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Collaborative Overtaking of Multi-Vehicle Systems in Dynamic
Environments: A Distributed Artificial Potential Field Approach

Songtao Xie, Student Member, IEEE, Junyan Hu, Member, IEEE, Zhengtao Ding, Senior Member, IEEE,
and Farshad Arvin, Senior Member, IEEE

Abstract— Multi-vehicle autonomous driving has attracted
significant attention from academia and industries due to its
ability to improve traffic efficiency and enhance the safety of
drivers and passengers. In this paper, a distributed motion
planning strategy based on the artificial potential field method is
proposed to achieve overtaking of the autonomous vehicle fleet
in dynamic environments. Firstly, a dynamic target tracking
control protocol is constructed for an autonomous vehicle fleet
using a modified artificial potential field. The target tracking
control protocol overcomes the disadvantage of the traditional
artificial potential field method (i.e., the dynamic target cannot
be reached). Besides, a distributed obstacle avoidance control
protocol is also designed to avoid potential collisions during
the overtaking process. Finally, simulation experiments are
performed to verify the feasibility and effectiveness of the
proposed algorithm.

I. INTRODUCTION

The globally increasing number of cars has already
brought many critical issues [1], such as traffic congestion,
pollution, and road safety. Autonomous driving is considered
as an emerging technology that may effectively overcome
these challenges [2]. In addition to reducing human-caused
traffic accidents, autonomous driving technology could have
a positive effect in terms of better fuel economy [3], reduced
pollution, protected public health [4], and improved traffic
efficiency [5].

There are many studies on AVs’ perception, decision-
making, motion planning, motion control, and traffic schedul-
ing problems [6]–[10]. The research studies on self-driving
technology mainly focused on single-vehicle systems in the
past decade. In recent years, increasing attention have been
paid to multi-vehicle systems [11]–[13]. As described in [14],
the emergence of connected autonomous vehicles (AVs)
can significantly improve the efficiency of the traffic. By
information sharing and collaborative sensing (as portrayed
in Fig. 1), joint operation of multi-vehicle systems promotes
the cooperation among intelligent vehicles, thus improving
the overall driving quality and safety [15]–[17].

Collaborative overtaking is a very important practical
issue in multi-vehicle systems. To achieve this objective,
some preliminary results have been developed by researchers.
Hegedűs et al. [18] proposed an advanced graph-based op-
timal solution for overtaking scenarios of multiple vehicles.
On this basis, Nemeth et al. [19] proposed another method of
an automatic vehicle overtaking based on the model predic-
tive control, where the graph optimization algorithm provides

The authors are with the Department of Electrical and Electronic En-
gineering, University of Manchester, Manchester, M13 9PL, U.K. (e-mail:
{songtao.xie, junyan.hu, zhengtao.ding, farshad.arvin}@manchester.ac.uk)

Fig. 1. Autonomous vehicles and human-driven vehicles are connected
by V2V communication on highway system. The AV and HV denote,
respectively, the autonomous vehicle and human-driven vehicle.

the path of obstacle avoidance and overtaking. In [20], a
unified approach for cooperative path-planning based on a
nonlinear model predictive control was proposed. Consider
that the trajectory prediction of the human driver model was
integrated into the framework, the behaviors of the other
agents were affected by the human-driven vehicles [21].
In [22], a distributed control method for coordinating multi-
ple vehicles in the framework of an automated valet parking
system was introduced. The main limitation is to rely on
traffic infrastructure, which poses a considerable challenge to
the current traffic facilities. Karlsson et al. [23] proposed an
integrated route and motion planning approach that achieves
scalability concerning the number of cars. However, in this
work, vehicles other than navigators cannot interact with
other vehicle members during the overtaking.

Motivated by the aforementioned progress and challenges
in the area of multi-vehicle overtaking, in this paper, a
novel distributed motion planning approach for multi-vehicle
collaborative overtaking is proposed. The method presented
in this paper is to transform the overtaking of the automatic
driving fleet into multiple dynamic target tracking problems
by assigning a virtual dynamic target for each team member.
Based on an improved artificial potential field, we construct
a dynamic target tracking control protocol for an AV fleet.
Simulation studies are performed to verify the feasibility and
effectiveness of the proposed distributed motion planning
method. The main contributions of this paper are listed as
follows:
• A distributed motion planning algorithm based on the

modified artificial potential field is proposed. To the best
of the authors’ knowledge, such a novel coordination
design has not been developed in the relevant studies.

