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Abstract

Astaxanthin is a high‐value compound commercially synthesized through Xan-

thophyllomyces dendrorhous fermentation. Using mixed sugars decomposed from

biowastes for yeast fermentation provides a promising option to improve pro-

cess sustainability. However, little effort has been made to investigate the ef-

fects of multiple sugars on X. dendrorhous biomass growth and astaxanthin

production. Furthermore, the construction of a high‐fidelity model is challenging

due to the system's variability, also known as batch‐to‐batch variation. Two

innovations are proposed in this study to address these challenges. First, a

kinetic model was developed to compare process kinetics between the single

sugar (glucose) based and the mixed sugar (glucose and sucrose) based fer-

mentation methods. Then, the kinetic model parameters were modeled them-

selves as Gaussian processes, a probabilistic machine learning technique, to

improve the accuracy and robustness of model predictions. We conclude that

although the presence of sucrose does not affect the biomass growth kinetics, it

introduces a competitive inhibitory mechanism that enhances astaxanthin

accumulation by inducing adverse environmental conditions such as osmotic

gradients. Moreover, the hybrid model was able to greatly reduce model

simulation error and was particularly robust to uncertainty propagation. This

study suggests the advantage of mixed sugar‐based fermentation and provides a

novel approach for bioprocess dynamic modeling.

K E YWORD S

batch operation, fermentation, hybrid modeling, mixed sugar, uncertainty analysis

1 | INTRODUCTION

Astaxanthin is a commercial carotenoid widely used as a natural red

colorant in the food and cosmetic industries (Rodríguez‐Sáiz

et al., 2010). It is also an efficient antioxidant used in the nutraceutical

and medical industries (Wan et al., 2014). The price of pure astaxanthin

can be as high as $2,500 per kilogram (Lorenz & Cysewski, 2000).

Although astaxanthin can be biologically synthesized by microagal

Haematococcus pluvialis and yeast Xanthophyllomyces dendrorhous, the

microalgal photo‐production route is still at its infant stage due to a

number of engineering challenges related to the low growth rate of algal

cells and difficulty in designing large scale photobioreactors (Zhang

et al., 2016). As a result, the yeast fermentation route is more promising

and has been applied for the commercial production of astaxanthin.

Within the last decades, extensive research has been carried out

to investigate X. dendrorhous astaxanthin production. For example, a

number of mutants have been genetically modified and screened to

enhance biomass growth and astaxanthin production (Chi et al.,
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2015; Ukibe et al., 2008), different models have been developed and

optimal substrate feeding strategies for astaxanthin synthesis have

been proposed (Liu & Wu, 2007, 2008), the influence of oxygen and

glucose on X. dendrorhous primary metabolism and astaxanthin ac-

cumulation has been explored (Liu & Wu, 2007), and upscaling of

experiments has been executed at scales ranging from 2 L lab‐scale

bioreactors to 10,000 L fermenters (Rodríguez‐Sáiz et al., 2010).

To further reduce process cost and improve sustainability,

utilizing biowaste, for example, lignocellulosic biomass‐derived sugars

for fermentation is particularly attractive. However, the majority of

these biowastes produce mixed sugars rather than a single compound

after hydrolysis or other decomposition methods (Hallenbeck, 2012).

As a result, it is important to investigate the effect of different types

of sugars on X. dendrorhous biomass growth and astaxanthin pro-

duction. A previous study has confirmed that amongst the three most

commonly used sugars (sucrose, glucose, and fructose), fructose was

the least favored option for carbon assimilation (An et al., 2001).

However, little effort has been placed in the exploration of the

relationships between different sugars on biomass growth and

astaxanthin accumulation. As a result, the current study aims to

investigate the process kinetics between single sugar (glucose) based

fermentation and mixed sugar (glucose and sucrose) based fermen-

tation. Sucrose was selected as the second sugar, rather than sugar

monomers found in lignocellulosic hydrolysates, for the following

reasons: (i) sucrose (disaccharide) was found to promote astaxanthin

biosynthesis of X. dendrorhous in our previous experiments, whilst

monosaccharides such as xylose, mannose, arabinose, or galactose

did not increase astaxanthin accumulation when mixed with glucose,

and (ii) the price of these monosaccharides is significantly higher than

that of sucrose, so they have no cost advantage for industrial

production.

An efficient approach for bioprocess kinetics investigation is to

construct mathematical models. Bioprocess modeling in literature can

be generally classified into two frameworks, namely structured and

unstructured approaches. Unstructured approaches (such as the

Monod‐type kinetic models) provide a simplified representation of

the bioprocess, considering the cell culture as a homogeneous bio-

mass and describing the evolution of the process in terms of mac-

roscopic state variables like substrate, product, and biomass

concentration. These models are predominantly used for bioprocess

systems engineering such as process monitoring, optimization, con-

trol, and reactor upscaling. On the other hand, structured approaches

(such as cybernetic models) incorporate information about the mi-

crobial structure and physiology to obtain a mathematical description

of the metabolism of the microorganism (Birol et al., 2002). These

models can provide further insight into metabolic network activity

and cellular regulation mechanisms, thus are often used for metabolic

engineering and regulatory process simulation studies (Ramkrishna &

Song, 2012). As the current research focuses on macroscopic bio-

process modeling, the unstructured modeling method is selected.

