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ABSTRACT 

An important experimental approach for the testing of earthquake-resistant structures is scaled experimentation with 

experimental designs impacted upon by the similitude theory of dimensional analysis.  Unfortunately, the type of 

similitude provided by dimensional analysis seldom applies to complex structures, which is particularly problematic 

when scaling ratios are large.  The issue is one of scale effects where the behaviour of the scaled version of any full-

size structure can be markedly different.   

Recently however a new theory of scaling called finite similitude has emerged in the open literature that confirms that 

the similitude offered by dimensional analysis is just one of a countable infinite number of alternative possibilities.  The 

new theory of scaling raises the possibility that buildings and structures can be designed and tested in new ways and 

this aspect is the focus of this paper. 

Similitude rules for single and two scaled experiments are examined to illustrate the benefits provided by alternative 

forms of similitude.  The two types of similitude examined are termed zeroth order and first order finite similitude, 

which are shown to be two forms in an infinite number of alternative possibilities efficiently defined using a recursive 

relationship.  The theory of scaling is founded on the metaphysical concept of space scaling yet provides the means to 

establish all scale dependencies for structural components and high-rise steel buildings along with buildings equipped 

with nonlinear-fluid viscous dampers for resisting earthquake loading conditions.  It is shown through case-studies of 

increasing complexity how the new theory can be applied to reconstruct full-scale behaviours but also revealed are some 

of the limitations of the new approach. 

 

KEYWORDS: finite similitude, scaled structures, dimensional analysis, time history analysis, scaled 
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1. INTRODUCTION 

Earthquake testing methods such as laboratory tests for massive structures such as tall bridges and skyscrapers 

commonly built today have become more challenging and less applicable.  More feasible is the testing of scaled 

models to study the behaviour of such structures, as undoubtedly these forms of test are easier to perform and 

invariably are more cost effective to implement.  Sized tests are especially recommended as one of the few 

experimental solutions for situations where it is impossible to test a real prototype. Although scaled 

experimentation has some significant limitations it still plays a critical role in process, product design and testing 

for systems.  The obstacles to scaling are mainly related to the nonlinear relationships that exist between physical 

and scaled processes, which manifest as changes in physical behaviour with scale.  Geometric scale dependencies 

are readily visible with geometric measures of length, area, and volume scaling linearly, quadratically and 

cubically, respectively.  Important changes affected by changes in geometric measures in the structural analysis 

are surface forces and body forces with the latter decreasing at a faster rate than the former with scale.  The 

presence of scale effects, which can be marked, has undoubtedly diminished the importance of scaled 

experimentation in recent times coupled with the ever-increasing sophistication of computational modelling, 

which has invariably accelerated this decline.  

The issues surrounding scaling are generally well appreciated by the academic and industrial communities and it 

is appreciated that dimensional analysis provides the bedrock on which scaled experimentation is built, being 

fundamental to the concept of similarity.  The prevailing view is that similar structures behave in the same way, 

and similarity can be investigated by applying dimensional analysis [1].  Similarity is rarely achievable for all but 

the simplest of structures and dimensional analysis provides no solution to dissimilar structures.  In many respects, 

the concept of similarity, which is defined by dimensional analysis has not changed significantly for over a century 

and remains the dominant approach for academic and industrial scaled research.  Linked to dimensional analysis 

is the Buckingham Pi theorem which reveals an inner dependence between dimensional variables [2] and more 

importantly brings into existence the dimensionless Pi groups.  If it transpires that the Pi groups in the 

dimensionless equations governing the behaviour of the scaled and full-scale structures match, then the two 

structures are defined to be similar. However, as mentioned above, this situation is rarely met in reality [3] and 

the approach has shown little success in complex structures.  Structural engineering has a long history of 



investigations with scaled experimentation, but it is apparent on inspection of early historical references that most 

early forms of analysis were somewhat rudimentary in nature.  The early work of Buckingham [2] provided the 

basis for more realistic scale models and the first significant application can be attributed to him [4], although the 

study was purely theoretical in scope. The ground-breaking work of Buckingham [2] was followed by an almost 

exponential rise in the numbers of publications investigating the application of scaled methods. 

In a general sense, scaled experimentation is principally about the establishment of scaling rules, which provides 

a means to transfer obtained pieces of information from the scaled experiment to the full scale.  The focus here is 

on earthquake seismic tests but it is recognized that there exist limitations with scaling.  Practical limitations might 

be the unavailability of materials with the required material properties but also the availability of suitable 

experimental equipment can place constraints on what is possible.  In the case of seismic testing a critically 

important and often utilized piece of apparatus is a shake table.  Well-researched scaling rules are often imposed 

in the application of shake-table studies, as achieving complete similarity is unlikely.  Many scaled experiments 

have been performed and publications produced addressing this issue to better understand the behaviour of 

structures under earthquake excitations.  Sharma et al. [5], Nayak et al. [6], Guerrero et al. [7], and Garevski et al. 

[8], studied the behaviour of scaled-down structures in order to predict the behaviour of physical models by 

applying several similarity laws. The benefits and limitations of using different materials in small-scaled models 

were investigated in reference [10].  Other studies include investigations into aspects of inelastic behaviour of 

structures [9] and unreinforced structures such as masonry at half scale [10].  Research using relatively high 

scaling factors included the application of two-dimensional base ground motion, which induces complex 

behaviour for a high-rise tall building [11] at a 1/50 scale. Another example at 1/40 scale is the scaling of high-

rise buildings studied to investigate the behaviour of huge structures [12] [13].  

The difficulty with all the scaled experimental studies mentioned above is that they are all constrained by the 

limited capability of dimensional analysis with the prevalence of scale effects as presently defined.  A particular 

example is related to weight and body forces and the associated requirement in scaling for mass to be added to 

the scaled model [14].  Typically, masses are added in the form of blocks attached to slabs but fixing one problem 

invariably produces another as it can be anticipated that the behaviour of the supporting frame will not be correct 

during collapse.  The blocks of mass can move and even collide under deformation conditions and the result can 

be unrepresentative behaviour.  Additional mass is often essential when scaling down dimensions whilst 

maintaining the material properties of the prototype. The added mass however comes with drawbacks as it makes 

movement and control invariably more complex [15][16].  Simulator control becomes more difficult since 

additional mass has the potential to produce overturning moments. This often means that specimens have to be 

designed using bigger scaling factors and involve control measures so that the above drawbacks can to a certain 

degree be accommodated depending on the payload capacities of the shake table utilized [15].  Investigated in 

reference [17] is a rotational system involving restraining cables to limit the extent of translation of rotational 

mass.  The device was designed to allow mass movement up to a maximum displacement limit at which point the 

restraining cables stopped further movement; the cessation of mass movement was termed specimen failure.  

Unfortunately however, the scaled system cannot be said to be truly representative and in particular the loading 

and overall stiffness of the scaled model was influenced [17].  Another study [18] concerned with the seismic 

performance of a tall bridge using a shake table test also required additional mass.  The precise distribution of the 

mass could be through the pier height determined by means of repeated numerical trials to finalize the location of 

the masses.  It is evident that additional mass comes with problems and an alternative option is to increase the 

acceleration according to similarity laws. Unfortunately, this solution comes with its own shortcoming since for 

representative behaviours of high-rise buildings it is needed to apply large accelerations.  This is practically 

difficult to arrange due to the limits of laboratory shake table capacities.   

It is clear from the evidence of past experimental studies that the limitations imposed by the current definition of 

similarity has led to all manner of contortions to address the unrepresentative behaviour of scaled models.  The 

present situation is not satisfactory, and the solutions investigated involving additional mass, makeshift scaling 

rules, artificially high accelerations are not fit for purpose.  To address this problem this paper examines two 

alternative forms of similitude that form part of a new scaling theory termed finite similitude [19–24].  The work 

here is designed to provide additional evidence on the merit of the newer forms of similarity and add to earlier 

works done in the fields of: metal forming [21], impact mechanics [23], powder compaction [19], and 

biomechanics [22].  These studies were limited to one scaled experiment under the similitude rule named zeroth-

order finite similitude. Both zeroth-order finite similitude and dimensional analysis are underpinned by 

proportional field relationships, assumed a priori for dimensional analysis, and returned a posteriori from the 

invariance principle applied to define zeroth-order finite similitude. Consequently, it is possible for each of the 

approaches to replicate each of the others similitude conditions.  Despite this association however, zeroth-order 

finite similitude has the advantage of being part of a holistic scaling theory with scaling identities and the number 

of freedoms identified, which provides a route for direct optimization (see references [21,23] for greater details).  

