Schulman, John. On First-Order Meta-Learning

Algorithms. arXiv preprint ArXiv:1803.02999, 2018. See pp. 61, 94, 96, 106, 118,

128, 129, and 143.

Nocedal, Jorge and Wright, Stephen J. Numerical Optimization. Springer, 2006. See pp.

35, 118, and 128.

Norouzi, Mohammad, Mikolov, Tomas, Bengio, Samy, Singer, Yoram, Shlens, Jonathon,

Frome, Andrea, Corrado, Greg S., and Dean, Jeffrey. Zero-Shot Learning by Convex

Combination of Semantic Embeddings. In International Conference on Learning
Representations, 2014. See p. 59.

Novak, Roman, Bahri, Yasaman, Abolafia, Daniel A., Pennington, Jeffrey, and Sohl-

Dickstein, Jascha. Sensitivity and Generalization in Neural Networks: an Empirical

Study. In International Conference on Learning Representations, 2018. See pp. 19, 21,

27, and 68.

Oh, Junhyuk, Hessel, Matteo, Czarnecki, Wojciech M., Xu, Zhongwen, van Hasselt,

Hado, Singh, Satinder, and Silver, David. Discovering Reinforcement Learning

Algorithms. arXiv preprint arXiv:2007.08794, 2020. See p. 50.

Oreshkin, Boris N., Lacoste, Alexandre, and Rodriguez, Paul. TADAM: Task Dependent

Adaptive Metric for Improved Few-Shot Learning. In Advances in Neural Information
Processing Systems, 2018. See pp. 62, 126, and 128.

Osband, Ian, Russo, Daniel, and Van Roy, Benjamin. (More) Efficient Reinforcement

Learning via Posterior Sampling. In Advances in Neural Information Processing Systems,
2013. See p. 161.

Osband, Ian, Blundell, Charles, Pritzel, Alexander, and Van Roy, Benjamin. Deep

Exploration via Bootstrapped DQN. In Advances in Neural Information Processing
Systems, 2016a. See pp. 161, 164, 167, 173, 180, and 190.

Osband, Ian, Van Roy, Benjamin, and Wen, Zheng. Generalization and Exploration via

Randomized Value Functions. In International Conference on Machine Learning, 2016b.
See pp. 161 and 168.

Osband, Ian, Aslanides, John, and Cassirer, Albin. Randomized Prior Functions for

Deep Reinforcement Learning. In Advances in Neural Information Processing Systems,
2018. See p. 168.

Osband, Ian, Van Roy, Benjamin, Russo, Daniel J., and Wen, Zheng. Deep Exploration

230

via Randomized Value Functions. Journal of Machine Learning Research, 20:1–62,
2019. See pp. 161, 174, and 192.

Osband, Ian, Doron, Yotam, Hessel, Matteo, Aslanides, John, Sezener, Eren, Saraiva,

Andre, McKinney, Katrina, Lattimore, Tor, Szepezvari, Csaba, Singh, Satinder, Roy,

Benjamin Van, Sutton, Richard, Silver, David, and Hasselt, Hado Van. Behaviour Suite

for Reinforcement Learning. In International Conference on Learning Representations,
2020. See pp. 167, 169, 176, and 189.

Ostrovski, Georg, Bellemare, Marc G., van den Oord, Aäron, and Munos, Rémi. Count-

Based Exploration with Neural Density Models. In International Conference on Machine
Learning, 2017. See pp. 173 and 174.

O’Sullivan, Joseph, Langford, John, Caruana, Rich, and Blum, Avrim. FeatureBoost:

A Meta-Learning Algorithm that Improves Model Robustness. In International
Conference on Machine Learning, 2000. See p. 51.

Oudeyer, Pierre-Yves and Kaplan, Frederic. What is Intrinsic Motivation? A Typology

of Computational Approaches. Frontiers in Neurorobotics, 1:6, 2009. See p. 174.

Oudeyer, Pierre-Yves, Kaplan, Frdric, and Hafner, Verena V. Intrinsic Motivation

Systems for Autonomous Mental Development. IEEE Transactions on Evolutionary
Computation, 11(2):265–286, 2007. See pp. 28 and 175.

O’Donoghue, Brendan, Osband, Ian, Munos, Remi, and Mnih, Volodymyr. The

Uncertainty Bellman Equation and Exploration. In International Conference on
Machine Learning, 2018. See pp. 161, 163, 164, 166, 174, and 180.

Packer, Charles, Gao, Katelyn, Kos, Jernej, Krähenbühl, Philipp, Koltun, Vladlen, and

Song, Dawn. Assessing Generalization in Deep Reinforcement Learning. arXiv
preprint arXiv:1810.12282, 2018. See p. 207.

Pan, Sinno Jialin and Yang, Qiang. A Survey on Transfer Learning. IEEE Transactions
on Knowledge & Data Engineering, 12(10):1345–1359, 2009. See pp. 53, 86, and 95.

Parisi, German I., Kemker, Ronald, Part, Jose L., Kanan, Christopher, and Wermter,

Stefan. Continual Lifelong Learning with Neural Networks: A Review. Neural
Networks, 113:54–71, 2019. See p. 53.