A particular challenge for bioprocess modeling is to account for

bioprocess batch‐to‐batch variation. Bioprocesses often exhibit high

variability due to their complex underlying process mechanisms. With

the involvement of multiple phases (gas, liquid, and solid), the un-

derlying process can behave in an unpredictable way over a broad

range of time and length scales (Zhang et al., 2020). As a result,

developing an accurate process model with high reliability (i.e., low

uncertainty) is particularly challenging. Therefore, the second objec-

tive of this study is to explore a novel modeling approach, namely

hybrid modeling, for bioprocess dynamic simulation under un-

certainty. The yeast‐based astaxanthin production process will be

chosen as a case study to compare the performance of the hybrid

model with the kinetic model.

Hybrid models are a new type of unstructured models that have

been applied to several recent studies for biochemical process

modeling (Cabaneros Lopez et al., 2021; Willis & von Stosch, 2017)

and monitoring (Destro et al., 2020; Geinitz et al., 2020). These

models incorporate a data‐driven model into a conventional un-

structured kinetic model to enhance the model's accuracy and pre-

dictive ability (Carinhas et al., 2011; von Stosch et al., 2014). In spite

of recent success, most of the previous hybrid models were con-

structed using an artificial neural network (ANN) based data‐driven

model, which is not efficient for uncertainty estimation (their un-

certainty is approximated using statistical methods such as boot-

strapping) (Pinto et al., 2019). As a result, the current study will

investigate a new avenue for hybrid model construction and

uncertainty estimation.

2 | METHODOLOGY

2.1 | Introduction to experimental setup

The yeast X. dendrorhous strain was used in this study, which is an

astaxanthin high‐producing strain derived from ATCC 24230 by beta‐

ionone screening. The yeast strain was stored in frozen tubes at

−80°C. The liquid medium for the single sugar (glucose) fermentation

experiment was composed of 12 g glucose, 2 g (NH4)2SO4, 1.5 g

KH2PO4, 1.5 g MgSO4·7H2O, 1 g NaCl, 2.5 g yeast extract (per liter),

at pH 6.0. The mixed sugar medium added 6 g/L sucrose with other

components the same as a single medium. A further experiment with

the same culture medium but only using 6 g/L sucrose as the carbon

source was also carried out. It is expected that by comparing the total

biomass concentration and astaxanthin production in the mixed sugar

experiment with those from the two single sugar experiments, one

can deduce the interactions between sucrose and glucose. To avoid

confusion, in this study, we refer to the glucose‐based fermentation

process as the “single sugar” process, as it is the most commonly used

carbon source for industrial fermentation.

The inoculum for the shake‐flask culture in the following ex-

periments (5% v/v for all) was prepared by growing the cells in

250mL flasks for 2 days, on a shaking table (250 rpm, 22°C). A folded

8‐layer gauze was used as a filter device to ensure the oxygen de-

mand of yeast and to prevent the risk of bacterial contamination. All
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fermentation experiments in 2000ml Erlenmeyer flasks (400ml filling

volume) were run for 7 days at 22°C with a shaking speed of

250 rpm. Each experiment was repeated three times. The biomass,

total sugar, and astaxanthin concentration were measured every

12 h. Biomass was measured by dry cell weight (DCW, g/L). Cells

were collected in pre‐weighed tubes by centrifugation at 8000 g, 8°C

for 10min. Cell pellets were washed twice with deionized water and

dried at 100°C to constant weight. The supernatant was analyzed

using a BioProfile 300 analyzer (Nova, USA) to measure the residual

glucose concentration. Astaxanthin content was measured on an

Agilent 1200 series HPLC system equipped with a UV detector

(Agilent Technologies) and an Agilent reversed‐phase HC‐C18 col-

umn (4.6 × 250mm, 5 µm). Pure methanol was used as the mobile

phase at a flow rate of 1 ml/min and a column temperature of 30°C

with a wavelength of 478 nm. It is worth noticing that only total sugar

concentration can be measured in the mixed sugar experiment, thus it

is not possible to directly measure the consumption of individual

sugars.

2.2 | Kinetic model construction

2.2.1 | Single sugar kinetic model construction

Different unstructured kinetic models such as the Monod model, the

Contois model, the Logistic model, and the hybrid Logistic‐Monod

model have been tested to simulate biomass growth (Y.‐S. Liu &

Wu, 2008; Xu, 2020; Zhang et al., 2015). The Contois model pre-

sented in Equation (1a) was found to give the best fitting result with

the assumption that other process conditions, for example, oxygen

concentration and temperature are maintained constant (Vatcheva

et al., 2006).







dX

dt
μ

S

S K X
X μ X= ·

+ ·
· − · ,m

c
d (1a)







dS

dt
Y μ

S

S K X
X= − · ·

+ ·
· ,S m

c
(1b)







dP

dt
α μ

S

S K X
X β X k X= · ·

+ ·
· + · − · ,m

c
d

2 (1c)

where μm is maximum specific growth rate, Kc is the substrate sa-

turation constant, μd is specific decay rate, and X , S, and P are con-

centrations of biomass, substrate, and product, respectively. YS is the

substrate yield coefficient. α is the astaxanthin growth‐dependent

yield coefficient, β is the growth‐independent yield coefficient, and kd

is the specific consumption rate for astaxanthin.

