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Abstract

Facial expression spotting is the preliminary step for
micro- and macro-expression analysis. The task of reli-
ably spotting such expressions in video sequences is cur-
rently unsolved. The current best systems depend upon opti-
cal flow methods to extract regional motion features, before
categorisation of that motion into a specific class of facial
movement. Optical flow is susceptible to drift error, which
introduces a serious problem for motions with long-term
dependencies, such as high frame-rate macro-expression.
We propose a purely deep learning solution which, rather
than tracking frame differential motion, compares via a
convolutional model, each frame with two temporally local
reference frames. Reference frames are sampled accord-
ing to calculated micro- and macro-expression durations.
We show that our solution achieves state-of-the-art perfor-
mance (F1-score of 0.105) in a dataset of high frame-rate
(200 fps) long video sequences (SAMM-LV) and is competi-
tive in a low frame-rate (30 fps) dataset (CAS(ME)2). In this
paper, we document our deep learning model and param-
eters, including how we use local contrast normalisation,
which we show is critical for optimal results. We surpass
a limitation in existing methods, and advance the state of
deep learning in the domain of facial expression spotting.

1. Introduction

Facial expression is the main way people convey visual
information of human emotion. It can predict a person’s
current state of emotion. Facial expressions can be classi-
fied into two groups: macro-expression (MaE) and micro-
expression (ME). These classifications are based on their
relative duration and intensity, where MaE (also known as
a regular facial expression) lasts from 0.5 to 4.0s [26] and
has higher intensity; ME occurs in less than 0.5s and has
lower intensity. ME occurs more frequently in high stake
and stressful circumstances [6, 7]. As it is an involuntary
reaction, the emotional state of a person can be revealed

through analysing MEs.
For ME spotting, due to limited dataset availability, early

works are based on datasets consisting of short clips con-
taining categorised ME (i.e., SAMM [4], SMIC [14], and
CASME II [25]). Spotting with clips containing ME will
result in high detection rate regardless. Hence, the recently
created long video datasets, SAMM Long Videos (SAMM-
LV) [27] and CAS(ME)2 [18], were created to better repre-
sent spontaneous emotion for ME and MaE spotting. This
paper focuses on automated spotting of MaE and ME on
SAMM-LV and CAS(ME)2.

Most of the previous methods utilise LSTM or opti-
cal flow to detect temporal correlation of video sequences.
LSTM is a recurrent neural network that computes sequen-
tial time steps with a new element of the input sequence
being added to the network at each time step [20]. Opti-
cal flow computes the differences of two image frames ev-
ery time when it is applied within a video sequence. Both
LSTM and optical flow are computationally expensive. In
addition, optical flow has weaknesses such as drifting over
frames [2] and is very susceptible to illumination changes
[23]. We also noticed that previous attempts lack duration
centred analysis. We take advantage of the major difference
between ME and MaE (they occur for different duration,
where ME occurs less than 0.5s while MaE occurs in 0.5s
or longer) and propose a two-stream network with a differ-
ent frame skip based on the duration differences for ME and
MaE spotting. The main contributions are:

• Our approach is the first end-to-end deep learning ME
and MaE spotting method trained from scratch using
long video datasets.

• Our method uses a two-stream network with tempo-
ral oriented reference frame correspond to the duration
difference of ME and MaE. The two-stream network
also possesses shared weights to mitigate overfitting.

• The network architecture is lightweight with the capa-
bility of detecting co-occurrence of ME and MaE using
a multi-label system. This method has the potential to
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be used on lightweight devices (e.g., smartphones) in
real-time.

• To make the network less susceptible to uneven il-
luminations, Local Contrast Normalisation (LCN) is
included into our network architecture. LCN drasti-
cally improves the overall network performance across
a range of configurations and parameters. We also
shows that LCN is essential in our network. Our 3-
layer network with LCN outperforms deeper network
(i.e. 20-layer network).

