
NATURAL LOGIC AND NATURAL
DEDUCTION FOR REASONING
ABOUT NATURAL LANGUAGE

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE SCHOOL OF ENGINEERING

2021

By
Ghadah Binhadba

Department of Computer Science

Contents

Abstract 13

Declaration 15

Copyright 16

Dedication 17

Acknowledgements 18

1 Introduction 20
1.1 Research Motivation . 23

1.2 Research Aims . 24

1.3 Research Questions . 24

1.4 Our NLI system Architecture and Corresponding Research Contributions 24

1.5 Thesis Structure . 28

2 The NLI Task and Related Datasets 29
2.1 Introduction . 29

2.2 NLI Datasets . 30

2.2.1 The FraCaS test suite . 30

2.2.2 The RTE Challenges . 31

2.2.3 SICK . 34

2.2.4 SNLI and MNLI . 36

2.3 Summary . 38

3 A Constructive Theorem Prover 39
3.1 Automated Theorem Provers . 39

3.2 Natural Deduction . 40

2

3.2.1 History . 40

3.2.2 Natural Deduction Features 41

3.3 SATCHMO as a Natural Deduction Engine 46

3.4 Summary . 49

4 Natural Logic and Monotonicity 50
4.1 Introduction . 50

4.2 Monotonicity Calculus . 52

4.2.1 Monotonicity Reasoning . 52

4.2.2 Monotonicity Marking . 55

4.3 Natural Logic-Based Inference Systems 57

4.3.1 Proof by Alignment . 58

4.3.2 Order-Based Approach . 63

4.3.3 Natural Tableau . 67

4.4 Summary . 76

5 Issues in Non-Lexical Semantics 80
5.1 Notational Conventions . 80

5.2 Generalized Quantifiers in Natural Language 82

5.2.1 Quantified NPs . 83

5.2.2 The treatment of ‘most’ and ‘few’ as defaults 87

5.3 Definite NPs (DNPs) . 89

5.3.1 Definite Descriptions . 89

5.3.2 Proper Names . 90

5.3.3 Pronouns . 91

5.4 Adjectives . 92

5.5 Events and Time . 95

5.5.1 Events Semantics . 95

5.5.2 Events and Negation . 97

5.5.3 Tense and Aspect . 98

5.5.4 Definiteness of Tenses . 101

5.6 Copula verbs . 102

5.7 Existential Sentences . 104

5.8 Subordinate Clauses . 106

5.8.1 Relative Clauses . 107

5.8.2 Attitude Clauses . 108

3

5.9 Scope Resolution and Cooper Storage 114

5.10 Summary . 117

6 Parsing and Pre-Processing 118
6.1 A Grammar Over a Robust Statistical Parser 119

6.1.1 Semantic Interpretability . 120

6.1.2 Sensitivity . 120

6.1.3 Consistency . 121

6.1.4 Non-reentrancy . 123

6.1.5 Informativeness . 123

6.1.6 Transparency . 124

6.2 The Used Dependency Grammar . 125

6.2.1 A Theory of Syntactic Categories 128

6.2.2 Modifiers and specifiers . 129

6.2.3 Arguments, unsaturated items, canonical order 132

6.2.4 Movement . 133

6.2.5 Internal and external views 135

6.3 DTs’ Main Structure . 137

6.4 Summary . 142

7 Tree Normalization 144
7.1 Introduction . 145

7.1.1 Notational Conventions . 147

7.2 Pre-processing . 148

7.2.1 Removing inessential terms 148

7.2.2 Restructuring . 150

7.3 Quasi Logical Form (QLF) . 154

7.3.1 QNPs . 156

7.3.2 DNPs . 159

7.3.3 Events and Time . 160

7.3.4 Utterance . 163

7.3.5 SubCs . 163

7.4 Resolved QLF (RQLF) . 166

7.5 Quantifier Free Form (QFF) . 167

7.5.1 Polarity Marking . 168

7.5.2 Referential operators i.e. the 170

4

7.5.3 forall and exists . 170

7.5.4 Negation . 172

7.5.5 Defaults . 173

7.5.6 At most N vs At least N . 174

7.5.7 Utterance Type Matters . 176

7.6 Inference Friendly Form (IFF) . 176

7.6.1 Facts . 179

7.6.2 Rules . 180

7.7 Resolving Referring Expressions . 181

7.8 Summary . 184

8 Constructive SATCHMO+ 185
8.1 The Engine’s Data-Flow . 185

8.2 Proof Algorithm . 187

8.3 Available Information . 191

8.3.1 Real Information . 193

8.3.2 Temporary Information . 196

8.4 Natural Logic Matcher . 197

8.4.1 Equalities . 199

8.5 Higher-Order Inferences . 201

8.5.1 Defaults . 201

8.5.2 Attitude Clauses . 203

8.6 The Engine’s Performance, Soundness and Completeness 207

8.7 Summary . 209

9 Evaluation and Discussion 211
9.1 Choosing the FraCaS test-set for evaluation 211

9.2 Experiments and Results . 214

9.3 Comparison and Discussion . 218

9.4 Summary . 220

10 Conclusion and Future Work 221
10.1 Future Work . 223

A Monotonicity Operators 242

5

B Test Cases 244
B.1 FraCas Examples . 244

B.1.1 Generalized Quantifiers . 244
B.1.2 Attitudes . 260

B.2 Karttunen’s Examples of Implicatives and Factives 262

C Results of Running The Test Cases 266
C.1 Results of Running FraCas Section 1 and 9 Examples 266
C.2 Results of Running Karttunen’s Examples 269

6

List of Tables

2.1 Semantic phenomena and related number of problems [Cooper et al.,
1994] . 31

2.2 Samples of the FraCaS problems [Cooper et al., 1994]. 32

2.3 Eight releases of the RTE challenges’ benchmarks [MacCartney, 2009;
Bentivogli et al., 2017] . 33

2.4 Four RTE examples from RTE-1, RTE-2, RTE-3, and RTE-4 test suit
respectively. 34

2.5 A 13 pairs of SICK problems with their two gold answers [Abzianidze,
2017b] . 36

2.6 Some NLI problems from the development set of the SNLI (top) [Bow-
man et al., 2015] and MNLI (bottom) [Williams et al., 2017] along with
their gold judgement. 37

3.1 ND and Ramsay’s constructive SATCHMO treatment for implication. 49

4.1 An illustration to what might be considered a natural logic rule in
which (≤) is the order-relation defined and explained in Section 4.2. . 51

4.2 Example of monotonicity operators. 56

4.3 The basic semantic relations of the NatLog system [MacCartney and
Manning, 2009]. 59

4.4 The projectivity signature for ‘not’, in which r is a relation and m(r) is
the projected relation [Angeli and Manning, 2014] 61

4.5 An example of MacCartney and Manning proof procedure for a hy-
pothesis S5 from the premise S0 [Abzianidze, 2017b]. 62

4.6 The correspondence between the NatLog final entailment relation be-
tween p and h and the 3-way judgement for datasets [MacCartney and
Manning, 2007]. 63

4.7 Examples of Hu et al.’s rules of natural logic [Hu et al., 2019a]. 65

7

4.8 Examples of Muskens’s [2010] tableau rules. 70
4.9 Classification of natural logic based inference systems. 79

5.1 Some mathematical properties of type 〈1,1〉 GQs. 83
5.2 The uses of definite NPs as surveyed by Von Heusinger [2002]. 91
5.3 The representation of verbal arguments with respect to verbal predi-

cates in different versions of event semantics (including this work). . . 96
5.4 Implicative constructions and their entailment properties [Karttunen,

2015b] . 110

6.1 Examples of words’ markers and their types. 139
6.2 List of Arguments. 140
6.3 List of Modifiers. 140
6.4 List of Specifiers. 142

7.1 Some used notations. 148

9.1 A summary of the NLI datasets discussed in Chapter 2. 212
9.2 NLI related systems’ (reviewed in Section 4.3) performances on some

of the discussed (Section 2.2) NLI datasets. The systems are: MM08:
MacCartney and Manning [2008], A15: Abzianidze [2015], A17:Abzianidze
[2017a], H19a: Hu et al. [2019a], and H19b: Hu et al. [2019b]. 214

9.3 Performance of CSATCHMO+ on section 1 and 9 of the FraCaS ex-
amples . 215

9.4 A comparison between the accuracy of our system (on section 1 and
9 of the FraCaS) and the systems discussed in Section 4.3. MM08:
MacCartney and Manning [2008], A17: Abzianidze [2017b] and H19:
Hu et al. [2019a]. 219

A.1 The monotonicity signatures for polarity affecting lexical items 243

8

List of Figures

1.1 The general architecture of a computational inference system. 20

1.2 Dataflow through the inferential system. 27

3.1 Example of proof construction. 42

3.2 Example of Jaśkowski’s graphical representation. 42

3.3 A combined rule. 46

3.4 The model generation process [Manthey and Bry, 1988]. 47

3.5 Example of model Generation in Prolog [Manthey and Bry, 1988]. . . 48

3.6 Basic constructive SATCHMO [Ramsay, 2001]. 49

4.1 An example of inner marking (left) and then outer marking (right). . . 56

4.2 An example of a monotonicity marked phrase-structure tree. 60

4.3 Example of Tregex patterns for ‘without’ and ‘most’ [MacCartney and
Manning, 2007]. 61

4.4 The join table in which each entry is a result of joining (’) two entail-
ment relations (i.e. a row with a column) [Icard III, 2012; Angeli and
Manning, 2014]. 62

4.5 Search tree example that starts with the premise ‘every animal like

some young semanticist’ [Hu et al., 2019a]. 66

4.6 Example of a CCG tree before and after monotonicity marking using
the tool of Hu et al. [2018]. 67

4.7 A proof example using natural tableau.[Muskens, 2010]. 69

4.8 Example of indirect account for monotonicity marking in natural tableau. 69

4.9 LangPro architecture [Abzianidze, 2017a]. 71

4.10 LLFgen architecture [Abzianidze, 2017a]. 71

4.11 NLogPro components [Abzianidze, 2016]. 72

4.12 From CCG tree to LLFs example [Abzianidze, 2015]. 74

9

4.13 A tableau (top) for ‘not all birds fly’|= ‘some bird does not fly’ and the
list of applied rules (bottom) [Abzianidze, 2015]. 75

5.1 Types of adjectives [Lalisse and Asudeh, 2015]. 93
5.2 The dependency tree of ‘Jones buttered the toast’. 97
5.3 Examples of the temporal information as they appear in our pre-processed

dependency trees. 101
5.4 An example for adapting Cooper’s storage for scope resolution. 117

6.1 From a sentence to a DT. 118
6.2 Data-flow through the inferential system. 119
6.3 SDP trees (MALTParser trees are almost identical). 121
6.4 SDP trees for ‘few great tenors are poor’ and ‘most great tenors are

rich’. 122
6.5 MALTParser trees for ‘there are great tenors who sing popular music.’

and ‘are there great tenors who sing popular music?’ 122
6.6 SDP trees for ‘One of the great tenors is Pavarotti’ and ‘Pavarotti is

one of the great tenors’ (MALTParser trees are almost identical). . . . 123
6.7 Flat structure for auxiliary sequences in SDP tree (MALTParser tree is

almost identical). 124
6.8 An abbreviated version of signs’ possible features. 127
6.9 The sign for the transitive verb ‘eat’. 128
6.10 The sign of ‘many’. 131
6.11 The signs for ‘old’ and ‘Italian’. 131
6.12 The sign for the transitive verb ‘eat’. 132
6.13 The sign for ‘manage’. 134
6.14 Graphical representation of a DT and the structure of the underlying

representation. 138
6.15 ‘John ate a ripe peach.’ . 141

7.1 Dataflow through the inferential system. 145
7.2 Ordinary logical formulae for ‘every man loves a woman.’ 145
7.3 Normalized formulae for ‘every man loves a woman.’ 146
7.4 From a DT to an IFF. 146
7.5 From a DT to an IFF example. 147
7.6 ‘John ate a ripe peach.’ after removing excess information. 149
7.7 ‘John has been working.’ before and after pre-processing. 150

10

7.8 from ‘John’s friend slept.’ to ‘The friend of John slept.’ 151

7.9 ‘John is a man’ before and after restructuring. 151

7.10 ‘John is a man in the park’ before an after restructuring. 152

7.11 ‘John is in the park’ before and after restructuring. 153

7.12 ‘there is a man in the park.’ vs ‘a man in the park (exists).’ 154

7.13 QLF of ‘John buttered the toast.’ . 161

7.14 QLF of ‘John is a man’. 162

7.15 QLF of ‘the man is not sleeping.’ . 162

7.16 QLF of ‘the man is sleeping.’ . 163

7.17 QLF of ‘the man who loves Mary slept.’ 165

7.18 QLF of ‘John managed to sleep.’ . 166

7.19 RQLF for ‘John loves Mary.’ . 167

7.20 An Illustration to the DTs structural change from pre-processing till
QFF. 168

7.21 Polarity marking example. 170

7.22 QFF for ‘a man slept.’ . 171

7.23 QFF for ‘every man sleeps’. 172

7.24 QFF for ‘some man did not sleep.’ 173

7.25 QFF for ‘no man slept.’ . 173

7.26 QFF for ‘most birds fly’. 174

7.27 QFF for ‘few men sleep’. 174

7.28 QFF for ‘at least three men slept.’ 175

7.29 QFF for ‘at most three men slept.’ 175

7.30 QFF of ‘a man slept.’ vs ‘a man slept?’ 176

7.31 Example of the application of rule (IFF-R1)(ii). 177

7.32 Example of the application of rule (IFF-R1)(iiii). 178

7.33 Example of de-referencing an equality argument. 179

7.34 An extracted facts and equalities from ‘John was a fool.’ 180

7.35 Extracted facts and rules form ‘every man sleeps.’ 180

7.36 Extracted facts and rules form ‘every man loves every car.’ 181

7.37 Resolving REs general flow chart. 182

7.38 List of extracted facts from (7.16). 183

8.1 Data-flow through the inferential system. 186

8.2 Data-flow from and to CSATCHMO+. 186

8.3 The IFFs of the premise and query of the argument in (8.1) 190

11

8.4 CSATCHMO+ proof for the argument (8.1). 190
8.5 CSATCHMO+ proof of q2 from (8.1). 191
8.6 The classification of the background knowledge entries and their STA-

TUS. 193
8.7 Sample from the hyponyms table. 194
8.8 Examples from the simple hand-coded rules. 194
8.9 The directly and indirectly obtained facts from ‘John loves Mary’. . . 195
8.10 The general structure of attitude verbs. 195
8.11 Example of an attitude rule. 195
8.12 If S buys D at T0 then at some later time T1 S owns D. 196
8.13 Examples of temporarily added information. 196
8.14 The IFFs of the premise and query of the argument in (8.3). 198
8.15 CSATCHMO+ proof for the argument (8.3). 198
8.16 The IFFs of the premise and query of the argument in (8.5). 200
8.17 CSATCHMO+ proof for the argument (8.5). 201
8.18 The IFFs of the premise and query of the argument in (8.6). 202
8.19 The IFFs of Figure 8.18 after adding ‘penguins do not fly’. 203
8.20 CSATCHMO+ proof for the argument (8.6). 204
8.21 CSATCHMO+ proof for the argument in (8.6) after adding ‘penguins

do not fly’. 205
8.22 The IFFs of the premise and query of the argument in (8.7). 206
8.23 The IFFs of the premise and query of the argument in (8.8). 207
8.24 CSATCHMO+ proof for the argument (8.8) 208

9.1 Confusion matrix for CSATCHMO+ on section 1 (left) and Section 9
(right) of the FraCaS test-set. 215

12

Abstract

NATURAL LOGIC AND NATURAL DEDUCTION FOR REASONING

ABOUT NATURAL LANGUAGE

Ghadah Binhadba
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2021

One way of measuring a natural language processing system’s semantic capacity is
by demonstrating that it can handle natural language inference (NLI). Automating the
task of NLI requires natural language text to be converted into a meaning representa-
tion (MR) on which inference procedures can be applied. Finding a balance between
the expressive power of a MR and the inferential capabilities that could be conducted
using such representation is a challenge. In that respect, the aim of this thesis is to rea-
son about deep semantic phenomena (such as defaults, monotonicity, quantifiers and
propositional attitudes) and thus construct a MR that is able to preserve the subtle se-
mantic distinctions people make when reasoning about such phenomena. For decades,
the best way for obtaining such semantically deep MRs was by translating NL texts
into some formal language such as first-order logical formulas. However, such transla-
tions have proven difficult. Alternatively, and motivated by the success of natural logic
systems on the pairwise entailments tasks, in which MRs are close to NL texts’ sur-
face form, we have investigated the use of a first-order logic theorem prover (to allow
reasoning over multi-premises tasks) and have adapted it to work on representations
that were built based on syntactical analysis (dependency trees) of NL texts. To en-
sure the right depth of representation, we have investigated the literature to learn about
the intended semantic phenomena and hence model them in our MR accordingly. To
measure such an approach’s performance, we have implemented an inference system

13

that consists of three parts: a dependency grammar to generate syntactical trees, a tree
normalizer to build the desired MRs (namely inference friendly forms) and a theorem
prover (CSATCHMO+) along with some necessary background information. To our
knowledge, there is not much work that has been done in this line of research (com-
bining theorem proving with a version of natural logic). Therefore, we have tested
our system’s performance on the part of a test-set that has a clear representation of
semantic phenomena (The FraCas test-set) and compared it to the literature’s related
systems. Overall, the current findings encourage further investigation extending to
other phenomena, as we obtained a comparable result when compared to the related
natural logic systems and an only just better result than a natural logic theorem prover.

14

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

15

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=487), in any relevant Thesis restriction declarations deposited in the Uni-
versity Library, The University Library’s regulations (see http://www.manchester.
ac.uk/library/aboutus/regulations) and in The University’s policy on pre-
sentation of Theses

16

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487
http://www.manchester.ac.uk/library/aboutus/regulations
http://www.manchester.ac.uk/library/aboutus/regulations

Dedication

This work is dedicated to my beloved parents, my late father Rafed and my mother
Latifah, whose love and devotion, endless support and prayers, have been the strength
of my striving in all aspects of my life especially this journey.

17

Acknowledgements

First and foremost, I want to thank my supervisor, Professor Allan Ramsay. It
has been an honour to carry out this research under his supervision. I appreciate
every aspect of his contributions, in terms of time and ideas, to ensure my PhD
experience was productive and rewarding.

I would like also to thank my sponsor, King Saud University, for the huge op-
portunity I have been granted to continue my study in one of the worlds leading
universities.

My most profound gratitude goes to: my life-partner, Mohammed Almutairi who
I would not have been able to achieve this without his love and support; my sweet
daughter Toleen, who has blessed me with a life full of joy and happiness; my
sisters, Sarah (thank you for being a second mum for Toleen especially during
the pandemic year) Maryam, Nada, and Albandry (thank you for being amazing
aunties as well and most importantly thank you for letting me vent every night
about every step of creating this thesis); my brothers, Ahmed and Yazeed (thank
you for accompanying me and giving my dream a priority) our eldest Saad and
Mishal (thank you for your support, words of wisdom, and teasing – guess what!
I made it!) Mohammed (thank you for being Toleen’s best friend and keeping
her occupied during quarantine).

Last but not least, I would like to extend my gratitude to all of my friends and
colleagues at the University of Manchester for their gracious help and consistent
support.

18

19

List of Abbreviations
AP Adjective Phrase
BNP Bare Noun Phrase
BP Bare Plural
Det Determiner
DNP Definite Noun Phrase
DS Data Structure
DT Dependency Tree
ES Existential Sentence
FOL First-Order Logic
GQ Generalized Quantifier
HOL High-Order Logic
IFF Inference Friendly Form
IR Information Retrieval
LHS Left-hand side
NL Natural Language
NLU Natural Language Understanding
NLI Natural Language Inference
NP Noun Phrase
MR Meaning Representation
PP Prepositional Phrase
PDT Processed Dependency Tree
QA Question Answering
QNP Quantified Noun Phrase
QLF Quasi Logical Form
RC Relative Clause
RE Referring Expression
RQLF Resolved Quasi Logical Form
RHS Right-hand side
SF Skolem Function
SubC Subordinate Clause
VP Verb Phrase

Chapter 1

Introduction
For people, understanding a Natural Language (NL) text amounts to understanding the
information conveyed by that text, updating their knowledge when learning something
new, and hence drawing the relevant consequences [Iwańska, 1993; Chatzikyriakidis
et al., 2017]. For instance, upon reading the sentences ‘Fido is a dog.’ and ‘All ani-

mals are mortals.’, a person may reasonably infer (from these two sentences and from
the prior-knowledge that ‘a dog’ is ‘an animal’) that ‘Fido is mortal’. This pattern
of human reasoning is called inference1. In the field of natural language processing

(NLP), determining whether a NL text can be expressed by, or inferred from another,
as would reasonably be done by a human, can be leveraged by many NLP applications
(e.g. question answering(QA), information retrieval(IR), summarization, and machine

translation), and is called natural language inference (NLI) [Glickman et al., 2005;
MacCartney, 2009].

Automating the process of NLI is the main focus of this thesis. It requires NL
texts to be transformed into some sort of meaning representations (MRs), and to use
an inference engine that can reason with these representations (see Figure 1.1).

Figure 1.1: The general architecture of a computational inference system.

1“The notion of inference the current NLP systems are learning, is much narrower compared to the
range of inference patterns found in human reasoning.”[Bernardy and Chatzikyriakidis, 2019]

20

21

As [Bos, 2008] argues, a challenge one might face is not only how to adequately rep-
resent meaning, but also how to compromise between the expressive power of a MR
and the practical reasoning capabilities that the inference engine can conduct using this
representation.

In that respect, there exists a spectrum of approaches to the problem of NLI. At one
end of the spectrum lie robust-but-shallow approaches where inferences are computed
based on some lexical similarities between NL texts’ surface forms or the bag of their
words. For example, consider the NL argument2 in (1.1):

(1.1)
p: Several men love Mary.

c: Some men like Mary.

A bag-of-words model like that of Glickman et al. [2005] or Jijkoun et al. [2005]
will conclude that a consequence c can be inferred from a premise p and hence the
argument is valid, if every word in c is matched to the most lexically similar (based
on some measures) word in p; beside identical words, ‘some’ is matched to ‘several’
and ‘like’ to ‘love’. A shallow approach like this, although broadly effective, is terribly
imprecise [MacCartney, 2009]. In particular there is no consideration of predicate-
argument structure and hence such an approach considers ‘Mary likes some men’ a
valid consequence from p in (1.1), even though the roles of those involved in the like
event have been reversed. Such drawbacks can be amended by considering syntactical
information (e.g. [MacCartney, 2009]) or surface forms and alignment method (e.g
[Adams, 2006]). Nonetheless, shallow approaches, in general, will still stumble over
common phenomena such as antonyms and negation. More importantly, they tend to
ignore an important semantic feature, namely monotonicity3.

At the other end of the spectrum there are deep-but-brittle approaches. Given a
NL argument, approaches of this kind rely on performing a full semantic analysis of
both of the argument’s constituents (p and c) and then applying inference rules on these
analyses to construct a chain of formal reasoning steps from p to c. For logicians and
semanticists, the most obvious way to achieve the desired depth of analysis of meaning
is to translate p and c into formulas of some formal language such as first-order logic

2A NL argument consists of several sentences, of which one is the consequence and the others are
premises [Blackburn and Bos, 2005].

3Monotonicity is considered a semantic feature of lexical items and constructions that affect the
direction of inference; in an upward-monotone context one can infer from a specific expression a more
general one (e.g. ‘John is walking’ |= ‘John is moving’). In contrast the downward-monotone context
allows inferring a specific expression from more general one (e.g. ‘John did not move’ |= ‘John did not
walk’). A complete illustration of monotonicity is given in Chapter 4.

22 CHAPTER 1. INTRODUCTION

(FOL) and then use those translations in a proof search method (such as a theorem
prover or a model builder) to create a formal proof of c from p.

FOL, among other kinds of logic, has been favoured for decades due to its expres-
siveness and inferential effectiveness [Bos, 2011]. Computationally, FOL proof sys-
tems have made enormous progress through a number of automatic theorem provers

and model builders (both discussed in Chapter 3). Nonetheless, in contrast to shallow
approaches, FOL-based approaches fail in open-domain settings as NL texts tend to be
fairly complex and hence systems trying to construct their FOL equivalences are faced
with countless thorny problems such ambiguity, ellipsis, idioms, and so on.

Beside the difficulty of translating into logic, FOL fails to capture the meaning
of important semantic phenomena such as default sentences, e.g. ‘Most birds fly’ and
‘swans are probably white’. One reason is that, in contrast to FOL, reasoning about de-
faults is non-monotonic [Antoniou, 1999], which means that a conclusion drawn from
a default sentence might be changed or refuted when more information is provided.

Another phenomenon that systems based on FOL are unable to handle is proposi-
tional attitudes – verbs such as believe and know. Statements of such attitude terms
have been treated in FOL as modalities. However, [Barr, 1980] explained that this
treatment could lead to mistaken inference. For example, treating knowledge as a
modality would comply with the following rule: kα∧ k(α→ β) ` kβ, which means
that if you know α and you know that β follows from α, then you know β) – not that
you could find out β, but that you already know β). Obviously, this is not true be-
cause knowing something does not necessarily mean knowing everything that could
follow from it.

Higher-order logic (HOL), such as Montague semantics, is a language with more
expressive power than FOL which does not have a problem creating a formal represen-
tations for the above phenomena. Nonetheless, to date, there is no efficient theorem
prover for the language of HOL that we are aware of.

Natural logic is a logic that has revived in the last two decades as a mid-ground
approach to the problem of NLI. It generally refers to the regularities that can prove
a valid NL argument by operating on representations that are close to the NL surface
form, e.g. syntactic derivations, rather than from the surface form per se [Karttunen,
2015a; Abzianidze, 2017b]. One example of such regularities, which is also consid-
ered natural logic’s most common speciality, is monotonicity. Given the argument in
(1.2), for example, replacing ‘car’ in p with the more specific term ‘red car’ in h still
preserves the truth and that is due to its occurrence in the downward-monotone context

1.1. RESEARCH MOTIVATION 23

caused by ‘no’.

(1.2)
p: John bought no ↓ car.

c: John bought no red car.

Recent work in the fields of natural logic has shown that it can achieve the needed
semantic precision to handle many important inference problems without the need to
translate them into a formal language such as FOL. Nonetheless, natural logic-based
inference systems have witnessed some shortcomings (discussed in Section 4.3), one of
which, not being able to handle arguments of multi-premises, is particularly significant.

1.1 Research Motivation

Our general aim for the NLI system presented in this thesis is to reason about deep
semantic phenomena (e.g. defaults, monotonicity, quantifiers and propositional atti-

tudes), and thus construct a MR that is able preserve the fine semantic distinctions
humans make when reasoning about such phenomena [Ramsay, 2009]. For decades,
the best way for obtaining such semantically deep MRs was by translating NL texts
into logical formulas. However, as noted above, such translations have proved difficult
and have been deemed unsuccessful in wide-coverage formulations of the NLI task
e.g. Bos and Markert [2005, 2006].

On the other hand, natural logic approaches have shown promising results in achiev-
ing the desired semantic precision while side-stepping the difficulty of translating into
logic, yet lack any proof search mechanisms that would allow chaining over multi-
premises.

Not until recently (around the time this research was conducted) have researchers
started to look into incorporating some proof search techniques to allow chaining over
multi-premise arguments over representations that are close to NL text surface forms.
To our knowledge, there is only one particular computational NLI model, the natural

tableau of Abzianidze [2014, 2016, 2017a], that has shown that theorem provers for
FOL adapted to work on MRs that are as close as possible to NL texts, are capable
of handling deep inferences once they have been provided with an extended version of
inference rules that are devised specifically for the application on a particular linguistic
construction [Abzianidze, 2014, 2016, 2017a].

Following that line of research, we have introduced a computational model for NLI
with the following aims and questions in mind:

24 CHAPTER 1. INTRODUCTION

1.2 Research Aims

A1. Investigate the use of syntactical analysis of NL texts (dependency trees in partic-
ular) as a basis for reasoning about NL.

A2. Re-visit a class of inference problems (exemplified by parts of the Fracas data-set
and some others, and centred around certain deep semantic phenomena including
defaults, quantifiers, and propositional attitudes) that cannot be handled by sim-
ple subsumption relations over trees, due to the lack of mechanisms for chaining
over multi-premises, nor by translating into logical expressions (which have been
proven difficult) alone, and attempt to solve them by designing and implementing
a NLI system that uses a combination of a tree-matching algorithm and theorem
proving.

1.3 Research Questions

Q1. Can we use representations that are close to trees obtained by standard syntactic
analysis as the MRs for complex issues in semantics?

Q2. Can the target inference problems (in A2) be tackled by adapting existing infer-
ence techniques, namely natural deduction rules and natural logic containment
relations, to operate directly on those representations?

1.4 Our NLI system Architecture and Corresponding
Research Contributions

To answer the above research questions, we have designed and implemented a NLI
system (its general architecture is outlined in Figure 1.2) that has the following main
parts (marked on Figure 1.2):

S1. A parser that takes a NL utterance and constructs, using a dependency grammar,
its dependency tree (Chapter 6).

S2. A tree normalizer that takes a dependency tree and turns it, by applying a series
of transformational stages, into a form (inference friendly forms (IFFs)) that the
theorem prover can work with (Chapter 7).

1.4. OUR NLI SYSTEM ARCHITECTURE AND CORRESPONDING RESEARCH CONTRIBUTIONS25

S3. A theorem prover that, given a query (in its IFF), attempts to prove it from any
previously mentioned premise(s) (within the current discourse) and any available
information in the repository, and conclude its attempt by an answer: Yes (was
able to prove it), No (was able to prove its contradiction), or Unknown (was not
able to prove either the query or its contradiction) (Chapter 8).

S4. A repository of information to be used as background knowledge (Chapter 8).

The contributions of this work are as follows:

CO1. Investigating the literature for natural logic based computational inference sys-
tems and identifying some of the research gaps (Chapter 4).

CO2. Investigating the literature for some fine-grained representational aspects that are
essential for expressing the meaning of certain semantic phenomena– including
defaults, quantifiers, and propositional attitudes (Chapter 5) and using them for:

CO.2.1 deciding on the semantic features that need to be encoded on depen-
dency trees and how we are going to encode them (Chapter 6).

CO.2.2 defining a set of transformational stages that can be used to normalize
dependency trees into IFFs (Chapter 7).

CO.2.3 designing a number of higher-order inference rules that we hand-code
into the set of available information in CO4 (Chapter 8).

CO3. Defining a matching algorithm over pairs of IFFs based on the definition of nat-
ural logic’s semantic containment (Chapter 4).

CO4. Collecting or hand-coding any pre-requisite information (some of which is com-
mon knowledge, while other elements are based on our investigation in CO2)
that either the matcher or the theorem prover require and making them available
in a suitable format (Chapter 8).

CO5. Adapting (in Chapter 8) a proof search mechanism (an existing FOL theorem
prover– namely constructive SATCHMO–see Section3.3) to allow chaining over
multi-premises (of normalized trees) and extending it with:

CO.5.1 some inference rules (CO4) for handling higher-order constructions (such
as propositional attitudes).

26 CHAPTER 1. INTRODUCTION

CO.5.2 a matching algorithm (CO3) as the subsumption algorithm instead of
straight unification.

CO6. Providing an empirical analysis (in Chapter 9) of the system’s representational
and inferential adequacy by evaluating it against a standard test-set for investi-
gating deep semantic phenomena of the kind treated by this research – namely
the FraCas test suite (Section 2.2.1) and compare its outcomes to the state-of-the
art NLI systems.

1.4. OUR NLI SYSTEM ARCHITECTURE AND CORRESPONDING RESEARCH CONTRIBUTIONS27

Fi
gu

re
1.

2:
D

at
afl

ow
th

ro
ug

h
th

e
in

fe
re

nt
ia

ls
ys

te
m

.

28 CHAPTER 1. INTRODUCTION

1.5 Thesis Structure

The remainder of this thesis is grouped as following:

Chapter 1 Introduces NLI systems and the motivation, goals and questions behind
the research conducted in this thesis.

Chapter 2 Briefly discusses the most prominent NLI datasets; their characteristics,
merits and drawbacks.

Chapter 3 Briefly introduces the different mechanisms for FOL automated theorem
proving and, in particular, explains a constructive proof system (natural
deduction) as it constitutes the basis of the adapted inference engine.

Chapter 4 Introduces natural logic and monotonicity, and reviews several computa-
tional NLI systems that are based on it.

Chapter 5 Reviews a number of considerably deep semantic phenomena, particularly
those of interest.

Chapter 6 Explains the first part of our inference system, which is the parser. It ex-
plains the grammar used to generate the trees and the pre-processing steps
used to refine them.

Chapter 7 Illustrates the transformational steps that processed trees undergo to get
turned into the forms that the inference engine desires: inference friendly
forms.

Chapter 8 Explains the final part of our inferential system, which is the adapted the-
orem prover. It explains its proof algorithm, the data used, and the exten-
sions to handle the intended semantic phenomena.

Chapter 9 Conducts an evaluation of our inference system’s representational and in-
ferential adequacy, and compares its performance with the related systems.

Chapter 10 Concludes the thesis with our final findings and our future plans for the
presented research.

Chapter 2

The NLI Task and Related Datasets

One obvious way to test a computational model or a theory for its ability to handle NLIs
is by running it against a set of NLI problems. In this chapter, we survey the most
prominent NLI datasets, including the one we used for our computational system’s
empirical analysis (CO5) (to which we will return in Chapter 9).

2.1 Introduction

NLI, as defined in Chapter 1, is the task of determining whether a NL consequence
can be inferred from a NL premise if a human would reasonably be expected to infer
it. There exist several sources for inference problems that could be used for evaluating
a computational model or a theory for its capability to carry out NLIs. These sources,
although the above definition presents NLI as a single well defined task, formulate the
NLI task quite differently [MacCartney, 2009]. One point of difference such sources
might have is the number of labels used to classify the inferability of a consequent (c)
from premises (ps). Most commonly, sources are based on either the two-way or the
three-way classification of judgement. In the first, the relationship concluded between
the ps and c is classified as either entail (ps |= c) or contradict (ps |= ¬c), while in the
latter there is, in addition to the above two classes, a neutral judgement and that is when
the ps neither entail nor contradict the c (i.e. (ps��|=h) ∧ (ps��|=¬h)). Other differences
NLIs sources might have are the nature of their NLI problems (i.e. whether they are
manually constructed, typically to explore some challenging set of phenomena or are
extracted from some freely occurring texts), the number of premises each problem has
and the level of their complexity, etc. While these differences play a major role in
deciding what is deemed a suitable choice for evaluating a system or theory, they all to

29

30 CHAPTER 2. THE NLI TASK AND RELATED DATASETS

some extent share one implicit task which is: “to answer as many problems correctly
as possible” [MacCartney, 2009].

In the following section we survey the most prominent sources of NLI problems
focusing on their main characteristics, merits and drawbacks. Among the discussed
sources we are particularly interested in the FraCaS test suite (Section 2.2.1) as it is
the one we used to evaluate the work presented in this thesis, however we will leave
the discussion of why we chose it to Chapter 9.

2.2 NLI Datasets

2.2.1 The FraCaS test suite

The FraCaS test suite is a semantic test suite that was developed by the FraCaS con-
sortium [Cooper et al., 1994] as an initial benchmark “for evaluating the inferential
competence of different NLP systems and semantic theories”. The test suite consists
of 346 NLI problems that were constructed to cover a diverse range of deep seman-
tic phenomena (Table 2.1 lists these phenomena and the relevant number of inference
problems), and to resemble those appearing on preliminary semantics textbooks [Mac-
Cartney and Manning, 2007]. The problems are therefore mainly concerned with quan-
tificational and logical phenomena, consist of fairly short sentences and require limited
background knowledge to solve them [Chatzikyriakidis et al., 2017].

Each FraCaS problem has one or more premises, one Yes/No question and a gold
answer. Most commonly, an answer is either: YES, NO, or DON’T KNOW and that
is when the relation between the given premise(s) and the proposition carried by a
question is either entail, contradict, or neutral respectively (see Table 2.2 for some
samples) [Abzianidze, 2016, 2017b]. The ratio of these answers are not balanced;
more than half of the problems have YES as their answer, 27% have DON’T KNOW

as their answer and 9% have been answered with NO [MacCartney, 2009]. On the
less common side, the answers of some FraCaS problems have been provided with
comments that either further explain them or place some restrictions on them such as
the answers of FraCas-16 and FraCas-61 in Table 2.2 respectively. Problems with such
answers are often omitted on the evaluation of NLI systems that are based on the 3-
way classification of judgement as non of these answers map into entail, contradict,
nor neutral.

2.2. NLI DATASETS 31

Section # Semantic Phenomenon Number of Problems
1 Quantifiers 80
2 Plurals 33
3 Anaphora 28
4 Ellipsis 55
5 Adjectives 23
6 Comparatives 31
7 Temporal 75
8 Verbs 8
9 Attitudes 13

Total 346

Table 2.1: Semantic phenomena and related number of problems [Cooper et al., 1994]

The upside of the FraCaS test suite is that due to the diversity of semantic phenom-
ena it covers and the nature of its problems, the suite is often considered to be the best
when it comes to testing the expressiveness and deep reasoning capability of a semantic
theory and its associated system [Abzianidze, 2017b; Bernardy and Chatzikyriakidis,
2017]. The suite also has the advantage of multilinguality [Chatzikyriakidis et al.,
2017], as it was later extended into other languages including: 1) German, Farsi, Man-
darin, and Greek by the MultiFraCaS project1; 2) Japanese (JSeM)2; and 3) French
[Amblard et al., 2020].

On the downside, the test suite is fairly small. In addition, the problems are rather
artificial (they do all represent genuine issues in semantics, but the wording of some of
the examples is slightly odd) and some of the Gold answers are debatable3. Thus, it is
believed that while the FraCaS test suite covers a wide range of challenging phenom-
ena, it is not suitable for testing systems that aim to produce wide coverage with shal-
low inference, in particular examples that involve lexical relations such as hyponymy
and antonymy [Abzianidze, 2017b].

2.2.2 The RTE Challenges

Another “formulation of the NLI task is the Recognising Textual Entailment (RTE)
challenge” [MacCartney, 2009]. Starting in 2005, the challenge was held yearly and

1https://gu-clasp.github.io/multifracas/
2https://github.com/DaisukeBekki/JSeM
3There are a number of identical FraCaS problems that have different answers such as FraCaS-87

and FraCaS-88 in Table 2.2.

https://gu-clasp.github.io/multifracas/
https://github.com/DaisukeBekki/JSeM

32 CHAPTER 2. THE NLI TASK AND RELATED DATASETS

FraCaS-16
P1: At most two tenors will contribute their fees to charity.
Q: Are there tenors who will contribute their fees to charity? [At most two]
FraCaS-28
P1: Few committee members are from Portugal
P2: All committee members are people.
P3: All people who are from Portugal are from southern Europe.
Q: Are there few committee members from southern Europe? [DON’T KNOW]
FraCaS-61
P1: Both female commissioners used to be in business.
Q: Did both commissioners used to be in business? [YES, if both com-

missioners are female;
otherwise there are
more than two com-
missioners.]

FraCaS-81
P1:Smith, Jones and Anderson signed the contract.
Q:Did Jones sign the contract? [YES]
FraCaS-87
P1:Every representative and client was at the meeting.
Q:Was every representative at the meeting? [YES, on one reading]
FraCaS-88
P1:Every representative and client was at the meeting.
Q:Was every representative at the meeting? [DON’T KNOW, on one

reading]
FraCaS-119
P1: No student used her workstation.
P2: Mary is a student.
Q: Did Mary use a workstation? [NO]

Table 2.2: Samples of the FraCaS problems [Cooper et al., 1994].

has eight releases; the first three were published by PASCAL4, whereas NIST5 pub-
lished the remaining five. In each release, contestants were provided with a set of NLI
problems for testing, and (in most releases) they were also given a large development
set (see Table 2.3 for some statistics) [MacCartney, 2009; Bentivogli et al., 2017].

Each RTE problem consists of two text snippets, a premise (P) and a hypothesis
(H), and a judgement label. Similar to FraCaS problems, the labels were mainly either
{YES} indicating that (P |= H), or {NO} and that is when (P |=¬H). On later releases

4http://www.pascal-network.org/?q=node/15
5National Institute of Standards and Technology, http://www.nist.gov/tac/2009/RTE/

http://www.pascal-network.org/?q=node/15
http://www.nist.gov/tac/2009/RTE/

2.2. NLI DATASETS 33

of the test set, starting from the fourth one, a third answer {UNKNOWN} was added,
indicating a neutral judgement for the entailment relation between a P-H pair.

RTE challenges share the same broad goal as the FraCaS, namely testing the infer-
ential capacity of NLP models [Poliak, 2020]. However, unlike the FraCase test suite,
RTE problems focus on evaluating models for distinct forms of inference (e.g. relation

extraction and paraphrasing) instead of specific semantic phenomena [MacCartney
and Manning, 2007; Poliak, 2020]. Hence they were chosen from real sources, such as
newswire texts and existing NLP datasets, instead of being constructed.

Extracting RTE problems from real sources “remedies the unnaturalness of con-
structed examples” [Chatzikyriakidis et al., 2017]. The RTE problems tend to be fairly
long (with possibly more than one sentence) and more syntactically complex than the
FraCaS examples [MacCartney, 2009]; see Table 2.4 for examples. Moreover, the defi-
nition of inference within the RTE platforms “allows presupposition of common world
knowledge”, which some find problematic [Zaenen et al., 2005; Chatzikyriakidis et al.,
2017; Poliak, 2020]. For instance, judging the entailment relation of the RTE pair in
number (2) from Table 2.4 depends on the prior knowledge that a president of a country
is a citizen of that country as well [Poliak, 2020]. Last but not least, although the aver-
age size of the early RTE test sets is greater than the size of the FraCaS test suite, it is
still considered small, especially for approaches that rely upon training a vast amount
of data such as deep learning methods [Poliak, 2020].

Release Name Year Authors Test set size Development set size
RTE-1 2005 Dagan et al. 800 problems 576 problems
RTE-2 2006 Bar-Haim et al. 800 problems 800 problems
RTE-3 2007 Giampiccolo et al. 800 problems 800 problems
RTE-4 2008 Giampiccolo et al. 800 problems –
RTE-5 2009 Bentivogli et al. 600 problems 600 problems
RTE-6 2010 Bentivogli et al. 19,972 problems 15,955 problems
RTE-7 2011 Bentivogli et al. 22,426 problems 21,420 problems
RTE-8 2013 Dzikovska et al. 7,093 problems 8,910 problems

Table 2.3: Eight releases of the RTE challenges’ benchmarks [MacCartney, 2009; Ben-
tivogli et al., 2017]

34 CHAPTER 2. THE NLI TASK AND RELATED DATASETS

(1) P: Most Americans are familiar
with the Food Guide Pyramid but
a lot of people dont understand
how to use it and the government
claims that the proof is that two
out of three Americans are fat.

H: Two out of three Americans are
fat.

[YES]

(2) P: Meanwhile, in an exclusive
interview with a TIME journal-
ist, the first oneon-one session
given to a Western print publica-
tion since his election as presi-
dent of Iran earlier this year, Ah-
madinejad attacked the threat to
bring the issue of Irans nuclear ac-
tivity to the UN Security Coun-
cil by the US, France, Britain and
Germany.

H: Ahmadinejad is a citizen of
Iran.

[YES]

(3) P: At the same time the Italian dig-
ital rights group, Electronic Fron-
tiers Italy, has asked the nation’s
government to investigate Sony
over its use of anti-piracy soft-
ware.

H: Italy’s government investigates
Sony.

[NO]

(4) P: Four people were killed and
at least 20 injured when a tor-
nado tore through an Iowa boy
scout camp on Wednesday, where
dozens of scouts were gathered for
a summer retreat, state officials
said.

H: Four boy scouts were killed by
a tornado.

[UNKNOWN]

Table 2.4: Four RTE examples from RTE-1, RTE-2, RTE-3, and RTE-4 test suit re-
spectively.

2.2.3 SICK

Marelli et al. [2014] developed the Sentences Involving Computational Knowledge

dataset to test Computational Distributional Semantic Models (CDSMs). The dataset
consists of 10K pairs of English sentences rich in lexical, syntactic, and semantic phe-
nomena that CDSMs are expected to account for (e.g. quantifiers, negation, passive/ac-
tive alternation, synonyms, and relative clauses) [Marelli et al., 2014; Abzianidze,
2017b; Chatzikyriakidis et al., 2017].

The 10k SICK pairs are split into 500 for trial, 4500 for training, and 4927 for

2.2. NLI DATASETS 35

testing. SICK pairs, similar to FraCaS problems, are short in length. However, unlike
FraCaS problems they were generated from real sources, captions of pictures6 and
videos7 [Marelli et al., 2014; Abzianidze, 2017b]. Moreover, using crowd-sourcing
SICK pairs were labelled with two gold answers:

1. A score (from 1 to 5) that indicates a relatedness in meaning between the sen-
tences of a pair.

2. A 3-way judgement label (entail, contradict, neutral) indicating the entailment
relation from the first sentence in the pair to the second.

13 examples of SICK pairs and their gold answers are listed in Table 2.5. As it
can be noticed these examples are all lexically and semantically similar in some way
or another. This goes back to the way they were generated. Put differently, each pair
of sentences describing the same photo or video go through a series of normalization
then expansion rules that in turn lead to more pairs. Expansion rules create more
variants – they include, for example, a rule to replace a word with its synonym (e.g.
‘A young boy is. . . ’→ ‘A young kid is. . . ’), a rule to insert a negation (e.g. ‘A boy

is playing. . . ’→ ‘a boy is not playing. . . ’) or replace a determiner with its opposite
creating a contradiction (e.g. ‘A dog is walking. . . ’→ ‘No dog is walking. . . ’), etc
[Marelli et al., 2014]. Normalization rules, on the other hand, are to ensure that no
generated pair involves a phenomenon that CDSMs cannot account for. This includes
[Marelli et al., 2014]: 1) named entities that are normalized into words that represent
their class (e.g. ‘. . . is playing Mozart’ → ‘. . . is playing classical music’); 2) verb
phrases with auxiliaries or modals which are turned into simpler ones (e.g ‘a kid has

to eat. . . ’ → ‘a kid is eating . . . ’); and 3) multiword expression which are removed
completely (e.g ‘. . . is playing guitar right now’→ ‘. . . is playing guitar’.

The above characteristics of SICK problems make them at first glance look like
logical problems and has led some researches (e.g. [Abzianidze, 2014, 2015, 2017b]
and [Martı́nez-Gómez et al., 2017]) to use the dataset to evaluate their logic-based
NLI systems. However, the SICK dataset being specifically tailored for CDSMs con-
flates (through normalization) some phenomena and fine details that are crucial for
evaluating the semantic competence of a NLI system (e.g. losing tense information by
simplifying verb constructions and getting rid of auxiliaries).

6http://nlp.cs.illinois.edu/HockenmaierGroup/data.html
7http://www.cs.york.ac.uk/semeval-2012/task6/index.php?id=data

http://nlp.cs.illinois.edu/ HockenmaierGroup/data.html
http://www.cs.york.ac.uk/semeval-2012/ task6/index.php?id=data

36 CHAPTER 2. THE NLI TASK AND RELATED DATASETS

SICK Pair Score Judgement
A sea turtle is hunting for fish A sea turtle is hunting for food 4.5 Entail
A sea turtle is not hunting for
fish

A sea turtle is hunting for fish 3.4 Contradict

A fish is hunting for a turtle in
the sea

A sea turtle is hunting for fish 3.9 Neutral

The turtle is following the red
fish

The turtle is following the fish 4.6 Entail

The turtle is following the fish The turtle isnt following the fish 4 Contradict
The turtle is following the fish The fish is following the turtle 3.8 Contradict
A sea turtle is hunting for fish The turtle is following the red

fish
4 Neutral

A sea turtle is hunting for fish The turtle isnt following the fish 3.2 Neutral
The fish is following the turtle A sea turtle is hunting for fish 3.2 Neutral
The turtle is following the fish A sea turtle is hunting for food 3.9 Neutral
The turtle is following the fish A sea turtle is not hunting for

fish
3.4 Neutral

A fish is hunting for a turtle in
the sea

The turtle is following the fish 3.5 Neutral

A sea turtle is hunting for fish The turtle is following the fish 3.8 Neutral

Table 2.5: A 13 pairs of SICK problems with their two gold answers [Abzianidze,
2017b]

2.2.4 SNLI and MNLI

A more recent dataset for the NLI task is the Stanford Natural Language Inference

(SNLI) [Bowman et al., 2015] and its descendant the Multi-Genre Natural Language

Inference (MNLI) [Williams et al., 2017]. The development of SNLI came as a remedy
to the lack of large-scale datasets that machine learning methods can use. Thus, with
570K pairs of English sentences, SNLI is considered as the largest NLI dataset of its
kind.

Each SNLI pair consist of a premises P and a hypothesis H, and labelled with
an entailment judgement (entail, contradict, or natural). Premises are image captions
selected from the Flickr30K corpus [Young et al., 2014], while hypotheses are elicited
(using crowd-sourcing) sentences from these caption. Put differently, from each image
caption annotators were asked to write entailing, contradicting and neutral sentences
[Poliak, 2020].

Despite being the first “empirical evaluation for learning-centered approaches”
[Bowman et al., 2015], SNLI dataset, coming from one written genre (image captions),

2.2. NLI DATASETS 37

falls short when it comes to exemplifying a number of important phenomena, such as
propositional attitudes (e.g. know and believe), modality (e.g. must and should), and
temporal adverbs (e.g yesterday) [Williams et al., 2017]. MNLI has targeted these
shortcomings by developing 433k NLI problems in a similar fashion as the SNLI data
set, but from ten distinct genres (e.g. Government, Travel and 9/11) of spoken and
written English, see Table for examples from both datasets.

SNLI Pair Judgement
P: A soccer game with multiple
males playing.

H: Some men are playing a sport. Entail

P: A black race car starts up in front
of a crowd of people.

H: A man is driving down a lonely
road.

Contradict

P: An older and younger man smil-
ing.

H: Two men are smiling and laugh-
ing at the cats playing on the floor.

Neutral

MNLI Pair Judgement
P: At 8:34, the Boston Center con-
troller received a third transmission
from American 11

H: The Boston Centre controller got
a third transmission from American
11.

Entail

P: Met my first girlfriend that way. H: I didnt meet my first girlfriend
until later.

Contradict

P: I am a lacto-vegetarian H: I enjoy eating cheese too much
to abstain from dairy.

Neutral

Table 2.6: Some NLI problems from the development set of the SNLI (top) [Bow-
man et al., 2015] and MNLI (bottom) [Williams et al., 2017] along with their gold
judgement.

38 CHAPTER 2. THE NLI TASK AND RELATED DATASETS

2.3 Summary

In this chapter we have surveyed the five most commonly used NLI dataset which
are: the FraCaS test suite, the RTE datasets, the SICK dataset, and SNLI and MNLI
datasets. The goal of that brief survey is to present the necessary information that will
help the reader to follow:

• Our discussion (in Chapter 4) of state-of-the art NLI systems we compared our
work to.

• Our justification (given in Chapter 9) of why FraCaS problems might be the best
choice for evaluating our computational system for its capability to handle the
NLIs that it is designed for.

Chapter 3

A Constructive Theorem Prover

A major task we want to implement in our NLI system is the ability to reason over
multi-premises. Having a theorem prover (a proof search mechanism) as a part of the
system will allow us to do that. Therefore, after a brief introduction about theorem
proving (Section 3.1), in this chapter we illustrate the theorem prover we are adapting
(CO5) in this thesis (Section 3.3) and explain the proof system that inspired its rules of
inference (Section 3.2).

3.1 Automated Theorem Provers

In mathematics, a theorem can be defined as a non-self evident statement whose truth
was proved based on already established truths (other theorems or axioms) in accord
with some deductive rules. A computer program used to prove a theorem is called
an automated theorem prover. For formal languages such as propositional logic and
FOL, there exist many theorem provers. These provers can be divided into different
families of proof mechanisms including: (1) refutation systems such as tableau and
resolution that prove a formula by proving that its negation leads to a contradiction,
(2) axiomatic systems which rely on a predefined set of axioms and derivation rules
(e.g. Hilbert system); and (3) constructive systems such as natural deduction which
builds its proofs constructively from assumptions and already completed proofs. It
has been claimed that natural deduction “formalizes the kind of reasoning people do
in informal arguments.” [Fitting, 1990, p. 77]. If that is true, it seems plausible that
natural deduction constructiveness may fit well with reasoning about natural language.

39

40 CHAPTER 3. A CONSTRUCTIVE THEOREM PROVER

3.2 Natural Deduction

Natural deduction (ND) is a proof system that tries to prove valid propositions by
repeatedly applying simple basic inference rules and possibly introducing some valid
assumptions. These rules can be seen as an interpretation for the logical constants–such
as conjunction, disjunction, implication and universal quantifier–which, in a sense, is
said to make them natural, as they closely correspond to the common steps in intuitive
reasoning [Prawitz, 1965]. Also, it is important to know that some of the ND rules can
be combined together practically during the course of proof. An important case of such
rule combination is what leads to the notion of unification in proofs, and that in turn
gives a kind of flexibility in allowing the use of two or more non-identical propositions,
textitP and P′, in a deduction, so long as they are unified. ND allows the introduction
of assumptions during the course of proof and some constraints for discharging these
assumptions afterwards.

3.2.1 History

Natural deduction (ND) was formally proposed in 1934, independently, in publica-
tions by the logicians Gentzen [1934] and Jaśkowski [1934], out of dissatisfaction with
Hilbert-style axiomatic systems in terms of constructing mathematical proofs. Many
researchers, including Gentzen and Jaśkowski, believed that, despite the preciseness
of the theoretical proofs offered by the common logical systems at that time – systems
of Hilbert, Frege, Russell, and others – in practice, they were quite complex and arti-
ficial, as the whole concept of intuitive reasoning had drifted away [von Plato, 2014;
Indrzejczak, 2010]. In 1926, Łukasiewicz brought this issue up in a Warsaw seminar,
in which he explained that what mathematicians informally do when constructing their
proofs does not involve using predefined axioms. Instead, they tend to make use of
other methods, in particular, introducing assumptions and observing what they could
lead to [Pelletier and Hazen, 2012]. Łukasiewicz was questioning the possibility of a
logical theory that could adopt this idea but still be able to prove theorems that existing
logical systems at that time could prove. The term ‘natural deduction’ was first used
by Gentzen for his logical theory. However, Pelletier and Hazen [2012] argue that
Jaśkowski was the first to respond to Łukasiewicz’s concerns by publishing the first
non-axiomatized system that embodied these ideas in 1929 at the First Polish Mathe-
matical Congress [Prawitz, 1965], and then publishing the refined version of his proof

3.2. NATURAL DEDUCTION 41

system under the name ‘method of suppositions,’ in 1934. The two founders’ descrip-
tions of what is known as ND differ in many aspects, such as the kind of rules and the
type of proof representation. Nonetheless, they carry similarities that are considered
nowadays the distinguishing features of ND systems (Section 3.2.2).

3.2.2 Natural Deduction Features

There is no single defining description of ND systems; instead, there are certain fea-
tures that usually form part of what can be called a ND system [Pelletier and Hazen,
2012]. According to the remarks of the main inventors, Gentzen and Jaśkowski, as
well many elementary logic textbooks, a ND system ought to have at least the follow-
ing features.

Hypothetical and parametric judgements: Among the different forms of judge-
ments, hypothetical judgements (conditionals) and parametric judgements (in the case
of quantification), are the norm for ND. Hypothetical judgements are usually used
for proving statements of the form, P→ Q by showing that Q can be derived from
an assumption P. Derivations from assumptions can be either direct or indirect. In
other words, an assumption could lead to the conclusion directly or trigger another
assumption, constructing a series of sub-derivations that all constructively lead to the
conclusion. For that reason, a means of tracking or a bookkeeping device is required
to ensure that such assumptions are introduced and discharged properly during the
derivation process. For example, one of Jaśkowski’s methods of doing such tracking
is graphical: drawing boxes around each assumption course and, in the case of nested
sub-proofs, completing the inner boxes before the outer ones, such that the inner sub-
proofs can inherit any given statements from the outer sub-proofs, as for example in
Figure 3.2. The format used in the following illustrations is similar to Jaśkowski’s,
with square brackets, i.e. [assumption], used instead of rectangular boxes to distin-
guish an assumption from other premises. Above this will be a labelled horizontal line
to indicate the beginning of the assumption’s scope and another one with the same la-
bel after the last line of the assumption’s scope, i.e. [assumption]label (Figure 3.1). It
is important to know that an assumption may not need to be used in a derivation, may
be used more than once or may be used exactly once as in linear logic [Girard, 1987,
1995, 1998].