When the carbon source is in excess ( ≫S K X)C , the term

( ) ≈ 1S
S K X+ c and the yeast growth rate is independent of the sub-

strate concentration. The Contois saturation constant Kc bears a

similar physical significance to the saturation constant in the

Monod equation; a small Kc indicates that the affinity of the yeast

to the substrate is high, and vice versa. A theoretical derivation

proposed by Wang and Li (2014) suggests that Kc in the Monod

model should be multiplied by biomass concentration to account

for the effect of cell flocculation and diffusional barriers that arise

in high‐density cell cultures. In Equation (1a), a first‐order cell

decay term is added to the Contois model to represent the en-

dogenous decay of biomass.

The rate of substrate uptake is calculated by Equation (1b).

Previous studies on X. dendrorhous fermentation have concluded

that the rate of glucose consumption for biomass maintenance and

astaxanthin production is negligible relative to that for cell growth

(Liu & Wu, 2008). In contrast, the kinetics of astaxanthin formation

have been modeled using the Luedeking–Piret equation (first two

terms on the right‐hand side) shown in Equation (1c), as previous

studies have observed that astaxanthin can be accumulated during

both biomass growth (growth‐dependent synthesis, first term

on the right) phase and biomass stationary phase (growth‐

independent synthesis, second term on the right) (Luna‐Flores

et al., 2010). However, the accumulation rate of astaxanthin was

also observed to decrease rapidly in the current experiments when

biomass concentration is high and glucose is depleted. A decrease

in astaxanthin titer at the later stage of fermentation was also

observed in some of our previous experimental datasets

(Figure S2). This can be explained by the reasoning that cells may

reverse astaxanthin into other metabolites for their maintenance

as there is no external carbon source available. As a result, an

astaxanthin consumption term is added in Equation (1c). This term

is assumed to be proportional to X2 as the decrease of astaxanthin

accumulation rate is found more rapidly than that of biomass

(which is proportional to X ).

Finally, a detailed step‐by‐step derivation of this kinetic model

(hybrid of the Contois and the Luedeking–Piret model) together

with its assumptions and practical limitations can be found in

Supplementary A for interested readers.

2.2.2 | Mixed sugar kinetic model construction

For mixed sugar cultivations, Equations (1a)–(1c) must be ex-

panded to account for the different rates and efficiencies of the

two sugars utilized. Different model structures can be adopted

depending on the nature of the multiple‐substrate limitation

(Bekirogullari et al., 2020). The multiplicative approach assumes

that both substrates are essential resources for growth such that

the overall growth rate is simultaneously co‐limited by the avail-

ability of the two nutrients. The additive approach postulates that

the substrates are substitutable, hence the availability of each

substrate contributes individually to the growth of the organism.

The noninteractive approach considers that the substrates are

catabolized via independent pathways. Thus, there is no growth

co‐limitation of the different substrates, rather it is the most lim-

iting nutrient (e.g. the one providing the lowest specific growth

rate) that controls the cellular growth.
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where k is a constant accounting for substrate inhibition, and the

subscripts 1 and 2 refer to glucose and sucrose, respectively. It

should be noted that the sugar concentrations S1 and S2 were not

measured separately, rather they were lumped in a total sugar con-

centration S. Other symbols retain the same meaning as in

Equations (1a)–(1c).

In this study, glucose and sucrose are considered substitutable

substrates as X. dendrorhous has been observed to utilize both mono‐

and di‐saccharides carbon sources for growth (Vázquez et al., 1997).

This implies that a multiplicative approach would not be appropriate.

Furthermore, noninteractive models are only applicable when there is

a small degree of interaction between the biochemical pathways of

each substrate (Bader, 1978). In the case of X. dendrorhous, sucrose is

first hydrolyzed into fructose and glucose before being consumed by

the cells (Sheu et al., 2013), thus a large degree of interaction be-

tween sucrose and glucose is expected. Following this reasoning, we

turn our attention to additive models. Additive structures have been

previously used to model bacterial growth in the presence of multiple

competitive substrates. For instance, Turon et al. (2015) proposed

one such model combining the Monod and Haldane kinetics to pre-

dict the growth rate of Chlorella microalgal species. The additive

model in this study expresses glucose‐dependent and sucrose‐

dependent growth of X. dendrorhous through two separate Contois

functions with substrate inhibition terms.

