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Abstract

Temporal relation extraction between health-related events is a widely studied

task in clinical Natural Language Processing (NLP). The current state-of-the-

art methods mostly rely on engineered features (i.e., rule-based modelling)

and sequence modelling, which often encodes a source sentence into a single

fixed-length context. An obvious disadvantage of this fixed-length context

design is its incapability to model longer sentences, as important temporal

information in the clinical text may appear at different positions. To address

this issue, we propose an Attention-based Bidirectional Long Short-Term

Memory (Att-BiLSTM) model to enable learning the important semantic

information in long source text segments and to better determine which parts

of the text are most important. We experimented with two embeddings
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and compared the performances to traditional state-of-the-art methods that

require elaborate linguistic pre-processing and hand-engineered features. The

experimental results on the i2b2 2012 temporal relation test corpus show that

the proposed method achieves a significant improvement with an F-score of

0.811, which is at least 10% better than state-of-the-art in the field. We show

that the model can be remarkably effective at classifying temporal relations

when provided with word embeddings trained on corpora in a general domain.

Finally, we perform an error analysis to gain insight into the common errors

made by the model.

Keywords:

TLINKs, NLP, Clinical text, Discharge summaries, Deep learning

1. Introduction

Free-text notes in electronic health records (including, for example, hospi-

tal discharge summaries, outpatient letters, handover notes, etc.) store key

clinical information with the physician’s explanation of patient’s condition,

their medical history, duration of symptoms, confirmed and rejected diagnos-

tic hypotheses, patient preferences, treatment experience, etc. Automated

extraction of information from such data sources has been used to unlock

information on large scale to support clinical practice and epidemiological

research [1]. One of the key tasks in clinical Natural Language Processing

(NLP) is establishing temporal relations between clinical events, as this is

essential for understanding the patient’s trajectory and their health status, as

well as improving quality of service, enhancing care and increasing healthcare

utilisation [2]. However, temporal information is often represented by complex
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language expressions and requires advanced NLP to extract and categorise

temporal relations.

Temporal links (TLINKs) are used to establish temporal relations be-

tween clinical events, and between clinical events and temporal expressions

(TIMEXs). A recent systematic review of the work in temporal relation

extraction from clinical free-text [3] has revealed that a small set of TLINKs

(namely before, after, overlap and contains) has been more widely studied, as

opposed to other types (e.g., started by, finished by, precedes) that remain

challenging. The previous efforts were often placed in the context of shared

tasks and benchmark datasets to assess and advance the state-of-the-art, such

as the i2b2 2012 shared task [4] or the clinical TempEval series of shared

challenges [5, 6, 7], with nearly all work evaluated on few publicly available

corpora.

The vast majority of earlier methods used lexical resources and manually

engineered features to leverage the linguistic knowledge [8, 9, 10, 11, 12, 13, 14,

15]. While results were encouraging, these efforts revealed several unresolved

issues. For example, automatic extraction of high-level features (such as part

of speech tags, entity identification (i.e., NER) and dependency paths) often

used for TLINK mining typically resulted in error propagation, and thus

overall performance degradation [16, 17, 18]. Similarly, feature engineering

used in many approaches is time-consuming, and manually engineered features

(i.e., regular expressions) often generalise poorly due to the varied nature of

relations in text and the modest coverage of existing training datasets [19].

More recently, deep learning methods, which learn features automatically,

have been used to tackle some of these issues [3]. Several deep learning
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methods based on various network architectures have been adopted for the

task, including sequential modelling approaches such as Convolutional Neural

Networks (CNNs) [18, 20, 21, 22] and Recurrent Neural Networks (RNNs)

[23, 24]. However, these methods only consider the current input and what

has been learnt from the inputs that are received previously.

Bidirectional RNNs introduce a mechanism to look at both prior and

subsequent inputs before generating an output at a time step [25, 26, 27]. They

still struggle to extract temporal relationships when the distance between

related entities is long. The longer the input sequence length (i.e., the

length between the relation entities), the more difficult it is to capture the

context. Another issue is that some trigger phrases in the text (e.g., history

of, continued, repeat, consecutive, subsequently) might act as a dominant

feature and improve classification [14].

Attention mechanisms have been used to guide models to focus on parts of

the text that are most influential with respect to target [28]. Attention-based

neural network architectures have recently gained much attention and have

been proven to be effective in several NLP tasks such as machine translation

[26], question answering [27], recognizing textual entailments [28], and rela-

tion classification [29]. In the context of relation classification, several recent

efforts (e.g., [16], [29], [30]) have successfully employed attention mechanisms

to extract general relationships (e.g., Instrument-Agency, Product-Producer,

Content-Container, Entity-Origin, etc.) and have shown that they can perform

as well as state-of-the-art relation classification systems based on features and

neural networks. To the best of our knowledge, attention-based architectures

for TLINKs have previously only been explored by Liu et al. [31], but they
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limited their experiments and evaluation to one type of temporal relation (i.e.,

intra-sentence temporal relations). In our study, we explored the attention

mechanism that is integrated into a Bidirectional Long Short-Term Memory

Network (BiLSTM) on a wider set of temporal relations (intra-sentence tem-

poral relations, cross-sentence temporal relations, and references to document

creation times).