2. Related Work

Preprocessing The preprocessing steps usually begin
with facial alignment. Facial alignment is usually con-
ducted by using facial landmark detection followed by crop-
ping and resizing the detected facial region. Next, it is
common to extract the facial region by using masks or fa-
cial segmentation. Face masking removes unwanted regions
[5]. Facial segmentation consists of converting images into
uniform blocks [10] or selecting regions of interest (ROI)
such as areas with higher movements such as the eyebrows,
nose and mouth [29, 17]. The comparison of preprocessing
methods of various approach is shown in Table 1.

Conventional approach Davison et al. [5] performs ME
spotting based on 3D Histogram of Oriented Gradients (3D-
HOG) by taking Chi-square distance of local regions. This
method uses piecewise affine warping to mask off unre-
lated regions. He et al. [10] uses the magnitude of max-
imal difference of optical flow features. This method also
uses facial blocks which divides the face into a 6 × 6 re-
gion. Zhang et al. [29] uses a spato-temporal feature fusion
method using histogram of oriented optical flow of selected
ROIs. Instead of facial blocks, this method uses ROI-based
method (6 ROIs for eyebrows, 2 ROIs for nose and 4 ROIs
for mouth). All of these methods contains feature extraction
process. This requires a sequence of steps, such as region
of interest (ROI) selection and facial alignment, which are
computationally expensive.

Deep learning approach For deep learning based ap-
proaches, Tran et al. [22] use conventional features and
feed them into a long short-term memory (LSTM) network
to detect movement. Verburg et al. [24] implement His-
togram of Oriented Optical Flow (HOOF) as input fea-
tures and use LSTM to learn temporal information. This
method uses post-processing, which suppresses the over-
lapping neighbours of spotted interval. Sun et al. [21] use
a spatio-temporal cascaded network that consists of CNN
and attention-aware LSTM. However, these methods were
trained and evaluated on short ME video clips. Evaluating
on a few seconds of short ME clips will have a higher de-
tection rate as each video contains at least one ME. It does

Table 1. A comparison of preprocessing steps and input types used
in existing ME spotting methods and our proposed method.

Method Preprocessing Input

Davison et al. [5]
Face alignment,
face masking

3D-HOG features

Tran et al. [22] facial alignment
LBP-TOP, HOG-TOP
HIGO-TOP

Verburg et al. [24] facial alignment, ROI Optical flow

Sun et al. [21]
facial alignment,
feature matrix processing

Images,
optical flow

He et al. [10]
Face alignment,
uniform facial blocks

Optical flow of
facial blocks

Zhang et al. [29] Face alignment, ROI
Optical flow,
ROI specific pattern

Pan et al. [17] Face alignment, ROI Images, ROI
Our approach Face alignment, LCN Images

not resemble a real-world situation, where ME occurrence
is rare and does not happen every few seconds.

Pan et al. [17] is the only deep learning method evalu-
ated on long video datasets. However, it did not train from
scratch using a ME dataset and is not an end-to-end so-
lution. Instead, it uses a pre-trained deep learning model
as a feature extractor, optical flow for face detection and
ROI extraction. This method classifies each image sequence
into either ME, MaE or natural frames. This classification
method assumes that ME and MaE are mutually exclusive.
On the contrary, ME and MaE occur simultaneously in both
datasets and contradicts this assumption. Hence, we address
this issue by designing a new network with multi-label de-
sign.

3. Proposed Method

Our goal is to detect ME and MaE within long video
sequences. By using the duration difference of ME and
MaE, we propose a two-stream 3D-Convolutional Neural
Network (3D-CNN) with temporal oriented frame skips.
We define the two “streams” as ME and MaE pathways,
as illustrated in Fig. 1. They are structurally identical net-
works with shared weights, but differ in frame skips. We
use few convolutional layers and pool all the spatial dimen-
sions before the dense layers using global average pooling.
This design constrains the network to focus on regional fea-
tures, rather than global facial features. Next, we further
propose that normalising the brightness and/or contrast of
the images will be critical for generalisation, as there is
likely more variation in skin tone and brightness. There-
fore, we apply LCN to all images before presented to our
network.