Park, Eunbyung and Oliva, Junier B. Meta-curvature. In Advances in Neural Information
Processing Systems, 2019. See pp. 26, 62, 118, and 120.

Pascanu, Razvan and Bengio, Yoshua. Revisiting Natural Gradient for Deep Networks.

In International Conference on Learning Representations, 2014. See pp. 90 and 128.

Pascanu, Razvan, Mikolov, Tomas, and Bengio, Yoshua. Understanding the Exploding

Gradient Problem. arXiv preprint arXiv:1211.5063, 2013. See p. 24.

Pathak, Deepak, Agrawal, Pulkit, Efros, Alexei A., and Darrell, Trevor. Curiosity-Driven

Exploration by Self-Supervised Prediction. In International Conference on Machine
Learning, 2017. See pp. 161, 174, and 175.

Peng, Jing and Williams, Ronald J. Incremental Multi-Step Q-Learning. In Machine
Learning Proceedings 1994, pp. 226–232. Elsevier, 1994. See p. 196.

Perez, Ethan, Strub, Florian, De Vries, Harm, Dumoulin, Vincent, and Courville, Aaron.

Film: Visual Reasoning With a General Conditioning Layer. In Association for the
Advancement of Artificial Intelligence, 2018. See pp. 135 and 143.

231

Plappert, Matthias, Houthooft, Rein, Dhariwal, Prafulla, Sidor, Szymon, Chen,

Richard Y., Chen, Xi, Asfour, Tamim, Abbeel, Pieter, and Andrychowicz, Marcin.

Parameter Space Noise for Exploration. In International Conference on Learning
Representations, 2018. See pp. 164, 174, and 182.

Pratt, Lorien Y. Discriminability-Based Transfer Between Neural Networks. In Advances
in Neural Information Processing Systems, 1993. See p. 52.

Press, Ofir and Wolf, Lior. Using the Output Embedding to Improve Language Models.

In Proceedings of the European Chapter of the Association for Computational Linguistics,
volume 2, pp. 157–163, 2017. See pp. 80 and 83.

Puigdomènech Badia, Adrià, Sprechmann, Pablo, Vitvitskyi, Alex, Guo, Daniel, Piot,

Bilal, Kapturowski, Steven, Tieleman, Olivier, Arjovsky, Martin, Pritzel, Alexander,

Bolt, Andrew, and Blundell, Charles. Never Give Up: Learning Directed Exploration

Strategies. In International Conference on Learning Representations, 2020. See pp. 173,

174, 192, and 197.

Puterman, Martin L. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, 2014. See p. 42.

Qiao, Siyuan, Liu, Chenxi, Shen, Wei, and Yuille, Alan L. Few-Shot Image Recognition

by Predicting Parameters from Activations. In Computer Vision and Pattern Recognition,
2018. See pp. 60 and 128.

Racaniere, Sébastien, Lampinen, Andrew K., Santoro, Adam, Reichert, David P.,

Firoiu, Vlad, and Lillicrap, Timothy P. Automated Curricula Through Setter-Solver

Interactions. In International Conference on Learning Representations, 2020. See p. 57.

Radford, Alec, Jozefowicz, Rafal, and Sutskever, Ilya. Learning to Generate Reviews

and Discovering Sentiment. arXiv preprint, arXiv:1704.01444, 2017. See p. 76.

Radford, Alec, Wu, Jeffrey, Child, Rewon, Luan, David, Amodei, Dario, and Sutskever,

Ilya. Language Models are Unsupervised Multitask Learners. OpenAI Blog, 2019.

URL https://openai.com/blog/better-language-models/. See p. 19.

Raghu, Aniruddh, Raghu, Maithra, Bengio, Samy, and Vinyals, Oriol. Rapid Learning or

Feature Reuse? Towards Understanding the Effectiveness of MAML. In International
Conference on Learning Representations, 2020. See p. 27.

Ravi, Sachin and Beatson, Alex. Amortized Bayesian Meta-Learning. In International
Conference on Learning Representations, 2018. See pp. 53 and 62.

Ravi, Sachin and Larochelle, Hugo. Optimization as a Model for Few-Shot Learning.

In International Conference on Learning Representations, 2017. See pp. 24, 50, 60, 61,

75, 87, 96, 117, 118, 127, 129, and 146.

Real, Esteban, Liang, Chen, So, David R., and Le, Quoc V. AutoML-Zero: Evolving

Machine Learning Algorithms From Scratch. In International Conference on Machine
Learning, 2020. See pp. 23, 51, and 54.

Rebuffi, Sylvestre-Alvise, Bilen, Hakan, and Vedaldi, Andrea. Learning Multiple Visual

Domains with Residual Adapters. In Advances in Neural Information Processing Systems,
2017. See pp. 52, 125, 134, 135, and 143.

Ren, Mengye, Triantafillou, Eleni, Ravi, Sachin, Snell, Jake, Swersky, Kevin, Tenen-

baum, Joshua B., Larochelle, Hugo, and Zemel, Richard S. Meta-Learning for

232

Semi-Supervised Few-Shot Classification. In International Conference on Learning
Representations, 2018. See pp. 119, 128, 129, and 146.

Ren, Mengye, Liao, Renjie, Fetaya, Ethan, and Zemel, Richard. Incremental Few-Shot

Learning with Attention Attractor Networks. In Advances in Neural Information
Processing Systems, 2019. See p. 60.