Dimensional analysis on the other hand is well known, links fully to approximate physics with the retention of 

dominant dimensionless terms, and benefits from its association with the Buckingham Pi theorem for reducing 



the number of arguments in a dimensioned expression.  The work presented here is concerned with both zeroth 

order and first-order similitude, so involves both one and two-scaled experiments although focusing on seismic 

studies. The proposed two-experiment approach to scaled experimentation first appeared in references [25,26] for 

the study of impact mechanics and discrete dynamic systems.  The work here extends the application of the method 

to seismic systems involving steel buildings and non-linear damping, and for the first time the breaking of 

geometric similarity in structural members. 

The starting point for the finite similitude theory is rather unusual in that it begins with a concept that cannot be 

physically enacted, which is space scaling.  The concept is introduced in Sec. 2, where it is shown how 

metaphysical-space scaling provides the correct founding theory for the theory of scaling providing an intuitive 

vision for scaling.  The mathematics of space scaling is relatively straightforward and ultimately provides the 

means to examine scaled structural mechanics.  This achieved in a roundabout way however, which first requires 

describing the impact of space scaling on control volumes as these underpin mechanics in its transport form.  The 

key step in the finite similitude theory presented in Sec. 2 is the projection of transport equations defined on the 

trial space (where the scaled experiment resides) onto the physical space (where the full-scale structure resides). 

This projection reveals in one form or another all the scale dependencies possible in structural mechanics.  The 

approach effectively transforms the problem of scaling into one whose objective is the revealing of those fields 

that are only defined implicitly by the projection between trial and physical space.  This can be achieved with the 

application of similitude rules and unlike dimensional analysis the finite similitude approach is not limited to a 

single similitude condition. Alternative rules of similitude are presented in Sec. 3, where a countable infinite 

number of similitude identities are defined under what is termed high-order finite similitude.  The rules provide a 

calculus for scaling in that they describe how scaled systems change with scale.  Integration of the differential 

equations defined by high-order finite similitude links experiments at distinct scales.  The two integrated forms 

of interest in this paper presented in Sec. 3 are termed zeroth order and first order finite similitude and involve 

one and two scaled experiments, respectively.  To demonstrate the practical advantage of the new scaling theory 

in structural mechanics the behaviour of important structural elements is examined under the new rules of scaling.  

Considered in Sec. 4 are a beam-strut model exposed to a point load, a column buckling analysis and a thin-section 

problem, which breaks the rule of geometric similarity by allowing thickness to be constrained.  A more 

complicated structure is considered in Sec. 5, where the first-order finite similitude rule is applied to a high-rise 

steel building exposed to a real earthquake load.  Further complication is added in Sec. 6, where an eight-story 

steel construction equipped with nonlinear fluid viscous dampers is examined under scaling and subject to 

earthquake excitation.  Through standard structural elements to building designs with and without nonlinear 

dampers the paper aims to demonstrate the benefits and validity of the new scaling theory.  The paper ends with 

a brief set of conclusions confirming that the downside of additional scaled experiments is counterbalanced by 

the benefits of increased flexibility and accuracy. 

2. THE THEORY OF SCALING: A REVIEW OF FINITE SIMILITUDE 

The difficulty with all past studies into scaled experimentation is the absence of a scaling theory that can account 

for all scale dependencies that arise.  The finite-similitude theory accounts for scaled dependencies by means of a 

metaphysical concept of space scaling.  Although it is evidently impossible to scale space the concept can 

nevertheless be defined mathematically by introducing a map between the space which houses the full-scale 

experiment (the physical space) and the space where the scaled experiment resides (the trial space).  In 

mathematical terms the temporally invariant map between coordinate functions in the physical and trial space take 

the form ps tsx x , where the subscripts “ps” and “ts” signify physical and trial space, respectively.  In differential 

terms and limiting the space scaling to isotropic scaling the map takes the form ts psd d=x x , which in coefficient 

terms gives 
i i

ts psdx dx= .  It is assumed here that coordinate system in each space is orthonormal and under this 

restriction positive scalar   indicates the extent of linear isotropic scaling with 0 1   for contraction, 1 =  

for no scaling and 1   for expansion.  Although space contraction is of particular interest with scaled-down 

experiments the theory does allow scaling up also. As Newtonian physics is the focus of the study absolute times 

pst  and tst  are assumed to exist with each space possessing a single measure of time.  It is also necessary to 

establish a relationship between pst  and tst , which in differential terms takes the form ts psdt gdt=  for positive 

scalar g [25].  

2.1. Control Volume Motion 

To relate the effect space scaling has on the governing physics it is necessary to have the physics described by an 

appropriate formulation.  The correct approach is one based on a control-volume formulation as control volumes 

are basically regions of space and hence are immediately impacted upon by space scaling.  Although in some 

respects this approach might appear remote from structural engineering it is nevertheless necessary and is simply 



the path followed by the theory from space to control volumes (regions of space) to transport equations (laws of 

nature) and finally to structural field relationships.   

The mathematics of control volume motion which can be found in reference [27–29] and involves transport of a 

control volume 
*

ts  (in the trial space) by means of a velocity field 
*

tsv .  To define the motion of anything it is 

generally with respect to something else, and by comparing 
*

ts  with a reference control volume 
* ref

ts  it is 

possible to define the following partial derivative, 

ts

* * *

* ts ts

ts *

tsts

D

tD t


= =



x x
v
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          (1) 

where coordinate points 
*ref

ts ts  and 
*

ts tsx , and 
*

*
ts

D

D t
 represents a partial temporal derivative where the 

reference point ts  is held constant.  

The exact same apparatus can be utilized in the physical space but motion of the two control volumes must be 

related in some manner. Note that as shown in reference [25] there exists a map between two control volumes in 

physical and trial spaces such that 
* *

ts psd d=x x , i.e., essentially that provided by the space scaling map. The maps 

* *

ts psd d=x x  and ts psdt gdt=  immediately provide a similitude velocity relationship 
1* *

ts psg −=v v  which is a 

relatively simple expression relating the velocities of the moving control volumes in the two spaces. With the 

synchronization of the moving control volumes established it is now possible to examine the governing equations 

for structural mechanics in transport form. 

 

2.2. Transport Form of Projected Structural Mechanics 

The key step in the finite-similitude theory is the projection of the governing transport equations for the trial space 

onto the physical space because it is through this operation that scale dependencies are exposed.  For structural 

analysis, the four transport equations (essentially eight as two are vector equations) of interest are those for 

volume, continuity, momentum and movement. The related transport equations can be written in the form:  

0
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ts ts

*
* * *

ts ts ts ts*
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D
dV d
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 
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( ) 0
* * *
ts ts ts

*
* * * *

ts ts ts ts ts ts ts ts ts ts ts ts*

ts

D
dV d dV

D t
  

  

+ −   − =  u u v v n v                (2d) 

where ts  is mass density, tsv  is material velocity, tsu  is material displacement, ts  is Cauchy stress and tsb  is 

specific-body force (i.e. force per unit mass) for the trial space. 