2



Figure 1. Network architecture of our two-stream 3D-CNN. It is lightweight as it has only 3 layers (4 layers if you include LCN). Temporal
oriented frame skip based on the duration differences of ME and MaE (where ∆tME < ∆tMaE). LCN is applied using a convolutions
kernel which performs local contrast normalisation as described in Equation 1. Each convolutional block consists of depthwise separable
convolution, batch normalisation and dropout. The residual dense layer possesses the skip connections that shares weights. Two dense
nodes were used at the end to resemble the presence of ME and MaE.

3.1. Preprocessing

Facial Alignment OpenFace 2.0 [1] is used for facial
alignment. It is a general-purpose toolbox for facial analy-
sis. OpenFace uses Convolutional Experts Constrained Lo-
cal Model (CE-CLM) [28] of 84-points for facial landmark
tracking and detection. Based on the detected facial land-
marks, the face in each frame of a video sequence is aligned
and extracted. In our experiment, image resolution is 112 ×
112 pixels, which is the default output resolution of Open-
Face.
Local Contrast Normalisation (LCN) LCN [12] was in-
spired by computational neuroscience models that mimic
human visual perception [15] by mainly enhancing low con-
trast regions of images. LCN normalises the contrast of an
image by conducting local subtractive and divisive normal-
isations [12]. It performs normalisation on local patches
(per pixel basis) by comparing a central pixel value with its
neighbours. The unique feature of LCN is its divisive nor-
malisation, which consists of the maximum of local vari-
ance or the mean of global variance. If an area of image has
very low variance (approximately 0), dividing with a small
value will form a bright spot. Dividing using the mean of
global variance mitigates this issue. The main advantage
of this method is robustness towards the change in bright-
ness or contrast (shown in Figure 2). The facial features
are well preserved despite the random changes in brightness
and contrast. This can be a solution to address the weak-
ness of overused conventional optical flow method of deal-
ing with uneven lighting. In our implementation, Gaussian
convolutions are used to obtain the local mean and standard
deviation. Gaussian convolution acts as a low pass filter
which reduces noise. It also speeds up the local normalisa-
tion process as it is a separable filter (where 2-dimensional
data can be calculated using 2 independent 1-dimensional

Figure 2. Preprocessing: (Top) Face alignment and data augmen-
tation (randomised brightness and contrast change) on a subject of
SAMM-LV; and (Bottom) Image normalised using LCN. Despite
the brightness and contrast differences, the facial features remain
well-preserved.

functions).
The general equation of LCN can be described as

g(x, y) =
f(x, y)−mf (x, y)

max(σf (x, y), c)
(1)

where f(x, y) is the input image,mf (x, y) is the local mean
estimation, σf (x, y) is the local variance estimation, c is the
mean of local variance estimation and g(x, y) is the output
image.

3.2. Network Architecture

We propose a two-stream network using a 3D-CNN (net-
work architecture shown in Figure 1). Our network takes
advantage of the duration differences of ME and MaE and
encouraging one network to be more sensitive to ME and
the other to MaE. This is made possible by using a different
number of skipped frames in each respective stream (using
the maximum duration of a ME, 0.5s, as the threshold for
the duration difference). Our network consists of depthwise
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separable convolutions, which has about 10% less parame-
ters compared to regular convolution counterpart.
Input Layer The input of this network consists of 4 im-
ages. The frame pair in the first stream has a shorter frame
skip compared to the latter pair. The frame skips are deter-
mined based on the k-th frame. The k-th frame, described
by Moilanen et al. [16], is the average mid-point of odd-
numbered facial expression interval of the whole dataset.
These pairs are then fed into two separate but identical neu-
ral networks with shared weights.
Weighted loss function To the best of our knowledge, we
are the first in ME spotting to weight imbalanced datasets
using a loss function. The datasets used in our experiment
are imbalanced, and there are more neutral frames relative
to frames containing ME or MaE. We also weighted the loss
based on ME and MaE, as ME occurs less than MaE. The
loss can be described as

Loss = −
C′∑
i=1

Mi · [W · ti · log(si)− (1− ti) · log(1− si)] (2)

where ti is ground truth labels, si are the predictions, C ′ is
the number of expression types (C ′=2 in our case, for ME
and MaE), W is the weighting factor that functions to pe-
nalise more when the network predicts ME/MaE wrongly as
neutral and Mi is the weighting factor for expression (ME
or MaE).