Parametric judgements are basically related to the logical quantifiers Q, universal
and existential, for which a judgement Qx.P(x) is valid if the substitution of x by
arbitrary ground term t (Q is universal) or a new constant c (Q is existential) leads to a

42 CHAPTER 3. A CONSTRUCTIVE THEOREM PROVER

valid conclusion.

Figure 3.1: Example of proof construction.

Figure 3.2: Example of Jaśkowski’s graphical representation.

Inference rules: A ND system consists of simple and self-evident inference rules.
These rules actually act as a defining tool for logical connectives that is given in terms
of their proof rules only without reference to other logical connectives. Each of the log-
ical connectives C, has introduction (CI) and elimination (CE) rules. Based on Prawitz
[1965], the introduction rule for a connective C allows deduction “to a formula”, of
which C is a part, whereas, the elimination rule allows deduction “from a formula”, of
which C is a part.

• Conjunction (∧): from any two true formulas P and Q, (P∧Q) is deducible by
means of the (∧I) rule. On the other hand, from (P∧Q) P and Q can be deduced
using the rules (∧RE) and (∧LE) respectively.

3.2. NATURAL DEDUCTION 43

P Q
P∧Q

(∧I)
P∧Q

P
(∧RE)

P∧Q
Q

(∧LE)

• Disjunction (∨): for any two formulas P and Q, (P∨Q) is deducible by means
of the (∨I) rule, if at least one of them is true.

P
P∨Q

(∨LI)
Q

P∨Q
(∨RI)

On the other hand, using the (∨E) rule on the true formula (P∨Q) does not allow
the derivation of P or Q directly, because it is not clear whether the truth of P, Q,
or both was the reason for the disjunction truth. Hence, disjunction elimination
usually proceeds by finding some R that is implied by both P and Q; and this
is called proof by case. In other words, R will be derived hypothetically as a
conclusion by showing that it is derivable under the assumption of P and under
the assumption Q too.

[P]L1 [Q]L2

. .

. .

. .
P∨Q R R

R L1 , L2 (∨E)

• Implication (→): (→ I) rule is basically what was explained previously as hy-
pothetical derivation.

[P]L

.

.

.
Q

P→ QL (→ I)

The (→ E) rule is actually nothing but the modus ponens rule; given that P→ Q

and P are true, Q can be deduced as a conclusion.

44 CHAPTER 3. A CONSTRUCTIVE THEOREM PROVER

P→ Q

P
Q

(→ E)

• Negation(¬): In intuitionist logic, ¬P is treated as implication to absurd or false-
hood P→⊥. Therefore, the (¬I) rule is the same as the (→ I) rule, in which P

will be assumed and if it leads to ⊥, then ¬P is a valid conclusion.

[P]L

.

.

.
⊥
¬PL (¬I)

In Gentzen’s ND for classical logic different rules have been introduced as a
(¬E). One of them is the Reduction ad Absurdum rule:

P ¬P
⊥

(⊥E)

• Universal quantification (∀): The universal introduction rule tries to generalize
the proposition P(a) from being about the parameter a to every x in the domain
of discourse; (∀x.P(x)). This is possible if this generalisation would lead to the
same truth that P(a) lead to when used as a line of a proof, where none of the
assumptions nor conclusion has an occurrence of the parameter (a). Just then we
can say:

P(a)
∀x.P(x)a (∀I)

Contrariwise, knowing that P is true for every x of the domain of quantification,
means that substituting x by any t from that domain, P(t/x), is also true.

• Existential quantification (∃): The (∃I) rule states that if there is at least one
term t that could substitute x in P(x) and makes P true, then the truth of ∃x.P(x)
as a conclusion is guaranteed. However, the (∃E) rule is not as straightforward as

3.2. NATURAL DEDUCTION 45

∀x.P(x)
P(t)

(∀E)

the (∃I) rule, because knowing ∃x.P(x) is true does not mean that P(t/x) could
be true for any t. Because it is a rule of existential quantification, it holds only
for a certain t(s) that we do not know. Therefore, to extract a consequence from
∃x.P(X), a substitution P(a/x) for a ‘new’ parameter a will be introduced as an
assumption and see if it will lead to a valid conclusion.

P(t)
∃x.P(x)

(∃I)

P(a/x)L

.

.

.
∃x.P R

R L,a (∃E)

As may be seen, in a sense, each elimination rule is the inverse of its corresponding
introduction rule. In application, this could lead to a nonsense detour; in a proof, there
is nothing to gain if a premise is used to construct a formula by means of a proper
introduction rule, then used as a major premise for the corresponding elimination rule,
only to obtain the starting premise again. Therefore, theorem provers tend to perform
a kind of reduction into normal forms to avoid such detours. This is referred to as the
inversion principle [Prawitz, 1965]. Also, it is important to know that in practice, some
of the ND rules can be combined together to form a new rule(s). An important case of
such a rule is the combination of the ∀E and→ E rules, which leads to the notion of
unification in proofs (Figure 3.3). By means of this combined rule, we can say that Q′

is a valid conclusion from P→ Q and P′ if P and P′, Q and Q′ are unified (⊕) using
the same unifier.

46 CHAPTER 3. A CONSTRUCTIVE THEOREM PROVER

Figure 3.3: A combined rule.

3.3 SATCHMO as a Natural Deduction Engine

SATCHMO (‘SATisfiability CHecking by MOdel generation) is an automated theorem
prover for the language of FOL written in Prolog that was introduced by Manthey and
Bry in [1987][1988]. Although their model generation paradigm was first motivated
by logic databases problems, it handled, with great efficiency, many of the theorem
proving problems discussed in the literature.

SATCHMO accepts set of FOL clauses of the form (¬A1∨ . . .¬An∨C1∨ . . .Cm)1

as specification but in implication form (A1∧ . . .An→C1∨ . . .Cm). The left-hand side
(LHS) of the rule is called the antecedent and it can have up to n literals or the constant
‘true’, which in this case the rule is actually called a fact or statement. On the other
hand, the consequent – the right-hand side (RHS) – of the rule can have up to m literals
or the constant ‘false’ and in the case of the later it is called an integrity constraint (see
below).

Definition 2.1: A model M of a set of clauses S is the set of the ground literals that
are satisfied in the model. A clause X is said to be satisfied in the model [Manthey and
Bry, 1988]:

1. if it is a ground literal and M contains it.

2. if it is a ground conjunction/disjunction and M contains all/some of its compo-
nents.

1In FOL:

• a clause is disjunction of literals.
• a literal is an atomic formula or its negation.
• a ground literal is a literal with no variables.
• an atomic formula is one with no logical connectives nor quantifiers.

3.3. SATCHMO AS A NATURAL DEDUCTION ENGINE 47

3. if it is a clause (A→C) and Cσ is satisfied in M (for every substitution σ) such
that Aσ is satisfied.

4. if it is a clause (A→C) and there is a substitution σ such that Aσ is satisfied and
Cσ is not, the clause X can be satisfied by asserting:

(a) Cσ if it is an atom;

(b) a component from Cσ, if it is a disjunction and create a choice point for
backtracking.

SATCHMO is a two-way prover, as it exploits for the above definition two kinds of
proof mechanisms. Prolog’s backward chaining mechanism for handling horn-clauses

(1-3) (clauses that consist of at most one positive literal), and an introduced second
type of rules to be applied forward2 for the non-horn ones (4) [Loveland et al., 1995].

Figure 3.4: The model generation process [Manthey and Bry, 1988].

As Figure 3.4 shows, SATCHMO is a model generation and a refutation system,
which means two things. First, as a refutation system, it performs its proofs by con-
tradictions, i.e. it proves that a clause C is satisfied in every M by showing that ¬C

produces a contradiction (is violated(C)). Second, it uses violated clauses of kind (4)
as a generation rules to extend the current model using (satisfy(C)). What (satisfy(C))
does, as stated in (4), is assert the violated consequent itself or one of its components

2Reasoning forward means starting with known facts and follow it by sequence for rules application
to obtain more data, until the goal is reached. It often considered as a repeated application of the modus
ponens rule; use the known data to see if there is ůle that matches its antecedent and add its consequent.
Backward reasoning, on the other hand, starts with the goal and chains backwards looking for facts that
support the goal; look for rules whose consequent matches the goal and then try proving their antecedent
[Polleres et al., 2011, p .327].

48 CHAPTER 3. A CONSTRUCTIVE THEOREM PROVER

and make a choice point in the case of the latter. If an asserted consequent generated
a ‘false’, its assertion has violated the integrity constraints and has to be retracted and
everything added since its assertion is backtracked. If a created model is not empty
and in which every clause in S has been satisfied, it said that the satisfiability of that
set of clauses had been shown with respect to that model. For example, the clause set
in Figure 3.5 has generated an empty model (all choice branches generated false) and
hence the clause set under consideration is unsatisfiable.

Figure 3.5: Example of model Generation in Prolog [Manthey and Bry, 1988].

A major advantage of SATCHMO is that its implementation is short and simple
(Figure 3.4), which makes its adaptation to different applications and non-standard
treatments of a language, such as defaults and intensionality, quite easy. One adapta-
tion is Ramsay’s [2001] constructive SATCHMO. As the name implies, the core change
is that in contrast to SATCHMO, it does its proof constructively using ND rules. Ta-
ble 3.1 shows the constructive SATCHMO equivalent rule for the implication rule.
The way in which its rule embodies the constructive rule of implication is by using
assert(P) to put something as a temporary assumption and then try to prove(Q)

from it. Finally, making sure that the asserted assumption is removed after the end of
the proof course whether or not the proof succeeded, by using retract(P). Beside
classical ND rules, Ramsay’s constructive SATCHMO has some higher-order exten-
sions. For the sake of the aims of this thesis, we are adopting only its basic rules (given
in Figure 3.6) with our extension that is suitable for the work on normalized depen-
dency trees. Our adapted inference engine will be further explained in Chapter 8 when

3.4. SUMMARY 49

the relevant concepts have been already discussed.

[P]L Prove (P→Q):-
. assert(P),
. (prove(Q)→retract(P);
. (retract(P), fail))
Q

P→ QL (→ I)

Table 3.1: ND and Ramsay’s constructive SATCHMO treatment for implication.

Figure 3.6: Basic constructive SATCHMO [Ramsay, 2001].

3.4 Summary

One goal of this thesis is to be able to answer multi-premises NLI problems. Having a
theorem prover as a proof search mechanism is an obvious way to do this.

In this chapter we have discussed what is a theorem prover and what are the dif-
ferent kinds of proof mechanisms (refutation, axiomatic and constructive) for formal
languages such as FOL and prepositional logic. Included in this discussion, we have
explained at considerable length constructive theorem proving (natural deduction sys-
tem in particular) as it is believed to be a formalization to the kind of reasoning humans
do. Because of that and because of its short and simple implementation, we are adapt-
ing and extending Ramsay’s [2001] constructive SATCHMO to work on normalized
tress instead of FOL formulae. We will return to this in greater detail in Chapter 8.

Chapter 4

Natural Logic and Monotonicity
Natural logic is a proof system which, in contrary to the proof systems discussed in
(Chapter 3), explains inferences occurring in NL with no appeal to logical formalism or
model theory [MacCartney and Manning, 2007]. Instead, it relies upon representations
of NL texts that are close to their surface form; most commonly syntactical trees.

One of the aims of this thesis is to investigate the choice of MRs that are based
on syntactical trees. We also aim to define an algorithm for matching trees (CO3)
that is based on the semantic and syntactic aspects (namely the containment relation
and polarity marking respectively) of one of natural logic’s most significant notions:
monotonicity. Therefore, for the sake of comprehension and preparing the ground for
later discussions, the first part of this chapter briefly introduces natural logic (Section
4.1) and monotonicity (Section 4.2).

In this thesis, we also compare our final system (CO6) to other NLI systems that
were based on natural logic. Thus, the second part of this chapter (Section 4.3) surveys
the most recent inference systems that have been based on it and point out some of the
research gaps that we have identified (CO1).

4.1 Introduction

Natural logic is a term that was coined by Lakoff [1972] and generally refers to the
regularities that can prove a valid NL argument by operating on representations that
are close to the NL surface from, e.g. syntactic derivations, unless from the sur-
face per se [Abzianidze, 2017b]. For example, the argument in (4.1) is valid because
the replacement of ‘men’ in p with ‘athletic men’, which is smaller in meaning (i.e.
its denotation can be contained by the denotation of ‘men’), in h is licensed by the
downward-monotone context (labelled by ↓), in which ‘men’ appears. On the other

50

4.1. INTRODUCTION 51

hand, the upward-monotone context (labelled by ↑) that contains ‘racing cars’, allows
its replacement with the larger term ‘car’. These licensing contexts are caused by a se-
mantic property named monotonicity of the quantifier ‘All’ that is downward-monotone
on its first argument and upward-monotone on it second. Now, if we consider ‘men’ in
4.2, it can not be replaced, it needs an exact match and this is due to its occurrence in
a non-monotone (enclosed by ��↑↓) context that is caused by ‘Most’ (discussed further
in Section 4.2).

(4.1)
p : All (men) ↓ (love some racing cars)↑.

c : All athletic men love some cars.

(4.2)
p : Most (men) ��↑↓ (love some racing cars)↑.

c : Most men love some cars.

All X Y
All X ′Y′.

(All ↓↑) s.t. (X′≤X and Y≤Y′)

Most X Y
Most X Y′.

(Most�↑↓ ↑) s.t. (Y≤Y′)

Table 4.1: An illustration to what might be considered a natural logic rule in which
(≤) is the order-relation defined and explained in Section 4.2.

If the regularities licensing the above valid inferences are to be formed as rules,
they will be similar to what is depicted in Table 4.1, which is to its first approximation
much like an extended version of the rules appearing in Aristotelian classical logic
[Moss and Wollowski, 2017]. Moreover, natural logic avoids the full translation into
logical formulas and makes no appeal to models.

Natural logic is not a contemporary concept. It has a long history1, originating
in ancient times, in Aristotelian syllogisms to be exact, as an attempt to simplify and
generalise the ad hoc inference rules (syllogisms) [Ludlow, 2002] and expand their
coverage to something more than a fragment of English. The idea at that time was
to try to fit these rules into two distinct inference paradigms, dictum de omni (up-
ward monotone) and dictum de nullo (downward monotone). These two paradigms
belong to a theory that was developed by mediaeval logicians called the Doctrine

of Distribution [Benthem et al., 2008]. However, it can be said that the dictum de

omni et nullo paradigms have been revived in recent times as upward-monotone and
downward-monotone entailing contexts in monotonicity calculus [Sánchez Valencia,

1A more detailed article on the history of natural logic is given in [Benthem et al., 2008].

52 CHAPTER 4. NATURAL LOGIC AND MONOTONICITY

1991; Van Benthem, 1986]. Since then, their work has been the basis of most recent
successful work using natural logic in the field of NLI .

Natural logic has been associated mainly with reasoning about monotonicity now
as then, and we will continue its discussion in those terms in the following section.
Nonetheless, it is believed [Bernardi, 1999; Van Eijck, 2005] that it covers different
forms of NLIs of different complexities with monotonicity as just a part of that enter-
prise. That becomes clear in the discussion of of natural logic based inference systems
in Section 4.3.

4.2 Monotonicity Calculus

4.2.1 Monotonicity Reasoning

Reasoning about monotonicity, such as in 4.1 and 4.2, is concerned with the ability to
replace an expression by another one whose denotation can contain (be expanded to)
or be contained by (be contracted to) the denotation of the original expression and still
preserve truth [Icard III and Moss, 2014; Bernardi, 1999]. In model-theory, the deno-
tations of NL expressions are sets of objects in the domain of discourse. The sets are
usually assumed to be partially ordered [Icard III, 2012; Fyodorov et al., 2003], and
hence, a relation holding between expressions denotations of the kind described above
is expressible in terms of the order-relation(≤) and is often called the semantic con-

tainment relation. It is defined over expressions of different types (not only sentences),
and what determines if a containment relation between two expressions (of the same
type) is preserved, reversed, or cancelled when appearing in the context of another ex-
pression, is the monotonicity property of that context. Now considering a containment
relation between the denotation of two expressions of the same type, E1 ≤ E2, and a
context M, monotonicity inference schemes can be generally defined as follows:

Definition 3.1 [Bernardi, 1999] if the context M is:

1. upward-monotone (=monotone)(↑) then M(E1) ≤ M(E2), and
M E1

M E2
(M↑) is a

valid inference.

2. downward-monotone (=antitone)(↓) then M(E2) ≤ M(E1), and
M E2

M E1
(M ↓) is a

4.2. MONOTONICITY CALCULUS 53

valid inference.2

3. non-monotone(��↑↓) then neither 1 nor 2 applies.

Consider for example the expressions ‘red car’ and ‘car’. As they stand, the mean-
ing of the latter contains the meaning of the first and hence ‘red car’≤‘car’. However,
when these two expressions appear in the antitone context caused by the negation word
‘no’ in 4.3, the containment relation is reversed; ‘no car’≤‘no red car’ and hence the
sentence containing ‘no car’ entails the one with ‘no red car’ and not the other way
round. Now that we know in which context expansions or contractions of expressions
could lead to valid inferences, the questions remain as to what forms they take and
what sets the context.

(4.3)
p : John bought no (car) ↓

c : John bought no red car

Replacing an expression by its expansion or contraction can be seen as a sequence
of edits, including substitution, insertion and deletion with the edit sequence of an ex-
pression yielding a valid inference if each of the single edits (linking p and c) obeys the
monotonicity property of the context in which it appears. For example, (4.4) lists some
valid monotone inferences in which (a) involves substituting ‘man’ with the larger in
meaning word: ‘human’ and (b) expanded ‘a fat man in the park’ to ‘man ’ by deleting
the intersective modifier ‘fat’ and prepositional phrase.

(4.4) a.
p : (He)↑ saw (a man)↑.

c : He saw a human.

b.
p : (He)↑ saw (a fat man in the park)↑.

c : He saw a man.

On the other hand, (4.5) shows examples of inferences in an antitone context caused
by the quantifier ‘no’. In (a) ‘likes’ is substituted with the more specific term ‘loves’,
while in (b), ‘woman’ is contracted by specifying a descriptive detail ‘smart’ and hence
become ‘a smart woman’.

(4.5) a.
p : No (man) ↓ (likes a woman) ↓.

c : No man loves a woman.

b.
p : No (man) ↓ (likes a woman) ↓.
c : No man loves a smart woman.

2Note that the inverse of ≤ in some publications is represented as M(E1) ≥ M(E2) and named
inversion relation. However, in this chapter we tried to keep relational symbols to the minimal to avoid
confusion.

54 CHAPTER 4. NATURAL LOGIC AND MONOTONICITY

As to what determines the nature of a context, one observation about these exam-
ples is that expressions, particularly of functional-type (we will see what that means
shortly), are the ones affecting the monotonicity of their arguments (if any). For in-
stance, we can see in 4.4 that the transitive verb ‘saw’ takes two arguments and has a
(default) monotone effect on both of them. By contrast, the quantifier ‘no’ marks both
of its arguments with an antitone property. Given a grammar, a function-expression

is an element in the lexicon of that grammar and is to be applied to argument(s) of
certain type(s) (determined by the function type itself) yielding a result of another.
Put differently, consider Montague-style types [Montague, 1973, 1974], expressions
of functional types (〈α,β〉) are those taking argument of type α and yielding a result
of type β, such as the intransitive verb ‘walks’ of type 〈e, t〉, that takes the proper name
‘John’ of type e as argument, and provides ‘John walks’ as the result (which is of type
t).

The monotonicity property of a function-expression to its argument can be con-
sidered as an instantiation of the property of the mathematical mapping function f,
between two sets, α and β, with partial orders≤ α and≤ β, respectively, that is defined
as follows:

Definition 3.2 [Bernardi, 1999]: The function f:α→ β is:

1. Order-preserving (i.e. ↑) : if x ≤ α y, then f (x) ≤ β f (y), for every x, y in α.

2. Order-reversing (i.e. ↓): if x ≤ α y, then f (y) ≤ β f (x), for every x, y in α.

3. Order-cancelling (i.e. ��↑↓): if it is neither 1 nor 2.

Specifying types to the containment relation (≤) and considering f is the context M

that a functional type expression creates gets us back to definition 3.1. In English, such
expressions (which we will call henceforth operators) are mostly monotone (i.e. by
default); however, a number of important ones are antitone [MacCartney and Manning,
2007], such as: negation (not), some quantifiers (every, no, few, etc.), certain verbs

(refuse, fail, forget, etc.) and prepositions (without). It is also important to realize
that some operators with multiple arguments have different monotonicity effects on
each of their arguments. For instance, ‘every’ in (4.1) is antitone on its first argument
and monotone on its second, while ‘doubt’ is monotone on the first and antitone on
the second (see (4.6)). Detecting monotonicity operators and knowing their effect is
one step towards establishing the monotonicity property for all positions in a sentence

4.2. MONOTONICITY CALCULUS 55

[Bernardi, 1999; Yanaka et al., 2019]. However, as they might come nested within a
sentence, such as ‘Every man loves every woman.’ and ‘I did not forget to visit him.’,
the final marking is computed compositionally in the monotonicity marking part of the
calculus.

(4.6)
p. (He)↑ doubts that (she likes him) ↓.

c. He doubts that she loves him.

4.2.2 Monotonicity Marking

Before explaining how marking is done, let us first make a clear distinction between
two related features. Consider the examples 4.1, 4.2 and 4.7. In the first two, ‘men’
has a different monotonicity due to being an argument of the different operators ‘all’
and ‘most’, respectively. However, in 4.7(a) and (b), ‘men’ is an argument of the
same operator ‘all’, but, the context it appears in is different; ↓ in the first and ↑
in the second, and this is because ‘all men’ is itself an argument of another antitone
operator ‘not’. That is to say, operators’ effects are local to their arguments, while
the context property –polarity– is a global feature that is computed compositionally
for each position in a sentence based on the operator(s) acting on it. Monotonicity
marking, therefore, is typically performed on a syntactic analysis of a sentence where
the nesting of operator-argument(s) construction, such as in 4.7(b), is transparent.

(4.7) a. All (men) ↓ love cars.

b. Not all (men)↑ love cars.

Syntactical analyses (i.e. parse trees) are structures of sentential elements, called
nodes, that are arranged in some kind of hierarchy and are constructed using a gram-
mar. For instance, trees constructed using dependency grammar have a root node, leaf
nodes and internal nodes linked in parent–child relations. Given a parse tree, mono-
tonicity marking involves parts, one of which is marking each node with an initial sign
of polarity (positive (+)(the default), negative (−), and non (#)) based on entries of
monotonicity operators (see Table 4.2 for examples and Appendix A for a more com-
prehensive list), where the aforementioned signs represents the monotonicities ↑, ↓,
and ��↑↓respectively. This part could be seen as the inner marking step. As for the
outer marking step, because there are elements with a certain number of arguments
(children) and these elements could be within the scope of other elements (i.e. have
parents), there must be a type of propagation method that decides on a node’s final

56 CHAPTER 4. NATURAL LOGIC AND MONOTONICITY

polarity, considering all polarities in the path from that node to the root. This propaga-
tion process makes use of an operator named the monotonicity composition operator

(◦), see definition 3.3. To give an example, consider the sentence ‘John refused to

move without blue jeans’ and its dependency tree in Figure 4.1. Based on the entries
of Table 4.2, the sentence has two polarity affecting operators: refused↑ ↓ and without
↓. In Figure 4.1, each node on the left tree is marked either with one or two polarities
depending on its position in the tree. Nodes in the scope of ‘refused’ are marked with
blue polarities and others occurring in the scope of ‘without’ are marked with green
polarities. Nodes with black polarities are set to the default. Now that nodes marked
internally, each node with two polarities will apply the monotonicity composition op-
erator on its polarities to get a final one. Once that is done, the resulting tree (Figure
4.1 (right)) reflects the final (outer marking).

Refused+

John+ move−

to− without−

blue−−

jeans−−

Refused+

John+ move−

to− without−

blue+

jeans+

Figure 4.1: An example of inner marking (left) and then outer marking (right).

Monotonicity operator First Argument Second Argument
Every ↓ ↑
Most ��↑↓ ↑
Few ��↑↓ ↓
Without ↓
Refused ↑ ↓

Table 4.2: Example of monotonicity operators.

4.3. NATURAL LOGIC-BASED INFERENCE SYSTEMS 57

Definition 3.3: Having a set of polarity markers P={+,−,#} , the monotonicity com-
position operator (◦) decides on the final polarity mark as follows [Bernardi, 1999;
Icard III and Moss, 2014]:

No polarity (#): (#) ◦ (+|−) = (+|−) ◦ (#) = (#)
Positive polarity (+): (+) ◦ (+) = (−) ◦ (−) = (+)
Negative polarity (−): (+)◦ (−) = (−) ◦ (+) = (−)

The description of polarity marking given here is rather general. The reason for
not giving discrete steps for the marking process is that most studies in the literature
handle it quite differently in several respects. First, the choice of the grammar behind
the syntactical derivations will decide the direction in which its nodes are scanned and
marked, top-down or bottom-up. The calculation of final polarity marks could be done
in one pass (along with generating the parse tree) or several passes (such as parse, inner
mark, and then outer mark). Therefore, concrete examples are given along with their
related work in the next section.

4.3 Natural Logic-Based Inference Systems

To date, many NLI systems were based on versions of natural logic; some with novel
ingredients (extension to the containment relation, exploring new derivation grammar
along with mechanisms to polarity marking, etc), with others incorporating some in-
sight from formal proof systems. In this section we are limiting our review to the
computational approaches from both kinds, that have been developed in the last two
decades (after the first formulation of natural logic as monotonicity calculus) with
some reported results on datasets with monotonicity inference problems, particularly
FraCas (Section 2.2.1). The reviewed inference systems were grouped (based on the
proof method used) into: proof by alignment approaches (Section 4.3.1), order based
approaches (Section 4.3.2) and Tableau based approaches (Section 4.3.3). Moreover,
all the discussed systems are based on the three-way classification of judgement (Sec-
tion 2.1). In other words, is the relationship concluded between a premise(s) and a hy-
pothesis entail (ps |= h), contradict (ps |= ¬h), or neutral(ps��|=h ∧ (ps��|=¬h)). Finally,
natural logic inference systems are expected to have a grammar to generate syntactical
analysis, a mechanism to mark polarities and inference rules along with possibly back-
ground knowledge to perform directional replacements. Therefore, among others, the

58 CHAPTER 4. NATURAL LOGIC AND MONOTONICITY

reviewed systems will be categorized (after being separately discussed) in one table
based on these criteria (see Table 4.9).

4.3.1 Proof by Alignment

As mentioned earlier, the monotonicity calculus of Van Benthem(1986) and Sánchez Va-
lencia (1991) was the first attempt to explain inferences about monotonicity as seman-
tic containments and inversions3 over expressions of different semantic types. How-
ever, their calculus was not able to validate several simple inferences, especially those
that involve exclusions, such as ‘Luli is a cat’ |= ‘Luli is not a dog’. Work by Nairn
et al. [2006] managed to explain interesting inferences involving implicatives and fac-
tives (see Section 5.8.2 and Section 5.8.2 respectively) by defining nine implication

signatures to identify what implication they have –positive (+), negative (-) or null
(0)– in a positive as well as a negative context. For example, ‘John refused to dance’|=
‘John did not tango’, because ‘refuse’ has a signature -/0 which indicates its nega-
tive implication in this positive context. The work of Nairn et al.[2006], nonetheless,
was not a direct adaptation to natural logic, thus it lacks containment and inversion
relations.

A more comprehensive work that extends the monotonicity calculus to include in-
ferences about exclusion and partially incorporates Narin’s signs for implicatives is by
[MacCartney and Manning, 2007, 2008, 2009]. Their work is a computational model
for a version of natural logic: named Natlog. The key parts of the model are: an inven-
tory of semantic relations over expression of all types, a replacement of monotonicity
with a more general concept projectivity, and a light proof procedure of a hypothesis
from a premise that involves establishing an alignment (i.e. a sequence of atomic ed-

its) between the pair, and predict their final entailment relation by joining the atomic
entailment relations across the edit sequence.

The Inventory of Semantic Relations

To go beyond the semantic containment of monotonicity calculus when modeling
the entailment relations of expressions, MacCartney and Manning have introduced
seven mutually exclusive entailment relations that were designed by analogy with set
relations. Given x and y as the denotation of two expressions (i.e. set of objects

3Again, it is just a distinction between containment in upward-entailing context (≤)(Definition 3.1
(1)) and the on in a downward-entailing context (≥)(Definition 3.1 (2)), where inversion is the latter.

4.3. NATURAL LOGIC-BASED INFERENCE SYSTEMS 59

in the domain of discourse D that satisfies them), Table 4.3 summarizes these rela-
tions along with their set theoretic definition and a demonstration example. Among
these relations, although factored into three relations (equivalence (≡), forward entail
(Ă)and backward entail (Ą)), the semantic containment relation is still preserved4. On
the other hand, semantic exclusion is represented with the (N and ë), and indirectly
(^)[MacCartney and Manning, 2009].

Symbol Name Example Set theoretic definition
x≡ y equivalence couch ≡ sofa x = y
x Ă y forward entailment crow Ă bird x⊂ y
x Ą y reverse entailment EuropeanĄ French x⊃ y
x N y negation human N nonhuman x∩ y = φ ∧ x∪ y = D
x ë y alternation cat ëdog x∩ y = φ ∧ x∪ y 6= D
x ^ y cover animal ^ nonhuman x∩ y 6= φ ∧ x∪ y = D
x # y independence hungry # hippo (all other cases)

Table 4.3: The basic semantic relations of the NatLog system [MacCartney and Man-
ning, 2009].

Projectivity

The examples shown above (in Table 4.3) illustrate entailment relations at the level of
lexical items, hence are called lexical entailment relations. The question is how these
lexical relations are projected in their containing compound expression (sentences for
simplicity). As seen in Definition 3.2 of the monotonicity calculus, the monotonicity
of an operator, ↑, ↓ or ��↑↓ , determines whether the containment relation between two
expressions is preserved (projected without change), reversed or turned into none re-
spectively, when appearing in the context of that operator. As an example, we have
seen in 4.3, when applying the operator (no ↓ ↓), the relation ‘red car’ ≤‘car’ is re-
versed i.e. ‘no car’ ≤‘no red car’. Similarly, MacCartney and Manning assigned for
each operator a projectivity signature. These signatures are an extension to the three
classes of monotonicity and the nine implicative signs of Nairn et al., such that, given
β, the set of entailment relations, {≡,Ă,Ą,N,ë,^,#}, each signature is defined as a

4 MacCartney and Manning’s [2007] use of different symbols for semantic containment relation was
motivated by their set theoretic definition; considering that it is parallel in meaning to the containment
relation in set theory (⊆). However, that choice does not imply having a different meaning to the
semantic containment relation defined earlier with respect to (≤).

60 CHAPTER 4. NATURAL LOGIC AND MONOTONICITY

mapping m : β→ β. Taking the negation word ‘not’ for example, it will project the re-
lations (≡,N and #) without change and swap between (Ă and Ą) and (ë and ^) and
hence its projectivity signature is as defined in Table 4.4 [MacCartney and Manning,
2008]. Ideally, projectivity is computed and marked on a semantic composition tree to
ensure the right nesting of function-argument(s) constructions. However, MacCartney
and Manning rely on a phrase-structure tree produced using the Stanford statistical

parser [Klein and Manning, 2003]. The choice of phrase-structure trees has compli-
cated the process of marking projectivity as the nesting of constituents does not always
comply with their ideal composition in a semantic tree [MacCartney and Manning,
2008].

Figure 4.2: An example of a monotonicity marked phrase-structure tree.

For example, in the parse tree of ‘John refused to move without blue jeans’(Figure
4.2)5 the operator ‘without’, is not the parent of its argument ‘blue jeans’, i.e. the
argument is not in its parent scope. To amend this shortcoming, they have employed
predefined patterns called Tregex patterns in which each projectivity affecting operator
will be defined in terms of its arity, the syntactic pattern that identifies its occurrence
in the tree, and the affected arguments. Each argument has a projectivity sign6 and

5The actual parse of the sentence was from [MacCartney, 2009] with a slight change, while its
graphical representation was drawn using an online tool (http://mshang.ca/syntree/) on which I have
manually added the monotonicity marks for illustration.

6MacCartney has illustrated in his thesis [2009] the projectivity effect of several operators including
(logical connectives, quantifiers, verbs and implicatives) as a map from β to β. Nonetheless, in the actual
implementation of the model, NatLog, only monotonicity signs have been computed and marked on
trees. That is, I believe, why arguments in the Tregex patterns have only ↑, ↓ or ��↑↓as their projectivity
signs. Practically, antitone operators will have the same projectivity signature as the one defined in Table
4.4; monotone operators are identity functions project without change and non-monotone will project
any relation to #.

4.3. NATURAL LOGIC-BASED INFERENCE SYSTEMS 61

a Tregex pattern of its own that determines the affected span of this projectivity sign.
For example, in Figure 4.3, ‘without’ has an antitone effect on one argument of the
type propositional phrase (PP) which appears directly on its right. These patterns,
along with the monotonicity composition function (Definition 3.3) will be used in a
bottom-up scan of phrase-structure trees to mark them with final projectivity signs.

r ≡ Ă Ą ë ^ N #
m(r) ≡ Ą Ă ^ ë N #

Table 4.4: The projectivity signature for ‘not’, in which r is a relation and m(r) is the
projected relation [Angeli and Manning, 2014]

Figure 4.3: Example of Tregex patterns for ‘without’ and ‘most’ [MacCartney and
Manning, 2007].

Proof by Alignment

MacCartney and Manning’s [2007] procedure for proving a hypothesis h from a premise
p proceeds as incremental atomic edits (delete (DEL), insert (INS), substitute (SUB)

and advance (ADV) i.e pass without change), that links the pair, i.e. alignment. Each
atomic edit will induce7 a lexical entailment relation, which in turn is projected to the
sentence level into an atomic entailment relation between a sentence and its mutated
(by that atomic edit) version. Finally, these atomic entailment relations are iteratively
joined(’), according to Figure 4.4, into a global entailment relation between p and h.

To demonstrate, consider the example in Table 4.5, in which S0 and S5 are the
premise and the hypothesis respectively. The sequence of edits are e1− e5. Each edit

7Using a classifier that predicts a relation from information about the lexical items involved in the
edit and the kind of edit that has been applied (deploying measures from WordNet and Levenshtein edit
algorithm), see [MacCartney, 2009] for more details.

62 CHAPTER 4. NATURAL LOGIC AND MONOTONICITY

(ei) will introduce a lexical relation (ri), which then is projected into an atomic relation
m(ri) between the sentences Si-1 and Si, according to the projectivity signature of the
containing context. Take the edit e3: SUB(move, dance) for example. The lexical
relation between ‘move’ and its substituent ‘dance’ is (Ą), and it is projected as (Ă)
between S2 and S3, as both lexical items appear in the context of the negation ‘didn’t’
which, as defined in Table 4.4, swaps between (Ă, Ą). The final entailment relation
between S0 and S5 is the one at E5 in Table 4.5 (i.e. Ă) and is iteratively determined,
with E0 axiomatically initiated to ≡, as : E i := E i-1 ’ m(ri) [Angeli and Manning,
2014].

i Si Edit (ei) ri m(ri) E i

0 John refused to move without blue
jeans

1 John moved without blue jeans DEL(refused to) ë ë ë

2 John didn’t move without blue jeans INS(didn’t) N N Ă

3 John didn’t dance without blue jeans SUB(move, dance) Ą Ă Ă

4 John didn’t dance without jeans DEL(blue) Ă Ă Ă

5 John didn’t dance without pants SUB(jeans, pants) Ă Ă Ă

Table 4.5: An example of MacCartney and Manning proof procedure for a hypothesis
S5 from the premise S0 [Abzianidze, 2017b].

Figure 4.4: The join table in which each entry is a result of joining (’) two entailment
relations (i.e. a row with a column) [Icard III, 2012; Angeli and Manning, 2014].

In conclusion, referring to the correspondences in (Table 4.6), their model of natu-
ral logic handles single-premise inferences on section (1, 2, 5, 6 and 9) of the FraCaS
dataset with an average accuracy of 87%, and 59% accuracy on the third recogniz-

ing textual entailment RTE3 challenge [Giampiccolo et al., 2007] by its own, however
when used as a component in another RTE system [Chambers et al., 2007] the overall
accuracy went up to 63%. The simplicity of its approach is appealing, but the NatLog
system is significantly crippled by the usage of alignment as proof procedure [Abzian-
idze, 2017b]. First, it is possible to have several alignments linking a (p− h) pair of

4.3. NATURAL LOGIC-BASED INFERENCE SYSTEMS 63

which not all share the same final entailment relation. Therefore, there is a need to find
the alignment that leads to the correct final entailment between a (p−h) pair. More-
over, the procedure is sensitive to word order, thus, it cannot sanction inferences such
‘John wrote a book.’ |= ‘A book was written by John.’[Lewis and Steedman, 2013].
Second, bound to a pair of expressions, the alignment-based approach falls short when
it comes to reasoning over multi-premises. Finally, MacCartney and Manning [2008,
2009] observed that their model for natural logic has less deductive power than FOL as
it can not account for fairly simple inferences including de Morgan’s laws for quanti-
fiers (e.g ‘not all birds fly.’ |= ‘some birds do not fly’) [Abzianidze, 2017b; MacCartney
and Manning, 2008].

Relation It symbol Judgement
Equivalence p≡ h entails
Forward entailment p Ă h entails
Alternation p ë h contradicts
Reverse entailment p Ą h neutral
Independence p # h neutral

Table 4.6: The correspondence between the NatLog final entailment relation between
p and h and the 3-way judgement for datasets [MacCartney and Manning, 2007].

4.3.2 Order-Based Approach

As mentioned in Section 4.2, in the model-theoretic semantics of NL it is assumed
that denotations of linguistic expressions are depicted as objects in domains which are
partially ordered. That is to say, the meaning of expressions (of the same type) are
comparable [Fyodorov et al., 2003] and hence maintain some semantic order-relations
(≤). Moreover, according to Frege’s principle of semantic composition, order relations
between compound expressions are derived from orders between their constituents,
according to the rules of the deriving grammar and the semantic properties of operators
[Fyodorov et al., 2003]. One important example of such properties is monotonicity and
its effect on order-relations is given in Definition 3.2.

Order-based approaches are based on the view that in an adequate semantic theory,
order-relations (orders for short), such as in 4.2 (see Section 4.2.1 for its discussion),
correspond to an intuitively valid entailment relation [Fyodorov et al., 2003; Zamansky
et al., 2006]. Therefore, based on insights from model theory but with no direct appeal
to models, a few computational models were built contributing to the natural logic

64 CHAPTER 4. NATURAL LOGIC AND MONOTONICITY

endeavour as semantically annotated syntactic derivations of NL expressions are used
as a basis for computing inferences.

This approach started with the computational model of Fyodorov et al. [2003] and
Zamansky et al. [2006] for a fragment of English. Nonetheless, its most recent de-
scendent, the work of Hu et al. [2019a] and Hu et al. [2019b] is the one that targeted
inferences of the kind appearing in the FraCas and SICK datasets. Generally, each of
these computational systems relies on a version of Combinatory Categorical Gram-

mar (CCG) parsers to produce the syntactical analysis of NL expressions. Then nodes
of derivation trees are decorated with some semantic features (such as monotonicity
and restrictive modifiers (Section 5.4)). After that, an entailment relation between a
premise ps and a hypothesis h, is determined mainly by computing from ps an in-
ference or a contradiction that matches h. The judgement is entail if h matches an
inference from ps, contradict if the match is with a contradiction, and neutral other-
wise. Inferences and contradictions are mainly derived by the iterative replacement of
a constituent from ps with another of the same type making use of existing orders (see
below) in a way that the decorated features of the constituent are obeyed. There are,
possibly, some other rules to handle inferences that cannot be tackled using replace-
ment, depending on the aim and the scope of the work. Orders used in replacements
are mainly from three sources [Fyodorov et al., 2003]:

• Construction-based: which concerns orders coming from specific linguistic con-
structions in a language such as : red car ≤car, very red ≤red, and very red car

≤red car ≤car.

• Lexical-based: which are orders appearing between words due to their meaning
such as: dog≤animal and walk≤move.

• Imported: from external sources or inferred during a proof process.

To give a demonstration of these parts, consider the inference system of Hu et al.
[2019a] and Hu et al. [2019b] named MonaLog. It focuses on reasoning about mono-
tonicity. Therefore, it takes as input an argument of which the premises are decorated
with monotonicity signs (e.g. most↑Europeans ��↑↓ live↑outside ��↑↓of ��↑↓Asia ↓)8. The
system maintains two sets: knowledge-base (K) and sentence-base (S). The first in-
cludes orders which are from the above-mentioned three sources. The initial fixed K

contained lexical relations that are imported from WordNet (e.g. dog ≤ animal, dog

8We replaced their (=) with (�↑↓) for readability.

4.3. NATURAL LOGIC-BASED INFERENCE SYSTEMS 65

| cat) in addition to some other hand-coded orders about quantifiers (e.g every = all

= each ≤ most ≤ many ≤ a few = several ≤ some = a)[Hu et al., 2019a]. The set K

also includes orders that are related to the inference problem in hand; orders that are of
specific linguistic construction appearing in the set of premises ps or h. For instance,
for each verb v and adverb a, in ps or h, the order a v ≤v is added to K. The second set
S includes every inference and contradiction that can be derived by the system start-
ing from ps by iteratively performing two types of replacements on each p [Hu et al.,
2019a]:

• replacement infer: replaces a constituent with something bigger or smaller in
K depending on the mark on constituent, whether it is ↑ or ↓, respectively. Then
it adds the inferred the sentence to S.in f erences.

• replacement contra: Negates the sentence by adding, for example, ‘do not’
before the main verb, or by replacing the quantifier ‘some’ with ‘no’ and vice
versa. Then it adds the inferred sentence to S.contradiction.

Note that replacement does derive many inferences, but not all of them [Hu et al.,
2018]. Hence, the system incorporates other natural logic rules, such as those in Table
4.7. The successful application of these rules, which requires minimal editing9, will
add new sentences to the list S.

Rule
Some y are x
Some x are y

SOME2
Det x y All x z
Det x (y ∧ z)

DET

Example
Some cats are animals
Some animals are cats

Every cat is an animal All cats meow
Every cat is an animal who meows

Table 4.7: Examples of Hu et al.’s rules of natural logic [Hu et al., 2019a].

The updated list S is then searched using a depth-first search 10 algorithm (with
depth=2) to find string-for-string match of h. If a match is found in S.in f erences

before the stopping criteria is reached, the returned judgement will be entail. If not,
S.contradictions is then searched and, if a match is found, contradict will be returned,
otherwise unknown is returned. Figure 4.5 illustrates as a search tree, the inferences
and contradictions derived from a premise ‘every animal likes some young semanticist’

9Hu et al. stated that before rules a application, NL sentences are turned into compatible format, then
convert the resulted inference back to a NL sentence (e.g from every cat (animal ∧ meow) into every cat
is an animal who meows).

10It is an AI search algorithm that transverses a tree data structure starting from its root and exploring
as far as possible along each branch before backtracking [Wikipedia contributors, 2020].

66 CHAPTER 4. NATURAL LOGIC AND MONOTONICITY

in an attempt to prove the hypothesis ‘every cat likes some linguist’. At the root lies
the marked premise followed by inferences on the branches, each branch corresponds
to a single replacement (e.g. the left-most branch is the result from replacing every

with some). Then, each inference on these branches will have its own inferences and
contradiction and so on. Searching the tree results in an entail relation as the hypothesis
matched the inference appearing as a leaf in the right-most branch of the search tree.

Figure 4.5: Search tree example that starts with the premise ‘every animal like some
young semanticist’ [Hu et al., 2019a].

A final remark on Hu et al. [2019a] and Hu et al. [2019b] system is that it relies
on the polarizing tool11 of Hu et al. [2018] for marking ps with monotonicity. The
key features of this tool are: the use of (1) a mapping mechanism from CCG syntac-
tic categories to semantic types; (2) a lexicon of expressions with polarity-enriched

semantic types, and some rules to handle them. The tool does the marking in two
phases [Hu and Moss, 2018]. First, it scans the tree from leaves to root and assigns
polarities to types according to the lexicon entries and the associated rules. Then, it
scans the tree again from root to leaves to compositionally determine monotonicity
signs of words. Figure 4.6 shows a simple example of such marking, in which (a) is
the CCG derivation of ‘Fido chased Felix’ and (b) its polarity-marked version. The
final output (Fido↑chased↑Felix↑) is read from the leaves of the marked tree. The tool
accepts CCG parses either hand-created parses or ones derived using a popular and
freely available CCG parser [Hu and Moss, 2018]. That allowed Hu et al. [2019a] to
experiment with two different parsers, the C&C parser of Curran et al. [2007] and the
Easy CCG parser of Lewis and Steedman [2014], and perform some modification on
trees, either to obtain semantically more meaningful trees, or to correct parsing errors
and inconsistencies.

11https://github.com/huhailinguist/ccg2mono

4.3. NATURAL LOGIC-BASED INFERENCE SYSTEMS 67

(a)

(b)

Figure 4.6: Example of a CCG tree before and after monotonicity marking using the
tool of Hu et al. [2018].

The work of Hu et al. [2019a] is limited to only the first section of the FraCas data
set (i.e. monotonicity examples) that is handled with 88 % accuracy. Nonetheless, it
claims a trivial extendibility to other sections by augmenting the list of inference rules.
Moreover, the [Hu et al., 2019b] version of MonaLog, reported 77.19 % accuracy
on the test part of the SICK dataset [Marelli et al., 2014]. In comparison with the
alignment procedure of the NatLog system, the MonaLog proof procedure avoids the
need for expensive search for the sequence of edits leading to a correct inference, as
replacements can happen in any order order, each of which are a step towards finding a
proof. Hu et al. also claim to have a simpler proof procedure and MRs than the natural
tableau system (Section 4.3.3).

4.3.3 Natural Tableau

This is a tableau theorem prover for natural logic; a novel formal method for reason-
ing over representations that are linguistically relevant [Abzianidze, 2014]. The theory
behind that proof system was first introduced by [Muskens, 2010] and gradually ex-
tended to a wide-coverage automated theorem prover, namely LangPro, by Abzianidze
in [2014; 2015; 2016; 2017a].

Muskens’s proof method is based on a signed version of the analytical tableau of
D’Agostino and Mondadori [1994] that is fed with a representation of a NL argument
called Lambda Logical Forms (LLFs). LLFs, as in (4.8)12, are simply typed lambda

12These examples were taken from the original article [Muskens, 2010]. Although they were sup-
posed to be examples of typed λ-terms, Muskens chose to omit type information in his illustration of
examples.

68 CHAPTER 4. NATURAL LOGIC AND MONOTONICITY

terms that are built, via functional application and lambda abstraction, from variables
and non-logical constants (i.e. lexical terms) only, in order to maintain a close rele-
vance to their linguistic surface forms (which is a characteristic of natural logic).

(4.8) a. ((a woman) walk)

b. ((if((a woman)walk)))((no man)talk))

c. (mary(think((if((a woman))walk))((no man)talk)))

d. (few man)λx.(most woman)λy.like xy

Natural tableau, as any tableau system13, is a refutation system. Its proof procedure
starts with the counterexample (i.e. the premises are true and the conclusion is false)
for the argument to be proven and follow it with a series of inference rules application
until a closed tableau is reached (i.e. all branches are closed and marked with×), hence
the original argument is proved, or there are no more rules to be applied. However,
while tableau systems typically have a handful of inference rules, natural tableau was
designed with an inventory of many rules, rules that are connected to specific classes of
expressions [Muskens, 2010]. Muskens’s rules were not aimed for wide-coverage; as
his focus was to provide rules that can be argued to come close to the rules of human
reasoning. Thus, they were limited to a group of interesting semantic phenomena
including: monotonicity, anti-additivity and determiners in addition to some classical
boolean rules about logical constants, closure rules and rules derived from the format
of the natural tableau entries (see Table 4.8).

A natural tableau entry is either T−→C :A or F−→C :A, in which T and F are truth signs,
A is a LLF of type 〈 #»

α〉14 and
#»
C represents an argument list of constants or LLFs of

type #»
α [Muskens, 2010; Abzianidze, 2015]. As for its semantics, an entry is intuitively

stating that the application of A to its list of arguments
#»
C is evaluated to its truth sign

[Muskens, 2010]. For example, Figure 4.7, illustrates a successful (i.e. closed) tableau
proof of ‘no lark flew’ from ‘no bird moved’. In a given world i, the proof’s entries
are: the true premise (T i:(no bird) moved) and the false consequence (F i:(no lark)

flew), while the applied rules are the ones developed for antitone operators (given
in Table 4.8(b)) due to the quantifier ‘no’, plus the closure rules. Muskens’s theory
also assumes order-relations at the level of lexical items, between words (such as lark

13See [Fitting, 1990, ch 3 & 6] an elaborated explanation of propositional and FOL tableau systems.
14Muskens specified the following conventions for types: (1) they are recursively built from the

primitives: t (truth value), e (entity) and s (states); (2) they are relational i.e. 〈α〉 type is the functional
type α→ t and 〈〉 is equivalent to t; and (3) they are left associative [Muskens, 2010].

4.3. NATURAL LOGIC-BASED INFERENCE SYSTEMS 69

≤ bird and no ≤ few [Muskens, 2010]) to be given in the lexicon knowledge of the
system. This relation explains the second closure rule in Table 4.8), which in turn
licences the closure of the two left-most branches in Figure 4.7. A reader of Muskens’s
work may notice, in contrast to the other approaches that have been discussed so far,
there exists no explicit mechanism for marking monotonicity. However, we believe that
entries signs act like one and they flip, when nested as an argument of a monotonicity
changing operator, accordingly. For example, Figure 4.8 shows that the argument of
‘every’ is antitone in (a) and hence we can infer ‘every man’ from ‘every human’.
However, it is monotone in (b) because ‘every’ is an argument of ‘not’ which, as its
rules in Table 4.8 shows, flips the truth sign (i.e. the monotonicity) of its argument and
therefore ‘not every human’ is the one inferred from ‘not every man’.

T i :(no bird) moved

F i :(no lark) flew

T ci : flew
Fci : moves
×

T Pi : no bird

FPi : no lark

T ci : lark
Fci : bird
×

T P′Pi : no
FP′Pi : no
×

Figure 4.7: A proof example using natural tableau.[Muskens, 2010].

T i :(every human)
F i :(every man)

T ci : man
Fci : human
×

T Pi : every
FPi : every

×
(a)

T i :not(every man)
F i :not(every human)

T i :(every human)
F i :(every man)

T ci : man
Fci : human
×

T Pi : every
FPi : every

×
(b)

Figure 4.8: Example of indirect account for monotonicity marking in natural tableau.

In general, the proof system, as we mentioned earlier, is a novel approach that
adapted a traditional proof theory with formulas that are to a large extent, linguisti-
cally relevant. The system bears higher order properties due to the employed simple
type theory. The nature of its proofs is transparent and deductive, hence it is capable of

70 CHAPTER 4. NATURAL LOGIC AND MONOTONICITY

Closure rules:
T

#»
C : A

F
#»
C : A

×

T
#»
C : A

F
#»
C : B

×
Where A ≤ B

Monotonicity rules: T
#»
C i :GA

F
#»
C i :HB

T #»c i :A
F #»c i :B

T b
#»
C i :G

Fb
#»
C i :H

T
#»
C i :GA

F
#»
C i :HB

T #»c i :B
F #»c i :A

T b
#»
C i :G

Fb
#»
C i :H

(a) Tableau rule for mono-
tone operators (↑), in which
G or H are(↑) and #»c and b
are fresh

(b) Tableau rule for antitone
operators (↓), in which G or
H are(↓) and #»c and b are
fresh

Rules of not: T
#»
C : notA

F
#»
C : A

F
#»
C : notA

T
#»
C : A

Argument shifting rules: X
#»
C : AB

XB #»
C : A

XB #»
C : A

X
#»
C : AB

Shift to the back Shift to the front

Table 4.8: Examples of Muskens’s [2010] tableau rules.

solving arguments with multi-premises [Abzianidze, 2017a]. Furthermore, Muskens
argues that a proof-theory, such as the one presented in his work, should complement
traditional model-theoretic methods used in the computational study of NL semantics
[Muskens, 2010]. Despite the insightful possibilities provided in Muskens’ system, no
practical experiments were conducted until the implementation of LangPro [Abzian-
idze, 2014].

LangPro is a wide-coverage automated theorem prover for NL that was developed
by Abzianidze in [2014; 2015; 2016; 2017a]. As shown in Figure 4.9, LangPro will
take a NL argument, of premises (p1 . . . pn) and a hypothesis (h), as input and out-
put a judgement. To do so, LangPro goes through phases. First, the input texts are
parsed using parsers for CCG. For experimental reasons, two different CCG parsers

4.3. NATURAL LOGIC-BASED INFERENCE SYSTEMS 71

were separately15 employed: C&C and Easy CCG parsers. Then, trees are turned
automatically into LLFs using the LLFgen. For multiple reasons, one of which is that
the CCG sometimes produces incorrect analyses, LLFs are not obtained directly from
trees; they go through several filters and transformational procedures, as depicted in
Figure 4.10 and explained by Abzianidze [2014]. A brief illustration of these steps
is given in Figure 4.12, in which (a) is the C&C parse for ‘there is no one cutting a

tomato’, (b) is the fixed CCG term obtained from the parse tree after the removal of
directionality and analysis corrections and (c) shows in 2 and 3 the λ terms that were
obtained from the CCG term in 1. These λ terms are the LLFs which are then used in
the natural logic tableau prover: NLog Prover.

Figure 4.9: LangPro architecture [Abzianidze, 2017a].

Figure 4.10: LLFgen architecture [Abzianidze, 2017a].

NLog prover is a Prolog implementation of an extended version of Muskens’s nat-
ural tableau. The extension is three-fold and addresses the typing system, the prover
components and a slight reformation to the tableau entries. The typing of the LLFs’
lexical items is based on syntactical atomic types {s,np,n, pp}, which are motivated
by CCG syntactic categories. One obvious way to integrate these LLFs with such typ-
ing in Muskens’s natural tableau is to map them into semantic types that are composed
of the {t,e} primitives similar to what is done in the polarizing tool of Hu et al. [2018]
and Hu and Moss [2018]. However, in order to facilitate a fine-grained matching during
rules application, Abzianidze chose to retain syntactic types in addition to the semantic

15Abzianidze’s study, in its experiment and evaluation phase used two versions of the prover. One
takes its CCG derivations from the C&C parser and the other from the EasyCCG parser. The results
were compared on the evaluation dataset to a hybrid prover that considers an answer from either of the
two provers as a proof for the problem in hand.

72 CHAPTER 4. NATURAL LOGIC AND MONOTONICITY

types and establish subtyping relations (defined as a partial order over types) between
the two typing systems in addition to some typing rules. For example, given (e subtype
np) and the rule that says: if (α subtype β) and a term is of type α , then it is also
of type β, applying the term (lovenp,np,s marynp) to the constant (ce) during a proof is
straightforward and needs no mapping [Abzianidze, 2014].

Figure 4.11: NLogPro components [Abzianidze, 2016].

As for the prover components, shown in Figure 4.11, the signature lists entries
of lexical items that carry some algebraic properties (such as monotonicity and im-
plicativity) that are deemed relevant for inference [Abzianidze, 2017a]. For example,
‘every’ has the entry [dw,up] specifying an antitone property for its first argument and
a monotone for its second. The second part of the prover is the knowledge base and it
includes only lexical relations of type hyponym, similarity and antonymy provided in
WordNet 3.0 [Fellbaum, 1998]. The inventory of rules, the third part, includes all of the
tableau rules used by the NLog prover, and the number of these rules has reached 80 in
the system’s latest version [Abzianidze, 2017a]. Muskens’s essential rules were about
20 and rest were all Abzianidze’s extensions. In the 2014; 2015 versions of LangPro,
about 30 rules were manually designed and added to the inventory via learning, while
the prover attempts to solve the trial part of the SICK dataset (about 500 p−h pairs).
The rest of the rules were added by Abzianidze [2016, 2017a], to model deep semantic
phenomena and multi-premise problems appearing in the FraCas data set. Generally,
the new rules cover both syntactically and semantically motivated phenomena, to name
a few: prepositional phrases, passive constructions, auxiliaries, modifiers, copulas, and
expletive sentences [Abzianidze, 2015]. Note that learning datasets not only extended
the rules but also the signature entries, the knowledge base with lexical relations (such
as woman≤ lady) that were not available in WordNet and the LLFgen with more fixing
procedures.The final part of the prover is the proof engine, which builds tableau proofs
for a given argument making use of the above components. Figure 4.13 illustrates a
proof of ‘some bird does not fly’ from ‘not all birds fly’ and lists the tableau rules used.
It can be noticed from the example that the reformation of tableau entries takes on the

4.3. NATURAL LOGIC-BASED INFERENCE SYSTEMS 73

shape: LLF : argument list: truth sign [Abzianidze, 2014]. For illustrative purposes, a
fourth part on the left of LLF includes a numbering for entries and the name of the rule
and the number of the argument that it was applied to, resulting in that entry. For in-
stance, 5 NOT[4]all[bird,fly]:T, is the tableau entry number 5 that has resulted from
applying the rule of NOT on entry number 4.