These equations are sufficient for physical modelling in structural engineering, with Eq. (2a) enforcing control 

volume synchronization, Eq. (2b) allowing for density to change, Eq. (2c) being the all-important momentum 

equation, and Eq. (2d) first introduced in reference [30] providing a description for displacement tsu .  With the 

governing constraining equations defined the next step in the finite similitude theory is the most critical as it 

quantifies either explicitly or implicitly all scale dependencies.  This quantification is achieved by projecting the 

transport equations in the trial space (i.e., Eqs. (2)) onto the physical space.  The projection is made possible by 

the existence of the map between the control volumes in the physical and trial space.  Thus the relationship 
* *

ts psd d=x x  provides the expressions 
3* *

ts psdV dV=  and 
2* *

ts ts ps psd d = n n , and recalling the time relationship 

ts psdt gdt= , it is possible to substitute these into Eqs. (3).  In addition to multiplication of Eqs. (2) by g  each 

equation is individually multiplied by the scaling parameters 
1

0 , 0

 , 0

v  and 0

u  (the role of these is explained 

below) to provide 

( )1 1 1 3 1 3

0 0 0 0 0
* *
ps ps

*
* * *

ps ps ps ps*

ps

D
T dV d

D t
     

 

= −   =  v n                (3a) 



( ) ( )3 3
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where 
1

ps tsg −=V v , 
1

ps ts −=U u , 
2

0

v

ps tsg =   and 
3

0

v

ps ts tsg  =B b  

Although somewhat complicated looking, Eqs. (3) are no more than Eqs. (2) but played out on the physical space; 

no approximation is involved in this projection.  The importance of Eqs. (3) is that they reveal all scale 

dependencies in one form or another.  Some of the scale dependencies are explicit and recognizable, such as 
3  

and 
2  which arise from changes in the geometric measures of volume and area, yet others are implicit, i.e. tensor 

field ( )ps  , vector fields ( )ps V , ( )ps U , and ( )ps B , and scalar field ( )ts  .  The dependence of these 

fields on   is a consequence of the fact that the trial space is at a particular   and changing this influences the 

fields in that space and likewise those projected onto the physical space.  The problem of scaling has been 

transformed into a problem where the objective is to make explicit those fields that are an implicit function of 

.  Once this is achieved then scaling is solved since it is then possible to know what happens at full scale from a 

scaled experiment.  To reveal the field dependencies there are two main approaches, with the first approach 

requiring more information (e.g., size and surface effects) about the specific problem under consideration.  A more 

generic approach is to assume that the physical behaviours follow a particular similitude rule.  Similitude rules 

provide the means to design experiments and a particular advantage offered by Eqs. (3) is that unlike dimensional 

analysis, alternative similitude rules can be explored.  The downside is that similitude rules are invariably 

restrictive and consequently there is no guaranteed that an experimental arrangement will fall within the solution 

space provided by a particular rule.  However, with physical modelling and the use of alternative materials the 

solution space offered by a similitude rule can be enlarged but this invariably requires the existence of substitute 

materials with the necessary peculiar properties. 

 

3. SIMILITUDE RULES 

The focus of this section is on the definition of similitude with the objective to reveal the behaviours of the hidden 

fields in Eqs. (3).  The main transport equations can be succinctly represented in the form 0 0 0T  = , where   

can be set to 1 ,  , v  and u .  The first and possibly an obvious similitude assumption is that ( )0 0T    does 

not change with  , which in mathematically terms is the identity, 

( )0 0 0
d

T
d

 


            (4) 

where the symbol “  ” signifies identically zero, which means the left-hand side of this equation vanishes 

completely under the derivative. 

The identity is equivalent to what is provided by dimensional analysis since integration between the limits   and 

1 =  provides ( ) ( )0 0 0 0 01 psT T T       = , with the necessity that ( )0 1 1 = , required so that projected 

transport equations at 1 =  match 0 0psT = .  The identity ( )0 0 0 psT T      provides an invariance between the 

projected trial-space equations (and by implication the original trial-space equations), with the physical space 

transport equations.  Note the role played by ( )0

   in facilitating the application of a single identity (i.e., Eq. 

(4)) to all the transport equations, which can be likened to the role played by making equations dimensionless in 

dimensional analysis.  Detailed studies on the application of Eq. (4) (termed zeroth order finite similitude) can be 

found in references [19–21,23,24], where specific zeroth-order relationships relating to density, velocity, 

displacement etc. can be found.  The advantage offered by Eqs. (3) is that unlike dimensional analysis the approach 

is not limited to a single similitude identity and a countable infinite number of identities can be readily defined as 

follows: 



3.1. Definition (High-order finite similitude) 

The similitude rule for kth-order finite similitude is identified by the lowest derivative that satisfies: 

( )1 0k k k

d
T T

d

  


+ =            (5) 

for all 0   with 0 0T   defined by Eqs. (3) and the scalars k

  being a function of   with ( )1 1k

 = . 

Note the contention here that similarity is no more than imposed rules that provide a convenient means to reveal 

hidden field relationships and that for the past century only one rule has been assumed to exist.  However, despite 

Eq. (5) being a mere definition, it possesses certain attributes that make it highly suited to similarity.  Firstly, 

lower-order forms of similitude are contained in higher-order forms; for example, zeroth order ( 1 0T  ) 

automatically satisfies first order ( ( )2 1 1 0d

d
T T  


=  ), and any higher order (easily shown by induction), which 

is a desirable if not necessary feature.  All the scaling functions k

  play identical roles, i.e., the annihilation of 

  in the equations 0k kT  =  to satisfy the similitude rule Eq. (6).  The equations 0k kT  =  are in the form of 

transport equations whose fields are derivatives (with respect to  ) of those fields that appear in Eqs. (3) (i.e., in 

0 0 0T  = ); this aspect is not explored further here.  Shown below is how Eq. (5) can be integrated on forming a 

divided-difference table, which enables discrete identities to be formed with relative ease for application to scaled 

experimentation.  It transpires that Eq. (5) leads to physically intuitive proportionality relationships for certain 

fields, field differences, field differences of differences and so on.  Each increment in order requires an additional 

scaled experiment with zeroth order requiring only one scaled experiment, first order requiring two and so on.  

The reason for this is related to the order of the highest derivative in the similitude rule and for example 

substitution for ( )1 0 0
d

d
T T  


=  into the identity ( )2 1 1 0d

d
T T  


=   provides, 

( ) ( )2 1 1 1 0 0 0
d d d

T T T
d d d

       
  

 
= =  

 
                (6a) 

which is the similitude rule for first-order finite similitude and was first introduced in reference [25]. 

The two derivatives present in Eq. (6a) indicate that on integration, two scaled experiments are involved with a 

similitude rule that connects these to the full-scale system.  The next level up is second order, which takes the 

form, 

( ) ( ) ( )3 2 2 2 1 1 2 1 0 0 0
d d d d d d

T T T T
d d d d d d

              
     

    
= = =     

    
               (6b) 

and the presence of three nested derivatives indicates the need for three scaled experiments. 

3.2. First-order Solutions 

The prime interest in this paper is on the application of first-order finite similitude to non-trivial practical 

structural-engineering problems.  Prior to examining the first order rules it is necessary to substitute into Eqs. (3) 

pertinent zeroth-order conditions obtained from identity Eq. (4), which are 
3

0ps ts

   = , 
1 3

0  −= , 

1

0 0

v g   −=  and 
1

0 0

u   −=  to provide 

( ) ( )0 0 0
* *
ps ps

*
* * *

ps ps ps ps ps ps ps*

ps

D
T dV d

D t

    
 

= + −   =  V v n               (7a) 

( ) ( )0 0
* *
ps ps

*
v v * * *

ps ps ts ps ps ts ps ps ps*

ps

D
T dV d

D t
   

 

= + −   V V v v n  

0
* *
ps ps

* *

ts ps ps ts psd dV

 

−   − = n B            (7b) 

( ) ( )0 0
* *
ps ps

*
u u * * *

ps ts ps ps ps ps ps ps ps*

ps

D
T dV d

D t
   

 

= + −   U U v v n 0
*
ps

*

ps ps psdV


− = V           (7c) 

where 
2

0

v

ps tsg =  , 
3 2 1

0

v

ts ts ts tsg g    −= =B b b , and where it is recognized that the condition 
1 3

0  −=  

ensures that Eq. (3a) satisfies Eq. (4) (and consequently Eq. (6a)), so is of no further concern.  