Riedmiller, Martin A., Hafner, Roland, Lampe, Thomas, Neunert, Michael, Degrave,

Jonas, de Wiele, Tom Van, Mnih, Volodymyr, Heess, Nicolas, and Springenberg,

Jost Tobias. Learning by Playing - Solving Sparse Reward Tasks from Scratch. arXiv
preprint arXiv:1802.10567, 2018. See p. 28.

Riemer, Matthew, Cases, Ignacio, Ajemian, Robert, Liu, Miao, Rish, Irina, Tu, Yuhai,

and Tesauro, Gerald. Learning to Learn without Forgetting by Maximizing Transfer

and Minimizing Interference. In International Conference on Learning Representations,
2018. See p. 53.

Risi, Sebastian and Togelius, Julian. Increasing Generality in Machine Learning

Through Procedural Content Generation. Nature Machine Intelligence, pp. 1–9, 2020.
See p. 57.

Ritter, Hippolyt, Botev, Aleksandar, and Barber, David. Online Structured Laplace

Approximations for Overcoming Catastrophic Forgetting. In Advances in Neural
Information Processing Systems, 2018. See p. 54.

Rodríguez, Pau, Laradji, Issam, Drouin, Alexandre, and Lacoste, Alexandre. Embed-

ding Propagation: Smoother Manifold for Few-Shot Classification. arXiv preprint
arXiv:2003.04151, 2020. See p. 60.

Rumelhart, David E., Hinton, Geoffrey E., and Williams, Ronald J. Learning Repre-

sentations by Back-Propagating Errors. nature, 323(6088):533–536, 1986. See p.

39.

Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan, Satheesh, Sanjeev, Ma,

Sean, Huang, Zhiheng, Karpathy, Andrej, Khosla, Aditya, Bernstein, Michael, Berg,

Alexander C., and Fei-Fei, Li. Imagenet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision, 115(3):211–252, 2015. See p. 52.

Rusu, Andrei A., Rabinowitz, Neil C., Desjardins, Guillaume, Soyer, Hubert, Kirkpatrick,

James, Kavukcuoglu, Koray, Pascanu, Razvan, and Hadsell, Raia. Progressive Neural

Networks. arXiv preprint arXiv:1606.04671, 2016. See pp. 53, 96, 98, and 111.

Rusu, Andrei A., Rao, Dushyant, Sygnowski, Jakub, Vinyals, Oriol, Pascanu, Razvan,

Osindero, Simon, and Hadsell, Raia. Meta-Learning with Latent Embedding Opti-

mization. In International Conference on Learning Representations, 2019. See pp. 27,

62, 126, and 128.

Santoro, Adam, Bartunov, Sergey, Botvinick, Matthew, Wierstra, Daan, and Lillicrap,

Timothy. Meta-Learning with Memory-Augmented Neural Networks. In International
Conference on Machine Learning, 2016. See pp. 22, 61, 87, and 96.

Saxe, Andrew M., McClelland, James L., and Ganguli, Surya. Exact Solutions to the

Nonlinear Dynamics of Learning in Deep Linear Neural Networks. arXiv preprint
arXiv:1312.6120, 2013. See pp. 40, 73, and 128.

Schäfer, Anton Maximilian and Zimmermann, Hans-Georg. Recurrent Neural Networks

are Universal Approximators. International Journal of Neural Systems, 17(04):253–263,
2007. See pp. 61 and 118.

233

Schaul, Tom, Quan, John, Antonoglou, Ioannis, and Silver, David. Prioritized Experience

Replay. arXiv preprint arXiv:1511.05952, 2015. See p. 46.

Schaul, Tom, Borsa, Diana, Ding, David, Szepesvari, David, Ostrovski, Georg, Dabney,

Will, and Osindero, Simon. Adapting Behaviour for Learning Progress. arXiv preprint
arXiv:1912.06910, 2019. See pp. 173, 192, 193, and 197.

Schmidhuber, Juergen, Zhao, Jieyu, and Wiering, M.A. Simple Principles of Metalearn-

ing. Technical report IDSIA, 69:1–23, 1996. See p. 54.

Schmidhuber, Jürgen. Evolutionary Principles in Self-Referential Learning. PhD thesis,

Technische Universität München, 1987. See pp. 21, 22, 23, 24, 54, 57, 66, 67, 96,

and 127.

Schmidhuber, Jürgen. Curious Model-Building Control Systems. In Proceedings of the
International Joint Conference on Neural Networks, 1991. See pp. 28, 174, and 175.

Schmidhuber, Jürgen. Learning to Control Fast-Weight Memories: An Alternative to

Dynamic Recurrent Networks. Neural Computation, 4(1):131–139, 1992. See pp. 56,

75, 127, and 149.

Schmidhuber, Jürgen. Powerplay: Training an Increasingly General Problem Solver

by Continually Searching for the Simplest Still Unsolvable Problem. Frontiers in
psychology, 4:313, 2013. See p. 57.