The inhibition terms (i.e.,
k S

1

1 + ·1 2
and

k S

1

1 + ·2 1
) are multiplied to the

glucose and sucrose Contois equations, respectively, to account for

inhibitory effects between the two substrates. These terms have

been adapted from the work of (Kwon & Engler, 2005) and (Schmitt

et al., 2016). If strong inhibitory mechanisms are present ( ≫k 0)i and

the inhibiting substrate concentration is high ( ≫S 0)j , then it can be

deduced that ≫ S
k S i
1

1 + ·i j
and the inhibited substrate growth ex-

pression tends to 0. Conversely, in the absence of significant in-

hibitory effects (k ≈ 0)i or if the inhibiting substrate is depleted

(S ≈ 0)j , then ≈ 1
k S

1

1 + ·i j
and the growth expression for the inhibited

substrate is reduced to a classic Contois model.

The parameters associated to glucose‐dependent growth (μm1,

K Y,c S1 1) were first determined in the single‐sugar cultivation case

study. This allowed for the estimation of the sucrose‐dependent

growth parameters, which otherwise would have been nonidentifi-

able as individual sugar concentrations were not measured in the

mixed‐substrate cultivations. Furthermore, to evaluate the effect of

sucrose on the endogenous decay of biomass and astaxanthin for-

mation and accumulation, μ β k, , andd d in the dual‐substrate model

were also re‐estimated based on the mixed sugar experimental data.

The reader can refer to Supplementary B for an alternative model

formulation that predicts biomass growth, substrate consumption,

and product formation to a similar degree of accuracy as the model

presented in Equations (2a)–(2c). This alternative model structure

incorporates competitive inhibition terms, adapted from the work of

Yoon et al. (1977), to account for repression effects between the two

substrates. Albeit it was discarded by comparison of the fitting error

and number of parameters of the proposed models, we believe this

model is also a valid representation of the fermentation kinetics.

2.2.3 | Parameter estimation

A dynamic model parameter estimation problem was formulated as a

nonlinear least‐squares expression presented in Equations (3a)–(3c).

The objective function to be minimized is a least‐squares formula

(Equation (3a)) subject to the nonlinear process constraints (Equation

(3b)) and bounds of state variables and parameters (Equation (3c)).

∑ x x x xΛ ,min ( − ) ( − )i E i M i E i M
i

N
T

=1
, , , , (3a)

x
x θst

d

dt
f. = ( , ), (3b)

x x x θ θ θ ,≤ ≤ , ≤ ≤lb ub lb ub (3c)

where xi E, and xi M, are experimental measurement and model esti-

mated values of state variables x = x xX S P[ , , ] , andlb ub
T are the lower

and upper bound of state variables, respectively, θlb and θub are the

lower and upper bound of parameters (θ), respectively, Λ is the

weighting matrix, and N is the number of total data points.

To implement dynamic model parameter estimation, the

kinetic models are firstly fully discretised and transformed into a

nonlinear programming problem (NLP). To guarantee the high

accuracy of model discretization, a fourth order orthogonal collo-

cation over finite elements in time is used as a discretization

scheme (del Rio‐Chanona et al., 2015). The optimal parameters of

the kinetic model are determined by solving the discretized NLP

using the state‐of‐the‐art interior‐point nonlinear optimization

solver IPOPT (Wächter & Biegler, 2006). The execution of para-

meter estimation in this study is programmed in the Python opti-

mization environment Pyomo (Hart et al., 2012). The computer

specification is AMD Ryzen 5 processor, 3.6 GHz, and 16 GB of

RAM. The total computation time was 17.3 s, of which 15.8 s

correspond to data importation and only 0.8 s correspond to the

evaluation of the nonlinear optimization problem.
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2.3 | Hybrid model construction

In reality, values of kinetic model parameters also change with re-

spect to time as each of them represents a number of intrinsic me-

tabolic reactions that are lumped into a single kinetic term. As the

activity of these metabolic reactions changes due to the dynamic

culture environment, the lumped kinetic parameters also have dif-

ferent values over the experimental time course. Using a single set of

parameter values results in large uncertainty and low accuracy of a

kinetic model, particularly if the structure is non‐identifiable. As a

result, in this study, a hybrid model that integrates a data‐driven

model, namely Gaussian processes (GP), within a simple kinetic model

is proposed and formulated as Equations (4a)–(4c) for the single sugar

experiment. To avoid repetition, we used the single sugar experiment

as an example to illustrate the performance of a hybrid model. The

same procedure can also be applied to the mixed sugar experiment.







 ( )

dX

dt
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S

S K X
μ X μ X S X= ·

+ ·
− · = , · ,m

c
d (4a)
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dS
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S
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+ ·
· = − , · ,S X m

c
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dP

dt
α μ

S

S K X
β k X X Y X S X= · ·

+ ·
+ − · · = ( , ) · ,m

c
d P

X
(4c)

By re‐arranging the kinetic model, a hybrid model is developed

wherein the three data‐driven terms μ X S Y X S Y X S( , ), ( , )and,  ( , )S X P X/ /

account for the specific growth, consumption, and accumulation rate

of biomass, substrate, and product, respectively. These three terms

are constructed using three independent GP models.

2.3.1 | Introduction to Gaussian processes

Gaussian processes (GPs) are a probabilistic machine learning technique,

enabling the approximation of an underlying function from a set of data.