We only apply weighted loss function when training
SAMM-LV as we found out model trained with SAMM-
LV improves with weighted loss function. The effects in
CAS(ME)2 is negligible. We used C ′ = 2, M0 = 0.9 (for
ME), M1 = 0.1 (for MaE). Coefficient W used is 3. All the
weighing factors are used to address the imbalance dataset.
W is used to address different number of ground truth labels
of ME/MaE and neutral; M0 and M1 is used to address the
imbalance labels of ME and MaE. The model performance
of different weighing factors is shown in Table 8.
Depthwise Separable Convolution We use depthwise sep-
arable convolution of MobileNet [11] that reduces total
trainable parameters with minimal performance impact. It
consists of depthwise and pointwise convolution. Depth-
wise convolution is convolution applied on individual chan-
nels instead of all channel at once (as in regular convolu-
tional). Pointwise convolution is convolution that uses a
1 × 1 kernel with a third dimension of d (where d is the
number of channels) on the feature maps.
GAP and Residual Dense Layer A global average pool-
ing (GAP) layer is used to flatten the convolution output
and enforce modelling of localised facial movements. It is
followed by the final hidden layer consisting of a residual
dense layer. This layer consists of two fully connected lay-
ers with skip connections inspired by ResNet [9].
Output Layer The output layer consists of two dense nodes
representing the presence of ME and MaE. A sigmoid acti-

Table 2. Duration analysis of SAMM-LV and CAS(ME)2.
Dataset SAMM-LV CAS(ME)2

Type of Expression ME MaE ME MaE
Minimum (s) 0.15 0.51 0.27 0.10
Mean (s) 0.37 2.17 0.42 1.25
Maximum (s) 0.51 25.88 0.53 3.90

vation function is used as the output, and is in the range of
0 and 1.

4. Experiment
Our experiment involves an end-to-end 3D-

convolutional network using leave-one-subject-out (LOSO)
cross validation. This section provides dataset information
and introduces a novel move-to-neutral ratio which esti-
mates the movements of a subject in a dataset. Training
details of our experiment is also included.

4.1. Datasets

The datasets used are SAMM Long Videos (SAMM-LV)
[27] with 147 long videos containing 343 MaEs and 159
MEs; and CAS(ME)2 [18] with 87 long videos contain-
ing 300 MaEs and 57 MEs. The duration analysis of MEs
and MaEs in the long videos are shown in Table 2. It is
noted that the ME duration of SAMM-LV is shorter than
CAS(ME)2, but the MaE duration is longer. The original
ground truth of these datasets consist of onset, apex, and
offset frame labels of each facial expression. We label the
ground truth of movement from the onset frame to the offset
frame, inclusively. Our ground truth consists of two labels
of binaries where “0” represents absence while “1” repre-
sents presence of ME or/and MaE.

4.2. Move-to-neutral ratio

We introduce a new metric named move-to-neutral ra-
tio to analyse the subject of dataset used. In LOSO cross
validation, by knowing the amount of movements (ME or
MaE) of each subject, we can estimate the amount ME or
MaE in each subject. As each subject of the dataset used has
different numbers of frames with movement (ME or MaE)
and duration of recorded videos, the proportion of move-
ments to video duration of each subject is different. This
can result in easier predictions on some subjects as they
have more movements and vice versa. The move-to-neutral
ratio of each subject is shown in Figure 3. The average
move-to-neutral ratio for both datasets are approximately
0.40 (SAMM-LV) and 0.05 (CAS(ME)2), which shows that
both are imbalanced as most of the videos consist of neutral
frames. However, this metric is solely based on the move-
ments labelled in the ground truth, which consists of MaE
and ME. Other movements such as head movements might
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Figure 3. Move-to-Neutral Ratio for each subject of SAMM-LV
and CAS(ME)2. It shows that every subject has different relative
number of movement (ME or MaE) to neutral frames. From the
average move-to-neutral ratio, SAMM-LV is higher compared to
CAS(ME)2. *x-axis labels are the subject indices of the datasets.

not be included.