All in all, LangPro have shown state-of-the-art competence with 82.1% accuracy
on the test part of the SICK dataset and 87% on certain sections (1, 2, 5 and 9) of
the FraCas dataset. Moreover, LangPro16 is available for those interested in exper-
imenting with the prover. In addition, their LLFs “encode instructions for semantic
composition, and hence they can be used to compositionally derive semantics in other
meaning representations” [Abzianidze, 2017a] (e.g. FOL and Discourse Representa-
tion Theory (DRT)). On the other hand, LangPro was designed to not account for tense
or aspect (following the RTE guidelines). Therefore, their system will wrongly derive
several trivial yet important inferences involving time such as ‘John loved Mary’|=
‘John loves Mary’. Moreover, there is no special treatment for default sentences and
their treatment for attitudes was limited to implicatives and factives.

16https://github.com/kovvalsky/langpro

74 CHAPTER 4. NATURAL LOGIC AND MONOTONICITY

(a) A CCG tree in which each node is labelled with: a token,
CCG category, lemma and part-of-speech tag.

(b)
1. be(no(which(be(cut(a tomato)))person)) there

2. no(which(be(λx.a tomato(λy. cut yx)))person)(λz. be x there)

3. a tomato (λx. no(which(be(cut x))person)(λy. be z there))

(c)

Figure 4.12: From CCG tree to LLFs example [Abzianidze, 2015].

4.3. NATURAL LOGIC-BASED INFERENCE SYSTEMS 75

Figure 4.13: A tableau (top) for ‘not all birds fly’|= ‘some bird does not fly’ and the
list of applied rules (bottom) [Abzianidze, 2015].

76 CHAPTER 4. NATURAL LOGIC AND MONOTONICITY

4.4 Summary

The aim of this work is to investigate the use of syntactical trees as a basis for reason-
ing. We also aim to define a matching algorithm on trees (CO3) to be used in our NLI
system. The discussion in this chapter was split into two parts. The first was to gain a
better understanding of the concepts that contribute to the development of our matcher
(Section 8.4), including natural logic (Section 4.1) and one of its most common fea-
tures: monotonicity (Section 4.2) along with its semantic (containment relation) and
syntactic (polarity marking) aspects.

The second part of this chapter has surveyed several natural-logic based inference
systems and summarised them in Table 4.9. While reviewing these systems we have
particularly focused on certain pints:

1. the ability to do multi-premises inferences.

2. the use of a proof search mechanism to do so.

3. the ability to systematically handle certain semantic phenomena (generalized
quantifiers, defaults, and propositional attitudes).

As shown in Table 4.9, only the work of Abzianidze(2015; 2016; 2017b) adapts, in
addition to natural logic, a proof search mechanism of a formal language (analytical
tableau) to chain over multi-premises. Hu et al.’s 2019b system does handle multi-
premises as well but only by relying upon replacement procedures and a number of ad
hoc inference rules, as the examples in Table 4.7 show. Their work has only covered
the first section of the FraCaS data sets (generalized quantifiers). Thus, it is not clear
how far and how well replacement procedures could perform with respect to multi-
premises of other phenomena. It is also likely that forward-chaining algorithms of the
kind described will become very slow when the number of replacement rules expands.
Judging by their performance on generalized quantifiers only, the natural tableau of
Abzianidze is still ahead of Hu et al.’s order-based approach with 93% accuracy vs.
88%. Natural tableau of Abzianidze(2015; 2016; 2017b) and NatLog of [MacCartney,
2009] handled more semantic phenomena from the FraCaS dataset than generalized
quantifiers, including propositional attitudes. However, we believe that the treatments
of all these systems have some limitations, in particular:

• Among quantifiers, we take ‘most’ in, for instance, ‘most birds can fly’ to im-
pose a default proposition: if X is a bird then X can fly unless there is something

4.4. SUMMARY 77

that says it cannot. The same goes for the quantifier ‘few’ in ‘few birds can fly’,
meaning that the default is that birds cannot fly unless there is an exception.
However, the systems reviewed in this chapter have all treated ‘most’ and ‘few’
as generalized quantifier which interpret the above sentences roughly as more

than half of birds can/cannot fly. Such interpretation is not wrong, but it can-
not support the kind of reasoning (non-monotonic) described above (see Section
5.2.2 for further discussion of defaults).

• All the systems described above have deliberately kept the tense and aspect in-
formation out of consideration. For instance, NatLog assigns the equivalent (≡)
entailment relation (when aligning) between, e.g. ‘did sleep’ ≡ ‘has slept’ and
‘is sleeping’ ≡ ‘sleeps’. MonaLog [Hu et al., 2019b] adds rewrite rules such as
have = has as part of knowledge-base, meaning replacing one by the other will
generate an inference, and so on. Although their choices were motivated by the
RTE task guideline, which explicitly states that tense and aspect information are
to be ignored, such a choice comes at a cost: categorising invalid inferences as
valid starting from simple arguments such as ‘John loved Mary.’ |= ‘John loves

Mary.’ to arguments of propositional attitudes where tense agreement between
the attitude verb and its complement is a key such as ‘John managed to eat a

peach’ |= ‘John will eat a peach.’ which is clearly wrong (more discussion of
this is in Section 5.8.2). NatLog and MonaLog have also ignored the distinction
between singular and plural, leading to the derivation of ‘Mary loves some men’
from ‘Mary loves some man’.

• None of these systems consider entailments involving propositional attitudes in
any depth. Although some of them have ad hoc rules for dealing with the few
cases of propositional attitudes that occur in the FraCaS dataset, none of them
provide a systematic approach to this set of phenomena. There is a substantial
literature dealing with the semantics of propositional attitudes, but very little of
this has filtered through to implemented NLI systems. We believe that these
are important issues, and we have made a considerable effort to deal with them
(Section 8.5).

78
C

H
A

PT
E

R
4.

N
A

T
U

R
A

L
L

O
G

IC
A

N
D

M
O

N
O

TO
N

IC
IT

Y
Natural
Logic base
Inference
system

Premises Derivation
grammar

MR polarity marking BK Inference rules Proof
Method-
/Engine

Evaluation on
dataset

single multi
MacCartney
and Manning
[2007, 2008,
2009]

Y N Stanford sta-
tistical parser

Phrase-
structure
trees

Bottom-up & Tregex
patterns

WordNet lexical relations NatLog,
Proof by
alignment

On sections (1,
2, 5,6 and 9) of
the FraCas with
an average 87%
accuracy and 59
% on the RTE3
problems.

Hu et al.
[2019a]

Y Y C&C and
Easy CCG

Polarized
NL texts

Polarizing tool Hu
and Moss [2018]

A set (K) of order-
relations (x ≤ y) s.t. x
and y of any type: im-
ported from WordNet,
hand-coded orders about
quantifiers and of specific
linguistic construction in
ps or h

Generate and search: gen-
erate and update the set
S of inferences and con-
tradiction from ps, then
(depth-first) search a text-
to-text match of h

rules of
replacement
and some
others

On the first sec-
tion of the Fra-
Cas with an av-
erage accuracy 88
%

Hu et al.
[2019b]

Y Y C&C and
Easy CCG

Polarized
NL texts

Polarizing tool Hu
and Moss [2018]

A set (K) of order-
relations (x ≤ y) s.t. x
and y of any type: im-
ported from WordNet,
hand-coded orders about
quantifiers and of specific
linguistic construction in
ps or h

Generate and search: gen-
erate and update the set
S of inferences and con-
tradiction from ps, then
(depth-first) search a text-
to-text match of h

rules of
replacement
and some
others

The test part of
the SICK dataset
with 77.19 % av-
erage accuracy

Muskens
[2010]

Y Y N/A LLF No explicit marking
algorithm; via signed
tableau entries and
monotonicity rules

assumed hyponym rela-
tions between words

Around 20 specifically tai-
lored rules

Natural
Tableau

N/A (theory only)

4.4.
SU

M
M

A
RY

79

Abzianidze
[2014, 2015]

Y N C&C and
Easy CCG

LLF No explicit marking
algorithm; via signed
tableau entries and
monotonicity rules

-WordNet lexical re-
lations(synonyms, hy-
ponyms and hypernyms
no WSD) and Signature
(words with algebraic fea-
tures e.g. monotonicity)

Inventory of 50 rules of
which: 20 Muskens’s and
the rest manually collected
from the trail part of SICK
dataset

automatic
theorem
prover:
LangPro

test part of SICK
dataset with accu-
racy 82.1 %

Abzianidze
[2016,
2017a]

Y Y C&C and
Easy CCG

LLF No explicit marking
algorithm; via signed
tableau entries and
monotonicity rules

-WordNet lexical re-
lations(synonyms, hy-
ponyms and hypernyms
no WSD) and Signature
(words with algebraic fea-
tures e.g. monotonicity)

Inventory of 80 rules: the
50 rules of Abzianidze
[2014, 2015] and the rest
are manually collected
from the FraCas dataset

automatic
theorem
prover:
LangPro

On section 1, 2, 5
and 9 of the Fra-
Cas dataset with
87.1 % accuracy

Table 4.9: Classification of natural logic based inference systems.

Chapter 5

Issues in Non-Lexical Semantics
Following the natural logic tradition, a question we aim to answer in this thesis is
(restated from Section 1.3): Q1 “Can we use representations that are close to trees

obtained by standard syntactic analysis as the MRs for complex issues in semantics?”

Before attempting to answer this question, we first discuss several phenomena that
are believed to contribute to complex semantics, particularly those which are often a
source of debate and pose some challenges in the traditional (FOL) theorem-proving
systems (e.g. quantifiers, defaults, time and aspect and propositional attitudes) [Bos,
2008]. For each phenomenon, the discussion is mainly two-fold. First, we discuss
the way the phenomenon has been dealt with in the literature. Second, we present the
aspects we have considered from the latter to capture the phenomenon in our MRs,
keeping in mind the need to: 1) carry out inference over examples involving the phe-
nomena in question, and 2) bridge the literature gaps (discussed in Section 4.4) in
regards to defaults, time information, the distinction between singular and plural, and
propositional attitudes. These semantic considerations are used then to feed the proce-
dural steps of our inference system’s main parts (CO2): the dependency parser (Chapter
6), the trees normalizer (Chapter 7), and the theorem prover (Chapter 8).

5.1 Notational Conventions

Before engaging in the discussion of semantic phenomena, this section explains some
used notations in some examples. Mainly, most of the examples are instances of the
following:

A general structure
(Operator

loooomoooon

binding operator

, X
loomoon

binding variable

::
loomoon

binding symbol

{...,X}
looomooon

restrictor

)

80

5.1. NOTATIONAL CONVENTIONS 81

However, as we go, the restrictor gets complicated as what gets bound here is a tree
part, not a predicate (as in formal logic). So here is some instances of the restrictor

and the above general structure with their meaning:

(1) [den(man)] the set denoted by man
(2) {name[den(John)]} the set denoted by the name

John
(3) (forall,X::{[den(man)],X}) the set of all man
(4) (forall,X::{[den(man)]@@T,X}) the set of all man at the time

given by T
(5) (exists,X::{[den(man)]@@T,X}&{card,X,=3}) the set denoted by man at the

time given by T and its car-
dinality (card) equals to 3
(=3)

(6) (exists,X::{[den(man),
modifier(amod(simple),

*(+),[den(Italian)])]
@@T,X}&{card,X,=3})

the set of three man who are
Italian at the time given by T

(7) ..., exists, E, ({[den(walk),
arg(subject, . . ., [den(John)])]@@
{simple,T},E})

A walk event where the the
subject of walking is John at
simple time given by T

Each part of the above examples is to be explained in later chapters. Among which,
the term modifier/3 in (6), which as shown in Figure 6.14(b) and illustrated in Sec-
tion 6.3, consists of 3 parts: the modifier ([den(Italian)]), the grammatical label
(amod(simple)) (i.e. a simple adjective —see Table 6.3 for the list of modifiers pos-
sible grammatical labels), and a sign (*(+)) as an indication of its semantic class (see
Section 5.4 for its discussion) which is in the above example intersective. As can be
noticed above, all of the examples are of nouns. Verbs, motivated by choice of David-
son’s (1967) treatments for events (see Section 5.5), have a slightly different shape
which is:

Verbs
(..., exists

loomoon

binding operator

, E
loomoon

event variable

, {...,E}
looomooon

restrictor

)

Restrictor: {[Verb, Args]@@Context,E}

Verbs can have number of arguments and/or modifiers (e.g. ‘John walks slowly’).
Each argument a verb has is expressed using the term arg/4, see Figure 6.14(b) and
Section 6.3, which consists of parts as well one of which is the grammatical label (e.g.
subject in example (7) of the above table). As mentioned above, these examples are

82 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

to be explained at length in later chapters, and the given notational illustrations we
believe would suffice for the readability of the remaining of this chapter.

5.2 Generalized Quantifiers in Natural Language

Motivated by FOL’s lack of expressiveness for complex mathematical quantifiers, the
Generalized Quantifiers (GQs) theory has been introduced1 by Mostowski [1957] and
Lindström [1966] in mathematical logic as an attempt to go beyond FOL ∀ and ∃
operators. The theory found its way to the semantics of NL first, implicitly without
direct mention of GQs, in Montague’s grammar [1974] in which he interpreted NPs as
type 〈1〉 GQ (see below). However, it is Barwise and Cooper [1981] who introduced
the very first, and most influential, article that observed and hence illustrated how
GQs naturally interpret NPs and quantificational determiners [Keenan and Westerståhl,
1997; Westerståhl, 2013].

In the theory of GQs, determiners constituting quantifier expressions, such as ‘some’,
‘at least four’, ‘every’ and ‘three. . . ’, are mainly expressed as type 〈1,1〉 quantifiers.
In a type 〈1,1〉 quantifier the 1 means a 1-ary relation i.e. a denoting set of individuals
[Westerståhl, 2013]. That makes a type 〈1,1〉 quantifier Q in (Q A B) representing a
binary relation between two denoting sets A and B, in which Q is only sensitive to
the cardinalities of the restrictive set (A) and the intersective set (A∩B) [Alshawi and
van Eijck, 1989]. In model theory, denoting sets range over a domain (let us say D).
However, in a linguistic context, D can be thought of as the domain of discourse that
lies in the background of an utterance [Westerståhl, 2013]. For example, the utterance
‘some professors are smart’. It might convey a set of people at a particular university
as the domain of discourse (D) such that: the denotation of ‘professors’ (the set A) is
the subset of D that includes the professors at that university [Westersthl, 2019]; Those
who are ‘smart’ is the subset B of anyone smart at the same university, and the quan-
tifier ‘some’ in that utterance express the fact that the intersection between the set of
‘professors’ and those holding the property of being ‘smart’ is a non-empty set (i.e.
of cardinality ≥ 1). The interpretation of quantifiers as relations between sets, a.k.a
second-order relations, allowed studying some of their mathematical properties that
includes: symmetry, transitivity and conservativity as well as monotonicity [Van Ben-
them, 1984]. Since monotonicity has been discussed at length in Chapter 4, Table 5.1

1There exist many surveys of the history of GQs that go back to the quantifiers of Aristotelian
syllogisms, e.g. Westerståhl [1989]; Keenan and Westerståhl [1997] and an article in The Stanford
Encyclopaedia of Philosophy written by Westersthl [2019].

5.2. GENERALIZED QUANTIFIERS IN NATURAL LANGUAGE 83

illustrates the inference schemes that a quantifier Q ought to satisfy for each of the
other properties.

Property Inference Scheme Example

Symmetry
Q A B
Q B A

Some cats are animals
Some animals are cats

Transitivity
Q A B Q B C

Q A C
All cats are animals All animals are mortals

All cats are mortals

Conservativity
Q A B

Q A (A ∧ B)
Every cat is an animal

Every cat is a cat who is an animal

Table 5.1: Some mathematical properties of type 〈1,1〉 GQs.

In this thesis, we follow common practice in representing the meaning of noun

phrases (NPs), such as ‘three cars’, ‘every man’, ‘John’, ‘cats’, etc., of which quantifi-
cational determiners might be a part, as in the first two examples. In the theory of GQs,
NPs “are most naturally interpreted as type 〈1〉 quantifiers” [Westerståhl, 2013] as it is
considered the most uniform and elegant way to the semantics of NL subject-predicate

constructions [Van Benthem, 1984]. Therefore, the following sections illustrate from
a set theoretic perspective what is it like to be a type 〈1〉 quantifier. The discussion
is split in two parts: one for NPs that include quantificational determiners, and the
other for those that do not, such as proper names and bare plurals. We conclude this
section by showing how we intend to render quantified NPs in our MRs based on this
discussion.

5.2.1 Quantified NPs

Quantified NPs (QNPs) are NPs that include a determiner such as ‘some professors’
and ‘three red cars’. In GQ theory, they are represented, in any domain of discourse
D, as a set of subsets of D, i.e. type 〈1〉 quantifiers. For example, the extension of
‘three red cars’ is the set of subsets of D whose intersection with the set of ‘red cars’
in D is of cardinality equal to 3 [Westerståhl, 2013]. Symbolically, we can say that a
quantified phrase Q A denotes the set {X ⊆D | JAK∩X (obeys a certain condition)}, in
which JAK is the set of individuals in D denoted by A [Van Benthem, 1984]. Below are
some examples of the quantified NPs and what they denote in every D [Van Benthem,
1984]:

84 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

(5.1) a. All A: {X ⊆ D | JAK⊆ X}.
b. Some A: {X ⊆ D | JAK∩X 6= φ}.
c. A/An A: {X ⊆ D | | JAK∩X |= 1}.
d. No A: {X ⊆ D | JAK∩X = φ}.
e. Three A: {X ⊆ D | |JAK∩X |= 3}.
f. At most two A: {X ⊆ D | |JAK∩X |≤ 2}.

Within this framework, proper names also have to be interpreted as GQs, rather
than simply treating them as denoting individuals. Montague was the first to devise the
machinery for such treatment, where a proper name such as ‘John’ is denoted in every
D as a set of singleton subsets of D of which the individual representing ‘John’ is a
member (Montagovian individuals [Westerståhl, 2013]):

(5.2) John: {X ⊆ D | JJohnK ∈ X}.

Many languages allow NPs to be constructed with zero/implicit determiners. The
interpretation of such NPs varies from language to language – in Arabic NPs without
determiners are interpreted as though they had an implicit indefinite article, in Persion
they are interpreted as having an implicit definite article. English bare NPs (BNPs),
where the head noun is plural or mass noun, are particularly hard to treat because
they seem to have different interpretations in different syntactic contexts [Cohen and
Erteschik-Shir, 2002; Abbott, 2006]. Westerståhl [2013] suggests that NPs of that
kind “can be roughly treated as if they had a null universal or existential quantifier”.
This suggestion is not very helpful, given that universal and existential quantifiers are
entirely different. Consider the examples in (5.3), where the bare plural (BP) ‘cats’
conveys a different quantifier in each sentence: (5.3a) seems to require having all ‘cats’
for it to be true and hence conveys a universal reading, in (5.3 b) and (5.3 d) the existen-
tial reading some ‘cats’ would suffice, while in (5.3c), ‘cats’ has a generic reading that
is a bit more relaxed than a universal. Such variation in readings can also be found in
BNPs with mass nouns (MNs), notice the difference in reading that ‘water’ has in the
examples (5.3(e)) and (5.3(f)) Abbott [2006]. While it is clear what quantifier the exis-
tential and universal readings imply, it is very difficult to give a precise characterisation
of what kind of quantifier is involved in a generic reading. A number of proposals for
dealing with generic readings have been suggested in the literature, however they tend
to run into counter-examples.

5.2. GENERALIZED QUANTIFIERS IN NATURAL LANGUAGE 85

(5.3) a. Cats are animals.

b. Cats are everywhere.

c. Mary loves cats.

d. Mary owns cats.

e. Water with fluoride in it is good for the teeth.

f. There was water with fluoride in it in the test tube.

Handling BNPs and implementing a comprehensive theory that tackles their in-
terpretation in all contexts is beyond the scope of this thesis. Instead, we focused
on studying their properties within the scope of the FraCas examples we intended to
tackle and then introduced solutions (see Section 7.3.1) which support the required
inferences. These solutions were based on a general assumption that BNPs in subject
positions have a universal reading, while as complements they are treated as existen-
tials. That assumption was motivated by two observations. First, in the intended parts
of FraCas, BNPs do not appear as complements of habitual verb phrases2. In habitual
settings, BNPs tend to have generic readings [Ramsay, 1992]. For instance, ‘peaches’
in (5.4b) is clearly generic; upon hearing (5.4b), one would feel confident that if John
were offered a peach, he would eat it. In contrast, hearing (5.4a) implies that there
are some other peaches that John does not eat. The difference between these two is
fairly subtle. On the other hand, in the non-habitual examples (5.5) ‘some peaches’
and ‘peaches’ are similar in meaning and convey existential quantification; if John was
eating peaches then, he was eating some peaches, and if he was eating some peaches,
then he was eating peaches, so one would want to be able to prove (5.5a) from (5.5b)
and vice versa. The second observation is that many FraCas examples are existential

sentences (see Section 5.7) such as ‘there are men. . . ’. Subjects of an existential sen-
tence are always interpreted existentially [Abbott, 2006], thus, they are an exception
to the assumption that subject BNPs are universally interpreted 3.

(5.4) a. John eats some peaches.

b. John eats peaches.

(5.5) a. John was eating some peaches.

b. John was eating peaches.

2A verb phrase that presents a regularly or repeatedly occurring action.
3We assume, as does Abbott, that the subject of an existential sentence is the NP after the verb, not

the expletive ‘there’.

86 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

To sum up, while our general approach is proof theoretic rather than model theo-
retic, we do follow a number of the insights from GQ theory. In particular we believe
that in order to infer, for example, ‘a man loves at least one car’ from ‘some man loves

three cars’ NPs ought to denote sets. Thus, from GQ theory, we have adopted the
following conventions:

• Since GQs are generalizations of the existential and universal operators of FOL,
our MRs will have QNPs with existential interpretations such as ‘a man’, ‘some

men’ and ‘three men’, defined as instances of a single variable binding operator
exists that has the cardinality condition as part of its restrictor: e.g. ‘three men’:
(exists, X :: ({[den(man)]@@T,X} & {card,X,=3})).

• Natural logic inference systems such as NatLog and MonaLog take ‘all men’
v ‘some men’ and hence (in a positive polarity context) ‘all men love Mary’ |=
‘some men love Mary.’. In other words, these systems as well as the aforemen-
tioned set-theoretic interpretation of ‘all A’ assume existential import4 of A. In
contrast to that assumption, we believe that, as in standard FOL, universal ex-
pressions ‘all A’ might not contain any A in the domain of discourse, and thus
they are better interpreted as rules whose conclusion can be inferred only if the
set of premises contains at least one sentence that asserts the existence of some
individual(s) that satisfy A. For example, given ‘all men love Mary’ and ‘John is

a man’ it is possible to infer ‘there is a man who loves Mary’ because the premise
‘John is a man’ asserted the existence of a man named John. Consequently, our
universal rules resemble, to some extent, the rules of FOL’s ∀ operator, with ‘all

men. . . ’ looking roughly like (forall, B::{[man],B}⇒...).

• There are other quantifiers that we treat as rules as well, namely ‘most’ and ‘few’
as default rules (see Section 5.2.2), and ‘no’ as a negation rule (see Section
5.5.2).

The detailed illustration of the steps of turning QNPs into GQs or rules is given in
Chapter 7, but for now we will just note that choosing such a representation for NPs
has made going from ‘three cars’ to, for instance, ‘two cars’, ‘one car’, or ‘at least two

cars’ a matter of calculations on cardinalities which is more efficient than having them
as axiomatised orders in the background knowledge (as done in the MonaLog system,
Section 4.3.2).

4Existential import “is the principle that every term has a non-empty extension” [Van Eijck, 2005].

5.2. GENERALIZED QUANTIFIERS IN NATURAL LANGUAGE 87

5.2.2 The treatment of ‘most’ and ‘few’ as defaults

In standard deductive reasoning (such in classical logic and FOL), adding new infor-
mation to a set of premises ps will not invalidate or change any of the previously drawn
conclusions from ps [Brewka et al., 1997]. For instance, given the true premises ‘all

men are mortals’ and ‘Socrates is a man’, one would conclude, by simple syllogistic
reasoning, that ‘Socrates is a mortal’ and that conclusion will not be affected if more
premises were added to the two above [Brewka et al., 1997]. A reasoning system with
such property is called monotonic5.

On the other hand, a sentence such as ‘birds (normally) fly’ is weaker than ‘all

birds fly’ in a sense that the first carries a seemingly open-ended list of exceptions:
‘penguins’, ‘ducks’, etc [Bochman, 2007]. Put differently, what is inferred from such a
sentence is considered a plausible conclusion based on what is normally the case. For
example, learning that ‘Tweety is a bird’, it is plausible to conclude that ‘Tweety flies’.
However, adding the information that ‘Tweety is a penguin’ and ‘penguins do not fly’
states that the situation is abnormal in a sense and the previously drawn conclusion
is refuted [Brewka, 2012]. This kind of reasoning is called non-monotonic and the
sentences causing such behaviour are called rules with exceptions or defaults [Brewka
et al., 2008].

Attempting to express rules with exceptions such as ‘birds (normally) fly’ by a
FOL formula as in (5.6b) by refining the formula of ‘all birds fly’ (5.6a) to include a
predicate for capturing all exceptions in a model, is not the way to go (as its practically
one might find hard, if not impossible) [Brewka et al., 2008]. An alternative is defining
a rule of what is normally the case, with some side conditions under which a conclusion
might be retracted. In Reiter’s [1980] default logic, which is considered one of the most
important formalizations for non-monotonic reasoning6 [Brewka, 2012], defaults are
formalizations of such alternatives. Thus, Reiter’s logic interprets the default sentence
‘birds (normally) fly’ as the rule given in (5.6c) and reads: “if x is a bird and it is
consistent to assume that x can fly, then we can infer that x can fly”[Reiter, 1980].

5This property of reasoning systems is not to be confused with the natural logic semantic property:
monotone (↑)

6 Important alternatives to default logic for non-monotonic reasoning includes autoepistemic logic
[Moore, 1985], and circumscription [McCarthy, 1980] (all explained at length in Donini et al. [1990];
Brewka et al. [1997, 2008]).

88 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

(5.6) a. ∀(x)(BIRD(x) =⇒ FLY(x))

b. ∀(x)((BIRD(x)∧¬ABNORMAL(x)) =⇒ FLY(x))

c.
BIRD(x) : FLY(x)

FLY(X)

Reiter’s default logic consists of a set of (propositional or FOL) formulas (W) rep-
resenting what is known to be the case and a set (D) of defeasible rules – defaults
– of what what is normally the case [Brewka et al., 2008]. Defaults are rules of the
form shown in (5.7) [Sergot, 2007] in which: the prerequisite formula α represents a
premise that must be true in order for the rule to be applicable [Brewka, 2012] and γ is
the inferred conclusion. The consistency conditions β1,β2, ...,βn are the formulas that
have to be consistent i.e. there is no information that ¬β1,¬β2, ...,¬βn hold.

(5.7)
α : β1,β2, ...,βn

γ

It is believed that the sentence ‘most birds fly’ shares the same semantics and infer-
ence behaviours as defaults, i.e. it carries possible exceptions. However, its interpreta-
tion as a type 〈1,1〉 GQ in (5.8), which basically states that more than half of birds fly,
cannot support the kind of non-monotonic inference described above. We therefore
give ‘most birds fly’ the same reading as Reiter’s defaults (see Section 7.5.5) rather
than the GQ interpretation in (5.8).

(5.8) Most A B: {A⊆ D & B⊆ D | | A∩B | ≥ | A |
2
}.

Another type of QNPs, that we believe in a way fall under the defaults category and
are better expressed as rules instead of GQs, are the ones with the quantifier ‘few’ as
a determiner. In English grammar, the difference between ‘few’ and ‘a few’ is pretty
subtle. Consider the examples in (5.9). The QNP ‘few students’ in (5.9a), indicates a
very small quantity of students who passed the exam, and that in a way expresses the
fact that ‘most student did not pass the exam’. On the other hand, what ‘a few students’
indicate is that there are students who did pass the exam (i.e. some of them), but still
their number is not as many as those who did not.

(5.9) a. Few students passed the exam.

b. A few students passed the exam.

5.3. DEFINITE NPS (DNPS) 89

5.3 Definite NPs (DNPs)

5.3.1 Definite Descriptions

Definite and indefinite descriptions, are common terms that have been used in the philo-
sophical literature [Abbott, 2006] to mark two prominent uses of NPs; ‘the NP’ for the
first and ‘a/an NP’ for the latter. Uttering a sentence with an indefinite NP (e.g. ‘A
man’ in (5.10a) invites the addressee to note the existence of some individual that fits
the description. Definite NPs, on the other hand, such as ‘the man’ in (5.10b and
5.10c), instructs the addressee to find ‘a man’ that fits the description. The thing to
be found is often called the ‘referent’ of the definite NP. Now the question remains is
where it should be found.

(5.10) a. A man is sleeping.

b. (Scenario: I walked into the room. There is a man lying on the couch)
The man is sleeping.

c. A man entered the room. The man is wearing blue jeans.

It is evident that the referent of ‘the man’ (in the same examples above) is not
the one and only man in the world at large, as Russell’s [1905] uniqueness theory

claims. Instead, and according to the familiarity theory [Christophersen, 1939; Heim,
1982, 1983; Roberts, 2003] it is the one and only one man that is known to both the
speaker and addressee either by being previously mentioned in the conversation (as in
(5.10c)) or by being contextually the most salient referent (as in (5.10b)).[Lewis, 1979;
Heim, 1982; Von Heusinger, 2002]. These two uses7 of definite NPs are often called
anaphoric and situationally salient respectively [Von Heusinger, 2002], and both re-
quire the addressee’s familiarity with the referent. There do exist other uses of the
definite article ‘the’, one of which is with NPs whose descriptive content is sufficient
to point out an absolutely unique referent in the universe such as ‘The moon’ in (5.11a).
The functional use, as in (5.11b), is another. It picks up exactly one referent that is de-
termined, based on other factors than the current conversation or the context in which
it held such as time (i.e. president at what time?) [Von Heusinger, 2002]. In these
two uses of definite descriptions, addressees are not required to be familiar with the
referent. They would accommodate its existence instead. In other words, “addressees
are willing to accept a definite description, if they are able to figure out the intended
referent” [Abbott, 2006, p. 3].

7These uses of definite NPs and their associated terms are all based on Von Heusinger’s [2002]
survey of definite NPs.

90 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

(5.11) a. The moon is bright.

b. The president of the US is the most powerful person in the world.

Definite descriptions appearing in the intended sections of the FraCas test-set range
over the four uses illustrated in Table 5.2. Therefore, the process of their resolution (see
Section 7.7 and Figure 7.37) involves two routes:

1. Look for an item8 which can be proved to satisfy the descriptor using information
that is available in the minutes9, and resolve the defining description to it; or

2. Assimilate its existence, assuming the addressee’s familiarity with, or accom-
modation to, the assimilated referent. Then resolve the definite description to
it.

As for their MR, indefinite descriptions, as seen in Section 5.2, have been turned
into GQs, particularly as instances of the exists operator with their cardinality in-
cluded. Similarly, definite descriptions have a representation that is similar to their
equivalent indefinite version, but with the definite article as the operator. Notice, for
example, the pattern of changes between ‘three men’ and ‘the three men’ in (5.12a and
5.12b), and ‘some men’ and ‘the men’ in (5.12c and 5.12d).

(5.12) a. Three men: (exists, X :: ({[den(man)]@@T,X} & {card,X,=3}))

b. The three men: (the, X :: ({[den(man)]]@@T,X} & {card,X,=3}))

c. Some men: (exists, X :: ({[den(man)]@@T,X} & {card,X, ≥1}))

d. The men: (the, X :: ({[den(man)]@@T,X} & {card,X,≥1}))

5.3.2 Proper Names

Proper names, such as ‘John’ and ‘Peter’ in (5.13) are considered definite NPs as well.
It is plausible to say that, in most contexts, when they are used it is assumed that they
have already been introduced to the addressee and have a unique designator [Abbott,
2006; Abbott and Geurts, 2002]. Therefore, for their resolution, we assimilate the first

8Note that, having multiple referents is possible and resolving a definite description in such case
requires attempting to find the most salient one. Moreover, finding the most salient one is based on
the non-lexical context within which the description is mentioned. In other words, it requires some
pragmatic considerations that are beyond the scope of this work.

9We take the minutes to mean “the written record of what was said at a meeting” [Cambridge Online
Dictionary, 2021]. The visible content of the minutes is what we assume the participant of a discourse
share with no assumption of some privileged access to what the other person has inside their head.

5.3. DEFINITE NPS (DNPS) 91

Definite NP use Example from the FraCas test suits

Situationally salient
(fracas-039):
Some delegates finished the survey.

Anaphoric
(fracas-046)
Neither commissioner spends time at home.
One of the commissioners spends a lot of time at home.

Functional
(fracas-001):
An Italian became the world’s greatest tenor.

Unique
(fracas-050):
The North American continent . . .

Table 5.2: The uses of definite NPs as surveyed by Von Heusinger [2002].

mention of the name and resolve any subsequent mentions in the same conversation to
that one. For their MR, we have them turned into a form that supports their Montago-
vian treatment as GQ (given in (5.2)) and the fact that they are referring expressions
and hence need to be resolved as following:

• A name N is turned into a representation that is equivalent to ‘the named N’
[Geurts, 1997] (see Section 7.3.2). For example:
John: (the, X ::({name,[den(John)]}@@T,X} & {card,X,=1}))

• As a GQ, a name N denotes a set of singleton subsets of which the individual
denoting the name N is a member (i.e (5.2)). In other word, N denotes the of
properties that the name N satisfies. For example: ‘John is a man’, ‘John is

a person’, etc. This part we have hand-coded (whenever necessary)10 in the
background knowledge as a form of forward rules, such that assimilating the
existence of the name into the minutes of the conversation will introduce its
other properties as well (see Section 8.3.1 for detailed discussion).

(5.13) a. John loves Mary. He is a fool.

b. John loves Mary but Peter does not. He is a fool.

5.3.3 Pronouns

Lastly, when used in conversation, pronouns11 also have an intended salient referent
that the addressee is assumed to be familiar with. However, the description of the refer-
ent is not lexically apparent as in the case of definite description or proper names. For

10Although proper names appearing in FraCas did not need encoding such knowledge, for our running
examples we needed to demonstrate how a pronoun such ‘he’ in (5.13a) is resolved to ‘John’.

11Anaphoric personal pronouns in particular.

92 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

instance, the pronoun ‘he’ is used to refer to to a singular male individual, while ‘she’
refers to a singular female individual. Therefore, their resolution typically involves
factors such as number, gender and recency [Tetreault, 2005]. The first two, we have
incorporated in their MRs so that ‘he’ and ‘she’ are read as ‘the singular male’ and
‘the singular female’. Recency, on the other hand, is used in the process of picking
out the referent in case more than one are found. For instance, in (5.13b), recency will
assign ‘Peter’ as the referent for ‘he’ and not ‘John’. Similar to definite descriptions,
pronouns vary in uses. Other than the anaphoric use I have just described, there are
the deictic and bound uses [Von Heusinger, 2002; Büring, 2011]. The first is similar
the situationally salient use of ‘the NP’, where a pronoun refers to the most contex-
tually salient (that is not necessary the most recent) individual fitting the description,
as in the example (5.14a). In the bound use, pronouns (such as ‘his’ in (5.14b)) are
acting as bound variables where the referent is a universally quantified NP. Pronouns,
in general, are beyond the scope of the intended test suite, however, we have consid-
ered their anaphoric uses for demonstration examples where appear to be interacting
with other definites (‘the NP’ and Names). Therefore, the other uses of pronouns will
not be discussed any further (the reader can find some interesting discussions in e.g.
Von Heusinger [2002]; Tetreault [2005]; Büring [2011]).

(5.14) a. (Scenario: A man walled into the room)

He is wearing a blue jeans.

b. Every man loves his car.

5.4 Adjectives

Adjectives form a word class whose main function is to modify nouns [Lalisse and
Asudeh, 2015]. Syntactically, they can appear as part of the NP and be said to have an
attributive role as in (5.15a), or as a copula complement (see Section 5.6) and hence
have a predicative role as in (5.15b).

(5.15) a. John is an Italian man.

b. John is Italian.

What we would like to discuss in this section is their interpretation with respect to
the nouns they modify and hence how that can be projected in their MR. A common
semantic classification of adjectives is given in Figure 5.1 [Abdullah and Frost, 2005;

5.4. ADJECTIVES 93

Figure 5.1: Types of adjectives [Lalisse and Asudeh, 2015].

Morzycki, 2013]. Among these classes of adjectives, we are particularly interested
in the distinction between intersective and non-intersective subsective (subsective for
short) adjectives. Intersectives have two main properties. First, when they combine
with an NP, they create a modified NP whose denotation is the intersection between the
set denoting the adjective and the set denoting the NP. For instance, the denotation of
‘German professor’ in (5.16p1), is computed as an interaction between the set of Ger-
mans and the set of professors (i.e. JGerman professorK= JGermanK∩ JprofessorK)12.
Second, from an inferential point of view, the adjective and the NP it modifies each
can give rise to an independent entailment as shown in (5.16) [Morzycki, 2013]. The
same cannot be said about subsective adjectives, because when they are applied to an
NP, the resulting expression denotes a subset from the set denoting the NP [Lalisse and
Asudeh, 2015]. For example, ‘experienced professor’ in (5.17p1) denotes a subset of
the set of ‘professors’ (i.e. Jexperienced professorK ⊂ JprofessorK). In addition, ‘ex-

perienced’ is not truth-conditionally independent as is ‘German’. That would become
apparent if we add ‘John is a journalist’ as a valid premise to both (5.16) and (5.17),
and then try combining each of the adjectives ‘German’ and ‘experienced’ with ‘a
journalist’. In the first, we get a valid inference, since the fact of being a ‘German’ can
be added to the fact that John is a journalist. However, being ‘experienced’ in (5.17p1)
is attributive to ‘professor’ only, and we cannot use it independently in a sense that as-
sumes that John is experienced at everything and hence is ‘an experienced journalist’.

12Note that ‘German professor’ could also mean a professor who teaches German, like a mathematics
professor, but this is not what we mean here.

94 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

(5.16) p1. John is a German professor.

p2. John is a journalist.

|= John is a professor.

|= John is German.

|= John is a German journalist.

(5.17) p1. John is an experienced professor.

p2. John is a journalist.

|= John is a professor.

��|= John is experienced.

��|= John is experienced journalist.

Now that we have established the distinction between intersective and subsective
adjectives, the matter remaining is how they are going to be represented on the MR?
First, based on their syntactic position:

• If they are part of the QNP they are modifying (i.e. attributive), then, for exam-
ple: ‘an Italian man’ would be:

(exists, X ::

({[den(man), modifier(amod(simple), *(+), [den(Italian)])]@@T,X}
&{card,X,=1}))

• If they are copula complements, then are predicative. Thus, motivated by the
intended treatment of copula sentences (see Section 5.6) they are represented as
if they are attributive to some dummy invisible NP. For example: ‘Italian’ in
(5.16b) is represented as ‘. . . Italian ’:

(exists, X :: {(modifier(amod(simple), *(+), [den(Italian)]@@T),X)})

Second, as can be noticed in the representation of adjectives above, there is some
kind of sign included: *(+). This is the sign we use to distinguish between intersective
adjectives *(+) and subsective adjectives *(−). These signs are assigned during the
construction of the parse trees (see Section 6.2.2) and are eventually used to determine
when an adjective can be detached from the nominal that it modifies and used as a
separate additional fact in proofs, and when it cannot.

5.5. EVENTS AND TIME 95

5.5 Events and Time

5.5.1 Events Semantics

In the standard logical view, a sentence with a transitive verb such as (5.18a), is repre-
sented, as it appears in (5.18b), as a relation (i.e. predicate) between the subject ‘Jones’
and the direct object ‘the toast’ [Maienborn, 2011]. Davidson [1967], pointed out that
such representation does not allow an explicit reference to the action described by the
sentence nor further characterize it by saying, for example: Jones did it ‘with a knife’,
‘in the bathrom’, ‘at midnight’ [Davidson, 1967; Maienborn, 2011]. Thus, Davidso-

nian event semantics claimed that “action verbs introduce an additional hidden event
argument that stands for the action proper” [Maienborn, 2011]. That turns the BUT-
TER relation in (5.18b) into a predicate of three arguments: the subject, direct object
and the event argument. The latter is the variable e, which is bound by the existential
closure ∃ e as shown in (5.19b). The introduction of the event argument e, has made
expressing adverbial modifiers straightforward [Maienborn and Schfer, 2011]; i.e. as
predicates, adding more specifications for the event, of which e is an argument. David-
son’s classical example in (5.20a) is thus represented in the logical form in (5.20) in
which adverbial modifiers are additional conjuncts [Champollion, 2014].

(5.18) a. Jones buttered the toast.

b. BUTTER(Jones, the toast)

(5.19) a. Jones buttered the toast.

b. ∃ e[BUTTER(Jones, the toast,e)]

(5.20) a. Jones buttered the toast in the bathroom with the knife at midnight.

b. ∃ e[BUTTER(Jones, the toast,e)∧ IN(e,bathroom) ∧ INST(e,the knife)∧
AT(e, midnight)]

In the course of the evolution of Davidson’s events semantics, two other directions
have emerged showing some influential expansions to the original theory of event se-
mantics and some other deviations [Maienborn, 2011]. The first direction is called
Neo-Davidsonian event semantics, initiated by Higginbotham [1985, 2000] and Par-
sons [1990, 2000], which separates Davidson’s verbal arguments such that the verb
predicate only has the event argument, while the participants are linked to the event by
the use of thematic roles [Maienborn, 2011]. As shown in Table 5.3 (c), the subject

96 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

‘Jones’ has the thematic role AGENT and the direct object ‘the toast’ is the THEME.
The Neo-Davidsonian paradigm also assumes a broader notion of events, that was
given a term eventuality by Bach [1986], such that not only actions proper introduce
event arguments, but any verbal predicate13. Moreover, the contemporary approaches
to Neo-Davidsonian events semantics consider event arguments to be part of not only
verbal predicates but also of predicates of any syntactical category (including nouns,
adjectives and prepositions) [Maienborn, 2011].

The second direction is Kratzer’s [1995; 1996; 2000] event semantics that argues
that verbal predicates do introduce event arguments, nonetheless they only include, in
addition to e, themes arguments (see Table 5.3(d) for example) [Champollion, 2014].
Furthermore, Kratzer [1995] has split predicates into parts that take event arguments
and others that do not, based on the so-called stage-level/individual-level distinction14.

a. Standard FOL BUTTER(Jones, the toast)
b. Davidson ∃ e[BUTTER(Jones, the toast, e)]
c. Neo-Davidson ∃ e[BUTTER(e)∧AGENT(e, Jones)∧ THEME(e, the toast)]
d. Kratzer ∃ e[AGENT(e,Jones)∧BUTTER(e, the toast)]
e. This work ..., exists, E, ({[den(butter), arg(dobj,...),

arg(subject, . . .)]@@ {simple,T},E})

Table 5.3: The representation of verbal arguments with respect to verbal predicates in
different versions of event semantics (including this work).

Our representation of events is based on the original Davidson program, simply
because, as shown in Figure 5.2, verbs in the parse tree are linked to their arguments
via syntactical relations (i.e. subject, direct object, etc). And since our main goal
for this thesis is to provide MRs that are as close as possible to the syntactic form
whilst straightforwardly supporting inference, we are content with just adding the event
argument as part of the verbs clause (as shown in Table 5.3e) to benefit from the ease
of adding more characteristics (mainly time and adverbial expressions) to the event
expressed by the verb.

13They are normally classified according to Vendler [1967] for situations into: accomplishments,
achievements, process and states, see [Mourelatos, 1978; Filip, 2011] for examples and further discus-
sion on their properties.

14Broadly speaking, stage-level predicates indicate temporary or accidental properties such as
‘speak’, ‘wait’, and ‘tired’, while individual-level predicates, as ‘love’, ‘know’, ‘intelligent’, and
‘blond’, express permanent or inherent properties [Maienborn, 2011].

5.5. EVENTS AND TIME 97

Figure 5.2: The dependency tree of ‘Jones buttered the toast’.

5.5.2 Events and Negation

As discussed in Chapter 3, our proofs are conducted constructively such that a proof
of a negated proposition ¬P is proceeded by assuming P and deriving that it leads to
absurdity or falsehood ⊥. In this thesis, we are looking at two sources of negation; the
quantifier ‘no’ (e.g. (5.21a)) and the negation operator ‘not’ (e.g. (5.22a)). Choosing
to introduce Davidsonian’s existentially quantified event argument e in our MR in-
vited some scoping considerations. That is, when interacting with other scope-bearing
quantifiers, the chosen scope of (∃e) ought to reflect its intended reading. That scope is
generally the narrowest possible, as argued by [Champollion, 2010; Herburger, 2011;
Bernard, 2018] (among others). Notice the difference in reading when the event quan-
tifiers had a narrower scope than the negation in ((5.21b) and (5.22b)) [Champollion,
2010], and when they had a wider scope over negation in ((5.21c) and (5.22c)) [Cham-
pollion, 2010]. In the latter, both examples’ readings state the existence of an event
other than sleeping that a man undergoes, which is evidently not true [Champollion,
2010; Herburger, 2011; Bernard, 2018]. More discussion on scope and their resolution
is given later on this chapter (see Section 5.9).

(5.21) a. No man sleeps.

b. ¬∃x[MAN(x)∧∃e[SLEEP(x,e)]]

(Reads: there is no sleeping event that is done by a man.)

c. ∃e[¬∃x[MAN(x)∧ [SLEEP(x,e)]]

*(Reads: there is an event which is not a man-sleeping event.)

98 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

(5.22) a. Some man did not sleep.

b. ∃x[MAN(x)∧¬∃e[SLEEP(x,e)]]]

(Reads: there is a man who is not involved in a sleeping event.)

c. ∃x[MAN(x)∧∃e¬[SLEEP(x,e)]]]

*(Reads: there is a man and an event which is not him sleeping.)

5.5.3 Tense and Aspect

The natural logic-based inference systems discussed in Section 4.3, all lack any repre-
sentation of time and that is motivated by the fact that the challenge they are addressing
(the RTE task initiated by [Dagan et al., 2005]) “explicitly specifies that tense to be ig-
nored” [MacCartney and Manning, 2009]. Nonetheless, as a consequence, that led to
some wrong inferences about quite simple problems. For instance, NatLog (Section
4.3.1) considers ‘sleeping’ ≡ ‘sleeps’ [MacCartney and Manning, 2009] and the nat-
ural tableau (Section 4.3.3) will allow entailing ‘John loves Mary’ from ‘John loved

Mary’.
On the other hand, Bos [2008] argues, in his discussion of the semantic ingredi-

ents that ought to be part of a deep MR, that the least a MR should encode is “the
time at which (or during which) the descriptive content of the sentence in question
holds” [Ogihara, 2007] i.e. tense15. Consider, for instance, the sentences in (5.23a)
and (5.23b). They both convey an event of John working, but differ with respect to
the tense morphemes (‘-s’ and ‘-ed’). That difference places the event at different
times, present in the first and past in the second, at which it is true. Such analysis can
be extended to more complex tenses using aspect constructions [Bos, 2008]. Aspect
constructions express how an event unfolds over time: i.e. whether it is complete, in
progress, frequent, etc. [DeCapua, 2008]. English aspects are ‘simple’, ‘progressive’
and ‘perfective’ and are, as exemplified in (5.23a), (5.24a) and (5.24b) respectively,
indicated by either main verb morpheme or the auxiliary verb+ main verb morpheme.

(5.23) a. John works.

b. John worked.

(5.24) a. John is working.

b. John has worked.
15The discussion of time here assumes the minimal clause, i.e. we do not consider overt nor covert

temporal adverbs such as ‘yesterday’, ‘once’, ‘every Sunday’, etc. which is believed to contribute to (if
not to be the main carrier of) the temporal information conveyed by a sentence [Ogihara, 2011].

5.5. EVENTS AND TIME 99

With that being said, following the choice of Davidsonian-style event representa-
tion, we further make advantage of such a choice and provide the temporal information
conveyed by a sentence as part of that representation. Again, for the sake of staying rel-
evant to the syntactical analysis of sentences, we rely on the auxiliary sequence plus the
tense morpheme on the main verb to build up a route from the time when the sentence
is uttered to the time when the event, expressed by the verb, took place (see Section
6.2.2). This particular machinery actually goes back to the system of Reichenbach
[1947], which claims that a correct account for the meaning of NL tenses involves
understanding the temporal relations that are held between three points in time: the
speech time, the event time, and the reference time [Blackburn, 1994]. In a conversa-
tion, while it is clear that speech time refers to the time when the tensed sentence is
uttered and event time is when the event actually took place, the reference time is not
overt and is taken to be mutually known by the participants in the conversation for it
to make sense [Van Lambalgen and Hamm, 2008; Hackmack, 2015]. Van Lambalgen
and Hamm demonstrated further the concept of reference time through an example of
a present perfect sentence ‘I have caught the flu’. Stating that, although the event of
catching a cold is located in the past and the sentence is uttered in the present, it is also
meant for the sentence to have some present relevance (say for example the speaker
is constantly coughing) that both the speaker and the person addressed acknowledged.
Therefore, the reference time of ‘I have caught the flu’ is simultaneous with the speech
time. With a similar mindset, Reichenbach argued that all other possible tenses are de-
finable, in terms of the three time points and the simultaneity and precedence relations
[Declerck, 1986; Hackmack, 2015]. Thus, given that the letters R, E and S stand for
reference time, event time and speech time respectively, and that a simultaneity rela-
tion is represented by a comma (,) and that precedence relation as a dash interval (—)
on the time axis, (5.25) summarizes Reichenbach’s representation of the various tense
expressions. For instance, for the simple past sentence in (5.25b), both E and R occur
(simultaneously) before the speech time S.

(5.25)

a. John works. simple present S,R,E
b. John worked. simple past E,R —S
c. John will work. simple future S—E,R
d. John has worked. present perfect E —R,S
e. John had worked. past perfect E —R —S
f. John will have worked. future perfect S—E —R

100 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

It can be noticed that the above examples do not include progressive tenses. Re-
ichenbach argues that a progressive tense, or extended tense as he called it, is taken to
“indicate that the event covers a certain stretch of time” [Hackmack, 2015]. Therefore,
progressive tenses are represented on the time axis as following [Hackmack, 2015]:

(5.26)

a. John is working. present progressive

b. John was working. past progressive

c. John has been work-
ing.

present perfect progres-

sive

d. John had been work-
ing.

past perfect progressive

e. John will have been
working

future perfect progres-

sive

Against Reichenbach’s claim, [Comrie et al., 1985], who refined the Reichenbach
system, and [Gamut, 1991] argue that Reichenbach’s system does not offer a complete
account for all temporal constructions demonstrating that sentences such as ‘Mary

would have sung’ cannot be expressed with only one point of reference [Gamut, 1991].
Moreover, Comrie et al. [1985] stated that reference time is irrelevant for simple tenses
as they can be sufficiently expressed using the time of speech and event. The first
argument concerns constructions that are not in the scope of this thesis (the reader can
refer to Comrie et al. [1985] or Gamut [1991] for further discussion). The latter, is
something we agree with and we further extend to the following conventions:

• We take that each inference problem (premises and a question) constitutes an
ongoing (i.e. current) conversation. Therefore, the speech time for all of that
problem’s sentences is set to a default non-overt now tense.

• Agreeing with Comrie et al. [1985], speech time and event time are sufficient
to express simple tenses. However, since speech time is the default non-overt
present tense, only event time will be part of the temporal information.

• Other tenses will have the relation between reference time and event time as an
ordered list that we refer to as the tense sequence.

5.5. EVENTS AND TIME 101

• To distinguish between the simple and perfect tenses (5.25), and the progressive
ones (5.26), a label (simple, perfect and prog) for aspect is added to the tense
sequence.

• In Prolog notation, the tense and aspect information, as the examples in Fig-
ure 5.316 show, are all part of one ordered list, in which the aspect is the head
and the tense sequence (event time then reference time (if any)) is the tail:
[Aspect|Tense_sequence].

(a) John works. (b) John is working. (c) John has worked

Figure 5.3: Examples of the temporal information as they appear in our pre-processed
dependency trees.

5.5.4 Definiteness of Tenses

As the above examples show, the time specifier on the main verb maintains, in addi-
tion to the tense and aspect, some other features. One of these is what we call the
definiteness sign. We use that sign to distinguish between specific points in time (+)
and some unspecific points in time (-), akin to the difference between definite and in-
definite NPs. Most scholars agree that the present tense denotes the point of speech
[Von Stechow, 2009], hence, its definiteness sign is commonly (+). However, the se-
mantics of past tenses has been a centre of debate. Among the existing formalizations
of the semantics’ effects on tense [Ogihara, 2011], there is an approach that assumes
an existential quantifier interpretation for tense operators. This approach is attributed

16These trees are after the pre-processing step, explained in details in Section 7.2.1, that includes
analysing the trees of tensed sentences into tenseless ones (where auxiliaries and tense morphology are
removed) and a time specifier on the main verb.

102 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

to Prior’s [1957; 1967] tense logic, in which the tense of an expression α is expressed
by means of operators: Pα “it has been the case α” and Fα “it will be the case that
α” [Ogihara, 2011]. To demonstrate, consider the example of Ogihara [2007] given in
(5.27). The sentence (5.27a) is represented as a tense operator and a tenseless expres-
sion (5.27b) and is interpreted (5.27c) as an event of Kim leaving at an indefinite time
in the past.

(5.27) a. Kim has left.

b. P [leaves(Kim)]

c. There is a past time at which Kim leaves.

On the other hand, referential approaches to tense, which were initiated by Partee
[1973] and Enç [1987], argue to the contrary. The claim is that a past tense morpheme
refers to a contextually particular salient time in the past and not to some non-specific
time in the past, and that tenses in general are to be considered as referring expressions
that are on par with pronouns [Ogihara, 2007, 2011]. Some other approaches, such
as that of Ogihara [1996], argue for a mixed approach; an existential quantification
over past times with a contextual restriction on the quantification force (e.g. ∃t(t ⊆
last year∧Event(arg1,arg2, t)))[Ogihara, 2011, 2007]. In the scope of this work we,
assume a referential approach for both present and past tenses. Given all of the above,
our version of the buttering event in Table 5.3 (e) will become, after including the
temporal information, as follow (see Section 7.3 for further discussion):

the, T::{{time,[past]},T},
exists, E, ({[den(butter), arg(dobj,...), arg(subject,...)]@@{simple,T},E})

5.6 Copula verbs

Sentences of forms like those in (5.28) are called copula sentences and they are, as
Mikkelsen [2011, p. 1805] defined them, “a minor sentence type in which the content-
ful predicate is not a verb, but some other category like AP17, NP or PP18”.

17Stands for adjective phrase.
18Stands for prepositional phrase.

5.6. COPULA VERBS 103

(5.28) a. John was a happy man.

b. The man who loves Mary is John.

c. The morning star is the evening star.

d. The man is in the park.

e. John is ugly.

Take for example, the non-copula sentence ‘John loved Mary’. The verb ‘loved’
is the predicator of the subject ‘John’; ‘Mary’ is what undergoes the event of being
‘loved’. Thus, in a FOL-like notation, the predicator of that sentence will be translated
to something like LOVE(John, Mary). On the other hand, the predicator in a copula
sentence such as ‘John was happy’ is not the verb ‘was’, it is the post-copula phrase,
‘happy’; HAPPY(John). Therefore the general semantic contribution of copulas (short
form just copulas) are believed to be confined in either bearing time information of
the predication or specifying an equational or identity relation between the subject and
the post-copula [Heycock and Kroch, 1998]. For instance, in (5.28a) ‘was’, states that
there is a past time in which ‘John’ satisfies the property of being ‘a happy man’.
While the copula ‘is’ in (5.28b) specifies that ‘John’ is the identity of ‘the man who

loves Mary’ and in (5.28c) is stating that ‘the morning star’ and ‘the evening star’
are the same thing. However, simply treating such sentences as identities ignores the
fact that equational or identity relations are also time bound. For instance, consider
the copula sentence ‘Mary’s husband was John.’, in which the identity of ‘Mary’s

husband’ was ‘John’ at that past time, and we can not infer that he still is as they might
now be divorced!