Therefore, in this paper, we explore the attention mechanism that is

integrated into a Bidirectional Long Short-Term Memory Network (BiLSTM)

on a wider set of TLINKs (i.e., intra-sentences, cross-sentences and documents

creation time relations). BiLSTM networks allow to make full use of context

and capture the most important semantic information between relation entities.

Thus, they minimise the performance dependency on features derived from

lexical resources or NLP pre-processing. Afterwards, the attention mechanism

is used to better determine which parts of the text are most influential for

identifying temporal relations1. Using the i2b2 2012 temporal relation corpus,

we demonstrate that BiLSTM networks with attention mechanism can be

used for temporal relation classification between health-related events in

clinical texts. We experiment with various embeddings and compare the

performances to traditional state-of-the-art methods that require elaborate

linguistic pre-processing and hand-engineered features. Finally, we perform

an extensive error analysis to gain insight into the errors made by the models.
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Figure 1: The Att-BiLSTM model architecture

2. Material and Methods

Figure 1 shows the architecture of the proposed Attention-based BiLSTM

(Att-BiLSTM) model. It composes of five different layers: Input layer, Embed-

dings layer, Bidirectional LSTM layer, Attention layer and Output layer. The

embeddings layer maps each word in an input into a vector representation.

The sequence of vector representations corresponding to a sequence of words

are input to the BiLSTM layer, which utilizes BiLSTM networks to capture

important word-level features from the embedding layer. Then, the attention

1The framework is available on GitHub at https://github.com/GhadaAlfattni/

att-tlinks
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layer guides the networks to focus on specific information by producing a

weight vector. After multiplying the weight vector, the word-level features

from each timestep are converted into a sentence-level feature vector. Lastly,

the output layer uses the sentence-level feature vector for relation classification

and outputs the most likely relation type based on the sequence of probability

vectors from the previous layer. These layers are described in more detailed

below.

Input layer. Typically, this layer takes the position-marked relation

entities with the surrounding tokens as inputs. For example, the sentence “pain

increased over the last week” will be presented as “<E1>pain increased</E1>

over the <T1>last week</T1>” where position markers are used to refer to

the relation entities (E1 and T1).

Embeddings layer. Given the input context S composing of N words

with markup of the relation entities S = {w1, w2, ..., wN}, every word wi is

tokenized and mapped into a low-dimensional vector (i.e. embeddings) ei to

provide lexical and semantic features. This is done by using the matrix-vector

product:

ei = Wvi

where W is the embeddings matrix, and vi is a vector which has value of 1 at

index ei and 0 in all other positions. Then the sentence is transferred into

the next layer as real-valued vectors.

Bidirectional LSTM layer. BiLSTM networks were used to calculate

hidden states by processing sequence of token representations forwards and

backwards (i.e. left-to-right and right-to-left). The forward LSTM network

encodes the context of an input sentence and the backward LSTM network
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encodes the context of the reverse sentence. The output of the ith word is

calculated by the following equation:

hi = [
−→
hi ⊕

←−
hi ]

where ⊕ denotes the element-wise addition of outputs from forward and

backward LSTM.

In this layer, we adopted a variant introduced by Graves [32] and then

used for relation extraction by Zhou et al. [16]. It adds weighted peephole

connections from the Constant Error Carousel (CEC) to the gates of the same

memory block. By directly employing the current cell state to generate the

gate degrees, the peephole connections allow all gates to inspect into the cell

(i.e. the current cell state) even when the output gate is closed [32].

Attention layer. This layer takes a matrix H consisting of output vectors

h1, h2, ..., hN that is produced by the the BiLSTM layer. Subsequently, the

sentence vector r is computed as the weighted sum of α.

M = tanh(H)

α = softmax(pTM)

r = HαT

where p is a trained parameter vector and pT is its transpose. The final

sentence-pair representation that is used for classification in the output layer

is performed by:

h∗ = tanh(r)
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For each relation instance, the embeddings layer, the Bidirectional LSTM

layer and the attention layer together encode the relation instances into a

multi-dimensional vector r. The encoded relation vector r is then fed into a

fully connected layer (i.e., output layer). The output dimension of the output

layer is set to the number of potential labels, which is 3 in this study.

Output layer. In this layer, we used a softmax classifier to predict the

label (i.e., relation type) from a discrete set of classes for each sentence;

the cost function is the negative log-likelihood of the true class labels. For

regularization, we followed Zhou et al. [16], and combined dropout with L2

regularization to prevents neural networks from overfitting.