To avoid the necessity for second-order finite similitude the term 
*

ts ps−V v  is replaced by the zeroth-order 

approximation 
*

ts ps−v v  in the movement and momentum equations to reflect the fact that convective-type terms 

are of little concern in structural engineering.  The transformation of Eqs. (6) into the required discrete integrated 

form can be readily achieved by means of a divided-difference table (see Table 1) and observe that the focus on 

behaviour at 0 1 =  and down scaling means backward differences are required.  In addition, unlike a traditional 

divided-difference table a mean-value theorem is applied to ensure exact differences are returned.  In particular, 

the first divided differences in column three in Table 1 are obtained from the identities, 

Table 1: Divided difference table for first-order theory 

i  ( )0 0 i

  T  First Divided 

Difference 

Second Divided  

Difference 

2  ( )0 0 2

  T    

  ( )1

1 1 2

  T   

1  ( )0 0 1

  T   ( ) ( )0 1

1 1 1 1 1 2

0 1

1 2

0

      

 

−


−

T T
 

  ( )0

1 1 1

  T   

0  ( )0 0 0

  T    

( ) ( )
( ) ( )0 0 1 0 0 21 1

1 1 2 1 2

1 2

   

  
   

   
 

−


−

T T
T                (8a) 

( ) ( )
( ) ( )0 0 0 0 0 10 0

1 1 1 1 1

0 1

   

  
   

   
 

−


−

T T
T                (8b) 

where 
1

2 2 1     and 
0

1 1 0     on application of a mean-value theorem, and where 2  and 1  are distinct 

scales such that 2 1 0 1    = . 

The second divided difference in column four in Table 1 is identically zero as is evident on integration of Eq. (6a) 

between the limits 
1

2  and 
0

1 .  It follows then on substitution of Eqs. (8) into the identity 

( ) ( )0 1

1 1 1 1 1 2T T       , and following some reorganization, that the required discrete sought identity  

( ) ( ) ( ) ( )( )0 0 0 0 0 1 1 0 0 1 0 0 2R                + −T T T T                (9) 

is obtained where, 

( )
( )

1

1 2 0 1

1 0
1 21 1

R







   

  

  −
 =  
  −  

         (10) 

and where 1R
 takes the form of a parameter arising for the indeterminacy of the function ( )1

  . 

Note that Eq. (9) provides transport equations for the physical space formed from information at the two scales 

2  and 1 .  It is by this means that equations constraining the behaviour at the two scales 2  and 1  also 

constrain the behaviour at the full scale 0 .  Application of Eq. (9) to the governing transport equations (i.e., Eqs. 

(7)), return the all-important first-order field identities  

( ) ( ) ( )( )1 1 1 2ps ps ps psR  + −v = V V V                 (11a) 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + −v = V V V                 (11b) 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + − =                    (11c) 

( ) ( ) ( )( )1 1 1 2

v

ps ps ps psR  + −b = B B B                 (11d) 

( ) ( ) ( )( )1 1 1 2

u

ps ps ps psR  + −u = U U U                 (11e) 

( ) ( ) ( )( )1 1 1 2

u

ps ps ps psR  + −v = V V V                 (11f) 



where (as mentioned above) scaling is solved once the relationships for the fields are obtained. 

Three velocity fields are provided in Eqs (11) but there can be only one and therefore for a consistent velocity 

expression it is necessary that 1 1 1 1

v uR R R R= = = ; achieved by setting identical the functions 1 1

v,   and 1

u . 

Any additional fields of interest can be easily derived from Eqs. (11) and for convenience the fields of interest in 

this paper are presented in Table 2. 

Table 2: General zeroth-order and first-order finite similitude relationships 

Properties Zeroth-order identities First-order identities 

Density 
3

01 1 1ps ts

   =  ( )3 3 3

01 1 1 1 01 1 1 02 2 2ps ts ts tsR           = + −  

Displacement 
1

1 1ps ts −=u u  ( )1 1 1

1 1 1 1 1 2 2ps ts ts tsR  − − −= + −u u u u  

Velocity 
1

1 1 1ps tsg  −=v v  
1 1 1

1 1 1 1 1 1 1 2 2 2ps ts ts tsg R ( g g )  − − −= + −v v v v  

Acceleration 
2 1

1 1 1ps tsg  −=a a  
2 1 2 1 2 1

1 1 1 1 1 1 1 2 2 2ps ts ts tsg R ( g g )  − − −= + −a a a a  

Stress 
2

01 1 1 1ps tsg =   ( )2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2ps ts ts tsg R g g       = + −     

Strain 1ps ts=   ( )1 1 1 2ps ts ts tsR= + −     

Force 
2 1

01 1 1 1ps tsg  −=F F  
2 1 2 1 2 1

01 1 1 1 1 01 1 1 1 02 2 2 2ps ts ts tsg R ( g g )       − − −= + −F F F F  

Moment 
2 2

01 1 1 1ps tsg  −=M M  
2 2 2 2 2 2

01 1 1 1 1 01 1 1 1 02 2 2 2ps ts ts tsg R ( g g )       − − −= + −M M M M  

 

The field relationships in Table 2 are exact, but it is recognized that errors are very much a feature of experimental 

studies.  Although this is the topic of future work the similitude identities however do provide some insight into 

the effect of errors and to illustrate this consider for example the displacement identity 

( )1 1 1

1 1 1 1 1 2 2ps ts ts tsR  − − −= + −u u u u .  The reality of scaled experimentation is errors 1

u

tsδ  and 2

u

tsδ  in the trial-space 

field displacements 1tsu  and 2tsu , respectively, which on substitution returns the identity 

( )1 1 1

1 1 1 1 1 2 2

u u u u

ps ts ts tsR  − − −= + −δ δ δ δ , where 
u

psδ  is the error in psu .  Although the actual error in the physical space 

depends very much on the problem and how close the virtual model replicates the physical behaviour, this error 

equation nevertheless provides insight into the required accuracy needed in the trial spaces to achieve acceptable 

outcomes in the physical space. 

 

4. SCALING OF STRUCTURAL ELEMENTS 

 

This focus in this section is on the scaled behaviour of basic structural elements such as columns, beams, and 

struts under static loads.  The purpose here is twofold, firstly to provide a gentle introduction into the application 

of the similitude theory and, secondly, to understand better the response of more complex structures through 

insights gleaned from an appreciation about the behaviour of basic structural elements under scaling.  The 

relatively simple case studies examined in this section are analysed both analytically and numerically with the aid 

of the finite element package ABAQUS [31]. 

 

4.1. Scaling of Beam-Strut Model 

 

Beams are important structural components that can withstand loads primarily by resisting bending and serve to 

transfer loads to walls, girders, and adjacent compression members. An appreciation of how beams scale is 

important for scaled experiments and to that end consider a simple setup of an I-section steel beam connected to 

a circular hollow steel strut.  The arrangement examined is depicted in Fig. 1, where shown are both the full and 

scaled models, which have been recreated in the Abaqus finite element software and each are subjected to a 

concentrated force at the free end.   



 

Figure 1. Full-scale and trial model of the beam-strut model 

The models in Abaqus are meshed with identical numbers of elements of type B31, which is a 2-noded linear 

beam element and identical materials are used for both the trial-space and full-scale models.  To verify the types 

of analysis, an initial comparison was performed between analytical and numerical models.  This provided end 

deflections of 22.425mm and 22.419mm for the respective analytical and numerical models, so providing high 

confidence in the modelling approach. 

 

Shear force and bending moment are described by the respective expressions, 
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ps ps
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F x
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F x

 


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
=



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                     (12b) 

and examination of Table 2 provides the zeroth-order scaling identities 
2 1

0ps ts
V g V


 

−
=  and 

2 2

0ps ts
M g M


 

−
= . 

In a similar fashion the standard expression for normal stress, scales according to the zeroth-order relationship 
2

01 1 1 1ps tsg   =  in Table 2 since  

2 2 1

2 20

0 04

ps ps ts ts ts ts

ps ts

ps ts ts

M y g M y M y
g g

I I I



   
    



− −

−
= = = =       (13) 

where psI  and tsI  are second moments of area, psy  and tsy  the distances measured from the neutral axes of the 

beams in their respective spaces. 