English copulas, in their common use, are in the form of the verb ‘be’, (‘am’, ‘is’,
‘are’,‘was’ and ‘were’) as in the examples below. There are, however, other verbs that
function as copulas, such as the verb ‘become’ in ‘John became a great chef.’

One goal of this thesis is to do inferences. In proof theory, the equality of two
items means that both are actually co-referring to the same object and that allows what
is called substitutability in proofs [Fitting, 1990, Ch.8] i.e. any sentence that is true
for one item, must be true for the other. Thus, despite the various ways copulas been
classified in the literature, we believe, from the inferential point of view, that copulas
of the form ‘NP be NP’ are clearly representing equality relation between the subject
and post copula at the time given by the copula verb. To demonstrate, consider the
inference example in (5.29), given that ‘John is a fool’ and ‘every fool loves Mary’ it is
a provable consequent that ‘John loves Mary’ since ‘John’ and the individual referred

104 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

to by ‘a fool’ are the same thing. Now, consider the examples in (5.30), where p1

indicates an equality relation between two NPs (the referent of ‘John’ and ‘a man’), and
p2 predicates a locative feature ‘in the park’ of the subject ‘the man’ (whose referent
is the man mentioned in p1). Intuitively or by transitivity [Fitting, 1990, Ch.8], given
that ‘John’ is ‘a man’ and the latter is the referent of ‘the man’, one would accept that
‘John is in the park’ as a valid consequent. Moreover, semantically, we believe that,
for copulas of the form ‘NP be PP’ such as the later p2 and ‘NP be AP’ such as ‘John

is Italian’, saying that the post copula is a predicate that the subject satisfies at the time
given by the copula, is pretty much the same as saying that the individual designated
by the subject and the individual satisfying the predicate at the time given are the same.
Therefore, a step in constructing the MR of copula sentences involves transforming the
syntactical analysis of ‘NP be PP’ and ‘NP be AP’ copula sentences into instances of
‘NP be NP’, by saying both PP and AP are modifying an indefinite hidden NP and
hence expressed roughly as ‘NP be PP.’ and ‘NP be AP .’ (see Section 7.2.2).

This proof-theoretical concept of treating copula sentences as equalities was also
adopted by the natural tableau (Section 4.3.3) in which their “rules for the copula
resemble the FOL tableau rules for equality” [Abzianidze, 2017b].

(5.29) p1. John is a fool.

p2. Every fool loves Mary.

|= John loves Mary.

(5.30) p1. John is a man.

p2. The man is in the park.

|= John is in the park.

5.7 Existential Sentences

An existential sentence is “a specialized or non-canonical construction which expresses
a proposition about the existence or the presence of someone or something.” [McNally,
2011]. Put differently, sentences such as in (5.31) [Moro, 2017] are all to explicitly or
implicitly state the existence of some entities. However, the term existential sentences
(ES) is not intended for the canonical subject-predicate sentences such in (5.31a). It
is used to refer to the specialized syntactical structures that generally have the form

5.7. EXISTENTIAL SENTENCES 105

‘There be NP Coda Phrase’ [McNally, 2011] as in (5.32) and share some specific char-
acteristics19: (1) the expletive20 subject ‘there’; (2) a verb ‘to be’; (3) a pivot NP that
denotes the individuals whose existence or presence are under discussion [McNally,
2011]; and most commonly (4) a coda phrase that is typically an PP (e.g. (5.32a)) or
an AP (e.g. (5.32b) and (5.32c)).

(5.31) a. Unicorns exist.

b. There are unicorns.

(5.32) a. There are men in the park.

b. There is a man sleeping.

c. There is a man who is sleeping.

How theses parts of ES relate syntactically and semantically, has been a centre of
debate among linguists. The standard theory (which goes back to the Milsark [1974,
1977] and Stowell [1978]) is that ‘there’ is a subject place holder that has no semantic
content i.e. expletive [Moro, 2017; Abzianidze, 2017b] and the predication of the
copula ‘be’ is the coda phrase in which the pivot NP is an argument. This means
that the ES in (5.33a) and the copula sentence in (5.33b) share the same underlying
structure and their semantic representation would be as in (5.33c).

(5.33) a. There are men in the park.

b. Men are in the park.

c. IN THE PARK(men).

However, Williams [1984] and Hazout [2004] among others, argued that, although
still semantically vacuous ‘there’ is not a place holder for the misplaced subject; ‘there’
is the subject [Moro, 2017]. Therefore, the pivot NP is regarded as the predicate and
the coda phrase serves as its internal modifier or as an adjunct. For instance, in the
examples (5.34) [Moro, 2017] the role of ‘a prime number’ in (5.34a) is the same as
in (5.34b) which is a predicate. Finally, McNally [1993] and Barwise and Cooper

19Theses characteristics might slightly differ from language to language (see [McNally, 2011]), how-
ever the discussion only concerns (as for the other semantic properties) English ES.

20Expletive: “a syllable, word, or phrase inserted to fill a vacancy (as in a sentence or a metrical
line) without adding to the sense especially: a word (such as it in ‘make it clear which you prefer’) that
occupies the position of the subject or object of a verb in normal English word order and anticipates
a subsequent word or phrase that supplies the needed meaningful content”-[Merriam-Webster’s Online
Dictionary, 2019]

106 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

[1981] agree with the latter argument in that ‘there’ is the subject and irreplaceable,
nonetheless, the pivot NP is not the predicate, it is the complement of the existential
predicate and the coda phrase is either the NP-internal modifier or an adjunct.

(5.34) a. There is a prime number.

b. Seven is a prime number.

c. * A prime number is.

Milsark [1974, 1977] and Stowell [1978] theory, although met with general accep-
tance, states that at a certain level of semantic interpretation (logical form) ‘there’ has
no corresponding realization and is to be replaced by the pivot NP: expletives replace-

ment hypothesis [Chomsky, 1986; Moro, 2017; Abzianidze, 2017b]. Such replacement
would typically turn an ES into a copula sentence of which the pivot NP is the subject
and the coda phrase is the post-copula predicate. However, coda phrases might not al-
ways be present in ES such as in (5.34a), and they could be non-intersective modifiers
such as ‘great’ in (5.35a). Thus, expletives replacement might pose some challenges
(see (5.34c), (5.35b) and (5.35c) for examples) against constructing their MR. Due to
that, and for the sake of unified treatment of ES, we follow Williams’s [1984] proposal
for taking ‘there’ to be an irreplaceable semantically vacuous subject, the post-copula
to be the predicate and the coda phrase to be the pivot NP modifier either internally
(in the case of non-intersective modifiers as ‘great’ in (5.35a)) or as a conjunct. Doing
so, will then make us treat ES as special kinds of copulas, that eventually turns into
equality between ‘there’ which indicates the existence or presence of something, and
the post-copula which describes the identity of that thing.

(5.35) a. There are some great tenors.

b. * Some great tenors are.

c. *Some tenors are great.

5.8 Subordinate Clauses

Beside inferring a sentence from another, in this thesis, we care to model inferences
about clauses appearing within sentences, such as ‘John failed to sleep’|= ‘John did

not sleep.’ and ‘The man who loves Mary is sleeping.’ |= ‘a man is sleeping.’ and ‘a
man loves Mary.’ In English, such clauses go under the name of subordinate clauses
(SubC). Although these clauses vary widely in form, as the examples in (5.36) show

5.8. SUBORDINATE CLAUSES 107

(underlined), they generally share some common features. First, they do not stand
alone as a complete sentence i.e. they have to be combined with other clause(s) to
become one free standing sentences and hence they are also called dependent clauses.
Moreover, in most cases, a SubC normally starts with a subordinate conjunction, such
as ‘that’ and ‘if ’ in (5.36e) and (5.36f), or a relative pronoun as in (5.36g). Last but not
least, in their non-reduced form, SubCs always have a subject and a verb. However,
each SubC has a different combination of verb-subject status. Put differently, it can
be observed, again from (5.36), that some SubCs have subjects which are overt, while
others have a zero subjects (having a zero subject could mean not having a subject at
all, or having a non-overt one), along with a finite or a non-finite verb.

(5.36)

SubC in a sentence Verb Subject

a. I went to London to see the queen. To infinitive Zero

b. John managed to eat a ripe peach. To infinitive Non-overt (John)

c. Smith saw John sign the contract. Bare infinitive Overt (John)

d. Smith saw John signing the

contract.

Present Participle Overt (John)

e. I know that John has loved Mary. Tensed Overt (John)

f. You should go to London if you

want to see the queen.

Tensed Overt (you)

g. The man who loves Mary slept. Tensed Overt (who)

In this work, we focused on the SubCs of two syntactical roles; clauses modifying
NPs (relative clauses) in particular, and others acting as complements for a range of
transitive verbs called attitude verbs [Abzianidze, 2017b]. In their discussion, as their
implementation, we stress the importance of mapping into their MRs the status of their
subject-verb combination as well as their behaviour in positive and/or negative contexts
in drawing the relevant inferences.

5.8.1 Relative Clauses

A relative clause (RC) is the kind of SubC that comes after an NP to refine it, as in
(5.37a), or to provide extra information about it, such as in 5.37(b). The latter is called
a non-restrictive attributive RC while the first is a restrictive RC and both function as
modifiers. RCs are generally tensed and hence have subjects. The subject is either the
relative pronoun such as in (5.37a-c) or an NP such as (‘Mary’) in (5.37d) where the
relative pronoun still exists, but acts as an object instead.

108 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

(5.37) a. I saw the man who loves Mary.

b. I saw my neighbour, who loves Mary.

c. I saw the man who was sitting in the park.

d. I saw the man who Mary loves.

Now, if we want to infer, for example ‘I saw a man.’ or ‘a man loves Mary.’,
from the compound sentence (5.37d), we first treat the main clause and the RC as two
separate events (as discussed previously in ensuring each tensed verb has its subject
and object (if any): ‘I saw the man’ and ‘Mary loves who’. Then, we resolve the
relative pronoun ‘who’ to the NP it modifies (i.e.‘the man’) to get ‘Mary loves the

man.’
Natural logic inference systems, discussed in Section 4.3, focused on a particular

perspective of RCs (one that reflects its use in the FraCas examples) that is in the
context of the conservativity of GCs. Obtaining from premises such as ‘some animals

are cats’ and ‘all cats meow’ the compound conclusion is ‘some animals are cats who

meow’. The MonaLog system relies on a specific rule to do so (see Table (4.7)) and
the same goes for natural tableau. In our system, arriving at the compound sentence
is achievable using the same machinery used to derive its parts. Put differently, to
prove ‘some animals are cats who meow.’, it is first normalized (see Section 7.5 and
Section 7.6) into two events: ‘some animals are cats’ and ‘cats meow’, and then each
of these events is proved separately from the given premises, which is in this case
straightforward.

5.8.2 Attitude Clauses

An attitude clause is a clause that complements an attitude verb. These verbs, such
as in: ‘manage to’, ‘fail to’, ‘able to’, ‘remembered that’, ‘know that’ and ‘believe

that’, give rise to certain presuppositions21 and/or entailments about their comple-
ments [Abzianidze, 2017b]. For example, (5.38a) presupposes that ‘Mary had break-

fast.’, while (5.39b) entails that ‘Mary did not have breakfast.’ and presupposes that
she intended to [Karttunen, 2012]. One semantic classification of such verbs is given in
[Karttunen, 1971, 2012, 2015b], in which constructions such as ‘remembered that’ are

21The concept of presupposition and the constructions that induce it is a well-established debate that
goes way back to [Kiparsky and Kiparsky, 1970]. The examples discussed in this section are based on
Karttunen’s [1971; 2012; 2015b] demonstration of the properties of certain verbs: implicatives, factives,
and non-factives, in the setting of natural logic and the affect of polarities on inferring complement
propositions, which is what we are interested in.

5.8. SUBORDINATE CLAUSES 109

called factives and upon their assertion the speaker, as well as the addressee, is commit-
ted to presuppose the truth of their complements. That assumption is not affected by
negation, if-clause nor questions [Karttunen, 2012]. For example, (5.38b) still presup-
poses that ‘Mary had breakfast.’ even when ‘remembered that’ is negated. In contrast,
a non-factive verb such as ‘pretend’, despite the truth of the embedding sentence, holds
a counter presupposition about its embedded complement (i.e. its negation) [Abzian-
idze, 2017b].

(5.38) a. Mary remembered that she had breakfast.

b. Mary did not remember that she had breakfast.

On the other hand, constructions such as ‘remembered to’ that involve entailment
(with a possibility of carrying a presupposition) about an implicit proposition in their
complements are called implicatives. In contrast to presupposition, entailment is sen-
sitive to negation, i.e. what can be entailed from an implicative complement, whether
a proposition or its negation (if at all), depends on the polarity of the context it ap-
pears in. For instance, (5.39a) entails ‘Mary had breakfast’ while in (5.39b) ‘Mary did

not have breakfast’ is entailed. This entailment property of ‘remembered to’ can be
described using Nairn et al.[2006] implicative signature (+/−) or Karttunen’s [2012]
notation (++ |−−), which both mean that if a sentence including ‘remembered to’
is positively asserted, then it is the affirmative of the complement, otherwise it is the
negation of the complement that is entailed.

(5.39) a. Mary remembered to have breakfast.

b. Mary did not remember to have breakfast.

In the following, the discussion about implicatives is continued. It illustrates on
one side, the entailment properties of other implicative constructions. On the other,
it demonstrates an essential restriction for entailing an implicative complement which
is tense-agreement. After that, although in this thesis’s scope, we do not provide any
special treatments of presuppositions, the discussion is extended to some (non-)factive
verbs, such as ‘know’, ‘believe’, ‘doubt’ and ‘see’. We argue that implicative entail-
ment patterns (below) can be used to explain the inference properties of those attitude
verbs.

Implicatives

Nairn et al. classify implicatives according to their entailment properties into nine

110 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

implication signatures22. Each signature is a pair (P/N) that indicates whether an im-
plicative verb entails the affirmative (+), negation (−), or null (0) from its complement
in both positive and negative contexts. For instance, ‘managed to’ has the signature
(+/−) meaning that it entails its complement in positive contexts and the opposite of
its complement in negative contexts. Karttunen further grouped implicatives into two-

way and one-way implicatives. The latter group includes constructions that yield an
entailment about their complements only under one polarity. The first are those that
yield an entailment in both negative and positive contexts. Table 5.4 lists some ex-
amples of two-way and one-way implicatives23 along with their entailment properties.
Each property is one of Nairn et al.’s nine implicative signatures but in Karttunen’s
notation (i.e. +P|−N) as we found it to be much clearer to have the polarity of the
context present.

Two-way implicatives One-way implicatives
++ |−− +−|−+ ++ |−0 +−|−0 +0|−− +0|−+
manage to fail to cause NP to refuse to can hesitate to
bother to neglect to force NP to be able to be able to

remember to forget to make NP to prevent NP from

Table 5.4: Implicative constructions and their entailment properties [Karttunen, 2015b]

To understand why some implicatives carry an entailment about an implicit propo-
sition under one polarity or the other, consider the examples in (5.40). According to
the above table, ‘be able to’ has a (−−) entailment property, which means (5.40a) en-
tails (5.40c). However, if a person says (5.40b), where ‘be able to’ appears to be in a
positive context, one is inclined to take (5.40d) as a valid conclusion. Nonetheless, it
is not a contradiction for the speaker to continue to say ‘but she did not do it’. That is,
the sentence in (5.40d) is said to be an implicature24 of(5.40b) and not an entailment.

22The signatures are +/+, +/−, +/0, −/+, −/−, −/0, 0/+, 0/−, and 0/0
23The table lists simple implicative verbs that were taken from [Karttunen, 2015b]. However, for a

discussion about phrasal implicatives such as ‘take the time to VP’, see Karttunen [2012]
24Implicatures are cancellable [Grice, 1975] [Horn, 2006], in the sense that they can be inferred only

if they do not contradict other facts known to the speaker and addressee. We believe that some of
Karttunen’s two-way implicatives are actually one-way implicatives in a similar sense. That includes
‘forgot to’ and ‘fail to’, where what is entailed in a negative context can be cancelled. For example
‘Mary did not forget to lock the door’, we cannot say that means ‘Mary locked the door’ because she
might never have intended to.

5.8. SUBORDINATE CLAUSES 111

(5.40) a. She was not able to log in to my computer.

b. She was able to log in to my computer.

c. She did not log in to my computer.

d. She logged in to my computer.

Beside distinguishing their entailment patterns, Karttunen [1971] has further pro-
vided a restriction that differentiates between implicatives and other constructions
(non-implicatives) that at first glance might be thought of as implicatives (e.g. ‘hope

to’, ‘promise to’ and ‘intend to’). That criterion is tense-agreement, which is required
to hold between the sentence containing the implicative construction and its comple-
ment [Karttunen, 1971], and hence the implicit proposition. So far, most of the im-
plicative verbs we have looked at take infinitival clauses as their complements, i.e.
no overt tense and thus the agreement criterion can not be observed directly. How-
ever, it is assumed that the agreement is carried by the tense of the underlying form
of an infinitive clause, and that becomes apparent when time adverbials are attached
[Karttunen, 1971]. To demonstrate, consider the examples in (5.41). Adding a future
adverbial ‘tomorrow’ to the infinitive clause of a past tensed implicative, ‘manage to’
in (5.41a), has introduced the ungrammatical sentence in (5.41b). On the other hand,
the infinitive complement of the non-implicative verb ‘hope’ in (5.41c), can carry a
future tense ‘. . . will exercise.’ or a modal ‘. . . might exercise.’ without problems, but
not the past tense [Karttunen, 1971].

(5.41) a. John managed to exercise.

b. ∗John managed to exercise tomorrow.

c. John promised to exercise.

d. John promised to exercise tomorrow.

Another example of of a non-implicative construction, but slightly different than
the above, correctis ‘used to’ in the examples (5.42).It has two consequences: the
proposition in question held before now and that it does not hold now. That cannot be
handled using the pattern ++ |−−, since the positive version of ‘used to’ has one neg-
ative and one positive consequence, and it also breaks the tense agreement constraint.

112 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

(5.42) a. John used to beat his wife.

|=John beat his wife.

|=John does not beat his wife now.

b. John used to be a businessman.

|=John was a business man.

|=John is not a business man.

To sum up, to accurately infer an implicit proposition from an implicative com-
plement, an inference system has to have mechanisms for ensuring that the entailed
proposition obeys the implicative verb entailment pattern and has a tense-agreement
with the implicative verb. Moreover, the infinitival complements of implicative verbs
often have a non-overt subject, which is implicitly the same subject as the implica-
tive verb. Therefore, resolving the subject of the complement to the subject of the
implicative verb is something to consider as well. With that having been said, for our
inference engine we have considered the following: (1) marking implicatives with their
entailment properties during the syntactical analysis (Section 6.2.3), (2) resolving the
subject of an infinitive clause to the subject of the main sentence, (3) designing in-
ference rules to handle the different entailment patterns: ++, +−, −+, −−, +0 and
−0 (see Section 8.3.1),where each rule ensures passing time information of the main
utterance to the infinitive clause if required.

Tense-agreement conditions add to the general importance of modeling time in-
formation in our MR (discussed in Section 5.5.3). Among the discussed natural logic
inference systems (Section 4.3), only NatLog (Section4.3.1) that has a computational
consideration for passivization and morphology variation, which acknowledges the
need for tense-agreement in implicative sentences. Natural tableau (Section 4.3.3), on
the other hand, has no means of tense and aspect representation, which has lead to
licensing several invalid inferences25 such as inferring ‘John is exercising.’ and ‘John

will exercise.’ from (5.41a).

Propositional and Perspective Attitudes

Propositional attitude sentences26, as in (5.43) and (5.44), express the subject’s/agent’s
attitude (mental state) with respect to a proposition. The attitude is conveyed by the

25By practical testing of some examples using the online version of their system: https://
naturallogic.pro/LangPro/

26Also called propositional attitude reports [Swanson, 2010].

https://naturallogic.pro/LangPro/
https://naturallogic.pro/LangPro/

5.8. SUBORDINATE CLAUSES 113

attitude verb and the proposition is commonly its complement (that-clause). Similar
to implicatives, in this thesis, we are interested in modeling the entailment patterns of
two kinds of attitudes: knowing, believing and doubting.

The verb ‘know’, in (5.43), carries the speaker’s (not-)knowing attitude towards the
proposition ‘there is a man in the park’. In both cases, the speaker and the addressee
presuppose the validity of the proposition. However, in the case of knowing (5.43a),
the speaker carries a strong assertion, and possibly evidence (such as being in the park
himself) that ‘there is a man in the park’, i.e. it is a valid proposition. The same can-
not be said about ‘not know’ in (5.43b), because it implies two options: either there is
indeed a man in the park, but the speaker did not have access to the park in order to
acknowledge it, or there is not any man in the park in the first place. Therefore, the at-
titude verb ‘know’ is classified in the literature as factive, and entailing to its embedded
proposition only in positive declarative sentences [Karttunen, 1971; Swanson, 2010].
Hence, ‘know’ has the entailment pattern (++ |−0).

(5.43) a. I know that there is a man in the park.

|= There is a man in the park.

b. I do not know that there is a man in the park.

��|= There is a man in the park.

��|= There is not a man in the park.

On the other hand, the attitude verb ‘believe’ in (5.44), is “neither factive nor entail-
ing” [Swanson, 2010] and hence its entailing pattern is (+0|−0). That is because, by
choosing ‘believe’, the speaker expresses uncertainty about the proposition, otherwise,
the speaker would have shown a stronger attitude towards the proposition (say, for ex-
ample, used ‘know’ instead of ‘believe’). Another verb that has the same entailment
properties as ‘believe’ but carries the opposite attitude towards the same proposition
is the verb ‘doubt’ (notice such opposition between the examples (5.44a and b) and
(5.44c and d)).

(5.44) a. I believe that Mary stole my watch.

b. I do not doubt that Mary stole my watch.

c. I do not believe that Mary stole my watch.

d. I doubt that Mary stole my watch.

114 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

The perspective attitude verb ‘see’ shares the same factivity and entailment property
as ‘know’. That is, only in a positive declarative utterance (e.g. 5.45) the embedded
proposition can be entailed. In a negative context, as in (5.45b), nothing can be entailed
because ‘not seeing’ something happen could mean it did happen but the speaker did
not see it, or it did not happen in the first place.

(5.45) a. I saw a man sign the contract.

|= A man signed the contract.

b. I did not see a man sign the contract.

��|= A man signed the contract.

��|= A man did not sign the contract.

A key difference between propositional and perspective attitudes is that the latter
requires tense-agreement between the time of seeing and its embedded event. However,
in the first propositions are tensed, and their time might be different from the attitude
verb’s time.

5.9 Scope Resolution and Cooper Storage

A final semantic phenomenon to discuss in this chapter is scope ambiguity. Consider
the example (5.46a) and its possible readings in (5.46b) and (5.46c). Such differences
in reading of the sentence, are caused by the scope ambiguities of the QNPs ‘every

man’ and ‘a woman’, where in the first reading ‘every man’ has a wider-scope than ‘a
woman’, and in the second it is the other way around. Unfortunately, these scoping pos-
sibilities are not always syntactically reflected [Blackburn and Bos, 2005]. Moreover, a
syntactical analysis of a sentence does not always correspond to the semantically more
sensible or preferred reading. There exist several approaches for solving the scope am-
biguity problem27. These approaches, as Ruys and Winter [2011] categorise them, are
either syntactic or semantic28. Approaches of the first group (such as Quantifier Rais-

ing [Chomsky, 1976; May, 1978] and Quantifying-in [Montague, 1973] theories) rely
on generating several distinct syntactical analyses for the same sentence, each of which

27See Blackburn and Bos [2005], Ruys and Winter [2011] and the cited references for detailed illus-
tration of these approaches.

28Although, Ruys and Winter [2011] demonstrated that their categorisation is based on the majority
of approaches as there exist some syntactic approaches with semantic repercussions and vice versa.

5.9. SCOPE RESOLUTION AND COOPER STORAGE 115

corresponds to a different semantic reading. In other words, syntactic approaches re-
quire modifying and extending the syntactic rules in order to arrive at different scoping
possibilities. Semantic approaches (e.g. Cooper Storage [Cooper, 1983; Keller, 1988]
and Hole semantics [Bos, 1996]), on the other hand, maintain a single (most straight-
forward) syntactical analysis of a sentence, but apply their semantic interpretation rules
in various ways to obtain the different scope reading.

(5.46) a. Every man loves a woman.

b. For each man there is a woman which he loves.

c. There is that one particular woman that is loved by every man.

In this thesis, we use a semantic approach that bears a resemblance to the Cooper
storage approach and its adapted version in [Alshawi and van Eijck, 1989; Alshawi,
1992], to handle scope ambiguities that are caused by different sources; QNPs and
negation, in particular. The basic ideas of Cooper storage are as following:

• Each NL expression corresponds to a single syntactical analysis.

• From that analysis, a core representation for that expression is built.

• While building the core representation, the meanings of scope-bearing expres-
sions (i.e. binding operators) are either applied in-situ to the core, or collected
and kept in a store for later application.

• For an expression, the ordered pair 〈Core,Store〉 counts as its generalized MR.
The resolution of this will result in constructing (possibly) other MRs, each of
which corresponds to a scoping possibility.

• The resolution process actually involves retrieving binding operators and apply-

ing them to the core representation in a certain order. According to Cooper’s
assumption, a retrieved operator is combined with the respective free variable in
the core expression at any point of the meaning construction process [Ruys and
Winter, 2011].

• The pair 〈Core,Store〉 is regarded as an expression’s semantic reading only if
there are no more binding operators to apply; i.e. the store is empty.

To demonstrate these steps, let the pair Φ0 in (5.47)[Ruys and Winter, 2011] be the
generalized MR for the sentence (5.46a)29. The core representation is the lambda term

29The reader might find a slight difference in notation in regard to the representation of Cooper’s
Storage and related aspects, however the examples, as well as the notation used here, are based on Ruys
and Winter [2011] that itself was based on Carpenter [1997].

116 CHAPTER 5. ISSUES IN NON-LEXICAL SEMANTICS

LOVES(x,y) and 〈x/Q1,y/Q2〉 is the binding operators list. Among the different MRs
in (5.48) only Φ3 and Φ4 are fully resolved (their store is empty) and correspond to the
semantic readings (5.46c) and (5.46d) respectively.

(5.47)
Φ0 = 〈LOVES(x,y),〈x/Q1,y/Q2〉〉, where
Q1 = λA.∀z[MAN(z)→ A(z)]

Q2 = λB.∃u[WOMAN(u)∧B(u)]

(5.48)

Φ1 = 〈Q1(λx.LOVES(x,y)),〈y/Q2〉〉
Φ2 = 〈Q2(λy.LOVES(x,y)),〈x/Q1〉〉
Φ3 = 〈Q1(λx.Q2(λy.LOVES(x,y))),〈φ〉〉
Φ4 = 〈Q2(λy.Q1(λx.LOVES(x,y))),〈φ〉〉

Similarly, following the conventions described in the Sections 5.3– 5.8 we will
obtain, for a sentence, an intermediate form called the quasi logical form (QLF)30.
That form is unresolved (it reflects the direct reading of the dependency tree) and has
scope-bearing expression represented as binding operators. The resolution of a QLF
involves involves several steps. First, the form is turned into a main proposition and a
stack of all binding operators. The main proposition is an abstracted expression that is
obtained by extracting the binding operators introduced by its arguments and leaving
the variables they bind in their respective place. For example, consider the QLF of
(5.46a) in Figure 5.4. Its main proposition den(love) involves a subject and a dobj.
Their representations are extracted and placed in the stack, leaving behind their binding
variables (D for subject and C for dobj).

After extracting all the binding operators and placing them in the stack, they are
sorted in a way that reflects the desired reading, then applied to the main proposition.
For this particular part, we rely on scope scores such that the smaller the score, the
wider the scope. The choice of scores is partially based on some empirical generaliza-
tions about restrictions on scopes and reading preferences appearing in the literature
(e.g. Alshawi [1992], Szabolcsi [2011] and Ruys and Winter [2011]). For instance,
individual denoters, such as proper names (e.g. ‘John’) are scopeless [Zimmermann,
1993]; universal QNPs cannot scope out of certain syntactic constructions such as RCs,
while existentials can [Ruys and Winter, 2011], and (as discussed in Section 5.5.2)
events arguments (∃e) normally would have the lowest scope possible. Other scopes
are for practical reasons, such as assigning scope to the utterance label claim, to keep
them in a position we desire for further processing.

30The realization of the conventions described in this chapter into QLFs, and QLFs scope resolution
are all described in Section 7.3 and Section 7.4 (respectively) from Chapter 7.

5.10. SUMMARY 117

Quasi logical form
qq(claim=0,
qq(The=1,A::{{time,[now]},A},

qq(exists=5,B,
{(([den(love),

arg(dobj,qq(exists=2.0,C::{[den(woman)]@@A,C}& {card,C,=1})),
arg(subject,qq(forall=2,D::{[den(man)]@@A,D}))]

@@ {simple,A}),
B)})))

Main proposition
{(([den(love), arg(dobj, C), arg(subject, D)]@@ {simple,A}),B)}

qq Stack
[qq(0.0, claim),
qq(5.0,{exists,B}),
qq(2.0,{forall,D::{[den(man)]@@A,D}}),
qq(2.0,{exists,C::{[den(woman)]@@A,C} & {card,C,=1}}),
qq(1.0,{The,A::{{time,[now]},A}})]

Figure 5.4: An example for adapting Cooper’s storage for scope resolution.

5.10 Summary

Before attempting to answer the question of whether a syntactically-based MR could
capture the meaning of complex semantic issues, in this chapter we have surveyed what
are these issues and how they have been handled in previous systems. Then, for each
semantic phenomena we have showed what representational aspects we have consid-
ered to capture their semantics in our MRs keeping in mind two important factors. The
first is the ability to reason about examples involving these phenomena. The second is
the ability to overcome the existing NLI systems’ shortcomings (discussed in Section
4.4) with regard to certain phenomena, including defaults and propositional attitudes.
Therefore, this survey is a key to our work as it is to be used for:

• Identifying (CO2.1) the semantic features that are ought to be encoded on syn-
tactical trees—Chapter 6.

• Designing (CO2.2) the transformational staged for normalizing syntactical trees
into forms that are semantically rich and suitable to used for the inference engine—
Chapter 7.

• Designing (CO2.3) a number of inference rules for handling higher-order con-
structions: defaults and propositional attitudes—Chapter 8.

Chapter 6

Parsing and Pre-Processing
In this chapter we discuss the first part (Figure 6.1) of the inference system presented in
this thesis, as illustrated in Figure 1.2 (repeated here as 6.2), which is the dependency

parser. It parses the sentences of an inference problem into dependency trees (DTs).
These trees are considered to be the basis for building the desired final forms: normal-
ized DTs. The structure of the final normalized forms is critical for their use with the
inference engine, so the DTs produced by the parser must be suitable for conversion to
the desired form. Therefore, to ensure that we obtain DTs that conform to the syntactic
and semantic requirements that facilitate their normalization, we have : 1) chosen an
accessible dependency grammar1 over an off-the-shelf robust statistical parser; and
2) identified (CO1.1) a number of semantic features that ought to be encoded on trees.
After a brief introduction, we provide some illustrative examples that support our de-
cision to use a grammar-based parser rather than a statistical dependency parser in
Section 6.1. Then, in Section 6.2, the grammar used to produce our DTs is explained.
Following that, the general architecture of the actual DTs is given in Section 6.3.

Figure 6.1: From a sentence to a DT.

1Implemented by my supervisor Prof. Allan Ramsay, thus the discussion and listed examples in
Section 6.1 and Section 6.2 are based on Prof. Ramsay’s background notes for this grammar.

118

6.1. A GRAMMAR OVER A ROBUST STATISTICAL PARSER 119

Figure 6.2: Data-flow through the inferential system.

6.1 A Grammar Over a Robust Statistical Parser

Parsing can be defined generally as “the process of structuring a linear representation
in accordance to a given grammar” [Grune and Jacobs, 2008, p. 1]. A NL parser is
a program that takes a NL sentence (or sequence of words) and analyses their gram-
matical structure (with respect to some grammar) and presents them, commonly, in the
form of tree: a parse tree. One classification of parsing methods is whether a parser is
a grammar-driven parser or a data-driven parser. In the first, the syntactical analysis
of a sentence is assigned using pre-defined grammatical rules. In the second, a pre-
annotated data set (a corpus) is used to learn rules that can be used to determine the
most probable grammatical analysis of a sentence [Bod, 2008; Plank and Van Noord,
2010]. In open-domain applications, data-driven parsing has an advantage over using
grammar which is robustness. However, the aim of this thesis is not wide-coverage
as, e.g. NatLog and natural tableau. Instead, we are mainly interested in exploring
the possibility of reasoning about deep semantic phenomena (Chapter 5) using parse
trees as the basis for reasoning. For that to work, we have to be confident that the
obtained trees express exactly the desired relations, and the only way for doing so is
by taking control of the grammar. There are a number of desiderata to be considered
when choosing a parser for our task, summarised below. We illustrate these issues by

120 CHAPTER 6. PARSING AND PRE-PROCESSING

considering the output of three well-known parsers, namely the Stanford Dependency

Parser (SDP) [Chen and Manning, 2014; Manning et al., 2014], EasyCCG [Lewis
and Steedman, 2014] and MALTParser 23. We have not included examples from every
publicly available parser (or even every version of these two: the Stanford Dependency
Parser can generate either ‘basic dependencies’ or ‘enhanced++ dependencies’. As ex-
pected, the latter include more detail than the former, but in some cases the trees that
are derived are in fact completely different: for ‘one of the leading tenors is Pavarotti’
the basic dependency version assigns ‘one’ as the subject and ‘tenors’ as a daughter
of ‘one’ while the enhanced++ version assigns ‘tenors’ as the subject and ‘one’ as a
daughter of ‘tenors’). The aim here is simply to show what any parser that is to be
used for our task must do.

6.1.1 Semantic Interpretability

The most crucial requirement is that the trees the parser produces make sense when
we come to use them for inference. Many parsers, e.g. EasyCCG, for instance, assign
the modifier ‘in the park’ from ‘the man in the park saw me’ as a daughter of the NP
‘the man’ rather than as a daughter of the NN ‘man’. This means that PPs are treated
differently from other modifiers such as adjectives, which makes it very difficult to
write rules for handling them. There are numerous other examples of trees that are
unsuitable for reasoning, e.g. the decision in SDP to make the predicative noun ‘fool’
rather than the copula ‘is’ the head in ‘John is a fool’ (this also violates the requirement
of consistency below, since it means that ‘an Italian became the world’s greatest tenor.’
and ‘an Italian was the world’s greatest tenor.’ have entirely different trees).

6.1.2 Sensitivity

A corollary of the first requirement is that the parser must assign distinct trees to sen-
tences where similar phrases play different roles. Both SDP and EasyCCG, for in-
stance, assign identical structures to (6.1) and (6.2) (see Figure 6.3), making it impos-
sible to infer that in (6.1) my reason for going was to see him whereas in (6.2) seeing
him was the thing I wanted.

2We are using version 4.20 of SDP and the default version of MALTParser provided in the NLTK,
i.e. using the Wall Street corpus for training and Matthew Honnibal’s Greedy Averaged Perceptron
tagger.

3We have included a number of trees produced by SDP and MALTParser for illustration. The trees
produced by EasyCCG are very hard to interpret, and take up a great deal of space, and we have therefore
not included any from this parser.

6.1. A GRAMMAR OVER A ROBUST STATISTICAL PARSER 121

(6.1) I want to see him. (6.2) I went to see him.

Figure 6.3: SDP trees (MALTParser trees are almost identical).

6.1.3 Consistency

Similarly, the parser should assign similar trees to closely related sentences such as
declarative and interrogative forms of the same proposition. EasyCCG, for instance,
assigns entirely different trees to (i) ‘there are great tenors who are Swedish.’ and
(ii) ‘are there tenors who are Swedish?’, which means that it would be impossible to
infer that the answer to the question (ii) was ‘yes’ from the premise (i). SDP assigns
entirely different structures (see Figure 6.4) to ‘few great tenors are poor’ and ‘most

great tenors are rich’, which again makes it impossible to infer any relation between
these two. Similarly MALTParser produces different trees for (6.5) and (6.6) in Figure
6.5, with ‘there’ treated as an expletive in (6.5) and as an adverbial modifier in (6.6).

122 CHAPTER 6. PARSING AND PRE-PROCESSING

(6.3) Few great tenors are poor. (6.4) Most great tenors are rich.

Figure 6.4: SDP trees for ‘few great tenors are poor’ and ‘most great tenors are rich’.

(6.5) There are great tenors who
sing popular music.

(6.6) Are there great tenors who
sing popular music?

Figure 6.5: MALTParser trees for ‘there are great tenors who sing popular music.’
and ‘are there great tenors who sing popular music?’

6.1. A GRAMMAR OVER A ROBUST STATISTICAL PARSER 123

Finally, the decision to make the predicative noun the head of a copula sentence also
obscures the close relationship between e.g. ‘One of the leading tenors is Pavarotti’
and ‘Pavarotti is one of the leading tenors’ (see Figure 6.6).

(6.7) One of the great
tenors is Pavarotti.

l

(6.8) Pavarotti is one of the great tenors.

Figure 6.6: SDP trees for ‘One of the great tenors is Pavarotti’ and ‘Pavarotti is one of
the great tenors’ (MALTParser trees are almost identical).

6.1.4 Non-reentrancy

The structures assigned by the parser must be trees. SDP, for instance, assigns two
heads to ‘man’ in ‘I saw the man who Mary said she wanted to meet’, namely as
the object of ‘saw’ and the object of ‘said’, and it also assigns ‘said’ as a daughter
of ‘man’. If the structures assigned by the parser are not trees then tree-matching
algorithms such as those deployed in natural logic approaches cannot be used.

6.1.5 Informativeness

Any information that is not included in the parser output will be unavailable for in-
ference. Both EasyCCG and SDP, for instance, omit anything about tense/aspect or
about number. That means that using trees produced by these parsers would make it
impossible to distinguish between (i-a) ‘John loves Mary’ and (i-b) ‘John loved Mary’,

124 CHAPTER 6. PARSING AND PRE-PROCESSING

or between (ii-a) ‘Some fool has left the door open’ and (iib) ‘Some fools have left the

door open’. (i-a) and (i-b) would be mutually entailing, and likewise (ii-a) and (ii-b).

Some of this information can be fairly easily recovered, e.g. SDP can be recon-
figured to output fine-grained part-of-speech tags that do contain tense and number
information. Some cannot. In particular, dependency parsers typically have difficulty
with traces/WH-items. EasyCCG, for instance, simply fails to say anything about the
role of ‘who’ in (i) ‘I saw the man who she expected to marry’ and (ii) ‘I saw the man

who she expected to marry her’. SDP again deals with this issue by assigning multiple
heads to ‘man’, making it a daughter of ‘saw’, ‘marry’, ‘expected’ and ‘who’, again
making it impossible to use tree-matching algorithms for comparing sentences.

SDP’s treatment of auxiliaries also loses crucial information, since it simply assigns
all the auxiliaries in a complex sequence like ‘John would have been singing in the

choir today’ as direct daughters of ‘singing’, thus making it impossible to trace the
route between speech time and event time. This information is recoverable, but only
by paying attention to the left-to-right order of the items in the tree, violating the notion
that all that matters is the relations between heads and their daughters.

(6.9) John would have been singing in the choir today.

Figure 6.7: Flat structure for auxiliary sequences in SDP tree (MALTParser tree is
almost identical).

6.1.6 Transparency

The output of any parser is determined by the underlying grammar. This is obvi-
ously true for grammar-based parsers, but it also holds for parsers obtained by running

6.2. THE USED DEPENDENCY GRAMMAR 125

a machine-learning algorithm over a treebank. The major difference is that with a
grammar-based parser it is possible to ascertain which rule(s) gave rise to a particular
analysis, and hence to work out how to patch any major issues. The grammar behind a
treebank-based parser is implicit in the guidelines given to the annotators (the similar-
ity between the outputs of SDP and MALTParser suggest that guidelines given to the
annotators for their training data, i.e. the implicit grammars behind these two parsers,
were very similar). This makes it impossible to find out why a parser has assigned a
given analysis, and hence impossible to fix things that are wrong.

To sum up, the point here is not that EasyCCG or SDP or MALTParser in particular
are unsuited to our task. These are typical issues that are likely to arise with any exter-
nally supplied parser. If we do not have control over the underlying grammar then the
parser is likely to provide analyses that are incompatible with our requirements; if we
do not have control over the labels that it provides then it is likely to omit information
that we need; if it provides identical analyses for sentences that are clearly different,
or distinct analyses for sentences that are clearly closely related, we will be unable to
carry out the requisite inferences; and if the analyses are, in fact, lattices rather than
trees then we will be unable to use tree-matching algorithms.

Rather than wandering through all the publicly available parsers 4, or even all the
versions of a single parser, trying to find something suitable, we therefore prefer to use
a grammar-based parser where we can ensure that the trees that we obtain do conform
to our requirements.

6.2 The Used Dependency Grammar

The term dependency grammar,does not refer to a particular grammar, but to a fam-
ily of grammar formalisms in which syntactic structures are described in a certain
way [Nivre, 2005]. That is, words are linked via grammatical relations (e.g. subject,
direct object, adjective, etc.), called dependency relations or dependencies. These de-
pendencies are binary and directional, thus are often represented with labelled arcs

(H relation−−−−−→D) from a head to a dependent (or a daughter as we tend to use in this the-
sis) [Nivre, 2005]. These arcs collectively form a rooted tree which is the dependency
tree [Nivre, 2005].

The grammar we are using generates DTs. However, the rules of combination
(given below in the definition of signs) actually relate words and trees, where a tree

4Some of which, e.g. SyntaxNet, require considerable effort to install.

126 CHAPTER 6. PARSING AND PRE-PROCESSING

consists of a head word and a (possibly empty) set of subtrees. In particular, the de-
scription of the item at the head of a tree may include information about the nature of
the daughters. It is important, for instance, to know whether any of the daughters of a
verb are WH-marked, in order to be able to spot that the verb can be used as a relative
clause (e.g. that ‘loves’ in ‘the man who she loves has gone to Mexico’ has the relative
pronoun ‘who’ as a daughter: the word ‘loves’ carries no information about whether
‘loves’ can be a modifier of ‘man’, whereas the tree [loves, [she], [who]] can
be seen to contain a relative pronoun and hence can be used as a modifier). This is
a rather fine distinction, and is often blurred in discussions of dependency grammar,
but it is important to keep it in mind. Therefore, the grammar we are using is not
strictly a dependency grammar, but a simplified version of the Head-driven phrase

structure grammar (HPSG) [Pollard and Sag, 1987, 1994] in which the head of a tree
is not strictly a word but a typed feature structure called a sign. In a DT, words always
have sets of daughters. However, words also occur in isolation, which is the case of
heads and empty sets of daughters. For the sake of uniformity, we use the term sign

to mean either a word or a tree. To describe a sign, we specify its features. There is
a finite set of things one might want to say about such an entity (e.g. things about its
meaning, its position within the sentence where it appears, or about some property that
governs what other signs it can be related to) and these can be organised into groups
in a HPSG-like complex feature structure where features can have sub-features and
those sub-features can have their own sub-features. A sample of a sign is given in
Figure 6.8, in which features are represented as complex terms where the functor (e.g.
sign) is the label of the feature and its arguments (e.g. (structure(), syntaxt(),

morphology(),semantix(),...)) are the sub-features which might have sub-features
themselves (indicated by the list brackets: ()). One important feature (which we re-
ferred to as our combining rule above) of a sign is its args([])5 as it is the place to
name other signs (if any) as the daughters (see, for example, the sign of the transitive
verb ‘eat’ given in Figure 6.9).

Although the grammar we are using came with an extensive list of features a sign
might have, in this research we have identified (CO1.1) a number of other features
which carry semantically important information and hence are important to get en-
coded on trees and the parser’s developer, Allan Ramsay, has extended the parser to

5Note that we use a different brackets for arge and that is because (in comparison to listing the
sub-features of a feature) we list other signs inside the feature structure of a sign.

6.2. THE USED DEPENDENCY GRAMMAR 127

signature(
sign(
structure(position(moved(_), start(_), end(_), ...], index(_),language(),...)
syntax(args([_]),

head(cat(_),
hd(_),
agree(person(_),number(_),collective(_), gender(_), mass(_)),
pronominal(_),
nform(case(_), date(_)),
vform(tense(_),tenselist(_),finite(_),...),
aform((degree(_)),
predicative(_),factive(_)),
spec(specified(_), def(_), specifier(_), numeric(_), counted(_)),
nonlocal(wh(_), shifted(_), zerodtr(_)),
mod(target(_), result(_), modifiable(_))),

morphology(_),
semantics(content(_),

theta(_),
modifier(_),
definition(_),
polarity(_),
arity(_),
type(_),
denotes(_)),

externalviews(_)
...)).

Figure 6.8: An abbreviated version of signs’ possible features.

include them. Some of the features are about bits of information that are widely rec-
ognized to be semantically relevant, but were missing from the output of the original
parser and they are centred around:

• The cardinality information of generalized quantifiers–Section 5.2.

• The shape of time and aspect information –Section 5.5.3.

• Assigning scope scores for scope bearing tree parts.

Others are concerned with information that emerged from the analysis given in Chapter
5. These include:

• Assigning adjectives to appropriate semantic classes (subsectives, intersective,
etc.)–Section 5.4.

• The entailment patterns of attitude verbs–Section 5.8.2.

• A way to display polarity marking.

128 CHAPTER 6. PARSING AND PRE-PROCESSING

The discussion of the information signs include can get rather complex and intricate.
Therefore, in the remaining of this chapter we will explain the critical features as they
arise.

sign(syntax(
args([
sign(structure(dir(position(before(-), after(+)))),

syntax(args([]),
head(cat(xbar(v(-), n(+))),
nform(case(*(obj)), date(-))),
spec(specified(+))),

semantics(theta(dobj))),
sign(structure(dir(position(before(+), after(-)))),

syntax(args([]),
head(cat(xbar(v(-), n(+))),
nform(case(*(subj)))),
spec(specified(+))),

semantics(theta(subject)))])))
...

Figure 6.9: The sign for the transitive verb ‘eat’.

6.2.1 A Theory of Syntactic Categories

There are a number of broad classes of word – nouns, verbs, adjectives, adverbs, prepo-
sitions. Some of these classes share some characteristics. Adjectives, for instance, are
in some ways treated as nouns (e.g. ‘empty’ and ‘tea’ are both noun modifiers in ‘an

empty pot’ and ‘a tea pot’) and as verbs in some others (e.g. ‘confident’ and ‘sleeping’
are both modified by the adverb ‘quietly’ in ‘a quietly confident man’ and ‘a quietly

sleeping man’). We capture this by stating that every word has a category, and that for
some words the cat has two features, verb-like and noun-like as follows:

%% A noun: is not verb-like, but noun-like

sign(syntax(head(cat(xbar(v(-), n(+))))))

%% A verb: is verb-like, but not noun-like

sign(syntax(head(cat(xbar(v(+), n(-))))))

%% An adjective: is a bit like a verb and a bit like a noun

sign(syntax(head(cat(xbar(v(+), n(+))))))

6.2. THE USED DEPENDENCY GRAMMAR 129

This notion is often pushed a bit further by noting that there are noun-like words and
noun-like groups of words (nouns like ‘cat’ and noun phrases like ‘the cat’), and verb-
like words and verb-like groups of words (verbs like ‘eats’, verb phrases like ‘eats

dried cat food’, sentences like ‘the cat eats dried cat food’). X-bar theory [Chomsky
et al., 1970; Jackendoff, 1977] makes use of the notion of levels, where a verb is bar
level 0, a verb phrase is bar level 1, and a sentence is bar level 2 (the notion is slightly
less clear for nouns – a noun is bar level 0, a NP is bar level 2, but it’s not clear whether
a modified noun like ‘annoying cat’ is level 0 or level 1).

Again, we follow HPSG, among other theories, in taking a slightly different ap-
proach [Müller, 2014]. Words like nouns and verbs denote descriptions of things.
When combined with other appropriate words they denote something like instances of
those things. For example, ‘cat’ denotes the property of being a cat, ‘the cat’ says that
we are talking about a specific cat. We say that words such as ‘the’ are specifiers (ac-
tually ‘the’ is a Det, which is a subclass of the wider set of specifiers), and that when a
noun or a verb has combined with a specifier it is specified.

cat:

sign(syntax(head(cat(xbar(v(-), n(+)))), spec(specified(-))))

The cat:

sign(syntax(head(cat(xbar(v(-), n(+)))), spec(specified(+))))

Other things that a word might combine with are words that add more details to its
description (modifiers, Section 6.2.2) and others that complete its meaning (arguments,
Section 6.2.3).

6.2.2 Modifiers and specifiers

Some words add information to a target word without fundamentally changing its
meaning. This can happen in two ways:

• An unspecified word, which will typically be a descriptor of some kind (e.g.
‘man’, which describes an entity as being man-like, or ‘eat’, which describes an
event as being some kind of ingestion of food), can be refined by a modifier (‘fat

man’, ‘eat quietly’)

• An unspecified word, together with any modifiers, can become specified – ‘a fat

man’, ‘the girl with red hair’, . . .

130 CHAPTER 6. PARSING AND PRE-PROCESSING

What a specifier actually does is not all that clear in the literature. However, we
take it that it is a semantic notion, where a noun plus a number of modifiers (adjectives,
prepositions, etc.) add some details to the description of a kind of entity. Then, in
some sense, the specifier states whether what has been described is a new entity of that
kind and has not been mentioned before (e.g. ‘a man’), is something that has been
mentioned (e.g. ‘the man’), is about all things of that kind (e.g. ‘every man’), etc.

However, the distinction is not always that clear as some words can act as modifiers
and specifiers at the same time, e.g. ‘two’ in ‘two men’ adds information about the
cardinality of the set of men under discussion and specifies it as being indefinite. We
therefore treat both modifiers and specifiers in very much the same way, by saying that
they have a target (the tree to which they are being attached) and a result (the tree that
results from attaching them). Hence, pure modifiers such as ‘fat’ and ‘quietly’ attach
to trees that are specified(-) and produce results that are also specified(-), whereas
specifiers such as ‘a’ and ‘the’ attach to trees that are specified(-) and produce ones
that are specified(+). As for modifiers that carry the possibility of being specifiers,
we treat them as items that supply the two bits of information mentioned above: an
addition to the description denoted by its target (e.g. in ‘many cats’, ‘cats’ states that
a set of feline animals is being discussed, and the adjective ‘many’ says that this set
has quite a large number of members) and a specifier to its target (e.g. ‘many’ as a
specifier, states the introduction of a set of cats into the conversation, similar to the
determiner ‘some’). However, the latter is needed only if the target is to be used as an
argument, and there is no other item acting as the specifier. Put differently, in ‘John

saw the many cats’ for example, ‘the many cats’ is the argument of seeing, however
‘the’ is the specifier and it specifies definiteness for the whole NP and ‘many’ is needed
only for adding on the cardinality information to the description of ‘the cats’.

The information that ‘many’ supplies is reflected in its sign (see Figure 6.10). It
says that: ‘many’ has a target that: comes after it, is noun-like, and not specified
(specified(-)), while the result of combining the target with ‘many’ will be definite
(def(+)), noun-like, and have *(num(many)=2) as its specifier.

So far, the discussion of specifiers has been centred on Dets (including articles:
‘a/an’ and ‘the’, and quantifiers such ‘many’ and ‘some’) as their source. However, in
addition to Dets we consider specifiers to be supplied by other sources. One source is
the inflectional affixes as in bare plurals (e.g.‘John eats peaches’). Another source is
tense markings on verbs. Following the discussion of Section 5.5.3, events are situ-
ated in time and so their temporal information is supplied as specifier using the tense

6.2. THE USED DEPENDENCY GRAMMAR 131

sign(syntax(args([]),
spec(def(+)),
(target(sign(structure(dir(position(before(-),after(+))),

syntax(head(cat(xbar(v(-), n(+))),
spec(specified(-), def(+)),

mod result(sign(structure(language(english)),
syntax(head(cat(xbar(v(-), n(+))),

spec(def(+),specifier(*(num(many)=2))),
...

Figure 6.10: The sign of ‘many’.

markings (inflections plus auxiliary sequence) on the verb as a source. In addition,
definite NPs carry definiteness specifiers either explicitly (e.g the determiner ‘the’ in
‘the cat’) or implicitly as in the case of proper names. A further discussion on these
specifiers and their structures, along some other miscellanies, is given in Section 6.3.
What we want to emphasise at this point is that specifiers introducing items will have
their specifiers included as part of their definition in the dictionary.

Another semantic feature that is identified and marked is intersective/subsective
signs (see Section 5.4). Take for example, the entries for the pure adjectives ‘old’ and
‘Italian’. The latter is marked with the intersectivity sign *(+) while the other with
*(-) indicating a subsective adjective.

‘old’
sign(syntax(args([]),

head(cat(xbar(v(+), n(+))), class(*(-))),
(target(sign(structure(language(english)),

syntax(...)),
mod result(sign(structure(language(english)),

syntax(...)))))
...

‘Italian’
sign(syntax(args([]),

head(cat(xbar(v(+), n(+))), class(*(+))),
(target(sign(structure(language(english)),

syntax(...)),
mod result(sign(structure(language(english)),

syntax(...)))))
...

Figure 6.11: The signs for ‘old’ and ‘Italian’.

132 CHAPTER 6. PARSING AND PRE-PROCESSING

6.2.3 Arguments, unsaturated items, canonical order

Some words express incomplete ideas and require the presence of other words in order
to make those ideas complete. The archetypal examples are verbs, which nearly always
require a subject and often some other items in order to describe a state or event. We
call the words that they require their arguments, or sometimes their complements. If a
word has all of its arguments it is called saturated, otherwise it is unsaturated.

In any given language, there is a canonical order for the various arguments. In
English, the canonical order is SVO, in Arabic it’s VSO, etc. Such order is determined
in the description of the word by stating the direction of each argument. For exam-
ple, see the description of ‘eat’ in Figure 6.9 (restated here as Figure 6.12). It says
that ‘eat’ takes two arguments which are both specified NPs (cat(xbar(v(-), n(+)),

specified(+)). However, the first is marked as its object that follows it, while the sec-
ond is its subject that precedes it. The order in which the arguments appear in the list
specifies the order in which they should be found, the dir(position(before(-),

after(+)))6 and dir(position(before(+), after(-))) say where one should ex-
pect to find them. We sometimes write args = [

−→NP,←−NP] as an informal abbreviation
for this.

sign(syntax(
args([
sign(structure(dir(position(before(-), after(+)))),

syntax(args([]),
head(cat(xbar(v(-), n(+))),
nform(case(*(obj)), date(-))),
spec(specified(+))),

semantics(theta(dobj))),
sign(structure(dir(position(before(+), after(-)))),

syntax(args([]),
head(cat(xbar(v(-), n(+))),
nform(case(*(subj)))),
spec(specified(+))),

semantics(theta(subject)))])))
...

Figure 6.12: The sign for the transitive verb ‘eat’.

Other than arguments’ direction with respect to a verb and their grammatical role,

6Having before and after as separate features allows us to specify independently whether an
argument must, can or must not appear before or after its head.

6.2. THE USED DEPENDENCY GRAMMAR 133

we take a particular interest in a semantic feature of a particular kind of verbs: the en-
tailment pattern of attitude verbs (Section 5.8.2). Similar to specifiers and intersective
sign, the dictionary entries for an attitude verb will include such a feature and others
that in turn will feed the sign of the verb with the necessary values. The patterns we
marked attitude verbs with embody more information than the patterns explained in
Section 5.8.2. Put differently; our entailment patterns have the following structure:

[PP / EP
looomooon

positive context

, PN / EN
looomooon

negative context

]

The first element (PP / EP) of the above pattern is about what happens when the
complement of an attitude verb is inside a positive context, and the second (PN / EN)
is about what happens when it occurs inside a negative context. The first parts of
each of these, PP (Polarity in Positive context) and PN (Polarity in Negative context)
are about what polarity this complement should propagate to its daughters in a pos-
itive and negative contexts. The second, EP (Entailment in Positive context) and EN

(Entailment in Negative context), is about what can be inferred from that complement:
its implicit proposition, the negation of its implicit proposition, or nothing. For in-
stance, the verb ‘manage’ (according to its entries in Figure 6.13) is a verb that takes a
sentential complement that has a finite verb as its head, and has [1/1, -1/ -1] as its
entailment pattern. This means that in a positive context ‘manage’ marks its comple-
ment with positive mark (1) and entails the affirmative of its implicit proposition, while
in a negative context it marks the complement with (-1) and entails the negation of the
proposition. The verb ‘fail’, on the other hand, is [-1/-1, 0/0] – it entails the nega-
tion of its complement in positive contexts (‘He failed to complete the final question’
entails ‘He did not complete the final question’) but it doesn’t entail its complement in
negative ones – you can’t get from ‘He did not fail to complete the final question’ to
‘He completed the final question’ because the reason that he did not complete it may
have been that he did not even attempt it.