By first specifying an underlying distribution of functions as prior

knowledge and then conditioning this prior distribution with data, the

resultant posterior predictive distribution can be inferred. Because GPs

enable Bayes rule to be applied to functions, resultant predictions are not

single scalar values, but themselves Gaussian distributions, enabling effi-

cient uncertainty approximation. The prior distribution over functions is

specified using a mean function, commonly set to 0, and a covariance

function, often the squared‐exponential function denoted as Equation (5).







k x x σ

x x

l
δ σ( , *) = exp −

( − *)

2
+ ,ij

2
2

2 noise
2

(5)

where x and x* are two input locations, k x x( , *) is the covariance

between them, σ l σ, and  noise are hyper‐parameters, and δij is the

Kronecker delta function (Rasmussen & Williams, 2006). Therefore,

we specify a prior GP prediction as Equation (6a), and the posterior

distribution, following the application of Bayes rule to the prior is as

Equations (6b)–(6d).

f x GP k x x( ) ~ (0, ( , *)), (6a)

f x N μ( ) ~ ( , Σ), (6b)

X X X X yμ K K ,= ( *, ) ( , )−1 (6c)

X X X X X X X XK K K K* * , *Σ = ( , ) − ( *, ) ( , ) ( ),−1 (6d)

where X is the set of training data inputs, ⁎X is the set of inputs to be

evaluated, K is the gram‐matrix of the covariance function evaluated

using either the training data and the test data, or solely the training

or the test data, and y is the set of associated outputs of the training

data (Rasmussen & Williams, 2006). For more information into the

implementation and theory of GPs we would guide the reader

towards (Bradford et al., 2019; Rasmussen, 2004).

2.3.2 | Gaussian process model construction

In this study, the three GP models have the same input variables

(i.e., concentrations of biomass and substrate as derived in Equations

(4a)–(4c)). They are used to estimate the specific rates within each

time interval. To build the three GP models, initially, kinetic model

parameter estimation was implemented to calculate specific biomass

growth rate μ X S( , )i , specific substrate consumption rate Y X S( , )S X i/ , ,

and specific product accumulation rate Y X S( , )P X i/ , at each time step i

for each data set. Once completed, they were used to construct the

three GP models (i.e., x x x x x xμ GP Y GP Y GP( ) ~ ( ), ( ) ~ ( ), ( ) ~ ( )P X1 2 / 3S
X

,

where x = X S[ , ]T ) by using an exponential kernel function. The length

scale parameters in these GP models were also tuned and their im-

pact on the accuracy of the hybrid model will be discussed in

Section 3. Specifically, as most of the experimental data were mea-

sured once per 12 h, the time step used to generate training data (i.e.,

kinetic model parameter estimation) was set as 12 h. However, as

bioprocess kinetics evolves more slowly than a chemical reaction, it is

possible to assume that within a short time period there is no sig-

nificant change of kinetic parameters within a bioprocess. Thus, when

using the hybrid model to predict unknown process behavior, it is

possible to update the values of kinetic parameters from the GP

models more frequently. Validation of this assumption will be ex-

amined and discussed in Section 3.

2.4 | Model uncertainty estimation

As bioprocesses are generally less reproducible than a chemical

process, a high‐fidelity model should not only accurately predict the

expected process trajectory, but also have low uncertainty for its

parameters (thus accurately capturing the process uncertainty). This

is of particular importance if robust optimization is to carry out for

long‐term bioprocess optimization and control. To estimate the un-

certainty of the kinetic model for bioprocess dynamic simulation,

initially, confidence intervals of kinetic model parameters must be

calculated. The covariance matrix for kinetic parameters was ap-

proximated by the inverse of the Hessian matrix at the optimal
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solution. Confidence intervals of kinetic parameters were subse-

quently obtained from the trace of this approximated covariance

matrix following a standard procedure (del Rio‐Chanona et al., 2015;

Franceschini & Macchietto, 2008). Once calculated, 100 Monte Carlo

sampling tests were carried out to sample 100 combinations of

parameter values from their respective distribution. These combina-

tions were finally used to generate 100 process trajectories to ap-

proximate the model's predictive uncertainty.

To estimate the uncertainty of the hybrid model, a similar pro-

cedure was conducted. However, as a GP model can directly predict

the mean and variance of each parameter, 100 Monte Carlo tests can

directly sample 100 combinations of parameter values at each time

step and use these combinations to generate possible process tra-

jectories without any approximation. As a result, estimating the un-

certainty of a hybrid model is more straightforward than that of a

kinetic model. In this study, the numerical integration was carried out

using CasADi's “CVODES” integrator, and Numpy was used to obtain

pseudo‐random samples from the parameter distributions for both

kinetic model and hybrid model. The performance of the two models

regarding uncertainty propagation will be thoroughly compared in

Section 3.

3 | RESULTS AND DISCUSSION

3.1 | Results of kinetic model construction

Tables 1 and 2 present the estimated kinetic parameters for the

single‐ and dual‐substrate models (Equations (1a)–(1c) and Equations

(2a)–(2c)), respectively, and Figure 1 shows the model fitting results.