Note that the similitude relationships provide the means to communicate the behaviour of the trial model to the 

physical space.  They in effect provide the projected-trial model identified in Table 3, where maximum bending 

moments, reaction forces at the supports, and end displacements both analytically and numerically obtained, are 

tabulated.  Note that the projected-trial models provide an almost perfect match for both analytical and numerical 

models when compared with the full-space results.  A slightly greater mismatch is observed on a direct comparison 

of analytically and numerically obtained results.  Even at this early stage, the benefit offered by scaling is being 

revealed with high levels of conformity. 

Table 3: Detailed comparison of full-scale and projected trial model for beam-strut model 

 

Analytical Numerical (FEM) 

Trial 

Model 

Projected 

Trial Model 

Full-scale 

Model 

Trial 

Model 

Projected 

Trial Model 

Full-scale 

Model 

End Displacement 

(mm) 
5.6065 22.4260 22.425 5.6047 22.4191 22.4190 

Reaction 

force 

(kN) 

Rx @1 

Ry @1 

1.25 

1.25 

20 

20 

20 

20 

1.25 

1.202 

20 

19.232 

19.999 

19.250 

Rx @2 

Ry @2 

1.25 

0.625 

20 

20 

20 

10 

1.25 

0.576 

20 

9.226 

19.999 

9.228 

Maximum Moment 

(MNmm) 
0.3125 20 20 0.313 20.320 20.271 

Maximum Stress 

(N/mm2) 
169.5682 169.5682 169.5682 171.865 171.865 171.865 

 

4.2. Scaling of a Steel Column Exposed to Buckling 



Examined in this section are the phenomena of linear buckling and post-buckling of an important structural 

element, i.e., the I-section column.  The buckling phenomenon might be anticipated to provide a challenge for 

scaled experimentation since initial imperfections can influence the outcome.  Understanding the scaled behaviour 

of buckling for columns and beams under axial compression load is of interest as flexural and torsional stability 

problems can result.  A detailed analytical and numerical examination into the buckling of an I-section aluminium-

alloy column is provided in reference [32].  Flexural buckling is reasonably well captured by the simple 

relationship, 

2

2cr

eff

EI
P

L


=                     (14) 

where crP  is the critical buckling load, E  is Young’s modulus of the material, I is the cross-sectional second 

moment of area, and effL  is the effective length, which is dictated by column boundary conditions. 

Prior to the investigation of the scaled effects on scaled columns, the proposed I-section column model is verified 

analytically and numerically in accordance with the study presented in reference [32].  The details of the full and 

scaled models are provided in Fig. 2.  Initial verification results for critical-buckling loads are tabulated in Table 

4 for both analytical and numerical predictions and contrasted with those of reference [30].  The closeness of the 

predictions provides good confidence in the proposed models.  The simply supported column (6m in length) is 

made of aluminium alloy 5083 with material properties: Youngs modulus 67600E = MPa, Poisson ratio 0 33. =

, and yield stress 159 1y . = MPa.  The stress-strain behaviour of the aluminium alloy is described by the 

Ramberg-Osgood relationship [33], 

1n

y

K
E

 




−

 
= +  

 
 

                   (15) 

where the material constants 0 002K .=  and 8 8202n .=  [34].  

The analytical solution is verified with the Abaqus finite element software package and to obtain the critical 

buckling load, a linear buckling analysis is performed initially. The model makes use of shell elements of type 

S4R with reduced integration, which are a 4-noded doubly curved, thin element and the mesh consists of a total 

of 46800 nodes.  After linear-buckling analysis, post-buckling analysis is performed to observe the behaviour of 

the column on applying nonlinear material properties (i.e., Eq. (15)). The Ramberg-Osgood law is applied in 

Abaqus with deformational plasticity by the specification of two parameters, which are yield offset yK E =  

and the hardening exponent 1n −  [35]. 

 

Figure 2. Finite element model with applied load and boundary conditions and cross-section of the full-scale 

and trial model 

Table 4: Critical buckling load of a simply supported I-section column. 

 
Current Analysis Szymczak and Kujawa [30] 

Analytical Numerical Analytical Numerical 

Linear-buckling load (kN) 494.496 491.901 494.5 491.2 



The main instability analysis is performed in Abaqus using the Static-RIKS command, which is a variation on the 

classical arc-length method for defining an initial geometric imperfection. The global imperfection amplitude is 

set to 1500L  ( L is column length), which generally provides promising results when compared to experimental 

tests [36][37].  With this setup, the model is now primed for investigation of the load-deflection under scaling. 

 

4.2.1. Scaling of flexural column buckling 

 

The finite similitude theory is applied to the models depicted in Fig. 2 with a length scaling factor of 1

4
 =  and 

by means of the zeroth-order theory (i.e., identity Eq. (5)) the structure under scaling is investigated.  The material 

of the column is the same for both scaled and full-scale models with scaling parameters obtained via the scaling 

rules (see Table 2). An initial comparison is made for linear buckling analysis for the full-scale and trial model as 

shown in Fig. 3.   

 

Figure 3. Comparison between linear buckling eigenmodes and eigenvalues (critical buckling load) of full-scale 

and trial model 

The critical load obtained from linear buckling analysis is in exact agreement for both the full-scale and trial-scale 

models, where the full-scale critical load equates to 
2 −

 times that of trial-space model.  This is anticipated from 

Eq. (14), since Table 2 provides the stress and strain relationships 
2

01ps tsg =   and 1ps ts=  , and 

consequently 
2

0ps tsg  = , which on substitution into Eq. (15) gives, 

 

( )
( )

( )( )

( )
( )

( )
( )

2 2 42 2
0 2 2 2 1

0 02 2 2
2

ts tsps ps ts ts

cr crps ts

eff eff effps ts ts

g E IE I E I
P g g P

L L L



 
    

    


−

− −

−
= = = =         (16) 

which is in accordance with force relationship 
2 1

0ps tsg  −=F F  (see Table 2) but since ps ts =  it follows that 

2

0 1g  =  and consequently ( ) ( )2

cr crps ts
P P −= . 

The outcome of the post-buckling, nonlinear-stability analysis is provided in Fig. 4, where the projected trial-

space results are contrasted against the full-scale predictions.  Perfect agreement is achieved for the load-deflection 

response of the column, providing further evidence of the efficacy of the zeroth-order theory in this case. 

 

Mode 1: Eigenvalue=30.744 

 

Mode 3: Eigenvalue=120.563 

 

Mode 2: Eigenvalue=86.267 

 

Mode 1: Eigenvalue=491.901 

 

Mode 2: Eigenvalue=1380.270 

 

Mode 3: Eigenvalue=1929.000 

 

Full-scale Model 

Trial Model 



 

Figure 4. Load–lateral displacement curves for comparison 

4.3. The Thin-section Problem 

 

The relatively simple examples considered thus far satisfy Eq. (4) and the rules of zeroth-order finite similitude.  

It is of interest at this stage to maintain the relative simplicity but introduce a problem that fails to satisfy Eq. (4) 

yet conforms to identity Eq. (6a), i.e., first-order finite similitude.  An important area of active research for scaled 

experimentation is around the concept of geometric similarity as defined by dimensional analysis.  It can be 

desirable on practical grounds to break the rules of geometric similarity especially if thin structural elements are 

involved, where one or more of the structural dimensions are significantly smaller than the others.  For pronounced 

scaling ratios that are often needed when scaling large structures (e.g., bridges, skyscrapers) the limitation imposed 

by thinner sections can be particularly constraining.  Unrepresentative behaviour such as localized buckling and 

tearing can be the product of very thin sections along with standard of-the-shelf items being unavailable.  The 

open literature in this area is underpinned by dimensional analysis and is case dependent involving ad-hoc 

practical fixes and consequently does not provide a systematic unified solution [38–42].  It is of interest therefore 

to assess whether first-order finite similitude can provide any insight into this problem for structural elements.  

The scaling of a cantilever beam under a concentrated load is again examined but, in this case, geometric similarity 

is broken in some manner.  Detailed in Fig. 5 is a rectangular hollow box section cantilever beam possessing the 

critical feature of interest, i.e., a thin wall. 

