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Abstract

Speech emotion recognition plays an important role in creating more intelligent agents
and systems. A lack of suitable speech emotion data, however, often occurs and hin-
ders building the practical systems. In order to tackle this issue, knowledge transfer
or domain adaptation, has emerged as a promising solution, which features leveraging
a related information-rich source to help optimize the performance on the target task.
In spite of the great progress of adversarial learning based domain adaptation tech-
niques in computer vision, so far rare works have attempted to apply these advanced
techniques on speech emotion recognition. This project explores whether and how ad-
versarial learning can be used to eliminate the divergence or domain shift that exists
in speech emotion data. We particularly address the scenario of supervised domain
adaptation (SDA), where only very limited labelled data from the target domain are
available. We propose Class-wise Adversarial Domain Adaptation (CADA) to reduce
the domain shift for all common classes between the target and source domains via
adversarial learning. Different from general practices, CADA combines the class dis-
criminator and domain discriminator into one architecture, and the training algorithm
is straightforward with either multi-layer perceptrons or deep neural networks as the
basis of the model. We also extend CADA to the unsupervised scenario when only a
few unlabelled target-domain data are available. We systematically estimate CADA
with real-world speech emotion datasets under many different practical settings and
demonstrate the effectiveness of CADA with an advantage over ordinary fine-tuning
technique and the state-of-the-art adversarial-learning based domain adaptation ap-
proach.

12



Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

13



Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=487), in any relevant Thesis restriction declarations deposited in the Uni-
versity Library, The University Library’s regulations (see http://www.manchester.
ac.uk/library/aboutus/regulations) and in The University’s policy on pre-
sentation of Theses.

14



Acknowledgements

It is definitely not easy to do a PhD, and finally, it is now close to the end. There are
many things I will remember about this journey, this experience, this university, and
this country.

I would like to thank my supervisor, Ke Chen, for his continuous support to my
work, and also at the very beginning, providing me this precious opportunity to study
in a great research group at a renowned university. I want to thank my colleagues, who
have been very good examples to me, both in life and in study.

I want to thank my good friends in the UK, including Jing, Jiaxi, Xuli, Meng, Zhu,
Dongjiao, Peizhi, Qian, Sophia, Fabio, Mike, Tudor, and Prae, as well as several very
local friends, who have been so nice and inspiring to me.

At last I want to thank my parents, who are always so proud of me, my wife, a
miracle in my life, and my baby daughter, a perfect gift in the pursuit of happiness.

I am lucky to be a student of University of Manchester and to study in the UK. I
believe wherever I am in the future, I will always keep a touch with this warm place.

15



Chapter 1

Introduction

1.1 Motivation

A highly important role in human expression and communication, emotions refer to
specific and intensive mental activities. Although scientists have not reached a con-
sensus on the definition of emotions, there have developed many theories covering
the origin, categorization, functions of emotions [117, 74]. In the past decades, artifi-
cial intelligence technologies have been leveraged to study emotions, yielding a new
inter-disciplinary branch called affective computing [80], which is aimed to build more
intelligent and human-like agents or systems that can detect, recognize, and interpret
human emotions in the future. The applications of affective computing can be found in
many real-world scenarios. For example, it has already been used for initial assessment
of some psychological diseases such as depression [26], autism [98], and bipolar disor-
ders [87]. It also shows a promising prospect in calling-centre service [61], intelligent
automobile systems [49], and entertainment industry [71], etc.

The main task of affective computing is automatic emotion recognition (AER),
which can utilise the information of speech, body gestures, or facial expressions. Par-
ticularly, speech is a fast, efficient, and essential communication manner between hu-
mans in daily life. It can be the only source of information when no pictures or videos
of the speaker are available, e.g. in the scenario of the calling-service centre. As a
result, speech emotion recognition (SER) [22] is one of the main research directions
in affective computing. Generally, the information embedded in speech can be catego-
rized as linguistic or paralinguistic. Most works regarding SER exploit paralinguistic
information, from which many kinds of hand-crafted acoustic features can be extracted
[97, 24].
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Machine learning methods rely on data. Nevertheless, due to the special nature of
speech emotion data, it is extremely difficult to acquire samples from natural conver-
sations [22]. One reason is that collecting these data may lead to privacy violation,
and furthermore, the emotional state in most speech in normal life is neutral and col-
lecting the speech with desired emotions can be unrealistic. Consequently, the speech
emotion data used by researchers are usually generated from laboratories under certain
pre-designed conditions. While on one hand, an increasing number of high-quality
emotional speech databases/corpora have become available [22, 96]. On the other
hand, the divergence between different corpora often leads to the problem that the per-
formance of a recognition system trained on one corpus can degenerate dramatically
when tested on another corpus. It is straightforward to understand the occurrence of
such a divergence, also named dataset shift or domain shift, as different speakers from
different backgrounds under different recording environments can vary considerably
in terms of emotion expression.

Transfer learning [78] or domain adaptation provides a solution to the issue of
data scarcity in speech emotion recognition. The main idea of domain adaptation is
that a related and information-rich source domain could be leveraged to help address
the target task when the target domain suffers a lack of information. Specifically, the
target domain may contain a very limited number of labelled data, making it difficult
to establish a robust recognition system. Under this situation, some existing databases
can be used to improve the performance on the target task via domain adaptation.
This scenario, where the target domain contains only very few labelled examples, is
termed supervised domain adaptation (SDA). The other scenario, unsupervised domain
adaptation (UDA), refers to where the target domain has many examples but no label
information is available.

In spite of some domain adaptation works in SER, very few of them are under
the context of supervised domain adaptation. However, we believe SDA is a practical
scenario for speech emotion recognition. For example, because of the high difficulty
of collecting real-world speech emotion data, there may be very few examples repre-
senting natural emotions available for the target task. It would be desirable to use an
existing large database containing acted emotion examples for better performance on
the target task.

Domain adaptation can be achieved by different kinds of techniques for different
applications [38, 78]. In recent years, a branch of domain adaptation methods featur-
ing adversarial learning [32, 110, 27] have proven very successful for tasks regarding
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computer vision. The state-of-the-art SDA method, namely few-shot adversarial do-
main adaptation (FADA) [70], generates data pairs by combining the source and target
examples and then performs adversarial learning with these pairs to maximise domain
confusion (i.e. minimise domain shift). Nevertheless, we find that FADA cannot work
well for speech emotion recognition, and we observe that this is because high intra-
class variability extensively occurs in speech emotion data while the pairing technique
in FADA ignores specific class information in different domains. In order to tackle
this issue, we propose Class-wise Adversarial Domain Adaptation (CADA) which is
aimed at reducing the domain shift for all common classes between the source and tar-
get domains. CADA can be implemented based multi-layer perceptrons or deep neural
networks with straightforward training algorithm. We provide a systematical evalua-
tion on CADA with toy data and real-world datasets under different experiment set-
tings. It is verified that CADA is an effective supervised domain adaptation approach
and superior to the state-of-the-art FADA. We also extend CADA to the scenario of
unsupervised domain adaptation and empirically proves its effectiveness.

1.2 Aim and objectives

We aim to seek an effective and robust supervised domain adaptation approach to solv-
ing the problem of data scarcity in speech emotion recognition. Our specific objectives
include

• Analyzing the factors that cause domain shift in speech emotion data;

• Identifying the limitations of the existing domain adaptation approaches for
speech emotion recognition;

• Putting forward a new domain adaptation approach featuring adversarial learn-
ing;

• Evaluating the proposed approach with designed toy data and real-world datasets
under multiple practical settings.

1.3 Achievements

In the pursuit of the objectives listed above, we mainly make the following achieve-
ments:
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• A practical scenario, supervised domain adaptation, where the target domain
contains very limited labelled data, is systematically investigated for speech
emotion recognition. Within our best knowledge, this is the first systematic work
addressing this issue for speech emotion recognition.

• A novel supervised domain adaptation approach CADA is proposed to over-
come the limitation of the state-of-the-art approach FADA. Comprehensive ex-
periments with toy data and real-world datasets verify that CADA outperforms
FADA in terms of recognition accuracy.

1.4 Thesis structure

The rest of the thesis is structured as follows.

• Chapter 2 presents the basic knowledge regarding speech emotion recognition,
including the concept of emotions and speech, their relationship, the general
emotion recognition framework, the commonly used speech features, and the
machine learning models, multi-layer perceptrons and 1D convolutional neural
networks, which are used in this project.

• Chapter 3 focuses on the speech emotion databases, including how they are gen-
erated and their characteristics. A summary of the databases used in this project
is then presented.

• Chapter 4 discusses the related work about domain adaptation, including the
concept of domain shift, traditional adaptation solutions, and latest methods
featuring adversarial learning. The literature about applying domain adaptation
to speech emotion recognition is also reviewed, and their relationship with our
work is discussed.

• Chapter 5 introduces the proposed class-wise adversarial domain adaptation ap-
proach (CADA), including the basic idea, algorithm, model architecture, training
algorithm, and examples illustrating the difference with other comparative ap-
proaches. The modified version of CADA for unsupervised domain adaptation,
u-CADA, is also introduced.

• Chapter 6 shows the systematical evaluations based on multi-layer perceptrons
on the CADA and u-CADA with real-world databases under different designed
experiment settings.
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• Chapter 7 explores using CADA for deep learning models (1D convolutional
neural networks) and conducting relevant experiments.

• Chapter 8 gives a summary of this thesis and discuss the limitations as well as
the future work directions.



Chapter 2

Background Knowledge

This chapter gives the background knowledge about speech emotion recognition. Specif-
ically, Section 2.1 discusses the conception of emotion from the viewpoints of different
fields, including its definition, function, and expression forms. Section 2.2 explains
how speech is produced and how emotion is expressed in speech. Section 2.3 intro-
duces the inter-disciplinary field, affective computing, which studies emotions from
the perspective of computer science. Section 2.4 outlines the general speech emotion
recognition framework. Section 2.5 summarizes the commonly used speech features
for building speech emotion recognition systems. Section 2.6 gives more details of ma-
chine learning models (multi-layer perceptrons and 1D convolutional neural networks)
which are used in this project.

2.1 Understanding emotions

Emotions are the main object of this research, but what are emotions? Intuitively,
emotions are some kind of bodily sensations with varying degrees of pleasure or dis-
pleasure, brought on by neurophysiological changes [79]. However, it proves highly
difficult to define emotions.

The Oxford dictionary describes emotions as a strong feeling deriving from one’s
circumstances, mood, or relationship with others. In daily life, there are many other
words we use that are actually intertwined with the concept of emotion, such as feeling,
affect, mood, temperament, personality, etc. Within the field of affective neuroscience
[79], these similar concepts are discriminated. For example, feelings are understood
as a subjective representations of emotions, affect describes the underlying affective
experience of an emotion, and moods are diffuse affective states that generally last

21
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longer but are less intensive than emotions [47]. Scherer’s component process model
(CMP) [91] provides a useful perspective to understand emotions. The five crucial
elements of emotions identified in CMP are

• cognitive appraisal: the evaluation of events and objects

• bodily symptoms: the physiological component

• action tendencies: the motivational aspect

• expression: the facial and vocal expression

• feelings: the subjective experience

Emotional experience is generated when all of these processes become coordinated
and synchronized in a short period of time.

The origin and functions of emotions are not fully revealed, but it is agreed that
emotions have a great influence on the physiological, behavioural, and cognitive de-
velopment on humans [72]. Some works discover that the original role of emotions
may be to motivate adaptive behaviours in humans that would have contributed to
passing on of genes [90].

Study on emotions can be traced back to ancient times in both Western and Eastern
societies. In philosophy, emotions are thought of closely related with human nature
[46]. The great biologist Darwin systematically researched emotions in [16] which
provides many insights on how emotions are expressed in humans and animals.

Over the past decades, research on emotions has increased quickly, with the con-
tributions from psychology, neuroscience, medicine, history, sociology, and computer
science. In particular, affective computing [80] is the branch of the study of artifi-
cial intelligence that focuses on human emotions, and it usually adopts an operative
approach that favors an intuitive and relatively vague explanation on emotions. The
emotion theories popular in affective computing are reviewed in Section 2.3.

2.2 Emotional speech

Speech is one of the main channels to convey emotions. In essence, speech is the
intentional modulation of air pressure in order to transmit a message [45]. Generally,
the vocal communication between humans can be described by speech chain, which
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Figure 2.1: Speech chain

starts with forming an intention in the mind of the speaker and ends with understanding
that intention in the mind of the listener.

As illustrated in Figure 2.1, speech is produced by human’s vocal apparatus which
is able to modulate air to produce sounds. This process starts in the lungs, crosses the
trachea until the vocal tract, where the organs between the glottis, the vocal chords
and the lips perturbs the air in order to produce sounds. Through the coordinated use
of all these organs, humans are able to produce sounds whose fundamental frequency
lies in the range of approximately 80-200 Hz, for males, and 180-400 Hz, for females
[69] and to generate a variation of pressure of approximately 0.01-1 Pa at 1 meter from
their lips [113]. Speech is perceived by the auditory system, a set of organs which
transduces sounds and relays an electric signal to the brain. Sounds are collected by
the outer ear, filtered by the membranes and the ossicles in the middle ear and finally
converted into electric impulses in the inner ear. The auditory system in the human
ear can perceive sounds between 20 Hz and 20 KHz; at different frequencies there are
different minimal required intensities for a sound to be heard [116].

Because the variation of air pressure determined by speech can be described as a
waveform that represents the change of pressure with time, speech can be treated as a
time series signal, and common signal processing techniques are applicable to speech
signals [76].

The feasibility of speech emotion recognition is based on the fact that various
changes in the nervous system can indirectly alter a person’s speech. For example,
speech produced in an emotional state of fear, anger, or joy tends to be fast and loud
with a wider range in pitch. However, in an emotional state of tiredness, boredom, or
sadness, speech is often slow, low-pitched, and slurred [7]. This reveals what kind of
information can be extracted as discriminative features to recognize emotions.

Information contained in speech signals include both the explicit semantic and
other informative implicit contents. These two kinds of information can be regarded to
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exist, respectively, in the linguistic layer and para-linguistic layer of a speech signal.
In other words, a speech signal can be decomposed in two layers:

• Linguistic layer carries the semantic content which is made up by sounds con-
stituting words. An effective communication requires the composition of words
follow the common language rules reached by the speaker and listener. Speech
recognition is the specific branch to address this semantic content.

• Para-linguistic layer carries information about the intentions and feelings of the
speaker through acoustic cues, e.g. stresses and pauses. It also carries the in-
formation about the speaker himself/herself, through other acoustic cues such
as tone and pitch, which can help the listener have a rough understanding of the
speaker’s gender, age, and other characteristics. Speech emotion recognition and
speaker recognition mainly utilise these two kinds of information.

Figure 2.2: Decomposition of speech signals.

It should be noted that this layer-wise arrangement of speech is not a rigid de-
composition. Some researchers regard the non-linguistic information as in the extra-
linguistic layer (conveying the information about the speaker and background), or in
the para-linguistic layer (conveying the information about emotions). In either way of
decomposition, the boundaries between the layers are fuzzy as acoustic cues belong to
more than one layer. In fact, study on speech has formed into three different directions
in affective computing, as shown in Figure 2.2:

• Speech recognition [84, 42] aims to reconstruct the words uttered by the speaker;

• Speaker recognition [54, 29] attempts to identify the speaker through the analysis
of an acoustic signal
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• Speech emotion recognition [22, 55] intends to determine the emotional state of
the speaker through acoustic cues.

It is evident that speech recognition utilises the linguistic information, while speaker
recognition and speech emotion recognition usually rely on the para-linguistic infor-
mation (or with linguistic information).

2.3 Affective computing

2.3.1 Overview

Affective computing is the study and development of systems that can recognize, inter-
pret, and even simulate emotions. This interdisciplinary field spanning computer sci-
ence, psychology, and cognitive science is usually believed to originate with Picard’s
work [80]. In practice, affective computing focuses on detecting emotional informa-
tion, recognizing emotion classes, and simulating emotions.

• Detecting emotional information is about acquisition of emotional data via pas-
sive sensors, e.g. video cameras or microphones that are able to capture the data
about the user’s physical states or speech [28].

• Recognizing emotions depends on the extraction of meaningful patterns from the
gathered data using machine learning techniques [2, 22]. As the name suggests,
the goal of emotion recognition is to produce emotion class labels (predictions)
that would match humans’ predictions.

• Simulating emotions is an advanced objective of affective computing, in order
to facilitate the interactivity between humans and machines or to create more
intelligent agents [40].

Affective computing can be applied to many areas. Below shows some examples of
the applications:

• Education [58]. Learners’ development can be influenced by their emotional
states. Affective computing technology can help teachers judge the learners’
state so they can adjust their teaching plans. In distance education, there is
usually no emotional incentive between teachers and students. Under such cir-
cumstances, students can easily get bored and distracted. Applying affective
computing in distance education system can help solve this issue.
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• Health care [115, 81]. Robots in health care equipped with affective computing
technologies can better judge patients’ emotional states, and accordingly, alter
their actions or programming. Affective computing is also being applied to the
development of communicative technologies for use by people with autism [93,
53].

• Entertainment [30]. Affective video games can access their players’ emotional
states through biofeedback devices. A particularly simple form of biofeedback
is available through game pads that measure the pressure with which a button
is pressed: this has been shown to correlate strongly with the players’ level of
arousal [103]. Affective games have been used in medical research to support
the emotional development of autistic children [53].

• Social monitoring. There are many forms of social monitoring that can benefit
from affective computing. For example, a car can monitor the emotion of all
occupants and engage in additional safety measures, such as alerting other vehi-
cles if it detects the driver to be angry [104] or shows fatigue [49]. An emotion
monitoring agent can send a warning before one sends an angry email. Music
players can select tracks based on mood. Companies use analysis about clients’
facial expression to infer the respective market [31]. Calling-service centre can
assess emotion states of the users [61] and improve their service quality.

2.3.2 Emotion theories

A preliminary question facing affective computing is how to define emotions that can
be processed by computers. It proves that computational theories of emotions [68,
14], which have developed from psychology and cognitive science, match the goal of
affective computing. These theories include categorical theories, continuous theories,
and appraisal theories.

Categorical emotion theories

Categorical or discrete emotion theories postulate that emotions are discrete, measur-
able, and physiologically distinct. One of the most influential categorical theories is
Ekman’s Big Six [21], which classifies emotional states as anger, disgust, fear, hap-
piness, sadness and surprise. Plutchik developed the ’wheel of emotions’ [36], sug-
gesting four groups of opposite emotions: joy versus sadness, anger versus fear, trust
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Table 2.1: Common categorical emotions for speech emotion recognition. The first
row lists Ekman’s Big Six [21], one of the most influential categorical emotion theory.

anger fear sadness happiness surprise disgust
pleasure amusement satisfaction excitement pride shame
relief guilt fright anxiety jealousy love
compassion curious bored interested relaxed confident
affectionate disappointed worried frustrated contempt aesthetic

versus disgust, and surprise versus anticipation. Some basic emotions can be modified
to form complex emotions. Common categorical emotions are summarised in Table
2.1. Clearly, the majority of categorical emotions are negative. This observation is
in line with our daily experiences that negative emotions can be of high diversity and
complexity in contrast to positive emotions.