• A distributed obstacle avoidance control protocol based



on the artificial potential field is proposed, which en-
sures the AV fleet avoid collisions when execute over-
taking.

• The effectiveness of the proposed strategy for use in AV
overtaking scenario is validated by a realistic simulator,
Unreal Engine. Hence, the proposed algorithm can then
be possibly applied to the existing AVs’ software and
hardware architecture.

II. PRELIMINARIES AND PROBLEM STATEMENTS

A. Control objectives

In this paper, we decompose the overtaking scenario of a
multi-vehicle system into a multi-target tracking problem. To
achieve overtaking, a dynamic virtual target is set up for each
vehicle. Hence, the control objectives are given as follows:
• The vehicle needs to complete the tracking of dynamic

virtual objects as follows,

lim
t→∞

d (Pi, Pg) (t) = 0,

lim
t→∞

d (Vi, Vg) (t) = 0,

lim
t→∞

d (ai, ag) (t) = 0,

(1)

where d (Pi, Pg), d (Vi, Vg), and d (ai, ag) are the dis-
tance difference, velocity difference, and acceleration
difference between the vehicle i and virtual target g,
respectively.

• To avoid collisions between interacting vehicles and
human-driven vehicles, the following equation must be
satisfied

∀i, j ∈, i 6= j : ‖Xi −Xj‖ > D, (2)

where D is defined as the obstacle avoidance area of
the vehicle, within which other vehicles are not allowed
to approach. Xi and Xj are, respectively, the position
of the vehicle i and vehicle j.

B. Communication topology

Define a security area ρ where each vehicle seeks to keep
clear of other multi-vehicle system members and human-
driven vehicles. Define the collision neighborhood for each
vehicle i as N c

i = {j : dij ≤ ρ}.
We assume that the multi-vehicle system contains n

AVs and m human-driven vehicles (HVs) in the environ-
ment. Describe the multi-vehicle system by a mixed graph
G(N, ε(t), A(t)), where N and ε(t) ∈ n× (n+m) are the
set of nodes and and set of arcs, respectively. A(t) = [aij ] ∈
Rn×(n+m), if other vehicles enter the collision neighborhood
of the vehicle i, (j, i) ∈ ε(t) and aij = 1, otherwise, aij = 0,
where i is the incoming neighbor of j, and j is the outgoing
neighbor of i. Fig. 2 describes the communication relation-
ship between agent i and its neighbors. The agent i (ith

AV) will establish bidirectional communication with other
autonomous vehicles and unidirectional communication with
human-driven vehicles within the security area of agent i.
It is clear that in this paper, graph G is a dynamic mixed
graph that changes over time. Besides, we set up a one-to-one

Fig. 2. The communication relationship between vehicle i and other vehicles.
The red circles represent the autonomous vehicle, blue circles represent the
human-driven vehicles.

communication protocol between the vehicle and the virtual
target. When communication is established between vehicles,
vehicle i can receive the position, velocity and acceleration
information of vehicle j and virtual target g.

C. Basic assumptions

To formulate the problem, we have the following assump-
tions:

• All vehicles are equipped with Vehicle-to-Vehicle
(V2V) communication technology to achieve informa-
tion exchange.

• In the process of overtaking with a multi-vehicle system,
both right side overtaking and left side overtaking are
allowed.

• The dynamics of the AVs can be described by the
following particle system.

Ẋi = Vi,

V̇i = ai,

miȧi = Fi,

(3)

where Fi is the control input of the vehicle i. mi is the mass
of vehicle i. Vi and ai denote the velocity and acceleration
of vehicle i, respectively.

III. CONTROL PROTOCOL DESIGN

In this section, we develop a novel distributed control
protocol based on artificial potential field method. Different
from the traditional artificial potential field method which
is suitable for tracking static targets [24], in this work,
we modify the traditional artificial potential field such that
it can be used to track dynamic targets. In addition, the
tracking algorithm is improved to solve the problem of
unreachable target in the artificial potential field method.
For the problem of vehicle obstacle avoidance, we set up
a distributed repulsive artificial potential field to realize this
objective.