 
Figure 5. Rectangular hollow cross-section cantilever beam and cross-section 

The detailed geometries are presented in Table 5 for full-scale, trial-1, and trial-2 models.  The scaling factors for 

two trial-space models are set to 1

1

5
 =  and 2

1

10
 =  but imposed on the experimental designs is the constraint 

that the wall thickness th is greater or equal to 1mm (i.e., 1mmth  ).  Note from Table 5 that the geometric 

dimensions h (height), b (width) and L (length) are all scaled according to the geometric scaling rule, i.e., they 

scale with  .  The thickness however is constrained and therefore does not obey this rule and, in both trial-space 

models it is set to the minimum required thickness of 1 mm. 

Table 5: Material properties and geometric dimensions of box-section beams 

 Variables Full-scale Trial-1 model Trial-2 model 

b (mm) 50 10 5 

h (mm) 50 10 5 

th (mm) 4 1 1 

L (mm) 1000 200 100 

Density (ton/mm3 

x10-9) 
7.85 7.85 7.85 

Young's modulus 

(GPa) 
210 210 210 

Yield stress (MPa) 355 355 355 

Poisson ratio 0.3 0.3 0.3 



Case Study 1 

Applied Force (N) 2000 80 20 

Measured tip 

displacement (mm) 
12.14 2.065 0.7 

Case Study 2 Applied Force (N) 4500 215 82.5 

 

 

Figure 6. Physical space and Projected trial models for the cantilever beam 

Shown in Fig. 6 is a schematic of the first order approach applied to the box-section beam involving two scaled 

experiments that are projected onto the physical space and combined to provide a virtual model that attempts to 

capture the behaviour of the full-scale system.  The use identical of materials throughout reduces the relationships 
2

01 1 1 1ts psg E E  =  and 
2

02 2 2 1ts psg E E  =  to 
2 1

01 1 1g  −=  and 
2 1

02 2 2g  −=  respectively, which simplifies the force and 

stress relationships in Table 2 to  

 
2 2 2

1 1 1 1 1 2 2ps ts ts tsF F R ( F F )  − − −= + −                         (17a) 

1 1 1 2ps ts ts tsR ( )   = + −                         (17b) 

 

where 
1R  is the parameter defined by Eq. (10) that is required to be set, where the lateral beam deflection is, 

 

( )1 1 1

1 1 1 1 1 2 2ps ts ts tsU U R U U  − − −= + −                  (17c) 

 

Two case studies are considered with case study 1 limited to linear behaviour described by analytical relationships 

and case study 2 examining the nonlinear response but analysed numerically.  The steel material used in the study 

is defined to behave as an elastic, perfectly plastic material. The loading conditions for both case studies are 

detailed in Tab. 5.  Consider then the linear response of the cantilever, and since 1 , 2  and psF  are known, a 

convenient approach for the determination of 1R  is to firstly assume zeroth-order relationships for force and set 

2

1 1ts psF F=  and 
2

2 2ts psF F= , which ensures Eq. (17a) is satisfied.  Secondly, the free-end tip displacements for 

each beam provided by the analytical relationships where 
3

1 1

1

1 13

max ts ts

ts

ts ts

F L
U

E I
= and 

3

2 2

2

2 23

max ts ts

ts

ts ts

F L
U

E I
=  can be substituted 

into Eq. (17c) to give the value of 1R  to be, 
1

1 1

1 1 1

1 1 2 2

max max

ps ts

max max

ts ts

U U
R

U U



 

−

− −

−
=

−
                    (18) 

which provides a simple procedure for the determination of 1R  in this case, which in this case provides 

1 0 5465R .= . 

The tip displacement for the full-scale and virtual model is calculated (with 1 0 5465R .= ) and not too 

unexpectedly an exact match in this case, since 1R  is set to ensure this outcome.  With 1R  determined, Eq. (17c) 

can now be employed to provide a prediction for the beam displacement shown in Fig. 7(a), which perfectly 

replicates the behaviour of the full-scale beam.  Similarly, Eq. (17b) provides the means to examine normal stress, 

the results of which are presented in Fig. 7.  Note that normal stress at the outer fibres of the beam is in perfect 

agreement between the virtual and full-scale models as indicated in Fig. 7(b).  However, this is not the full story 

since there is a deviation in the vicinity of the upper and lower walls of the virtual and full-scale beams.  The 

normal stress is plotted along the mid-span of the two beams in Fig. 7(c).  The reason for the difference is 



connected to the breakage of geometric similarity, which resulted in the two projected models in Fig. 6 having 

different outer-wall thicknesses and satisfying the inequalities 
1 1

1 1 2 2ts tsth th th − −  .  This means that stress values 

exist in the virtual model that is not present in the full-scale model as illustrated in Fig. 7(c).  The issue is of little 

real concern, however since the important field information recovered from the virtual is that which overlaps with 

the full-scale model and for this example at least full replication is achieved. 

 

To examine the nonlinear response of the beam (case study 2) the commercial software package Abaqus is applied, 

with the beam represented with 2-noded linear beam elements (B31). The first order scaling parameter 1R  is 

obtained using Eq. (17a) using the forces detailed in Tab. 5, which returns a value 1 0.304R = .  Eq. (17c) is then 

applied to calculate the beam displacement of the first order virtual model, which is contrasted against the full-

scale model as presented in Fig. 8(a), where an exact match is revealed.  The reason for the exact prediction is 

shown in Fig. 8(b), where Eq. (7b) provides for perfect replication of the nonlinear stress-strain behaviour.   

 

The study in this section demonstrates that first-order finite similitude can return an exact representation for a 

situation where the traditional definition of similarity does not hold.  Although a relatively simple example and 

the focus of future work (with and without buckling), it nevertheless demonstrates two important features, i.e., an 

exact new form of similitude exists and breaking geometric similarity to a certain degree is possible and potentially 

very useful. 

 

 
 

(a)                                                                                         (b) 

 
(c) 

Figure 7. Global and local behaviour of the stress field (a) Beam deflection for the proposed design (b) 

Longitudinal distribution of the maximum normal stress (@z=h/2 ), (c) Lateral distribution of the normal stress 

at mid-span. 

 

(a)                                                                                        (b) 

Figure 8. Nonlinear response of a cantilever beam subjected to an end load (a) Beam deflection along the length 

of the beam (b) Stress-strain curve at the clamped end. 

5. SCALING OF AN EIGHT-STORY LONG-SPAN STEEL BUILDING 



This section focuses on the application of zeroth and first-order finite similitude to the earthquake loading of a 

high-rise, long-span building structure. This type of building is selected as the case study to focus the analysis on 

how the finite-similitude theory can be applied in seismic scenarios.  It is recognized as mentioned above that 

pronounced scaling factors can give rise to significant scale effects arising from mass and gravity.  The traditional 

“solution” to this problem is additional mass [14] or incrementation of the base acceleration.  The case study here 

is designed to examine this problem to ascertain whether the new theory can provide a possible solution.  Added-

mass approaches are invariably breaking geometric similarity and increases in acceleration limit the materials that 

can be employed and can rule out the use of identical materials.  Acceleration can be shown to be inversely 

proportional to the dimension scaling factor  , so it can take on impractically high values for buildings such as 

high rises.   

In order to provide realism in the study, the Chi-Chi Earthquake, which yields very high dynamic earth pressures, 

is applied as the time-acceleration ground motion (depicted in Fig. 9 (a) [43]).  All beams and columns in all eight 

stories are identical (with the same cross-sectional area, length) and slabs in all eight stories. The building has a 

span of 7.2 m on each side with a floor height of 3.2 m and the slab thickness is assumed to be of 100 mm and the 

beams and columns are modelled with I sections (IPE450) and box profiles (Box 500×500×30), respectively [44]. 

The whole structure and all components are modelled in the Abaqus finite element software as depicted in Fig. 9 

(b), where the B31 linear beam element (i.e., a first-order, three-dimensional beam element) is utilized to simulate 

the columns and beams. The use of this element significantly reduces the number of degrees of freedom involved 

providing a convenient platform for repeat calculations.  The slab is meshed with S4R elements (i.e., four-node 

shell elements) with each node having six degrees of freedom. 

 

(a) (b) 

Figure 9. (a) Acceleration – Time graph for Chi-Chi earthquake (b) The eight-story building CAD model and 

finite element meshed parts 

Another important consideration when modelling steel or reinforced concrete structures is critical damping.  