From a practical viewpoint, categorical theories are easy to use and to interpret,
therefore they are widely applied in affective computing. On the other hand, they are
also criticized for disregarding the fact that emotions are always culture-dependent and
observer-dependent, and they may co-exist and mix in a complex way. Researchers
have built some emotion corpora based on discrete theories, but these corpora vary
considerably across the adopted emotion classes, posing a challenge when using dif-
ferent corpora [95, 63].

Figure 2.3: Emotional space defined by valence and intensity
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Continuous emotion theories

Continuous emotion theories or dimensional theories [15, 33] postulate that emotions
can be described by continuous dimensions representing different emotional funda-
mental properties. With these dimensions, all emotional states can be mapped to a
multiple dimensional space. Two commonly-used dimensions are valence, measuring
how negative or positive the experience feels, and intensity (or arousal), describing
how strong the experience feels. They form a 2-dimensional space and different emo-
tions fall into different areas in the space, as shown in Figure 2.3. Another popular
dimension is dominance, which represents how dominant or controlling (versus con-
trolled or submissive) the emotion is. Continuous theories of emotion have a high de-
gree of versatility allowing researchers to consider many emotional states, especially
non-prototype emotions. Because of these advantages, they are widely supported in
affective computing. The difficulty using these theories is that the emotions can be
hard to annotate.

Appraisal theories

Appraisal theories of emotion postulate that cognition and emotion are strictly interre-
lated. An emotion is, therefore, the result of a rational, though unconscious and often
unexpressed, process evaluating a given situation. The complex process of evaluat-
ing events and circumstances can be subdivided in a collection of simpler judgements,
each one considering only a particular feature of the event. These features are usually
called appraisal variables or situational meaning structures [107]. The most important
appraisal variables are novelty, pleasantness, goals, agency, norms [112, 52]. Like con-
tinuous theories of emotion, appraisal theories have a high degree of versatility and a
broad support from the community combined with a strong explanatory power. How-
ever they also lack an implicit linguistic description and their annotation and evaluation
is often considered too subjective.

2.4 Speech emotion recognition framework

To illustrate how speech emotion recognition works, a general framework is shown
in Figure 2.4, with the raw audio signals as input and classification labels as output.
It should be noted that all steps are not necessary in practice, and each step involves
many options of operation that should be selected in use.
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Figure 2.4: The general speech emotion recognition framework

2.4.1 Raw speech signals

Raw speech signals depicting the variation of amplitude with time are usually in the
form of audio clips. The general form of an analogical continuous signal is x(t) =

f (t) where f is the function of amplitude. It is convenient to use periodic functions
to describe speech signals and Fourier analysis is often adopted to convert the time-
domain signals to frequency-domain signals. Typically, for continuous time-domain
signal,

x(t) =
∞

∑
k=−∞

akcos(2πk f0t)+bksin(2πk f0t) =
∞

∑
k=−∞

cksin(2πk f0t +φk) (2.1)

where f0 is the fundamental frequency, and ak, bk, ck as well as φk are Fourier coeffi-
cients. There is corresponding transformation for discrete digital signals.

Emotional speech signals represented in the time-domain can be easily visualized
using two-dimensional plots in which x-axis is time and y-axis is amplitude; this rep-
resentation is useful to show the variation (intensity) and the timing of an emotional
speech signal.

2.4.2 Pre-processing

Pre-processing is usually necessary to facilitate the processing of speech signals on a
digital computer. The common technologies include:

• Amplification. This can increase the amplitude of a signal so that it is easier to
tackle the signals of small intensity.
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• Digitization. The raw analogue speech signal has to be digitized to be processed
on a computer. This analogue-to-digital conversion (ADC) can be realized by
sampling in time and sampling in amplitude. Sampling in time works by select-
ing a frequency or time step at which the continuous speech signal is sampled.
Sampling in amplitude chooses a number of bits to represent the intensity of the
signal.

• Filtering. This is to remove useless frequencies, misleading information, or
noise. Depending on the nature of target tasks, different filters can be used such
as high-pass filters, low-pass filters, band-pass filters, and notch filters.

• Denoising. This is the process that removes or reduces noise in the signal.

• Dereverberation. This is aimed to weaken the physical phenomenon that sound
waves are reflected by solid objects back on their acoustic path with decreased
amplitude (i.e. reverberation).

• Normalization or standardization. This is a general-purpose technique which
regularizes the signal by mapping all values on a fixed scale.

The above provides an overview of the common pre-processing techniques in signal
processing. In practice, what to use, how to use, and in which order to use are quite
flexible and problem-specific.

2.4.3 Segmentation

As speech signals are usually not stationary, it is common to divide a speech signal
into small segments called frames. Within each frame the signal is considered approx-
imately stationary [85]. The ideal length of a frame may vary across applications, but
it should be long enough to contain information related to emotions, but not too long
so as to be unstable or non-stationary.

There have developed two strategies on segmentation of speech signals: linguistically-
aware and linguistic-agnostic segmentation. As the name indicates, linguistically-
aware segmentation relies on the semantic content and needs speech recognition mod-
ule to segment the emotional speech into linguistic units such as words and phrases.
Segmenting speech signals based the underlying phonemes [62] can also be regarded
as belonging to this category. This approach relies on the observation that the spec-
tral shapes of the same phoneme under different emotions are various (essentially true
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for vowel sounds). However, the phoneme segmentation algorithm cannot produce a
satisfactory performance.

On the contrast, linguistically-agnostic segmentation is unaware of the linguistic
structure but utilises the information embedded in the paralinguistic layer of speech.
Therefore this is the strategy mostly used for speech emotion recognition. Specifically,
based on whether the frame is fixed in the length, there are two techniques as follows:

• Absolute time intervals (ATI) segmentation generates frames of equal length. It
runs fast and the resulted frames are easily processed because of the uniform
length. The optimal length is usually chosen empirically and it should guarantee
the frames contain emotional information.

• Relative time intervals (RTI) segmentation extracts a fixed number of frames
from an utterance and the frames may vary in length.

These two techniques can be combined and applied multiple times with different pa-
rameters.

2.4.4 Feature extraction

As a key issue in designing speech emotion recognition systems, feature extraction
aims to find a suitable set of features that effectively characterize emotions.

There are many hand-crafted features that have been investigated for speech emo-
tion recognition [97, 24, 22]. These features can further be categorised as local features
and global features. While local features or low-level descriptors (LLDs) refer to those
extracted from each frame, global features or functionals refer to the statistical features,
e.g. the mean and standard deviation, based on the frames within an utterance.

In addition to hand-crafted features, which will be reviewed in details in Sec-
tion 2.5, learned features [108] by deep models are attracting much interest nowadays
thanks to the development of deep learning. However, the hand-crafted features show
an advantage over learned features in terms of

• Interpretability. Hand-crafted features have explicit physical meanings from the
perspective of signal processing, while learned features are generated via black
box.

• Flexibility. Hand-crafted features can be flexibly selected and combined to suit
different applications or models.



32 CHAPTER 2. BACKGROUND KNOWLEDGE

On the other hand, the hand-crafted features have some drawbacks:

• There are many groups or families of hand-crafted features, and it depends heav-
ily on the experts’ knowledge or experience on how to select and use them for
optimal performance.

• The amount of hand-crafted features can increase dramatically when more low-
level descriptors or functionals are added.

2.4.5 Feature selection

Feature selection is a basic skill in machine learning that can not only alleviate the
curse of dimensionality but also improve the interpretability of the constructed mod-
els. Although for a given task, using more features normally results in better perfor-
mance (assuming the data for training is sufficient), it is problematic to use as many
as hand-crafted features. First, the number of acoustic features available for speech
emotion recognition can be extremely huge, causing the curse of dimensionality. Sec-
ond, the economical aspect should be considered in reality, and there must be a balance
between the performance and the cost needed. Feature selection can be used to save
the cost without significantly compromising the performance. In spite of many feature
selection techniques in machine learning [35, 13], expert knowledge is very helpful in
selecting the most suitable features for the target task.

2.4.6 Modelling

Many classic machine learning models have been investigated in speech emotion recog-
nition. Currently, the most frequently used classifiers are linear discriminant classifiers
(LDC), k-nearest neighbor (k-NN), Gaussian mixture model (GMM) [56], support vec-
tor machines (SVM) [1], artificial neural networks (ANN), decision tree algorithms and
hidden Markov models (HMMs) [65, 73]. Various studies have showed that choosing
the appropriate classifier can significantly enhance the overall performance of the sys-
tem [22].

With respective advantages and disadvantages, it is difficult to decide which model
works best for one task. The trend in recent years is on deep learning models [108, 25]
which are able to learn hierarchical features. In particular, long short-term memory
(LSTM) networks are often employed for continuous emotion estimation because of
their ability to capture temporal context in speech signals [118].
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2.5 Speech features

Speech features play a key role in building a robust recognition system. Many works
have been carried out to find and design the informative features and estimate the effect.
In addition to traditional acoustic features, recently, learned features are also tested in
deep learning models. The deep models can even use processed raw audio signals as
inputs, yielding impressive recognition accuracy [118].

2.5.1 Hand-crafted features

The relevance of different groups of features for speech emotion recognition is investi-
gated in [97]. It also finds that using all groups can generally obtain better results than
single groups, and there is not a fixed winner for all problems.

Low-level descriptors (LLDs) or local features denote those features extracted from
individual frames. The commonly-used LLDs can be roughly grouped into the follow-
ing families:

1. Prosodic features describe the prosodic phenomena including intonation, stress,
rhythm, and voice quality. For example, intonation can be measured by fun-
damental frequency and contours. Stress or accentuation can be measured by
energy, rhythm by duration and zero-crossing rate, and voice quality by spectral
shape.

2. Spectral features describe the spectral nature, including formants, spectral roll-
off (measure of the steepness of a transition in the frequency domain), spectral
centroid, and spectral flux, etc.

3. Cepstral features describe the cepstral nature, including the value of cepstal co-
efficients, Mel-frequency cepstral coefficient (MFCC), and Mel Filter bank. In
particular, MFCC is one of the most frequently used features in audio processing.

Global features or functionals refer to the statistical features based on local features.
In other words, they synthesize the information embedded in the local features (given
a fixed number of frames) in a single value. The common functionals are

1. Extreme functionals, e.g. the minimum and maximum.

2. Percentile functionals, e.g. the values of upper and lower quartiles.

3. Mean functionals, e.g. the arithmetic mean and the centroid.
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4. Higher statistical moment functionals, e.g. standard deviation, variance, skew-
ness, and kurtosis.

5. Other functionals, including statistical operators, ratio, error measures, linear or
quadratic regression coefficients, and so on.

2.5.2 Learned features

It is a trend to build end-to-end speech emotion recognition models without using
traditional hand-crated features [108]. The features, often learned by deep learning
models, are thus called deep features or learned features. Learned features are usually
abstract and informative representations, with poor interpretability in comparison to
hand-crafted features. Besides, learning these features requires powerful computing
capability. However, deep models without using traditional hand-crafted features can
achieve a remarkable performance on some tasks.

2.5.3 The feature set GeMAPS

In order to achieve a standard estimation on the recognition performances for some
contests, different fixed feature sets have been created by the organizers of those con-
tests. For instance, the feature set InterSpeech09 is designed for the contest Inter-
Speech in 2009, which contains 384 features including 12 statistical functionals and
16 low-level descriptors (including additional delta coefficients).

In 2016, a number of top scientists propose the Geneva minimalistic acoustic pa-
rameter set (GeMAPS) [24] for voice research and affective computing. Extensive
experiments demonstrate that GeMAPS and its extended version eGeMAPS [24] are
comparable to the brute-force large scale feature sets. This motivates us to choose
GeMAPS as the basic feature set in our work.

Specifically, GeMAPS is composed of 18 low-level descriptors (LLD), including
frequency related parameters, energy related parameters, and spectral parameters. De-
tails of these 18 LLDs are given in Table 2.2. All LLDs are smoothed over time with
a symmetric moving average filter 3 frames long, and arithmetic mean and co-efficient
of variation are applied as functionals, yielding 36 features. To loudness and pitch, 8
functions are additionally applied, which are 20-th, 50-th, and 80-th percentile, and the
range of 20-th to 80-th percentile, and the mean and standard deviation of the slope
of rising/falling signal parts. This gives a total of 52 features. Then the arithmetic
mean of the Alpha ratio, the Hammarberg index, and spectral slopes from 0-500Hz
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and 500-1500Hz over all unvoiced segments are included. Finally 6 temporal features
are included: the rate of loudness peaks, the mean length and the standard deviation of
continuously voiced regions, the mean length and the standard deviation of unvoiced
regions, and the number of continuous voiced regions per second. In total, 62 features
are contained in GeMAPS, and extra 26 features are added into GeMAPS generating
its extended version, eGeMAPS.

2.6 Machine learning models

Regular machine learning models for speech emotion recognition have been briefly
reviewed in Section 2.4. Here we give more details on two specific models, which,
from the family of artificial neural networks, form the basis of the proposed approach
in this project.

Artificial neural networks or simply called neural networks are computing systems
inspired by the biological neural networks in human brains. ANNs are composed of
artificial neurons, each having inputs and producing a single output which can be sent
to multiple other neurons. A neuron is illustrated in Figure 2.5. Given the vector of
input x, the output of the neuron is

f (x) = δ(
n

∑
i

wixi +b)

where w is the vector of weight, b is the bias, and δ is the activation function. These

Figure 2.5: A neuron unit

three variables have important meanings, as w represents the strength of the connection
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Table 2.2: GeMAPS feature set

Group Feature name Description

Frequency related
parameters

Pitch
logarithmic F 0 on a
semitone frequency scale

Jitter
deviations in individual
consecutive F 0 period lengths

Formant 1,2,3
frequency

central frequency of first,
second, and third formant

Formant 1 bandwidth of first formant

Energy/Amplitude
related parameters

Shimmer
difference of the peak amplitudes
of consecutive F 0 periods

Loudness
estimate of perceived signal
intensity from an auditory spectrum

Harmonics-to-
noise ratio

relation of energy in harmonic
components to energy in noise-like
components

Spectral parameters

Alpha ratio
ratio of the summed energy from
50-1000 Hz and 1-5 kHz

Hammarberg
index

ratio of the strongest energy peak
in the 0-2 kHz region to the strongest
peak in the 2-5 kHz region

Spectral slope
0-500 Hz and
500-1500 Hz

linear regression slope of the
logarithmic power spectrum within
the two given bands

Formant 1,2,3
relative energy

ratio of the energy of the spectral
harmonic peak at the first, second,
third formant’s centre frequency to
the energy of the spectral peak at F 0

Harmonic difference
H1-H2

ratio of energy of the first F 0
harmonic to the energy of the second
F 0 harmonic

Harmonic difference
H1-H3

ratio of energy of the first F 0
harmonic to the energy of the highest
harmonic in the third formant range
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between neurons, b is to ensure that the output value calculated through the input can-
not be activated casually (i.e., working as a threshold). Activation function plays the
role of non-linear mapping, which can limit the output amplitude of the neuron within
a certain range, e..g [-1 1] or [0 1]. The most commonly used activation functions
is the Sigmoid function, which can map the number of (−∞,+∞) to the range of [0
1]. Other common activation functions include tanh, relu, and elu [101, 99]. Which
activation function to use depends on the specific situation as each of them has unique
characteristics.

Multi-layer perceptrons (MLPs) are classic neural networks, one of the most fre-
quently used machine learning models. Convolutional neural networks (CNNs) are
typical deep leaning networks that have demonstrated excellent performance in com-
puter vision. These two types of neural networks will form the basis of the proposed
method in this project.

2.6.1 Multi-layer perceptrons

A typical multi-layer perceptron (MLP) consists of three types of layers: input layer,
hidden layer and output layer, as illustrated in Figure 2.6. The number of hidden layers
cannot be too large as its learning algorithm, back-propagation, can be less effective
with more layers added. This issue, known as vanishing gradient, has been studied in
many works and can be avoided or alleviated through certain techniques [43, 44, 89].

Figure 2.6: Architecture of MLP

The different layers of an MLP are fully connected, meaning that any neuron in
the upper layer is connected to all neurons in the lower layer. Learning occurs in
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the perceptron by changing connection weights after each piece of data is processed,
based on the amount of error in the output compared to the expected result. This is
an example of supervised learning, and is carried out through back-propagation [39], a
generalization of the least mean squares algorithm in the linear perceptron.

2.6.2 Convolutional neural networks

Convolutional neural networks (CNN) [75] is an efficient method that has attracted
widespread attention. It has become one of the research hot spots in many scientific
fields, especially those regarding pattern classification.

CNN can recognize simple patterns in data and use them to form more complex
patterns in higher layers. While 2-dimensional CNN is highly popular in computer vi-
sion, 1-dimensional CNN (1D CNN) can be very effective to obtain interesting features
from a shorter (fixed-length) segment of the overall data set, and thus ideal for analyz-
ing time series data such as audio signals. Another application of 1D CNN is natural
language processing (NLP) [64], although LSTM networks [67] are more promising
recently for NLP.

The basic architecture of 1D CNN is illustrated in Figure 2.7. It is characterized
by using convolutional layer and pooling layer to extract feature representations from
raw 1D input before feeding them to fully-connected layers for classification.

Figure 2.7: Architecture of 1D CNN

Specifically, the convolutional layer consists of a set of learnable filters (or kernels),
which have a small receptive field, and extend through the full length of the input
volume. During the forward pass, each filter is convolved across the length of the input
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volume, computing the dot product between the filter entries and the input. Stacking
the activation maps for all filters forms the full output volume of the convolution layer
(as seen Figure 2.7). The pooling layer realises non-linear down-sampling for the
output of the convolutional layer. There are several non-linear functions to implement
pooling, where max pooling is the most common. It partitions the input into a set of
pieces, and for each such sub-region, outputs the maximum. In practice, there can be
several convolutional and pooling layers (they usually have equal numbers), although
in Figure 2.7 only one convolutional layer and pooling layer are illustrated. Flattening
is the next step that converts the output of pooling layers to 1D representations. The
final classification is done via fully-connected layers. Neurons in a fully-connected
layer have connections to all activations in the previous layer (in Figure 2.7, two fully-
connected layers are shown).

2.7 Summary

This chapter presents the basic knowledge about emotions, emotional speech, speech
emotion recognition and the machine learning models (neural networks) that are used
in this project. In summary, speech is a kind of time-series signal containing the in-
formation about the speaker’s emotional state. Such information, linguistic or non-
linguistic, can be extracted and converted to acoustic features that suit machine learn-
ing models which are able to recognize the emotion classes.



Chapter 3

Speech Emotion Databases

This chapter explains how speech emotion databases/corpora are generally created,
and how they are selected in this project (Section 3.1). Then the detailed information
of the used corpora is presented in Section 3.2.