A. Target tracking control protocol

Between the ith AV and the ith virtual goal node, we
define the following attractive potential field.



Uatt(P, V, a) =
1

2
KP d

2 (Pi, Pg) +
1

2
Kvd

2 (Vi, Vg)

+
1

2
Kad

2 (ai, ag) ,
(4)

where Kp > 0, Kv > 0 and Ka > 0 are position, velocity,
and acceleration gain coefficients respectively.

The attractive force produced by the attractive potential
field is:

Fatt(i) =−∇Uatt(P, V, a)

=− ∂Uatt(P, V, a)

∂P
− ∂Uatt(P, V, a)

∂V

− ∂Uatt(P, V, a)

∂a
=−Kp(Xi −Xg)−Kv(Ẋi − Ẋg)

−Ka(Ẍi − Ẍg).

(5)

The tracking control protocol is modified to obtain the
following control input:

Fatt(i) =−Kp

(
Xi −Xg −

m
...
Xg

Kp

)
−Kv(Ẋi − Ẋg)

−Ka(Ẍi − Ẍg).

(6)

We define the difference between the position of the ith

vehicle fleet member and the ith virtual dynamic target as
the control object: 

e = Xi −Xg

ė = Ẋi − Ẋg

ë = Ẍi − Ẍg
...
e =

...
Xi −

...
Xg

(9)

Consider the following particle dynamical system

...
Xi =

1

m
[−Kp(Xi −Xg −

m
...
Xg

Kp
)−Kv(Ẋi − Ẋg)

−Ka(Ẍi − Ẍg)].

(10)

Substitute Eq. (9) into Eq. (10), we have

...
e =

1

m
[−Kp(e−

m
...
Xg

Kp
)−Kv(ė)−Ka(ë)]−

...
Xg, (11)

and its steady state value is obtained as follows,

E = {ë, ė, e | e = ë = ė = 0} . (12)

Such a steady state set of values means that the position,
speed and acceleration parameters of the autonomous driving
vehicle can converge to the virtual target. When every vehicle
in the multi-vehicle system enters the steady state, it means
that the control objectives of tracking are completed.

B. Obstacle avoidance control protocol

The repulsion field is created between the ith AV and the
jth human-driven vehicle or the AV fleet member as shown
in Eq. (7), where ηp > and ηv > 0 are the position repulsive
force gain and the velocity repulsive force gain, respectively.
Define that the gradient of repulsive potential fields is the
repulsive force, then it can be described by Eq. (8) as shown
at the bottom of the page.

It can be obtained that the obstacle avoidance control input
of the vehicle i is:

Frep(i) =
∑
j∈Nc

i

aijFrep(ij). (13)

This control protocol is used to achieve the control objective
of obstacle avoidance.

Hence, we obtain a target tracking control input with the
ability of obstacle avoidance

F (i) =
∑
j∈Nc

i

aijFrep(ij) + Fatt(i), (14)

which can be directly applied to the vehicle dynamical model
Eq. (3).

IV. RESULTS AND ANALYSES

In this section, a simulation case study is conducted to
verify the effectiveness of the proposed algorithm. Fig. 3
describes a typical overtaking scenario of an AV fleet. In
this scenario, the road is a divided highway with four
lanes. A fleet of three autonomous cars need to overtake
two human-driven vehicles in front of them. Unreal Engine
and Matlab are used in the simulation experiments. Unreal
Engine is a powerful game physics engine that can be used to

Urep(ij) =



1

2
ηp

(
1

d (Pj , Pi)
− 1

ρ

)2

d(Pg, Pi) + ηvd (Vj , Vi), if d (Pj , Pi) ≤ ρ and d (Vj , Vi) · d(Pj , Pi) > 0;

1

2
ηp

(
1

d (Pj , Pi)
− 1

ρ

)2

d(Pg, Pi), if d (Pj , Pi) ≤ ρ and d (Vj , Vi) · d(Pj , Pi) ≤ 0;

0, if d (Pj , Pi) > ρ.