6.2.4 Movement

Words that need arguments specify where they expect to find them. Modifiers specify
where they expect to find their targets7. But things do not have to be where they are

7The rules governing this can be quite complex, e.g. in English head final modifiers precede their
targets (‘sleeping man’, ‘very fat man’, others follow them (‘man sleeping quietly’, ‘man with a big
nose’.

134 CHAPTER 6. PARSING AND PRE-PROCESSING

sign(syntax(
args([
sign(structure(dir(position(before(-), after(+)))),

syntax(args([]),
head(cat(xbar(v(+), n(-))),
vform(finite(to),
spec(specifier(*(time(-,identity,[simple],B)=1)))),

semantics(theta(xcomp([1/1, -1/-1])))),
sign(...)

head(cat(xbar(v(+), n(-))),...

Figure 6.13: The sign for ‘manage’.

expected. There are rules that govern whether an item can, or indeed must, be shifted,
and if so where it can be shifted to. The most obvious of these concerns WH-marked
items, where the rule is that no WH-marked daughter of a verb may follow a non-
WH-marked one (normally stated as WH-marked must be shifted to the start, but if
you have multiple WH-marked daughters then they do not all have to be shifted: ‘Who

wants what for dinner?’). Things get moved around quite a lot in English for emphasis
(6.10) and ambiguity reduction (6.11):

(6.10) I enjoyed the main course but the pudding I thought was disgusting.

(6.11) I believe with all my heart that she loves me.

6.2. THE USED DEPENDENCY GRAMMAR 135

The rules that govern what can move to where are fairly intricate: they are ex-
pressed using the feature moved, which has polar-valued sub-features before and after,
where for instance, moved(position(before(+), after(-))) says that the item in
question has been moved to a position earlier than where one would expect it to be. As
before, having separate features before and after allows us considerable freedom to
say whether something may, must or must not be moved in either direction.

6.2.5 Internal and external views

Saying, for instance, that something is a NP conveys one of two perceptions: that it
looks like a NP (e.g. it is made out of a Det followed by a noun), or that it can be used
in places where one would normally use a NP (e.g. as the subject of a verb). But, it can
happen that something that does not look like a NP can be used in a position where one
actually expected to see a NP: ‘make’ normally takes an NP as its subject, ‘by’ usually
takes a NP as its complement. But in (6.12) and (6.13) they combine with a present
participle verb phrase (VP):

136 CHAPTER 6. PARSING AND PRE-PROCESSING

(6.12) Eating raw meat will
make you ill.

(6.13) He concluded the ban-
quet by eating the owl.

6.3. DTS’ MAIN STRUCTURE 137

The key here is that items that look like present participle VPs can be used as NPs:
internally they are VPs, while externally they are NPs. We allow items to have a range
of external views: when we need to use an external view, we mark it with an extra node
in the tree.

6.3 DTs’ Main Structure

Now that we have seen the underlying grammatical aspects that collectively contribute
to the building of DTs, this section provides an outer-look at DTs’ general structure
and the possible values of their parts (argument, modifiers and specifiers).

Consider the DTs’ graphical representation and their equivalent data structure given
in Figure 6.14. In terms of the general hierarchy, a DT of a NL utterance starts with a
punctuation mark as a key indicator of the type of utterance that a tree represents. The
systems (Figure 6.2) accepts two types of utterances, premise(s) which are meaning-
ful sentences ending with ‘.’ and are claim(ed) to be true, while questions are those
that end with a ‘?’ and are the things we query (questions do not have to involve
aux-inversion or WH-marked subjects – any sentences ending with a ‘?’ are deemed
to be questions). After the utterance punctuation mark, the actual tree head node and
its sub-tree will follow.

The sub-tree of any node, as Figure 6.14(b) shows, is presented as a nested list
structure that consists of a Head (which is the node itself) and N Daughters (which are
a list of N argument(s) and/or modifier(s)—arg/mod(s) for short), where N can be any
non-negative integer, and in case N is 0 the node is called a leaf. Finally, links between
nodes and their daughters are generally labelled with grammatical relations.

A word is represented in two forms: its inflected form, word(Root_word>Marker),
as it appears in the utterance, and its denotation den(Root_word). In the inflected form,
the Marker (if present), is actually an inflectional affix that carries a grammatical prop-
erty such as tense, plurality, adjectives, etc. For example, in Table 6.1 the word ‘loves’
has the form word(love>s), where >s is the 3rd person singular present marker, and
in word(car>s), >s is the plural marker. In case of a word being the root itself, its
inflected form will have the >0 marker; word(Root_word>0), indicating no inflectional
affixes being attached. In addition to cases where a zero inflectional marker is added,
some words might not have markers attached to them at all. This is the case for irreg-
ular words, such as word(won). Words’ denotations, on the other hand, are the roots

138 CHAPTER 6. PARSING AND PRE-PROCESSING

(a)
A sub-tree

[word(Root_word>Marker)/den(Root_word)
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

Head

| N arg/mod(s) sub-tree(s)
looooooooooooooooomooooooooooooooooon

Daughters

]

argument/modifier
arg(Gram_Label,*(Specifier_name=Scope_score),Time_var,

[Word| N arg/mod(s) sub-tree(s)])

modifier(Gram_Label, Sem_class,
[Word| N arg/mod(s) sub-tree(s)])

(b)
Instance: Utterance tree

[word(Punc)/den(Punc) , arg(Utter_type,
*(Specifier_name=Scope_score),
Time_var,
[Head Word|N arg/mod(s) sub-tree(s)]]

(c)

Figure 6.14: Graphical representation of a DT and the structure of the underlying
representation.

6.3. DTS’ MAIN STRUCTURE 139

without any markers for regular words. For irregular words, the denotation is the in-
finitive form for verbs and the singular form for nouns (e.g. the denotation of ‘won’ is
win and from ‘men’ is man).

Type of Marker Example

Tense
‘loves’→ word(love>s)/den(love)
‘love’→ word(love>0)/den(love)
‘won’→ word(won)/den(win)

Plurality
‘cars’→ word(car>s)/den(car)
‘peach’→ word(peach>0)/den(peach)
‘men’→ word(men)/den(man)

Comparatives and Superlatives

‘taller’→word(tall>er)/den(tall)
‘tallest’→ word(tall>est)/den(tall)
‘better’→ word(better)/den(good)
‘best’→ word(best)/den(good)

Adjectives and Adverbs ‘really’→word(real>ly)/den(real)

Table 6.1: Examples of words’ markers and their types.

A non-leaf node can have one or more arg/mod(s). argss and modifiers are terms
with number of parts. They each have a label (Gram_label) for the grammatical relation
that constitutes with its head and a sub-trees of its own daughters (if any). Argument
and modifier labels considered in this thesis are listed in Table 6.2 and Table 6.3 re-
spectively. Note that an utterance, as can be seen in Figure 6.14(c), is itself an arg of
the punctuation mark, hence, is labeled with either claim or query. Looking back at
Figure 6.14 (b), it can be noticed that modifiers have an extra field called Sem_class

that is a place holder for the sign indicating a modifier’s semantic class: whether it it
intersective, subsective, or something else.

Arguments also have two more place holders, one is for the specifier and the other
for the time variable. We have seen in Section 5.5 that events are tensed and thus
situated in time. Their constituents are normally tenseless items. Nonetheless, it is
believed that their interpretation may be time-dependent [Dalrymple, 1988]. Take for
example, ‘John ate a ripe peach.’. The single ripe peach that was eaten by John is a
specific one that existed at that specific past time (when the event took place) and it no
longer exists. Therefore, the place holder Time_var is used to ensure that args share
the same time as the events that involve them.

As for specifiers, they have the form *(Specifier_name=Scope_score). Table 6.4
provides a list of possible specifiers’ names and their categories. Most specifiers’
names reflect two pieces of information: what kind of specifier it is and the cardinality

140 CHAPTER 6. PARSING AND PRE-PROCESSING

Argument label Meaning Notes
claim/query top level markers
subject subject
dobj direct object
predication(PRED) complement of copula the value of PRED is from Table

6.3 and depends on the type of
the complement, which could be,
as seen in Section 5.6, an NP, AP,
or PP

therepred a complement of an ES
ppcomp preposition complement
owner possession
xcomp([PP/EP,PN,EN]) Attitude clauses (Section 5.8.2) [PP/EP,PN,EN] constitute an

entailment pattern as seen in Sec-
tion 6.2.3)

whclause Relative clause used when a WH-clause is the ar-
gument of some head word

negComp argument of a negation marker

Table 6.2: List of Arguments.

Modifier label Meaning Example
nmod noun ‘John is a linguistics professor.’
amod(simple) simple adjective ‘John is an old man.’
amod(comparative) comparative adjective ‘John is an older man than Bill.’
amod(superlative) superlative adjective ‘John is the oldest man’
advmod adverb ‘John slept well.’
ppmod preposition ‘John slept in the park.’
whmod relative clause ‘The man who loves Mary slept.’
possession possession ‘John’s car is old .’

Table 6.3: List of Modifiers.

of the restrictor set (in case the specified argument is to be interpreted as a QNP (Sec-
tion 5.2)). For instance, *(some(N)) is specifying an indefinite set of entities whose
cardinality is N, *(the(N)) says the specified argument refers to a set of N entities,
and *(proRef(N)) indicates that the specified item is a referring pronoun to N entities.
The cardinality is given as a numerical (in)equality, e.g. ‘a man’ has cardinality =1,
‘some men’ has cardinality >1. Examples of some other special specifiers that supply
other kinds of information include: *(zero) which specifies that the argument is va-
cant, as in the case of a non-overt subject, and the time specifier: *(time(Timeless,

6.3. DTS’ MAIN STRUCTURE 141

[word(.)/den(.),
arg(claim,

*(time(-,+,[simple,past],B)=1),
B,

[word(ate)/den(eat),
arg(dobj,*(some(=1)=2.0),B,

[word(peach>0)/den(peach),
modifier(amod(simple),*(-),[word(ripe>0)/den(ripe)]),
modifier(C, D, [word(a)/den(a)])]),

arg(subject,*(name(=1)=1000),B,
[word(John)/den(John)])])]

Figure 6.15: ‘John ate a ripe peach.’

Def,[Aspect| Tense_sequence], Time_var)). The Time_var of a time specifier is
again for sharing the time between an event and its arguments. The place holder Def
and the list [Aspect| Tense_sequance] are (as have been illustrated in Section 5.5.3)
for describing the temporal information: aspect, tense sequence, and definiteness sign
(i.e. whether the described time is referential or existential). Finally, Timeless is for
experimental reasons and will be discussed further in Chapter 10.

The second part of specifiers is an assignment of a Scope_score. Based on the
discussion given in Section 5.9, the Scope_score is a value that indicates the scope of
the argument being specified with respect to other scope-bearing items. Since the aim
of scope scores is to indicate the order of precedence, their given specific values are
not important, but their relative values are, with smaller scores specifying wider scope.
See the DT of ‘John ate a ripe peach.’ in Figure 6.15 for an example of all the above

142 CHAPTER 6. PARSING AND PRE-PROCESSING

Specifier Category Specifier Examples/notes

Universal
*(forall) ‘every man loves cars.’’
*(bareplural(subject,) ‘men love cars.’: bare plural in subject po-

sition = universal (Section 5.2)

Existential

*(some(N)) ‘some man slept in the park’, ‘some men
slept in the park’

*(num(N)) ‘three men slept in the park’
*(predet(least,N)) ‘at least three men slept in the park’
*(predet(most,N)) ‘at most three men slept in the park’
*(many) ‘many men slept in the park’
*(of) ‘two of the men slept in the park’
*(bareplural(dobj,)) ‘men love cars.’ bare plural in object po-

sition = existential (Section 5.2)

Default
*(most) ‘most men love cars.’’
*(few) ‘few men love cars.’’

Referential/Definite

*(the(N)) ‘the man slept.’, ‘the men slept.’: all NPs
are taken to denote sets, N here is the car-
dinality of the set.

*(proRef(N)) ‘he loves her.’
*(name) ‘John loves Mary.’
*(both) = ‘the two’
*(either) = ‘one of the two’
*(neither) = ‘not one of the two’

Time *(time(Timeless,
Def,[Aspect|Tense_sequence],
Time_var))

See Section 5.5.3

Adjectives *(adjSpec) needed for predicative uses of adjectives:
‘John is happy’ (Section 5.6).

Negation
*(not) ‘John does not like peaches.’: this is not

normally seen as a specifier – see Section
5.5.2

*(no) ‘no man is an island.’

Miscellany
*(zero) for zero items as non-overt subjects
*(of) for complex Dets such as ‘six of the men’
*(whPron) ‘who’, ‘which’

Table 6.4: List of Specifiers.

notions.

6.4 Summary

In this chapter, we have discussed the grammar used for generating our DTs and the
reasons behind choosing this grammar over an off-the-shelf statistical parser. We have

6.4. SUMMARY 143

also identified (CO2.1) a number of semantic features that ought to be encoded on
DTs including some features that are widely acknowledged to be semantically relevant
(e.g cardinalities of GQs, the shape of time information, and scope scores) but were
missing from the parser’s output, and others that have been identified in Chapter 5 (e.g.
semantic class of adjectives, attitude verbs’ entailment patterns and polarity marking)
that we believe are crucial for constructing normalized DTs (Chapter 7). Finally, we
have illustrated trees’ general structure and explained in detail what each part of it
means and what are the possible values for each of these parts.

Chapter 7

Tree Normalization

The previous chapter explained how we obtain our basic representations, which are
DTs. As with any of the standard logics, it is convenient to convert the basic rep-
resentation to a form that is well-suited to the demands of the theorem prover with
which they are to be used, e.g. formulae of standard logics are typically converted to
quantifier-free form or clausal form. Among the NLI systems discussed in Section 4.3
it is only Abzianidze’s (2015; 2016; 2017a) work that incorporates theorem proving,
and hence this is the only system that normalizes NLI problems into forms (LLFs) that
are suitable to use within their inference engine (LangPro). While the expressiveness
of LLFs goes beyond the polarized trees (trees marked with polarities) of MacCart-
ney’s (2009) NatLog system and Hu et al.’s (2019a) MonaLog system, they still say
little about the semantic intricacies discussed in Chapter 5. However, LangPro (as its
performance on the FraCaS dataset shows) can still handle deep inferences by having
many rules (around 80) that are devised specifically for application to certain linguistic
constructions.

What we do in this work is, to some extent, the opposite. Our basic MRs, as shown
in the previous chapter, are DTs that are decorated with fine-grained semantic features
including: time information, cardinalities of GQs, scope scores, semantic classes, en-
tailment patterns, etc. What we do with these decorated trees is to apply a set of trans-
formational stages that turn them into forms that the inference engine, which consists
of only a handful of inference patterns, desires. Therefore, in this chapter, we explain
the transformational stages that we have designed (CO2.2) to turn DTs into the prover’s
desired form; the inference friendly forms (IFFs). These stages are illustrated in Figure
7.4, and after a brief introduction (Section 7.1) each of them is explained separately.

144

7.1. INTRODUCTION 145

Figure 7.1: Dataflow through the inferential system.

7.1 Introduction

Most theorem provers require the application of a series of normal form rules which
convert a (comparatively) readable formulae like in Figure 7.2 into flatter forms (e.g.
quantifier-free form, clausal form, . . .) as in Figure 7.3. The flatter forms make it
easier for the inference engine to match facts and rules: in the original standard form,
the fact that this rule will let you conclude that there was a loving event is buried deep
in the formula, whereas in the flattened form it is immediately visible and can be used
for indexing and matching.

exists(A,
woman(A)
& forall(B, man(B)

=> exists(C, event(C, love)
& theta(C, object, A)
& theta(C, agent, B)
& aspect(now, simple, C))))

Figure 7.2: Ordinary logical formulae for ‘every man loves a woman.’

Similarly, our theorem prover, which is an adapted version of what is basically a
FOL theorem prover (Section 3.3), requires its input to be in a form the allows its facts

146 CHAPTER 7. TREE NORMALIZATION

woman(#1)
man(B) => event(#2(B), love)
man(B) => theta(#2(B), object, #1)
man(B) => theta(#2(B), agent, B)
man(B) => aspect(now, simple, #2(B))

Figure 7.3: Normalized formulae for ‘every man loves a woman.’

Figure 7.4: From a DT to an IFF.

and/or rules of inference to be easily matched and applied. Therefore, PDTs, such the
one for ‘every man loves Mary’ in Figure 7.5(a), go through a series of transformational
stages (Figure 7.4) that convert them into flatter forms of facts and/or rules called
IFFs, such as the ones in Figure 7.5(b). What these stages generally do (after a bit
of pre-processing (Section 7.2)) is, first, group specifiers into definites, indefinites,
and universals and turn them into scoped binding operators that bind the trees they
specify (Section 7.3). Then, to ensure a preferred reading for the whole tree, a scope
resolution is performed, making use of the scope scores assigned to operators (Section
7.4). Finally, tree parts marked by entirely either the definite or indefinite operators
are fact-like and hence, their variables are turned into terms; definites by resolution
(Section 7.7) while indefinites by skolemization (Section 7.5.3). Rule-like tree parts,
which are marked by universal operators and a few other specific ones, keep their
variables and include some kind of implicational symbol (Section 7.5.3).

7.1. INTRODUCTION 147

(a)
** FACTS **
[fact({[female?1]@@A,[#,9]}, claimed),
fact({card,[#,9],=1}, assimilated),
fact({{name,[Mary?1]}@@A,[#,9]}, assimilated),
fact({{time,[now]},[#,8]}, assimilated)]

** FORWARDS RULES **
[({[man? -1]@@[#,8],B}

=> ({([love?1,{dobj,[#,9]},{subject,B}]@@{simple,[#,8]},[#,7,B])}: claimed))]

(b)

Figure 7.5: From a DT to an IFF example.

7.1.1 Notational Conventions

Some of the notations involved in the following discussions were explained in Sec-
tion 5.1, Section 6.3 and here prior their use inside grey boxes. Table 7.1 list some
of the frequently used ones and their use/meaning. Note that, in this chapter things
that starts with a capital letter are either variables or place holders that could have
different values in different instances. For example the general shape of specifiers is
*(Specifier name=Scope_score) and a possible instance is *(forall=2).

148 CHAPTER 7. TREE NORMALIZATION

Facts fact{Restrictor, STATUS} the general shape of facts and their
parts.

Forward rule A => C:STATUS the general shape of forward rules and
their parts.

Backwards rule C <= A:STATUS the general shape of backward rules
and their parts.

Time [...]@@T or [...]@@CTXT reads: at the the time given by T and at
the time given by the context CTXT.

Polarity [Word?Polarity] are assigned at word level and they
have 3 possible values: ?1 for positive
polarity, ?-1 for negative and ?0 for no
polarity.

Conjunction {...} & {...}
Skolem function [#,SK] A skolem function in which SK is a

skolem constant.
Others --> we use this arrow in the definition of

rules (given in grey boxes) to indicate
the before and after forms.

Table 7.1: Some used notations.

7.2 Pre-processing

DTs are to be normalized into forms that are suitable for the inference engine to work
with. Before that can be done, they have to undergo two forms of pre-preprocessing:
(1) removing inessential items from the tree, and (2) restructuring some of its parts to
facilitate follow up transformational steps.

7.2.1 Removing inessential terms

We start by removing several very obvious things. We remove the top-level punctuation
mark, i.e. ‘.’ or ‘?’, since their task is to mark the whole utterance as being a claim or a
query and this is encapsulated in the label they assign to the remainder of the tree. The
words’ inflected forms are also removed because the information they project about a
word is already implicit in that word’s denotation and specifier. For instance, in ‘John

ate a ripe peach’, Figure 6.15, word(peach>0) the marker indicates a singular peach
and, at the same time, that word’s specifier *(some(1)=2.0) says it is specifying one
‘peach’ which is the same thing.

The other type of things to be deleted are dummy items. As explained in Section
6.2.2, some adjuncts function purely as modifiers, some purely as specifiers and some
as both. Where an adjunct acts purely as a specifier, the information that it provides

7.2. PRE-PROCESSING 149

is attached directly to the head node, and the node for the adjunct can be deleted. For
example, in ‘John ate a ripe peach’, Figure 6.15, the article ‘a’ conveys the existence
of some singular ‘ripe peach’ in the specifier *(some(1)=2.0), but has a dummy role
(C) and hence it will be removed, and the tree will become as in Figure 7.6. Similarly,
‘that’ in ‘I know that she loves me.’ is syntactically a modifier, but it does not carry
either a specifier or a modifier and hence is deleted at this point.

Figure 7.6: ‘John ate a ripe peach.’ after removing excess information.

Lastly, once time specifiers have been built (as described in Section 5.5.3), from
the tense markings, of the verb (again, that includes not only the inflectional affix
but the auxiliary sequence as well), these markings become excess information and
hence can be removed. Then the final result will be a verb and a time specifier. Take
for example the sentence ‘John has been working.’ and its DT in Figure 7.7. The
sequence ‘has been’ plus the affix ‘-ing’ indicates a present perfect progressive. That
tense is represented, according to our version of Reichenbach’s system, as the list
[prog, past, now] in which prog is the progressive aspect; past is the event time;
and now is the reference time. That list, along with the definiteness sign + and the time
variable D, all collectivity make up the specifier of the event WORK.

150 CHAPTER 7. TREE NORMALIZATION

Figure 7.7: ‘John has been working.’ before and after pre-processing.

7.2.2 Restructuring

This step is about a number of situations where two sentences with fairly different
surface structures have very similar interpretations, e.g. ‘The front door of my house

is painted white’ and ‘My house’s front door is painted white’. We deal with these by
applying tree-transformation rules to ensure that the two versions of the utterance end
up with the same trees.

Possession phrases, such as (7.1), are believed to mean exactly the same thing.

(7.1) a. John’s friend slept.

b. The friend of John slept.

In order to obtain a unified treatment for both forms, we turn the possession marker
‘s’, Figure 7.8(a) into its equivalent prepositional form as in Figure 7.8(b).

Copula sentences, as explained in Section 5.6, are to be turned into inferential equal-
ities. Therefore, at this stage, the DTs of ‘NP be NP’ a copula sentence is transformed
into a tree where the copula is replaced with the equality sign (=) and the subject’s

7.2. PRE-PROCESSING 151

Figure 7.8: from ‘John’s friend slept.’ to ‘The friend of John slept.’

and the post copula’s grammatical labels are replaced with the labels eq2 and eq1 re-
spectively. For instance, compare the DT of ‘John is a man’ (Figure 7.9(a)) and its
reformed version in (Figure 7.9(b)).

(a) (b)

Figure 7.9: ‘John is a man’ before and after restructuring.

Such reformation is not as straightforward for other forms of copula sentences

152 CHAPTER 7. TREE NORMALIZATION

(‘NP be AP’ and ‘NP be PP’). That is, as previously discussed (Section 5.6), due to
the fact that ‘NP be AP’ and ‘NP be PP’ copula sentences ought to undergo another
kind of transformation; the transformation that makes both AP and PP modifiers for
an indefinite hidden noun, before turning them into trees of equals. To demonstrate,
consider the examples (7.2a) and (7.2b) and their DTs before and after reforming in
Figure 7.10 and Figure 7.11 respectively. In the first, the post copula is an NP as
its grammatical label (pedication(nmod)) shows. Hence, its transformation is pretty
straightforward; relabelling.

(7.2) a. John is a man in the park.

b. John is in the park.

(a) (b)

Figure 7.10: ‘John is a man in the park’ before an after restructuring.

On the other hand, the post copula of the second (7.2b) is a PP as its grammatical
label indicates (pedication(ppmod)). Thus, the PP modifier is first transformed from

7.2. PRE-PROCESSING 153

(a) (b)

Figure 7.11: ‘John is in the park’ before and after restructuring.

predicational into an attributive modifier for a hidden indefinite NP; that NP is the
empty node with only a specifier (exists) in Figure 7.11 (b). After doing that, we can
relabel the DT using the same machinery used for ‘NP be NP’ sentences obtaining a
structure that is similar to the one in Figure 7.10(b) where the only difference is that in
the latter ‘in the park’ modifies an actual NP (‘a man’), while in the first it modifies a
dummy hidden one (‘a thing’, ‘an object’,‘an individual’, etc.).

Finally, in view of the discussion in Section 5.7, ES are also to be turned into a
special kind of copula sentences where the equality is between the expletive ‘there’
and the post copula. For example, see the DT of (7.3a) and its transformation into a
copula structure in Figure 7.12 (a) and (b) respectively. The restructured tree in 7.12
(b) expresses the existence of something (i.e. X) and the identity of that thing is ‘a man

in the park’. Such restructuring has made the ES, in a sense, similar to its canonical
subject-predicate counterpart in 7.3(b), where the DT of that counterpart also expresses
the existence of ‘a man in the park’ but in a more straightforward way.

154 CHAPTER 7. TREE NORMALIZATION

(a) (b) (c)

Figure 7.12: ‘there is a man in the park.’ vs ‘a man in the park (exists).’

(7.3) a. ‘There is a man in the park.’

b. ‘A man in the park (exists).’

7.3 Quasi Logical Form (QLF)

As we have seen in the previous chapter, many aspects of the semantics of sub-trees are
encapsulated in their specifiers; their definiteness, cardinality, scope, etc. We believe
that the distinctions we need to make about a specified tree part (i.e. whether it is fact-
like or rule-like, whether it needs to be introduced to the conversation or resolved to
its referent, and what its order of precedence with respect to other tree-parts is) are all
given in its specifier. Therefore, to keep such distinctions apparent, and to facilitate the
final conversion into assert-able facts and rules, in this section specifiers are turned into
in-situ quantifiers each called a qq (for quasi quantifier). That in turn converts the PDT
containing them into an intermediate form that we called1 quasi logical form (QLF).

1The choice of the form name, is motivated by the notational similarity to Alshawi and van Eijck
[1989]; Alshawi [1992] quasi logical forms.

7.3. QUASI LOGICAL FORM (QLF) 155

The general rule for turning specifiers into qqs is given in (QLF-R1). A qq consists of
a wrapper (qq(...)) to mark its position within the tree and a scoped binding operator
that binds its restrictor using a binding variable. The restrictor ST1 @@ Time_var is the
specified sub-tree ST0 after being itself transformed into a QLF and attached to the
shared Time_var. The binding operator assigned to a tree-part reflects to what group
of specified trees that part belongs. Put differently:

• Tree-parts with definite specifiers (e.g.*(the...) and *(name...)), are facts-
like that need resolving. Thus, their specifiers are turned into instances of the
quantifier: qq(the...).

• Tree-parts with indefinite specifiers (e.g. *(num...) and *(some...)), are facts
introducing, and hence, their specifiers are turned into instances of the quantifier:
qq(exists...) .

• Tree-parts with universal specifiers (e.g. *(forall...)) and some other special
ones (such as *(most...)), are rules introducing parts. Therefore, their quanti-
fiers are instances of: qq(forall...) .

A simple example of these notations is given for the partial tree of ‘every man
slept.’ in (7.4). Although the general rule for constructing qq forms is as given below,
its formation most of the time involves some case specific transformation and tidying
up operations and, hence they are grouped accordingly in the subsequent sections.

QLF-R1: qq general formation rule

qq form:
arg(Gram_label,*(Specifier_name=Scope_score),Time_var,ST0) -->
arg(Gram_label,qq(Operator=Scope_score

loooooooooooooomoooooooooooooon

scoped operator

, VAR
loomoon

binding var

:: {ST1 @@ Time_var, VAR}
looooooooooooooooomooooooooooooooooon

restrictor

))

156 CHAPTER 7. TREE NORMALIZATION

(7.4) Every man slept.

arg(subject, *(forall=2), B, [den(man)]) -->

arg(subject, qq(forall=2, E::{[den(man)]@@B,E}))

7.3.1 QNPs

As discussed in Section 5.2, QNPs are to be represented as type 〈1〉 quantifiers such
that those with existential interpretations are instances of exists and will have the
cardinalities of their denoting sets as part of their restrictor. Cardinalities, as illus-
trated in Section 6.3, are included in specifiers. Therefore, qq forms of QNPs are
obtained by applying the rule in (QLF-R2). This rule is as (QLF-R1) except that the
cardinality N given in the specifier, is turned into a cardinality clause that has the form
{card,VAR,N} and is added to the qq form as a conjunct to the restrictor. For instance,
the QNP in (7.5a) involves a set of two men (*(the(=2)=1000)) and hence, its car-
dinality clause will be {card,S,=2}, while in (7.5b) the QNP denotes a singleton set
(*(some(=1)=2.0)), thus its clause {card,S,=1}. The description of the size of N can
be something other than a simple equality expression. Consider (7.5c) for instance.
The quantifier ‘at least three’ has its cardinality expressed as (>=3) and hence the
clause {card,S,>=3}. Moreover, some quantifiers are numerically inexpressible, such
as ‘a few men’ (in 7.5d). In such cases the cardinality clauses will include the deter-
miner’s name as the size description with appropriate background rules to interpret this
cardinality when carrying out inferences.

QLF-R2: QNPs formation rule (set)

arg(Gram_label, *(Specifier_name(N)=Scope_score), Time_var, ST0) -->
arg(Gram_label,qq(exists=Scope_score, VAR ::

{ST1 @@ Time_var, VAR}&{card,VAR,N }))

7.3. QUASI LOGICAL FORM (QLF) 157

(7.5) a. Two men slept.

arg(subject, *(num(=2)=2), B,[den(man)]) -->

arg(subject, qq(exists=2, S :: {[den(man)]@@B,S} & {card,S,=2}))

b. A man slept.

arg(subject, *(some(=1)=2.0), B,[den(man)) -->

arg(subject,qq(exists=2.0, S :: {[den(man)]@@B,S} & {card,S,=1}))

c. At least three men slept.

arg(subject, *(predet(least,3)=0.5), B,[den(man)]) -->

arg(subject,qq(exists=0.5, S :: {[den(man)]@@B,S} & {card,S,>=3}))

d. A few men slept.

arg(subject, *(num(few)=2), B, [den(man)]) -->

arg(subject, qq(exists=2, S :: {[den(man)]@@B,S} & {card,S,few}))

A QNP could also denote a set of entities that is a subset of another set. An example
of such QNPs is expressions of the form (subset of set) as in (7.6). The QNP in
(7.6) involves a set of one man, D, that is a subset of a larger known group of men, C. In
such cases, the subset qq form is included inside the qq form of the main set according
to the rule (QLF-R3). Moreover, it will have, in addition to the cardinality clause that
shows its size, a subset clause of the format {subset,C,D} that links it to the main set.

QLF-R3: QNPs formation rule (subset)

arg(Gram_label, *(of=Scope_score1), Time_var,
[den(of),
arg(ppcomp,*(Specifier_name(N2)=Scope_score2,Time_var,ST2),
modifier(numAsMod, Factivity, [den(N3)])])

-->
qq(Operator=Scope_score2, VAR2 ::{ST2@@Time_var, VAR2} & {card,VAR2,N2}),
arg(Role, qq(exists=2, VAR3::{card, VAR3, N3}&{subset,VAR2,VAR3}))

158 CHAPTER 7. TREE NORMALIZATION

(7.6) One of the men slept.

arg(subject,

*(of=2),

B,

[den(of),

arg(ppcomp, *(the(>1)=1000), B, [den(man)]),

modifier(numAsMod, *(+), [den(=(1))])]) -->

qq(the=1000, (C :: ({[den(man)]@@B,C} &{card,C,>1})),

arg(subject, qq(exists=2, D::{card, D, =1} & {subset,C,D})))

Finally, for a number of quantifiers the cardinality information is omitted. That
includes universals which do not assume existential import (e.g. (7.4)), default quan-
tifiers (e.g. (7.8)) and mass nouns (e.g. (7.7)). For others, including the negation
quantifier ‘no’ (e.g. (7.9)) and BPs in object position (e.g. (7.10)) the cardinality infor-
mation is left unspecified. In addition, both kinds of quantifiers keep their specifiers’
names as the operator to ensure distinctive treatments in Section 7.5.

(7.7) John loves music.

arg(dobj, *(baresingular=2.1), B,[den(music)]) -->

arg(dobj, qq(baresingular=2.1, S :: {[den(music)]@@B,S}))

(7.8) Most men sleep.

arg(subject, *(most=2.0), B,[den(man)) -->

arg(subject, qq(most=2.0, S :: {[den(man)]@@B,S}))

(7.9) No man sleeps.

arg(subject, *(no=0.9), B,[den(man)]) -->

arg(subject, qq(no=0.9, S :: {[den(man)]@@B,S} & {card,S,X}))

(7.10) Mary loves cats.

arg(dobj, *(bareplural(dobj,B)=2.1), A, [den(cat)]) -->

arg(dobj, qq(bareplural(dobj,B)=2.1,D::{[den(cat)]@@A,D}&{card,D,X}))

7.3. QUASI LOGICAL FORM (QLF) 159

7.3.2 DNPs

DNPs, as explained in Section 5.3, are referring expressions (REs) that need resolving
(i.e. their referents need to be found). Therefore, as depicted in rule (QLF-R4), their qq
forms have the as the binding operator. Definite descriptions, as illustrated in Section
5.3.1,have a representation that is the same as their indefinite counterparts except the
use of a different operator (see (7.11) for example). Proper names, Section 5.3.2, are
represented as definite descriptions that can be read as ‘the thing named X’ as in (7.13).
Finally, anaphoric pronouns (Section 5.3.3), commonly consider gender, cardinality,
and recency factors for their resolution. While gender is expressed in the restrictor
(as in (7.12)) and cardinality expressed by its clause, recency is expressed using an
indicator clause {recent,V}.

QLF-R4: DNPs formation rule

arg(Gram_label, *(Specifier_name(N)=Scope_score), Time_var, ST0) -->

The NP:
arg(Gram_label,qq(the=Scope_score, VAR ::

{ST1 @@ Time_var, VAR} &{card,VAR,N }))
Proper names:
arg(Gram_label,qq(the=Scope_score, VAR ::

{{name,ST1} @@ Time_var, VAR} &{card,VAR,N }))
Anaphoric pronouns:
arg(Gram_label,qq(the=Scope_score, VAR ::

{ST1 @@ Time_var, VAR} & {recent, VAR} &{card,VAR,N }))

(7.11) The man is sleeping.

arg(subject, *(the(=1)=1000), T, [den(man)]) -->

arg(subject, qq(the=1000, V :: {[den(man)]@@T,V} & {card,V,=1}))

(7.12) He slept.

arg(dobj, *(proRef(=1)=1000), T, [den(male)]) -->

arg(subject, qq(the=1000 , V ::

{[den(male)]@@T,V} & {recent,V}& {card,V,=1}))

160 CHAPTER 7. TREE NORMALIZATION

(7.13) John is sleeping.

arg(subject, *(name(1)=1000), T, [den(John)]) -->

arg(subject, qq(the=1000, V :: {{name,[den(John)]}@@T,V}&{card,V,=1}))

Other determiners that combines with NPs creating definiteness and are expressible
in terms of the article ‘the’ are ‘both’ and ‘either’. The determiner ‘both’ will become
‘the two..’ and ‘either’ is the same as ‘one of the..’ and hence their qq forms are as
exemplified in (7.14) and (7.15).

(7.14) Both men are sleeping.

arg(subject, *(both=-10), T, [den(man)]) -->

arg(subject, qq(the=-10, S :: {[den(man)]@@T,S} & {card,S,=2}))

(7.15) Either man slept.

arg(subject, *(either=-10), T, [den(man)]) -->

qq(the=-10, C :: ({[den(man)]@@T,C} &{card,C,>1}),

arg(subject, qq(exists=2, D::{card, D, =1} & {subset,C,D}))

7.3.3 Events and Time

Following the choice of Davidson’s style events (given in Section 5.5) and the discus-
sion of turning a tensed event into a simple event descriptor and a time specifier in
Section 6.2.2, tensed events are represented using two nested qq forms. The outer qq
is for time, while the inner one is for the event itself. The formation rule for these
nested qqs is given in rule (QLF-R5) and exemplified in Figure 7.13, such that:

• The Def sign in the time specifier, determines whether the time given by the
specifiers is referential or existential, and hence indicates what operator is to be
used for binding the time restrictor. In other words, the operator is the if Def

value is +, otherwise it is exists.

• The time restrictor has the form {{time,[Tense_seq]}, T}.

• Following the time restrictor comes the event’s qq in which the bound event re-
strictor is associated with the time at which it occurred using the context clause:
@@{ASPECT, T}.

Figure 7.13 shows the QLF of the sentence ‘John buttered the toast’ where both qq

forms of quantifiers and time specifiers are integrated.

7.3. QUASI LOGICAL FORM (QLF) 161

QLF-R5: Events formation rule

...,
*(time(Timeless,Def,[Aspect|Tense_seq],T)=Scope_score),

T,
ST0) -->

(a)Referential Time (Def= +):
...,
qq(the =Scope_score, T :: {{time,[Tense_seq]}, T},

qq(exists= 5, E, {ST1 @@ {ASPECT, T}, E}))

(b)Existential Time (Def= - or Variable):
...,
qq(exists =Scope_score, T :: {{{time,[Tense_seq]}, T},

qq(exists= 5, E, {ST1 @@ {ASPECT, T}, E}))

...,
*(time(-,+,[simple,past],A)=1),
A,
([den(butter),

arg(dobj, *(the(=1)=1000), A,[den(toast)]),
arg(subject, *(name(=1)=1000), A, [den(John)])]) -->

...,
qq(the=1, A::{{time,[past]},A},
qq(exists=5, B,
{(([den(butter),
arg(dobj,qq(the=1000,(C:: ({[den(toast)]@@A,C}& {card,C,=1})))),
arg(subject,qq(the=1000,D::{{name,[den(John)]}@@A,D}& {card,D,=1}))]

@@ {simple,A}),B)}))

Figure 7.13: QLF of ‘John buttered the toast.’

Copula Events

As established previously, in many places copula sentences are to be turned into equal-
ities. Therefore, as in Figure 7.14, the equality = and its arguments eq1 and eq2 (which
are placed on either side of the (=) and have been turned into qq forms themselves)
will be existentially quantified inside the qq form of the time as any other event.

Negated Events

Negated events, such as in Figure 7.15(a), appear on the tree as arguments of the word
‘no’ of type negComp. Their qq forms, as in Figure 7.15, are simply constructed by
nesting the event’s qq form inside the qq(not=0.9, ...) wrapper, and omitting the

162 CHAPTER 7. TREE NORMALIZATION

...,
*((time(-, +, [simple, now],A)= 1)),

(arg(eq1, *(some(=1)=2.0), A, [den(man)])
=
arg(eq2, *(name(=1)=1000), A, [den(John)]) -->

qq(the=1,A::{{time,[now]},A},
qq(exists=5,B, {(((
arg(eq1,qq(exists=2.0, C::{[den(man)]@@A,C} & {card, C,=1}))
=
arg(eq2, qq(the=1000,D::{{name,[den(John)]}@@A,D} & {card,D,=1})))

@@ {simple,A}),B)}))

Figure 7.14: QLF of ‘John is a man’.

negation word and the negComp argument wrapper as they are no longer needed. As
with the quantifier ‘no’, the negation word ‘not’ introduces a negation rule (see Section
5.5.2). ‘not’ does not bind any restrictor, but it does have a scope operator not=0.9 in
the form to determine what is in the scope of negation and hence ought to be part of
the rule and what is not.

arg(claim,

*(not=0.9),
A,
[den(not),
arg(negComp,

*(time(-,+,[prog,now],A)=1),
A,
[den(sleep), arg(subject, *(the(=1)=1000), A, [den(man)])])]) -->

qq(claim=0,
qq(not=0.9,
qq(the=1, A::{{time,[now]}A},

qq(exists=5, B,
{[den(sleep),

arg(subject, qq(the=1000, C:: {[den(man)]@@A,C}& {card,C,=1}))]
@@{prog,A} ,B}))

Figure 7.15: QLF of ‘the man is not sleeping.’

7.3. QUASI LOGICAL FORM (QLF) 163

7.3.4 Utterance

Utterance labels, although they are only type indicators, do also have qq forms given
in (QLF-R6) rule. Similar to ‘not’, their form is basically a scoped operator wrapper:
qq(Utt type= 0,...). The scope blocks any quantifiers other than the from escaping
the scope of the utterance marker (Section 7.5). As for what the utterance operator
wraps, it is ST1 which is the QLF form of the sub-tree ST0 with respect to the time
Time_specifier. Figure 7.16 shows an example of an utterance’s QLF.

QLF-R6: Utterances formation rule

arg(Utter Type, Time_specifier, T, ST0) -->
qq(Utter Type= 0, ST1),

arg(claim,
*(time(-,+,[prog,now],A)=1),
A,
[den(sleep), arg(subject, *(the(=1)=1000), A, [den(man)])]) -->

qq(claim=0,
qq(the=1, A::{{time,[now]},A},

qq(exists=5, B,
{[den(sleep),

arg(subject,qq(the=1000,C :: {[den(man)]@@A,C}& {card,C,=1}))]
@@ {prog,A},B})

Figure 7.16: QLF of ‘the man is sleeping.’

7.3.5 SubCs

QLFs are to be resolved in the next step, Section 7.4, and that involves collecting all of
their qqs, and then applying them in a certain order to the main proposition. However,
as explained in Section 5.8, in this thesis we deal not only with simple sentences, but
also with ones with SubCs. These SubCs are mostly sentential and could have their
own QNPs. Moreover, as seen in Section 5.9, not all QNPs are allowed to escape the
scope of their containing clause. Therefore, beside the qq formation rules given above,
there is a scope control rule that ensures that SubCs’ qqs are resolved locally before
resolving the whole utterance. The rule is given in (QLF-R7). It wraps an opaque/raw

operator around the QLF of the intended SubC and provides an Escape_score. That
score acts as a condition under which a qq can escape its containing clause and get

164 CHAPTER 7. TREE NORMALIZATION

resolved with respect to the whole utterance’s qqs. opaque and raw do the same job
towards their embedded QLFs when it comes to scope controlling and resolving. How-
ever, after scope resolution opaque forms are to be further transformed into quantifier-
free forms then IFFs as any other resolved QLF, but those with raw wrapped around
them will stay in their resolved QLF until used in proofs (see Section 8.5 for further
discussion)

(QLF-R7): Opaque general formation rule

opaque(SubC QLF,Escape_score) Or
raw(SubC QLF,Escape_score)

The considered types of SubCs, which are RC and attitude verbs’ complements
(Section 5.8), are all sentential i.e. involve events. Thus, their QLFs’ are generally
obtained by applying (QLF-R5) rule, but with some type specific considerations:

• RCs, as shown in Figure 7.17, are intersective modifiers to nominals. Thus,
their opaque forms are conjoined to the nouns they modify, see (QLF-R7.1).
Moreover, RCs are tensed and have the relative pronoun as their subject/object.
Therefore, when turned into a QLF they have their own time. However, the
relative pronoun, as the example in Figure 7.17, is to be resolved to the intended
referent when that referent is resolved itself (see Section 7.7).

• An implicative clause, as shown in Figure 7.18, is a tenseless complement of
an implicative verb (see (QLF-R7.2)), and has a zero (non-overt) subject. Thus,
when turned into a QLF, the clause inherits the time of the implicative verb and
its zero-subject gets resolved to the subject of the implicative in Section 7.7.

• The complements of propositional attitudes (the ones discussed in Section
5.8.2) are tensed and have overt subjects, thus their QLFs are results of direct
applications to rule (QLF-R5).

7.3. QUASI LOGICAL FORM (QLF) 165

(QLF-R7.1): RCs opaque formation rule

...[NP , modifier(whmod, *(+), arg(whclause, Time sepcifier, ,ST0)
loooooooooooooomoooooooooooooon

SubC

)]...

-->
...NP & opaque(QLF of SubC, Escape_score) ...

arg(claim,
*(time(-,+,[simple,past],B)=1),
B,

[den(sleep),
arg(subject,*(the(=1)=1000), B,
[den(man),
modifier(whmod, *(+),

arg(whclause,
*(time(-,+,[simple,now],D)=1),
D,
[den(love),
arg(dobj, *(name(=1)=1000), D, [den(Mary)]),
arg(subject, *(whPron=0,9), D, [den(who)])
looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

Subject relative pronoun

]))])]

-->
qq(claim=0,
qq(the=1,B::{time,[past],B},

qq(exists=5,E,
{[den(sleep),

arg(subject, qq(the=1000, F:: {[den(man)]
& opaque(
qq(the=1,D::{time,[now],D},
qq(exists=5, G, {[den(love),
arg(dobj, qq(the=1000,H:: {{name,[den(Mary)]}@@ D,H})),
arg(subject,qq(whPron=0.9, I:: {[den(who)]@@ D,I}))]@@ D,G}

& {simple,D},0.5)
@@ B,F}&{card, F,=1}))]@@{simple,B})))

Figure 7.17: QLF of ‘the man who loves Mary slept.’

(QLF-R7.2): Attitudes opaque formation rule

..., arg(xcomp(P), Time_specifier, Time var, ST0
looooooooooooooooooooomooooooooooooooooooooon

SubC

)...

-->
...,arg(xcomp(P),opaque(QLF of SubC, Escape_score))...

166 CHAPTER 7. TREE NORMALIZATION

arg(claim,
*(time(-,+,[simple,past],A)=1),
A,
([den(manage),
arg(xcomp([1/1, -1/-1]),

*(time(-,identity,[simple,X],A)=1),
A,
([den(sleep),arg(subject, *(zero=0), A,[zero1])

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

Zero subject

]),

arg(subject, *(name(=1)=1000), A, [den(John)])]))

-->
qq(claim=0,

qq(the=1, A::{{time,[past]},A},
qq(exists=5, B,
{(([den(manage),
arg(xcomp([1/1, -1/-1]),
opaque(qq(exists=5, C
{(([den(sleep), arg(subject, zero)]@@ {simple,A}),C)})), 0.5),

arg(subject, qq(the=1000, D :: {{name,[den(John)]}@@A,D}&{card,D,=1}))]
@@ {simple,A}),B)})))

Figure 7.18: QLF of ‘John managed to sleep.’

7.4 Resolved QLF (RQLF)

In the previous stage, PDTs have been turned into QLFs in which each operator was
attached a Scope_score. In the current stage, these scopes are to be resolved. The
scope resolution method, explained in Section 5.9, ensures that the qqs of a tree’s QLF
are collected and applied to the main proposition in such a way their scope scores are
obeyed. To demonstrate, consider the QLF of ‘John loves Mary’ and its RQLF in Fig-
ure 7.19. The process of obtaining the resolved form starts by scanning the QLF and
collecting all the qq forms and placing them in a qq stack. This stack contains the
collected qqs as two place terms: qq(F_score,{Operator, VAR :: Restrictor}),
in which F_score is just the floating point conversion of Scope_score for sorting pur-
poses. However, as discussed in Section 7.3, not all qqs have the binding variable
and/or restrictor, thus the minimal entry of the stack will be the scoped operator,
qq(F_score, Operator), as in the case of utterance labels. While collecting the qqs
of an utterance, when an opaque form is encountered, the collecting process will get
interrupted so that the opaque(ed) QLF gets resolved first. Once the embedded QLF is
resolved, it is placed in the qq stack and then the collection process is resumed until
the end of the main utterances’s QLF. Moreover, among the collected qqs, the ones of

7.5. QUANTIFIER FREE FORM (QFF) 167

an event’s arguments leave their binding variable in place, creating an abstracted main
proposition to which all the collected quantifiers are applied.

The second step after building up the stack is to sort it in ascending order, as the
smaller the score the wider the scope, and then to discard the scope scores as they are
no longer needed. After that, the sorted stack is applied to the main proposition starting
from the bottom of the stack; i.e. from the narrowest scope quantifier, creating the final
RQLF.

QLF
qq(claim=0,
qq(the=1, A::{{time,[now]},A},

qq(exists=5, B, {[den(love),
arg(dobj, qq(the=1000,C::{{name,[den(Mary)]}@@A,C}&{card,C,=1})),
arg(subject,qq(the=1000,D::{{name,[den(John)]}@@A,D}&{card,D,=1}))]

@@ {simple,A}, B})))

Ordered qq stack
[qq(0.0, claim),
qq(1.0, {A::{time,[now],A}},
qq(5.0, {exists,B}),
qq(1000.0, {the,C::{{name,[den(Mary)]}@@A,C}&{card,C,=1}}),
qq(1000.0, {the,D::{{name, [den(John)]}@@A,D}&{card,D,=1}}]

main proposition
{(([den(love), arg(dobj, C), arg(subject, D)]@@ {simple,A}),B)}

RQLF
qq(claim,
qq(the ,A::{{time,[now]},A},

qq(exists, B,
qq(the,C::{{name,[den(Mary)]}@@A,C}&{card,C,=1}),
qq(the,D::{{name,[den(John)]}@@A,D}&{card,D,=1}),
{(([den(love), arg(dobj, C), arg(subject, D)]@@ {simple,A}),B)})))

Figure 7.19: RQLF for ‘John loves Mary.’

7.5 Quantifier Free Form (QFF)

So far, we have illustrated how a PDT is turned into a form (RQLF) in which qqs are
nested and sorted (see Figure 7.20 for example). As stated earlier, one goal behind the
qq forms construction is to distinguish which parts of a PDT contribute to facts and
which others contribute to rules. Now that the required RQLF has been obtained, this
phase generally involves:

• Polarity marking.

168 CHAPTER 7. TREE NORMALIZATION

• Removing all quantificational operators from the RQLF and turning the binding
variables of indefinite ones into terms.

• Introducing logical symbols for implication (=>), conjunction (&) and disjunc-
tion (or), in place of the removed operators.

• Handling all special quantifiers that have been left till now such as ‘most’, ‘few’
and ‘at most N’.

• Discarding labels that are no longer significant, e.g. the qq labels in the RQLF,
the den() and arg() wrappers so that every den(Word) will be turned into just
Word and every arg(Role, VAR) into {Role,VAR}.

Figure 7.20 gives an example of the transition from RQLF to a QFF for the utterance
‘John is sleeping’, and the subsequent sections demonstrate the actual steps for turning
each part of a RQLF into a QFF.

PDT
arg(claim,

*(time(-,+,[prog, now],B)=1),
B,

[den(sleep),
arg(subject, *(name(=1)=1000),B, [den(John))])

RQLF
qq(claim,
qq(the,B::{time,[now]],B},

qq(exists,C,
qq(the, (E::{{name,[den(John)]}@@B,E}&{card,E,=1}),
({[den(sleep),arg(subject,E)]@@{prog,B},C})))))

QFF
claim(the(A::{{time,[now]},A},
the((B:: ({{name,[den(John?1)]}@@A,B}& {card,B,=1})),
{([sleep?1,{subject,B}]@@{prog,A},[#, 3])})))

Figure 7.20: An Illustration to the DTs structural change from pre-processing till QFF.

7.5.1 Polarity Marking

As shown in Figure 7.1, one part of the inference engine is a natural logic-base matcher.
The matcher supports the engine’s proof process by making partial inferential decisions
(e.g. ‘dog’|=‘animal’ and ‘not an animal’|=‘not a dog’) whenever necessary. To allow
the matcher to do so, normalized trees should be marked with polarity. Different works
in the literature have different ways of doing the marking (see Section 4.3). We chose

7.5. QUANTIFIER FREE FORM (QFF) 169

to mark RQLFs instead of PDTs because in the first QNPs are believed to have the right
scope. Therefore, doing polarity composition will not require, for example, defining
pattern as NatLog. Our process for polarity marking goes as follow:

• Polarities are marked at the word level; thus a (den(Word)) in a RQLF will be-
come (Word?Pol) in the QFF, were Pol is either 1 for positive, -1 for negative or
0 for non.

• The marking process starts with an initial value for polarity, which is 1 for claims
and -1 for queries (see Section 7.5.7).

• The RQLF of an utterance is scanned from the widest scope qq form to the lowest
one.

• Each qq form will pass the default polarity to its restrictor and the remaining of
the RQLF.

• If the qq form operator happens to be one of the polarities affecting words (e.g.
forall, most, few, no/not), then it will perform some polarity compositions
before passing polarities down to its restrictor and the rest of the RQLF. For
example, forall in qq(forall, R, P) will reverse the received polarity before
passing it to its restrictor R and pass it as it is to P. Such particular behaviour of
forall is based on its monotonicity properties (given in Appendix A) whic is
(↓↑).

Consider, for example, the RQLF of ‘not every man sleeps’ in Figure 7.21. The
marking process for this claim starts from the top with 1 as the initial polarity. When
this polarity reaches qq(not,...), it gets reversed into -1 before passing it to the re-
maining of the RQLF. Then, when qq(forall,..., ...) gets that polarity (-1), it will
reverse it back to 1 and use it to mark its restrictor, but pass it as it is for the remaining
of the form (which is the sleep event). Therefore, the QFF of ‘not every man sleeps’
has man marked with positive polarity, while sleep is marked with negative polarity.

170 CHAPTER 7. TREE NORMALIZATION

RQLF
qq(claim,
qq(not ↓,

qq(def(+),A::{{time,[now]},A},
qq(forall ↓↑,[#,8]::{[den(man)]@@A,[#,8]},
qq(exists,B,{(([den(sleep), arg(subject, [#, 8])]@@ {simple,A}),B)})))))

QFF
claim(
(the(A::{{time,[now]},A},

({[man?1]@@A,[#,8]}
=> {(([sleep?-1, {subject,[#,8]}]@@ {simple,A}),B)}))

=> absurd))

Figure 7.21: Polarity marking example.

7.5.2 Referential operators i.e. the

Definite restrictors (bound with the operator), are meant to be resolved in Section 7.7.
However, they will still appear in the QFF in their RQLF status except without the qq

wrapper, see (QFF-R2). For example, check the representation of ‘John’ in Figure 7.20.

QFF-R2: QFF of referential operators

Replace qq(the, R) by (the, R), in which R will remain in its RQLF state.

7.5.3 forall and exists

FOL automated theorem provers usually require FOL formulas to be turned into skolem

normal forms in which the existential quantifiers are removed and their bound variables
are replaced with a skolem function (SF)2. Similarly, a qq form of an exists operator
is removed and its variable is turned into a SF that has the form [# | SK]3, leaving
behind a skolemized restrictor that has that SF in place of the variable. In its simplest
cases, when an exists is not in the scope of a forall, SK is a new constant. For
instance, in the QFF of ‘a man slept.’ (Figure 7.22), the SF for [man] and its cardinality
is [#,8] and the event sleep is [#,9]. Note that when a variable is skolemized all of
its occurrences are replaced by its SF. This is why the subject, in the same example
has the function [#,8].

2See [Fitting, 1990, p 187] for further illustration.
3A Prolog list can be represented either as a traditional listing of elements; [E0,E1,..En], or as [H|T]

in which H is the head element of the list and T is the tail element(s).

7.5. QUANTIFIER FREE FORM (QFF) 171

QFF-R3: QFF of universal and existential operators

(i) Skolemise away existential operators (exists) and introduce the conjunctive
and (&) after its restrictor.

(ii) Remove universal operators (forall) and insert the implication => after its
restrictor.

On the other hand, according to (QFF-R3)(ii), the removal of a forall introduces
the rule symbol=> after its restrictor. Put differently, the removal of a universal operator
introduces a rule whose antecedent is that operator’s restrictor. In contrast to existen-
tial operators, the binding variable of a rule’s antecedent will remain unchanged. For
instance, the QFF for ‘every man’ in ‘every man sleeps.’ (Figure 7.23) shows that the
binding variable B for ‘man’ was left un-skolemized.

On the relation between exists and forall operators, if the first appears in the
scope of the second, the SK of the first is no longer just a constant; it is the constant
followed by a list of variable(s). These variables are the binding variables of the uni-
versal operators(s) that the exists falls under their scope. Thus, in the same example,
‘every man sleeps.’ (Figure 7.23), the existentially quantified sleeping event is in the
scope of forall, and hence its SF is [#, 3, B].

RQLF
qq(claim,

qq(the,A::{{time,[past]},A},
qq(exists,C::{[den(man)]@@A,C}&{card, C, =1},

qq(exists, B, {([den(sleep),arg(subject,C)]@@{simple,A}, B)}))))
QFF
claim(the(A::{{time,[past]},A},
(({[man?1]@@A,[#,8]} & {card,[#,8],=1})

& {(([sleep?1, {subject,[#,8]}]@@ {simple,A}),[#, 9])})))

Figure 7.22: QFF for ‘a man slept.’

172 CHAPTER 7. TREE NORMALIZATION

RQLF
qq(claim,
qq(the,A::{{time,[now]},A},

qq(forall,B::{[den(man)]@@A,B},
qq(exists, C,{([den(sleep),arg(subject,B)]@@{simple,A},C)}))))

QFF
claim(the(A::{{time,[now]},A},
({[man? -1]@@A,B}

=> {([sleep?1,{subject,B}]@@{simple,A},[#, 3, B])})))

Figure 7.23: QFF for ‘every man sleeps’.