4.3. Training

Randomised frame skips are used in training and valida-
tion. This creates a more realistic scenario as the duration
of each facial expression is unknown in real life. It can also
act as a regularisation process by adding variations and per-
turbations to the input. For model testing, we used a frame
skip based on the k-th frame of ME and MaE of each re-
spective dataset shown in Table 3. The visual differences
of frames calculated using this interval (frames skipped) is
larger, making the facial movements more distinct for the
algorithm to spot.
Regularisation Random augmentations (i.e., contrast,
gamma intensity, and gamma gain) on the input images are
performed with a range of 0.5 to 1.5. Other augmentations
include 50% probability of horizontal flip and ±10° of im-
age rotation. Other regularisations include adding dropout
layers and random frame skips during training and valida-
tion.
Training Configuration As shown in Table 3, the results
are evaluated using leave-one-subject-out (LOSO) cross-

Table 3. Training configuration. Stream 1 is designed to be more
sensitive to ME, while Stream 2 is more sensitive to MaE by using
different range of frame skips based on the duration differences of
ME and MaE. The k-th frame is the average mid-point of facial
expression interval. Note: ? used in training and validation, † used
in testing

Dataset SAMM-LV CAS(ME)2

Batch Size 16
Learning Rate 0.007 0.005
Random frame skip? (Stream 1 & 2) 25∼75 & 200∼400 3∼9 & 16∼50
k-th frame skip† (Stream 1 & 2) 37 & 217 6 & 19
Manual frame skip† (Stream 1 & 2) 30 & 310 10 & 33

Table 4. Results (Raw Output) of macro- and micro-expression
spotting of our method

MaE ME
F1-score AUC F1-score AUC

SAMM-LV 0.3872 0.6780 0.0720 0.5687
CAS(ME)2 0.1369 0.6925 0.0174 0.5762

Figure 4. Real long video testing data of a subject smoothed using
Butterworth filter with ground truth comparison

validation. Early stopping is used during training, ending
when the loss does not improve for 5 consecutive epochs.

5. Results
Our network predicts the presence of facial expression

on a per frame basis. F1-score and area under the curve
(AUC) of receiver operating characteristic (ROC) of our raw
output are reported in Table 4. We compare each frame
using normalised results filtered using threshold based on
ROC curve. From the F1-scores, our model performs bet-
ter on SAMM-LV. However, CAS(ME)2 performs better for
the AUC. Both F1-score and AUC indicate that our model
performs better in MaE, which is expected as MaE occurs
more frequently and has longer duration.

We apply the Intersection over Union (IoU) method used
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Table 5. F1-score of ME and MaE spotting using Automated IoU
Method, where Ours* represents our proposed method with k-th
frame skip and Ours** represents our proposed method with man-
ual frame skip. Manual frame skip is performed by first taking
k-th frame as a reference, proceeded by increasing or decreasing
the frame skips until the results improve.

Method
SAMM-LV CAS(ME)2

MaE ME Overall MaE ME Overall
Pan [17] - - 0.0813 - - 0.0595
Ours* 0.1504 0.0421 0.1017 0.0704 0.0075 0.0509
Ours** 0.1543 0.0442 0.1050 0.0874 0.0075 0.0630

in Micro-Expression Grand Challenge (MEGC) III [13, 10]
to compare with other methods. The interval is then evalu-
ated using the following IoU method

Predicted ∩GT
Predicted ∪GT

≥ J (3)

where J is the minimum overlapping to be classified as true
positive,GT represents the ground truth expression interval
(onset-offset), Predicted represents the detected expres-
sion interval. In our experiment, J is set to 0.5.

As other methods uses different post-processing steps,
we decided to use two different evaluation methods. The
first method is Automated IoU Method and the second
method is Multi-Scale Filter used by Zhang et al. [29].

5.1. Automated IoU Method

We convert our results into intervals using automated
thresholding based on ROC evaluation. First, the test results
are normalised and smoothed using a Butterworth filter [3],
which is a low-pass filter that cuts off high frequency noises
while retaining low frequency signals, results shown in Fig.
4. The main advantage of this filter is it has a flat mag-
nitude filter whereby signals with frequency below cut-off
frequency do not undergo attenuation. Next, the onset and
offset of both ground truth and the predictions are obtained.
Finally, the overlapping was analysed using the IoU method
(where TP must fulfill the criteria in Equation 3).