From the figure, it is observed that the kinetic models can well fit

both scenarios. The mean absolute percentage error (MAPE) for

biomass, substrate, and astaxanthin is 9.03%, 16.9%, and 8.68% for

the single sugar experiments, respectively, and 13.1%, 8.00%, and

8.11% for the mixed sugar experiments, respectively, suggesting a

good overall fitting performance.

3.2 | Effects of sucrose on bioprocess kinetics

X. dendrorhous biomass growth was best identified by the Contois

expression for both single‐sugar and dual‐sugar cultivations, sug-

gesting that the addition of sucrose does not significantly affect

biomass growth kinetics. A possible explanation is the high initial

weight ratio of glucose to sucrose (2:1) in the mixed substrate ex-

periment, meaning that glucose is the preferred carbon source.

However, the large value of the glucose inhibition constant (k = 5.8)1

compared with that of sucrose (k ≈ 0)2 from the kinetic model sug-

gests that sucrose is the preferred substrate as its presence will

suppress of the consumption of glucose. Indeed, this conclusion has

been previously reported by another study (An et al., 2001) where

sucrose was observed to be the first choice consumed by

X. dendrorhous for biomass carbon assimilation.

Nonetheless, the current study also observed that when sucrose is

the only carbon substrate for fermentation (Figure S3), biomass growth

terminated at a much earlier stage and the Contois expression does not

fit the biomass growth curve (indicating a different growth kinetic

performance). This suggests that glucose still dominates the biomass

growth kinetics in the mixed sugar experiment, even though it is not the

preferred substrate. A further literature review reveals that sucrose is

not directly metabolized by the yeast, rather it is first hydrolyzed in-

tracellularly into fructose and glucose which are then utilized for growth

(Sheu et al., 2013). Furthermore, X. dendrorhous cannot effectively utilize

fructose as its assimilation rate is much slower than that of glucose (An

et al., 2001). Thus, one hypothesis why glucose controls the biomass

growth kinetics in the mixed sugar experiment is that once cells con-

sumed the glucose hydrolyzed from sucrose, they can immediately

consume the glucose from the culture to keep a high carbon assimilation

rate in the mixed sugar experiment.

This hypothesis is further supported by the fact that diauxic shifts

can be observed in the experimental growth curves in Figure 1a,b for

the glucose and mixed‐sugar cases. Given that X. dendrorhous is a

TABLE 1 Single substrate kinetic parameters estimation result

Kinetic parameters Value Units

μm 0.43 h−1

Kc 63.7 Dimensionless

μd 2.10 × 10−3 h−1

YS 2.58 g·g−1

α 0.0 mg·g−1

β 0.236 mg·(g·h)−1

kd 6.48 × 10−2 mg·l·g−2·h−1

TABLE 2 Dual substrate kinetic parameters estimation result

Kinetic parameters Value Units

μm1 0.43 h−1

μm2 0.132 h−1

Kc1 63.7 Dimensionless

Kc2 3.68 Dimensionless

k1 5.8 l·g−1

k2 0.0 l·g−1

μd 5.5 × 10−3 h−1

YS1 2.58 g·g−1

YS2 1.71 g·g−1

α1 0.0 mg·g−1

α2 0.0 mg·g−1

β 0.21 mg·(g·h)−1

kd 4.66 × 10−2 mg·l·g−2·h−1
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crabtree positive yeast, the excess of readily metabolizable sugars is

associated with overflow metabolism and the accumulation of ethanol in

the medium (Reynders et al., 1997). This results in a diphasic mode of

consumption where the sugars are assimilated first, followed by the

uptake of ethanol upon the depletion of sugars (Lodato et al., 2007).

Nonetheless, this behavior was not observed when sucrose was the sole

carbon source, as cells cannot assimilate fructose fast enough to acti-

vate the overflow mechanism. As a result, when there is glucose avail-

able in the culture, cells will prioritize consuming glucose rather than

assimilating fructose once sucrose is depleted.

In terms of astaxanthin synthesis, the growth‐associated product

formation coefficient was found to be 0mg·g−1 for both substrates,

indicating that astaxanthin production was growth‐independent in

both the single‐sugar and mixed‐sugar cultivations. This agrees with

the experimental observations of Lodato et al. (2007) and Wozniak

et al. (2011), where carotenoid synthesis by X. dendrorhous was in-

duced only once fermentable sugars were depleted towards the end

of the exponential growth phase. Furthermore, the growth‐

independent yield coefficient for the single‐substrate case

(β = 0.236) is similar to that for the dual‐substrate cultivation

(β = 0.21), suggesting that the addition of sucrose does not directly

influence secondary metabolite synthesis. On the other hand, there is

a significant reduction of the astaxanthin‐specific consumption rate

kd in the presence of sucrose. This can be justified with reference to

the repression mechanism introduced by sucrose, which inhibits the

uptake of glucose and may therefore induce adverse environmental

stresses like osmotic gradients due to the high sugar concentration in

the medium (An et al., 2001), thus promoting the accumulation of

secondary metabolites. Enhanced astaxanthin accumulation under

unfavorable environmental conditions has been reported for other

F IGURE 1 Kinetic model data fitting result. (a), (c), and (e) single sugar process; (b), (d), and (f) mixed sugar process. Points are experimental
data, blue bars are measurement standard deviation, black lines are model simulation result. The y‐axis scales have been normalized against the
maximum observed value of the state variables (X S P, ,max max max ) across both experiments
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carotenoid‐producing species such as H. pluvialis (Aflalo et al., 2007).