7.5.4 Negation

Negated events, as discussed in Section 5.5.2, are to be dealt with constructively.
Therefore, following standard practice in constructive logic, they are expressed as
rules as indicated in (QFF-R4). For example, consider the RQLF of ‘some man did

not sleep.’ in Figure 7.24: the negated event which is nested inside the qq(not,...)

wrapper becomes the antecedent of a rule to absurd. With that being said, the an-
tecedent of that rule will be treated as the antecedent of any other rule, and hence all its
binding variables will remain un-skolemized. The same applies for sentences with the
negation quantifier ‘no’, such as in ‘no man slept’ (Figure 7.25). However, this time
‘no’ has a restrictor. That is, in addition to being part of the negation rule’s antecedent,
the negated restrictor (the set of men: {[den(man)]@@B,A} in the example) has a vari-
able as its size, {card, A, D}, resulting in a rule that can be read as follows: for a set

of men A of any size D, it is absurd for a sleeping event that involves that set of men at

that time to exist.

QFF-R4: QFF of negation operators

(i) Replace qq(not, P) by (P’→ absurd)

(ii) Replace qq(no, R, P) by ((R’ & P’)→absurd)

Where R’ and P’ are the QFFs for R and P respectively:

7.5. QUANTIFIER FREE FORM (QFF) 173

RQLF
qq(claim,
qq(exists, (B::{[den(man)]@@A,B}&{card,B,=1},
qq(not,

qq(the, A::{{time,[past]},A},
qq(exists,C,{[den(sleep),arg(subject,B)]@@{simple,A},C})))))

QFF
claim(
(({[man?1]@@A,[#,8]}& {card,[#,8],=1})

&(the(A::{{time,[past]},A},
{(([sleep?-1, {subject,[#,8]}]@@ {simple,A}),C)})=> absurd)))

Figure 7.24: QFF for ‘some man did not sleep.’

RQLF
qq(claim,
qq(no, (A::{[den(man)]@@B,A}&{card, A, D}),

qq(the, B::{{time,[past]},B},
qq(exists,C,{[den(sleep),arg(subject,A)]@@{simple,B},C}))))

QFF
claim(
(({[man? -1]@@B,A}&{card,A,D}

& the(B::{{time,[past]},B},
{(([sleep?-1, {subject,A}]@@ {simple,B}),C)}))=> absurd))

Figure 7.25: QFF for ‘no man slept.’

7.5.5 Defaults

In light of the discussion in Section 5.2.2, the quantificational operators most and few

are both turned into Reiter’s style defaults as indicated in (QFF-R5). Therefore, con-
sidering the example ‘most birds fly’, this step will break down the default utterance
into three parts: (1) prerequisite, (2) consistency conditions, and (3) consequent. Thus,
the QFF of that example, in Figure 7.26, will be read as follows: at the time given by

A, if B is a bird and it is consistent to assume that B flies, then we can infer that B flies.

The same goes for the example ‘few men sleep’ in (Figure 7.27) that, as explained in
Section 5.2.2, can be interpreted as ‘most men do not sleep’. Thus, the default rule in
Figure 7.27 can be read as: at the time given by A, if B is a man and it is consistent to

assume that B does not sleep, then we can infer that B does not sleep.

174 CHAPTER 7. TREE NORMALIZATION

QFF-R5: QFF of ‘most’ and ‘few’

(i) Replace qq(most, P, Q) by ((P’& consistant(Q’))=> Q’) .

(ii) Replace qq(few, P, Q) with qq(most, P, not(Q)) then do (i).

Where P’ and Q’ are the QFFs for P and Q respectively.

RQLF
qq(claim,
qq(the,A::{{time,[now]},A},

qq(most,B::{[den(bird)]@@A,B},
qq(exists, C,{([den(fly),arg(subject,B)]@@{simple,A},C)})))

QFF
claim(
the(A::{{time,[now]},A},

((({[bird?0]@@A,B}
looooooooooomooooooooooon

prerequisite

& consistent({(([fly?1, {subject,B}]@@ {simple,A}),[#, 3])}))
looomooon

consistency condition

=> {([fly?1,{subject,B}]@@{simple,A},[#, 3])}
loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

consequent

))

Figure 7.26: QFF for ‘most birds fly’.

RQLF
qq(claim,
qq(the,A::{{time,[now]},A},

qq(few,B::{[den(man)]@@A,B},
qq(exists,C,{[den(sleep),arg(subject,B)]@@{simple,A},C}))))

QFF
claim(
the(A::{{time,[now]},A},

(({[man?0]@@A,B}
&({([sleep? -1,{subject,B}]@@{simple,A},C)}
& consistent(({(([sleep ? -1, {subject,D}]@@ {simple,E}),[#, 4, B::[]])}

=> absurd))))
=> absurd)))

Figure 7.27: QFF for ‘few men sleep’.

7.5.6 At most N vs At least N

The way the cardinalities of the two phrases ‘at least N’ and ‘at most N’ are represented
is based on the way cardinality-based calculations are performed within the theorem

7.5. QUANTIFIER FREE FORM (QFF) 175

prover. For instance, ‘at least three men...’ in Figure 7.28, expresses a set of men of
cardinality that is equal to 3 or more, thus {card,VAR, >=3}. However, because the
size of the set is not actually known, when it comes to answering queries about that
set of men, the only answers that can be given are the ones in regard of ‘one/two/three

men’ or ‘at least one/two/three men’. Contrarily, the set of men in ‘at most three men...’
(Figure 7.29), can be of size 3, 2, 1 or even none; 0. So, we can not be certain about
any N if it is 3 or less, but what is known for sure is that N can not be 4 or more.
Therefore, as given in Figure 7.29, the QFF for ‘at most three men slept.’ will be a
negative rule with cardinality clause {card,D,>=4} which can be read as: it is absurd

to assume that there is a past sleeping event involving 4 or more men.

RQLF
qq(claim,
qq(exists,(C::{[den(man)]@@A,C}&{card,C,>=3}),

qq(the,A::{{time,[past]},A},
qq(exists,B,{([den(sleep),arg(subject,C)]@@{simple,A},B)}))))

QFF
claim(
(({[man?1]@@A,[#,4]}& {card,[#,4],>=3})

& (the,A::{{time,[past]},A},
& {(([sleep?1, {subject,[#,4]}]@@ {simple,A}),[#, 6])})))

Figure 7.28: QFF for ‘at least three men slept.’

RQLF
qq(claim,

qq(predet(most, 3),C::{[den(man)]@@A,C},
qq(the,A::{{time,[past]},A},
qq(exists,B,{([den(sleep),arg(subject,C)]@@{simple,A},B)}))))

QFF
claim(
(({[man? -1]@@B,D}& ({card,D,>=4}

& (the,A::{{time,[past]},A},
& {([sleep? -1,{subject,D}]@@{simple,B},C)})))=> absurd))

Figure 7.29: QFF for ‘at most three men slept.’

176 CHAPTER 7. TREE NORMALIZATION

7.5.7 Utterance Type Matters

Utterance labels are generally the wrappers of their whole QFFs, as given in (QFF-R1)
and shown in all of the above examples.

QFF-R1: QFF of utterance labels

Replace qq(Utter label,R) by Utter label(R’) where R’ is the QFF of R.

These labels are still there because they are the indicators of whether a binding variable
of a quantificational operator is to be left as it is or to be turned into a term during
the removal process. Put differently, in claims, as illustrated above, the variables of
positively occurring exists and negatively occurring forall are generally the ones
that get skolemized. The ultimate goal is making inferences, which is trying to find an
answer to a query from the list of available information (of which claims are a part)
to the inference engine. For that to happen, a query has to have reverse skolemization
decisions. Meaning variables that get skolemized in a claim remain variables in the
counterpart query example and visa versa. We obtain that by reversing the context’s
polarities, i.e. by setting the initial mark to -1 during polarity marking of queries
(Section 7.5.1). For example, notice the difference in skolemization between ‘a man

slept .’ and ‘a man slept?’ in Figure 7.30. In the claim’s QFF, ‘man’ and ‘sleep’ are
positively marked and hence their variables were skolemized, while in the query they
were marked with -1 and consequently their variables were not skolemized.

Claim QFF
claim(the(A::{{time,[past]},A},
(({[man?1]@@A,[#,8]}& {card,[#,8],=1})

& {(([sleep?1, {subject,[#,8]}]@@ {simple,A}),[#, 9])})))
Query QFF
query(the(A::{{time,[past]},A},
(({[man? -1]@@A,B}& {card,B,=1})

& {(([sleep?-1, {subject,B}]@@ {simple,A}),C)})))

Figure 7.30: QFF of ‘a man slept.’ vs ‘a man slept?’

7.6 Inference Friendly Form (IFF)

Now that we have constructed QFFs, we are a few steps away from obtaining the final
form that the inference engine can reason with: IFFs. A QFF that contains REs, not

7.6. INFERENCE FRIENDLY FORM (IFF) 177

only DNPs but referential times as well, will first proceed by resolving them to their
referents (to be discussed in Section 7.7). Second, the clauses that constitute a QFF
are normalized by applying the rules in (IFF-R1). Rule (IFF-R1)(i) ensures that logical
symbols linking QFF clauses are distributed in the most convenient way for the infer-
ence engine when co-occur. Rule (IFF-R1)(ii) converts rules, as much as possible, into
Horn form (i.e.rules with conjoined positive literal antecedents and a single positive
literal consequent as in Figure 7.31). That is motivated by the fact that the adopted
inference engine (Section 3.3) is implemented in Prolog, and most of its rules of in-
ference runs backward. The third rule, (IFF-R1)(iii), allows modified nominals whose
modifiers are intersective (i.e. have *(+) as a sign) to have their modifiers detached.
For instance, see the clause of ‘an Italian woman’ in ‘John loves an Italian woman’
(Figure 7.32) before and after normalizing. Finally, rule (IFF-R1)(iii) is the double
negation elimination rule.

IFF-R1: QFF clauses normalization

For clauses R, P and Q in their QFF:

(i) Implication distribution over conjunction: Turn R => (P & Q) into (R =>

P) & (R => Q) and then reapply the rules.

(ii) The conjunction of the antecedents: Turn the nested implications (R => (P

=> Q)) into ((R & P)=> Q) and then reapply the rules.

(iii) Detach intersective modifiers: Turn {R, X} (where R is a modified nominal)
into {P,X} & {Q, X} (where P is the modified nominal and Q is the modifier).

(iv) Double negation elimination: Turn ((R => absurd) => absurd) into R.

QFF
claim(the(A::{{time,[now]},A},
({[man? -1]@@A,E}
=> ({[woman? -1]@@A,D}
=> {(([love?1, {dobj,D}, {subject,E}]@@ {simple,A}),[#, 8, D, E])}))))

IFF
claim({{time,[now]},[#,1]},
(({[man? -1]@@[#,1],A}& {[woman? -1]@@[#,1],B})
=> {(([love?1, {dobj,B}, {subject,A}]@@ {simple,[#,1]}),[#, 8, B, A])})))

Figure 7.31: Example of the application of rule (IFF-R1)(ii).

178 CHAPTER 7. TREE NORMALIZATION

QFF
claim(the(A::{{time,[now]},A},
(({(([woman?1,modifier(amod(simple),*(+),[Italian?1])]@@A),[#,8])}

& {card,[#,8],=1})
& the((B :: ({{name,[den(John)]}@@A,B}& {card,B,=1})),
{(([love?1,{dobj,[#,8]},{subject,B}]@@ {simple,A}),[#, 9])}))))

IFF
claim({{time,[now]},[#,1]},
((({[woman?1]@@[#,1],[#,8]}
& {[Italian?1]@@[#,1],[#,8]})

& {card,[#,8],=1})
&({{name,[John?1]}@@A,[#, 10])}& {card,[#,10],=1})),
{(([love?1,{dobj,[#,8]},{subject,[#,10]}]@@{simple,[#,1]}),[#,9])}))))

Figure 7.32: Example of the application of rule (IFF-R1)(iiii).

Doing the above turns a QFF into its IFF. For a query, as illustrated in Figure 7.1,
that IFF is sent to the inference engine to find its answer. In the case of a claim, the
IFF is broken down into facts and/or rules, then asserted as part of the engine’s list of
avilable information. The process of obtaining these clauses is as indicated in (IFF-R2).

IFF-R2: Obtaining facts/rules form claim’s IFF

After discarding the claim() wrapper as at it is no longer significant, the con-
juncted clauses will be recursively broken down into a list of conjuncts: P and/or
(A=>C), such that:

(i) The clause P is a fact, iff it is an atomic clause (i.e. does not contain the & nor
the => symbols).

(ii) The clause (A=>C) is a rule, iff C is atomic clause (as (IFF-R1)(i) should have
been already applied).

Each of these final clauses will be asserted in a certain format, see Section 7.6.2
and 7.6.1, with a feature called STATUS. Figure 8.6 shows the STATUS possible values
which are: real, assimilated, claimed or temp. This classification is used by the
inference engine to determine which of the stored information and when can be used
during a proof process. Clauses derived from a claim’s IFF which are not obtained
by assimilation during dereferencing referential terms always have claimed as their
status, while clauses obtained during dereferencing DNPs can be either claimed, once
they are resolved, or assimilated; if assumed (see Section 7.7). The discussion of the
remaining types and the differences among all of the four in detail will be better left

7.6. INFERENCE FRIENDLY FORM (IFF) 179

until Chapter 8.

7.6.1 Facts

As indicated above, facts are atomic clauses that when asserted have the following
format: fact(Clause,STATUS). Among the atomic clauses, equalities which are of
the form ({SF0=SF1}@@{aspect, SF2}) have a different assertable structure which is
a tuple: eclass(A,B,C,STATUS) and need to follow a certain procedure before being
asserted. The procedural steps aim at avoiding repetition and running into vicious cir-
cles. The field C is always the same as the context clause (CTXT henceforth) {aspect,
SF2}. And it is important for it to be part of the equality tuple because equalities are
time-stamped in the same way that ordinary events are (e.g. ‘John is a fool’ is different
from ‘John was a fool’ in a scene that we cannot infer one from the other) However, A
and B in the eclass are not necessarily the same as SF0 and SF1 respectively, as each
should be:

• De-referenced to the last value of its chain of equals in the current context C. For
example, if (SF0=X, X=Y, Y=A → SF0=A) and we say that SF0 was de-referenced
to A. Then,

• Sorted so that A represent the lexically greatest of the two and B is the other one.

In Figure 7.34, the terms in the eclass tuple have the same SFs as the ones in the
equality clause: ({[#,4]=[#,6]}@@{simple,[#,3]}) but the reverse order, and there are
no other entries in a list of equalities so no need for de-referencing. However, consider
having the list of eclasses shown in Figure 7.33. Now if an eclass for the clause

** EQUALITIES **
[eclass([#, 5], [#, 2], {simple,[#, 1]}, claimed),
eclass([#, 7], [#, 4], {simple,[#, 1]}, claimed),
eclass([#, 4], [#, 3], {simple,[#, 1]}, claimed)]

Figure 7.33: Example of de-referencing an equality argument.

({[#,5]=[#,7]} @@{simple,[#, 1]}) is to be added, instead of asserting it immedi-
ately as eclass([#, 7], [#, 5], {simple,[#, 1]}, claimed), both [#, 5] and [#,

7] have entries in the EQUALITIES list, and hence must be de-referenced. The argument
[#, 5] is only equal to [#, 2] and [#, 2] is not equal to anything else, thus, [#, 5]

is de-referenced to [#, 2]. On the other hand, the argument [#,7] is de-referenced

180 CHAPTER 7. TREE NORMALIZATION

to [#, 3], because the latter is equal to [#, 4] and [#, 4] itself is equal to [#, 3].
Consequently, the eclass to be added is eclass([#, 3], [#, 2], {simple,[#, 1]},
claimed).

IFF
claim(({{time,[past]},[#,3]}
& (({[fool?1]@@[#,3],[#,4]}& {card,[#,4],=1})

& ({({name,[John?1]}@@A,[#, 6])}& {card,[#,6],=1}),
{[#,4]=[#,6]}@@{simple,[#,3]}))))

** FACTS **
[fact({card,[#,4],=1}, claimed),
fact({[fool?1]@@[#,3],[#,4]}, claimed),
fact({{time,[past]},[#,3]}, claimed),
fact({card,[#,6],=1}, assimilated),
fact({{name,[John?1]}@@A,[#,6]}, assimilated)]

** EQUALITIES **
[eclass([#, 6], [#, 4], {simple,[#,3]}, claimed)]

Figure 7.34: An extracted facts and equalities from ‘John was a fool.’

7.6.2 Rules

In a rule (A ⇒ C), A is the antecedent and C is the consequent. Before asserting a rule,
its antecedent and consequent are checked to determine whether a rule is to be applied
Forward or backwards. A rule is forward and is added as (A ⇒ C: STATUS) if its
antecedent is an atomic clause and is not a consistent condition and its consequent is
not absurd. A rule is backward, otherwise, and it is asserted as (C ⇐ A: STATUS). See
Figure 7.35 and Figure 7.36 for examples of forward and backward rules, respectively.

IFF
claim(the([#,2]::{{time,[now]},[#,2]},
({[man? -1]@@[#,2],A}

=> {(([sleep?1, {subject,A}]@@ {simple,[#,2]}),[#, 1, A])})))

** FACTS **
[fact(time,[now],[#,2], assimilated)]

** FORWARDS RULES **
[({[man? -1]@@[#,2],A}
=> {[sleep? 1,{subject,A}]@@{simple,[#,2]},[#,1,A]}:claimed)]

Figure 7.35: Extracted facts and rules form ‘every man sleeps.’

7.7. RESOLVING REFERRING EXPRESSIONS 181

IFF
claim(the([#,4]::{{time,[now]},[#,4]},
(({[man]@@[#,4],A}& {[car]@@[#,4],B})

=> {(([love, {dobj,B}, {subject,A}]@@ {simple,[#,4]}),[#, 3, B, A])})))

** FACTS **
[fact({{time,[now]},[#,4]}, assimilated)]

** BACKWARDS RULES **
[({[love,{dobj,A},{subject,B}]@@{simple,[#,4]},[#,3,A,B]}
<= {[man]@@[#,4],B}&{[car]@@[#,4],A}:claimed)]

Figure 7.36: Extracted facts and rules form ‘every man loves every car.’

7.7 Resolving Referring Expressions

The previous section has shown that the process of turning QFFs into IFFs involves
resolving REs. However, we opted to postpone the discussion of how REs are actually
resolved until now, as the previous section explains some of the background machinery
that is used here.

Up until this point, REs have been turned into terms of the following pattern: the

(VAR:: bound restrictor), which is their RQLF. They were kept in their RQLF and
were not fully processed in QFF, because in contrast to other quantificational operators,
their binding variables can not just be either skolemized or left as they are, instead, they
need to be resolved. Resolving a RE means finding its referent. Hence, as explained
in Section 5.3.1 and illustrated in Figure 7.37, this work’s way of finding a RE’s ref-
erent starts with attempting to prove that there is only one thing in the list of available
information that satisfies its descriptor (its bound restrictor). This process is called
anchoring. If the referent was found, an instance of its SF is going to be assigned to
the RE’s binding variable, VAR, and all of its occurrences in the QFF. Nonetheless, if it
was not found, which is the case when a RE is first mentioned in a conversation, the
RE is to be assimilateed. When a RE is assimilated, it means that the existence of its
referent has been assumed and, thus, its binding variable to be assigned a new SF. This
variable assignment will make all of its occurrences in the QFF be instantiated to that
new SF as well. After that, the resolved RE by assimilation is asserted as a fact, with
assimilated as its STATUS.

A running example for resolving REs is given in Figure 7.38 for the discourse in
(7.16), in which ‘John’ in p2 is assimilated to the new constant [#,50], while ‘the

182 CHAPTER 7. TREE NORMALIZATION

Figure 7.37: Resolving REs general flow chart.

woman’ is dereferenced to the existentially quantified ‘woman’ in p1, and thus instan-
tiated to its SF, [#,7]. This makes the ‘love’ event involving these two REs, ‘John’
and ‘the woman’, as follows: {[love?1,{dobj,[#,50]},{subject,[#,7]}]...}. The
pronoun ‘He’, on the other hand, was resolved to ‘John’ as the only single male men-
tioned in the conversation, and thus its SF will be like John’s which is [#,50] and so

7.7. RESOLVING REFERRING EXPRESSIONS 183

the subject of the ‘died’ event; {[die?1,{subject,[#,50]}]...}

(7.16) p1. A woman slept.

p2. The woman loves John.

p3. He died.

. . .

** FACTS **
[fact({[die?1,{subject,[#,50]}]@@{simple,[#,9]},[#,111]}, claimed),
fact({[male?1]@@A,[#,50]}, claimed),
fact({([love?1,{dobj,[#,50]},{subject,[#,7]}]@@{simple,[#,49]},
[#, 48])},
claimed),
fact({card,[#,50],=1}, assimilated),
fact({{name,[John?1]}@@B,[#,50]}, assimilated),
fact({{time,[now]},[#,49]}, assimilated),
fact({[sleep?1,{subject,[#,7]}]@@{simple,[#,9]},[#,8]}, claimed),
fact({card,[#,7],=1}, claimed),
fact({[woman?1]@@[#,9],[#,7]}, claimed),
fact({{time,[past]},[#,9]}, assimilated)]

Figure 7.38: List of extracted facts from (7.16).

Till now, the discussion of resolving REs has been rather general and theoretical.
Because resolving REs by anchoring is actually about attempting to prove that there is
exactly one thing which can be shown, using the information available to the partici-
pants, to satisfy the restrictor, many aspects of their resolution are to be re-visited in the
next chapter when the inference engine is explained. One aspect is regarding pronouns.
In the previous examples the pronoun ‘he’ has been resolved to the name ‘John’ assum-
ing that it satisfies its description which is the singular salient male. However, nothing
in John’s representation mentions the fact of him being a male, but the inference engine
managed to make him the referent of ‘he’ by making use of some hand-coded general
information, in the list of avilable information, that interprets John as a singular male.
The other aspect is about natural logic subsumption relations; as it allows a RE of the
kind ‘The NP 1’ to be resolved to NP2 if NP1 subsumes NP2. For instance in (7.17),
‘the man’ in p2 is dereferenced to ‘an old fat man in the park’ in p1 because ‘old fat

man in the park’ ≤‘man’.

(7.17) p1. There is an old fat man in the park.

p2. The man died.

. . .

184 CHAPTER 7. TREE NORMALIZATION

Lastly, in Section 7.3.5, we have mentioned that RCs pronouns and implicative
complements’ zero subjects are to be resolved at this point. In contrast to other REs,
the referents for these two kinds of expression are easily identified. For the relative
pronoun, it is the noun that the whole RC modifies, while for implicative clause’s zero
subject it is the same subject as the containing main clause. However, because their
referents might need resolving themselves, we had to leave their resolution till this
point, such that, in ‘the man who loves Mary died’ for instance, once the definite NP
that a RC modifies has been resolved, the relative pronoun is resolved by instantiating
its SF.

7.8 Summary

The inference engine we are using in this work consists of a handful of inference rules.
To ensure the applicability of these rules, we turn decorated DTs into a suitable form.
Therefore, in this chapter we have discussed the transformational steps that we have
designed (CO2.2) to turn DTs into IFFs. These include:

• Turning specifiers into bound operators named qq forms, that in turn convert DTs
into QLFs.

• Ensuring a preferred reading for the main utterance by resolving the QLF.

• Turnimg RQLFs into QFFs by removing quantifiers and turning their variables
into terms where applicable, and marking the form with polarities.

• Resolve any REs in a QFF and normalize them into assertable IFFs: lists of facts
and/or rules.

Chapter 8

Constructive SATCHMO+
As Figure 1.2 (repeated here as 8.1) shows, inputs from a discourse were parsed in
Chapter 6 and turned into IFFs in Chapter 7. This chapter is dedicated to the third and
final part of our inferential system, the inference engine itself, named CSATCHMO+
(marked in black in Figure 8.1). In Chapter 4, we learned the key features of incor-
porating semantic containment (≤) and polarity marking to design (CO3) a matching
algorithm on trees. This chapter explains how the natural logic matching algorithm
works and its contribution (CO5.1) to the inference process (Section 8.4). We have
also learned several important aspects regarding defaults and attitude verbs in Chapter
5 to design (CO2.3) appropriate rules to handle them and extend (CO5.2) the inference
engine to include them. Here (Section 8.5), we show through examples how reasoning
about these constructions is carried out using those designed rules. Other than that, the
first part of this chapter will explain the engine’s proof algorithm (Section 8.2) and the
different kinds of information that are available for it to use (Section 8.3), and the last
part of it discusses the engine’s performance (Section 8.6).

8.1 The Engine’s Data-Flow

The inference engine explained here is named CSATCHMO+. It is an adaptation of
Ramsay’s basic constructive SATCHMO program, Section 3.3, but for normalized
DTs and with two different extensions. The first extension handles inferences about
certain constructions (defaults and attitudes) as a means of inference rules. The second
replaces Prolog’s straight unification1 with a matcher that is implemented on the basis
of natural logic’s containment relation (explained in Chapter 4). These extensions
will be discussed later on in this chapter. For the time being, a view of the engine’s

1In Prolog, two terms unify if both or one of them is a variable, or are identical.

185

186 CHAPTER 8. CONSTRUCTIVE SATCHMO+

Figure 8.1: Data-flow through the inferential system.

general data-flow will be given and the way that basic proofs are conducted will be
illustrated. As Figure 8.2 shows, the engine receives a normalized query, NQ2, as an

Figure 8.2: Data-flow from and to CSATCHMO+.

input and produces as an output the answer to that query. CSATCHMO+ is a three-way
classification engine. Therefore, the answers it gives are either Yes, No or Unknown for
entail, contradict, and neutral respectively. As indicated by the (JUDGEMENT) rules,
the answer is Yes when the engine is able to prove NQ; No, if the engine cannot not

2In this chapter, NQ will be used as an abbreviation for ‘normalized query’, i.e. a query Q that has
been parsed then transformed into an IFF: NQ = IFF(DT(Q))

8.2. PROOF ALGORITHM 187

find a proof of NQ, but can for its negation, NQ ⇒ absurd; and unknown if the engine
cannot not prove NQ or its negation. In some special cases, which we will discuss later,
an answer may have a follow-up comment declaring or stating the condition(s) under
which it is to be accepted.

The engine’s process of finding a query’s answer is mainly the job of the proof
algorithm, Section 8.2. During a proof process, the proof algorithm relies on its rules
of inference and any useful information that is present in the background at the time,
Section 8.3. Moreover, the proof algorithm frequently requires the aid of the natural
logic matcher to decide whether two non-identical items are to be considered a match
or not. In addition, during the proof construction process, the engine may add any
temporarily generated information to the background knowledge in order use it as well
for that particular proof.

(JUDGEMENT): CSATCHMO+ possible answers

To find a query’s answer, CSATCHMO+ will attempt to prove its NQ such that:

(J-1) If a proof of NQ is found, then the query’s answer is ‘Yes’.

(J-2) If a proof of NQ’s negation i.e. NQ ⇒ absurd is found, then the query’s an-
swer is ‘No’,

(J-3) If no proof is found for NQ or its negation, then the answer is ‘Unknown’

8.2 Proof Algorithm

The algorithm, outlined in (PROOF ALGORITHM), is adapted from Ramsay’s basic
constructive SATCHMO algorithm, with two significant extensions:

• We use matching (Section 8.4) instead of unification for matching goals to facts
and rules.

• We split rules into three groups:

Backwards rules: these are standard Horn clauses with compound antecedents,
i.e. rules of the form A1 & ...& An => C

Split rules: these are, as with the original version of Satchmo, rules with dis-
junctive consequents, i.e. rules of the form A1 & ...& An => C1 or C2

Forwards rules: these include Horn clauses with atomic antecedents and rules

188 CHAPTER 8. CONSTRUCTIVE SATCHMO+

expressing higher-order relations. Running Horn clauses with atomic an-
tecedents forwards is simply a matter of convenience. Rules for dealing
with higher-order relations are discussed in Section 8.5

(PROOF ALGORITHM)

A proof of a goal NQ from a set of facts FACTS, forwards rules F-RULES, backward
rules B-RULES and split rules S-RULES is carried out in three stages:

(FI) Forwards inference: start by adding the recursive closure of the forward
rules to the facts: if A => C is in F-RULES and A can be proved backwards
from FACTS and B-RULES, add C to FACTS

(BI) Backwards inference: NQ can be proved backwards if it:

(BI-1) matches a fact NQ’,
(BI-2) matches the consequent of a backward rule (NQ’ ⇐ A), and the an-

tecedent A can be proved.
(BI-3) is a conjunction (NQ1 & NQ2) and both NQ1 and NQ2 can be proved,
(BI-4) is a disjunction (NQ1 or NQ2) and either NQ1 or NQ2 can be proved,
(BI-5) is of the form (A⇒C), in which case it can be proved from <FACTS,

F-RULES, B-RULES, S-RULES> if C can be proved from <FACTS ∪ {A},
F-RULES, B-RULES, S-RULES> (conditional proof). This rule is particu-
larly important for proving negations, since we treat not(P) as a short-
hand for P => absurd.

(SR) Split rules: NQ can be proved if there a split rule A => (C1 or C2)

where A can be proved backwards and <FACTS ∪{C1}, B-RULES, F-RULES,

S-RULES> and <FACTS ∪{C2}, B-RULES, F-RULES, S-RULES> both support
proofs of NQ.

To demonstrate how basic proofs are constructed using the rules given above, con-
sider the argument in (8.1). The IFFs for the premise (p1) and the query (q1) are all
given in Figure 8.3.

(8.1)
p1. A man slept in the park.

q1. Did a man sleep? [Yes]
q2. Did no man sleep? [No]

The engine’s answer for the query is (Yes). That answer is based on the proof given
in Figure 8.4. Each proof step is marked with two coloured labels: LABEL1 which
marks the clause to be proven and that helps with navigating through sub-proofs, and

8.2. PROOF ALGORITHM 189

LABEL2 which indicates which of the PROOF ALGORITHM’s rules is used to prove
that clause. Since the tense clause is already resolved, the first proof step in Figure 8.4
is an attempt to prove the conjunctive clause C consisting of two conjuncts. Thus,
the applied rule is BI-3 where each of C ’s conjuncts is proved separately. The first
conjunct of the two is C1 and is a conjunctive clause itself, hence the engine applies
rule BI-3 to prove each of its constituents C1.1 and C1.2 . The first matches
the claimed fact {[man? 1]@@[#,9],[#,7]}, i.e. it is proved using rule BI-1 . The
same goes for the second conjunct, C1.2 , as it matches {card,[#,7],=1}. The final
atomic clause, C2 , also matches the claimed fact {[sleep? 1,...} and hence is said
to proved using rule BI-1 as well. After the end of every successful sub-proof, there
is a line, including the label of the proved clause, that states so. For instance, the
line (Proof of fact C1 succeeded) indicates that the CSATCHMO+ managed
to prove C1 . A successful proof of all parts of C means a successful proof of C ,
and hence the answer is Yes.

A proof of C would be unsuccessful if at least one of the sub-proofs did not go
through. In such cases, before giving an answer, CSATCHMO+ would further investi-
gate by attempting to prove the negation of C . For example, consider answering (q2)
from the same p1 in (8.1). As illustrated in Figure 8.5, CSATCHMO+ has tried every
possible way for getting a proof of the query C by using all the applicable rules from
the (PROOF ALGORITHM). After failing to prove C , the engine attempts to prove its
negation C′ (note that negating C will invite the application of the double negation
elimination rule given in (IFF-R1)(iii), and hence C′ is a simple conjunctive clause).
As the proof in Figure 8.5 shows, the sub-proofs of all of C′ constituents were all
successful, and so the proof of C′ is complete. Finding a proof of C′ means that the
answer for the original query is No.

190 CHAPTER 8. CONSTRUCTIVE SATCHMO+

** FACTS **
[fact({(modifier(ppmod(+), *(+), [in?1,{ppcomp,[#,10]}]@@{simple,[#,9]}),
[#, 8])},claimed),
fact({[sleep?1,{subject,[#,7]}]@@{simple,[#,9]},[#,8]}, claimed),
fact({card,[#,7],=1}, claimed),
fact({[man?1]@@[#,9],[#,7]}, claimed),
fact({card,[#,10],=1}, assimilated),
fact({[park?1]@@A,[#,10]}, assimilated),
fact({{time,[past]},[#,9]}, assimilated)]

QUERY1
query(the([#,9]::{{time,[past]},[#,9]},
(({[man? -1]@@[#,9],A}& {card,A,=1})

& {(([sleep?-1, {subject,A}]@@ {simple,[#,9]}),B)})))
QUERY2
query((((the([#,9]::{{time,[past]},[#,9]},
{[man?1]@@[#,9],[#,11]}& {card,[#,11],A})

& {(([sleep?1, {subject,[#,11]}]@@ {simple,[#,9]}),[#, 12])})
=> absurd))

Figure 8.3: The IFFs of the premise and query of the argument in (8.1)

** PROOF **
Trying Horn proof of conjunction C BI-3 :
{[man? -1]@@[#,9],A}& {card,A,=1})
& {(([sleep?-1, {subject,A}]@@ {simple,[#,9]}
Trying Horn proof of conjunction C1 BI-3 :
({[man? -1]@@[#,9],A}&{card,A,=1}
Looking for a fact that matches C1.1 BI-1 :
{[man? -1]@@[#,9],A} matches a claimed fact {[man? 1]@@[#,9],[#,7]}
Proof of C1.1 succeeded
Looking for a fact that matches C1.2 BI-1 :
{card,[#,7],=1} matches a claimed fact {card,[#,7],=1}
Proof of C1.2 succeeded

Horn proof of conjunction C1 succeeded
Looking for a fact that matches C2 BI-1 :
{[sleep? -1,{subject,[#,7]}]@@{simple,[#,9]},A} matches a claimed fact
{[sleep? 1,{subject,[#,7]}]@@{simple,[#,9]},[#,8]}
Proof of C2 succeeded

Horn proof of conjunction C succeeded:
Answer: Yes

Figure 8.4: CSATCHMO+ proof for the argument (8.1).

8.3. AVAILABLE INFORMATION 191

** PROOF **
Trying Horn proof of C :
(({[man?1]@@[#,9],[#,11]}&{card,[#,11],A})
&{[sleep?1,{subject,[#,11]}]@@{simple,[#,9]},[#,12]})=>absurd

Looking for a fact that matches C BI-1 :
Unsuccessful
Looking for a rule whose LHS matches C BI-2 :
Unsuccessful
About to try conditional proof of C BI-5 :
Trying to prove C by asserting C1 :
({[man?1]@@[#,9],[#,11]}&{card,[#,11],A})
&{[sleep?1,{subject,[#,11]}]@@{simple,[#,9]},[#,12]}

And trying to prove C2 : absurd
Looking for a fact that matches C2 BI-1 :
Unsuccessful
Looking for a rule whose LHS matches C2 BI-2 :
Unsuccessful
Tried every way of getting a Horn proof of C2

Tried every way of getting a Horn proof of C

Trying to answer the contrary C′ :
Trying Horn proof of conjunction C′ BI-3 :
{[man? -1]@@[#,9],A}&{card,A,B}
& {([sleep? -1,{subject,A}]@@{simple,[#,9]},C)}
Trying Horn proof of conjunction C1′ BI-3 :
{[man? -1]@@[#,9],A}&{card,A,B}
Looking for a fact that matches C1.1′ BI-1 :
{[man? -1]@@[#,9],A} matches a claimed fact {[man? 1]@@[#,9],[#,7]}
Proof of a fact C1.1′ succeeded
Looking for a fact that matches C1.2′ BI-1 :
{card,[#,7],A} matches a claimed fact {card,[#,7],=1}
Proof of a fact C1.2′ succeeded

Horn proof of conjunction C1′ succeeded
Trying Horn proof of conjunction C2′ BI-3 :
{[sleep? -1,{subject,[#,7]}]@@{simple,[#,9]},D})
Looking for a fact that matches C2′ BI-1 :
{[sleep? -1,{subject,[#,7]}]@@{simple,[#,9]},D} matches a claimed fact
{[sleep?1,{subject,[#,7]}]@@{simple,[#,9]},[#,8]}
Proof of a fact C2′ succeeded

Horn proof of conjunction C′ succeeded
Answer: No

Figure 8.5: CSATCHMO+ proof of q2 from (8.1).

8.3 Available Information

In addition to the supplied premises theorem provers quite often require the aid of some
pre-existing knowledge to support their proofs [Bos and Markert, 2005]. Take, for ex-
ample, the query (q) in (8.2): no answer can be derived from (p1) alone, unless there

192 CHAPTER 8. CONSTRUCTIVE SATCHMO+

is the prior knowledge that ‘every dog is an animal’. In everyday human conversation,
the existence of such common information is not necessarily explicit; it is in the minds
of the conversation participants. Therefore, in addition to the information conveyed
by an inference problem’s premises, inference engines generally require any other req-
uisite knowledge, supplied either manually or automatically, from external sources as
their background knowledge (BK).

(8.2)
p1. Fido is a dog.

q. Is Fido an animal?

The information available to CSATCHMO+, as Figure 8.6 shows, can be split into
three parts. The first part, and the only one discussed so far, comes from the IFFs
that have been constructed and asserted (or assimilated) from an inference problem’s
premises (i.e. claims): these are labelled as the minutes. The second group includes
general information, such as properties associated with proper names (e.g. ‘John’ is
typically held by a singular male and ‘Mary’ by a singular female), lexical relations
(e.g. dog ≤animal, man ≤human, love ≤like) that are available in dictionaries such as
WordNet, and a range of hand-coded rules. This group is labelled Real and is discussed
further in Section 8.3.1. Lastly, there is temporary information (Section 8.3.2), which
is anything asserted during a course of a conditional proof.

Not all of the information available to CSATCHMO+, then, is permanent. Real
information, i.e. the system’s knowledge of word meanings, is permanent. Temporary
information is introduced during conditional proofs, and is retracted as soon as the
proof either succeeds or fails. The minutes are a record of what has been accepted
during the course of a single continuous discourse (i.e. series of claims and questions).
In contrast to temporary information, we do not discard the minutes’ contents after
the end of one proof, as we allow a single discourse to contain a series of claims and
queries. Therefore, the minutes’ content is discarded only when a new conversation
has started.

All of the above kinds of information are asserted in the format of IFFs. They differ
only with respect to their status value which is either real, claimed, assimilated or
temp(SF). That value is important to indicate their source and hence their validity for
for use by the engine. Since constructing the minutes has been explained at length
in Chapter 7, the following two sections will focus more on the other two types of
information: real and temporary.

8.3. AVAILABLE INFORMATION 193

Figure 8.6: The classification of the background knowledge entries and their STATUS.

8.3.1 Real Information

WordNet Lexical Relations

Lexical relations are established links between words with respect to their meaning.
The most common types of lexical relations are: synonyms such as (fast/quick), antonyms

such as (small/big), and hyponyms such as (dog/animal) and (walk/move).

A well-known source of such relations is the manually constructed and electron-
ically published lexical database of English; WordNet3. Among the different lexical
connections that WordNet offers,in this work we are particularly interested in hyponym
relations. To make WordNet hyponym relations easily accessible, we have extracted

3WordNet “is a large electronic lexical database of English” [Fellbaum, 2010, p. 231] that was man-
ually constructed in 1986 at Princeton University and continually maintained and updated. It is designed
as a semantic network of words and phrases interlinked by means of relations. The building block for
WordNet is sets, called synsets. A synset is an unordered set of words or phrases that share the same
concept, i.e. synonyms. Aside from synonyms, other relations that show the interconnections between
synsets include antonyms, hyponyms and troponyms. Synsets are spread over the syntactic parts of
WordNet (verbs, nouns, adverbs and adjectives) and most of them are labelled with domain names,
such as {medical, sport, etc.}

194 CHAPTER 8. CONSTRUCTIVE SATCHMO+

these relations and built up a table of all specific word-general word relations under the
name hyponyms table. The table consists of factual tuples of the form hyp(Specific,

General, POS), see Figure 8.7 for examples. This table is used by the matcher rather
than directly accessed by the theorem prover itself. Put differently, in course of a proof,
the engine might ask the matcher if two terms are considered a match, and the matcher
will make use of the hyponyms table when answering.

hyp(‘man’,‘human’,n),
hyp(‘dog’,‘animal’,n),
hyp(‘love’,‘like’,v),
hyp(‘walk’,‘move’,v)
...

Figure 8.7: Sample from the hyponyms table.

Hand-Coded Rules

Hand-coded rules are commonly about general knowledge that one is expected to have,
but is not present in WordNet. What we hand-coded into the engine’s BK includes
useful properties about the holders of proper names and entailment patterns of attitude
verbs. Examples of the first is shown in Figure 8.8. These rules are particularly im-
portant to derive facts that are (as seen in Section 7.7) useful for resolving REs. For
instance, asserting the IFF of ‘John loves Mary’ will invoke the application of the for-
ward rules in Figure 8.8, and hence add the resulting new facts ‘male’ and ‘female’
to the list of facts in Figure 8.9. Doing so will make resolving, for example, the pro-
noun ‘he’ in ‘he died’ (whose descriptor is: the(X::{[den(male)]@@T,X} &{recent,X}
&{card,X,=1})) attainable.

{{name,[‘John’?_]}@@T,X} => {[male?1]@@T, X},
{{name,[‘Mary’?_]}@@T,X} => {[female?1]@@T, X},

...

Figure 8.8: Examples from the simple hand-coded rules.

The second group of hand-coded rules is about the entailment properties of attitude
verbs. Given the general structure of these verbs and their complements {xcomp...}
in Figure 8.10, the entailment pattern of Att_verb is [PP/EP,PN/EN] and is already
marked in the dictionary of the grammar (Section 6.2.3). The polarity of its context is
indicated by (Pol) and is marked in the QFF (Section 7.5). Therefore, the hand-coded

8.3. AVAILABLE INFORMATION 195

** FACTS **
[fact({[female?1]@@A,[#,6]}, claimed),
fact({[male?1]@@B,[#,5]}, claimed),
fact({([love?1,{dobj,[#,6]},{subject,[#,5]}]@@{simple,[#,4]},[#, 3])},
claimed),
fact({card,[#,6],=1}, assimilated),
fact({{name,[Mary?1]}@@C,[#,6]}, assimilated),
fact({card,[#,5],=1}, assimilated),
fact({{name,[John?1]}@@D,[#,5]}, assimilated),
fact({{time,[now]},[#,4]}, assimilated)]

Figure 8.9: The directly and indirectly obtained facts from ‘John loves Mary’.

rules ensure that the entailment decision about the proposition Prop in the attitude
complement obeys this marked information. For example, the rule in Figure 8.11 states
that when an attitude verb is positively asserted and its pattern unifies with [/ 1, /],
the embedded proposition Prop can be entailed. A further illustration of attitude rules
and their application in proofs is given in Section 8.5.2.

fact({(([Att_verb? Pol,
{xcomp([PP/EP,PN/EN])

loooooooooomoooooooooon

entailment pattern

, Prop}, ...]@@ {Aspect,SK0}),SK1)},claimed)

Figure 8.10: The general structure of attitude verbs.

{[Att_verb? 1, {xcomp([/ 1, _/_]), Prop},...]@@CTXT, X} => Prop

Figure 8.11: Example of an attitude rule.

There is, of course, a vast amount of other general knowledge that participants in a
conversation are assumed to have – that after someone buys something they own it, that
if two people get divorced they are not married, that if you are allergic to something you
should avoid eating it, etc. We concentrate here on lexical relations and propositional
attitudes because they involve making changes to the way the inference engine works,
whereas rules such as Figure 8.12 can be handled by the standard version. Such rules
are crucial to understanding general conversation, but since they do not require any
extensions to the inference engine we will not say more about them here.

196 CHAPTER 8. CONSTRUCTIVE SATCHMO+

{[buy, {dobj, D}, {subject, S}]@@{A1, T0}, E} & {T1 > T0}
=> exists(X, {[own, {dobj, D}, {subject, S}]@@{A2 ,T1}, X})

Figure 8.12: If S buys D at T0 then at some later time T1 S owns D.

8.3.2 Temporary Information

The final kind of information the engine can use during proofs is the temporary in-
formation. As mentioned above, it gets added during a conditional proof course and
immediately discarded when that proof ends. To keep track of the temporary infor-
mation that belongs to a particular proof and to ensure the removal only of intended
assertions, they are assigned a unique temporary status temp(SF). Put differently, it
is possible that during a conditional proof another sub-conditional one starts, so their
temporarily asserted information will have different values for SF and hence differ-
ent status. Lastly, like any other added fact, adding temporary information will invite
any relevant forward rule application. Any resulting information will have the same
temporary status as the assertion(s) that caused their introduction, such that they get
removed at the end of the conditional proof as well. To give an example, consider the
proof of ‘did no man sleep?’ depicted in Figure 8.5. One of the proof attempts was
a conditional proof where the head of the negation rule was added temporarily to the
list of available information and the consequent absurd was proved. This temporarily
added information can be seen in the mid-proof version of the list of facts and rules,
given in Figure 8.13.

** FACTS **
[fact({[sleep?1,{subject,[#,11]}]@@{simple,[#,9]},[#,12]},temp(temp225347)),
fact({card,[#,11],A},temp(temp225347)),
fact({[man?1]@@[#,9],[#,11]},temp(temp225347)),
fact({(modifier(ppmod(+), *(+), [in?1,{ppcomp,[#,10]}]@@{simple,[#,9]}),
[#, 8])},claimed),
fact({[sleep?1,{subject,[#,7]}]@@{simple,[#,9]},[#,8]}, claimed),
fact({card,[#,7],=1}, claimed),
fact({[man?1]@@[#,9],[#,7]}, claimed),
fact({card,[#,10],=1}, assimilated),
fact({[park?1]@@A,[#,10]}, assimilated),
fact({{time,[past]},[#,9]}, assimilated)]

Figure 8.13: Examples of temporarily added information.

8.4. NATURAL LOGIC MATCHER 197

8.4 Natural Logic Matcher

As mentioned earlier, the engine’s PROOF ALGORITHM involves matching decisions
(whether the thing to be proven matches an existing fact, a rule consequent, etc.) Such
decisions are not obtained by straight unification, but by a natural logic-based matcher.
The matcher relies on marked polarities to determine containment relations between
pairs. Therefore, given two marked clauses (X and Y), the matcher decides if the latter
can be matched to the first based on the (MATCHING ALGORITHM) below.

(MATCHING ALGORITHM)

Given two clauses X and Y, the matcher can match Y to X if:

(MA-1) They are unifiable clauses.

(MA-2) They are identical words.

(MA-3) They hold a hyponymy relation:

(MA-3.1) hyp(X,Y,_) if X is a positively marked word.
(MA-3.2) hyp(Y,X,_) if X is a negatively marked word.

(MA-4) They match after deleting a modifier (subsective or intersective only)
from:

(MA-4.1) X if X is a positively marked, or
(MA-4.2) Y if X is a negatively marked.

(MA-5) They are equal terms (see EQUALITIES).

To demonstrate, consider the inference problem in (8.3) and the IFFs of its p1 and q

in Figure 8.14. From the query, tense and ‘John’ are already resolved. Therefore, the
engine will attempt to find proof for ‘a woman’ that is involved in a ‘love’ event. The
short version of their proof (omitting trivial matches, when two clauses are unifiable)
is illustrated in Figure 8.15 and proceeds as explained in Section 8.2. In contrast to the
previous examples, some matching decisions for this proof required more than unifi-
cation. For instance, the proof of {[woman? -1]@@[#,3],A} required the application of
rule (MA-4.1) to allow matching it to the fact {[woman?1, modifier(amod(simple),

*(-),[pretty?1])]@@[#,3],[#,1]} after deleting its subsective modifier.

(8.3)
p1. John loves a pretty woman↑.

q. Does John love a woman? [Yes]

198 CHAPTER 8. CONSTRUCTIVE SATCHMO+

** FACTS **
[fact({([love?1,{dobj,[#,1]},{subject,[#,4]}]@@{simple,[#,3]},[#, 2])},claimed),
fact({card,[#,1],=1}, claimed),
fact({[woman?1,modifier(amod(simple),* (-),[pretty?1])]@@[#,3],[#,1]},claimed),
fact({card,[#,4],=1}, assimilated),
fact({{name,[John?1]}@@A,[#,4]}, assimilated),
fact({{time,[now]},[#,3]}, assimilated)]

QUERY
query(the([#,3]::{{time,[now]},[#,3]},
(({[woman? -1]@@[#,3],A}& {card,A,=1})

& the(([#, 4]:: ({({name,[den(John)]}@@[#,3],[#, 4])}& {card,[#,4],=1})),
{(([love?-1,{dobj,A},{subject,[#,4]}]@@ {simple,[#,3]}),B)}))))

Figure 8.14: The IFFs of the premise and query of the argument in (8.3).

** PROOF **
Trying Horn proof of conjunction C BI-3 :
{[woman? -1]@@[#,3],A}&{card,A,=1}
&{[like? -1,{dobj,A},{subject,[#,4]}]@@{simple,[#,3]},B}
Trying Horn proof of conjunction C1 BI-3 :
{[woman? -1]@@[#,3],A}&{card,A,=1}
Looking for a fact that matches C1.1 BI-1 :
Try matching C1.1 to:
{[woman?1,modifier(amod(simple),* (-),[pretty?1])]@@[#,3],[#,1]},
Try the matching after deleting a modifier MA-4 :

woman and woman are identical MA-2
[#,3] and [#,3] are unifiable MA-1
A and [#,1] are unifiable MA-1

Match succeeded
{[woman? -1]@@[#,3],A} matches a claimed fact
{[woman?1,modifier(amod(simple),* -,[pretty?1])]@@[#,3],[#,1]}
Proof of C1.1 succeeded
Looking for a fact that matches C1.2 BI-1 :
...
{card,[#,1],=1} matches a claimed fact {card,[#,1],=1}
Proof of C1.2 succeeded

Proof of conjunction C1 succeeded
Looking for a fact that matches C2 BI-1 :
...
{[love? -1,{dobj,[#,1]},{subject,[#,4]}]@@{simple,[#,3]},B}
matches a claimed fact
{([love?1,{dobj,[#,1]},{subject,[#,4]}]@@{simple,[#,3]},[#, 2])}
Proof of C2 succeeded

Proof of conjunction C succeeded
Answer: Yes

Figure 8.15: CSATCHMO+ proof for the argument (8.3).

8.4. NATURAL LOGIC MATCHER 199

8.4.1 Equalities

As seen in Section 7.6.1, equalities have a specific assertable format and follow a cer-
tain procedure to get added to the BK. One of the procedural steps involves sorting the
arguments of an equality clause. Therefore, to avoid missing out a potential proof be-
cause of a wrong order, the process of proving an equality clause {X=Y}@@CTXT, given
in (EQUALITY ALGORITHM), starts with sorting its arguments. Then the list of avail-
able equalities is searched either for: an eclass whose arguments directly unify with
X and Y and are situated at the same time (given by CTXT) (EQ-2.1), or a sequence of
eclasses that link X and Y transitively (EQ-2.2). In case neither of these attempts suc-
ceeds, the list of equalities is used to de-reference both X and Y to their last values on
their chain of equalities (if any), and then re-do (EQ-2.1) and (EQ-2.2). It is possible
that X and Y get de-referenced to the same term. In such case, the equality clause is
said to be proved by reflexivity (EQ-2.3).

(EQUALITY ALGORITHM)

CSATCHMO+ can prove an equality clause {{X=Y}@@CTXT}, by:

(EQ-1) Ensuring that X and Y are sorted.

(EQ-2) Proving that X and Y are equals at the time CTXT either:

(EQ-2.1) Directly: by finding a matching tuple eclass(X,Y,CTXT,STATUS), or

(EQ-2.2) Transitively: by finding a sequence of tuples:
eclass(X,Z1,CTXT,STATUS), eclass(Z1,Z2,CTXT,STATUS). . . and
eclass(Zn,Y,CTXT,STATUS) that prove X and Y are equals transitively,
or

(EQ-2.3) Reflexively: by proving that X and Y are the same value (i.e. identical).

(EQ-3) If EQ-2 fails to prove the equality, then X and Y are to be de-referenced, as il-
lustrated in Section 7.6.1, to the last value of their chain of equalities X’ and Y’
respectively, and then it does EQ-1 and EQ-2 again.

The above algorithm, although it allows answering queries about simple chains
of equalities as in (8.4), the intended goal was substitutability in proofs. Thus, con-
sider the example in (8.5) and its relative IFFs in Figure 8.16. After resolving all
of the REs in the query, the engine is left with a loving event to prove. As the
proof in Figure 8.17 illustrates, the engine proved that event by matching it to the
fact {([love?1,{dobj,[#,5]},{subject,[#,1]}]@@{simple,[#,4]}, [#, 2])}. Both
loving events were directly matched, except for their subjects. The query subject is the

200 CHAPTER 8. CONSTRUCTIVE SATCHMO+

term [#,7], while for the fact it is [#,1]. Therefore, CSATCHMO+ had to prove that
these two terms co-refer to the same object by proving they are equal by reflexivity
(they both referred to the same term [#,1] after being de-referenced).

(8.4)
p1. John is a man.
p2. The man is a fool.

q. Is John a fool? [Yes]

(8.5)
p1. John is a man who loves Mary.
p2. The man is a fool.

q. Does the fool love Mary? [Yes]

** FACTS **
[fact({card,[#,7],=1}, claimed),
fact({[fool?1]@@[#,4],[#,7]}, claimed),
fact({card,[#,1],=1}, claimed),
fact({([love?1,{dobj,[#,5]},{subject,[#,1]}]@@{simple,[#,4]},
[#, 2])},
claimed),
fact({[man?1]@@[#,4],[#,1]}, claimed),
fact({card,[#,6],=1}, assimilated),
fact({{name,[John?1]}@@A,[#,6]}, assimilated),
fact({card,[#,5],=1}, assimilated),
fact({{name,[Mary?1]}@@B,[#,5]}, assimilated),
fact({{time,[now]},[#,4]}, assimilated)]

** EQUALITIES **
[eclass([#, 6], [#, 1], {simple,[#,4]}, claimed),
eclass([#, 7], [#, 1], {simple,[#,4]}, claimed)]

QUERY
query(the([#,4]::{{time,[now]},[#,4]},
the(([#, 7]:: ({[den(fool)]@@[#,4],[#,7]}& {card,[#,7],=1})),

the(([#, 5]:: ({({name,[den(Mary)]}@@[#,4],[#, 5])}& {card,[#,5],=1})),
{(([love?-1,{dobj,[#,5]},{subject,[#,7]}]@@ {simple,[#,4]}),A)}))))

Figure 8.16: The IFFs of the premise and query of the argument in (8.5).

8.5. HIGHER-ORDER INFERENCES 201

** PROOF **
Trying Horn proof of C :
{(([love?-1,{dobj,[#,5]},{subject,[#,7]}]@@ {simple,[#,4]}),A)}
Looking for a fact that matches C BI-1 :
Try matching C to:
{([love?1,{dobj,[#,5]},{subject,[#,1]}]@@{simple,[#,4]},[#, 2])}
...
Try matching terms MA-5 : [#,7] and [#,1]
de-ref [#,7] to [#,1] EQ-3
de-ref [#,1] to [#,1] EQ-3
[#,7] and [#,1] are equals by reflexivity EQ-2.3

Match succeeded
...

{(([love?-1,{dobj,[#,5]},{subject,[#,7]}]@@ {simple,[#,4]}),A)}
matches a caimed fact
{([love?1,{dobj,[#,5]},{subject,[#,1]}]@@{simple,[#,4]},[#, 2])}
Proof of C succeeded
Answer: Yes

Figure 8.17: CSATCHMO+ proof for the argument (8.5).

8.5 Higher-Order Inferences

8.5.1 Defaults

As seen in the engine’s (PROOF ALGORITHM) (BI-2), one way of proving something
is by matching it to the LHS of a backward rule and prove its RHS. One special
kind of backwards rules are Reiter’s style defaults (which are of the form: Y<=(X &

consistent(Y))). The RHS of a default rule contains consistent(Y). The proof of
consistent(Y) is called (CONSISTENCY CHECK) and it ensures that nothing in the en-
gine’s list of available information contradicts the entailed consequence Y. That check
is achieved by showing that Y => absurd cannot be proved.

(CONSISTENCY CHECK)

(CONS-1) consistent(Y) is proved, if Y => absurd cannot be proved.