Schwarz, Jonathan, Luketina, Jelena an Czarnecki, Wojciech M., Grabska-Barwinska,

Agnieszka, Teh, Yee Whye, Pascanu, Razvan, and Hadsell, Raia. Progress & Compress:

A Scalable Framework for Continual Learning. In International Conference on Machine
Learning, 2018. See pp. 53, 96, and 109.

Seo, Sanghyun, Jeon, Yongjin, and Kim, Juntae. Meta Learning for Imbalanced Big

Data Analysis by Using Generative Adversarial Networks. In International Conference
on Big Data and Computing, 2018. See p. 50.

Serrá, Joan, Surís, Dídac, Miron, Marius, and Karatzoglou, Alexandros. Overcoming

Catastrophic Forgetting with Hard Attention to the Task. In International Conference
on Machine Learning, 2018. See pp. 53, 95, 98, and 111.

Shaban, Amirreza, Bansal, Shray, Liu, Zhen, Essa, Irfan, and Boots, Byron. One-Shot

Learning for Semantic Segmentation. In British Machine Vision Conference, 2017. See

p. 60.

Shahriari, Bobak, Swersky, Kevin, Wang, Ziyu, Adams, Ryan, and de Freitas, Nando.

Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proceedings
of the IEEE, 2016. See p. 54.

Shao, Hang, Kumar, Abhishek, and Fletcher, P. Thomas. The Riemannian Geometry of

Deep Generative Models. In Computer Vision and Pattern Recognition, 2018. See p. 97.

Sharif Razavian, Ali, Azizpour, Hossein, Sullivan, Josephine, and Carlsson, Stefan. CNN

Features Off-The-Shelf: an Astounding Baseline for Recognition. In Computer Vision
and Pattern Recognition, 2014. See p. 52.

Shin, Hanul, Lee, Jung Kwon, Kim, Jaehong, and Kim, Jiwon. Continual Learning with

Deep Generative Replay. In Advances in Neural Information Processing Systems, 2017.
See p. 53.

234

Siegelmann, Hava T. and Sontag, Eduardo D. On the Computational Power of Neural

Nets. Journal of Computer and System Sciences, 50(1):132–150, 1995. See pp. 24

and 61.

Silver, David, Hubert, Thomas, Schrittwieser, Julian, Antonoglou, Ioannis, Lai, Matthew,

Guez, Arthur, Lanctot, Marc, Sifre, Laurent, Kumaran, Dharshan, Graepel, Thore,

Lillicrap, Timothy, Simonyan, Karen, and Hassabis, Demis. A General Reinforcement

Learning Algorithm that Masters Chess, Shogi, and Go through Self-Play. Science,
362(6419):1140–1144, 2018. See pp. 18 and 207.

Silvetti, Massimo and Verguts, Tom. Reinforcement Learning, High-Level Cognition,

and The Human Brain. Neuroimaging–Cognitive and Clinical Neuroscience, pp. 283–96,
2012. See p. 41.

Simmons-Edler, Riley, Eisner, Ben, Mitchell, Eric, Seung, H. Sebastian, and Lee,

Daniel D. QXplore: Q-learning Exploration by Maximizing Temporal Difference

Error. arXiv preprint arXiv:1906.08189, 2019. See pp. 171, 175, and 189.

Singh, Satinder P., Barto, Andrew G., and Chentanez, Nuttapong. Intrinsically Motivated

Reinforcement Learning. In Advances in Neural Information Processing Systems, 2005.
See pp. 161 and 204.

Sinz, Fabian H., Pitkow, Xaq, Reimer, Jacob, Bethge, Matthias, and Tolias, Andreas S.

Engineering a less artificial intelligence. Neuron, 103(6):967–979, 2019. See pp. 20

and 21.

Snell, Jake, Swersky, Kevin, and Zemel, Richard S. Prototypical Networks for Few-shot

Learning. In Advances in Neural Information Processing Systems, 2017. See pp. 50, 57,

60, 96, and 128.

Spelke, Elizabeth S. and Kinzler, Katherine D. Core Knowledge. Developmental science,
10(1):89–96, 2007. See p. 21.

Stanley, Kenneth O., D’Ambrosio, David B., and Gauci, Jason. A Hypercube-Based

Encoding for Evolving Large-Scale Neural Networks. Artificial Life, 15(2):185–212,
2009. See p. 75.

Strens, Malcolm. A Bayesian Framework for Reinforcement Learning. In International
Conference on Machine Learning, 2000. See pp. 161, 163, 173, and 204.

Suarez, Joseph. Character-Level Language Modeling with Recurrent Highway Hyper-

networks. In Advances in Neural Information Processing Systems, 2017. See pp. 75, 76,

and 135.

Such, Felipe Petroski, Rawal, Aditya, Lehman, Joel, Stanley, Kenneth, and Clune, Jeffrey.

Generative Teaching Networks: Accelerating Neural Architecture Search by Learning

to Generate Synthetic Training Data. In International Conference on Machine Learning,
2020. See p. 208.

Sukhbaatar, Sainbayar, Kostrikov, Ilya, Szlam, Arthur, and Fergus, Rob. Intrinsic

Motivation and Automatic Curricula via Asymmetric Self-Play. In International
Conference on Learning Representations, 2018. See pp. 28, 29, 57, 158, and 207.