3.1 Building emotion databases

3.1.1 Emotion eliciting ways

Considering the complexity and vagueness of the definition of emotions, it is impos-
sible to produce a database containing completely representative emotional speech. It
is even challenging to establish a uniform database for comparison of different works
in affective computing, due to a variety of issues about the data, such as languages
and annotation methods. Many databases or corpora are application-dependent and
they adopt different theories of emotion [50, 5, 34, 37, 102]. With respect to how
the emotions are generated, there are three eliciting ways: acted, natural, and induced
[22, 106]. Acted emotions mean those generated by professional or non-professional
actors who are required to give an utterance with certain emotion. Natural emotions re-
fer to those generated in a natural conversation. Induced emotions are between natural
and acted emotions, which are generated in a well-designed laboratory setting. These
three categories of emotions demonstrate different characteristics [22]:

Acted emotion data

Acted emotion data have some obvious advantages [106, 9]. First, the cost for record-
ing acted speech is relatively low. Second, emotion can be collected in a controlled
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environment where noise can be reduced to minimum. Last, recordings can be an-
notated easily as emotions are pre-defined in the script. However, the disadvantages
of acted recordings are also evident. One is that the quality of the acted emotion is
greatly dependent on the actor. Second, the acted emotions may fail at eliciting all the
physiological reactions that an authentic emotion would elicit.

Natural emotion data

Natural emotion data can come from TV talk-shows [34], call-centre recordings, lec-
ture and meetings, children playing [3] and medical dialogue, etc. However, it is not
easy to obtain high-quality and balanced natural dataset. First, specific emotions could
be very rare under those situations. Second, the quality of recording may be low as
there are many unexpected and uncontrollable factors in the environment. Third, emo-
tions and their expressions may be shadowed by other normal activities in a natural
setting. As a consequence, although natural emotion data has excellent qualities, it is
challenging to obtain good-quality examples of them.

Induced emotion data

Induced emotion data are often obtained via the Wizard-of-Oz scenario, in which the
human subjects are convinced they are interacting with a computer, while in fact, a
human experimenter is operating the machine and returning answers according to the
inputs of the user [4]. One characteristic of induced emotions is that they are able
to blend some of the advantages of acted and natural emotions. The induced emo-
tions are not only closer to reality as they are authentic, they are also easily annotated.
However, some psychologists assume that the awareness of being inside a laboratory
environment can affect the subjects displaying their emotions. In addition, it is hard
to guarantee that emotions are actually elicited but not acted, and the elicited emotion
is indeed the one that was hoped for. In spite of these drawbacks, induced emotions
represent a valid and convenient alternative to natural emotions.

3.1.2 Emotion theories

Both categorical and continuous emotion theories may be adopted in creating emotion
databases. Continuous emotions can have up to 3 dimensions, namely valence, arousal,
and domination, respectively. Categorical emotions, on the other hand, can have many
specific classes, and they are usually pre-defined. Vague emotional states may also be
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specified to facilitate the annotation process, but in general only the common emotion
classes are recommended for analysis.

3.1.3 Annotation scheme

Annotation is closely associated with the quality of emotion databases. Different
database builders may use different annotation schemes, but they normally follow these
conventions:

• Labels setting. A range of labels or classes are provided for use, but flexibility is
also given for vague emotional states.

• Multiple annotators. There should be different experts in the field as annotators
and their annotations will be estimated to ensure the consistency.

• Majority voting. Only the annotations agreed by a majority of the experts will
be kept to maximise the reliability.

Taking the database IEMOCAP [10] as an example, the categorized emotion classes
pre-defined are anger, happiness, sadness, neutral, disgust, fear, surprise, excite, frus-
tration, and unknown. Ground truth labels are obtained by majority voting (i.e. at least
agreed by two annotators). There are about 25.4% of the utterances labelled differ-
ently by three annotators. Because different classes of examples vary considerably in
the size, in research, they may be further selected or combined.

3.1.4 Selecting emotion corpora

It seems ideal to acquire as many as possible databases for our research, but in reality,
we have to consider the following factors regarding the selection of databases:

• Financial aspect. Commercial databases can be quite expensive and it is pre-
ferred to use those public free ones.

• License. It is important to obtain the license for use, and fortunately, there are
some good databases available for academic purpose.

• Quality. Only those widely-accepted, i.e. frequently utilised in the research area,
are chosen.
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Table 3.1: The used databases/corpora

Database Language Speakers Volume Type Emotions

EMODB German 5M, 5F
800
sentences acted

anger/fear/
joy/sadness/
boredom/
disgust/
neutral

SAVEE English 4M
480
sentences acted

anger/disgust/
fear/happiness/
sadness/
surprise/
neutral

Aibo German
51
children

18216
sentences natural

joyful/bored/
surprised/
motherese/
emphatic/
reprimanding/
angry/neutral/
touch/other

IEMOCAP English 5M, 5F
7380
sentences induced

anger/sadness/
happiness/
frustration/
excited/
neutral/
others

• Popularity. The popularity of the used data allows the comparison with other
works to be easier.

• Size. Considering the time and computing resources available, data size should
be also taken into account.

• Diversity. It is desirable to have diverse databases for convincing and general
conclusions.

3.2 The used corpora

We have collected some well-known databases which are available to the public. A
summary of them is seen in Table 3.1. All of these databases are free to public for the
academic purpose, and they have been widely used in the area. The varying size of
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these databases allows us to use them more flexibly in our research, and the require-
ment of diversity is also met as the databases involve completely different speakers
in different experiment settings, in spite of the limited number of the used languages.
More details about these databases are given below.

3.2.1 EMODB

This is an audio collection of emotional utterance developed between 1997 and 1999
by Burkhardt et al. at the Technical University Berlin [9]. It contains 7 basic emotions,
namely anger, fear, joy, sadness, boredom, disgust, and the neutral state. A total of
10 non-professional actors’ utterances were used. Each actor was required to utter
10 sentences and each sentence was repeated for every single emotion. Therefore the
database contains 700 sentences (10 actors * 10 sentences * 7 emotions) plus 100
additional sentences as a backup.

3.2.2 Aibo

The Aibo database [98] contains recordings of children interacting with Sonys pet
robot Aibo. It consists of induced speech data in German. The children were led to be-
lieve that Aibo was responding to their commands, whereas it was actually controlled
by a human operator in a Wizard-of-Oz manner. The data were collected at two differ-
ent schools, identified as Mont and Ohm, with 25 and 26 children speakers from each,
respectively. Five expert humans listened to the speech data and annotated each word
independently. Considering the large size of Aibo, in our work we sometimes treat the
two parts, Ohm and Mont, as two separate datasets.

3.2.3 IEMOCAP

The IEMOCAP database [10] contains approximately 12 hours of audio-visual data
recorded from five male and five female actors. The goal of the data collection was
to elicit natural emotions within a controlled setting. This goal was achieved with
two elicitation framework: scripts, and improvisation of hypothetical scenarios. These
approaches allowed the actors to express spontaneous emotional behaviours driven
by the context (as opposed to read speech displaying prototypical emotions). Several
dyadic interactions of approximately five minutes were recorded, which were manually
segmented into turns.
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3.2.4 SAVEE

This is an audio-visual acted emotional database [48] annotated with Ekman’s discrete
theory of emotion with 7 emotions: anger, disgust, fear, happiness, sadness and sur-
prise plus the neutral state. The database contains the recordings of 4 students (all
male) belonging to the University of Surrey. In total, the database contains 480 record-
ings (4 students * 120 recordings).



Chapter 4

Domain Adaptation Related Work

This chapter focuses on the main problem we address, domain shift in speech emo-
tion recognition, and the related literature work. Specifically, Section 4.1 gives the
definition of domain shift and discusses its influence on speech emotion data. Section
4.2 and Section 4.3 introduce the traditional domain adaptation approaches and the
novel approaches using neural networks, including deep learning methods featuring
adversarial learning. Section 4.4 summarizes the so-far progress of domain adaptation
for speech emotion recognition, and Section 4.5 discusses the limitations of existing
domain adaptation approaches and the relationship with our work.

4.1 Domain shift problem

We first clarify the definition of domain shift and domain adaptation, as many similar
and relevant concepts have developed from different research areas such as covariate
shift, dataset shift, and transfer learning.

4.1.1 Definition

Humans can easily transfer the knowledge from one area to other less known areas.
In machine learning, there are many occasions that the information (often in the form
of data) regarding the target domain is insufficient, and it is thus desired to utilise the
information from a different but related domain to help address the target task. Besides,
most traditional machine learning methods work under the assumption that the training
and test data should be drawn from the same feature space and the same distribution.
When the distribution changes, it is often necessary to recollect the needed data and
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re-build the model, e.g. typically in the applications of Web document classification
[114] and sentiment classification [6].

Transfer learning [78] arises to address these issues. There are many terms and def-
initions relevant to transfer learning: learning to learn, life-long learning, knowledge
transfer, inductive transfer, multitask learning, incremental learning, and self-taught
learning [105, 12, 86, 78]. The famous survey paper [77] gives a widely accepted ter-
minology and taxonomy of transfer learning, based on which we make the definition
of domain shift.

Formally, a domain D consists of two components, the feature space X and the
marginal probability distribution P(X). A task T consists of two components, the label
space Y and the objective predictive function f (X) which can be written as P(Y |X)

from a probabilistic viewpoint. With a source domain Ds, the learning task on this
domain can be denoted as Ts and the joint probability for the predictive function can
be denoted as Ps(X ,Y ). Correspondingly, for a target domain Dt , the learning task is
denoted as Tt and the joint probability for the predictive function as Pt(X ,Y ). Domain
shift happens when Ds 6= Dt or Ts 6= Tt . Assuming that the feature space and label
space are same for the source and target domains, the definition of domain shift can be
simplified as follows:

Definition 4.1: Domain shift happens when Ps(X ,Y ) 6= Pt(X ,Y ) where s and t

refer to source and target domain respectively.

Domain shift is also termed dataset shift [83], concept drift [20] or covariate shift
[100] under certain circumstances (e.g. the marginal distribution discrepancy between
different domains). Domain shift adaptation (or domain adaptation for short), as the
name suggests, means compensating for the domain shift so the discrepancy between
different domains can be reduced or eliminated. It should be pointed out that trans-
fer learning is a more general concept describing all the technologies used to achieve
knowledge transfer across domains, and domain adaptation can be regarded as a spe-
cial case of transfer learning. A rigorous categorization on different cases of transfer
learning is seen [78]. Here we give the definition of domain adaptation as follows:

Definition 4.2: Given a source domain Ds and learning task Ts, a target domain Dt

and learning task Tt , domain adaptation helps improve learning the target predictive
function in Dt using knowledge in Ds and Ts, when Ts = Tt , and Dt lacks sufficient
information for learning. Specifically, if Dt contains only a few labelled data, it is
termed supervised domain adaptation; or if Dt contains sufficient data but there is
no label information, it is termed unsupervised domain adaptation.
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4.1.2 Domain shift in speech emotion data

Domain shift exists in speech emotion data and leads to the challenging cross-corpora
problems, i.e., a model trained with one corpus will degrade significantly when tested
on a different corpus. There are many factors causing domain shift in emotion data.
As shown in Figure 4.1, these factors include:

Figure 4.1: Factors causing data shift in speech emotion data

• Theory of emotions. The used theory determines whether the emotions are de-
scribed by classes or dimensions. Generally categorical theories are more pop-
ular than continuous theories, but recently the latter are attracting growing at-
tention because it provides a quantitative measure of the emotional states which
cannot be simply classified as basic emotion classes [88, 87].

• Eliciting ways of emotions. The emotions used in different databases can be
acted, natural, or induced. It has been shown that natural emotions are more
difficult to recognize than others [106, 11, 111].

• Content. The utterances recorded can be pre-defined or directed deliberately
towards certain topics, so the content of different corpora varies greatly.

• Language. The role of language in emotions is a large topic. According to [59],
the emotions experienced by a given person depends on the emotion concepts
available to that person, and the development of emotion concepts is closely
related to the language. Therefore, some emotion concepts from one language
may not have equivalents from other languages. For example, in Korea, han is
the state of feeling sad and hopeful at the same time, and for Baining People of
Papua New Guinea, awumbuk describes what you feel when your visitors leave
[57].
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• Subjects or speakers. As the corpora are acquired independently, the subjects
could vary in the backgrounds, age, and professions. They may belong to differ-
ent groups with certain characteristics, e.g., when actors are chosen as subjects,
their performance could obviously differ from non-actors’ performance.

• Size. Some corpora may contain relatively more recordings, and this poses the
data imbalance issue (as well as class imbalance issue) in cross-corpora tasks.

• Fragmentation. The utterances are saved in different length in different corpora,
and furthermore, various fragmentation skills can be applied to generate frames.

• Class imbalance. Human emotional states, are not evenly distributed in real life.
In fact, neutral emotion is dominant in terms of frequency, making the useful
emotionally coloured speech signals take up a very small portion in the whole.
The degree of class imbalance vary across corpora due to different experimental
designs.

• Annotation method. This is relevant to the adopted theory of emotions and to
the specific annotation strategy. The annotators can be native or non-native,
emotion-related experts or ordinary people, and their numbers can be different
across emotion corpora.

• Recording conditions or non-stationary environment. These physical factors can
have an influence even within one corpora and they are often uncontrollable.

All of these factors collectively contribute to the uniqueness of a database/corpus. In
theory it is impossible to eliminate all these factors’ influence to generate two per-
fectly matched corpora. Therefore it is unsurprising that domain shift exists exten-
sively in speech emotion data. The consequence of domain shift can be directly ob-
served through the degrading performance of a recognition model in a cross-corpora
setting. It should be emphasized that although a corpus is often called a domain in
our work, domain shift does not necessarily occur across different corpora. Within the
same corpus, if there are different speakers or groups, domain shift also emerges across
these speakers and groups. Simply speaking, if the dataset involves different speakers,
domain shift is unavoidable.
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4.2 Traditional domain adaptation approaches

4.2.1 Fine-tuning technique

Fine-tuning originally means taking weights of a trained neural network and using it
as initialization for a new model being trained on data from the same domain (often
e.g. images). It now usually refers to the process that takes a model that has already
been trained for one given task and then tunes or tweaks the model to make it work
on a second similar task. Therefore, fine-tuning can be regarded as a way of domain
adaptation technique.

Fine-tuning allows us to take advantage of the knowledge learned by the trained
model on new tasks. For example, the data size may be too small in the target domain,
making it almost impossible to build a recognition system. Source domain can then be
used to train a model which will be further tweaked or tuned by using the few target-
domain examples so as to fit the target domain task better. In other words, fine-tuning
can be achieved by making the existing model re-train/re-learn on the examples from
the new domain.

4.2.2 Adaptive support vector machines

Adaptive support vector machines (SVM) [60] attempts to transform existing SVM
classifiers into a new effective SVM classifier that would work on a new dataset with
limited amount of labelled data. Though originally proposed to address image tasks, it
also shows effectiveness on speech emotion recognition [1].

The approach works by minimising both the classification error over the training
examples, and the discrepancy between the original and adapted classifier. The new
optimization problem seeks a decision boundary close to that of the classifier trained
from the source domain, while managing to separate the new labelled data from the
target domain.

4.2.3 Importance weighting

This is a large category of domain adaptation solutions with the assumption that the
conditional distributions are same but the marginal distributions are different between
the source and target domains, i.e. Ps(Y |X) = Pt(Y |X) and Ps(X) 6= Pt(X). This special
case of domain shift is usually termed covariate shift, and the typical approaches to
covariate shift is importance weighting [100] which gives more weight to the examples
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from the target domain. Covariate shift has been intensively studied in the literature
and there have developed some useful techniques. Note that tackling covariate shift
could be useful only on the premise that the support of test data are contained in the
support of training data [100].

Formally, importance weight, denoted by β, is calculated by

β(x) =
pte(x)
ptr(x)

(4.1)

where ptr and pte are the probability density of training samples from the source do-
main and test samples from the target domain, respectively. By introducing this ratio,
the learning algorithm is pushed towards the more important regions in input space. As
a result, the key to tackling covariate shift is reduced to the calculation of importance
weights.

There are two approaches to calculating the importance weights. One is directly
estimating the probability density functions of training and testing data. The other
approach can determine the importance weight without attempting to estimate the den-
sities. Examples of the first approach include histogram estimation and kernel density
estimation. However, as the number of input dimensions increases, these direct esti-
mation methods suffer from the curse of dimensionality and perform poorly especially
when the available training data are limited. Therefore, the second approach is more
practical. There are three solutions based on this idea which have been verified able to
solve covariate shift [38]:

• Kernel means matching (KMM) [82]. It works by minimising the difference be-
tween the means of importance-weighted training and testing data distributions
in a high-dimensional feature space. This new space is induced by a kernel func-
tion and there is no need for density estimation. The method allows to obtain
importance estimation directly at the training input points. KMM is expected to
work well even in the high-dimensional case.

• Unconstrained least-squares importance fitting [51]. It formulates the problem
of finding importance weights as a least-square function-fitting problem.

• The Kullback-Leibler importance estimation procedure (KLIEP) [109]. It uses
the divergence between the importance-weighted test distribution and the true
test distribution in the terms of Kullback-Leibler (KL) divergence [8]. The
biggest advantage of this method is that it relies on the testing not on training
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data to estimate all optimization parameters. This is very useful in the scenarios
when a large amount of testing data is available. There is only one parameter,
namely the kernel width, which can be tuned by likelihood cross-validation.

All of the three solutions of importance weighting above are tested in [38] for speech
emotion recognition under the setting of unsupervised domain adaptation, yielding
good performance. However, it has been found that some novel neural networks based
approaches [19, 18, 17], which will be discussed in the next section, can achieve better
recognition accuracy than these addressing importance weighting.

4.3 Neural networks based adaptation approaches

Different to fine-tuning on neural networks which does not need to modify the architec-
ture, some domain adaptation approaches based on neural networks are characterized
by modifying the architecture, and particularly, by choosing a part of the architecture
for information sharing between domains.

4.3.1 Models featuring autoencoders

The works by Deng [19, 18, 17] have tried using autoencoders, a special neural net-
works, for domain adaptation. A typical approach, adaptive denoising autoencoder
(adaptive-DAE or A-DAE) [18] employs a more recent variant of autoencoders, de-
noising autoencoder (DAE). As viewed in Figure 4.2, in the basic architecture of DAE,
an input example x ∈ Rn is first converted to a corrupted version x̃ by adding some
common noise, e.g. Gaussian noise or masking corruption (deleting random elements
of the input). The hidden representation h(x̃) is

h(x̃) = f (W (1) · x̃+b(1)) (4.2)

where f (·) is a non-linear activation function, typically a logistic sigmoid function
applied component-wise, W (1) ∈ Rm×n is a weight matrix, and b(1) ∈ Rm is a bias
vector. The network output maps the hidden representation h back to a reconstruction
y ∈ Rn:

y = f (W (2) ·h(x̃)+b(2)) (4.3)

where W (2) ∈ Rn×m is a weight matrix, and b(2) ∈ Rn is a bias vector. Given a set of
input examples χ, the DAE training corresponds to minimising the following objective
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function:

J(θ) =
λ
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∑
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where wl
j is the j-th column vector of the l-th layer weight matrix W(l), and a weight-

decay regularization term with hyper-parameter λ is included to avoid over-fitting.
The minimisation is usually realized by stochastic gradient descent or more advanced
optimization techniques such as L-BFGS [66] and conjugate gradient method [41].