(7)

Frep(ij) =−∇Urep(ij)(P, V )

=


ηp

(
1

Xi −Xj
− 1

ρ

)
Xi −Xg

Xi −Xj
+

1

2
ηp

(
1

Xi −Xj
− 1

ρ

)2

+ ηv, if d (Vj , Vi) · d(Pj , Pi) > 0;

ηp

(
1

Xi −Xj
− 1

ρ

)
Xi −Xg

Xi −Xj
+

1

2
ηp

(
1

Xi −Xj
− 1

ρ

)2

, if d (Vj , Vi) · d(Pj , Pi) ≤ 0.

(8)



Fig. 3. A typical overtaking scenario of autonomous vehicle fleet. The red
cars AV1,AV2,AV3 are three autonomous vehicles; blue cars HV1, HV2 are
human-driven vehicles; grey cars represent the target position of AV fleet.

build very realistic autopilot scenarios that are close to real-
world driving environments. Matlab is used for algorithm
development. Experimental parameters are shown as Table I.

TABLE I
THE SIMULATION PARAMETERS IN CASE STUDY

Simulation parameters Value
Initial position of AV1 (0, -2.875) m
Initial position of AV2 (10, -2.875) m
Initial position of AV3 (0, 0.875) m
Initial position of HV1 (20, 1.5) m
Initial position of HV2 (40, -3) m
Initial velocity of AV1 2 m/s
Initial velocity of AV2 5 m/s
Initial velocity of AV3 8 m/s
Initial velocity of HV1 10 m/s
Initial velocity of HV2 10 m/s
Initial acceleration of AV1 0 m/s2

Initial acceleration of AV2 0 m/s2

Initial acceleration of AV3 0 m/s2

Acceleration of HV1 0.1 m/s2

Acceleration of HV2 0.1 m/s2

Initial position of Goal1 (60, 1.375) m
Initial position of Goal2 (70, 1.375) m
Initial position of Goal3 (70, -2.75) m
Initial velocity of Goal1, Goal2, Goal3 10 m/s
Acceleration of Goal1, Goal2, Goal3 0.1 m/s2

Attractive force gain (Kp,KV ,Ka) (220,1000,100)
Repulsive force gain of vehicles (ηp, ηV ) (100, 200)
Repulsive force gain of road boundary 300
Mass of vehicle 1000 kg
Sampling time 0.1 s
Maximum velocity in longitudinal 33 m/s
Maximum velocity in lateral 5 m/s
The jerk of human-driven vehicles 0 m/s3

The simulation result in Fig. 4 clearly shows the tra-
jectories of AV fleet and the human-driven vehicles. In
the process of overtaking, cooperative obstacle avoidance
behaviors can be performed by the team members. The AV
fleet finally completes the overtaking and each AV fleet
member reaches the desired position. In addition, it can be
seen from the simulation results that in the early stage of
the whole movement process, the AV fleet members mainly
complete a series of complex actions such as lane change,
cooperative obstacle avoidance and overtaking. In the later
stage, the AV fleet members mainly complete the tracking

Fig. 4. Overtaking trajectories of the autonomous vehicle fleet.

of the dynamic virtual targets.

(a) 0-2s (b) 2-4s

(c) 4-6s (d) 6-8s

(e) 8-10s (f) 10-12s

Fig. 5. The process of cooperative obstacle avoidance.

Fig. 5 depicts the cooperative obstacle avoidance trajectory
of each AV fleet member during overtaking. As can be seen
from Fig. 5(a), from 0-2s, AV1 and AV2 start to change from
lane 1 to lane 2, and AV3 starts to change from lane 2 to lane
1. In Fig. 5(b), the movement trajectory of AV1 shows that
AV1 decelerates significantly in the lateral direction, because
AV1 is actively avoiding HV1. A more obvious obstacle
avoidance behavior appears in Fig. 5(c) and (d), in order
to avoid the collision with HV2, AV3 changes from lane 1
to lane 2, then from lane 2 to lane 1, and finally completes
the overtaking. In Fig. 5(e) and (f), each AV fleet member
moves to the target lane and tracks the target position in
their own lane. The position relationship between vehicles
can be shown more intuitively in Fig. 6. When t=1 s, the
AV fleet members are still in their initial lane, but they are
all making lane changes. When t=1.8 s, AV3 has already