Sung, Flood, Yang, Yongxin, Zhang, Li, Xiang, Tao, Torr, Philip H. S., and Hospedales,

Timothy M. Learning to Compare: Relation Network for Few-Shot Learning. In

Computer Vision and Pattern Recognition, 2018. See pp. 50 and 60.

235

Sutskever, Ilya, Martens, James, and Hinton, Geoffrey E. Generating Text with Recurrent

Neural Networks. In International Conference on Machine Learning, 2011. See p. 76.

Sutskever, Ilya, Martens, James, Dahl, George, and Hinton, Geoffrey. On the Importance

of Initialization and Momentum in Deep Learning. In International Conference on
Machine Learning, 2013. See pp. 39 and 128.

Sutton, Richard S. and Barto, Andrew G. Introduction to Reinforcement Learning. MIT

Press, 1998. See pp. 41, 42, 43, 44, 45, 47, and 100.

Sutton, Richard S., McAllester, David A., Singh, Satinder, and Mansour, Yishay. Policy

Gradient Methods for Reinforcement Learning with Function Approximation. In

Advances in Neural Information Processing Systems, 1999. See p. 47.

Szegedy, Christian, Zaremba, Wojciech, Sutskever, Ilya, Bruna, Joan, Erhan, Dumitru,

Goodfellow, Ian, and Fergus, Rob. Intriguing Properties of Neural Networks. In

International Conference on Learning Representations, 2014. See pp. 19, 21, and 40.

Szepesvári, Csaba. Algorithms for Reinforcement Learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 4(1):1–103, 2010. See p. 45.

Thompson, William R. On the Likelihood that one Unknown Probability Exceeds

Another in View of the Evidence of Two Samples. Biometrika, 25(3/4):285–294,
1933. See p. 174.

Thórisson, Kristinn and Helgasson, Helgi. Cognitive Architectures and Autonomy: A

Comparative Review. Journal of Artificial General Intelligence, 3(2):1–30, 2012. See pp.

20 and 22.

Thórisson, Kristinn R., Bieger, Jordi, Li, Xiang, and Wang, Pei. Cumulative Learning.

In Artificial General Intelligence, 2019. See p. 22.

Thrun, Sebastian and Pratt, Lorien. Learning To Learn: Introduction and Overview.

In In Learning To Learn. Springer, 1998. See pp. 23, 54, 55, and 127.

Tian, Yonglong, Wang, Yue, Krishnan, Dilip, Tenenbaum, Joshua B., and Isola, Phillip.

Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need? In

European Conference on Computer Vision, 2020. See p. 25.

Tokic, Michel. Adaptive Y-Greedy Exploration in Reinforcement Learning Based on

Value Differences. In Annual Conference on Artificial Intelligence, pp. 203–210, 2010.
See p. 174.

Tosi, Alessandra, Hauberg, Søren, Vellido, Alfredo, and Lawrence, Neil D. Metrics for

Probabilistic Geometries. In Conference on Uncertainty in Artificial Intelligence, 2014.
See p. 97.

Triantafillou, Eleni, Zhu, Tyler, Dumoulin, Vincent, Lamblin, Pascal, Xu, Kelvin,

Goroshin, Ross, Gelada, Carles, Swersky, Kevin, Manzagol, Pierre-Antoine, and

Larochelle, Hugo. Meta-Dataset: A Dataset of Datasets for Learning to Learn from

Few Examples. In International Conference on Learning Representations, 2020. See pp.

25 and 55.

Tseng, Hung-Yu, Lee, Hsin-Ying, Huang, Jia-Bin, and Yang, Ming-Hsuan. Cross-

Domain Few-Shot Classification via Learned Feature-Wise Transformation. In

International Conference on Learning Representations, 2019. See pp. 27 and 53.

236

Turing, Alan M. Computing Machinery and Intelligence. Mind, LIX(236):433–460, 10
1950. See pp. 21 and 22.

Turovsky, Barak. Ten Years of Google Translate. Google Blog, 2016. URL https:
//www.blog.google/products/translate/ten-years-of-google-translate/. See p.

19.

van Erven, Tim and Koolen, Wouter M. MetaGrad: Multiple Learning Rates in Online

Learning. In Advances in Neural Information Processing Systems, 2016. See p. 52.

Van Hasselt, Hado, Guez, Arthur, and Silver, David. Deep Reinforcement Learning

with Double Q-Learning. In Association for the Advancement of Artificial Intelligence,
2016. See pp. 46 and 167.

van Rijn, Jan N., Abdulrahman, Salisu Mamman, Brazdil, Pavel, and Vanschoren,

Joaquin. Fast Algorithm Selection Using Learning Curves. In International Symposium
on Intelligent Data Analysis, 2015. See p. 50.

Vanschoren, Joaquin. Meta-Learning: A Survey. arXiv preprint arXiv:1810.03548,
2018. See pp. 23 and 54.

Vapnik, Vladimir N. The Nature of Statistical Learning Theory. Springer-Verlag, 1999.
See pp. 37 and 38.

Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion, Gomez,

Aidan N., Kaiser, Lukasz, and Polosukhin, Illia. Attention is All you Need. In

Advances in Neural Information Processing Systems, 2017. See p. 80.

Vilalta, Ricardo and Drissi, Youssef. A Perspective View and Survey of Meta-Learning.