Figure 4.2: The architecture of denoising autoencoder (from [18])

Figure 4.3: An example of adaptive autoencoders works [18] by forcing the weights
adapt to the weights which were learned using unlabelled test data. The mismatch
between the training and test data can be reduced in this way.

Figure 4.3 illustrates how adaptive-DAE (Figure 4.3) achieves domain adaptation.
A DAE is first learned in a fully unsupervised way from the target domain data, result-
ing in the weight matrices (W te(1), W te(1)) and bias vectors bte(1), bte(1)). Then A-DAE
forces their weights to adapt to these provided weights as well as minimising the re-
construction error between the input and output at the same time. Specifically, given
a training example x ∈ χtr, the objective function of an adaptive DAE is formulated as
follows

Jtr(θ) =
λ

2

(
2

∑
l=1

∑
j

∥∥∥wtr(l)
j −βwte(l)

j

∥∥∥2
)
+ ∑

x∈χtr

∥∥x− ytr∥∥2 (4.5)
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where the hyper-parameter β controls the transfer regularization. The weight matrices
W tr(1) (wtr(1)

j is its j-th column vector) and W tr(2) are randomly initialized and learned
during training, while the weights W te(1) and W te(2) are fixed during training. Using the
weights W tr(1) and btr(1) learned by the adaptive-DAE, the test data and training data
can be encoded to form the representations suitable for standard supervised classifier
(e.g. SVM) for speech emotion recognition.

We can observe that adaptive-DAE works by minimising the difference of weights
between the training and target/test data. In fact, in the final stage, both the training and
target data adopt the same encoder. The similar idea appears in other neural networks-
based approaches [19, 17] which use shared-layers to realise domain adaptation.

4.3.2 Models featuring adversarial learning

Adversarial learning becomes popular after the introduction of general adversarial net-
works (GANs) [32] in 2014. In spite of the original motivation to synthesize pictures
from random noise with a huge number of real pictures, the idea of adversarial learn-
ing turns out useful on domain adaptation as well, yielding better performance than
traditional approaches. We first briefly review GANs and then discuss how adversarial
learning is applied to domain adaptation.

Figure 4.4: General adversarial networks

As shown in Figure 4.4, there are two key parts in GANs, the generator G and
the discriminator D, which are engaged in a competing game. While G takes random
noise as input, D takes both the source data and the generated representations from G

as input. A discriminator tries to predict the domain label yD (signifying whether the
example is from source domain or from the generator) for any input sample, while a
generator tries to fool the discriminator.

General adversarial networks suggests that the domain discrepancy can be implic-
itly reduced by adversarial learning. Therefore no measure for domain discrepancy is
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needed. Typically, a work is seen in [110] which combines adversarial learning with
discriminative representation learning for image classification.

Regarding supervised domain adaptation, because the target domain has only a few
labelled data, some works also term this scenario as few-shot learning. The state-of-
the-art few-shot learning approach, Few-shot Adversarial Domain Adaptation (FADA)
[70] has two features: data pairs generation and binary adversarial discrimination.

With the source domain Ds and target domain Dt , data pairs generation is aimed at
handling the scarcity of target data by pairing the target samples with source samples.
In particular, four new groups of data pairs are created. The pairs of Group 1 consist of
samples from the source distribution with the same class labels, while pairs of Group
2 have the same class label but come from different distributions (one from the source
and one from the target distribution). Similarly, the pairs of Group 3 consist of samples
from the source distribution with different class labels, and the pairs of Group 4 come
from different class labels and different distributions (one from the source and one
from the target distributions). The pairs from Group 1 and 2 are Positive pairs, while
those from Group 3 and 4 are Negative pairs.

Binary adversarial discrimination is achieved by employing a discriminator (based
on a neural network) that distinguishes the group labels of the data pairs. Specifically,
the based network can be composed of a feature encoder Ge (parameterized by θe) and
a prediction layer Gp (parameterized by θp). The network is first trained with source
data Ds by minimising the following classification loss

Lc =−∑
xs

ys logGp(Ge(xs,θe),θp) (4.6)

where xs is the example of the source domain and ys is its corresponding label. Keeping
Ge fixed, the discriminator GD (parameterized by θD), with the Siamese architecture,
is trained to discriminate the four groups by minimising

LD =−∑
i

ygi logGD(gi,θD) (4.7)

where gi is one pair of examples with the group label ygi . The adversarial learning is
realised by performing the following two steps alternately. The first step is updating
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Ge and Gp by minimising

Lg =−λ∑{yg1 logGD(g2,θD)+ yg3 logGD(g4,θD)}

−∑
xs

ys logGp(Ge(xs,θe),θp)−∑
xt

yt logGp(Ge(xt ,θe),θp)}
(4.8)

where λ strikes the balance between classification and domain confusion. The second
step is updating GD by minimising Equation 4.7. Misclassifying Group 1 as 2, or
misclassifying Group 4 as 3 means that the discriminator cannot distinguish Positive
or Negative pairs between the source and target distributions. Therefore these two
steps can satisfy the goals of domain confusion and class separability at the same time.
The FADA approach is summarised in Algorithm 1.

Algorithm 1 FADA learning algorithm
1: Train Ge and Gp with Ds using Equation 4.6.
2: Uniformly sample data pairs with label ygi (i ∈ {1,2,3,4}) from Ds and Dt
3: Train GD using Equation 4.7
4: while not convergent do
5: Update Ge and Gp by minimising Equation 4.8
6: Update GD by minimising Equation 4.7
7: end while

FADA is the main comparative approach to our proposed CADA as it stands for
the state-of-the-art supervised domain adaptation solution [70].

4.4 Progress and limitation

Some pioneer works have systematically evaluated cross-corpora speech emotion recog-
nition with a number of high quality databases [94, 23]. These works agglomerate
several corpora to form a source domain, but do not adopt more sophisticated adapta-
tion techniques for reducing the domain shift. Yet they have shown that domain shift
widely exist in speech emotion data, and combining as many as datasets in building
source recognition systems can be a simple and effective method to address the cross-
corpora problem.

Hassan [38] first treats the mismatch in emotional data as covariate shift and pro-
poses compensating for that shift by classical importance-weighting at the instance
level. At the feature level, some autoencoder-based transfer learning methods [17, 18]
(which are briefly reviewed in Section 4.3.1) have developed to seek a shared feature
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representation so that the knowledge can be transferred between the domains. All of
these methods, however, are usually applied to unsupervised rather than supervised
domain adaptation, which demands a lot of data in target domain that may not be easy
to collect in reality.

With respect to supervised domain adaptation, [1] have revealed that even a few
labelled data from the target domain can be hugely helpful. Specifically, [1] uses
adaptive SVM as the adaptation scheme, which transforms exiting SVM classifiers into
a new classifier by minimising both the classification error over the training examples,
and the discrepancy between the original and adapted classifier.

It is noticed that although adversarial learning [27, 110] gains a great popularity
on domain shift adaptation and achieve success on many challenging tasks, few works
have applied adversarial learning to speech emotion recognition. As discussed above,
a significant advantage about adversarial learning is that instead of directly measuring
the similarity of different domains, it introduces a domain discriminator that distin-
guishes the source from the target domain, and a feature representation is then learned
to be domain invariant by fooling the domain discriminator. So far, most of the adver-
sarial learning based adaptation techniques have focused to address image-related tasks
in the scenario of unsupervised domain adaptation. It interests us to attempt the use
of adversarial learning on speech emotion recognition. In addition, we realize that su-
pervised domain adaptation, a scenario often ignored, is highly meaningful for speech
emotion recognition due to the difficulty of collecting a large amount of data. In fact,
with few data from the target domain at hand, supervised domain adaptation can be a
more practical solution than seeking more data from that domain towards unsupervised
domain adaptation.

The state-of-the-art supervised domain adaptation approach FADA has demon-
strated impressive performance in different applications [70]. Nevertheless, we find
that it does not work well on speech emotion recognition. This is possibly because the
pairing technique in the method cannot effectively deal with high intra-class variabil-
ity, which is common in speech emotion data. In order to verify this hypothesis and
solve the issue, we propose Class-wise Adversarial Domain Adaptation (CADA) and
conduct toy dataset experiment to compare it with FADA in Chapter 5.



Chapter 5

The CADA Approach

In this chapter, a novel domain adaptation approach CADA featuring class-wise ad-
versarial learning is proposed. Specifically, Section 5.1 depicts the supervised domain
adaptation scenario, to which CADA is applied. Section 5.2 gives an intuitive explana-
tion of CADA. Section 5.3 provides the technique details of the method, and Section
5.4 shows some illustrative exmaples of how CADA gains an advantage over the state-
of-the-art approach FADA.

5.1 Supervised domain adaptation scenario

As collecting a large amount of labelled speech emotion data is difficult, how to make
most use of the limited labelled data is a practical question. Unfortunately, these data
alone are often not sufficient to build up a robust recognition system. One increasingly
popular solution to this issue is domain adaptation, e.g., utilising the knowledge from
a related and rich domain, i.e. source domain, to help improve the performance on the
target domain.

Given the source domain Ds and target domain Dt (we use s and t to refer to the
source and target domain, respectively), where the source domain follows the distri-
bution Ps(X ,Y ) and the target domain Pt(X ,Y ) (X denotes the input speech and Y the
emotional class), the goal of domain shift adaptation is to learn a classification func-
tion f that minimises the misclassification error Ly( f (Xt),Yt) by using all the data
available in two domains. Under the setting of supervised domain adaptation (SDA),
Ds = {(xs

i ,y
s
i )}N

i=1 and Dt = {(xt
i,y

t
i)}M

i=1 (M << N). In other words, there are very
limited labelled data from the target domain. Under the setting of unsupervised do-
main adaptation (UDA), Ds = {(xs

i ,y
s
i )}N

i=1 and Dt = {(xt
i)}M

i=1, i.e., there are many
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unlabelled target-domain data.

In speech emotion recognition, UDA is useful when annotating data can be difficult
or expensive, while on the other hand, SDA is useful collecting data can be difficult
or expensive. So far, SDA for speech emotion recognition has been rarely studied
while most of the works have emphasized on UDA. Considering that annotating a few
emotional speech examples can be more realistic than collecting a large quantity of
examples, SDA is a very practical setting.

5.2 Intuition behind CADA

In exploring why few-shot adversarial domain adaptation (FADA) does not work well
on speech emotion data, we find that this is possibly due to the high intra-class variabil-
ity. As in FADA, adversarial learning is performed on data pairs generated from source
and target domains. However, in the process of pairs generation, the specific emotion
class information is not considered. As a result, the high intra-class variability, which
is common in emotion datasets, is ignored and cause the adversarial learning between
two domains to be less effective.

From the viewpoint of mathematics, domain shift adaptation methods usually work
under the assumption P(Ys|Xs) = P(Yt |Xt). By learning a feature space φ such that
P(φ(Xs)) = P(φ(Xt)), it ideally leads to P(Ys|φ(Xs)) = P(Yt |φ(Xt)), which means the
classifier can be shared by both domains. However, in speech emotion recognition, the
underlying assumption that P(Ys|Xs) = P(Yt |Xt) may be less solid because of the high
intra-class variability between the source and target domains, and this further affects
the learning process for the desired feature space.

To tackle this weakness, class-wise domain adaptation is aimed at seeking a feature
space φ for P(φ(Xs)|yi) = P(φ(Xt)|yi), yi ∈Y instead of P(φ(Xs)) = P(φ(Xt)). With the
assumption that P(Ys) = P(Yt), by Bayesian theory, we wish to have

P(yi|φ(Xs)) =
P(φ(Xs)|yi)P(yi)

ΣiP(φ(Xs)|yi)P(yi)

≈ P(φ(Xt)|yi)P(yi)

ΣiP(φ(Xt)|yi)P(yi)

= P(yi|φ(Xt))

(5.1)

where ≈ is carried out for domain shift adaptation.
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5.3 Technical details

The main principles in designing new domain adaptation scheme is to achieve class-
wise adaptation via adversarial learning. Adversarial learning, as we have known from
Chapter 4, is usually realised by introducing a domain discriminator, and the adapta-
tion should be achieved by using a feature encoder/learner, similar to the shared-layers
of the modified autoencoders [17] in terms of function that transfers knowledge across
domains. It is also noticed that the feature learner is usually separated from the predic-
tion/output part. In other words, the three components for domain adaptation methods
are feature encoder, label predictor, and discriminator. The combination of label pre-
dictor and feature encoder can be regarded as a classifier. Furthermore, the feature
encoder should be shared by the predictor and the discriminator, as shown in many
adversarial learning based domain adaptation approaches.

In spite of the normal practice of domain adaptation featuring adversarial learn-
ing which constructs a classifier and a discriminator separately (with feature encoder
shared) [27, 110], it seems unnecessary to have separate classifier and discriminator
for adversarial learning. In fact, it could be cumbersome to learn different discrim-
inators for each class for class-wise adaptation. A different but intuitive thought is
directly combining the class discrimination and domain discrimination into one pro-
cess. To that end, we try to build a domain-class discriminator (DCD) which can not
only distinguish the classes but also distinguish the domains. Correspondingly, the out-
put/predictions of this DCD should contain both the class information and the domain
label information, and thus we need new labels for all the data.

Taking a binary classification task as an example, all the original data can be re-
categorized into four new groups that fit the training of DCD. The new labels of these
groups are: d1 indicating Class 1 from source domain, d2 Class 2 from source domain,
d3 Class 1 from target domain, and d4 Class 2 from target domain. In the testing
stage, we perform classification with these 4 categories and treat either the prediction
d1 or d3 as Class 1, and either d2 or d4 as Class 2. This categorization scheme can be
straightforwardly popularized to the cases with more classes.

Now we can give the model structure of the new class-wise adversarial domain
adaptation approach as shown in Figure 5.1. It comprises a feature encoder and a
predictor. The basic architecture of DCD can be a multi-layer perceptron (MLP) by
simply modifying its output to adapt to the newly-assigned group labels. The hidden
layer of the MLP is thus trained to learn both discriminative and domain-invariant
features.
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Figure 5.1: The class-wise adversarial learning domain adaptation (CADA) structure.
It comprises a feature encoder and a predictor, parameterized by θe and θp respectively.
The training process consists of two stages. In the first stage, both the encoder and
predictor are trained based on the loss function Ld defined in Equation 5.2. In the next
stage, the predictor is fixed and only the encoder is trained based on the loss function
defined in Equation 5.4.

As shown in Figure 5.1, CADA comprises two components, the feature encoder
Ge (parameterized by θe) and the predictor Gp (parameterized by θp). The model is
first trained to distinguish the group labels. In case of binary class, 4 new groups are
formed. To achieve that, both θe and θp are updated to minimise the typical cross
entropy loss function

Ld =−
N+M

∑
i

dxi logGp(Ge(xi,θe),θp) (5.2)

where dxi is the category of xi. This step equips the model with the basic discriminative
ability for the four groups. Meanwhile, to achieve domain adaptation, the features
represented by the hidden-layer in the model should learn to be domain-invariant. To
that end, θe is also updated by minimising the following loss function

La =−{ ∑
x∈Xd1

d3 logGp(Ge(x,θe),θp)

+ ∑
x∈Xd2

d4 logGp(Ge(x,θe),θp)

+ ∑
x∈Xd3

d1 logGp(Ge(x,θe),θp)

+ ∑
x∈Xd4

d2 logGp(Ge(x,θe),θp)}

(5.3)
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where Xdi denotes all the examples belonging to di (i ∈ {1,2,3,4}). This step is
designed to encourage the confusion of the equivalent classes in different domains.
Specifically, we want the model to believe the examples of certain class in one domain
also belong to the equivalent class in the other domain. For instance, the first term on
the right side of Equation 5.3 suggests that the examples from d1 are also from d3. This
principle is applied to all categories we defined. The designed two steps perform al-
ternately until some pre-set conditions are met, e.g., the maximum number of training
epochs is reached.

While FADA [70] performs adversarial learning on newly-generated data pairs
without considering specific class information, minimising Equation 5.3 allows the
adversarial learning to operate on each specific common class across the domains, i.e.,
realising class-wise adversarial learning. Ideally, the model trained in this way can dis-
tinguish the class information but not the domain information, and thus, is applicable
to the target domain.

Algorithm 2 CADA learning algorithm
1: Initialize θe and θp randomly
2: Re-label training examples of k classes in both source and target domains in terms

of di, i ∈ {1,2, ...,k,k+1, ...k+ k}
3: while not convergent do
4: Update θe and θp by minimising Equation 5.2.
5: Update θe by minimising Equation(5.4).
6: end while

It is rather straightforward to apply CADA to a multi-class case by modifying the
output layer as shown in Figure 5.2. The loss function guiding the adversarial training
accordingly changes to Equation 5.4 where k refers to the class number. The new
category label di(1 <= i <= k) corresponds to the i-th class in the source domain and
dk+i(1 <= i <= k) corresponds to the i-th class in the target domain. For clarity, the
CADA learning process is summarized in Algorithm 2.
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La =−{ ∑
x∈Xd1

dk+1 logGp(Ge(x,θe),θp)

+ ∑
x∈Xd2

dk+2 logGp(Ge(x,θe),θp)+ ...

+ ∑
x∈Xdk

dk+k logGp(Ge(x,θe),θp)

+ ∑
x∈Xdk+1

d1 logGp(Ge(x,θe),θp)

+ ∑
x∈Xdk+2

d2 logGp(Ge(x,θe),θp)+ ...

+ ∑
x∈Xdk+k

dk logGp(Ge(x,θe),θp)}

(5.4)

Figure 5.2: CADA in the multi-class case. It is characterized by a modified output
layer. Accordingly the adversarial training operates for all common classes between
the source and target domains.

Although we illustrate CADA structure with an MLP as the basis, it is worth point-
ing out that deep learning models can also serve as the basic of CADA. Rather straight-
forwardly, in the feature encode, hidden layers in MLPs can be replaced with convo-
lutional layers and pooling layers, with the fully-connected layer still as the output
layer. Then CNN-based CADA can be trained following similar procedures as given
in Algorithm 1.

In the situation of unsupervised domain adaptation when no labelled target data are
available, we wonder whether it is possible to utilise the pseudo-labels for class-wise
domain adaptation. Then the question is how to generate the proper pseudo-labels.
One natural solution is that we may exploit the source model to predict the unlabelled
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examples in the target domain. However, considering the data shift, the predictions on
the target data by the source model seem unreliable. In fact, in the extreme case, all
the target data can be treated as belonging to the same class by the source model. Then
CADA cannot work as there are only one class in the target domain. Alternatively, we
may utilise the prediction confidence to seek the suitable pseudo-labelled examples.

Given a N-class problem, the prediction with confidence of one testing example
can be written as a vector [c1,c2, ...,cN ] where ∑i ci = 1. Because CADA needs the
examples of all classes, one strategy to identify the k examples belonging to Class j

is to sort {c1
j ,c

2
j , ...,c

M
j } in a descending order, where M stands for the number of all

predicted examples, and to select the top k values which correspond to the wanted
examples. Based on this idea the algorithm of CADA for unsupervised domain adap-
tation (denoted as u-CADA) is given below.