Our results show better spotting performance in SAMM-
LV compared to CAS(ME)2. One possibility is SAMM-LV
has higher frame rate (200 fps) and the randomised frame
skipping used in our training pipeline has more variety of
input data to be learnt compared to CAS(ME)2 (30 fps).
Hence, our model is able to learn data with more variation
in SAMM-LV and show better performance. ME which oc-
cur in less than 0.5s, has a small window of detection. A
lower ME detection rate in CAS(ME)2 might also be a con-
sequence of the lower frame rate.

5.2. Comparison with the state of the art

Zhang et al. [29] and He et al. [10] are conventional
approaches. These methods use post-processing steps to
enhance ME spotting rate. Hence, it is not fair to com-
pare our method directly. Instead, we use Zhang et al.’s

Table 6. F1-score of ME and MaE spotting using Multi-Scale Fil-
ter (manual post-processing steps used by Zhang et al. [29]),
where Ours* represents our proposed method with k-th frame skip
and Ours** represents our proposed method with manual frame
skip. This post-processing steps involves signal smoothing using
Savitzky-Golay filter and signal merging when intervals are close
to each other.

Method
SAMM-LV CAS(ME)2

MaE ME Overall MaE ME Overall
He [10] 0.0629 0.0364 0.0445 0.1196 0.0082 0.0376

Zhang [29] 0.0725 0.1331 0.0999 0.2131 0.0547 0.1403
Ours* 0.1569 0.0512 0.1083 0.1880 0.0583 0.1449
Ours** 0.1595 0.0466 0.1084 0.2145 0.0714 0.1675

post-processing steps (also named Multi-Scale Filter [29])
and the results are shown in Table 6. This method uses
Savitzky-Golay filter for noise removal and signal merg-
ing as described in Zhang et al.’s paper. We obtained a no-
table improvement in ME and MaE spotting, particularly in
CAS(ME)2. By implementing these post-processing steps,
our method outperforms in SAMM-LV and CAS(ME)2 in
MaE spotting and overall performance. Although we ob-
tained better results using this evaluation, we noticed that
this method requires selection of hyperparameters (e.g.,
window size and order of Savitzky-Golay filter, the upper
limit of interval distance to merge etc).

For the purpose of comparison with benchmark algo-
rithms, we implemented these method. However, we will
not recommend these post-processing steps as each hyper-
parameter can be customised to improve the results, which
might result in overfitting. As stated in Zhang et al.’s paper:
“the results are terrible” before the post-processing steps. In
contrast, our proposed method is already competitive before
these post-processing steps, as shown in Table 5. Overall,
our method performed the best on SAMM-LV without post-
processing steps, with an F1-score of 0.1050. With post-
processing steps, our method achieved the best F1-Score of
0.1675 on CAS(ME)2. It is noted that our method achieved
the best result in MaE spotting on both datasets.

5.3. Visualisation using Grad-CAM

We visualise the activation of our network using
Gradient-weighted Class Activation Mapping (Grad-CAM)
[19]. This provides interpretable visualisation on the face
region that the network is focusing on when spotting
ME/MaE. We select the deepest interpretable layer, which is
the last dense layer, and visualise its activation on SAMM-
LV participants.

In Figure 5, we observe that the heatmaps closely resem-
ble the Facial Action Units (AUs) of facial expression. The
reliable AUs of happiness are associated with AU6 (Cheek
Raiser) and AU12 (Lip Corner Puller). Figure 5 (a) illus-
trates the heatmap of happiness, where it shows high ac-
tivation around eye corner (AU6) and the mouth region is
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Figure 5. Grad-CAM visualisation on SAMM-LV participants. In
(a), AU6 (Cheek Raiser) and AU12 (Lip Corner Puller) is detected;
In (b), AU4 (Brow Lowerer) and AU15 (Lip Corner Depressor)
is detected. AU12 and AU15 are distinctly distinguished: in (a),
the mouth region heatmap is directed towards the upper part of the
face; in (b), the heatmap at the mouth region forms a huge inverted
curve extending towards the bottom of the face.

directed to the upper part of the face (AU12). On the other
hand, the reliable AUs of sadness are AU4 (Brow Lowerer)
and AU15 (Lip Corner Depressor). In Figure 5 (b), the
heatmap shows activation on both the brows and the eyes
region that indicates AU4, and the mouth region forms a
huge inverted curve extending until the bottom of the face
which resembles AU15.