To demonstrate, consider the argument in (8.6) and the relevant IFFs in Figure 8.18.
As the proof in Figure 8.20 shows, the bit of (q) that needs proving is {(([fly?-1,
...} and it matches the LHS of the default rule. Therefore, the proof proceeds with
an attempt to prove the RHS of that default rule. The first conjunct of the RHS is
proved from the claimed fact fact({[penguin?1]...}) using the hyponymy relation

202 CHAPTER 8. CONSTRUCTIVE SATCHMO+

between ‘penguin’ and ‘bird’. The second conjunct is the consistency check which the
engine managed to prove successfully by failing to prove the negation of its clause:
{[fly?1,{subject,A}]@@{simple,[#,8]},[#,7]}=>absurd.

(8.6)
p1. Most birds fly.
p2. Tweety is a penguin.

q. Does Tweety fly? [Yes, with defaults]

Now consider adding ‘penguins do not fly’ as a third premise to (8.6). As Fig-
ure 8.19 shows, that premise extends the list of backward rules. Thus, if engine
were to prove the same (q) again, it would fail in proving the consistency check
this time due to that rule. Put differently, the new rule allows proving the contra-
diction: {[fly?1,{subject,A}]@@{simple,[#,8]},[#,7]}=>absurd, thus, the answer
to (q) will be No.

** FACTS **
[fact({card,[#,9],=1}, claimed),
fact({[penguin?1]@@[#,8],[#,9]}, claimed),
fact({card,[#,11],=1}, assimilated),
fact({{name,[Tweety?1]}@@A,[#,11]}, assimilated),
fact({{time,[now]},[#,8]}, assimilated)]

** BACKWARDS RULES **
[({[fly?1,{subject,A}]@@{simple,[#,8]},[#,7]}
<= (({[bird?0]@@[#,8],A}

& consistent({[fly?1,{subject,A}]@@{simple,[#,8]},[#,7]}))
: claimed))]

** EQUALITIES **
[eclass([#, 11], [#, 9], {simple,[#,8]}, claimed)]

** QUERY**
query(the([#,8]::{{time,[now]},[#,8]},
the(([#, 11]:: ({({name,[den(Tweety)]}@@[#,8],[#, 11])}& {card,[#,11],=1})),
{(([fly?-1, {subject,[#,11]}]@@ {simple,[#,8]}),A)})))

Figure 8.18: The IFFs of the premise and query of the argument in (8.6).

8.5. HIGHER-ORDER INFERENCES 203

** FACTS **
[fact({card,[#,9],=1}, claimed),
fact({[penguin?1]@@[#,8],[#,9]}, claimed),
fact({card,[#,11],=1}, assimilated),
fact({{name,[Tweety?1]}@@A,[#,11]}, assimilated),
fact({{time,[now]},[#,8]}, assimilated)]

** BACKWARDS RULES **
(absurd
<= (({card,A,B}

& ({[penguin? -1]@@[#,8],A}
& {[fly? -1,{subject,A}]@@{simple,[#,8]},C}))
: claimed))

[({[fly?1,{subject,A}]@@{simple,[#,8]},[#,7]}
<= (({[bird?0]@@[#,8],A}

& consistent({[fly?1,{subject,A}]@@{simple,[#,8]},[#,7]}))
: claimed))]

** EQUALITIES **
[eclass([#, 11], [#, 9], {simple,[#,8]}, claimed)]

Figure 8.19: The IFFs of Figure 8.18 after adding ‘penguins do not fly’.

8.5.2 Attitude Clauses

As mentioned earlier, the entailment decision about an attitude clause’s implicit propo-
sition (Prop) is determined by some (ATTITUDES RULES). These rules represent the
basic entailing patterns, the first four among (++, +−, −+, −−, +0 and −0), that
lead to an entailment about either Prop or its negation. During a proof, when an at-
titude clause is unified with one of the (ATTITUDES RULES), the value of Prop either
gets added to the list of available information or proved. Since skolemization deci-
sions, as discussed in Section 7.5.7, vary depending on whether the context is positive
or negative, Props are usually left in their raw form (Section 7.3.5) until it is clear how
they are to be used, meaning that, once the proof engine decides whether a Prop is to
be added to the KB or to be proved, the proof process gets interrupted and the tree
normalizer gets asked to resolve Prop from a raw form to an IFF (RESOLVE RAW).

Consider, for example, proving (q) from (p1) in (8.7). Given their IFFs in Figure
8.22, it can be seen that the attitude clause of ‘manage’ unifies with the forward rule
(ATT-1), meaning that its embedded raw(...) is resolved (RAW-1) and added to the
list of available information as a fact {sleep?1,...}. Having that fact added makes
proving (q) a straightforward application of rule (BI-1).

(8.7)
p1. John managed to sleep.

q. Did John sleep? [Yes]

204 CHAPTER 8. CONSTRUCTIVE SATCHMO+

** PROOF **
Trying Horn proof of C :
{[fly? -1,{subject,[#,11]}]@@{simple,[#,8]},A}
Looking for a fact that matches C BI-1 :
Unsuccessful
Looking for a rule whose LHS matches C BI-2 :
Try matching C to the LHS of:
{[fly?1,{subject,A}]@@{simple,[#,8]},[#,7]}
<=({[bird?0]@@[#,8],A}& consistent({[fly?1,{subject,A}]@@{simple,[#,8]},[#,7]})
...
fly and fly are identical MA-2
[subject,[#,11]] and [subject,[#,11]] are unifiable MA-1
...

Match succeeded
Trying Horn proof of the RHS BI-2 :
{[bird?0]@@[#,8],A}
& consistent{[fly?1,{subject,A}]@@{simple,[#,8]},[#,7]}

Trying Horn proof of conjunction RHS BI-3 :
Looking for a fact that matches RHS.1 BI-1 :
Try matching RHS.1 to:
{[penguin?1]@@[#,8],[#,9]}

penguin is a hyponym of bird MA-3.1
...

Match succeeded
Proof of RHS.1 succeeded
Trying Horn proof of consistency RHS.2 CONS-1 :
consistent{[fly?1,{subject,A}]@@{simple,[#,8]},[#,7]}
Trying Horn proof of:
{[fly?1,{subject,A}]@@{simple,[#,8]},[#,7]}=>absurd
...
About to try conditional proof BI-5 by asserting:
{[fly?1,{subject,A}]@@{simple,[#,8]},[#,7]}
And trying to prove: absurd

Looking for a fact that matches absurd BI-1 :
Unsuccessful
...

Tried every way of getting a Horn proof of:
{[fly?1,{subject,A}]@@{simple,[#,8]},[#,7]}=>absurd
Consistency check RHS.2 succeeded

Proof of conjunction RHS succeeded
Proof of C succeeded
Answer: Yes, with defaults:
[consistent({[fly?1,{subject,[#,11]}]@@{simple,[#,8]},[#,7]})]

Figure 8.20: CSATCHMO+ proof for the argument (8.6).

On the other hand, answering the same query from (p1) in (8.8)(Figure 8.23) needs a
bit more work. As the proof in Figure 8.24 shows, the engine failed to prove C and

8.5. HIGHER-ORDER INFERENCES 205

** PROOF **
Trying Horn proof of C :
{[fly? -1,{subject,[#,11]}]@@{simple,[#,8]},A}
...
Trying Horn proof of consistency RHS.2 CONS-1 :
consistent{[fly?1,{subject,A}]@@{simple,[#,8]},[#,7]}
Trying Horn proof of :
{[fly?1,{subject,A}]@@{simple,[#,8]},[#,7]}=>absurd
...
About to try conditional proof BI-5 by asserting:
{[fly?1,{subject,A}]@@{simple,[#,8]},[#,7]}
And trying to prove: absurd

Looking for a fact that matches absurd BI-1 :
Unsuccessful
Looking for a rule whose LHS matches absurd BI-2 :
Try matching absurd to the LHS of:
(absurd
<= (({card,A,B}

& ({[penguin? -1]@@[#,8],A}
& {[fly? -1,{subject,A}]@@{simple,[#,8]},C}))

Match succeeded
Trying Horn proof of RHS BI-2 :
(({card,A,B}

& ({[penguin? -1]@@[#,8],A}
& {[fly? -1,{subject,A}]@@{simple,[#,8]},C})

Trying Horn proof of conjunction RHS BI-3 :
...
Horn proof of conjunction RHS succeeded

Conditional proof succeeded
Consistency check RHS.2 failed

Proof of conjunction RHS failed
Proof of C failed
Answer: No

Figure 8.21: CSATCHMO+ proof for the argument in (8.6) after adding ‘penguins do
not fly’.

attempted to prove its negation C′ . Proving the negation proceeded with a search for a
rule whose LHS is absurd and its RHS can be proved. One successful match was the
rule (ATT-2) whose RHS is a conjunction of two clauses. The first conjunct RHS.1

was successfully proved as it is unified with the fact {(([fail?1,...}. The second
conjunct RHS.2 , which is a raw form, was also proved after being resolved RAW-2 .

(8.8)
p1. John failed to sleep.

q. Did John sleep? [No]

Attitude rules include some variants of the above basic ones. One variant concerns

206 CHAPTER 8. CONSTRUCTIVE SATCHMO+

(ATTITUDES RULES)

(ATT-1) {[Att_verb?1, {xcomp([/ 1,]),Prop},...]@@CTXT,X} => Prop

(ATT-2) ({[Att_verb?1,{xcomp([/-1, _]),Prop},...]@@CTXT X}&
Prop)=>absurd

(ATT-3) (({[Att_verb?-1,{xcomp([, / -1]),Prop},...}]@@CTXT X}
=>absurd)&Prop) =>absurd

(ATT-4) ({[Att_verb?-1,{xcomp([, /1]),Prop},...]@@CTXT,X}=>absurd)
=>Prop

(RESOLVE RAW)

(RAW-1) If a Prop is to be added as a claim, then turn it into a QFF with 1 as initial
value for polarity marking, then to an IFF.

(RAW-2) If a Prop is to be proved as a query, then turn it into a QFF with -1 as
initial value for polarity marking, then to an IFF.

** FACTS **
[fact({[sleep?1,{subject,[#,9]}]@@{simple,[#,8]},[#,-2]}, claimed),
fact({[male?1]@@C,[#,9]}, claimed),
fact({(([manage?1,
{(xcomp([1/1, -1/-1]),
raw(qq(exists, D, {[den(sleep),arg(subject,[#,9])]@@{simple,[#,8]},D})))},
{subject,[#,9]}]@@ {simple,[#,8]}),[#, 7])},claimed),

fact({card,[#,9],=1}, assimilated),
fact({{name,[John?1]}@@E,[#,9]}, assimilated),
fact({{time,[past]},[#,8]}, assimilated)

QUERY
query(the([#,8]::{{time,[past]},[#,8]},
the(([#, 9]:: ({{name,[den(John)]}@@[#,8],[#,9]}& {card,[#,9],=1})),
{(([sleep?-1, {subject,[#,9]}]@@ {simple,[#,8]}),A)})))

Figure 8.22: The IFFs of the premise and query of the argument in (8.7).

the ‘used to’ construction that (when positively asserted) has two consequences – that
the proposition in question Prop held before now, but it does not hold now (Section
5.8.2). For example, ‘used to be a businessman’ means someone was a businessman
but is no longer one. Therefore, when one of these consequences is questioned, the rule

8.6. THE ENGINE’S PERFORMANCE, SOUNDNESS AND COMPLETENESS207

** FACTS **
[fact({[male?1]@@C,[#,9]}, claimed),
fact({(([fail?1,{(xcomp([1/-1, -1/1]),
raw(qq(exists, D, {[den(sleep),arg(subject,[#,9])]@@{simple,[#,8]},D})))},

{subject,[#,9]}]@@ {simple,[#,8]}),[#, 7])},claimed),
fact({card,[#,9],=1}, assimilated),
fact({{name,[John?1]}@@E,[#,9]}, assimilated),
fact({{time,[past]},[#,8]}, assimilated)]]

Figure 8.23: The IFFs of the premise and query of the argument in (8.8).

ensures the right answer by paying attention to its tense. Another variant expresses
some relationships between attitude verbs such as ‘believing something’ entails ‘not

doubting it’ and vice versa. It is the existence of verbs like this which have positive
and negative consequences that leads us to leave embedded clauses in their raw form
inside the IFF of the embedding sentence: ‘John used to love Mary’ has the positive
consequence that he did love her and the negative consequence that he does not love
her now: these two consequences each require a different treatment of ‘John loves

Mary’, and hence it is not appropriate to embed a single fixed version of its IFF in the
IFF for the whole sentence.

8.6 The Engine’s Performance, Soundness and Com-
pleteness

CSATCHMO+, as it stands, can answer queries fairly fast (in fractions of a second).
However, there are two factors that could potentially slow it down. The first is that
it could get stuck in a loop. It is pretty easy to block this for the backward chaining
part of the engine but more difficult with the forward chaining part, particularly when
applying higher-order rules. We deal with it by blocking backward chaining proofs if
the current goal subsumes a goal already in the goal stack and simply setting a resource
bound for the forward chaining part. The second is that although most of our inferences
are Horn, having a matcher as part of the engine makes it very difficult for us to do
indexing on the main functor of the head of such clauses. Put differently, if what we
are using is straight unification, then proving for instance HUMAN(X) would mean only
looking for rules that have HUMAN() as their consequent, and that can be done very
quickly if we index rules by the functor of the consequent (as is done, for instance, in
Prolog). However, in CSATCHMO+, the natural logic matcher explores all possible

208 CHAPTER 8. CONSTRUCTIVE SATCHMO+

** PROOF **
Trying Horn proof of C :
{(([sleep?-1, {subject,[#,9]}]@@ {simple,[#,8]}),A)}
...
Tried every way of getting a Horn proof of C

Trying to answer the contrary C′ :
{(([sleep?1, {subject,[#,9]}]@@ {simple,[#,8]}),[#, 11])}=> absurd
...
About to try a conditional proof of C′ BI-5 :
Trying to prove C′ by asserting C1′ :
{(([sleep?1, {subject,[#,9]}]@@ {simple,[#,8]}),[#, 11])}
And trying to prove C2′ : absurd
Looking for a fact the matches C2′ :
Unsuccessful
Looking fo a rule whose LHS matches C2′ :
Try matching C2′ to the LHS of ATT-2 :
absurd and absurd are unifiable MA-1

Matching succeeded
Try Horn proof of the RHS of ATT-2 :
Trying Horn proof of conjunction RHS BI-3 :
{[Att_verb? 1, {xcomp([/ -1, _]), Prop},...]@@CTXT, X}
& Prop
Looking of a fact that matches RHS.1 BI-1 :
Try matching RHS.1 to:
{(([fail?1,{(xcomp([1/-1, -1/1]),

raw(qq(exists, D, {[den(sleep),arg(subject,[#,9])]@@{simple,[#,8]},D})
Matching succeeded
...
Proof of RHS.1 succeeded
Trying Horn proof of RHS.2 :
raw(qq(exists, D, {[den(sleep),arg(subject,[#,9])]@@{simple,[#,8]},D})
Trying Horn proof of RHS.2 after RAW-2 :
{[sleep? -1,subject,[#,9]]@@simple,[#,8],D}
Looking for a fact that matches RHS.2 :
Try matching RHS.2 to:
{(([sleep?1, {subject,[#,9]}]@@ {simple,[#,8]}),[#, 11])}
...

Matching succeeded
{[sleep? -1,subject,[#,9]]@@simple,[#,8],D} matches a temp(refutation) fact
{(([sleep?1, {subject,[#,9]}]@@ {simple,[#,8]}),[#, 11])}
Proof of RHS.2 succeeded

Proof of RHS succeeded
Proof of C′ succeeded
Answer: No

Figure 8.24: CSATCHMO+ proof for the argument (8.8)

8.7. SUMMARY 209

facts and rules to see if there is any potential (given the set of hyponym relations in
the background) for matching e.g. (MAN(), WOMAN(), etc.) to HUMAN(X). Again,
doing so has not slowed down the inference engine (in its current state) since the size
of the available information to be searched is not huge. However, if we were able to
get all the background information available to a typical adult speaker of a language in
the format we use, there is a significant chance that the engine could become slow.

It is common practice to discuss a proof system in terms of soundness and com-
pleteness. Both are properties that express some relationship between a proof theory
and a model theory. A proof system is sound if it only proves things that are true in
every model, and it is complete if it can prove everything that is true in every model.
Having a model theory is key here and in this work we have deliberately not gone for
one. In other words, our focus is NLIs, i.e. being able to prove what a human could
reasonably conclude given a piece of language (this is why we refer to the engine as
Constructive SATCHMO+). Thus, the only test we are interested in is whether we get
the correct answers as prescribed by the FraCaS annotators. It is therefore not mean-
ingful to discuss soundness and completeness in the current setting. If, in common
with other constructive logics, we do not have a model theory then it is not possible to
discuss the relationships between the proof theory and the model theory.

It is worth considering whether the proof algorithm terminates. Given that our
framework includes both default inference and higher-order inference, it is in fact
clear that without the presence of a resource bound the proof search is potentially
non-terminating. First-order logic is semi-decidable (you can guarantee to find a proof
within a finite time if there is one, but if there is not then the search may never return).
Default logic is not even semi-decidable, since you have to show that using the default
rules does not lead to a contradiction, i.e. you have to show that a certain kind of proof
does not exist. Higher-order logic is even worse, since unification of terms is replaced
by proving that one subsumes the other, which in turn means proving that one entails
the other if they are propositions. In other words, even showing that two terms match
is undecidable (since it may involve a default proof). The algorithm does terminate,
but only because we force it to by imposing resource bounds.

8.7 Summary

In this chapter we have explained how we adapted Ramsay’s constructive STACHMO
and extended it to CSATCHMO+ (CO5). The extensions were twofold. The first is a

210 CHAPTER 8. CONSTRUCTIVE SATCHMO+

matching algorithm that was based on ideas from natural logic and used in CSATCHMO+
to match two tree pairs instead of unifying them (CO5.1). The second is different kinds
of inference rules, including those for dealing with extensions to the basic first-order
engine (equalities, defaults, attitude clauses), that have been hand-coded into the en-
gine’s list of available information (CO5.2). The chapter has also showed a classifica-
tion of the available information based on their validity during proofs.

Chapter 9

Evaluation and Discussion

In previous chapters, we learned how an NL premise/query is turned into an IFF and
how CSATCHMO+ (given an argument in such forms) would answer a query. n this
chapter, we provide an empirical assessment of:

• how well IFFs have managed to capture the meaning of the intended semantic
phenomena.

• whether CSATCHMO+ succeeded in reasoning with these forms.

• our NLI system’s performance in comparison with related systems’ performances.

In Section 9.1 of this chapter we discuss what NLI dataset (among the ones sur-
veyed in Chapter 2) we used to evaluate our NLI system and why. In Section 9.2 we
present our system’s performance on a chosen set of examples from that dataset. Fi-
nally, we compare our performance with the related systems’ performances in Section
9.3.

9.1 Choosing the FraCaS test-set for evaluation

As presented in Chapter 2, there exist several sources for inference tasks that could
be used for evaluating a NLI system, including: 1) the FraCaS test-set, 2) the RTE
challenges, 3) the SNLI and MNLI datasets, and 4) the SICK dataset. These sources
vary in their characteristics and are generally constructed with a particular goal in mind
(see Table 9.1 for a summary of their main characteristics, merits, and drawbacks).

211

212 CHAPTER 9. EVALUATION AND DISCUSSION

Dataset
Name

Characteristics Merits Drawbacks

FraCaS

Consists of 346 NLI problems. Covers a wide range of seman-
tic phenomena and supports
multi-premises inferences.

The test suite is rather small.

Problems are explicitly grouped
and annotated for the semantic phe-
nomena they represent.

Solving FraCaS problems re-
quires little background knowl-
edge.

The problems are quite artifi-
cial and sometimes ambiguous.

Problems were constructed to bear
a resemblance to those of semantic
text books.

Multilinguality. Not representative enough for
wide coverage evaluations and
comparisons of NLI systems.

RTE

Has eight releases (see Table 2.3 for
information about each release).

Larger than the FraCaS test set. Still too small for training deep
learning approaches.

Problems were chosen from real
sources and focus on forms of in-
ferences.

Remedies the unnaturalness of
constructed examples.

Problems are syntactically
complex and involve fairly
long sentences.

Solving RTE problems pre-
supposes the existence a vast
amount of world knowledge.

SICK

Consists of 10K NLI problems. Rich in lexical, syntax, and
semantic phenomena that
CDSMs are expected to
account for

Being specifically tailored of
CDSMs; several important
phenomena and fine grained
details (e.g. tense information)
have been normalized away.

Problems consist of short sentences
that were generated from image and
video captions.

Includes examples that one
would consider as logical infer-
ences [Chatzikyriakidis et al.,
2017].

Problems were labelled for entail-
ment and relatedness using crowd-
sourcing.

The dataset is specifically tailored
for CDSMs.

SNLI

Consists of 570K pairs of English
sentences.

Considered as the first large-
scale data set that supports
deep learning.

Coming from one genre (writ-
ten image captions) , it falls
short when it comes to rep-
resenting phenomena such as:
propositional attitudes, modal-
ity, and temporal adverbs.

Using crowd-sourcing, problems
were generated (from image cap-
tions) and labelled for entailment.

MNLI

Consists of 433k NLI problems. Supports deep learning ap-
proaches.

Problems were generated and la-
belled for entailment using crowd-
sourcing.

Amends SNLI short comings
by using ten distinct genres of
written and spoken English as
source of NLI problems.

Table 9.1: A summary of the NLI datasets discussed in Chapter 2.

9.1. CHOOSING THE FRACAS TEST-SET FOR EVALUATION 213

We want to evaluate our system’s expressiveness and inferential adequacy with
regard to a particular set of semantic phenomena that it was designed for–namely gen-
eralized quantifiers, defaults and propositional attitudes. For that, we chose the FraCaS
test-set mainly because none of the other datasets (listed in Table 9.1) has a clear clas-
sification or annotation of what kind of phenomena each group of NLI problems rep-
resents [Pavlick, 2017]. Therefore, evaluations based on such data-sets usually focus
on the single accuracy metric [White et al., 2017] that, in the words of Poliak [2020],
only shows:

. . . how well a model can recognize whether one sentence likely follows
from another, but it does not illuminate how well NLP models capture
different semantic phenomena that are important for general NLU. . .

For instance, consider the NLI systems discussed in Section 4.3 and their performances
on some datasets given in Table 9.2. It can be noticed that the system of A17 has a
better handle on generalized quantifiers (section 1 of the FraCaS test-set – see Table
2.1) with 95% accuracy than the order-based approach of H19a and a better handle on
attitudes (section 9 of the FraCaS) than the NatLog system of MM08. However, based
on the performances on the test part of the SICK data-set, all that can be said is that the
natural tableau based approach of A15 is better than the order-based approach of H19b
on doing NLIs, without any breakdown into the systems’ performance on different
kinds of problem. It should be noted that all the systems that use FraCaS as test-set
use the whole set for testing, rather than splitting it into development and test sets. The
key here is that each example aims to capture some specific phenomenon, with very
little crossover between cases. The fact that a system can handle questions that arise
from ‘a few great tenors sing popular music.’, for instance, does not tell you whether
it will be able to handle ones that arise from ‘few great tenors are poor’. Splitting
the test-set into examples to be used for development and ones used for testing would
simply remove half the problems, and hence would make it considerably less taxing.
The real question is how many kinds of problem can a system solve.
In addition to the above, the FraCaS test-set has some other advantages for our pur-
poses:

• It is the most widely used test-set that was designed to model fine-grained seman-
tic phenomena (e.g. the differences between the quantifiers ‘few’ and ‘a few’) and
to support multi-premise inferences (see below). In particular, it has been used
to evaluate the NLI systems described in Section 4.3, and hence gives us the best

214 CHAPTER 9. EVALUATION AND DISCUSSION

NLI systems \ Dataset
FraCaS RTE-3 SICK1 2 5 6 9 Total

MM08 97.7% 75% 80% 81.3% 88.9% 87% 59% –
A15 – – – – – – – 82.1%
A17 95% 73% 77% – 92% 86.6% – –
H19a 88% – – – – 88% – –
H19b – – – – – – – 77.19

Table 9.2: NLI related systems’ (reviewed in Section 4.3) performances on some of
the discussed (Section 2.2) NLI datasets. The systems are: MM08: MacCartney and
Manning [2008], A15: Abzianidze [2015], A17:Abzianidze [2017a], H19a: Hu et al.
[2019a], and H19b: Hu et al. [2019b].

yardstick for the performance of our system on the phenomena we are interested
in.

• Its inference tasks were constructed deliberately to minimise the amount of back-
ground knowledge required for their solution. The system described here could
easily be extended to accommodate background knowledge beyond the relations
encoded in WordNet, but that is not the primary focus of our work and hence we
have chosen not to use a test-set such as the RTE challenges for evaluating it.

• The sentences in this test-set are fairly short, which helps eliminate factors such
as parsing errors. There are sentences with fairly complex structures, such as
‘every individual who has the right to live in Europe can travel freely within

Europe.’, but almost all the examples are well-formed English sentences which
are at least potentially parseable with a grammar-based parser – of the 87 sen-
tences in the sections of the FraCaS that we are interested in, we are able to
successfully parse 85. The work described here is concerned with carrying out
inference on parsed sentences, not with the development of a parser, and hence a
test-set that poses difficult semantic problems on the basis of parseable material
is appropriate for evaluating our work.

9.2 Experiments and Results

We evaluated our inference system against sections 1 and 9 of the FraCaS examples
(listed in Appendix B.1) using MacCartney and Manning [2007]’s machine readable
version1. On that version the answers are either Yes, No or Unknown. The number

1Available in http://www-nlp.stanford.edu/˜wcmac/downloads/FraCaS.xml

http://www-nlp.stanford.edu/~wcmac/downloads/FraCaS.xml

9.2. EXPERIMENTS AND RESULTS 215

of problems used for testing from section 1 are 74 (6 problems are usually excluded
because they lack a well-defined answer) and the whole 13 from section 9. For each
problem, we compare our answer to the gold one in Appendix C.1. Figure 9.1 classifies
our answers against the gold answers for section 1 on the left table, and for section 9
on the right table. The calculation of precision and recall scores is slightly confusing
because Unknown is sometimes the system’s view of the question (when it has failed to
prove either the queried proposition or its negation) and is sometimes returned simply
because it failed to parse the question or one of the premises. In the former case it may
be the right answer or it may be wrong, and hence should be included in the precision,
in the latter it counts as not returning an answer at all and should be included in the
recall.

Gold
Our Yes No Unknown

Yes 34 0 3 (0)a

No 0 5 0
Unknown 0 0 32

Section 1: generalised quantifiers

aThere are no cases of Unknown arising in the sec-
tion from a failure by the parser.

Gold
Our Yes No Unknown

Yes 5 0 1 (2)a

No 0 1 0
Unknown 0 0 4

Section 9: propositional attitudes

aTwo of the sentences in this section were simply
too difficult for our parser to handle.

Figure 9.1: Confusion matrix for CSATCHMO+ on section 1 (left) and Section 9
(right) of the FraCaS test-set.

Section # problems Accuracy % Precision % Recall %
1. Generalized Quantifiers 74 96 96 96
9. Attitudes 13 77 91 83
Total 87 93 95 94

Table 9.3: Performance of CSATCHMO+ on section 1 and 9 of the FraCaS examples

There were a small number of cases where we believe that the answers provided
in MacCartney and Manning’s version of FraCaS, discussed below ,are incorrect. In
these cases we took what we believe to be the right answer rather than MacCartney and
Manning’s as our target, but in such cases we did investigate further related premise-
question sets.

• For (FraCaS-010) the gold answer is (Yes) and we believe that it should be (Un-
known)

216 CHAPTER 9. EVALUATION AND DISCUSSION

FraCaS-010
Gold:Yes Ours: Unknown
p1: Most great tenors are Italian

q: Are there great tenors who are Italian?

we believe that (as discussed in Section 5.2) that certain GQs, such as universal
quantifiers (e.g. ‘all’ and ‘every’), do not assume existential import , and so the
entailment of a sentence such as ‘There is/are X’ is only possible if there is other
premises asserting the existence of some X. That concept applies for the quan-
tifier ‘most’, and thus we believe the answer should have been (Unknown). We
did include versions of these examples where an additional sentence that does
have existential import (e.g. ‘There are some great tenors’) in order to obtain
‘Yes’ as the answer.

• For (FraCaS-015), the gold answer is (Yes) and we believe for this one it should
have been (Unknown) as well.

FraCaS-015
Gold:Yes Ours: Unknown
p1: At least three tenors will take part in the concert.

q: Are there tenors who will take part in the concert?

In other words, if we are really careful about times, then actually the question
should be ‘will there be tenors who will take part in the concert?’, since we
do not know that the ones who will take part have yet been born/identified as
tenors. Consider as a parallel example ‘at least three cakes will be made for the

wedding’ |= ‘will there be cakes.’ but not ‘there are three cakes.’.

Again we tested a version of this example for which we believe the answer
should be Yes, namely one where the question was ‘Will there be tenors who

will take part in the concert?’ and obtained the answer Yes. There are a num-
ber of places where the FraCaS answers lack precision with respect to tense and
aspect marking, but this and (FraCaS-334) are the only cases where it makes a
significant difference.

• For (FraCaS-345) and (FraCaS-346), the gold answer is (Yes) and we obtained
(Unknown). Both examples (below) involved with a conjunction or a disjunc-
tion between two sentences. Cases like (FraCaS-345) involving conjunctions or
disjunctions of sentences are comparatively easy to handle. There are, however,

9.2. EXPERIMENTS AND RESULTS 217

cases where the linked items are not sentences: these are much harder, e.g. ‘John

ate a peach or a pear’, where care has to be taken not produce an interpretation
which involves saying there is a peach and a pear and John ate one or other of
these two. We have left handling coordination for future work, and hence have
not dealt with cases like (FraCaS-345) and (FraCaS-346).

FraCaS-345
Gold:Yes Ours: Unknown
p1: Smith saw Jones sign the contract and his secretary
make a copy.

q: Did Smith see Jones sign the contract?

FraCaS-346
Gold:Yes Ours: Unknown
p1: Smith saw Jones sign the contract or cross out the cru-
cial clause.

q: Did Smith either see Jones sign the contract or see Jones
cross out the crucial clause?

• (FraCaS-334) is also worth a closer look:

FraCaS-334
Gold:Yes Ours: Unknown
p1: Smith knew that ITEL had won the contract in 1992.

q: did ITEL win the contract in 1992?

The issue here is that the embedded proposition in the premise ‘ITEL had won

the contract in 1992.’ has different tense/aspect marking from the query ‘did

ITEL win the contract in 1992?’. Assuming that ‘in 1992’ in the premise attaches
to ‘won the contract’ and not to ‘knew that ITEL had won the contract’, we
still have to be prepared to infer that having done it in 1992 entails doing it in
1992. This can be done either by being sloppy and saying that all past forms are
equivalent, or by explicitly having a rule for relating perfect and simple forms.
We have not included a complete treatment of the relationships between various
tense/aspect combinations: the rule below shows the general form that rules for
such a treatment would have.

{{time,[past | TIMES]},T0}

&{(P@@{perfect,T0}, X)}

218 CHAPTER 9. EVALUATION AND DISCUSSION

& {{time, TIMES}, T1}

=> {(P@@{simple,T1}, X)}

If P was perfect at some time then it was simple at any later time.

• (FraCaS-343) also raises an interesting issue:

FraCaS-343
Gold:Yes Ours: Yes
p1: Smith saw Jones sign the contract.
p2: Jones is the chairman of ITEL.

q: did Smith see the chairman of ITEL sign the contract?

The problem this time is that we need to match the subtrees for ‘Jones sign

the contract’ from the first premise and ‘the chairman of ITEL sign the contract’
from the query. This can only be done if we can match ‘Jones’ and ‘the chairman

of ITEL’, which we clearly cannot do unless we can make use of the second
premise. We defined matching in Section 8.4 by saying that X matches Y if X is a
hyponym of Y. Recalling that hyponymy is just a specific form of entailment, we
can extend this to say that X matches Y if X entails Y. Given the second premise
of (FraCaS-343), we can show that ‘Jones sign the contract’ does entail ‘the

chairman of ITEL sign the contract’, and hence we can match the corresponding
subtrees.

This extension of the matching algorithm only comes into play when matching
the subtrees for embedded clauses, and hence has little effect on the performance
of the inference engine on the majority of the FraCaS examples, but it does make
it possible to handle some otherwise intractable problems.

9.3 Comparison and Discussion

In this section, the performance of CSATCHMO+ is compared to the related systems
(Section 4.3) which have been tested on the FraCaS test-set. The comparison is given in
Table 9.4. The results have been split into systems that can do single-premise problems
and others that can do single and multiple premise problems for clarity.

As illustrated in the table, from section 1 our inference system has achieved a
comparable result to the other systems when evaluated on single-premises only and
better results when multi-premise problems are included. Nevertheless, the FraCaS

9.3. COMPARISON AND DISCUSSION 219

Section # problems Single (Acc %) All (Acc %)
(Single/All) MM08 A17 Ours A17 H19 Ours

1. Generalized Quantifiers (44/74) 98 93 96 95 88 96
9. Attitudes (11/13) 89 100 96 92 - 77

Table 9.4: A comparison between the accuracy of our system (on section 1 and 9 of the
FraCaS) and the systems discussed in Section 4.3. MM08: MacCartney and Manning
[2008], A17: Abzianidze [2017b] and H19: Hu et al. [2019a].

data is fairly small and its problems are usually seen during systems’ development
[Abzianidze, 2017b]. Therefore, “the comparison should be understood in terms of an
expressive power of a system and the underlying theory” Abzianidze [2017b], rather
than just by counting examples. With that being said, we believe that some semantic
phenomenon were poorly represented in the FraCaS test-set, particularly including at-
titudes (Appendix B.1.2) (see Chatzikyriakidis et al. [2017]’s discussion and proposal
on this matter). Attitudes, as explained in Section 5.8.2, have a number of important
features that ought to be considered in order to make the right inferences, including:
their entailment pattern, tense-agreement and their relation with other attitudes. For
example, looking into section 9 of the FraCaS data set, it can be noticed that the ex-
amples include one implicative verb ‘manage’, one factive ‘know’ and one non-factive
‘believe’, all in positive contexts only. Therefore, to further investigate our system’s
ability represent such constructions and reason with them, we have extended the test on
attitudes into a number of further cases that were mainly constructed based on Kart-
tunen’s [1971; 2012; 2015b] examples for implicatives and factives, and some other
variants from the ones in the FraCaS itself (all listed in Appendix B.2). We tested
our system and Abzianidze’s LangPro2 on this set of examples. As the results in Ap-
pendix C.2 show, CSATCHMO+ was able to answer all of these examples. LangPro
on the other hand was able to answer a number of these examples, but did not deal with
examples where tense information is important (unsurprisingly given that Abzianidze
intentionally skip tense information), and others with verbs that (although they are ex-
amples of attitudes) are not explicitly mentioned in Abzianidze’s thesis . However,
there are some straightforward applications of the basic entailment patterns (++, +−,
−+, −−) for which Abzianidze has designed four specific tableau rules that LangPro
could not answer correctly, For example:

• (FraCaS-k23) which is a simple variant of (FraCaS-336) where ‘managed’ was

2https://naturallogic.pro/LangPro/

https://naturallogic.pro/LangPro/

220 CHAPTER 9. EVALUATION AND DISCUSSION

replaced with ‘failed’ and (FraCaS-k09) is another example of ‘failed’ but in a
negative context.

FraCaS-k23
Gold: No LangPro: Unknown
p1: ITEL failed to win the contract in 1992.

q: ITEL won the contract in 1992.

FraCaS-k09
Gold: Yes LangPro: Unknown
p1: John did not fail to eat a peach.

q: John ate a peach.

• (FraCaS-k25b) is about natural logic containment relation between attitudes’
complements.

FraCaS-k00
Gold: Yes LangPro: Unknown
p1: John believes a fat old man loves Mary.

q: John believes a human likes Mary.

9.4 Summary

Using the FraCaS test set, we have shown that our system produces comparable per-
formance to that of other systems addressing the same range of problems, in particular
complex quantificational issues, and that by adapting a standard inference engine to
use natural logic matching on trees rather than the unification of logical forms we can
outperform all the competing systems on generalized quantifiers examples. The Fra-
CaS coverage of propositional attitudes is somewhat limited, so we added a collection
of examples from work by Karttunen. These are not extracted from freely occurring
texts, but nor were they constructed by us for the purpose of testing a system developed
by us: they are accepted in the literature as exemplifying a range of challenging issues,
and hence our ability to solve them supports our claim that our system outperforms a
number of others on a range of significant phenomena.

Chapter 10

Conclusion and Future Work

In this thesis, we have investigated the ability to implement an automated NLI system
that could reason about deep semantic phenomena without the need for translation into
some formal language such as FOL. To achieve that, we have built an inference system
with the following aims and questions in mind:

Aims:

A1. Investigate the use of syntactical analysis of NL texts (dependency trees in partic-
ular) as a basis for reasoning about NL.

A2. Re-visit a class of inference problems (exemplified by parts of the Fracas data-set
and some others, and centred around certain deep semantic phenomena including
defaults, quantifiers, and propositional attitudes) that cannot be handled by simple
subsumption relations over trees , due to the lack of mechanisms for chaining
over multi-premises, nor by translating into logical expressions (which have been
proven difficult) alone, and attempt to solve them by designing and implementing
a NLI system that uses a combination of a tree-matching algorithm and theorem
proving.

Questions:

Q1. Can we use representations that are close to trees obtained by standard syntactic
analysis as the MRs for complex issues in semantics?

Q2. Can the target inference problems (in A2) be tackled by adapting existing infer-
ence techniques, namely natural deduction rules and natural logic containment
relations, to operate directly on those representations?

221

222 CHAPTER 10. CONCLUSION AND FUTURE WORK

To answer these questions, we have designed and implemented a NLI system that
consists of:

S1. A parser that takes a NL utterance and constructs its dependency tree.

S2. A tree normalizer that takes a dependency tree and turns it, by applying a series
of transformational stages, into a form (inference friendly forms (IFFs)) that the
theorem prover can work with.

S3. A theorem prover that, given a query (in its IFF), attempts to prove it from any
previously mentioned premise(s) (within the current discourse) and any available
information in the repository, and conclude its attempt by an answer.

S4. A repository of information to be used as background knowledge.

To arrive at the final system above, we have:

• surveyed (in Chapter 4) the literature for natural logic-based NLIs and identified
some of their shortcomings (CO1).

• searched the literature (in Chapter 5) to gain a better understanding of how
certain semantic phenomena (including defaults, quantifiers, propositional at-
titudes) have been handled, and showed what representational aspects we have
considered to capture their semantics in our MRs, keeping in mind the need: 1)
to reason about examples of such phenomena; and 2) bridge the found gaps in
the existing NLI systems. (CO2)

• used (in Chapter 6) a dependency grammar to turn NL text into DTs, and ensured
that DTs were labelled with the necessary semantic features (CO2.1).

• designed (in Chapter 7) a set of transformation rules, based on what has been
learned from the literature on the meaning of the intended semantic phenomena
and the demands of the inference engine, then applied them on labelled DTs to
obtain their IFFs (CO2.2).

• adapted (in Chapter 8) Ramsay’s (2001) constructive SATCHMO to work with
normalized trees instead of logical formulas, incorporating two extensions. The
first was a matching algorithm that we designed based on ideas from natural
logic (CO3), and used instead of straight unification (CO5.2). The second was a
number of inference rules that were designed and hand-coded (into the engine
repository of information) to handle certain constructions (CO5.1).

10.1. FUTURE WORK 223

• run our inference engine (in Chapter 9) against sections 1 and 9 from the FraCas
test-set and compared the engine’s answers with the gold standard answers.

Our system achieved 93 % overall accuracy on the intended sections. The problems
that the engine failed to answer were either because the parser failed to get their trees
or because they involved constructions that were out of scope. With these findings,
we believe the constructed IFFs have sufficiently captured the meaning of the intended
semantic phenomena and that CSATCHMO+ succeeded in reasoning with these forms.

10.1 Future Work

For future work, we have a number of ideas that could further extend the system pre-
sented in this thesis. These ideas can be split into two groups. The first are extensions
that we believe are fairly straightforward with more effort. The second is about ideas
that might be tempting in principle but might be hard to apply and hence need investi-
gation. On the side of doable things, we want to try our inference system on more NLI
problems. In particular, the NLI problems:

1. that constitute other sections (except ellipses) of the FraCaS test-set. We believe
that there are a substantial number of semantic phenomena that we have dealt
with in parsing—such as bare plurals, anaphora, the standard use and anaphoric
dimension of tenses, and non-affirmative adjectives (fake, former, etc.)—and we
have covered (to some degree) in normalization. However, we have not gone
as carefully through these problems to ensure that their representations have
captured the intended semantic phenomena, and we have not tested whether
CSATCHMO+ can get their correct answers.

2. of the SICK dataset. Although SICK problems were not labelled for semantic
phenomena, it would be interesting to test how well our inference system could
handle more NLIs especially knowing that the SICK problems are split into an
unseen part for testing and another for developing. In addition, FraCaS and SICK
problems share some similarities despite being constructed for different goals.
That is, the problems of both datasets consist of short sentences, were manually
generated, resemble problems of logical inferences, and require comparatively
little world knowledge.

On the other side,

224 CHAPTER 10. CONCLUSION AND FUTURE WORK

1. It would be really interesting if we could run our system on freely occurring long
NL sentences. However, as discussed in Section 6.1, the work described in this
thesis relies upon having accurate parse trees that are labelled with the necessary
semantic information, and no existing parser we are aware of is accurate or in-
formative enough to do the job. For instance, statistically trained parsers have
particular difficulty with sentences containing complex determiners. As noted
in Section 6.1, SDP provides completely different analyses to the NPs in ‘few

great tenors are poor.’ and ‘most great tenors are rich’. Similarly, both SDP and
MALTParser assign different structures to the NPs in ‘all great tenors are rich’
and ‘most great tenors are rich’, and MALTParser assigns different structures to
the NPs in ‘at least ten commissioners spend time at home.’ and ‘do at least ten

commissioners spend time at home?’. The problem seems likely to be that such
constructions are comparatively rare, giving the parser little to learn from, and
that words like ‘most’ and ‘few’ tend to have multiple interpretations, making it
hard to assign them the right POS tag even before the parser takes over. Given
that the issues we are interested in relate very largely to complex determiners of
this kind, the output of such parsers is not reliable enough for them to be used
for this kind of task. Thus, we have to either use a grammar-based parser with
all their known faults or wait for statistical ones to get substantially better on
difficult examples.

2. the inference engine could benefit from having more knowledge. As shown in
Section 8.3.1, we can extract some useful lexical relations from WordNet quite
easily. Nonetheless, extracting large-scale encyclopaedia kind of information
will not be easy, and even if we could obtain such information, we would run
into two more obstacles:

• This information has to be encoded into the engine’s repository of infor-
mation in the same format as IFFs.

• Having them all encoded could potentially (as discussed in Section 8.6)
slow down the engine and hence could require finding a way to optimize
its performance.

Bibliography

Barbara Abbott. Definite and indefinite. Encyclopedia of language and linguistics, 3
(392):99, 2006.

Barbara Abbott and Bart Geurts. Definiteness and proper names: Some bad news
for the description theory. author’s reply. Journal of semantics (Nijmegen), 19(2):
191–207, 2002.

Nabil Abdullah and Richard A Frost. Adjectives: A uniform semantic approach.
In Conference of the Canadian Society for Computational Studies of Intelligence,
pages 330–341. Springer, 2005.

Lasha Abzianidze. Towards a wide-coverage tableau method for natural logic. In JSAI
International Symposium on Artificial Intelligence, pages 66–82. Springer, 2014.

Lasha Abzianidze. A tableau prover for natural logic and language. In Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing, pages
2492–2502, 2015.

Lasha Abzianidze. Natural solution to fracas entailment problems. In Proceedings of
the Fifth Joint Conference on Lexical and Computational Semantics, pages 64–74,
2016.

Lasha Abzianidze. Langpro: Natural language theorem prover. arXiv preprint
arXiv:1708.09417, 2017a.

Lasha Abzianidze. A natural proof system for natural language. Tilburg University,
2017b.

Rod Adams. Textual entailment through extended lexical overlap. In Proceedings
of the Second PASCAL Challenges Workshop on Recognising Textual Entailment,
pages 128–133, 2006.

225

226 BIBLIOGRAPHY

Hiyan Alshawi. The core language engine. MIT press, 1992.

Hiyan Alshawi and Jan van Eijck. Logical forms in the core language engine. In 27th
Annual Meeting of the Association for Computational Linguistics, pages 25–32,
1989.

Maxime Amblard, Clément Beysson, Philippe de Groote, Bruno Guillaume, and Syl-
vain Pogodalla. A french version of the fracas test suite. In LREC 2020-Language
Resources and Evaluation Conference, page 9, 2020.

Gabor Angeli and Christopher D Manning. Naturalli: Natural logic inference for com-
mon sense reasoning. In Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 534–545, 2014.

Grigoris Antoniou. A tutorial on default logics. ACM Computing Surveys (CSUR),
31(4):337–359, 1999.

N Arthur. Time and Modality. Clarendon Press, Oxford, 1957.

Emmon Bach. The algebra of events. Linguistics and philosophy, 9(1):5–16, 1986.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo
Magnini, and Idan Szpektor. The second pascal recognising textual entailment chal-
lenge. In Proceedings of the second PASCAL challenges workshop on recognising
textual entailment, volume 6, pages 6–4, 2006.

Avron Barr. Natural language understanding. AI Magazine, 1(1):5, 1980.

Jon Barwise and Robin Cooper. Generalized quantifiers and natural language. In
Philosophy, language, and artificial intelligence, pages 241–301. Springer, 1981.

Johan van Benthem et al. A brief history of natural logic. College Publications, 2008.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo
Magnini. The fifth pascal recognizing textual entailment challenge. Proceedings of
TAC, 9:14–24, 2009.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo
Magnini. The sixth pascal recognizing textual entailment challenge. Proceedings of
TAC, 2010.

BIBLIOGRAPHY 227

Luisa Bentivogli, Peter Clark, Ido Dagan, Hoa Dang, and Danilo Giampiccolo. The
seventh pascal recognizing textual entailment challenge. Proceedings of TAC, 2011,
2011.

Luisa Bentivogli, Ido Dagan, and Bernardo Magnini. The recognizing textual en-
tailment challenges: Datasets and methodologies. In Handbook of Linguistic
Annotation, pages 1119–1147. Springer, 2017.

Timothée Bernard. Negation in event semantics with actual and nonactual events.
Proceedings of ConSOLE XXVI, 1:17, 2018.

Raffaella Bernardi. Monotonic reasoning from a proof-theoretic perspective. In
Proceedings of Formal Grammar, pages 13–24, 1999.

Jean-Philippe Bernardy and Stergios Chatzikyriakidis. A type-theoretical system for
the fracas test suite: Grammatical framework meets coq. In IWCS 2017-12th
International Conference on Computational Semantics-Long papers, 2017.

Jean-Philippe Bernardy and Stergios Chatzikyriakidis. What kind of natural language
inference are nlp systems learning: Is this enough? In ICAART (2), pages 919–931,
2019.

Patrick Blackburn. Tense, temporal reference, and tense logic. Journal of Semantics,
11(1-2):83–101, 1994.

Patrick Blackburn and Johan Bos. Representation and inference for natural language.
A first course in computational semantics. CSLI, 2005.

Alexander Bochman. Nonmonotonic reasoning. In Handbook of the History of Logic,
volume 8, pages 557–632. Elsevier, 2007.

Rens Bod. The Data-Oriented Parsing Approach: Theory and Application, pages 307–
348. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

Johan Bos. Predicate logic unplugged. In Proceedings 10th Amsterdam Colloquium,
pages 133–143. Citeseer, 1996.

Johan Bos. Let’s not argue about semantics. In Proceedings of the International
Conference on Language Resources and Evaluation, pages 2835–2840. Citeseer,
2008.

228 BIBLIOGRAPHY

Johan Bos. A survey of computational semantics: Representation, inference
and knowledge in wide-coverage text understanding. Language and Linguistics
Compass, 5(6):336–366, 2011.

Johan Bos and Katja Markert. Recognising textual entailment with logical inference.
In Proceedings of Human Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing, pages 628–635, 2005.

Johan Bos and Katja Markert. When logical inference helps determining textual entail-
ment (and when it doesnt). In Proceedings of the Second PASCAL RTE Challenge,
page 26, 2006.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning.
A large annotated corpus for learning natural language inference. arXiv preprint
arXiv:1508.05326, 2015.

Gerhard Brewka. Default Reasoning, pages 915–917. Springer US, Boston, MA, 2012.
ISBN 978-1-4419-1428-6. doi: 10.1007/978-1-4419-1428-6 634. URL https:

//doi.org/10.1007/978-1-4419-1428-6_634.

Gerhard Brewka, Jürgen Dix, and Kurt Konolige. Nonmonotonic reasoning: an
overview, volume 73. CSLI publications Stanford, 1997.

Gerhard Brewka, Ilkka Niemelä, and Mirosław Truszczyński. Nonmonotonic reason-
ing. Foundations of Artificial Intelligence, 3:239–284, 2008.

Daniel Büring. Pronouns, pages 971 – 996. De Gruyter Mouton, 2011.

Cambridge Online Dictionary. Minutes, 2021. URL https://dictionary.

cambridge.org/dictionary/english/minutes. [Online; accessed 11-August-
2021].

Bob Carpenter. Type-logical semantics. MIT press, 1997.

Nathanael Chambers, Daniel Cer, Trond Grenager, David Hall, Chloe Kiddon, Bill
MacCartney, Marie-Catherine De Marneffe, Daniel Ramage, Eric Yeh, and Christo-
pher D Manning. Learning alignments and leveraging natural logic. In Proceedings
of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pages
165–170, 2007.

https://doi.org/10.1007/978-1-4419-1428-6_634
https://doi.org/10.1007/978-1-4419-1428-6_634
https://dictionary.cambridge.org/dictionary/english/minutes
https://dictionary.cambridge.org/dictionary/english/minutes

BIBLIOGRAPHY 229

Lucas Champollion. Quantification and negation in event semantics. The Baltic
International Yearbook of Cognition, Logic and Communication, 6:3, 2010.

Lucas Champollion. Integrating montague semantics and event semantics. ESSLLI
lecture notes, 2014.

Stergios Chatzikyriakidis, Robin Cooper, Simon Dobnik, and Staffan Larsson. An
overview of natural language inference data collection: The way forward? In
Proceedings of the Computing Natural Language Inference Workshop, 2017.

Danqi Chen and Christopher D Manning. A fast and accurate dependency parser using
neural networks. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 740–750, 2014.

N Chomsky. Conditions on rules of grammar. essays on form and interpretation, 163-
210, 1976.

Noam Chomsky. Knowledge of language: Its nature, origin, and use. Greenwood
Publishing Group, 1986.

Noam Chomsky, Roderick A Jacobs, and Peter S Rosenbaum. Remarks on nominal-
ization. 1970, 184:221, 1970.

Paul Christophersen. The articles: A study of their theory and use in english. 1939.

Ariel Cohen and Nomi Erteschik-Shir. Topic, focus, and the interpretation of bare
plurals. Natural Language Semantics, 10(2):125–165, 2002.

Bernard Comrie et al. Tense, volume 17. Cambridge university press, 1985.

Robin Cooper. Quantification and syntactic theory. Synthese Language Library, 1983.

Robin Cooper, Richard Crouch, Jan van Eijck, Chris Fox, Josef van Genabith, Jan
Jaspers, Hans Kamp, Manfred Pinkal, Massimo Poesio, Stephen Pulman, et al. Fra-
cas: A framework for computational semantics. Deliverable, 8:62–051, 1994.

James R Curran, Stephen Clark, and Johan Bos. Linguistically motivated large-
scale nlp with c&c and boxer. In Proceedings of the 45th annual meeting of the
Association for Computational Linguistics Companion volume proceedings of the
demo and poster sessions, pages 33–36, 2007.

230 BIBLIOGRAPHY

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising tex-
tual entailment challenge. In Machine learning challenges. evaluating predictive
uncertainty, visual object classification, and recognising tectual entailment, pages
177–190. Springer, 2005.

Marcello D’Agostino and Marco Mondadori. The taming of the cut. classical refuta-
tions with analytic cut. Journal of Logic and Computation, 4(3):285–319, 1994.

Mary Dalrymple. The interpretation of tense and aspect in english. In Proceedings
of the 26th annual meeting on Association for Computational Linguistics, pages
68–74. Association for Computational Linguistics, 1988.

Donald Davidson. The logical form of action sentences. In The logic of decision and
action. Pittsburgh University Press, 1967.

Andrea DeCapua. Time, tense, and aspect of verbs. In Grammar for Teachers, pages
165–209. Springer, 2008.

Renaat Declerck. From reichenbach (1947) to comrie (1985) and beyond: Towards a
theory of tense. Lingua, 70(4):305–364, 1986.

Francesco M Donini, Maurizio Lenzerini, Daniele Nardi, Fiora Pirri, and Marco
Schaerf. Nonmonotonic reasoning. Artificial Intelligence Review, 4(3):163–210,
1990.

Myroslava O Dzikovska, Rodney D Nielsen, Chris Brew, Claudia Leacock, Danilo
Giampiccolo, Luisa Bentivogli, Peter Clark, Ido Dagan, and Hoa T Dang. Semeval-
2013 task 7: The joint student response analysis and 8th recognizing textual entail-
ment challenge. Technical report, DTIC Document, 2013.

Mürvet Enç. Anchoring conditions for tense. Linguistic inquiry, pages 633–657, 1987.

Christiane Fellbaum. Wordnet: An electronic lexical database and some of its applica-
tions. MIT press Cambridge, 1998.

Christiane Fellbaum. Wordnet. In Theory and applications of ontology: computer
applications, pages 231–243. Springer, 2010.

Hana Filip. 48. aspectual class and aktionsart. Semantics, 2011.

BIBLIOGRAPHY 231

Melvin Fitting. First-order logic and automated theorem proving. Springer-Verlag,
1990.

Yaroslav Fyodorov, Yoad Winter, and Nissim Francez. Order-based inference in natu-
ral logic. Logic Journal of the IGPL, 11(4):385–416, 2003.

LTF Gamut. Logic, language, and meaning, volume 2. University of Chicago Press,
1991.

Gerhard Gentzen. Untersuchungen über das logische schließen. i. Mathematische
zeitschrift, 39(1):176–210, 1934.

Bart Geurts. Good news about the description theory of names. Journal of semantics,
14(4):319–348, 1997.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third pas-
cal recognizing textual entailment challenge. In Proceedings of the ACL-PASCAL
workshop on textual entailment and paraphrasing, pages 1–9. Association for Com-
putational Linguistics, 2007.

Danilo Giampiccolo, Hoa Trang Dang, Bernardo Magnini, Ido Dagan, Elena Cabrio,
and Bill Dolan. The fourth pascal recognizing textual entailment challenge. TAC
2008 Proceedings, 2008.

Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–101, 1987.

Jean-Yves Girard. Linear logic: its syntax and semantics. London Mathematical
Society Lecture Note Series, pages 1–42, 1995.

Jean-Yves Girard. Light linear logic. Information and Computation, 143(2):175–204,
1998.

Oren Glickman, Ido Dagan, and Moshe Koppel. Web based probabilistic textual en-
tailment. In Proceedings of the 1st Pascal Challenge Workshop, pages 33–36, 2005.

Herbert P Grice. Logic and conversation. In Speech acts, pages 41–58. Brill, 1975.

D Grune and CJH Jacobs. Parsing techniques-a practical guide, 2008.

Susanne Hackmack. Reichenbach’s theory of tense and it’s application to english,
2015.

232 BIBLIOGRAPHY

Ilan Hazout. The syntax of existential constructions. Linguistic Inquiry, 35(3):393–
430, 2004.

Irene Heim. The semantics of definite and indefinite noun phrases. 1982.

Irene Heim. File change semantics and the familiarity theory of definiteness. Semantics
Critical Concepts in Linguistics, pages 108–135, 1983.

Elena Herburger. Negation, volume 2, pages 1641 – 1660. De Gruyter Mouton, 2011.

Caroline Heycock and Anthony Kroch. Inversion and equation in copular sentences.
ZAS Papers in linguistics, 10:71–87, 1998.

James Higginbotham. On semantics. Linguistic inquiry, 16(4):547–593, 1985.

James Higginbotham. On events in linguistic semantics. Speaking of events, 49:80,
2000.

Laurence R Horn. Implicature. Encyclopedia of Cognitive Science, 2006.

Hai Hu and Larry Moss. Polarity computations in flexible categorial grammar.
In Proceedings of the Seventh Joint Conference on Lexical and Computational
Semantics, pages 124–129, 2018.

Hai Hu, Thomas Icard, and Larry Moss. Automated reasoning from polarized parse
trees. In Proceedings of the Fifth Workshop on Natural Language and Computer
Science, 2018.

Hai Hu, Qi Chen, and Larry Moss. Natural language inference with monotonic-
ity. In Proceedings of the 13th International Conference on Computational
Semantics-Short Papers, pages 8–15, 2019a.