Artificial intelligence review, 18(2):77–95, 2002. See pp. 23 and 54.

Vilalta, Ricardo, Giraud-Carrier, Christophe G., Brazdil, Pavel, and Soares, Carlos.

Using Meta-Learning to Support Data Mining. Using Meta-Learning to Support Data
Mining, 1(1):31–45, 2004. See pp. 50 and 54.

Vinyals, Oriol, Blundell, Charles, Lillicrap, Timothy, Kavukcuoglu, Koray, and Wierstra,

Daan. Matching Networks for One Shot Learning. In Advances in Neural Information
Processing Systems, 2016. See pp. 22, 23, 24, 25, 50, 51, 57, 59, 60, 87, 96, 109, 118,

128, 129, 141, 146, and 210.

Vinyals, Oriol, Babuschkin, Igor, Czarnecki, Wojciech M., Mathieu, Michaël, Dudzik,

Andrew, Chung, Junyoung, Choi, David H., Powell, Richard, Ewalds, Timo, Georgiev,

Petko, Oh, Junhyuk, Horgan, Dan, Kroiss, Manuel, Danihelka, Ivo, Huang, Aja, Sifre,

Laurent, Cai, Trevor, Agapiou, John P., Jaderberg, Max, Vezhnevets, Alexander S.,

Leblond, Rémi, Pohlen, Tobias, Dalibard, Valentin, Budden, David, Sulsky, Yury,

Molloy, James, Paine, Tom L., Gulcehre, Caglar, Wang, Ziyu, Pfaff, Tobias, Wu,

Yuhuai, Ring, Roman, Yogatama, Dani, McKinney, Katrina, Smith, Oliver, Schaul,

Tom, Lillicrap, Timothy, Kavukcuoglu, Koray, Hassabis, Demis, Apps, Chris, and

Silver, David. Grandmaster Level in StarCraft II using Multi-Agent Reinforcement

Learning. Nature, 575(7782):350–354, 2019. See pp. 18 and 207.

Wald, Abraham. Note on the Consistency of the Maximum Likelihood Estimate. Annals
of Mathematical Statistics, 20(4):595–601, 12 1949. See p. 36.

Wang, Jane X., Kurth-Nelson, Zeb, Tirumala, Dhruva, Soyer, Hubert, Leibo, Joel Z.,

Munos, Rémi, Blundell, Charles, Kumaran, Dharshan, and Botvinick, Matthew.

Learning to Reinforcement Learn. In Annual Meeting of the Cognitive Science Society,
2016a. See pp. 55, 127, 131, 132, 138, 148, and 206.

237

Wang, Pei. On Defining Artificial Intelligence. Journal of Artificial General Intelligence,
10(2):1–37, 2019. See pp. 20, 21, 22, and 210.

Wang, Rui, Lehman, Joel, Clune, Jeff, and Stanley, Kenneth O. Paired Ppen-Ended

Trailblazer (POET): Endlessly Generating Increasingly Complex and Diverse Learn-

ing Environments and Their Solutions. arXiv preprint arXiv:1901.01753, 2019. See

pp. 57 and 158.

Wang, Ziyu, Schaul, Tom, Hessel, Matteo, Hasselt, Hado, Lanctot, Marc, and Freitas,

Nando. Dueling Network Architectures for Deep Reinforcement Learning. In

International Conference on Learning Representations, pp. 1995–2003, 2016b. See pp.

46 and 61.

Wasserman, Larry. All of Statistics: a Concise Course in Statistical Inference. Springer

Science & Business Media, 2013. See pp. 36 and 38.

Watkins, Christopher and Dayan, Peter. Q-Learning. Machine learning, 8(3-4):279–292,
1992. See p. 45.

White, Adam. Developing a Predictive Approach to Knowledge. PhD thesis, University of

Alberta, 2015. See p. 175.

Williams, Ronald J. and Peng, Jing. Function Optimization using Connectionist

Reinforcement Learning Algorithms. Connection Science, 3(3):241–268, 1991. See pp.

46 and 161.

Wolf, Marty J., Miller, Keith W, and Grodzinsky, Frances S. Why We Should Have Seen

That Coming: Comments on Microsoft’s Tay “Experiment,” and Wider Implications.

The ORBIT Journal, 1(2):1–12, 2017. See p. 209.

Wolpert, David H. and Macready, William G. No Free Lunch Theorems For Opti-

mization. IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997. See p.

49.

Wu, Yonghui, Schuster, Mike, Chen, Zhifeng, Le, Quoc V., Norouzi, Mohammad,

Macherey, Wolfgang, Krikun, Maxim, Cao, Yuan, Gao, Qin, Macherey, Klaus, Klingner,

Jeff, Shah, Apurva, Johnson, Melvin, Liu, Xiaobing, Kaiser, Lukasz, Gouws, Stephan,

Kato, Yoshikiyo, Kudo, Taku, Kazawa, Hideto, Stevens, Keith, Kurian, George, Patil,

Nishant, Wang, Wei, Young, Cliff, Smith, Jason, Riesa, Jason, Rudnick, Alex, Vinyals,

Oriol, Corrado, Greg, Hughes, Macduff, and Dean, Jeffrey. Google’s Neural Machine

Translation System: Bridging the Gap between Human and Machine Translation.

arXiv preprint arXiv:1609.08144, 2016a. See p. 19.