5.4. Ablation Studies

Table 7 shows the ablation studies conducted using Au-
tomated IoU Method. With manual frame skip, our pro-
posed method achieves the best result. Our proposed ap-
proach (with k-th frame skip) is not far behind, which shows
that it is a viable method. We conduct our experiment with-
out LCN using architecture with different depth, i.e. 3, 6, 10
and 20 layers. Even with a deeper network, without LCN, it
performs worse than our proposed model, which indicates
that LCN is a crucial component of our approach. We also
replace GAP layer with Global Max Pooling. Although
both average and max pooling, average pooling identifies
all discriminative region more completely [30]. As ME is a
subtle facial movement, detailed oriented average pooling is
more suitable. This is further concluded in the performance
of Global Max Pooling compared with our proposed net-
work that uses GAP. Our proposed model performs worse
without batch normalisation. We showed that each compo-
nent of our network are essential and has a positive contri-
bution to the overall performance.

We conducted ablation studies on weighted loss func-
tion (as described in Section 3.2). The weighted loss func-
tion is used to address the imbalance training dataset. The
results are shown in Table 8. We only apply weighted
loss in model trained on SAMM-LV as it shows no sig-
nificant improvement in model trained on CAS(ME)2. We
weight ME more with respect to MaE by setting ”M ME”

Table 7. Ablation studies on Automated IoU Method: F1-scores
reported. Manual frame skip fine-tuning can produce slightly
better results. With LCN removed, our network performance
dropped. Even with deeper network (i.e. 20 convolution layers), it
still under perform when compared to our proposed 3-layers deep
network. The model performance dropped without batch normali-
sation and when GAP is replaced with Global Max Pooling.

SAMM-LV CAS(ME)2

MaE ME Overall MaE ME Overall
Without LCN
- 3 Conv Layers 0.0297 0.0066 0.0198 0.0000 0.0000 0.0000
- 6 Conv Layers 0.1079 0.0275 0.0750 0.0041 0.0000 0.0030
- 10 Conv Layers 0.0825 0.0500 0.0518 0.0098 0.0000 0.0073
- 20 Conv Layers 0.0943 0.0160 0.0646 0.0000 0.0000 0.0000
Replace GAP with GlobalMaxPool 0.1311 0.0149 0.0795 0.0173 0.0098 0.0153
Without BatchNorm 0.1456 0.0252 0.0934 0.0510 0.0059 0.0359
Proposed 0.1504 0.0421 0.1017 0.0704 0.0075 0.0509
Manual Frame Skip 0.1543 0.0442 0.1050 0.0874 0.0075 0.0630

Table 8. Ablation studies on different weighing coefficients trained
on SAMM-LV. For SAMM-LV, weighted loss function improves
the detection rate. We did not report on CAS(ME)2 dataset as we
found that weighted loss function shows minimal effect in model
performance.

W M ME M MaE MaE ME Overall
Proposed 3 0.9 0.1 0.1504 0.0421 0.1017
W/o Weighted Loss 1 1.0 1.0 0.1480 0.0238 0.0910
W/o Weighted M 3 1.0 1.0 0.1404 0.0099 0.0594
W/o Weighted W 1 0.9 0.1 0.1413 0.0268 0.0900
Vary coefficient W 6 0.9 0.1 0.1443 0.0213 0.0888
Vary coefficient W 10 0.9 0.1 0.1302 0.0240 0.0825
Vary coefficient W 0.5 0.9 0.1 0.1339 0.0262 0.0696

to 0.9 and ”M MaE” tp 0.1; and ”W” is used to impose
a harsher penalty when the network predicts ME/MaE as
neutral wrongly. We can see that without weighted loss, the
network performs worse. We also demonstrate fine-tuning
of ”W” and the setting of ”W” as 3 achieves the best perfor-
mance.