Algorithm 3 u-CADA learning algorithm
1: Train the source model H with all source labelled data X s

2: Predict the target examples X t with H and get the confidence matrix M
3: Select k examples with the highest confidence value in each class and get the

pseudo-labelled data X̂ t

4: Use X s and X̂ t for CADA

5.4 Illustrative examples

In cross-corpora problems, it is often found that a model trained on the source corpus
predicts most of the target examples as the same class. In order to simulate such a
scenario, we design a simple toy dataset as shown in Figure 5.3, where almost all
the target examples (’+’) are classified as the same class (blue) by the source model.
We further choose a random target example from each class to represent the known
target examples (shown in Figure 5.4), which are used to adapt the source model.
Based on this design, we can compare the performances of different domain adaptation
techniques.

In addition to FADA and CADA, we consider two adaptation schemes for com-
parison: 1) fine-tuning, which directly uses the target data available to tune the source
model as discussed before, and 2) mix-tuning, which mixes all the source and target
data available to perform regular supervised learning. We draw the changed decision
boundary after domain adaptation in Figure 5.4. Note that mix-tuning generates a de-
cision boundary exactly as in Figure 5.3. This is understandable as the known target
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Figure 5.3: Toy dataset where source domain examples are represented by ’o’ and
target examples by ’+’. The classes are distinguished by red and blue. As shown by
the decision boundary of the model trained on source domain, nearly all target domain
examples are classified as blue.

data is much less than the source data, and consequently, the minority is ignored con-
siderably in training. On the other hand, as shown in Figure 5.4c, fine-tuning achieves
the best separation between the two known target examples (yellow and green points)
while the performance on the source data is sacrificed. Regarding FADA, we can find
that from Figure 5.4a, it maintains a good classification on the source domain but it
does not classify the known target examples correctly. Last, we can find that CADA
is the only method that keeps good performance on both the source domain and the
known target data. Clearly, fine-tuning is a pro-target method and mix-tune a pro-
source method. While FADA is more similar to pro-source, CADA achieves a better
balance between pro-target and pro-source. It seems that such a property of FADA (i.e.
being more pro-source) makes it less effective when high intra-class variability occurs.
Figure 5.5 gives another example on how FADA fails to capture the domain shift and
how CADA successfully adapts to the target domain. It should be noted that, however,
the toy datasets are only 2-dimensional. For data in high-dimensional in space, the
intra-class variability can be very complex, and FADA may have better performance
when the source and target domains share the high-level feature representations.
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5.5 Summary

This chapter focuses on the approach termed Class-wise Adversarial Domain Adapta-
tion, the main contribution of this thesis. The approach is applicable to supervised
domain adaptation, and its advantage over the state-of-the-art techniques is due to
the fact that it explicitly eliminates the domain shift for all common classes while
the other approach cannot deal with the high intra-class variability in speech emotion
data. We verify this hypothesis with toy dataset illustrations. Another advantage of
the proposed approach is its straightforwardness and simplicity thanks to the compact
structure which can perform classification and domain confusion at the same time.
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(a) FADA

(b) CADA

(c) Fine-tuning

Figure 5.4: Decision boundaries after domain adaptation by FADA, CADA, and fine-
tuning. The yellow and green points denote the known target examples from the red
and blue classes, respectively. Notice that all other target data (blue and red ’+’) were
not present in training or adapting the source model. Only CADA keeps good perfor-
mance on both source and known target data, suggesting it achieves a balance between
the pro-source method FADA and the pro-target method fine-tuning.
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(a) FADA

(b) CADA

Figure 5.5: Decision boundaries after adaptation using the known target examples (yel-
low and green points). Although each domain is simply decomposed of four Gaussian
clusters, the intra-class distributions vary considerably between the two domains. As
shown above, FADA cannot capture the domain shift and therefore fails to utilise the
target examples for adaptation.



Chapter 6

MLPs-based CADA Evaluations

In this chapter we give a systematic evaluation on the proposed CADA approach. We
first introduce the basic experiment design in Section 6.1, then we present various ex-
periments including cross-corpora experiment in Section 6.2, intra-corpus experiment
in Section 6.3, and the unsupervised domain adaptation experiment in Section 6.4.

6.1 Experiment design

6.1.1 Task-setting principles

In order to have a comprehensive evaluation on the proposed method, we have formed
different kinds of tasks considering the variety of emotion corpora. (In experiment
stage, we also use the terms dataset/datasets besides corpus/corpora). The sizes and
emotion classes of these corpora are shown in Table 6.1. Specifically, the following
factors are in consideration for experiment design.

• Cross-corpora or intra-corpus setting. Cross-corpora problems involve different
corpora that demonstrate great domain shift between them. Similarly, domain
shift also naturally occurs within one corpus because of the different subjects or
other conditions. Based on the characteristics of the datasets summarized in Ta-
ble 6.1, for cross-corpora setting, we adopt the larger dataset Aibo or IEMOCAP
as the source domain, and the smaller-sized dataset EMODB or SAVEE as the
target domain. It is consistent with our daily experiences that the source domain
needs to be sufficiently informative to help address the target domain of which
only little knowledge is known. For intra-corpus setting, IEMOCAP is the ideal
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dataset because it consists of five similar-sized separate sessions involving dif-
ferent subjects. By splitting these sessions into the source and target domain, we
can evaluate how domain shift occurs and how domain adaptation approaches
work within one corpus.

• Basic or general emotion classes. We refer to prototype emotions as basic emo-
tions such as anger, sadness, and happiness. These basic emotions are often used
to label the examples (generate the classes) in each dataset. As shown in Table
6.1, the contained basic emotion classes are highly different across the corpora
in terms of category and size. Therefore it is more reliable to select the common
emotion classes from different datasets to form the source and target domains. In
addition, we adopt general emotion categories Positive and Negative to encom-
pass all of the basic emotion classes. On one hand, it allows us to exploit all the
data contained in each dataset. On the other hand, it provides another meaningful
classification of emotions as we may not care about the precise emotional state,
and moreover, in practice some emotions can be too complex to be described by
one of those prototype emotions.

• Binary-class or multi-class tasks. It is important to evaluate if the proposed
approach suits multiple-class tasks, or more precisely, if the performance of the
approach can be heavily influenced by the task complexity with respect to class
number.

• Simple or deep neural networks. To observe the scalability of the approach,
MLPs and CNNs are the typical examples of simple and deep neural networks
respectively, so our approaches will be built based on MLPs and CNNs.

• Speaker dependent or independent setting. Both settings are tested to generate a
comprehensive evaluation, and they may also give us insights in understanding
the applicable conditions of the domain adaptation approaches.

• Emotion class balance. In real life emotion classes distribution can be highly
imbalanced, and such a phenomenon is also reflected in the datasets. In training
models with source domain, to avoid the influence of class imbalance, we may
use a sample of the data of certain classes, assuming the data is sufficient. When
the data is not sufficient, we try to avoid the cases where the size ratio of different
classes is over 2.
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Table 6.1: Emotion classes and sizes

EMODB Mont-Ohm IEMOCAP SAVEE
anger 127 611-881 1103 60
sadness 62 x 1084 60
happiness
/excitement
/joy

71 215-674
595
/1041 60

surprise x x 107 60
fear/anxiety 69 x 40 60
disgust 46 x 2 60
boredom 81 x x x
frustration x x 1849 x
neutral 79 5377-5590 1708 120

• Model’s performance on source domain. The model trained on source domain
should have a proper performance prior to being adapted for the target domain.
Intuitively, it is almost impossible for a unfit source-domain model to perform
well on a different domain (unless extremely lucky).

• Difficulty of the task. It is wise to start with easier tasks and then move on
to more difficult ones. For example, using datasets with smaller size or fewer
classes at the beginning are usually helpful for experiment design.

Based on the considerations, the speech emotion recognition tasks designed in our
experiments are divided into the following parts.

• Cross-corpora basic-emotion binary-class tasks.

• Cross-corpora basic-emotion multi-class tasks.

• Cross-corpora general-emotion tasks.

• Intra-corpus speaker-dependent setting.

• Intra-corpus speaker-independent setting

All of them will be tested with MLPs-based and CNNs-based CADA, and this Chapter
covers the experiments with MLPs-based CADA. Note that all the experiments are
conducted on TensorFlow in python.



72 CHAPTER 6. MLPS-BASED CADA EVALUATIONS

6.1.2 Features and models

We consider traditional hand-crafted features for building simple MLPs models. Par-
ticularly the GeMAPS feature set (62-dimensional) is chosen for the good balance
between feature size and performance it achieves. More details of the GeMAPs can
be found in Chapter 2. With GeMAPS, MLPs are used as basis for domain adaptation
methods.

6.1.3 Baselines and comparative approaches

We use regular supervised learning methods (without domain adaptation) to establish
baselines as follows. These baselines provide us a reference of accuracy that can be
later compared with the accuracy by domain adaptation methods.

• all-source: using the trained source model without any target information (no
any adaptation) for prediction on target domain;

• label-target: using only the labelled target data (no source domain knowledge
used) to train and test. This baseline requires the labelled data in the target
domain be sufficient to establish a model, thus it is only used under certain con-
ditions.

All of the methods above are implemented via MLPs. Besides these baselines, the
domain adaptation methods for comparison with CADA are

• Fine-tuning (or FT), which means building a model with source data and fur-
ther tuning the model with the target data available. This is a famous trick in
training neural networks and can be treated as the most straightforward domain
adaptation technique.

• FADA. The state-of-the-art domain adaptation approach featuring adversarial
learning. Technical details of FADA has been presented in Chapter 4.

6.1.4 Model selection

For domain adaptation, due to the lack of target-data information, model selection is
performed on the source domain based on 5-fold cross validation for all the methods
except the baseline label-target, for which model selection is based on the target do-
main. Then the selected model hyperparameters are used by the domain adaptation
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source target emotion class
Ohm EMODB anger, happiness
Ohm SAVEE anger, happiness
Aibo EMODB anger, happiness
Aibo SAVEE anger, happiness
IEMOCAP EMODB anger, happiness
IEMOCAP EMODB anger, sadness
IEMOCAP EMODB sadness, happiness
IEMOCAP SAVEE anger, happiness
IEMOCAP SAVEE anger, sadness
IEMOCAP SAVEE sadness, happiness

Table 6.2: Cross-corpora binary basic-emotion tasks

methods. For instance, if the number of the hidden-layer neurons in the source model
MLP is set N, we require that the feature-encoder layer in CADA has N neurons,
and in FADA, the hidden-layer of the basic source-domain model has N neurons, and
the hidden-layer in the discriminator has 2N neurons because it takes the pairs of the
source-domain features as input. This practice can ensure the performances of differ-
ent methods are decided by the learning algorithm instead of the model complexity as
they adopt the similar model architecture.

6.2 Cross-corpora experiment

6.2.1 Basic-emotion binary-class tasks

Setting tasks

The larger datasets, Aibo (either the part Ohm or Mont), and IEMOCAP are used
as source domain, and the smaller datasets, EMODB and SAVEE, as target domains.
Furthermore, considering that 1) the target and source domains should have the same
emotion classes, and 2) the emotion classes are desirably balanced in size (to minimise
the influence of class imbalance), we set the specific tasks as summarized in Table 6.2.
(For brevity of the tables later, we may simplify anger as ang, happiness as hap, etc.)

Model selection

For preprocessing and feature extraction, we use GeMAPS (62 features) [24] extracted
by OpenSMILE and normalize all the features by mapping the values to the range
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Hyper-parameter Range
hidden-layer {1, 2}
hidden-layer neurons {32, 64, 128, 256, 512}
batch-size {16, 32, 64}
epochs {100, 200, 300, 400, 500}

Table 6.3: Model selection for cross-corpora binary basic-emotion classes tasks

[−1,1]. The range of hyper-parameters for training the source-domains are shown
in Table 6.3. Besides, all models use the Adam as optimizer with default learning
rate, and use relu as the activation function for the hidden-layers and softmax as the
activation function for the output-layer. Loss function is categorical cross-entropy.

The choices of hyper-parameters of the source-domain models as well as the cor-
responding accuracy is reported in Table 6.4. All models are 1-hidden-layer MLPs.
Standard deviation generated from 5-fold cross validation is listed with the accuracy.
From Table 6.4, it is observed that

1. Even for very basic 2 emotion classes, the recognition performance of machine
learning (MLPs) models can be much lower than our (human) expectation, e.g.
for anger and happiness in the data IEMOCAP, only 59.1% is achieved (a random
guess is 50%);

2. Results using different datasets vary considerably. Aibo (including Ohm) are
relatively easier to process than IEMOCAP for recognition between anger and
happiness. Different binary class tasks within the same dataset can be highly
different in terms of difficulty (reflected in the performance);

3. The standard deviation of accuracy from cross-validation is relatively large. This
suggests the disturbance of the used data in training the model has a great influ-
ence on the model’s generalization performance. In other words, there is an
obvious domain shift in that dataset.

Result and analysis

For domain adaptation, the used target-domain examples are randomly selected with
the same setting. That means all the domain adaptation methods use the same examples
in each trial (an essential practice for fairness). Particularly, we set the number of the
used target data from 2 and increase the number gradually (specific values seen in
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Table 6.4: Hyper-parameter choice and accuracy of source models for the cross-
corpora binary basic-emotion classes tasks

Domain Emotions Hyper-parameters Accuracy %
Ohm ang hap neurons 256; batch 32; epochs 100 79.5 ± 5.8
Aibo ang hap neurons 128; batch 32; epochs 300 77.4 ± 10.5

IEMOCAP ang hap neurons 64; batch 32; epochs 200 59.1 ± 18.7
IEMOCAP ang sad neurons 64; batch 32; epochs 200 85.7 ± 4.5
IEMOCAP sad hap neurons 64; batch 32; epochs 200 68.3 ± 16.4

the first row of the tables reporting the results). 20 trials will be conducted for each
adaptation method in our experiment. Unweighted accuracy (UA) is reported, as it
can reflect the overall performance equally on all classes and is recommended in many
literature works.

The experiment results are presented in Table 6.5 and Table 6.6. In the tables, the
first column lists the task information including the used source-domain dataset, the
emotion classes and the baseline source. In the second column, FT stands for fine-
tuning, one of the three adaptation schemes. The digits in the first row indicates the
number per class of the target-domain examples used for domain adaptation. For all
the accuracy values, the standard deviation is relatively large (between 3.1 and 7.2).
Because the standard deviation values are similar for the comparative methods, the
specific values are not shown in the tables. From Table 6.5-6.6, we can make the
following points.

• All of domain adaptation approaches achieve better performance than the no-
adaptation baseline (all-source) when only a few target examples are available.
With the used target examples increasing, the accuracy of the adaptation methods
becomes higher and then gets stable after reaching some point. This indicates
the source model has been ‘fully’ adapted by target examples, or in other words,
adding more target examples cannot provide more information about the target-
domain class boundary.

• Among the domain adaptation approaches, CADA clearly outperform the com-
parative approaches as in most cases (highlighted in the tables), it is the winner
in performance. Fine-tuning also demonstrates an advantage to FADA, which
in some cases, only beats the baseline by a small gap. As we have discussed in
Chapter 5, this is due to the high intra-class variability in emotion data which
cannot be alleviated by the adversarial learning in FADA.
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Table 6.5: Unweighted accuracy (%) when using EMODB as target domain in cross-
corpora basic-emotion binary-class experiment. The numbers in the head row rep-
resent the amount of used target-domain examples per class for adaptation. P-value of
t-test is also provided to ensure the difference of the top two larger means of accuracy
by the three methods is on a significant level.

source scheme 2 4 6 8 10 15 20
Ohm
(ang, hap)
all-source: 54.2

FT 54.6 60.7 62.6 63.4 64.8 65.1 66.0
FADA 57.0 59.9 61.9 62.4 64.6 66.1 68.6
CADA 58.8 62.4 65.6 66.3 65.2 66.1 68.1

t-test p-value 0.02 0.04 0.02 0.01 0.01 0.08 0.05
Aibo
(ang, hap)
all-source: 54.8

FT 58.1 60.2 63.1 63.7 64.8 65.5 66.0
FADA 55.2 55.9 56.1 56.2 55.9 56.9 57.0
CADA 60.0 64.0 65.4 66.2 66.5 66.1 65.4

t-test p-value 0.02 0.04 0.02 0.02 0.07 0.03 0.08
IEMOCAP
(ang, hap)
all-source: 58.1

FT 60.3 63.7 64.2 64.8 67.2 69.0 68.5
FADA 58.9 59.0 60.0 60.3 61.1 62.3 62.4
CADA 63.6 66.2 67.8 69.0 67.1 69.4 67.5

t-test p-value 0.03 0.04 0.02 0.02 0.01 0.04 0.06
IEMOCAP
(ang, sad)
all-source: 95.2

FT 96.7 98.2 98.3 98.1 98.6 99.0 99.1
FADA 95.9 96.1 97.2 97.9 98.0 98.1 98.2
CADA 98.4 98.4 98.5 98.8 99.0 99.1 98.9

t-test p-value 0.02 0.01 0.03 0.07 0.04 0.05 0.06
IEMOCAP
(sad, hap)
all-source: 87.6

FT 89.1 92.4 93.3 94.8 94.0 94.1 94.2
FADA 89.0 90.7 91.1 91.2 91.4 92.0 92.1
CADA 91.1 94.3 94.4 95.6 93.8 93.7 94.8

t-test p-value 0.11 0.05 0.03 0.07 0.01 0.03 0.04
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Table 6.6: Unweighted accuracy (%) when using SAVEE as target domain in cross-
corpora basic-emotion binary-class experiment. The numbers in the head row rep-
resent the amount of used target-domain examples per class for adaptation. P-value of
t-test is also provided to ensure the difference of the top two larger means of accuracy
by the three methods is on a significant level.

source scheme 2 4 6 8 10 15 20
Ohm
(ang, hap)
all-source: 58.3

FT 59.1 62.3 64.7 65.6 66.1 66.3 66.2
FADA 58.9 59.0 60.1 60.3 61.2 61.4 62.1
CADA 60.9 64.6 66.4 67.0 66.8 66.6 66.4

t-test p-value 0.04 0.06 0.09 0.02 0.01 0.01 0.03
Aibo
(ang, hap)
all-source: 56.7

FT 58.9 61.3 63.2 64.7 65.5 67.9 68.3
FADA 56.9 57.3 57.8 58.7 59.2 59.9 60.3
CADA 60.2 63.8 65.5 66.4 65.5 68.7 67.9

t-test p-value 0.06 0.03 0.04 0.07 0.02 0.05 0.05
IEMOCAP
(ang, hap)
all-source: 57.6

FT 57.9 61.2 64.4 64.3 65.5 67.9 68.0
FADA 58.0 58.3 58.4 59.1 59.4 60.1 61.5
CADA 59.8 62.9 66.8 63.5 66.1 68.9 68.1

t-test p-value 0.04 0.04 0.06 0.12 0.01 0.05 0.08
IEMOCAP
(ang, sad)
all-source: 72.1

FT 73.2 77.8 78.9 79.2 80.0 80.9 81.1
FADA 72.2 72.8 73.9 74.2 73.4 73.9 74.4
CADA 75.9 79.2 79.5 80.2 80.0 81.1 81.3

t-test p-value 0.03 0.04 0.02 0.02 0.01 0.04 0.06
IEMOCAP
(sad, hap)
all-source: 75.0

FT 75.3 77.8 79.0 80.3 81.2 83.4 84.1
FADA 75.2 76.0 76.5 77.1 77.2 78.9 79.9
CADA 76.3 79.0 81.9 82.4 83.7 84.2 83.2

t-test p-value 0.07 0.03 0.06 0.02 0.05 0.09 0.12
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(a) Ohm (ang hap) (b) Aibo (ang hap)

(c) IEMOCAP (ang hap) (d) IEMOCAP (ang sad)

(e) IEMOCAP (sad hap)

Figure 6.1: Comparisons for the cross-corpora basic-emotion binary-class tasks us-
ing EMODB as target domain (source domain and emotion classes seen in the sub-
figure title) with three domain adaptation methods and the baseline label-target.