Wu, Yuhuai, Zhang, Saizheng, Zhang, Ying, Bengio, Yoshua, and Salakhutdinov,

Ruslan. On Multiplicative Integration with Recurrent Neural Networks. In Advances
in Neural Information Processing Systems, 2016b. See p. 76.

Wu, Yuhuai, Ren, Mengye, Liao, Renjie, and Grosse, Roger B. Understanding Short-

Horizon Bias in Stochastic Meta-Optimization. In International Conference on Learning
Representations, 2018. See pp. 62, 84, 87, 97, and 120.

Xu, Tianbing, Liu, Qiang, Zhao, Liang, and Peng, Jian. Learning to Explore via

Meta-Policy Gradient. In International Conference on Machine Learning, 2018a. See pp.

56, 173, and 198.

Xu, Zhongwen, van Hasselt, Hado P., and Silver, David. Meta-Gradient Reinforcement

Learning. In Advances in Neural Information Processing Systems, 2018b. See pp. 47,

51, 52, and 211.

238

Xu, Zhongwen, van Hasselt, Hado, Hessel, Matteo, Oh, Junhyuk, Singh, Satinder, and

Silver, David. Meta-Gradient Reinforcement Learning with an Objective Discovered

Online. In Advances in Neural Information Processing Systems, 2020. See p. 211.

Yang, Zhilin, Dai, Zihang, Salakhutdinov, Ruslan, and Cohen, William W. Breaking the

Softmax Bottleneck: A High-Rank RNN Language Model. In International Conference
on Learning Representations, 2018. See pp. 75 and 78.

Yang, Zhilin, Dai, Zihang, Yang, Yiming, Carbonell, Jaime G., Salakhutdinov, Ruslan,

and Le, Quoc V. XLNet: Generalized Autoregressive Pretraining for Language

Understanding. In Advances in Neural Information Processing Systems, 2019. See p.

52.

Yao, Quanming, Wang, Mengshuo, Escalante, Hugo Jair, Guyon, Isabelle, Hu, Yi-Qi,

Li, Yu-Feng, Tu, Wei-Wei, Yang, Qiang, and Yu, Yang. Taking Human out of

Learning Applications: A Survey on Automated Machine Learning. arXiv preprint
arXiv:1810.13306, 2018a. See pp. 23, 25, and 54.

Yao, Shuochao, Zhao, Yiran, Zhang, Aston, Hu, Shaohan, Shao, Huajie, Zhang, Chao,

Su, Lu, and Abdelzaher, Tarek. Deep Learning for The Internet of Things. Computer,
51(5):32–41, 2018b. See p. 209.

Yin, Chengxiang, Tang, Jian, Xu, Zhiyuan, and Wang, Yanzhi. Adversarial Meta-

Learning. arXiv preprint arXiv:1806.03316, 2018. See p. 23.

Yu, Tianhe, Quillen, Deirdre, He, Zhanpeng, Julian, Ryan, Hausman, Karol, Finn,

Chelsea, and Levine, Sergey. Meta-World: A Benchmark and Evaluation for Multi-

Task and Meta Reinforcement Learning. In Conference on Robot Learning, 2020. See

pp. 25 and 207.

Zahavy, Tom, Xu, Zhongwen, Veeriah, Vivek, Hessel, Matteo, Oh, Junhyuk, van Hasselt,

Hado, Silver, David, and Singh, Satinder. Self-Tuning Deep Reinforcement Learning.

arXiv preprint arXiv:2002.12928, 2020. See pp. 52, 173, 192, 198, and 211.

Zamir, Amir R., Sax, Alexander, Shen, William B., Guibas, Leonidas J., Malik, Jitendra,

and Savarese, Silvio. Taskonomy: Disentangling Task Transfer Learning. In Computer
Vision and Pattern Recognition, 2018. See p. 25.

Zaremba, Wojciech, Sutskever, Ilya, and Vinyals, Oriol. Recurrent Neural Network

Regularization. In International Conference on Learning Representations, 2015. See pp.

78 and 80.

Zenke, Friedemann, Poole, Ben, and Ganguli, Surya. Continual Learning Through

Synaptic Intelligence. In International Conference on Machine Learning, 2017. See pp.

53 and 95.

Zhang, Chiyuan, Bengio, Samy, Hardt, Moritz, Recht, Benjamin, and Vinyals, Oriol.

Understanding Deep Learning Requires Rethinking Generalization. In International
Conference on Learning Representations, 2017. See pp. 19, 21, 27, 40, and 66.

Zhang, Ruixiang, Che, Tong, Ghahramani, Zoubin, Bengio, Yoshua, and Song, Yangqiu.

MetaGAN: An Adversarial Approach to Few-Shot Learning. In Advances in Neural
Information Processing Systems, 2018. See pp. 50 and 51.

Zheng, Zeyu, Oh, Junhyuk, Hessel, Matteo, Xu, Zhongwen, Kroiss, Manuel, Van Hasselt,

Hado, Silver, David, and Singh, Satinder. What Can Learned Intrinsic Rewards

Capture? In International Conference on Machine Learning, 2020. See p. 158.