Abaqus has several methods for the dissipation of energy in dynamic systems with the specification of damping 

sources.  Four different damping sources exist in Abaqus; these are: material and damping system; damping with 

time integration; modal damping; and global damping. In the case of earthquake phenomena best practice for 

implicit and explicit methods is Rayleigh damping [45,46] with the critical viscous damping factor for this analysis 

is set to 5% [47–50].  The scaled models are designed according to the similarity laws with identical materials 

used for both full-scale and trial models to test out their ability to capture the effects of earthquake loading on a 

full-scale building structure.  The dimension scales selected for the study are 1

1

10
 =  and 2

1

20
 = , and both zeroth 

and first-order theories are applied with details presented in Table 6.   

Table 6: Material properties for physical, trial 1 and trial 2 models 

Properties Physical Model Trial 1 Model Trial 2 Model 

Material (Steel) S355 S355 S355 

Density (kg/m3) 7850 7850 7850 

Young’s modulus (GN/m2) 210 210 210 

Yield stress (MN/m2) 3.55 3.55 3.55 

Damping ratio ( ) 5% 5% 5% 

Gravity (m/s2) 9.807 9.807 9.807 

Acceleration (m/s2) 1 1 1 

Scaling factors 
0 1 =  1 1 10 =  2 1 20 =  

Time (s) 
0

1g =  1
1 10g =  2

1 20g =  

Additional mass (kg)  No add. mass No add. mass 



The aim here is to adopt identical materials for both full-scale and trial models and consequently the zeroth order 

relationships for density (
3

01 1 1ps ts

   = ) and Young’s modulus (
2

01 1 1 1ps tsE g E = ) reduce to 1ps ts =  and 

1ps tsE E=  with 
3

01 1

  −=  and 
1 1g = .  This latter condition provides the zeroth-order acceleration relationship 

1

1 1ts ps −=a a  (see Table 2), which confirms that as 
1 0 →  the acceleration applied to the scaled model increases 

as 1

1
− → .  It is appreciated that increasing the acceleration can return promising results but there is patently a 

limit to what is practicable.  Staying within a reasonable range for acceleration for pronounced scaling factors 

excludes both dimensional analysis and zeroth-order finite similitude.  

It is of interest to examine the scope of first-order finite similitude, which combines the information from two 

scaled experiments, to deal with this issue.  The first-order acceleration relationship 
2 1 2 1 2 1

1 1 1 1 1 1 1 2 2 2ps ts ts tsg R ( g g )  − − −= + −a a a a  (see Table 2) is the focus here in view of the limitations mentioned 

above.  Recall that each trial model is restricted to designs utilising the same material and zeroth-order 

considerations provide the relationships 
3

01 1

  −=  & 
3

02 2

  −=  and 1 1g =  & 2 2g = .  Observe that these latter 

two conditions mean that the first-order relationship for acceleration reduces to 1 1 1 1 1 2 2ps ts ts tsR ( )  = + −a a a a .  

The ground acceleration (as shown in Fig. 9 (a)) is assumed to act in one direction with identical accelerations 

applied in all models, i.e., 1 2ps ts tsa a a= = , and additionally it is an evident requirement is that gravitational 

accelerations are equal, i.e., 1 2ps ts tsG G G= = . These constraints imposed on the equation 

1 1 1 1 1 2 2ps ts ts tsR ( )  = + −a a a a  provide 1

1 2

1

1 18R


 

−

−
= = . 

 

Figure 10. Numerical deformed shapes of the physical and scaled models 

The full-scale and both trial models are simulated by the Abaqus finite element software (details above) and the 

results obtained are presented in Fig. 11. The roof displacement and the story drift of the physical model and the 

first-order virtual model are presented using the first-order displacement relationship in Tab. 2. 

The results obtained illustrate the vast promise and the benefits of two scaled experiments over a single 

experiment.  This example demonstrates the ability of the finite similitude theory to evaluate the behaviour of 

structures with information gleaned from two experiments.  The result in Fig. 11 (a) shows that the extracted 

results are orders of magnitude more accurate than those obtainable from a single experiment.  It also worth 

emphasising that no recourse to additional mass or other acceleration increments is needed and the way this is 

achieved is not by changing the problem but by changing the similitude condition. 

 
(a) (b) 

Figure 11. (a) Comparison of the top displacement of the full-scale model, first-order and zeroth-order virtual 

models (b) Story drift analysis of the full-scale and virtual models 



Additionally, to examine the nonlinear dynamic response of the eight story long-span building depicted in Fig. 9 

(b), it is subjected a gradually increasing cyclic dynamic loading as detailed in Fig. 12(a).  Nonlinear analysis is 

performed on each of the trial models, and the results of these are combined in accordance with the first-order 

theory and presented in Fig. 12(b).  Examination of this figure reveals a high level of agreement with the full-

scale model confirming once again the efficacy of the first order similitude condition.  All the models in this study 

are made of identical material with properties tabulated in Table 6 and 1 18R =  as in the earthquake loading case. 

 

(a)       (b) 

Figure 12. (a) Applied cyclic loading scheme (b) moment-rotation response of the full-scale and virtual models  

6. SEISMIC PERFORMANCE OF A STEEL BUILDING EQUIPPED WITH NONLINEAR FLUID 

VISCOUS DAMPERS 

Additional sophistication is incorporated into the building design investigated in this section with the inclusion of 

dampers in the structure.  The steel construction frame examined involves eight stories and six bays in each 

direction, where the area plan is 36m x 36m, and the elevation view of the structure is detailed in Fig. 13 with 

column and beam sections [51] identified.  The detailed section properties of the beams and columns are listed in 

Table 7.  The steel used for all structural elements in full-scale and scaled-down models is ST37 steel grade.  In 

addition, to perform a nonlinear time history analysis, the commercial finite element Sap2000 software package 

[52] is used and the Northridge (1994) acceleration-time (see Fig. 14 (a)) data is applied in the x-direction of the 

building as a ground motion. The structural damping is estimated to be at 5% and the placement of the fluid 

viscous dampers (FVDs) and the building details are in accordance with reference [51].  

Table 7: Cross-sections of the beams and columns[51] 

Structure Story C1 C2 B1 B2 

8-story 

steel 

frame 

1 RHS 360 × 20 RHS 550 × 30 W 18 × 46 W 21 × 111 

2 RHS 240 × 20 RHS 500 × 30 W 18 × 46 W 21 × 111 

3 RHS 200 × 20 RHS 450 × 25 W 18 × 46 W 21 × 111 

4 RHS 180 × 18 RHS 450 × 25 W 18 × 46 W 21 × 111 

5 RHS 180 × 18 RHS 400 × 20 W 18 × 46 W 21 × 93 

6 RHS 180 × 18 RHS 400 × 20 W 18 × 46 W 21 × 73 

7 RHS 180 × 18 RHS 360 × 20 W 18 × 46 W 21 × 50 

8 RHS 180 × 18 RHS 300 × 20 W 18 × 40 W 21 × 44 

Slab (Shell) All 100 mm thickness 

It is widely recognised that one of the most effective devices to dissipate energy during the action of an earthquake 

is a fluid viscous damper [53]. The details of the fluid viscous damper used in this study are provided by Mehdi 

et al. [51].  The main parameters of the viscous dampers are the damping coefficient, velocity exponent   and 

the lateral stiffness provided by the supporting bar, which in that case are 2942.5 kNs/m, 0.5 and 39004 kN/m 

respectively.  



  

Figure 13. Elevation view and the plan grid layout of the model 

The fluid viscous damper is defined as a link property in Sap2000 and the fluid damper is constrained to act only 

along the axial direction of the damper and thus constrained in directions that are perpendicular to its axis. Fig. 

14 (b) shows the 2D elevation view of the structure along with the placements of the FVDs. 

 

(a)    (b) 

Figure 14. (a) Applied Northridge earthquake record (b) Sap2000 elevation view of the model with FVDs  

Based on a mesh-sensitivity study (see Tab. 8), the minimum numbers of elements for the beams and columns to 

guarantee convergence of the numerical solution, capturing the behaviour of the structure are 320 and 200, 

respectively; this mesh is applied in the presented case study.  