• It is surprising to find that even only very few examples (e.g. 2 per class) are
available for domain adaptation, the improvement on performance is evident.
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(a) Ohm (ang hap) (b) Aibo (ang hap)

(c) IEMOCAP (ang hap) (d) IEMOCAP (ang sad)

(e) IEMOCAP (sad hap)

Figure 6.2: Comparison for the cross-corpora basic-emotion binary-class tasks using
SAVEE as target domain (source domain and emotion classes seen in the sub-figure
title) with three domain adaptation methods and the baseline label-target.

• The dataset Aibo contains Ohm, but the results of using Aibo and Ohm for the
same tasks are only slightly different. This suggests that more diversity in the
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source domain does not guarantee a better adaptation performance as more di-
versity may lead to larger domain shift.

• Large standard deviation (between 3.1 and 7.2) is due to the randomness of the
used examples in the target domain. This is understandable because some ex-
amples can be more representative of the true target-domain distribution than
others. For the same reason, using more target examples can achieves slightly
worse performance occasionally.

Further statistical t-test shows that the accuracy of mean by CADA is significantly
different to the mean by other methods over the 20 trials of experiments with p value
generally less than 0.05, as seen in the tables. The trend of change in accuracy by
different methods with the target examples increasing is also illustrated in Figure 6.1
and Figure 6.2 . Particularly, the baseline label-target (using only labelled target data
for training) is provided. From Figure 6.1-6.2, it can be viewed that

• All domain adaptation methods benefit from using more target-domain exam-
ples, though the progress can be slow compared to the baseline label-target,
which stands for traditional supervised learning and is severely limited when the
training data lacks. As seen from the figures, the trend line (in yellow) represent-
ing label-target usually starts at a low position (with a low accuracy) but grows
quickly with the data increasing.

• CADA performs best when the target examples are few, and fine-tuning as well
as the baseline label-target will gain an advantage over CADA when more target
examples are used to tune the source model. Supposing that the target examples
are sufficient for adaptation, we infer that fine-tuning can be a highly practical
method.

• Among the three domain adaptation methods, FADA cannot rival others in per-
formance and is also less sensitive to the change of target data size for adaptation.

• The performance of domain adaptation methods will basically reach stable (when
the target data per class has about 20 examples, as shown in the figures) after a
stage of increase. In fact, the learning algorithm in CADA and FADA decides
that a balance will be finally reached between the source and target domains (by
contrast, label-target only involves the target domain and has no such issue). On
the other hand, fine-tuning can be more inclined to the target domain when the
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Table 6.7: Hyper-parameter choices and accuracy of source models for the cross-
corpora basic-emotion multi-class tasks

Domain Emotions Hyper-parameters Accuracy %
Ohm ang hap neu neurons 128; batch 32; epochs 200 47.3 ± 8.6
Aibo ang hap neu neurons 128; batch 32; epochs 500 22.3 ± 9.0

IEMOCAP ang hap sad neurons 128; batch 64; epochs 300 46.2 ± 11.4
IEMOCAP ang hap sad neu neurons 64; batch 32; epochs 200 21.4 ± 10.5

data for tuning has a considerable size, and this process as well as the outcome is
more controllable by human operators. As illustrated in the figures, the accuracy
by fine-tuning can be higher than that by CADA at the end when the number of
target data reaches about 30, and the advantage should be further expanded with
more target data.

6.2.2 Basic-emotion multi-class tasks

Setting tasks

Following the same principles as stated in the binary-class experiment, the tasks for
multi-class tasks are set as follows (the first dataset is the source and the second dataset
is the target, with emotion classes in brackets)

• Ohm-EMODB/SAVEE (ang hap neu)

• Aibo-EMODB/SAVEE (ang hap neu)

• IEMOCAP-EMODB/SAVEE (ang sad hap)

• IEMOCAP-EMODB/SAVEE (ang sad hap neu)

Model selection

Similarly as in the binary-class experiment, model selection is performed and the re-
sults are given in Table 6.7. From Table 6.7, we can find that with MLP modelling,
the accuracy of some tasks are rather low (lower than random guess, in the second and
fourth task). Interestingly, for the same 3 emotion classes (ang hap neu), there is a
big difference in accuracy between using Ohm and using Aibo, considering Ohm is
contained in Aibo. On the other hand, the difference is small when only 2 classes (ang
hap) are estimated. This suggests neutral emotional state can be highly difficult to rec-
ognize when mixed with other prototype emotions, and its distribution in the dataset
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Table 6.8: Unweighted accuracy (%) when using EMODB as target domain in cross-
corpora basic-emotion multi-class experiment. The numbers in the head row repre-
sent the amount of used target-domain examples per class for adaptation. P-value of
t-test is also provided to ensure the difference of the top two larger means of accuracy
by the three methods is on a significant level.

source scheme 2 4 6 8 10 15 20
Ohm
(ang, hap, neu)
all-source: 56.2

FT 59.5 62.1 63.2 65.6 68.2 69.5 69.0
FADA 59.3 61.8 63.1 66.6 67.2 69.3 69.1
CADA 59.8 64.7 65.6 67.1 67.2 67.0 69.4

t-test p-value 0.04 0.04 0.03 0.04 0.01 0.06 0.07
IEMOCAP
(ang, hap, sad)
all-source: 65.3

FT 67.8 70.4 71.7 73.0 73.6 74.5 74.6
FADA 67.9 70.2 71.5 72.9 73.0 74.1 74.5
CADA 69.4 71.4 72.7 73.4 73.0 74.7 74.3

t-test p-value 0.09 0.03 0.04 0.02 0.08 0.14 0.07

Ohm and Mont can be very different even these two datasets are collected under similar
settings with the same annotation scheme. Such observation seems consistent with our
experiences as neutral states are often subtle and fuzzy compared to other distinctive
emotional states. Unsurprisingly, in the dataset IEMOCAP, when neutral becomes one
of the emotion classes, the performance is also very poor.

Based on the discussion, the tasks listed above will be adjusted, and only Ohm
(with emotions ang hap neu) and IEMOCAP (with emotions ang sad hap) are preserved
as the source domain.

Result analysis

Table 6.8 and Table 6.9 reports the results. From the tables we can basically draw the
same conclusions as found in the binary-class experiments: 1) using more target data
is useful for all the adaptation methods; 2) CADA is most advantageous adaptation ap-
proach, especially when target data is very few, but the advantage decreases with more
target data being added for training. Such observation can also be made based on Fig-
ure 6.3 which depicts the change trend of UA (unweighted accuracy) with increasing
number of target data for adaptation.
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Table 6.9: Unweighted accuracy (%) when using SAVEE as target domain in cross-
corpora basic-emotion multi-class experiment. The numbers in the head row repre-
sent the amount of used target-domain examples per class for adaptation. P-value of
t-test is also provided to ensure the difference of the top two larger means of accuracy
by the three methods is on a significant level.

source scheme 2 4 6 8 10 15 20
Ohm
(ang, hap, neu)
all-source: 52.9

FT 54.0 55.2 58.1 59.7 61.2 62.8 63.7
FADA 52.8 54.0 58.5 59.5 61.4 62.6 62.4
CADA 54.1 56.6 60.2 60.4 63.6 62.2 63.3

t-test p-value 0.03 0.06 0.02 0.05 0.01 0.03 0.09
IEMOCAP
(ang, hap, sad)
all-source: 54.2

FT 56.9 58.7 62.9 63.6 64.0 64.2 65.8
FADA 55.2 58.1 60.3 62.7 63.4 64.3 63.7
CADA 57.3 60.1 64.3 63.9 64.0 64.8 65.7

t-test p-value 0.02 0.04 0.07 0.02 0.04 0.08 0.06

Table 6.10: Emotion classes into Positive/Negative categories

Dataset Positive Negative
EMODB happy, neutral, anger, fear, boredom, sad, disgust
SAVEE happy, surprise, neutral anger, disgust, fear, sadness
Ohm/Mont all others anger, touchy, emphatic, reprimanding
IEMOCAP happy, excited, neutral anger, sad, frustrated

6.2.3 General-emotion tasks

Setting tasks

Under this setting we use the general emotion class labels. Particularly we classify
all the original emotion classes in the dataset as Positive or Negative, as shown in
Table 6.10. Note that neutral is also taken as belonging to the category of Positive
in our setting. It is consistent with the general experiences to use an information-rich
domain as the source, so we take Ohm, Mont, or IEMOCAP as the source corpus, and
EMODB or SAVEE as the target corpus. The size of the data is presented in Table
6.11. Because the data size is larger due to combining different classes, the influence
of class imbalance in training has been less significant. The results of model selection
is given in Table 6.12, and it shows that the accuracy between Positive and Negative
class is acceptable.
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(a) Ohm-EMODB (ang hap neu) (b) IEMOCAP-EMODB (ang hap sad)

(c) Ohm-SAVEE (ang hap neu) (d) IEMOCAP-SAVEE (ang hap sad)

Figure 6.3: Comparison for the cross-corpora basic-emotion multi-class tasks
(source and target domains and emotion classes seen in the sub-figure title) with three
domain adaptation methods and the baseline label-target.

Results analysis

Table 6.13 and Table 6.14 report the performance when very few examples in the tar-
get domain are used. For briefness we omit the specific standard deviation values in
the tables. The standard deviation values are around 3%-5% for most cases of CADA
and fine-tuning. They are smaller for FADA (about 2%), which can be explained by
FADA being not sensitive to the change of target examples and the results mainly de-
pending on the source data. Due to the nature of supervised domain adaptation, the
effectiveness of adaptation highly depends on the informativeness of the labelled tar-
get data which are used in the training process. That can explain the relatively large
standard deviation for CADA and fine-tuning. From the tables, we can see that all the
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Table 6.11: Size of Positive and Negative categories

Dataset Positive Negative
EMODB 150 385
SAVEE 240 240
Ohm 6601 3358
Mont 5792 2465
IEMOCAP 3344 4036

Table 6.12: Hyper-parameters choices and accuracy of source models for cross-corpora
general-emotion (Positive/Negative) tasks

Domain Hyper-parameters Accuracy %
Ohm neurons 256; batch 32; epochs 300 79.8 ± 5.1
Mont neurons 256; batch 32; epochs 300 76.7 ± 5.3

IEMOCAP neurons 128; batch 32; epochs 200 69.5 ± 5.8

adaptation methods achieve better performance than the baseline all-source, suggest-
ing that domain shift adaptation is effective even when the target data is very limited.
Among the three schemes, CADA is most advantageous while FADA performs worst,
which is consistent with the analysis based the toy dataset in Chapter 5. Moreover,
it is clear that adaptation brings in more improvement on the target corpus EMODB
than on SAVEE. This is unsurprising as EMODB itself can be easier to perform clas-
sification. Besides, different source-target domain pairs demonstrate different domain
shift conditions: the shift between the source corpora and EMODB can be simpler to
address than that between the same corpora and SAVEE as suggested by the results.

It is interesting to observe the effect of domain adaptation with more target data
added. Figure 6.4 shows the performance of different adaptation methods and the MLP
with the baseline label-target by using different numbers of target label data. Notice
that three large corpora as the source and two small corpora as the target domain form
a total of 6 combinations. It is evident from Figure 6.4 that the performance of those
adaptation methods is better than that of label-target setting when there are a few
labelled data in the target domain. In particular, our CADA always outperforms other
adaption methods until there are sufficient target data for the label-target baseline.

6.3 Intra-corpus experiment

The experiments under the cross-corpora setting involve totally different databases.
How about the different speakers from one corpus? Is domain adaption still useful and



86 CHAPTER 6. MLPS-BASED CADA EVALUATIONS

Table 6.13: Unweighted accuracy (%) when using EMODB as source domain for
cross-corpora general-emotion tasks. The numbers in the head row represent the
amount of used target-domain examples per class for adaptation. P-value of t-test is
also provided to ensure the difference of the top two larger means of accuracy by the
three methods is on a significant level.

source scheme 2 4 6 8 10 15 20

Ohm
all-source: 55.2

FT 55.2 57.3 59.0 60.4 60.9 62.5 66.2
FADA 54.2 54.3 54.3 54.9 55.2 55.9 56.2
CADA 58.1 59.2 61.8 62.9 62.7 65.8 68.2

t-test p-value 0.02 0.07 0.06 0.04 0.01 0.04 0.05

Mont
all-source: 51.3

FT 55.0 55.2 56.9 58.2 59.1 63.4 64.9
FADA 50.0 50.2 51.4 51.9 52.0 53.1 54.3
CADA 57.1 59.4 60.2 60.1 60.9 64.3 67.2

t-test p-value 0.06 0.16 0.22 0.06 0.05 0.07 0.08

IEMOCAP
all-source: 49.2

FT 54.1 57.2 59.2 60.0 60.2 61.3 62.1
FADA 49.9 50.0 50.4 50.5 50.9 51.2 53.4
CADA 55.2 58.3 58.8 60.2 61.4 64.3 66.1

t-test p-value 0.09 0.04 0.07 0.02 0.05 0.04 0.03

Table 6.14: Unweighted accuracy (%) when using SAVEE as source domain for cross-
corpora general-emotion tasks. The numbers in the head row represent the amount of
used target-domain examples per class for adaptation. P-value of t-test is also provided
to ensure the difference of the top two larger means of accuracy by the three methods
is on a significant level.

source scheme 2 4 6 8 10 15 20

Ohm
all-source: 53.4

FT 53.3 53.4 54.2 54.3 54.2 54.4 54.9
FADA 53.1 53.2 54.3 54.4 54.3 54.2 54.1
CADA 54.1 54.9 55.2 56.3 56.5 57.1 58.2

t-test p-value 0.05 0.04 0.12 0.11 0.01 0.07 0.06

Mont
all-source: 50.3

FT 52.1 52.2 53.0 53.4 53.5 54.8 55.1
FADA 50.5 50.9 51.0 51.7 52.8 52.9 54.1
CADA 54.3 54.4 54.5 54.5 54.5 55.2 56.4

t-test p-value 0.06 0.04 0.05 0.02 0.01 0.05 0.06

IEMOCAP
all-source: 52.1

FT 53.1 53.2 53.4 53.8 54.5 56.2 56.3
FADA 51.9 53.0 53.2 53.3 53.3 53.4 53.4
CADA 53.5 54.2 54.4 55.0 56.1 56.3 56.9

t-test p-value 0.04 0.04 0.06 0.02 0.02 0.08 0.09
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(a) Ohm-EMODB (b) Mont-EMODB

(c) IEMOCAP-EMODB (d) Ohm-SAVEE

(e) Mont-SAVEE (f) IEMOCAP-SAVEE

Figure 6.4: Comparison of domain adaptation methods for the cross-corpora general-
emotion tasks (source and target domains seen in the sub-figure title) with three do-
main adaptation methods and the baseline label-target.

whether CADA is still the most advantageous approach? As discussed in Chapter 4,
domain shift also occurs within one corpus as different speakers are involved. With
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Table 6.15: Intra-corpus (IEMOCAP) tasks

Task Class Size

2-class
Positive 3344
Negative 4036

3-class
Positive 1636
Negative 4036
Neutral 1708

5-class

Anger 1103
Sadness 1084
Happiness 595
Frustration 1849
Excitement 1041

the database IEMOCAP which consists of 5 relatively even sessions, we could answer
these questions. Moreover, thanks to the same emotion class definitions and annotation
methods, we also design the three-class and five-class tasks in order to observe the
effect of CADA in multi-class problems. Details about these class re-categorizations
are given in Table 6.15.

Within the corpus IEMOCAP, because the five sessions of the data are collected fol-
lowing the same principles and annotated with the same method, we can consider both
the speaker-dependent and speaker-independent settings. The main difference between
these two settings is that under the speaker-dependent setting, some utterances of the
testing speakers may emerge in the training stage (the test utterances are unknown in
the training stage), while under the speaker-independent setting, no utterances of the
testing speakers are available in training. The speaker-independent setting is regarded
by some researchers [94, 92] as able to provide more reliable evaluation for speech
emotion recognition.

For intra-corpus tasks, they are formed based on the sessions defined in IEMOCAP.
There are in total 5 independent sessions, and thus we can set some sessions as source
domain and the remaining as target domain. Particularly, under speaker-dependent
setting we use 3 sessions as source and others as target, leading to 10 combinations.
Under speaker-independent setting, three sessions are used as source, one session as
adaptation set for training, and one session as testing set, leading to 20 combinations.
Data size of the five sessions are provided in Table 6.16. Model selection is performed
for 2-class, 3-class, and 5-class tasks respectively, and the result is given in Table 6.17.
Basically, the source model accuracy gets lower with more classes added.
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Table 6.16: Data size of the five sessions in IEMOCAP

Session 1 Session 2 Session 3 Session 4 Session ∑

anger 229 137 240 327 170 1103
sadness 194 197 305 143 245 1084
happiness 135 117 135 65 143 595
frustration 280 325 382 481 381 1849
excitedness 143 210 151 238 299 1041
neutral 384 362 320 258 384 1708

Table 6.17: Hyper-parameters choices and accuracy of source models for intra-corpus
tasks

Classes Hyper-parameters Accuracy %
2 neurons 256; batch 32; epochs 100 75.5 ± 3.8
3 neurons 256; batch 32; epochs 200 60.3 ± 5.7
5 neurons 256; batch 32; epochs 300 56.7 ± 5.6

6.3.1 Speaker-dependent setting

The results of using a random 10% of the target data for adaptation are reported in Ta-
bles 6.18-6.20. The numbers in the first column of the tables refer to the sessions used
as source and target domains. For example, the entry 123-45 indicates that Session
1, 2, and 3 in IEMOCAP are used as the source domain, and Session 4 and 5 as the
target domain. The standard deviation of 20 trials for all the methods is around 1%
and thus omitted in the tables for better readability. From Tables 6.18-6.20, we can tell
that CADA gains an obvious advantage, suggesting that a small number of target data
can be very helpful to optimize the performance on the target domain with CADA.
FADA is behind CADA and it is slightly better than all-source (no adaptation). It is
surprising to find that fine-tuning achieves the lowest accuracy and the performance
after fine-tuning gets even worse than that without any tuning. The reason may be
that fine-tuning leads to over-fitting on the few target examples and the adapted model
drops significantly in its generalization ability. In general, the three-class task is more
difficult than the binary-task as the neutral state is chosen as a separate class. We con-
duct t-test on these three tasks over the 10 combinations of cases and check if the mean
accuracy is significantly different between the two best performers. The results are
presented in Table 6.21, which suggests the advantage of CADA is more significant in
case of three-class and five-class tasks with p-value 0.012 and 0.027 respectively.
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Table 6.18: Results under the speaker-dependent setting with IEMOCAP on the
binary-class task. Case index in the first column refers to the Sessions used as source
and target domains respectively (separated by ’-’).