6. Discussion

Model comparison Our model is the state-of-the-art in
SAMM-LV and competitive in CAS(ME)2. Conventionally,
optical flow methods have good performance but require ex-
tensive pre-processing and post-processing steps, which are
computationally expensive. He et al. [10] and Zhang et al.
[29] use image segmentation or ROI selection, followed by
optical flow extraction and spatio-temporal fusion of each
ROI. On the contrary, our method is an end-to-end solution
with 3 layers of CNN.

Zhang et al. [29] is the only method that did poorly
in spotting MaE compared to other categories in SAMM-
LV. Commonly, MaE (regular facial expressions) is eas-
ier to detect when compared to ME. As SAMM-LV is a
dataset with high frame-rate of 200 fps, Zhang et al.’s opti-
cal flow on consecutive frames approach is unable to cap-
ture the long range dependency of MaE, which explains
their relative poor results on MaE of SAMM-LV. Zhang et
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al. [29] is also the only method that shows better perfor-
mance in CAS(ME)2 than SAMM-LV. This may imply that
Zhang et al. is heavily biased towards CAS(ME)2. An-
other possible reason is the post-processing method may be
more suitable in CAS(ME)2. Our method using Zhang et
al.’s post-processing has also shown notable improvement
in CAS(ME)2. The merging process in Zhang et al’s post-
processing is questionable and can be a potential source of
overfitting the results. For example, 3 false positives can
be merged into 1 true positive, which greatly improves the
results (as shown in [29]). Moreover, this method cannot
improve with additional data, whereas ours is expected to
improve [8]. We provide an important contribution, justify-
ing collection of further data.

To date, Pan et al. [17] is the only deep learning approach
for spotting MaE and ME in long videos, evaluated using
IoU method of MEGC III. Comparing with this method, our
model with manual frame skipping has better performance
in both datasets. We also produce a complete report on all
three spotting categories. Our method is able to spot ME,
MaE and co-occurrence of both types of facial expression,
which are the features absent in [17].

k-th frame skip We investigate the effectiveness of k-th
frame used by manually vary the frame skips. By varying
the frame skips by taking k-th frame as initial reference, the
results show only slight improvement. This indicates that
k-th frame method remains a good measurement for frame
skip.

Automated vs manual method Both Automated IoU
Method (automated method) and Multi-Scale Filter (man-
ual method) show similar performance on model trained
on SAMM-LV. This shows that Automated IoU evaluation
works well on SAMM-LV with only a minimal performance
increment via manual method. However, it is not the case
for model trained on CAS(ME)2. The disparity of the per-
formance on CAS(ME)2 in both method might be a result of
different noise removal method used (Butterworth filter and
Savitzky-Golay filter). The automated Butterworth filter is
not adaptive enough in handling different noises, whereas
using Savitzky-Golay, we can decide a suitable window size
and order of filter for each respective noise. Despite higher
performance detected in Savitzky-Golay, in real-world ap-
plications, automation is preferred as it is not realistic to
fine-tune hyperparameters when we make prediction. With
further refinement, our proposed Automated IoU Method
has potential for real-world applications.

7. Conclusion
We presented a temporal oriented two-stream 3D-CNN

model that shows promising results in ME and MaE spot-
ting in long video sequences. Our method took advantage
of the duration difference of ME and MaE by making a two-
stream network that is sensitive to each expression type. De-

spite only having 3 convolutional layers, our model showed
state-of-the-art performance in SAMM-LV and remained
competitive in CAS(ME)2. LCN has proven to have signif-
icant improvement in our model and the ability to address
uneven illumination, which is a major weakness of optical
flow. We demonstrated our 3-layer network with LCN out-
performs deep network with 20 convolutional layers. Fur-
ther improvements include embedding facial landmark de-
tection into the algorithm and simplifying the spotting al-
gorithm to allocate more computational resources for real-
time ME analysis.
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