(a) T=1s (b) T=1.8s

(c) T=2.7s (d) T=3.5s

(e) T=5.4s (f) T=9s

Fig. 6. The process of cooperative obstacle avoidance in Unreal Engine.

avoided HV1 and started to overtake, and AV1 and AV2 are
about to enter the second lane. As shown in Fig. 6(c), AV2
has already overtaken HV2, and AV3 is about to overtake
HV1 by switching from lane 1 to lane 2. By the time t=3.5
s, AV1 has overtaken HV1, AV2 has successfully changed
to lane 2, and AV3 has moved to the left and left enough
space for overtaking HV2. When AV1 overtakes HV2, the
movement state of the whole AV fleet is shown in Fig. 6(f).
After that, each AV fleet member will remain in the current
lane and accurately track the target position.

The virtual node tracking performance is shown in Fig. 7,
where only responses of AV1 are depicted for simplicity.
Obviously, the longitudinal and lateral displacement of AV1
eventually converges to the position corresponding to the
virtual target node. In Fig. 7(c) and (d), both longitudinal
and lateral velocities of AV1 change dramatically due to
the need for fast coordinated obstacle avoidance during
overtaking. In this case study, three autonomous vehicles
have different initial velocities, and after overtaking, the
AV fleet needs to maintain the same velocity. Fig. 8 shows
that the velocity of each AV fleet member converges to a
common value. In the first half of the trajectory, the velocity
of each AV fleet members did not have an obvious tendency
to converge, because the vehicles avoiding obstacles were
mainly influenced by the repulsive forces of the neighboring
vehicles. In the second half of the trajectory, after the vehicle

(a) Longitudinal displacement (b) Lateral displacement

(c) Longitudinal velocity (d) Lateral velocity

Fig. 7. AV1 tracks the virtual target node. Goal node 1 represents the virtual
target mode of AV1.

(a) Longitudinal displacement (b) Lateral displacement

Fig. 8. The velocity of each AV fleet member converges to the expected
value

completed overtaking and obstacle avoidance, the vehicle
was mainly attracted by the virtual target node, so its velocity
rapidly converged to the desired value.

Furthermore, we consider using three random initial ve-
locity combinations to test the robustness of the algorithm.
The initial velocity values are shown as the Table II. The
simulation result in Fig. 9 shows that despite changing the
initial speed of the fleet, the AV fleet members still converge
to the desired values. Different initial velocity combinations
will cause obvious changes in vehicle trajectories during
obstacle avoidance and lane change. These facts indicates
that the proposed distributed control protocol is robust to the
initial velocities of the vehicles.

TABLE II
RANDOM INITIAL VELOCITY COMBINATIONS

Simulation parameters Value
Initial velocity of AV1,AV2, AV3 in 1st group (2, 5, 8)m/s
Initial velocity of AV1,AV2, AV3 in 2nd group (6, 5, 1)m/s
Initial velocity of AV1,AV2, AV3 in 3rd group (7, 2, 3)m/s



Fig. 9. Overtaking and obstacle avoidance trajectories of AV fleet members
at different initial velocities. V0 denotes the initial velocity.

V. CONCLUSION

This paper presented a distributed control method for auto-
matic overtaking of autonomous vehicles fleet in a dynamic
environment. The simulation results in MATLAB and Unreal
Engine proved that the proposed method was accurate and
effective for automatic overtaking in the complex dynamic
environment with human-driven vehicles. In this paper, the
overtaking problem of multi-vehicle system was transformed
into multiple dynamic targets’ tracking problem. Based on
an improved artificial potential field, we constructed a dy-
namic target tracking control protocol for an AV fleet. A
distributed obstacle avoidance control protocol based on
artificial potential field was also designed. The simulation
results showed that the autonomous vehicle fleet can safely
complete overtaking, lane change, obstacle avoidance, and
dynamic target tracking.

For future works, the stability of the multi-vehicle system
using the proposed method will be mathematically proved.
We also need to prove that under the action of this distributed
control law, each vehicle i will converge to the virtual target
node and will not enter any other local steady states. Besides,
the constraints of more realistic vehicle models, such as
kinematic constraint and bounded control input, should be
considered in the control system design.
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