Hai Hu, Qi Chen, Kyle Richardson, Atreyee Mukherjee, Lawrence S Moss, and Sandra
Kübler. Monalog: a lightweight system for natural language inference based on
monotonicity. arXiv preprint arXiv:1910.08772, 2019b.

Thomas Icard III and Lawrence Moss. Recent progress in monotonicity. LiLT
(Linguistic Issues in Language Technology), 9, 2014.

Thomas F Icard III. Inclusion and exclusion in natural language. Studia Logica, 100
(4):705–725, 2012.

BIBLIOGRAPHY 233

Andrzej Indrzejczak. Natural Deduction, Hybrid Systems and Modal Logics, vol-
ume 30. Springer Science & Business Media, 2010.

Lucja Iwańska. Logical reasoning in natural language: It is all about knowledge. Minds
and Machines, 3(4):475–510, 1993.

Ray Jackendoff. X syntax: A study of phrase structure. Linguistic Inquiry Monographs
Cambridge, Mass, (2):1–249, 1977.

Stanisław Jaśkowski. On the rules of suppositions in formal logic. Studia Logica, (1):
5–32, 1934.

Valentin Jijkoun, Maarten de Rijke, et al. Recognizing textual entailment using lexical
similarity. In Proceedings of the PASCAL Challenges Workshop on Recognising
Textual Entailment, pages 73–76. Citeseer, 2005.

Lauri Karttunen. Implicative verbs. Language, pages 340–358, 1971.

Lauri Karttunen. Simple and phrasal implicatives. In * SEM 2012: The First Joint
Conference on Lexical and Computational Semantics–Volume 1: Proceedings of
the main conference and the shared task, and Volume 2: Proceedings of the Sixth
International Workshop on Semantic Evaluation (SemEval 2012), pages 124–131,
2012.

Lauri Karttunen. From natural logic to natural reasoning. In CICLing, 2015a.

Lauri Karttunen. From natural logic to natural reasoning. In International Conference
on Intelligent Text Processing and Computational Linguistics, pages 295–309.
Springer, 2015b.

Edward L Keenan and Dag Westerståhl. Generalized quantifiers in linguistics and
logic. In Handbook of logic and language, pages 837–893. Elsevier, 1997.

William R Keller. Nested cooper storage: The proper treatment of quantification in
ordinary noun phrases. In Natural language parsing and linguistic theories, pages
432–447. Springer, 1988.

P Kiparsky and C Kiparsky. Fact’in bierwisch and heidolph, eds. Progress in
Linguistics, Mouton, The Hague, 1970.

234 BIBLIOGRAPHY

Dan Klein and Christopher D Manning. Accurate unlexicalized parsing. In
Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics-Volume 1, pages 423–430. Association for Computational Linguistics,
2003.

Angelika Kratzer. Individual-level predicates. The generic book, 125, 1995.

Angelika Kratzer. Severing the external argument from its verb. In Phrase structure
and the lexicon, pages 109–137. Springer, 1996.

Angelika Kratzer. The event argument and the semantics of verbs, chapter 2.
Manuscript. Amherst: University of Massachusetts, Amherst, MA, 2000.

George Lakoff. Linguistics and natural logic. In Semantics of natural language, pages
545–665. Springer, 1972.

Matthias Lalisse and Ash Asudeh. Distinguishing intersective and non-intersective
adjectives in compositional distributional semantics. 2015.

David Lewis. Scorekeeping in a language game. In Semantics from different points of
view, pages 172–187. Springer, 1979.

Mike Lewis and Mark Steedman. Combined distributional and logical semantics.
Transactions of the Association for Computational Linguistics, 1:179–192, 2013.

Mike Lewis and Mark Steedman. A* CCG parsing with a supertag-factored model. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 990–1000, Doha, Qatar, October 2014. Associa-
tion for Computational Linguistics. doi: 10.3115/v1/D14-1107. URL https:

//aclanthology.org/D14-1107.

Lindström. First order predicate logic with generalized quantifiers. Theoria, 32(3):
186–195, 1966.

Donald W Loveland, David W Reed, and Debra S Wilson. Satchmore: Satchmo with
relevancy. Journal of Automated Reasoning, 14(2):325–351, 1995.

Peter Ludlow. Lf and natural logic. Logical form and language, pages 132–168, 2002.

Bill MacCartney. Natural language inference. PhD dissertation, Stanford University,
2009.

https://aclanthology.org/D14-1107
https://aclanthology.org/D14-1107

BIBLIOGRAPHY 235

Bill MacCartney and Christopher D Manning. Natural logic for textual infer-
ence. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, pages 193–200. Association for Computational Linguistics, 2007.

Bill MacCartney and Christopher D Manning. Modeling semantic containment and
exclusion in natural language inference. In Proceedings of the 22nd International
Conference on Computational Linguistics-Volume 1, pages 521–528. Association
for Computational Linguistics, 2008.

Bill MacCartney and Christopher D Manning. An extended model of natural logic.
In Proceedings of the eighth international conference on computational semantics,
pages 140–156. Association for Computational Linguistics, 2009.

Claudia Maienborn. Event semantics. Semantics: An international handbook of natural
language meaning, 1:802–829, 2011.

Claudia Maienborn and Martin Schfer. Adverbs and adverbials, volume 2, pages 1390–
1420. De Gruyter Mouton, 2011.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. The Stanford CoreNLP natural language pro-
cessing toolkit. In Association for Computational Linguistics (ACL) System
Demonstrations, pages 55–60, 2014. URL http://www.aclweb.org/anthology/

P/P14/P14-5010.

Rainer Manthey and François Bry. A hyperresolution-based proof procedure and
its implementation in prolog. In GWAI-87 11th German Workshop on Artifical
Intelligence, pages 221–230. Springer, 1987.

Rainer Manthey and François Bry. Satchmo: a theorem prover implemented in pro-
log. In International Conference on Automated Deduction, pages 415–434. Springer,
1988.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi,
Roberto Zamparelli, et al. A sick cure for the evaluation of compositional distribu-
tional semantic models. In LREC, pages 216–223, 2014.

Pascual Martı́nez-Gómez, Koji Mineshima, Yusuke Miyao, and Daisuke Bekki. On-
demand injection of lexical knowledge for recognising textual entailment. In

http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010

236 BIBLIOGRAPHY

Proceedings of the 15th Conference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Papers, pages 710–720, 2017.

Robert Carlen May. The grammar of quantification. PhD thesis, Massachusetts Insti-
tute of Technology, 1978.

John McCarthy. Circumscriptiona form of non-monotonic reasoning. Artificial
intelligence, 13(1-2):27–39, 1980.

Louise McNally. Existential sentences, pages 1829 – 1848. De Gruyter Mouton, 2011.

Louise Elizabeth McNally. An interpretation for the english existential construction.
1993.

Merriam-Webster’s Online Dictionary. Expletive, 2019. URL https://

www.merriam-webster.com/dictionary/expletive. [Online; accessed 30-
September-2019].

Line Mikkelsen. 68. Copular clauses, pages 1805 – 1829. De Gruyter Mouton, 2011.

Gary Milsark. Existential sentences in english (doctoral dissertation). Massachusetts
Institute of Technology, Cambridge, MA, 1974.

Gary Milsark. Toward an explanation of certain peculiarities of the existential con-
struction in english. 1977.

Richard Montague. The proper treatment of quantification in ordinary english. In
Approaches to natural language, pages 221–242. Springer, 1973.

Richard Montague. Formal philosophy: Selected papers, rh thomason, ed, 1974.

Robert C Moore. Semantical considerations on nonmonotonic logic. Artificial
intelligence, 25(1):75–94, 1985.

Andrea Moro. Existential sentences and expletive there. The Wiley Blackwell
Companion to Syntax, Second Edition, pages 1–26, 2017.

Marcin Morzycki. The lexical semantics of adjectives: More than just scales. Ms.,
Michigan State University. Draft of a chapter in Modification, a book in preparation
for the Cambridge University Press series Key Topics in Semantics and Pragmatics,
2013.

https://www.merriam-webster.com/dictionary/expletive
https://www.merriam-webster.com/dictionary/expletive

BIBLIOGRAPHY 237

Lawrence S Moss and Michael Wollowski. Natural logic in ai and cognitive science.
In MAICS, pages 41–46, 2017.

Andrzej Mostowski. On generalization of quantifiers. Fundamenta Mathematicae, 44:
12–36, 1957.

Alexander PD Mourelatos. Events, processes, and states. Linguistics and philosophy,
2(3):415–434, 1978.

Stefan Müller. HPSG - a synopsis. 01 2014.

Reinhard Muskens. An analytic tableau system for natural logic. In Logic, language
and meaning, pages 104–113. Springer, 2010.

Rowan Nairn, Cleo Condoravdi, and Lauri Karttunen. Computing relative polarity for
textual inference. Inference in Computational Semantics (ICoS-5), pages 20–21,
2006.

Joakim Nivre. Dependency grammar and dependency parsing. MSI report, 5133
(1959):1–32, 2005.

Toshiyuki Ogihara. Tense, scope and attitude ascription. Dordrecht, NL: Kluwer,
1996.

Toshiyuki Ogihara. Tense and aspect in truth-conditional semantics. Lingua, 117(2):
392–418, 2007.

Toshiyuki Ogihara. Tense, volume 2, pages 1463 – 1484. De Gruyter Mouton, 2011.

Terence Parsons. Events in the Semantics of English, volume 5. MIT press Cambridge,
MA, 1990.

Terence Parsons. Underlying states and time travel. Speaking of events, 81:93, 2000.

Barbara Hall Partee. Some structural analogies between tenses and pronouns in en-
glish. The Journal of Philosophy, 70(18):601–609, 1973.

Ellie Pavlick. Compositional Lexical Entailment for Natural Language Inference. PhD
dissertation, University of Pennsylvania, 2017.

Francis J Pelletier and Allen P Hazen. A history of natural deduction. Logic: A History
of Its Central Concepts, 11:341–414, 2012.

238 BIBLIOGRAPHY

Barbara Plank and Gertjan Van Noord. Grammar-driven versus data-driven: which
parsing system is more affected by domain shifts? In Proceedings of the 2010
Workshop on NLP and Linguistics: Finding the common ground, pages 25–33,
2010.

Adam Poliak. A survey on recognizing textual entailment as an nlp evaluation. arXiv
preprint arXiv:2010.03061, 2020.

Carl Pollard and Ivan A Sag. Information-based syntax and semantics. CSLI lecture
notes, 13, 1987.

Carl Pollard and Ivan A Sag. Head-driven phrase structure grammar. University of
Chicago Press, 1994.

Axel Polleres, Claudia d’Amato, Marcelo Arenas, Siegfried Handschuh, Paula Kro-
ner, Sascha Ossowski, and Peter F Patel-Schneider. Reasoning Web. Semantic
Technologies for the Web of Data: 7th International Summer School 2011, Galway,
Ireland, August 23-27, 2011, Tutorial Lectures, volume 6848. Springer Science &
Business Media, 2011.

Dag Prawitz. Natural deduction: a proof-theoretical study. Almquist and Wiksell,
1965.

Arthur N Prior. Past, present and future, volume 154. Clarendon Press, Oxford, 1967.

Allan Ramsay. Genetic nps and habitual vps. In COLING 1992 Volume 1: The 15th
International Conference on Computational Linguistics, 1992.

Allan Ramsay. Theorem proving for untyped constructive λ-calculus: implementation
and application. Logic Journal of IGPL, 9(1):83–100, 2001.

Allan Ramsay. The complexity of everyday language. Recent Advances in Natural
Language Processing V: Selected Papers from RANLP 2007, 309:99, 2009.

Hans Reichenbach. Elements of symbolic logic. 1947.

Raymond Reiter. A logic for default reasoning. Artificial intelligence, 13(1-2):81–132,
1980.

Craige Roberts. Uniqueness in definite noun phrases. Linguistics and philosophy, 26
(3):287–350, 2003.

BIBLIOGRAPHY 239

Bertrand Russell. On denoting. Mind, 14(56):479–493, 1905.

Eddy G Ruys and Yoad Winter. Quantifier scope in formal linguistics. In Handbook
of philosophical logic, pages 159–225. Springer, 2011.

Victor Sánchez Valencia. Studies on natural logic and categorial grammar, University
of Amsterdam Ph. D. PhD thesis, thesis, 1991.

Marek Sergot. Lecture notes in default logic (reiter), February 2007.

Tim Stowell. What was there before there was there. In Papers from the... Regional
Meeting. Chicago Ling. Soc. Chicago, Ill, volume 14, pages 458–471, 1978.

Eric Swanson. Propositional attitudes. Forthcoming in Semantics: An International
Handbook of Natural Language Meaning, edited by Claudia Maienborn, Klaus von
Heusinger, and Paul Portner, 2010.

Anna Szabolcsi. Scope and binding, volume 2, pages 1605 – 1641. De Gruyter Mou-
ton, 2011.

Joel Tetreault. Empirical Evaluations of Pronoun Resolution. PhD thesis, Rochester,
NY, USA, 2005. AAI3156835.

JFAK Van Benthem. Essays in logical semantics. Springer, 1986.

Johan Van Benthem. Questions about quantifiers 1. The Journal of Symbolic Logic,
49(2):443–466, 1984.

Jan Van Eijck. Natural logic for natural language. In International Tbilisi Symposium
on Logic, Language, and Computation, pages 216–230. Springer, 2005.

Michiel Van Lambalgen and Fritz Hamm. The proper treatment of events, volume 6.
John Wiley & Sons, 2008.

Zeno Vendler. Linguistics in Philosophy. Cornell University Press, 1967.

Klaus Von Heusinger. Reference and representation of pronouns. Pronouns-Grammar
and Representation, pages 109–135, 2002.

Jan von Plato. From axiomatic logic to natural deduction. Studia Logica, 102(6):
1167–1184, 2014.

240 BIBLIOGRAPHY

Arnim Von Stechow. Tenses in compositional semantics. The expression of time, 129:
166, 2009.

Dag Westerståhl. Quantifiers in formal and natural languages. In Handbook of
philosophical logic, pages 1–131. Springer, 1989.

Dag Westerståhl. Generalized quantifiers: linguistics meets model theory, 2013.

Dag Westersthl. Generalized Quantifiers. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, win-
ter 2019 edition, 2019.

Aaron Steven White, Pushpendre Rastogi, Kevin Duh, and Benjamin Van Durme. In-
ference is everything: Recasting semantic resources into a unified evaluation frame-
work. In Proceedings of the Eighth International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages 996–1005, 2017.

Wikipedia contributors. Depth-first search, 2020. URL https://en.wikipedia.

org/wiki/Depth-first_search#:˜:text=Depth%2Dfirst%20search%

20(DFS),along%20each%20branch%20before%20backtracking. [Online;
accessed 30-September-2020].

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage
challenge corpus for sentence understanding through inference. arXiv preprint
arXiv:1704.05426, 2017.

Edwin Williams. There-insertion. Linguistic inquiry, 15(1):131–153, 1984.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Kentaro Inui, Satoshi Sekine, Lasha
Abzianidze, and Johan Bos. Can neural networks understand monotonicity reason-
ing? arXiv preprint arXiv:1906.06448, 2019.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descrip-
tions to visual denotations: New similarity metrics for semantic inference over event
descriptions. Transactions of the Association for Computational Linguistics, 2:67–
78, 2014.

Annie Zaenen, Lauri Karttunen, and Richard Crouch. Local textual inference: can it
be defined or circumscribed? In Proceedings of the ACL workshop on empirical
modeling of semantic equivalence and entailment, pages 31–36, 2005.

https://en.wikipedia.org/wiki/Depth-first_search#:~:text=Depth%2Dfirst%20search%20(DFS),along%20each%20branch%20before%20backtracking.
https://en.wikipedia.org/wiki/Depth-first_search#:~:text=Depth%2Dfirst%20search%20(DFS),along%20each%20branch%20before%20backtracking.
https://en.wikipedia.org/wiki/Depth-first_search#:~:text=Depth%2Dfirst%20search%20(DFS),along%20each%20branch%20before%20backtracking.

BIBLIOGRAPHY 241

Anna Zamansky, Nissim Francez, and Yoad Winter. A natural logicinference system
using the lambek calculus. Journal of Logic, Language and Information, 15(3):
273–295, 2006.

Thomas Ede Zimmermann. Scopeless quantifiers and operators. Journal of
Philosophical Logic, 22(5):545–561, 1993.

Appendix A

Monotonicity Operators

lexical items and
their monotonicity

inference examples

every, each, all (↓)(↑) ‘every man likes a fast car.’ → ‘every postman likes a car.’

bare plurals (?)(?) ‘the interpretation of bare plurals varies depending on the con-

text – they are similar to universals in ‘timeless’ contexts and

similar to existentials in other contexts, and they display the

corresponding monotonicity marking

some, several (↑) (↑) some(1): ‘some postman loves a pretty woman.’ → ‘some

man likes a woman.”

some(>1): ‘several/some postmen love Mary.’ → ‘several/-

some men like Mary.’

a few (↑)(↑) some(few): ‘a few old men love Mary.’ → ‘a few men like

Mary.’

no (↓)(↓) ‘no man is a fool.’ → ‘No wise man is a complete fool.’

not (↓) ‘John does not like Mary.’→ ‘John does not love Mary.’

most (��↑↓)(↑) ‘most men love Mary’→ ‘most Ment like Mary’

many(↑)(↑) ‘many’ can be interpreted as either a default like ‘most’ or an

existential like ‘a large number of ’: we have chosen the latter

reading

few (��↑↓)(↓) ‘few men like Mary’→ ‘few men love Mary’

at least n(↑)(↑) ‘ at least three men slept in the park’→ ‘at least three humans

slept’

at most n(↓)(↓) ‘at most four men slept’→ ‘at most four fat men slept in the

park.’

242

243

exactly n(��↑↓)(��↑↓) ‘exactly four old men slept in the park.’��→ ‘exactly four men

slept.’, ‘exactly four men slept in the park.’��→ “exactly four

old men slept.’

Table A.1: The monotonicity signatures for polarity affecting lexical items

Appendix B

Test Cases

B.1 FraCas Examples

B.1.1 Generalized Quantifiers

Conservativity

fracas-001

P1: An Italian became the worldFLs greatest tenor.

Q: Was there an Italian who became the world’s greatest tenor? [Yes]

fracas-002

P1: Every Italian man wants to be a great tenor.

P2: Some Italian men are great tenors.

Q: Are there Italian men who want to be a great tenor? [Yes]

fracas-003

P1: All Italian men want to be a great tenor.

P2: Some Italian men are great tenors.

Q: Are there Italian men who want to be a great tenor? [Yes]

fracas-004

P1: Each Italian tenor wants to be great.

P2: Some Italian tenors are great.

Q: Are there Italian tenors who want to be great? [Yes]

244

B.1. FRACAS EXAMPLES 245

fracas-005

P1: The really ambitious tenors are Italian.

Q: Are there really ambitious tenors who are Italian? [Yes]

fracas-006

P1: No really great tenors are modest.

Q: Are there really great tenors who are modest? [No]

fracas-006.1

P1: No tenors are modest

Q: Are there really great tenors who are very modest? [No]

fracas-007

P1: Some great tenors are Swedish.

Q: Are there great tenors who are Swedish? [Yes]

fracas-008

P1: Many great tenors are German.

Q: Are there great tenors who are German? [Yes]

fracas-009

P1: Several great tenors are British.

Q: Are there great tenors who are British? [Yes]

fracas-010

P1: Most great tenors are Italian.

Q: Are there great tenors who are Italian? [Yes]

fracas-010.1

P1: Most tenors are Italian.

P2: There are some tenors.

Q: Are there tenors who are Italian? [Yes]

246 APPENDIX B. TEST CASES

fracas-010.2

P1: Most great tenors are Italian.

P2: There are some great tenors.

Q: Are there great tenors who are Italian? [Yes]

fracas-011

P1: A few great tenors sing popular music.

P2: Some great tenors like popular music.

Q: Are there great tenors who sing popular music? [Yes]

fracas-011.1

P1: A few great tenors sing popular music.

Q: Are there great tenors who sing popular music? [Yes]

fracas-012

P1: Few great tenors are poor.

Q: Are there great tenors who are poor? [Unknown]

fracas-013

P1: Both leading tenors are excellent.

P2: Leading tenors who are excellent are indispensable.

Q: Are both leading tenors indispensable? [Yes]

fracas-014

P1: Neither leading tenor comes cheap.

P2: One of the leading tenors is Pavarotti.

Q: Is Pavarotti a leading tenor who comes cheap? [No]

fracas-015

P1: At least three tenors will take part in the concert.

Q: Are there tenors who will take part in the concert? [Yes]

Q: Will there be tenors who will take part in the concert? [Yes]

Q: Will two tenors take part in the concert? [Yes]

Q: Will at least two tenors take part in the concert? [Yes]

Q: Are there three tenors who will take part in the concert? [Yes]

B.1. FRACAS EXAMPLES 247

Q: Will there be three tenors who will take part in the concert? [Yes]

fracas-016

P1: At most two tenors will contribute their fees to charity.

Q: Are there tenors who will contribute their fees to charity? [Unknown]

Q: Will three tenors contribute their fees to charity? [No]

Q: Will at most three tenors contribute their fees to charity? [Yes]

Monotonicity (upwards on second argument)

fracas-017

P1: An Irishman won the Nobel prize for literature.

Q: Did an Irishman win a Nobel prize? [Yes]

fracas-018

P1: Every European has the right to live in Europe.

P2: Every European is a person.

P3: Every person who has the right to live in Europe can travel

freely within Europe.

Q: Can all Europeans travel freely within Europe? [Yes]

fracas-018.1

P1: Every European has the right to live.

P2: Every European is a person.

P3: Every person who has the right to live can travel.

Q: Can every Europeans travel? [Yes]

fracas-018.2

P1: Every European has the right.

P2: Every European is a person.

P3: Every person who has the right can travel.

Q: Can every European travel? [Yes]

248 APPENDIX B. TEST CASES

fracas-018.25

P1: Every person has the right.

P2: Every person who has the right can travel.

Q: Can every person travel? [Yes]

fracas-018.3

P1: Every European has the right.

P2: Every European is a person.

P3: Every person who has the right travels.

Q: Does every European travel? [Yes]

fracas-018.4

P1: Every person has the right.

P3: Every person who has the right travels.

Q: Does every person travel? [Yes]

fracas-018.5

P1: Every person sleeps.

P3: Every person who sleeps travels.

Q: Does every person travel? [Yes]

fracas-019

P1: All Europeans have the right to live in Europe.

P2: Every European is a person.

P3: Every person who has the right to live in Europe can travel

freely within Europe.

Q: Can all Europeans travel freely within Europe? [Yes]

fracas-020

P1: Each European has the right to live in Europe.

P2: Every European is a person.

P3: Every person who has the right to live in Europe can travel

freely within Europe.

Q: Can each European travel freely within Europe? [Yes]

B.1. FRACAS EXAMPLES 249

fracas-021

P1: The residents of member states have the right to live in Eu-

rope.

P2: All residents of member states are individuals.

P3: Every individual who has the right to live in Europe can travel

freely within Europe.

Q: Can the residents of member states travel freely within Eu-

rope?

[Yes]

fracas-021.01

P1: The residents of the member states have the right to live in

Europe.

P2: All residents of the member states are individuals.

P3: Every individual who has the right to live in Europe can travel

freely within Europe.

Q: Can the residents of the member states travel freely within

Europe?

[Yes]

fracas-021.1

P1: The residents of the states have the right.

P2: All residents of the states are individuals.

P3: Every individual who has the right can travel.

Q: Can the residents of the states travel? [Yes]

fracas-021.11

P1: The residents of states have the right.

P2: All residents of the states are individuals.

P3: Every individual who has the right can travel.

Q: Can the residents of states travel? [Yes]

fracas-021.111

P1: The residents have the right.

P2: All residents are individuals.

P3: Every individual who has the right can travel.

Q: Can the residents travel? [Yes]

250 APPENDIX B. TEST CASES

fracas-021.12

P1: The residents of states have the right.

P2: The residents of states are individuals.

P3: Every individual who has the right can travel

Q: Can the residents of states travel? [Yes]

fracas-021.15

P1: The residents of states have the right to live in Europe.

P2: All residents of states are individuals.

P3: Every individual who has the right to live in Europe can travel

freely within Europe.

Q: Can the residents of states travel freely within Europe? [Yes]

fracas-021.16

P1: The residents of a state have the right to live in Europe.

P2: All residents of a state are individuals.

P3: Every individual who has the right to live in Europe can travel

freely within Europe.

Q: Can the residents of a state travel freely within Europe? [Yes]

fracas-021.2

P1: The residents have the right to live in Europe.’

P2: All residents are individuals.

P3: Every individual who has the right to live in Europe can travel

freely within Europe.

Q: Can the residents travel freely within Europe? [Yes]

fracas-022

P1: No delegate finished the report on time.

Q: Did no delegate finish the report? [Unknown]

fracas-022.1

P1: No delegate finished the report.

Q: Did no delegate finish the report on time? [Yes]

Q: Did some delegate finish the report on time? [No]

B.1. FRACAS EXAMPLES 251

fracas-023

P1: Some delegates finished the survey on time.

Q: Did some delegates finish the survey? [Yes]

fracas-024

P1: Many delegates obtained interesting results from the survey.

Q: Did many delegates obtain results from the survey? [Yes]

fracas-025

P1: Several delegates got the results published in major national

newspapers.

Q: Did several delegates get the results published? [Yes]

fracas-025.1

P1: Several delegates got the results published.

Q: Did several delegates get the results published? [Yes]

fracas-026

P1: Most Europeans are resident in Europe.

P: All Europeans are people.

P3: All people who are resident in Europe can travel freely within

Europe.

Q: Can most Europeans travel freely within Europe? [Yes]

fracas-026.1

P1: Most Europeans are resident in Europe.

P: All Europeans are people.

P3: All people who are resident in Europe can travel freely within

Europe.

P: John is a European.

Q: Can John travel freely within Europe? [Yes]

fracas-027

P1: A few committee members are from Sweden.

P2: All committee members are people.

252 APPENDIX B. TEST CASES

P3: All people who are from Sweden are from Scandinavia.

Q: Are at least a few committee members from Scandinavia? [Yes]

Q: Are a few committee members from Scandinavia? [Yes]

fracas-027.1

P1: A few committee members are from Sweden.

Q: At least a few committee members from Sweden? [Yes]

Q: Are a few committee members from Sweden? [Yes]

Q: Are there a few committee members from Sweden? [Yes]

fracas-027.2

P1: All people who are from Sweden are from Scandinavia.

P2: There are some people from Sweden.

Q: Are there some people from Scandinavia? [Yes]

fracas-027.2

P1: All people who are from Sweden are from Scandinavia.

P2: There are some people from Sweden.

Q: Are there some people from Scandinavia? [Yes]

fracas-028

P1: Few committee members are from Portugal.

P2: All committee members are people.

P3: All people who are from Portugal are from southern Europe.

Q: Are there few committee members from southern Europe? [Unknown]

fracas-029

P1: Both commissioners used to be leading businessmen.

Q: Did both commissioners used to be businessmen? [Yes]

fracas-030

P1: Neither commissioner spends a lot of time at home.

Q: Does neither commissioner spend time at home? [Unknown]

fracas-031

B.1. FRACAS EXAMPLES 253

P1: At least three commissioners spend a lot of time at home.

Q: Do at least three commissioners spend time at home? [Yes]

fracas-032

P1: At most ten commissioners spend a lot of time at home.

Q: Do at most ten commissioners spend time at home? [Unknown]

Monotonicity (downwards on second argument)

fracas-033

P1: An Irishman won a Nobel prize.

Q: Did an Irishman win the Nobel prize for literature? [Unknown]

fracas-034

P1: Every European can travel freely within Europe.

P2: Every European is a person.

P3: Every person who has the right to live in Europe can travel

freely within Europe.

Q: Does every European have the right to live in Europe? [Unknown]

fracas-035

P1: All Europeans can travel freely within Europe.

P2: Every European is a person.

P3: Every person who has the right to live in Europe can travel

freely within Europe.

Q: Does every European have the right to live in Europe? [Unknown]

fracas-036

P1: Each European can travel freely within Europe.

P2: Every European is a person.

P3: Every person who has the right to live in Europe can travel

freely within Europe.

Q: Does each European have the right to live in Europe? [Unknown]

fracas-037

254 APPENDIX B. TEST CASES

fracas-038

P1: No delegate finished the report.

Q: Did any delegate finish the report on time? [no]

fracas-039

P1: Some delegates finished the survey.

Q: Did some delegates finish the survey on time? [Unknown]

fracas-040

P1: Many delegates obtained results from the survey.

Q: Did many delegates obtain interesting results from the survey? [Unknown]

fracas-041

P1: Several delegates got the results published.

Q: Did several delegates get the results published in major na-

tional newspapers?

[Unknown]

fracas-042

P1: Most Europeans can travel freely within Europe.

P2: All Europeans are people.

P3: All people who are resident in Europe can travel freely within

Europe.

Q: Are most Europeans resident in Europe? [Unknown]

fracas-043

P1: A few committee members are from Scandinavia.

P2: All committee members are people.

P3: All people who are from Sweden are from Scandinavia.

Q: Are at least a few committee members from Sweden? [Unknown]

fracas-044

P1: Few committee members are from southern Europe.

P2: All committee members are people.

P3: All people who are from Portugal are from southern Europe.

Q: Are there few committee members from Portugal? [yes]

B.1. FRACAS EXAMPLES 255

fracas-045

P1: Both commissioners used to be businessmen.

Q: Did both commissioners used to be leading businessmen? [Unknown]

fracas-046

P1: Neither commissioner spends time at home.

Q: Does either commissioner spend a lot of time at home? [no]

fracas-047

P1: At least three commissioners spend time at home.

Q: Do at least three commissioners spend a lot of time at home? [Unknown]

fracas-048

P1: At most ten commissioners spend time at home.

Q: Do at most ten commissioners spend a lot of time at home? [yes]

Monotonicity (upwards on first argument)

fracas-049

P1: A Swede won a Nobel prize.

P2: Every Swede is a Scandinavian.

Q: Did a Scandinavian win a Nobel prize? [yes]

fracas-050

P1: Every Canadian resident can travel freely within Europe.

P2: Every Canadian resident is a resident of the North American

continent.

Q: Can every resident of the North American continent travel

freely within Europe?

[Unknown]

fracas-051

P1: All Canadian residents can travel freely within Europe.

P2: Every Canadian resident is a resident of the North American

continent.

256 APPENDIX B. TEST CASES

Q: Can all residents of the North American continent travel freely

within Europe?

[Unknown]

fracas-052

P1: Each Canadian resident can travel freely within Europe.

P2: Every Canadian resident is a resident of the North American

continent.

Q: Can each resident of the North American continent travel

freely within Europe?

[Unknown]

fracas-053

P1: The residents of major western countries can travel freely

within Europe.

P2: All residents of major western countries are residents of west-

ern countries.

Q: Do the residents of western countries have the right to live in

Europe?

[Unknown]

fracas-054

P1: No Scandinavian delegate finished the report on time.

Q: Did any delegate finish the report on time? [Unknown]

fracas-055

P1: Some Irish delegates finished the survey on time.

Q: Did any delegates finish the survey on time? [yes]

fracas-056

P1: Many British delegates obtained interesting results from the

survey.

Q: Did many delegates obtain interesting results from the survey? [Unknown]

fracas-057

P1: Several Portuguese delegates got the results published in ma-

jor national newspapers.

B.1. FRACAS EXAMPLES 257

Q: Did several delegates get the results published in major na-

tional newspapers?

[yes]

fracas-058

P1: Most Europeans who are resident in Europe can travel freely

within Europe.

Q: Can most Europeans travel freely within Europe? [Unknown]

fracas-059

P1: A few female committee members are from Scandinavia.

Q: Are at least a few committee members from Scandinavia? [yes]

fracas-060

P1: Few female committee members are from southern Europe.

Q: Are few committee members from southern Europe? [Unknown]

fracas-061

P1: Both female commissioners used to be in business.

Q: Did both commissioners used to be in business? [undef]

fracas-062

P1: Neither female commissioner spends a lot of time at home.

Q: Does either commissioner spend a lot of time at home? [undef]

fracas-063

P1: At least three female commissioners spend time at home.

Q: Do at least three commissioners spend time at home? [yes]

fracas-064

P1: At most ten female commissioners spend time at home.

Q: Do at most ten commissioners spend time at home? [yes]

Monotonicity (downwards on first argument)

258 APPENDIX B. TEST CASES

fracas-065

P1: A Scandinavian won a Nobel prize.

P2: Every Swede is a Scandinavian.

Q: Did a Swede win a Nobel prize? [Unknown]

fracas-066

P1: Every resident of the North American continent can travel

freely within Europe.

P2: Every Canadian resident is a resident of the North American

continent.

Q: Can every Canadian resident travel freely within Europe? [yes]

fracas-067

P1: All residents of the North American continent can travel

freely within Europe.

P2: Every Canadian resident is a resident of the North American

continent.

Q: Can all Canadian residents travel freely within Europe? [yes]

fracas-068

P1: Each resident of the North American continent can travel

freely within Europe.

P2: Every Canadian resident is a resident of the North American

continent.

Q: Can each Canadian resident travel freely within Europe? [yes]

fracas-069

P1: The residents of western countries can travel freely within

Europe.

P2: All residents of major western countries are residents of west-

ern countries.

Q: Do the residents of major western countries have the right to

live in Europe?

[yes]

fracas-070

P1: No delegate finished the report on time.

B.1. FRACAS EXAMPLES 259

Q: Did any Scandinavian delegate finish the report on time? [no]

fracas-071

P1: Some delegates finished the survey on time.

Q: Did any Irish delegates finish the survey on time? [Unknown]

fracas-072

P1: Many delegates obtained interesting results from the survey.

Q: Did many British delegates obtain interesting results from the

survey?

[Unknown]

fracas-073

P1: Several delegates got the results published in major national

newspapers.

Q: Did several Portuguese delegates get the results published in

major national newspapers?

[Unknown]

fracas-074

P1: Most Europeans can travel freely within Europe.

Q:Can most Europeans who are resident outside Europe travel

freely within Europe?

[Unknown]

fracas-075

P1: A few committee members are from Scandinavia.

Q:Are at least a few female committee members from Scandi-

navia?

[Unknown]

fracas-076

P1: Few committee members are from southern Europe.

Q:Are few female committee members from southern Europe? [yes]

fracas-077

P1: Both commissioners used to be in business.

Q:Did both female commissioners used to be in business? [undef]

260 APPENDIX B. TEST CASES

fracas-078

P1: Neither commissioner spends a lot of time at home.

Q:Does either female commissioner spend a lot of time at home? [undef]

fracas-079

P1: At least three commissioners spend time at home.

Q:Do at least three male commissioners spend time at home? [unknown]

fracas-080

P1: At most ten commissioners spend time at home.

Q:Do at most ten female commissioners spend time at home? [yes]

B.1.2 Attitudes

Epistemic, Intentional and Reportive Attitudes

fracas-334

P1: Smith knew that ITEL had won the contract in 1992.

Q: Did ITEL win the contract in 1992? [Yes]

fracas-335

P1: Smith believed that ITEL had won the contract in 1992.

Q: Did ITEL win the contract in 1992? [unknown]

fracas-336

P1: ITEL managed to win the contract in 1992.

Q: Did ITEL win the contract in 1992? [Yes]

fracas-337

P1: ITEL tried to win the contract in 1992.

Q: Did ITEL win the contract in 1992? [unknown]

fracas-338

P1: It is true that ITEL won the contract in 1992.

Q: Did ITEL win the contract in 1992? [Yes]

B.1. FRACAS EXAMPLES 261

fracas-339

P1: It is false that ITEL won the contract in 1992.

Q: Did ITEL win the contract in 1992? [No]

Preceptive Attitudes: “See” with Bare Infinitive Complements

fracas-340

P1: Smith saw Jones sign the contract.

P2: If Jones signed the contract, his heart was beating.

Q: Did Smith see Jones’ heart beat? [unknown]

fracas-341

P1: Smith saw Jones sign the contract.

P2: When Jones signed the contract, his heart was beating.

Q: Did Smith see Jones’ heart beat? [unknown]

fracas-342

P1: Smith saw Jones sign the contract.

Q: Did Jones sign the contract? [Yes]

fracas-343

P1: Smith saw Jones sign the contract.

P2: Jones is the chairman of ITEL.

Q: Did Smith see the chairman of ITEL sign the contract? [Yes]

fracas-344

P1: Helen saw the chairman of the department answer the phone.

P2: The chairman of the department is a person.

Q: Is there anyone whom Helen saw answer the phone? [Yes]

fracas-345

P1: Smith saw Jones sign the contract and his secretary make a

copy.

Q: Did Smith see Jones sign the contract? [Yes]

fracas-347

262 APPENDIX B. TEST CASES

P1: Smith saw Jones sign the contract or cross out the crucial

clause.

Q: Did Smith either see Jones sign the contract or see Jones cross

out the crucial clause?

[Yes]

B.2 Karttunen’s Examples of Implicatives and Factives

fracas-k00

P1: John believes a fat old man loves Mary.

Q: does John believe a human likes Mary? [Yes]

fracas-k01

P1: John does not believe a human likes Mary

Q: does John not believe a man loves Mary? [Yes]

fracas-k02

P1: John believes every man loves Mary.

Q: does John believe every fat old man likes Mary? [Yes]

fracas-k03

P1: John believes every man loves Mary.

Q: does John believe every fat old man with a big nose likes Mary? [Yes]

fracas-k04

P1: John managed to eat a ripe peach.

Q: did John manage to eat a peach? [Yes]

fracas-k05

P1: John did not manage to eat a peach.

Q: did John manage to eat a ripe peach? [No]

fracas-k06

P1: John managed to eat a peach.

Q: did John eat a peach? [Yes]

B.2. KARTTUNEN’S EXAMPLES OF IMPLICATIVES AND FACTIVES 263

fracas-k07

P1: John did not manage to eat a peach.

Q: did John eat a peach? [No]

fracas-k08

P1: John failed to eat a peach.

Q: did John eat a peach? [No]

fracas-k09

P1: John did not fail to eat a peach.

Q: did John eat a peach? [Yes]

fracas-k10

P1: John used to beat his wife.

Q: did John beat his wife? [Yes]

Q: does John beat his wife? [No]

fracas-k11

P1: John has stopped beating his wife.

Q: did John beat his wife? [Yes]

Q: does John beat his wife? [No]

fracas-k12

P1: John has not stopped beating his wife.

Q: did John beat his wife? [Yes]

Q: does John beat his wife? [Yes]

fracas-k13

P1: I know John ate a peach.

Q: did John eat a peach? [Yes]

fracas-k14

P1: I know John managed to eat a peach.

Q: did John eat every ripe peach? [Yes]

fracas-k15

264 APPENDIX B. TEST CASES

P1:I know John managed to eat every peach.

Q: did John eat a peach? [Yes]

fracas-k16

P1:I doubt that Mary likes John.

Q: I doubt that Mary loves John? [Yes]

fracas-k17

P1: I do not doubt that Mary loves John.

Q:I do not doubt that Mary likes John? [Yes]

fracas-k18

P1: I doubt that John doubts that Mary loves John.

Q:I doubt that John doubts that Mary likes John? [Yes]

fracas-k19

P1: I doubt that John doubts that Mary loves him.

Q: I doubt that John doubts that Mary likes him? [Yes]

fracas-k20

P1: I doubt that John doubts that Mary likes him.

Q:I doubt that John doubts that Mary loves him? [Unknown]

fracas-k21

P1: I know John did not sleep.

Q: did John sleep? [No]

fracas-k22

P1:I know John did not manage to sleep.

Q: did John sleep? [No]

fracas-k23

P1: ITEL failed to win the contract in 1992.

Q: did ITEL win the contract in 1992? [No]

fracas-k24a

B.2. KARTTUNEN’S EXAMPLES OF IMPLICATIVES AND FACTIVES 265

P1: I believe a man slept.

Q: do I doubt a man slept? [No]

Q: do I doubt a fat man slept? [Unknown]

fracas-k24b

P1: I doubt a man slept.

Q: do I believe a man slept? [No]

Q: do I believe a fat man slept? [No]

fracas-k24c

P1: I believe a fat man slept.

Q: do I doubt that a fat man slept? [No]

Q: do I doubt a man slept? [No]

fracas-k24d

P1: I doubt a fat man slept.

Q: do I believe that a fat man slept? [No]

Q: do I believe a man slept? [Unknown]

Appendix C

Results of Running The Test Cases

C.1 Results of Running FraCas Section 1 and 9 Exam-
ples

Fracas ID Gold answer CSATCHMO+ answer Comments

fracas-001 Yes Yes

fracas-002 Yes Yes

fracas-003 Yes Yes

fracas-004 Yes Yes

fracas-005 Yes Yes

fracas-006 No No

fracas-007 Yes Yes

fracas-008 Yes Yes

fracas-009 Yes Yes

fracas-010 Yes Unknown You cannot infer that there are any great

tenors from statements about ‘most great

tenors’ any more than you can from state-

ments about ‘all great tenors’

fracas-011 Yes Yes

fracas-012 Undef** Unknown

fracas-013 Yes Yes

fracas-014 No No

fracas-015 Yes Unkown We do not know if there are any tenors now
who will take part in the concert later

266

C.1. RESULTS OF RUNNING FRACAS SECTION 1 AND 9 EXAMPLES 267

fracas-016 Undef** Unknown

fracas-017 Yes Yes

fracas-018 Yes Yes

fracas-019 Yes Yes

fracas-020 Yes Yes

fracas-021 Yes Yes

fracas-022 Unknown Unknown

fracas-023 Yes Yes

fracas-024 Yes Yes

fracas-025 Yes Yes

fracas-026 Yes Yes

fracas-027 Yes Yes

fracas-028 Unknown Unknown

fracas-029 Yes Yes

fracas-030 Unknown Unknown

fracas-031 Yes Yes

fracas-032 Unknown Unknown

fracas-033 Unknown Unknown

fracas-034 Unknown Unknown

fracas-035 Unknown Unknown

fracas-036 Unknown Unknown

fracas-037 Unknown Unknown

fracas-038 No No

fracas-039 Unknown Unknown

fracas-040 Unknown Unknown

fracas-041 Unknown Unknown

fracas-042 Unknown Unknown

fracas-043 Unknown Unknown

fracas-044 Yes Yes

fracas-045 Unknown Unknown

fracas-046 No No

fracas-047 Unknown Unknown

fracas-048 Yes Yes

fracas-049 Yes Yes

fracas-050 Unknown Unknown

fracas-051 Unknown Unknown

268 APPENDIX C. RESULTS OF RUNNING THE TEST CASES

fracas-052 Unknown Unknown

fracas-053 Unknown Unknown

fracas-054 Unknown Unknown

fracas-055 Yes Yes

fracas-056 Unknown Unknown

fracas-057 Yes Yes

fracas-058 Unknown Unknown

fracas-059 Yes Yes

fracas-060 Unknown Unknown

fracas-061 Undef** Unknown

fracas-062 Undef** Unknown

fracas-063 Yes Yes

fracas-064 Unknown Unknown

fracas-065 Unknown Unknown

fracas-066 Yes Yes

fracas-067 Yes Yes

fracas-068 Yes Yes

fracas-069 Yes Unknown

fracas-070 No No

fracas-071 Unknown Unknown

fracas-072 Unknown Unknown

fracas-073 Unknown Unknown

fracas-074 Unknown Yes We get ‘Yes with defaults’ as the answer to

this one, because we do not mark the polarity

of ‘most’ right.

fracas-075 Unknown Unknown

fracas-076 Yes Yes

fracas-077 Undef** Unknown

fracas-078 Undef** Unknown

fracas-079 Unknown Unknown

fracas-080 Yes Yes

fracas-334 Yes Unknown It is not clear why we get this one wrong. The

mismatch between the past tenses in P1 and

Q and the present tense in P2 is potentially

an issue, but there is something else wrong as

well.

C.2. RESULTS OF RUNNING KARTTUNEN’S EXAMPLES 269

fracas-335 Unknown Unknown

fracas-336 Yes Yes

fracas-337 Unknown Unknown

fracas-338 Yes Yes

fracas-339 No No

fracas-340 Unknown Unknown

fracas-341 Unknown Unknown

fracas-342 Yes Yes

fracas-343 Yes Yes

fracas-344 Yes Yes

fracas-345 Yes Unknown We do not deal with conjunctions and disjunc-

tions

fracas-346 Yes Unknown We do not deal with conjunctions and disjunc-

tions

C.2 Results of Running Karttunen’s Examples

Fracas ID Gold answer CSATCHMO+ answer LangPro answer

fracas-k00 Yes Yes Unknown

fracas-k01 Yes Yes Unknown

fracas-k02 Yes Yes Yes

fracas-k03 Yes Yes Unknown

fracas-k04 Yes Yes Yes

fracas-k05 No No No

fracas-k06 Yes Yes Yes

fracas-k07 No No No

fracas-k08 No No Unknown

fracas-k09 Yes Yes Unknown

fracas-k10 Yes/No Yes/No Unknown/Unknown

fracas-k11 Yes/No Yes/No Unknown/Unknown

fracas-k12 Yes/Yes Yes/Yes Unknown/Unknown

fracas-k13 Yes Yes Yes

fracas-k14 Yes Yes Yes

fracas-k15 Yes Yes Unknown

fracas-k16 Yes Yes Unknown

270 APPENDIX C. RESULTS OF RUNNING THE TEST CASES

fracas-k17 Yes Yes Unknown

fracas-k18 Yes Yes Yes

fracas-k19 Yes Yes Yes

fracas-k20 Unknown Unknown Unknown

fracas-k21 No No No

fracas-k22 No No No

fracas-k23 No No Unknown

fracas-k24a No/Unknown No/Unknown Unknown/Unknown

fracas-k24b No/No No/No Unknown/Unknown

fracas-k24c No/No No/No Unknown/Unknown

fracas-k24d No/Unknown No/Unknown Unknown/Unknown

Index

Doctrine of Distribution, 38

a, 22, 202

abnormal, 71

accommodate, 73

accomplishments, 79

achievements, 79

adverbial modifiers, 78

agent, 79, 80

alignment, 45

anaphoric, 73

anchor, 163

antonyms, 176

applying, 98

argument, 18, 19, 113, 115, 120

argument(s), 122

aspect, 82

Assimilate, 73

assimilate, 163

at, 79

atomic edits, 45

atomic entailment relation, 48

att, 188

att-1, 188

att-2, 188

attitude clause, 91

attitude verb, 91

attitude verbs, 90

attitudes rules, 187, 188

attributive, 76, 91

autoepistemic logic, 71

automated theorem prover, 26

automatic theorem provers, 20

auxiliary verb, 82

background knowledge, 174

backwards, 162

bag-of-words, 18

bare NPs, 68

bare plural, 68

believing, 96

bi, 171

bi-1, 188

bi-2, 184

binding operators, 98

bird, 71

bottom-up, 43

bound, 75

butter, 78–80

C&C, 53

cancellable, 94

cancelled, 39

cardinality clause, 138

case-marked NPs, 106

circumscription, 71

claim, 120

coda phrase, 88

Combinatory Categorical Gramme, 50

complement, 115

conjunctive and, 153

cons, 184

conservativity, 66, 91

consistency check, 184

271

272 INDEX

Construction-based, 51

constructive SATCHMO, 35

context clause, 142

contradict, 44

Cooper Storage, 98

Copula sentence, 128

copula sentence, 86, 128–130

copula sentences, 86, 87, 131

core, 98

corpus, 103

data-driven, 103

Davidsonian event semantics, 78

De-referenced, 161

default, 20

default logic, 71

default rules, 70

defaults, 22, 71

Definite, 72

deictic, 75

dependencies, 110

dependency grammar, 102, 110

dependency parser, 102

dependency relations, 110

dependency trees, 102

dependent clause, 90

depth-first search, 52

deterministic, 103

dictum de nullo, 38

dictum de omni, 38

dictum de omni et nullo, 38

doubting, 96

downward-monotone, 20, 37, 38

Easy CCG, 53

entail, 44

eq, 182

eq-1, 182

eq-2, 182

eq-2.1, 181

eq-2.2, 181

eq-2.3, 182

equalities, 180

equality algorithm, 181, 182

event time, 82

eventuality, 79

exclusion, 45

exclusions, 44

existential import, 69

existential sentence, 88

existential sentences, 69

expletives replacement hypothesis, 89

extended tense, 83

fact, 160

factives, 92

facts, 136

familiarity theory, 73

fi, 171

first-order logic, 19

fly, 71

Forward, 162

FraCaS, 193

function-expression, 40

functional, 73

gender, 75

Generalized Quantifiers, 65

grammar-driven, 103

habitual, 68

hand-coded, 165, 175

happy, 86

head-driven phrase structure grammar, 112

Higher-order logic, 20

Hole semantics, 98

horn-clauses, 34

hyponyms, 176

INDEX 273

hypothesis, 45

iff-r1, 159, 160, 172

iff-r2, 160

implication, 150, 153

implication signatures, 44

implicatives, 92

implicature, 94

implicit, 92

Imported, 51

in, 79

in-situ, 98, 137

in the park, 88

indefinite, 72

indirect object, 106

inference, 18

inference engine, 18

inference friendly form, 134

inference friendly forms, 22

inference rules, 19

inst, 79

intended, 92

intersective, 76, 123

intersective set, 66

inversion, 39

j, 170

joined, 48

joining, 45

judgement, 44, 169, 170

knowing, 96

Lambda Logical Forms (LLFs), 54

LangPro, 54, 56

levels, 112

lexical entailment relations, 45

Lexical-based, 51

LLFgen, 57

love, 86

loves, 99

ma, 180

ma-3, 180

ma-4, 180

ma-4.1, 180

main proposition, 99

man, 81, 99

mass noun, 68

mass nouns, 68

match, 170

matching algorithm, 179, 180

meaning representations, 18

minutes, 174

model builders, 20

modifier, 113

modifier(s), 122

modifiers, 120

modus ponens, 34

MonaLog, 51

monotonic, 70

monotonicity, 19, 20, 37, 66

monotonicity calculus, 38

monotonicity composition operator, 42

Montagovian, 74

Montagovian individuals, 67

Montague, 20

morpheme, 82

Natlog, 45

Natural Language, 18

natural language inference, 18

natural language processing, 18

Natural logic, 20, 37

natural tableau, 21

negation rule, 70

Neo-Davisonian, 79

neutral, 44

274 INDEX

NLog Prover, 57

non-empty, 66

non-factive, 92

non-horn, 34

non-implicatives, 94

non-intersective subsective, 76

non-lexical context, 73

non-monotone, 37

non-monotonic, 20, 71

non-overt, 90, 95

non-restrictive, 91

normal form, 135

normalized, 91

noun phrase, 66

now, 84

number, 75

one-way, 93

operators, 41

order-relation, 39, 50

outer marking, 42

overt, 90

parse tree, 103

Parsing, 103

perspective attitude, 97

phrasal implicatives, 93

pivot, 88

plural, 68

polarity, 42

polarity-enriched, 52

polarizing tool, 52

Possession phrases, 128

pragmatic, 73

precedence, 82

predicative, 76

predicator, 86

prerequisite, 71

preserved, 39

presuppositions, 92

probable, 103

process, 79

projected, 45

projectivity, 45

projectivity signature, 46

proof algorithm, 170–172, 179, 184

proper names, 67

Propositional attitude, 96

propositional attitudes, 22

q, 22, 202

qff-r1, 158

qff-r2, 152

qff-r3, 153

qff-r4, 154

qff-r5, 155, 156

qlf-r1, 137, 138

qlf-r2, 138

qlf-r3, 139

qlf-r4, 141

qlf-r5, 142, 143, 146

qlf-r6, 145

qlf-r7, 145, 146

qlf-r7.1, 146, 147

qlf-r7.2, 146, 147

qq stack, 148

Quantifier Raising, 98

quantifiers, 22

Quantifying-in, 98

quasi logical form, 99, 137

query, 121

raw, 188

raw-1, 188

Real, 175

recency, 75

recipient, 106

Recognising Textual Entailment, 193

INDEX 275

reference time, 82

referring expressions, 141

relative clause, 91

relative clauses, 90

replacement, 50

resolve raw, 188

restrictive, 91

restrictive set, 66

retrieving, 98

reversed, 39

rule, 160

rules, 136

rules with exceptions, 71

salient, 73

saturated, 115

scope ambiguity, 97

scope control, 145

scope scores, 99

second-order relations, 66

semantic containment, 39

semantic relations, 45

Sentences Involving Compositional Knowledge,

193

SICK dataset, 54

signature, 58

simultaneity, 82

situationally salient, 73

skolem function (SF), 152

skolem normal form, 152

skolemization, 136

sleep, 81

Sorted, 161

specified, 113

specifier, 122

specifiers, 113, 120

speech time, 82

sr, 171

stack, 99

stage-level/individual-level, 79

Stanford dependency parser, 104

Stanford Natural Language Inferences, 193

Stanford statistical parser, 46

states, 79

statistical parser, 102

store, 98

subject-predicate, 67

subordinate clause, 90

subsective, 123

subset clause, 139

substitutability, 87

subsumtion, 165

subtyping, 58

symmetry, 66

synonyms, 176

t, 22, 23

temporary, 175

tense, 81

tense logic, 85

tense sequence, 84

tense-agreement, 94

thematic roles, 79

theme, 79, 80

theorem, 26

time specifier, 84, 127

time variable, 123

top-down, 43

transitivity, 66

tree-transformation rules, 128

Tregex patterns, 47

two-way, 93

unique, 73

uniqueness theory, 73

unsaturated, 115

upward-monotone, 37, 38

276 INDEX

woman, 99

X-bar theory, 112

zero, 90

	Abstract
	Declaration
	Copyright
	Dedication
	Acknowledgements
	Introduction
	Research Motivation
	Research Aims
	Research Questions
	Our NLI system Architecture and Corresponding Research Contributions
	Thesis Structure

	The NLI Task and Related Datasets
	Introduction
	NLI Datasets
	The FraCaS test suite
	The RTE Challenges
	SICK
	SNLI and MNLI

	Summary

	A Constructive Theorem Prover
	Automated Theorem Provers
	Natural Deduction
	History
	Natural Deduction Features

	SATCHMO as a Natural Deduction Engine
	Summary

	Natural Logic and Monotonicity
	Introduction
	Monotonicity Calculus
	Monotonicity Reasoning
	Monotonicity Marking

	Natural Logic-Based Inference Systems
	Proof by Alignment
	Order-Based Approach
	Natural Tableau

	Summary

	Issues in Non-Lexical Semantics
	Notational Conventions
	Generalized Quantifiers in Natural Language
	Quantified NPs
	The treatment of `most' and `few' as defaults

	Definite NPs (DNPs)
	Definite Descriptions
	Proper Names
	Pronouns

	Adjectives
	Events and Time
	Events Semantics
	Events and Negation
	Tense and Aspect
	Definiteness of Tenses

	Copula verbs
	Existential Sentences
	Subordinate Clauses
	Relative Clauses
	Attitude Clauses

	Scope Resolution and Cooper Storage
	Summary

	Parsing and Pre-Processing
	A Grammar Over a Robust Statistical Parser
	Semantic Interpretability
	Sensitivity
	Consistency
	Non-reentrancy
	Informativeness
	Transparency

	The Used Dependency Grammar
	A Theory of Syntactic Categories
	Modifiers and specifiers
	Arguments, unsaturated items, canonical order
	Movement
	Internal and external views

	DTs' Main Structure
	Summary

	Tree Normalization
	Introduction
	Notational Conventions

	Pre-processing
	Removing inessential terms
	Restructuring

	Quasi Logical Form (QLF)
	QNPs
	DNPs
	Events and Time
	Utterance
	SubCs

	Resolved QLF (RQLF)
	Quantifier Free Form (QFF)
	Polarity Marking
	Referential operators i.e. the
	forall and exists
	Negation
	Defaults
	At most N vs At least N
	Utterance Type Matters

	Inference Friendly Form (IFF)
	Facts
	Rules

	Resolving Referring Expressions
	Summary

	Constructive SATCHMO+
	The Engine's Data-Flow
	Proof Algorithm
	Available Information
	Real Information
	Temporary Information

	Natural Logic Matcher
	Equalities

	Higher-Order Inferences
	Defaults
	Attitude Clauses

	The Engine's Performance, Soundness and Completeness
	Summary

	Evaluation and Discussion
	Choosing the FraCaS test-set for evaluation
	Experiments and Results
	Comparison and Discussion
	Summary

	Conclusion and Future Work
	Future Work

	Monotonicity Operators
	Test Cases
	FraCas Examples
	Generalized Quantifiers
	Attitudes

	Karttunen's Examples of Implicatives and Factives

	Results of Running The Test Cases
	Results of Running FraCas Section 1 and 9 Examples
	Results of Running Karttunen's Examples