However, this benefit is offset by the higher biomass decay specific

rate, which causes a more rapid reduction in biomass concentration in

the later stage of fermentation. As a result, the optimal concentration

of sucrose should be identified in future studies.

3.3 | Comparison between kinetic model
and hybrid model

In the current study, significant batch‐to‐batch variation is observed

during the experiments. For example, for the single sugar scenario, as

shown in Figure 2, biomass growth and astaxanthin accumulation

exhibit different behaviors in the parallel experiments under the same

culture environment. The same level of variation is also found in the

mixed sugar experiments. As a result, although the kinetic model can

well fit the overall trend of the process, its parameters suffer from

large standard deviations (e.g., β = 0.236 ± 31.0, K = 63.72 ± 27.1C )

causing the model to have high uncertainties when simulating long‐

term bioprocess dynamics. This issue has also been highlighted by

other researchers in their recent work (Sadino‐Riquelme et al., 2020).

Figures 3a, 3c, and 3e show the uncertainty propagation result for

the kinetic model when simulating the single sugar scenario. This

wide uncertainty band prohibits applications of the kinetic model for

process robust optimization (e.g., worst‐case scenario optimization),

as the optimal solution could be over‐conservative and has little

practical value.

In constrast, from Figures 3b, 3d, and 3f, it is observed that the

hybrid model accurately fits biomass growth and glucose consump-

tion in the two experiments. It is worth highlighting that this fitting

performance does not indicate overfitting which is often discussed

for regression‐based machine learning models such as artificial neural

network (ANN) (Murphy, 2012). GPs are interpolation‐based machine

learning models, meaning they are designed to pass through most of

the training data points. Overfitting primarily refers to fitting data

noise. In this study, all the data used for model construction was

averaged over three replicates. Thus, experimental measurement

noise has been removed and was not involved in model construction

(there is no overfitting). In addition, as seen in Figure 1, the average

measurement noise for biomass is 2.46% of biomass concentration,

and that for substrate and astaxanthin is 2.99% and 3.16%, respec-

tively. This noise cannot explain the apparent change of state vari-

ables during batch cultivation. The highly nonlinear process dynamics

exhibited by the averaged experimental data are caused by the

complex process kinetics. The fact that the hybrid model can well

describe this dynamics indicates that hybrid model is an efficient tool

for bioprocess modeling.

Moreover, GPs are more efficient for small data problems and

have been used as a better choice over ANNs (Tulsyan

et al., 2018). There is only mild model‐data mismatch observed at

the end of the astaxanthin synthesis profiles. This is because

concentrations of biomass and glucose during the later stage of

the two experiments are highly similar (thus the same inputs for

the GP), but astaxanthin concentrations in the two experiments

are different. It is not possible for a model to output two results

given the same input. Most importantly, the uncertainty of the

hybrid model is lower that of the kinetic model during most of the

period of the process. From the figure, it can be seen that most of

the uncertainty predicted by the hybrid model is much closer to

the real process measurement uncertainty. In addition, the hybrid

model can also successfully simulate the diauxic shift biomass

growth behavior which cannot be captured by the kinetic model

(Figure 3a,b). As mentioned, in reality, kinetic model parameters

change over time due to the change of underlying metabolic

activity (e.g., a diauxic shift caused by the use of different carbon

sources). However, it is not possible to develop a kinetic model to

simulate such changes and meanwhile remaining a simple struc-

ture. The fact that the hybrid model shows a higher accuracy,

lower uncertainty, and better representation of the process dy-

namics directly speaks of its practical benefits for bioprocess

predictive modeling. Table 3 compares the simulation errors be-

tween the kinetic model and the hybrid model. More validation

results of the hybrid model as well as its advantage over the

kinetic model can be found in Supplementary C (Figure S4).

F IGURE 2 Parallel experiments for the single sugar scenario under the same operating conditions. (a): biomass growth in the two runs;
(b): astaxanthin accumulation in the two runs. Black bars are measurement standard deviation
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3.4 | Key hyper‐parameters in the hybrid model

To analyze the performance of the hybrid model, a thorough in-

vestigation was carried out. It was found that there are two hyper‐

parameters that greatly affect the accuracy and reliability of the

hybrid model. The first hyper‐parameter is the length‐scale para-

meter in the GP models. This parameter determines how much

interdependence is believed to have between adjacent data points.