Table 8: Mesh sensitivity analysis results 

Column elements Beam elements Total number of elements Max. top displacement (m) 

200 320 520 0.3705 

1000 1600 2600 0.3706 

4000 6400 10400 0.3706 

8000 12800 20800 0.3699 

 

With the full-scale model now defined, the geometric scaling parameters are set for trial models 1 and 2, which 

are 1

1

6
 =  and 2

1

10
 = , respectively.  These scaling factors should be selected carefully according to laboratory 

capacities and equipment limitations.  As a preliminary investigation a controlled displacement pushover analysis 

is performed prior to full dynamic analysis of the proposed building.  Such an analysis provides an opportunity to 

observe nonlinear behaviour under quasistatic loading.  This is facilitated by the application of hinge properties 

applied automatically to the ends of the beams to observe how localised plastic behaviour translates to an overall 

nonlinear response.  The nonlinear static pushover analysis is conducted on both trial models and a moment-

rotation graphs are produced and presented in Fig. 16 (b), where perfect agreement, between full scale and 

individual scaled models is revealed.   



 

Figure 15. Full-scale and scaled models of the 8-story steel building 

For dynamic analysis, it is not possible to capture the buildings behaviour using a single scaled model due to the 

added complexity involved, necessitating the need for additional scaling degrees of freedom. In this case, the 

scaled models are analysed using the same software (i.e., Sap2000) to observe their behaviour to predict the full-

scale model behaviour under earthquake loading. The configuration of the three models is presented in Fig. 15 

along with corresponding projected models.  Given that identical materials are used throughout the scaling 

parameters related to density and time are set to 
3

01 1

  −=  & 
3

02 2

  −=  and 1 1g =  & 2 2g = .  The boundary and 

loading conditions are defined as in the previous case study, where gravitational acceleration and applied 

acceleration is equal for the three models, which as above, returns 1 12 5R .=  from the relationship 1

1 2

1

1R


 

−

−
=    

The damping coefficients for structural damping and the FVDs follow different scaling rules as described in 

reference [54].  The Rayleigh damping coefficients for structural damping obeys the relationship 
2

ps tsc c −= , 

which can be contrasted with the damping coefficients for the FVDs, which satisfy the relationship ps tsc c −= , 

where this latter condition assumes no change in the damping fluid used.  Note, however, it is possible to achieve 

the identity 
2

ps tsc c −=  for the FVDs with a change in damping fluid. This is a practical change but it does require 

that the damping fluid has an appropriate viscosity [55,56].  Both these options are explored here. 

Fig. 16 (a) and 17(a) present the behaviour of the full-scale model and the virtual model with the damping 

coefficients for the FVDs behaving as ps tsc c −=  and 
2

ps tsc c −= , respectively.  It is clear on examination of 

Fig. 16 (a) that there is a significant difference between the virtual and full-scale results with a mismatch in 

oscillation frequency.  In comparison to the prediction in Fig. 16 (a), Fig. 17 (a) highlights the benefits of changing 

the silicone oil in the scaled FDVs.  In this case the behaviour of the FVDs follows the same scaling behaviour as 

structural damping and the outcome is a small overall error.  The results demonstrate promising agreement with 

the full-scale model outputs and indicate the benefit of careful material selection.  Further evidence of the high 

level of agreement between the models is found in Figs. 17 (b), (c) and 18 with results for story displacement & 

inter-story drift ratios, and the base shear force, respectively.  Overall, the results obtained from the first-order 

finite similitude theory provide confidence in the efficacy of the approach for predicting the behaviour of tall 

buildings.   
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(a)                                                                                 (b) 

Figure 16. (a) Roof displacement comparison between full-scale and virtual models with the same silicone oil in 

the trial nonlinear FVDs, (b) Moment-rotation comparison of full-scale and zeroth-order projected trial models. 

 

(a)    (b)           (c) 

Figure 17.  (a) Roof displacement comparison of the full-scale and virtual model with alternative silicone oil in 

the trial nonlinear FVDs (b) Story displacement and (c) inter-story drift ratio comparison for full-scale and 

virtual models 

 

Figure 18. Base shear force comparison of the full-scale and virtual models 

 

CONCLUSION 

The paper focused on the application of the finite-similitude theory by means of an initial examination of structural 

elements through to the analysis of whole-building structures under earthquake excitation.  Two trial models at 

distinct scales were combined to predict full-scale behaviour in situations where classical dimensional analysis 

failed.  The efficacy of this approach was demonstrated with a high level of accuracy returned in the results and 

no requirement for additional mass or base accelerations to be artificially raised.  The following conclusions can 

be drawn from the specific trials involving both analytical and numerical analysis: 

1. The robustness and efficacy of a new form of similitude involving two scaled experiments have been 

reaffirmed through analytical and numerical studies applied to basic and practical structural engineering 

case studies. 

2. It has been demonstrated how the first-order finite similitude rule provides an approach that enables 

identical ground accelerations (and gravitational) to be applied to full and scaled models.  This was 

achieved without recourse to material substitutions and extraordinary experimental setups (e.g., use of 

centrifuge systems or additional mass techniques).  This was demonstrated for an eight-story steel 

building case study where the two-experiment approach returned predictions of full-scale behaviour with 



no error (i.e., 0% error) contrasted against a like-for-like single-experimental result (i.e., no additional 

mass, same material) of 90% error.  

3. The first-order finite similitude rule has been confirmed to provide accurate predictions for a high-rise 

building containing non-linear viscous dampers, although a degree of physical modelling was required, 

i.e., the substitution of damping oil in the scaled dampers.  The case study demonstrated that the 

combination of two trial models could replicate the physical behaviour of the full-scale model with 

accuracy for roof displacement and maximum story displacement.  

4. The first-order finite similitude rule has been shown to be able to break the rule of geometric similarity 

as traditionally defined.  This was demonstrated for a thin-walled beam, where the theory successfully 

captured the exact global behaviour of the full-scale model for displacement and stress, despite the wall 

thickness not following geometric scaling.  

5. Nonlinear material responses were captured exactly in the thin-sectioned cantilever beam and in the 

pushover analysis for an 8-story steel building.  No consideration was given to ductile responses arising 

from concrete cracking at this stage but there exists no barrier to their inclusion given the generic nature 

of the proposed scaling approach. 
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APPENDIX 

Nomenclature 

psE  Young modulus of the physical space 

tsE  Young modulus of the trial space 

psF  Force of physical space 

tsF  Force of the trial space 

g  Time scaling factor 

psI  Second moment of area of physical space 

tsI  Second moment of area of trial space 

n  Ramberg-Osgood material constant 

K  Ramberg-Osgood material constant 

  Stress field 

y  Yield stress 

crP  Linear buckling critical load 

1R  First-order scaling parameter 

psU  Displacement of the physical space 

1tsU  Displacement of the trial space 1 

2tsU  Displacement of the trial space 2 

1tsL  Length of the cantilever beam in trial space 1 

2tsL  Length of the cantilever beam in trial space 2 

  Fluid viscous damper velocity exponent 

c  Damping coefficient 

tsv  Control volume velocity of trial space 

psv  Control volume velocity of physical space 

psv  Velocity of the physical space 

tsv  Velocity of the trial space 

0

  Scalar for transport equation for field   

  Physical field 

0 0T   Scaled transport equation for field   

  Density scaling factor 

v  Momentum scaling factor 

u  Movement scaling factor 

1  Volume scaling factor 

ts
a  Acceleration of physical space 

ts
a  Acceleration of trial space 



G  Gravitational acceleration 

  Length scalar 

  Control volume   boundary 

ts  Strain of trial space 

ps  Strain of physical space 

  Poisson ratio 

ps  Density of physical space 

ts  Density of trial space 

  Arbitrary coordinate in the reference space 
  Physical field 

  Control volume 

ps  Control volume over the physical space 

ts  Control volume over trial space 

ps

  Reference space for the control volume 

ts

  Reference space for the control volume 

ref

ts

  Reference control volume in trial space 

 

 