239

Zhou, Fan, Cao, Chengtai, Zhang, Kunpeng, Trajcevski, Goce, Zhong, Ting, and Geng, Ji.

Meta-GNN: On Few-shot Node Classification in Graph Meta-learning. In International
Conference on Information and Knowledge Management, 2019. See p. 62.

Zhou, Fengwei, Wu, Bin, and Li, Zhenguo. Deep Meta-Learning: Learning to Learn

in the Concept Space. arXiv preprint arXiv:1802.03596, 2018. See pp. 62 and 128.

Ziebart, Brian D., Maas, Andrew, Bagnell, J. Andrew, and Dey, Anind K. Maximum

Entropy Inverse Reinforcement Learning. In Association for the Advancement of
Artificial Intelligence, 2008. See p. 161.

Zilly, Julian Georg, Srivastava, Rupesh Kumar, Koutnik, Jan, and Schmidhuber, Jürgen.

Recurrent Highway Networks. In International Conference on Machine Learning, 2017.
See pp. 75 and 80.

Zintgraf, Luisa M., Shiarlis, Kyriacos, Kurin, Vitaly, Hofmann, Katja, and Whiteson,

Shimon. Fast Context Adaptation via Meta-Learning. International Conference on
Machine Learning, 2019. See pp. 128 and 134.

Zoph, Barret and Le, Quoc V. Neural Architecture Search with Reinforcement Learning.

In International Conference on Learning Representations, 2017. See p. 80.

	Declaration of Authorship
	Copyright
	Abstract
	Acknowledgements
	Abbreviations
	Notation
	Publications
	Introduction
	Limitations of Tabula Rasa
	Limitations of Contemporary Meta-Learning
	Scalability
	Generalisation
	Exogenous Tasks

	Thesis Outline

	I Foundations
	Machines that Learn
	Types of Machine Learning
	Machine Learning Problem Definitions
	Maximum Likelihood Estimation
	Empirical Risk Minimization

	Learning Through Stochastic Gradient Descent
	Reinforcement Learning
	The Reinforcement Learning Problem
	Generalised Policy Iteration
	Reinforcement Learning with Policy Gradients

	Summary

	Machines that Learn to Learn
	The Meta-Learning Problem
	Related Fields
	A Historical Perspective
	The Mechanics of Meta-Learning
	Contemporary Meta-Learning with Neural Networks
	Summary

	II Learning to Learn
	Learning to Dynamically Adapt
	Breaking the Activation Function Bottleneckthrough Adaptive Parameterisation
	Introduction
	Adaptive Parameterization
	The Adaptive Feed-Forward Layer
	Adaptation Modules

	Adaptive Parameterization in RNNs
	Related Work
	Experiments
	Extreme Tail Regression
	MNIST
	Penn Treebank
	WikiText-2
	Ablation Study
	Robustness

	Conclusions

	Appendix
	NLP Experiment Hyper-Parameters

	Scaling up Meta-Learning On First Principles
	Transferring Knowledge across Learning Processes
	Introduction
	Transferring Knowledge across Learning Processes
	Gradient Paths on Task Manifolds
	Meta Learning across Task Manifolds
	Leap

	Related Work
	Empirical Results
	Omniglot
	Multi-CV
	Atari

	Conclusions

	Appendix
	Mathematical Results
	Ablation Study: Approximating Jacobians
	Ablation Study: Leap Hyper-Parameters
	Experiment Details: Omniglot
	Experiment Details: Multi-CV
	Experiment Details: Atari

	General-Purpose Meta-Learning
	Meta-Learning with Warped Gradient Descent
	Introduction
	Warped Gradient Descent
	Gradient-Based Meta-Learning
	General-Purpose Preconditioning
	The Geometry of Warped Gradient Descent
	Meta-Learning Warp Parameters
	Integration with Learned Initialisations

	Related Work
	Experiments
	Few-Shot Learning
	Multi-Shot Learning
	Complex Meta-Learning

	Conclusion

	Appendix
	WarpGrad Design Principles for Neural Nets
	WarpGrad Meta-Training Algorithms
	WarpGrad Optimisers
	Synthetic Experiment
	Omniglot
	Ablation Study: Layers, Objectives, Algorithms
	Ablation study: Warped and Natural Gradients
	miniImageNet and tieredImageNet
	Maze Navigation
	Meta-Learning for Continual Learning

	III Towards Never-Ending Learning
	Lifelong Learning in Autonomous Agents
	Temporal Difference Uncertainties as a Signal for Exploration
	Introduction
	Estimating Value Function Uncertainty
	Temporal Difference Uncertainties
	Implementing TDU with Bootstrapping
	Empirical Evaluation
	Behaviour Suite
	Atari

	Related Work
	Conclusion

	Appendix
	Implementation and Code
	Proofs
	Binary Tree MDP
	Behaviour Suite
	Agents and Hyper-Parameters
	TDU Experiments

	Atari with R2D2
	Bootstrapped R2D2
	Pre-processing
	Hyper-Parameter Selection
	Detailed Results: Main Experiment
	Full Atari suite

	Conclusion
	Thesis Summary
	Contributions
	Scalability
	Generalisation
	Exogenous Tasks

	Limitations and Future Work