Decreasing the length‐scale parameter causes the covariance to be

lower between adjacent locations in the input domain (i.e., lower

interdependence). By reducing the scale of this hyper‐parameter, the

hybrid model can perfectly fit the two conflicting astaxanthin accu-

mulation profiles (Figure 4). This is because the hybrid model assumes

that process kinetics under two highly similar (but not identical)

F IGURE 3 Comparison of the kinetic model and the hybrid model. (a), (c), and (e): kinetic model simulation result; (b), (d), and (f): hybrid model
simulation result. Points are experimental data, lines are model simulation results, and gray bands are the model uncertainty (99% confidence
interval). Blue bars are three times measurement standard deviation (equivalent to 99% confidence interval)

TABLE 3 Mean absolute percentage
error (MAPE) and mean percentage
standard deviation (MPSD) of different
models. X , S, and P are biomass, sugar, and
astaxanthin, respectively

MAPE (X ) MPSD (X ) MAPE (S) MPSD (S) MAPE (P) MPSD (P)

Kinetic 10.6 32.5 22.1 48.8 8.73 50.0

Hybrid 0.053 15.5 2.14 36.5 7.88 13.2
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F IGURE 4 Effects of length‐scale parameter on the hybrid model's accuracy. (a): length‐scale parameter is 1.46; (b): length‐scale parameter is
0.20. Points are experimental data, lines are model simulation result, and gray bands are the model uncertainty (99% confidence interval). Blue
bars are three times measurement standard deviation (equivalent to 99% confidence interval)

F IGURE 5 Effects of the model update frequency on the hybrid model's accuracy. (a), (c), and (e): hybrid model simulation result on biomass
with a model update frequency once per 12 h, 6 h, and 3 h, respectively; (b), (d), and (f): hybrid model simulation result on astaxanthin with a
model update frequency once per 12 h, 6 h, and 3 h, respectively. Points: experimental data, lines: model simulation result, gray bands: model
uncertainty (99% confidence interval). Blue bars are three times measurement standard deviation (equivalent to 99% confidence interval)
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culture conditions are independent from each other and can behave

differently. However, the low length‐scale parameter amplifies the

model uncertainty as the interdependence between adjacent input

locations is reduced to minimum. As shown in Figure 4, a smaller

length‐scale reduces the astaxanthin simulation error from 7.88% to

6.41% (reduced by 18.7%), but increases the model standard

deviation from 13.2% to 18.4% (increased by 39.4%). There exists a

trade‐off between the uncertainty and fitting accuracy of the hybrid

model. As a result, the tuning of this hyper‐parameter should be

cautious.

The other key hyper‐parameter is the frequency parameter used

to determine how often the hybrid model should update its kinetic

parameters (i.e., GPs). Although the current GPs are constructed

using average kinetic parameter values within each 12 h, given the

assumption that bioprocess kinetics evolves slowly, it is possible to

update the kinetic parameters more frequently when using the hybrid

model for process simulation. For instance, Figure 5 compares the

accuracy and uncertainty of the hybrid model when the GPs are

updated once per 3 h, 6 h, and 12 h, respectively. It is found that

model simulation errors are increased (from 0.053% to 4.82% for

biomass, from 7.88% to 13.6% for astaxanthin) with an increasing

update frequency. This is expected as average kinetic parameters will

change due to the shortened time interval. The shorter the time in-

terval is, the larger the deviation from the experimental data will be.

However, the hybrid model's uncertainty (e.g. percentage standard

deviation from 15.5% to 8.60% for biomass, from 13.2% to 9.17% for

astaxanthin) is also decreased due to the more frequent update of

parameter values. This is because uncertainty propagation is alle-

viated if the hybrid model can frequently synchronize its parameters.

As a result, the frequency parameter also controls the trade‐off be-

tween hybrid model's accuracy and reliability.

It is critical to emphasize that if the frequency parameter is too

high, then the narrow uncertainty of the hybrid model will not be able

to reflect the real process uncertainty. For example, when the fre-

quency is chosen as once per 3 h (Figure 5e,f), it is observed that

some experimental data has already hit or even cross over the un-

certainty bound. If the frequency parameter continues to increase,

the model will predict that some of the current process behaviors are

unlikely to happen (lying outside the 99% probability distribution),

which is also not correct. As a result, a high‐frequency parameter

underestimates the true process' uncertainty and deteriorates the

model simulation accuracy.

4 | CONCLUSION

Overall, based on the current study, it is concluded although the

addition of sucrose suppresses glucose uptake, it does not affect the

overall biomass growth kinetics. In addition, the use of sucrose can

enhance astaxanthin accumulation, but its concentration should be

further optimized. Furthermore, it is observed that the Gaussian

process embedded hybrid models can capture the dynamics and

variability of the underlying process significantly better than the

kinetic model. By carefully optimizing the hyper‐parameters of the

hybrid model, it is possible to reduce the model uncertainty and

simulation error by over 60% (well aligned with real process mea-

surement uncertainty) compared with the kinetic model. Using this

model for the optimal design of experiments and process real‐time

monitoring could be more reliable. Future research will focus on

identifying the optimal sugar feeding strategy using the proposed

hybrid model.
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