Case index all-source FT FADA CADA
123-45 64.2 61.4 64.3 64.5
124-35 62.5 59.5 63.2 62.9
125-34 60.5 58.3 61.4 61.5
134-25 63.9 63.1 64.6 65.2
135-24 63.7 61.4 63.3 64.9
145-23 60.1 59.9 60.5 62.2
234-15 63.6 62.4 63.7 65.8
235-14 61.5 61.6 62.8 64.1
245-13 60.6 60.0 61.3 62.8
345-12 64.9 62.2 64.4 66.1
average 62.5 60.1 63.0 64.0

Table 6.19: Results under the speaker-dependent setting with IEMOCAP on the
three-class task. Case index in the first column refers to the Sessions used as source
and target domains respectively (separated by ’-’).

Case index all-source FT FADA CADA
123-45 50.8 48.0 48.2 52.8
124-35 49.0 46.3 48.4 51.0
125-34 47.0 43.7 46.2 49.6
134-25 51.6 50.3 51.6 54.2
135-24 50.7 47.5 51.7 52.9
145-23 47.3 47.0 51.6 51.7
234-15 51.1 48.9 51.6 54.3
235-14 47.1 47.2 51.5 52.2
245-13 47.1 46.1 51.7 51.8
345-12 51.1 50.2 51.6 55.5
average 49.3 47.5 50.4 52.6
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Table 6.20: Comparison of domain adaptation approaches under the speaker-
dependent setting with IEMOCAP on the five-class task. Case index in the first col-
umn refers to the Sessions used as source and target domains respectively (separated
by ’-’).

Case index all-source FT FADA CADA
123-45 44.4 41.5 41.3 44.8
124-35 43.7 40.7 43.3 43.4
125-34 43.7 40.9 43.5 45.0
134-25 44.3 41.9 42.8 44.6
135-24 43.1 42.1 42.4 45.6
145-23 43.1 41.9 42.6 44.8
234-15 47.0 43.1 46.1 47.2
235-14 44.5 43.0 45.4 47.6
245-13 44.6 42.5 44.8 46.4
345-12 47.2 44.9 46.5 48.6
average 44.6 42.3 43.9 45.8

Table 6.21: T-test on the difference of accuracy under speaker-dependent setting
within-corpus (IEMOCAP)

Task Comparison p-value
2-class FADA/CADA 0.100
3-class FADA/CADA 0.012
5-class all-source/CADA 0.027
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Table 6.22: Results under the speaker-independent setting with IEMOCAP on the
binary-class task. Case index in the first column refers to the Sessions used as source
domain, target training set, and target testing set, respectively (separated by ’-’).

Case index all-source FT FADA CADA
123-4-5 65.2 64.6 65.4 64.6
124-5-3 58.0 57.7 58.8 58.6
125-3-4 62.3 61.7 62.0 61.0
134-2-5 63.6 64.7 65.8 65.5
135-4-2 65.8 65.6 63.9 65.1
145-3-2 64.2 65.4 64.1 66.5
234-5-1 60.2 63.3 62.9 62.9
235-1-4 61.8 61.8 62.2 61.5
245-1-3 60.6 59.5 59.6 56.7
345-2-1 63.6 62.9 61.1 61.9
123-5-4 64.2 61.4 64.3 63.5
124-5-3 62.5 59.6 63.2 62.9
125-4-3 60.7 58.3 61.4 61.5
134-5-2 63.1 63.1 64.6 65.2
135-4-2 63.7 62.4 64.3 62.9
145-3-2 57.1 57.9 56.5 57.2
234-5-1 63.6 61.4 63.7 65.8
235-4-1 61.6 61.6 62.8 64.1
245-3-1 60.6 62.0 63.3 62.8
345-2-1 64.9 62.2 64.4 66.1
average 62.5 61.9 62.7 63.1

6.3.2 Speaker-independent setting

The composition of IEMOCAP allows us to choose some sessions as source data and
the rest as target data. To ensure a speaker-independent setting, three of the five ses-
sions are selected for training, and one for adaptation, and the remaining one for test-
ing. This gives a total of 20 combinations. Because all the sessions have the same
emotion class definitions and annotation methods, we consider the three-class and
five-class tasks (see Table 6.15 for re-categorization) as well. The model structure
and specification are the same as used in the speaker-dependent experiments.

We present the results of binary-class, three-class, and five-class tasks in Table
6.22, Table 6.23, and Table 6.24 (standard deviation is about 1 and omitted in tables).
It should be emphasized that under this speaker-independent setting, the speakers/ses-
sions used for training, adaptation, and testing are completely separate. This may lead
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Table 6.23: Results under the speaker-independent setting with IEMOCAP on the
three-classtask. Case index in the first column refers to the Sessions used as source
domain, target training set, and target testing set, respectively (separated by ’-’).

Case index all-source FT FADA CADA
123-4-5 52.8 53.3 49.7 52.7
124-5-3 45.0 45.3 43.2 46.1
125-3-4 48.7 48.1 43.9 48.5
134-2-5 51.0 53.5 50.1 54.1
135-4-2 53.5 54.0 53.9 53.7
145-3-2 52.3 53.9 52.1 55.4
234-5-1 48.6 49.5 48.7 50.6
235-1-4 48.6 48.1 44.0 47.9
245-1-3 47.2 45.6 41.9 43.4
345-2-1 48.7 48.6 49.7 48.9
123-5-4 54.2 51.4 54.3 53.2
124-3-5 52.5 56.5 53.2 52.9
125-4-3 50.5 53.3 54.4 54.5
134-5-2 53.9 53.1 54.6 55.2
135-2-4 53.7 56.4 54.3 55.9
145-2-3 49.1 51.9 52.5 52.2
234-1-5 46.6 47.4 47.1 46.8
235-4-1 44.5 45.6 46.8 47.1
245-3-1 50.6 51.0 51.3 51.2
345-1-2 47.9 50.2 50.4 51.3
average 47.8 50.8 49.8 51.1
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Table 6.24: Results under the speaker-independent setting with IEMOCAP on the
five-class task. Case index in the first column refers to the Sessions used as source
domain, target training set, and target testing set, respectively (separated by ’-’).

Case index all-source FT FADA CADA
123-4-5 42.4 43.9 42.6 43.9
124-5-3 43.4 43.5 42.9 44.3
125-3-4 43.9 43.4 41.3 42.4
134-2-5 43.7 44.4 43.2 44.4
135-4-2 44.4 45.0 42.3 45.1
145-3-2 43.0 45.0 42.9 44.9
234-5-1 46.8 47.0 46.3 46.5
235-1-4 42.6 43.4 41.0 41.7
245-1-3 43.6 44.2 43.2 43.3
345-2-1 46.3 47.2 46.6 46.5
123-5-4 41.4 42.9 43.6 43.9
124-3-5 44.4 44.5 44.9 45.3
125-4-3 43.9 43.4 41.3 42.4
134-5-2 43.7 43.4 43.2 44.4
135-2-4 44.4 45.0 42.3 45.1
145-2-3 47.0 49.0 49.9 48.9
234-1-5 46.8 47.0 46.3 46.5
235-4-1 42.6 43.4 41.0 41.7
245-3-1 43.6 42.2 41.4 42.3
345-1-2 42.3 43.4 45.6 46.5
average 44.0 44.6 43.6 44.5
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to the situation that the session of data used for adaptation do not follow the real dis-
tribution of the target/test data. In other words, domain adaptation can not work in
many cases. In fact, the domain shift between the adaptation session and the testing
session can even be larger than that between the training (source) and the testing ses-
sion. In this situation, domain adaptation only makes the model even less suitable to
the target domain. Reflected in the tables, we can find that in many cases, the domain
adaptation approaches perform worse than the baseline all-source. In the cases where
adaptation proves useful such as in 124-5-3, 134-2-5, and 145-3-2, we can find that
CADA achieves only slightly better performance than the others. This reveals that
when there are appropriate data/domains for adaptation, even simple fine-tuning tech-
nique can make a significant improvement. In general, from the averaged results of
the three tasks, CADA demonstrates a small advantage among the domain adaptation
approaches.

6.4 Evaluation on u-CADA

We use IEMOCAP to verify the effectiveness of u-CADA. To simulate the unsuper-
vised domain adaptation scenario, besides the source domain, 10% of the unlabelled
target data are provided. We have the following methods for comparison.

• all-source: using only the source data for training and no adaptation is needed.

• Fine-tuning (FT): tuning the source model with genuine target data.

• u-CADA: applying CADA with the source data and pseudo-labelled data.

• CADA: using source data and the genuine labelled data (the same examples used
in other methods)

We select 3 sessions of IEMOCAP as the source domain and the remaining 2 ses-
sions as the target domain. We keep the model specification and other experiment set-
tings the same as used before and consider binary-class, three-class, five-class tasks.
The experiment results are reported in Tables 6.25-6.27. It is clearly seen that u-CADA
is inferior to CADA but outperforms fine-tuning in most cases and all-source in some
cases. This suggests pseudo-labels can also be used for CADA. However, the qual-
ity of pseudo-labels are not guaranteed to yield an effective adaptation. As a conse-
quence, we can see from the tables that only in the case of three-class task, u-CADA
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Table 6.25: Unsupervised domain adaptation under the speaker-dependent setting
with IEMOCAP on the binary-class task. Case index in the first column refers to the
Sessions used as source and target domains respectively (separated by ’-’).

Case index all-source FT u-CADA CADA
123-45 64.2 61.4 62.3 64.5
124-35 62.5 59.5 61.9 62.9
125-34 60.5 58.3 59.4 61.5
134-25 63.9 63.1 63.9 65.2
135-24 63.7 61.4 63.0 64.9
145-23 60.1 59.9 59.4 62.2
234-15 63.6 62.4 63.6 65.8
235-14 61.5 61.6 60.4 64.1
245-13 60.6 60.0 60.1 62.8
345-12 64.9 62.2 64.5 66.1
average 62.5 60.1 61.9 64.0

Table 6.26: Unsupervised domain adaptation under the speaker-dependent setting
with IEMOCAP on the three-class task. Case index in the first column refers to the
Sessions used as source and target domains respectively (separated by ’-’).

Case index all-source FT u-CADA CADA
123-45 50.8 48.0 50.1 52.8
124-35 49.0 46.3 48.8 51.0
125-34 47.0 43.7 46.6 49.6
134-25 51.6 50.3 51.1 54.2
135-24 50.7 47.5 48.9 52.9
145-23 47.3 47.0 47.2 51.7
234-15 51.1 48.9 51.7 54.3
235-14 47.1 47.2 46.5 52.2
245-13 47.1 46.1 51.4 51.8
345-12 51.1 50.2 52.2 55.5
average 49.3 47.5 49.5 52.6
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Table 6.27: Unsupervised domain adaptation approaches under the speaker-
dependent setting with IEMOCAP on the five-class task. Case index in the first column
refers to the Sessions used as source and target domains respectively (separated by ’-’).

Case index all-source FT u-CADA CADA
123-45 44.4 41.5 41.3 44.8
124-35 43.7 40.7 43.5 43.5
125-34 43.7 40.9 42.6 45.0
134-25 44.3 41.9 44.2 44.6
135-24 43.1 42.1 43.1 45.6
145-23 43.1 41.9 41.5 44.8
234-15 47.0 43.1 45.3 47.2
235-14 44.5 43.0 44.1 47.6
245-13 44.6 42.5 43.4 46.4
345-12 47.2 44.9 46.1 48.6
average 44.6 42.3 43.5 45.8

outperforms all-source with a small advantage on the average. This indicates the us-
ing pseudo-labels for domain adaptation can be risky. In order to address this issue,
it may be helpful to look for more effective semi-supervised learning techniques for
producing higher quality pseudo-labels. We leave this for the future work.



Chapter 7

CNNs-based CADA Evaluations

Class-wise adversarial domain adaptation (CADA) can be implemented via shallow
or deep neural networks with the same learning algorithm. This chapter focuses on
CNNs-based evaluations with various experiment settings.

7.1 Experiment design

7.1.1 Data and tasks

The used datasets for deep models are Ohm, Mont, IEMOCAP, EMODB, and SAVEE
(see Chapter 3 for details). Different from the practice in MLPs-based experiment
where GeMAPs feature set is adopted for all audio clips in the datasets, the input to
deep models can be raw audio clips or log-mel spectrogram according to [118]. In spite
of slightly better performance with log-mel spectrogram in the situation of regular
supervised learning, for brevity we use raw-audio clips as the input to 1D CNNs in
this project as our objective is to estimate the application of CADA with deep models
instead of pursuing the highest recognition accuracy with specific tasks..

Specifically, for data pre-processing, the sampling rate of the audio clips used is
16kHz. The length of the raw audio clips used is set 1s long. (This is relatively a short
length as our experiments are limited by the computing resources available. On the
other hand, 1s long audio clip is generally considered stationary in emotion expres-
sion.) If the audio clip is longer than 1s, it will be segmented to 1s long. Otherwise,
it is padded to 1s long. At 16 kHz sampling rate, the audio clip can be represented as
a 16000-bit vector. So, the input of 1D CNNs is the 16000-bit vectors in our experi-
ments. The data size after processing is presented in Table 7.1. As shown in the table,

98
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Table 7.1: Datasets used for CNNs-based evaluations

Dataset ang hap sad neu exc
EMODB 607 328 467 337 x
SAVEE 418 428 509 805 x
Ohm 2846 2124 x 17436 x
Mont 1849 521 x 15694 x
IEMOCAP 9391 9423 4875 12440 11380

Table 7.2: The hyper-parameters range in CNN

Hyper-parameter Range
filters {32, 64}
kernel size {2, 3, 4}
pooling size {3, 4, 5}
batch size {32, 64, 128}
output layer neurons {64, 128, 256, 512}

the data size has greatly expanded in contrast to the original data (audio clips) as each
audio clip is usually 4-5s long and thus can be divided into 4 or 5 examples.

7.1.2 Model architecture and selection

We learn from [118] about the basic hyper-parameters set in CNNs for speech emotion
recognition. We use 1D CNN as the basic model which consists of 2 convolutional lay-
ers and 1 fully connected layer for output, as illustrated in Figure 7.1. We adopt batch
normalization, max pooling, and use elu as activation function (softmax for output
layer). Optimizer is stochastic gradient descent (SGD) and loss function is categorical
cross-entropy. Other hyper-parameters are selected based on 5-fold cross validation
and the range is shown in Table 7.2. With the model selection, in the convolutional
layer, we set filters 64, kernel size 3, and stride 1. For the pooling layer, we set pooling
size 4 and stride 4. The batch size is 64 and neuron number in the fully-connected
layer is 128.

For class-wise adversarial learning, the two convolutional layers (as well as the
pooling layers) are treated as the feature encoder, and the fully connected layer as the
predictor. Both parts are updated following the learning rules in Algorithm 1 (Chapter
5). The implementation uses TensorFlow (Keras library) on python, and considering
the need of powerful computing systems, we use cloud computing platform Amazon
EC2 to run the experiment.
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Figure 7.1: The 1D CNN model

7.1.3 Baselines and comparative approaches

The baseline as presented in the MLPs-CADA experiment, is all-source that predicts
the target data with the source model without any adaptation skills. As for domain
adaptation methods, FADA is not used as the comparative approach, as the comput-
ing capacity it requires for deep models is demanding to us. Consequently we only
consider fine-tuning as the comparative domain adaptation approach. The results of
random 20 trials with the same experiment settings are reported.

7.2 Cross-corpora experiment

As designed in the MLPs-based evaluations, we have cross-corpora experiments first,
using large datasets as source domains and small datasets as target domains. We divide
the tasks based on whether they are binary-class or multi-class.

7.2.1 Binary-class tasks

Model selection on the source domain suggests the hyper-parameters which are used
in building CADA. Regarding domain adaptation, we randomly select a small part of
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Table 7.3: Unweighted accuracy (%) when using EMODB as target domain in cross-
corpora basic-emotion binary-class experiment based CNNs. The numbers in the
head row represent the percent of the used target data for training/adaptation. P-value
of t-test is also provided to ensure the difference of the two means of accuracy by the
two methods is on a significant level.

source scheme 1% 2% 4% 6% 8% 10% 20%
Ohm (ang, hap)
all-source: 53.2

FT 54.6 55.7 57.6 58.4 58.7 58.9 59.6
CADA 55.8 57.4 58.6 59.3 59.8 59.1 59.1

t-test p-value 0.03 0.04 0.02 0.02 0.01 0.04 0.06
Aibo (ang, hap)
all-source: 51.8

FT 52.1 53.2 55.1 56.4 57.0 58.2 59.0
CADA 53.5 54.0 55.4 56.2 56.5 57.1 58.4

t-test p-value 0.02 0.04 0.05 0.02 0.08 0.04 0.07
IEMOCAP (ang, hap)
all-source: 62.0

FT 63.3 63.7 64.2 64.8 67.2 69.0 68.5
CADA 63.6 66.2 67.8 69.0 67.1 69.4 67.5

t-test p-value 0.02 0.04 0.01 0.07 0.06 0.08 0.06
IEMOCAP (ang, sad)
all-source: 85.2

FT 86.7 88.2 90.3 92.1 94.6 95.0 98.1
CADA 88.4 89.4 92.5 92.8 93.0 94.1 96.9

t-test p-value 0.03 0.04 0.02 0.02 0.01 0.05 0.06
IEMOCAP (sad, hap)
all-source: 80.6

FT 82.1 83.4 83.9 84.8 88.0 91.1 92.4
CADA 83.1 84.3 85.4 87.6 87.9 90.7 92.8

t-test p-value 0.04 0.09 0.12 0.02 0.11 0.09 0.05
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Table 7.4: Unweighted accuracy (%) when using SAVEE as target domain in cross-
corpora basic-emotion binary-class experiment based on CNNs. The numbers in the
head row represent the percent of the used target data for training/adaptation. P-value
of t-test is also provided to ensure the difference of the two means of accuracy by the
two methods is on a significant level.

source scheme 1% 2% 4% 6% 8% 10% 20%
Ohm (ang, hap)
all-source: 54.3

FT 55.1 55.3 54.7 55.6 56.1 56.3 58.2
CADA 56.9 57.6 56.4 57.0 57.4 58.6 59.4

t-test p-value 0.04 0.04 0.07 0.02 0.07 0.06 0.08
Aibo (ang, hap)
all-source: 53.7

FT 55.9 58.2 60.2 61.6 62.5 63.9 65.3
CADA 57.2 60.2 62.6 63.4 62.5 65.7 64.9

t-test p-value 0.02 0.05 0.01 0.02 0.07 0.04 0.09
IEMOCAP (ang, hap)
all-source: 57.6

FT 57.9 61.2 64.4 64.3 65.5 67.9 68.0
CADA 59.8 62.9 66.8 63.5 66.1 68.9 68.1

t-test p-value 0.03 0.06 0.07 0.02 0.01 0.09 0.12
IEMOCAP (ang, sad)
all-source: 62.1

FT 63.2 67.8 68.9 69.4 70.0 70.9 71.1
CADA 65.9 69.2 69.8 70.2 70.0 71.6 71.3

t-test p-value 0.07 0.08 0.03 0.02 0.01 0.09 0.06
IEMOCAP (sad, hap)
all-source: 65.0

FT 65.3 67.8 69.1 70.3 71.4 73.5 74.1
CADA 66.3 69.0 71.9 72.4 73.6 74.2 73.3

t-test p-value 0.04 0.10 0.06 0.04 0.01 0.05 0.06
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Table 7.5: Unweighted accuracy (%) when using EMODB as target domain in cross-
corpora basic-emotion multi-class experiment based on CNNs. The numbers in the
head row represent the percent of the used target data for training/adaptation. P-value
of t-test is also provided to ensure the difference of the two means of accuracy by the
two methods is on a significant level.

source scheme 1% 2% 4% 6% 8% 10% 20%
Ohm (ang, hap, neu)
all-source: 56.8

FT 59.5 60.1 64.1 64.6 66.2 67.5 69.1
CADA 62.1 64.7 64.9 65.6 67.2 68.5 68.6

t-test p-value 0.13 0.01 0.02 0.02 0.01 0.02 0.04
IEMOCAP (ang, hap, sad)
all-source: 65.2

FT 65.8 65.2 68.5 69.2 70.6 71.4 72.9
CADA 66.9 67.2 69.5 69.9 71.6 72.4 73.9

t-test p-value 0.05 0.09 0.02 0.02 0.03 0.04 0.07

target data for domain adaptation and gradually increase that proportion from 1% to
20%. The largest proportion (20%) represents 187 examples being used from a total of
935 examples in EMODB for classification between anger and happiness. By contrast,
for the same task in MLPs-based experiment, 20 per class of the total of 187 examples
is about 21%, similar to the proportion set here.

From Table 7.3 and Table 7.4, it is viewed that both domain adaptation approaches
outperform the baseline in almost all of the cases, verifying the value of domain adap-
tation. Particularly, CADA, in most cases, shows a better performance than fine-tuning,
especially when the used target-data are few. An intuitive explanation is that be-
cause CNNs are more sophisticated architectures involving much more parameter than
MLPs, when only a few target data are provided, fine-tuning may have little effect on
modifying those huge number of parameters, thus possibly achieving a similar or only
slightly better performance compared to the model without adaptation. However, with
more target data for tuning, the adapted model will show a significant improvement
and even outperform CADA, in some cases, at the point of 10% target data being used
as the tables suggest.

Another observation we have is that the standard deviation of the accuracy is gen-
erally smaller compared to that in the MLPs-based experiment. Basically, the range of
standard deviation is [2, 4] while for MLPs is [3, 8]. This indicates CNNs are more
stable in training, and the learned features in the model are more robust.
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Table 7.6: Unweighted accuracy (%) when using SAVEE as target domain in cross-
corpora basic-emotion multi-class experiment based on CNNs. The numbers in the
head row represent the percent of the used target data for training/adaptation. P-value
of t-test is also provided to ensure the difference of the two means of accuracy by the
two methods is on a significant level.

source scheme 1% 2% 4% 6% 8% 10% 20%
Ohm (ang, hap, neu)
all-source: 52.9

FT 54.0 55.2 57.1 58.7 60.2 64.8 65.7
CADA 55.8 57.2 59.1 60.7 62.2 64.8 64.7

t-test p-value 0.02 0.05 0.02 0.02 0.10 0.09 0.08
IEMOCAP (ang, hap, sad)
all-source: 60.8

FT 61.9 64.7 68.3 69.6 71.3 72.3 73.7
CADA 63.2 65.7 68.6 69.6 73.4 74.3 75.7

t-test p-value 0.05 0.04 0.02 0.02 0.02 0.03 0.06

7.2.2 Multi-class tasks

For multiple class task, the experiment results are shown in Table 7.5 and Table 7.6.
The source domains and emotion classes for classification are seen in the tables (the
tasks are set following the practice in the corresponding experiments based on MLPs.).

We have similar observations as in the binary class tasks. With more emotion
classes in the task, the recognition performance does not necessarily get worse as some
emotions can be easier to recognize and thus may increase the overall recognition ac-
curacy, which is calculated on all the classes. Between Table 7.5 and Table 7.6, we
can find SAVEE is easier to address as the target domain than EMODB, as indicated
by the all-source performance. However, with domain adaptation, the recognition ac-
curacy with both datasets can reach a similar level, especially when using IEMOCAP
as the source domain. This suggests the domain adaptation effect is more significant
on SAVEE under this setting.

7.3 Intra-corpus experiment

IEMOCAP is used to conduct intra-corpus experiments by selecting certain sessions
of the dataset as source domain and the rest as target domain. We also consider both
speaker-dependent and speaker-independent settings. Specifically, among the five ses-
sions of IEMOCAP, three sessions are used as source, the other two are used as one
target domain (which will be further split for adaptation and testing), or in case of
speaker-independent setting, as one adaptation set and one test set. Details of the five
sessions is given in Table 7.7, which shows that there is relatively sufficient data for
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Table 7.7: Data size in IEMOCAP for CNN-based evaluations

Session 1 Session 2 Session 3 Session 4 Session 5
ang 2247 1117 2068 2512 1447
exc 1568 1828 1522 1843 2662
hap 1099 860 1084 693 1139
neu 2664 3041 2277 1752 2705
sad 2134 2207 2691 1796 2548
∑ 9712 9053 9642 8596 10501

Table 7.8: Results under the speaker-dependent setting with IEMOCAP on the
binary-class task based on CNNs. Case index in the first column refers to the Ses-
sions used as source and target domains respectively (separated by ’-’).

Case index all-source FT CADA
123-45 61.2 61.4 64.5
124-35 58.5 59.8 61.9
125-34 55.5 56.3 58.5
134-25 61.2 61.3 64.2
135-24 63.7 62.4 64.4
145-23 60.2 59.1 62.2
234-15 59.6 62.4 62.7
235-14 64.3 64.6 66.1
245-13 62.7 65.0 64.8
345-12 61.9 61.3 64.1
average 60.9 61.1 63.4

each section, favoring the training of deep models.

7.3.1 Speaker-dependent setting

We basically follow the same setting as in the MLPs-based experiment. Emotion
classes are re-grouped to form binary-class, and three-class and five-class tasks. The
results are given in Table 7.8 - 7.10. It can be viewed from these tables that do-
main adaptation approaches achieves a better performance than the baseline all-source.
Meanwhile, CADA performs better than fine-tuning in most cases. This observation is
consistent with what we have found in MLPs-based evaluations.

We respectively conduct t-test for these three tasks over the 10 combinations of
cases (reported in Table 7.11), comparing the accuracy by CADA, fine-tuning, or all-

source (two larger means among the three are compared), verifying the advantage of
CADA in the tasks on a significant level.
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Table 7.9: Results under the speaker-dependent setting with IEMOCAP on the three-
class task based on CNNs. Case index in the first column refers to the Sessions used
as source and target domains respectively (separated by ’-’).

Case index all-source FT CADA
123-45 50.8 48.0 52.8
124-35 49.0 46.3 51.0
125-34 47.0 43.7 49.6
134-25 51.6 50.3 54.2
135-24 50.7 47.5 52.9
145-23 47.3 47.0 51.7
234-15 51.1 48.9 54.3
235-14 47.1 47.2 52.2
245-13 47.1 46.1 51.8
345-12 51.1 50.2 54.5
average 49.2 47.5 52.5

Table 7.10: Comparison of domain adaptation approaches under the speaker-
dependent setting with IEMOCAP on the five-class task based on CNNs. Case index
in the first column refers to the Sessions used as source and target domains respectively
(separated by ’-’).

Case index all-source FT CADA
123-45 53.4 54.5 58.8
124-35 53.5 52.0 53.4
125-34 47.1 49.9 52.3
134-25 42.3 41.9 45.7
135-24 48.1 49.1 50.5
145-23 52.1 52.6 56.8
234-15 45.0 43.1 48.2
235-14 44.2 43.0 48.6
245-13 47.0 47.1 51.4
345-12 45.0 44.9 48.9
average 47.7 47.5 51.5

Table 7.11: T-test on the difference of accuracy under speaker-dependent setting
within-corpus (IEMOCAP) with CNNs.

Task Comparison p-value
2-class FT/CADA 0.058
3-class all-source/CADA 0.0005
5-class all-source/CADA 0.053



7.3. INTRA-CORPUS EXPERIMENT 107

Table 7.12: Results under the speaker-independent setting with IEMOCAP on the
binary-class task based on CNNs. Case index in the first column refers to the Sessions
used as source domain, target training set, and target testing set, respectively (separated
by ’-’).

Case index all-source FT CADA
123-4-5 55.2 54.3 54.6
124-5-3 58.0 57.7 58.6
125-3-4 62.3 61.7 61.0
134-2-5 53.8 54.7 55.5
135-4-2 64.8 65.2 66.1
145-3-2 64.2 65.4 66.5
234-5-1 60.2 63.3 62.9
235-1-4 61.8 61.8 61.5
245-1-3 60.6 59.5 58.7
345-2-1 63.6 62.9 61.9
123-5-4 64.2 61.4 63.5
124-5-3 62.5 59.6 62.9
125-4-3 60.7 58.3 61.5
134-5-2 63.1 63.1 65.2
135-4-2 58.7 59.4 61.2
145-3-2 57.1 57.9 57.2
234-5-1 57.6 58.4 60.8
235-4-1 61.6 64.6 64.2
245-3-1 60.6 62.0 62.8
345-2-1 61.9 62.1 61.3
average 60.6 60.7 61.4

7.3.2 Speaker-independent setting

Regarding the speaker-independent setting, similar to previous practice, we address
the total of 20 combinations of IEMOCAP sessions. The results about 2-class, 3-class,
and 5-class tasks are given in Table 7.12 - 7.14. As shown in the first column of the
tables, the digits signify the number sessions used as source data, adaptation data, and
test data. From the tables, we can find that

• The results generally confirm our hypothesis that different sessions demonstrate
significant domain shift, and the data used for adaptation may not be represen-
tative of the the test data set (this hypothesis already verified in the MLPs-based
experiment in Chapter 6). As a consequence, no domain adaptation approaches
can achieve an overall improvement over the baseline; and there is not a winner
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Table 7.13: Results under the speaker-independent setting with IEMOCAP on the
three-class task based on CNNs. Case index in the first column refers to the Sessions
used as source domain, target training set, and target testing set, respectively (separated
by ’-’).

Case index all-source FT CADA
123-4-5 54.3 55.6 55.4
124-5-3 55.0 55.3 58.1
125-3-4 48.7 48.1 48.5
134-2-5 51.0 53.5 54.1
135-4-2 53.5 54.0 53.7
145-3-2 52.3 56.9 58.4
234-5-1 48.6 49.5 50.6
235-1-4 48.6 48.1 47.9
245-1-3 47.2 45.6 43.4
345-2-1 48.7 48.6 49.6
123-5-4 54.2 51.4 53.2
124-3-5 53.5 55.5 52.9
125-4-3 50.5 53.3 54.5
134-5-2 53.9 57.1 56.4
135-2-4 53.7 54.4 55.9
145-2-3 49.1 49.9 52.2
234-1-5 46.6 47.4 45.8
235-4-1 54.3 55.7 58.1
245-3-1 50.6 51.0 51.2
345-1-2 50.9 54.2 54.2
average 51.3 52.3 52.5
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Table 7.14: Results under the speaker-independent setting with IEMOCAP on the
five-class task based on CNNs. Case index in the first column refers to the Sessions
used as source domain, target training set, and target testing set, respectively (separated
by ’-’).

Case index all-source FT CADA
123-4-5 42.4 43.9 43.9
124-5-3 43.4 43.5 46.3
125-3-4 49.4 48.4 43.9
134-2-5 43.7 44.4 48.7
135-4-2 44.4 45.2 45.1
145-3-2 43.0 45.0 44.9
234-5-1 47.0 46.8 46.2
235-1-4 42.7 43.4 41.7
245-1-3 42.6 43.2 43.3
345-2-1 46.3 47.2 46.5
123-5-4 51.7 54.8 54.6
124-3-5 43.4 44.5 45.6
125-4-3 43.9 43.4 42.4
134-5-2 47.4 44.4 43.7
135-2-4 42.4 45.3 45.1
145-2-3 49.1 50.6 52.9
234-1-5 46.8 47.0 46.5
235-4-1 43.1 45.4 48.7
245-3-1 42.3 41.2 42.3
345-1-2 42.0 46.4 47.5
average 44.7 45.7 46.2
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among the two adaptation approaches (although on average, CADA looks better
but the advantage is minor).

• Interestingly, by comparing the results with those generated in MLPs-based ex-
periments under the same setting (Table 6.22-6.24), there are obviously more
cases showing domain adaptation performs better than the baseline all-source

(no adaptation). This indicates the adapted deep models demonstrate better gen-
eralization capability than MLPs (thus more suitable on unknown testing exam-
ples), thanks to the robust feature representations embedded in the convolutional
layers which are learned in the adversarial learning.

7.4 Discussion

It should be emphasized that it is not comparable between MLPs-based and CNN-
based experiments with respect to the performance (unweighted accuracy). The main
reasons are that the input in CNNs is 16000-bit vector, which stands for a 1s long
audio clip, while in MLPs the input is 62-bit vector, which stands for the extracted 62
features from the whole audio clip (usually longer than 1s). The data for testing are
also in the same form as the input, and that makes the comparison of accuracy between
them infeasible.

However, it is worth finding that applying CADA to deep neural networks is work-
able, yielding better performance than regular fine-tuning technique (certainly better
than no-adaptation practice) on the target domain. In addition, the experiments within-
corpus (IEMOCAP) under speaker-independent setting suggests deep models show
better generalization capability due to robust feature representations learned by con-
volutional layers. This inspires us to explore more deep learning models for speech
emotion recognition in the future towards building more universal and practical recog-
nition systems.

In summary, this chapter presents how to use CADA for deep models. Our goal is to
assessing the effectiveness of CADA rather than pursue highest recognition accuracy,
which can be achieved by using more complex architectures and longer input audios.
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Conclusions

This thesis explores domain adaptation via adversarial learning for speech emotion
recognition. Our work is originally motivated by the well-known cross-corpora prob-
lem and the issue of data scarcity in speech emotion data. Data is the foundation of
machine learning models, and a lack of emotion data makes it difficult to build up a
robust recognition system. Besides collecting more large-scale high-quality databases,
a promising solution to data scarcity is domain adaptation that utilises a related but
information-rich domain to help address the target domain. The key to the success
of domain adaptation is to eliminate the domain shift, the divergence of data distribu-
tions across different domains. However, the nature of speech emotion data determines
that the domain shift can be very complex. High variability can occur not only across
corpora but also within one corpus or one certain emotion class.

We list and analyze the factors that may contribute to the domain shift in speech
emotion data. Given two different corpora, recognizing these factors can be rather
straightforward, and it is unsurprising that even within one corpus, testing a model un-
der the speaker-dependent and speaker-independent setting can make a big difference.

When considering the supervised domain adaptation, we suppose that annotating a
few examples sometimes can be a better solution than collecting many unlabelled data.
Then how to make best use of these limited information is a crucial step. The state-
of-the-art supervised domain adaptation approach FADA adopts pairing technique to
tackle the scarcity of the target data, while we find that class-wise adversarial do-
main adaptation (CADA) works even when only a few target data are available. Pair-
ing technique also uses the emotion class information when generating the pairs, but
CADA explicitly perform adversarial learning for each common class, and thus can
cope with more complex intra-class variability. To evaluate the proposed method, we
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have considered both toy datasets and real-world datasets, binary-class and multi-class
recognition, simple model and deep model, and the speaker-dependent and speaker-
independent settings. The speaker-independent setting in our context of domain adap-
tation means that speakers whose utterances used for adaptation will not emerge in
the testing stage, and it is observed from our experiments that domain shift cannot be
effectively eliminated under this situation.

Implementing CADA is straightforward as well as extending it to the unsupervised
domain adaptation scenario. We find that using pseudo-labels generated by the model
trained on source domain can be beneficial for adaptation. Yet the performance is not
guaranteed, as it depends heavily on the target data distribution and its similarity with
the used source domain.

Restricted by the author’s capability and the time/computing resources available for
the project, there are some issues not covered or addressed adequately. Some specific
issues include

• For CNN-based CADA, we use raw audio clips as input to deep models. Another
popular way worth trying is using log-mel spectrogram, which can be superior
to audio clips in training deep models with supervised learning. It is meaningful
to find out whether this judgement holds in the scenario of domain adaptation.

• The length of examples we use in deep models is relatively short, and it may
cause some global information missing. Using examples containing more in-
formation should improve the overall performance (also require more powerful
computing systems).

• Although we have conducted MLPs-based and CNNs-based evaluations, we can-
not compare the results directly because that in MLPs, the examples for testing
is an integral audio clip (turn) which usually contains 4-5 times more informa-
tion than a single example used in CNNs. A potential solution is to trim the raw
audio clips to a fixed length, and then convert the clip to the input vectors to
CNNs.

In general our work can be extended and refined with the following aspects.

• The datasets we use in this work are limited and some popular latest databases
are not covered. Although we have considered various evaluation skills, the
proposed approach should be tested with more natural emotional corpora under
even more challenging experiment settings.
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• Our work only uses CNNs with two convolutional layers while more deep archi-
tectures and other types of deep models like long-short time memory (LSTM)
can be more suitable to process speech data.

• Multi-modal emotion recognition is found to be more competitive than single-
modal emotion recognition, and is attracting more attention. It is also our inter-
est to explore the combination of body language, ECG, facial expression, and
speech, for more robust and reliable emotion recognition systems.

• Regarding unsupervised domain adaptation, although we propose u-CADA as a
variant of CADA for that scenario, the pseudo labels we leverage are produced
by the source model, which in itself, is not appropriate for predicting target data
because of domain shift. Therefore more sophisticated pseudo-labelling tech-
nique should be utilised and semi-supervised learning may provide some insights
to this.

• Our work only considers the categorical/discrete emotion theories. Investigating
the application of CADA for continuous theories, which are also widely applied
in the area of affective computing, is an important direction.

In summary, this thesis focuses on supervised domain adaptation, a practical sce-
nario in speech emotion recognition as collecting emotion samples are often difficult,
and in assessing the current adaptation approaches, it is found that the high intra-class
variability existing in emotion data limits the adversarial learning from eliminating the
caused domain shift. To cope with this issue, class-wise adversarial domain adaptation
(CADA) is proposed. CADA is characterized by combining the two main components,
feature encoder and prediction layer into one structure, leading to very straightfor-
ward learning rules and relatively simple implementation. A comprehensive evaluation
proves the effectiveness and efficiency of CADA under different contexts.
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