2.1. Dataset

We applied and evaluated the proposed method on the publicly available

clinical corpus [4] that formed the basis for the 2012 i2b2 Temporal Relations

challenge [33]. The corpus consists of 310 discharge summaries-190 summaries

for training and 120 for testing. The gold standard annotations include time

expressions (TIMEXs), events (EVENTs, both medical and general), and

temporal relations (TLINKs). TLINKs can be assigned between:

1. EVENTs and document creation times (DCT), that is, the time stamp

associated with the time when the clinical document was created;

2. EVENTs and TIMEX in one sentence, and

3. EVENTs in adjacent sentences.

TLINK type attributes can be BEFORE, AFTER or OVERLAP. Table 1

provides descriptive statistics of TLINKs types in the training and test sets

of the 2012 i2b2 temporal relations corpus.
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Relation type Training set Test set

AFTER 2981 2521

BEFORE 17348 14825

OVERLAP 11856 8948

Table 1: The number of annotated relations in the training and test sets in the 2012 i2b2

temporal relations corpus.

2.2. Training and Hyper-parameters

In this study we used the standard split established by the i2b2 organizers,

using the training set for evaluating models and tuning model parameters,

and evaluating our best models on the test set. Since there is no official

development set, we randomly selected 10% of the training data for validation.

The hyper-parameters of our models were tuned to optimize the perfor-

mance through the randomized parameter optimization algorithm, where each

setting is sampled from a distribution over possible parameter values [34].

The choices generated by this process are as below: the model is trained using

AdaDelta [35], with a learning rate of 1.0, a batch size of 10, LSTM layer

dropout rate of 0.3, embeddings layer dropout rate of 0.3, and penultimate

layer dropout rate of 0.5.

We experimented with two word embeddings: (1) the publicly available

word embeddings GloVe [36], trained on Wikipedia and Gigaword 5 data

(i.e. general domain); and (2) pre-trained word embeddings on the MIMIC

clinical notes corpus (i.e. target domain) using word2vec. The reasons behind

using the general word embeddings (GloVe) and the domain-specific word

embeddings (MIMIC) were that: (1) they contain a large set of vocabularies;
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thus, they are very likely to contain the vast majority of the English words; and

(2) they are publicly available. Both word embeddings had a dimensionality

of 100 and were trained using a window size of 10, a minimum vocabulary

count of 5, and 15 iterations. Additional parameters of word2vec were the

negative sampling and the model type, which were set to 10 and continuous

bag-of-words, respectively. These were also optimised through a random

search on the validation set [34]. The embeddings of out-of-vocabulary words

were determined by returning a zero-vector.

2.3. Evaluation metrics

We considered the available annotations in the the i2b2 2012 temporal

relation corpus as the gold standard when evaluating the models. We used

the official i2b2 evaluation script provided with the data. It uses standard

evaluation methods in information retrieval, i.e., precision, recall, and F-

score metrics for each relation type (i.e., BEFORE, AFTER, OVERLAP).

Macro-average and micro-average of the F-scores were also obtained for every

relation type. Macro-average is a per-class metric that computes the metric

independently for each class and then take the average (hence treating all

classes equally), whereas the micro-average favours classes with a larger

number of instances and aggregates the contributions of all classes to compute

the average metric. The overall score of the model is measured using the

micro-average F-score to overcome class imbalance issue in the data.

3. Results

Table 2 shows a breakdown of the results of each model for both DCT

and EVENTs/TIMEXs relations. Overall, the proposed Att-BiLSTM(GloVe)
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Relation type
Att-BiLSTM(GloVe) Att-BiLSTM(MIMIC)

P R F-score P R F-score

AFTER 0.500 0.470 0.485 0.429 0.449 0.439

BEFORE 0.904 0.853 0.878 0.910 0.821 0.863

OVERLAP 0.755 0.839 0.795 0.728 0.836 0.779

Micro 0.811 0.811 0.811 0.791 0.791 0.791

Macro 0.720 0.721 0.719 0.689 0.702 0.694

Table 2: Performance of Att-BiLSTM(GloVe) and Att-BiLSTM(MIMIC) for extracting

temporal relations on the official benchmark test set of the i2b2 2012 temporal relation

corpus.

model yielded a micro-average F-score of 0.811 and Att-BiLSTM(MIMIC)

model yielded a micro-average F-score of 0.791.

We compared the Att-BiLSTM results to six state-of-the-art methods

evaluated on the i2b2 2012 temporal relation corpus:

• SVM-CRF [13] is the top performing system in the i2b2 2012 shared

task. It is a hybrid method consisting of SVM and CRFs as classifiers,

and rules to resolve conflict cases. It achieved an F-score of 0.695.

• SVM-rules [37] composes of multiple supervised machine learning

models and rule-based methods to extract TLINKs. It is on par with

the best systems (i.e., SVM-CRF [13]) on the i2b2 2012 corpus with an

F-score of 0.695.

• SVM-KNN-rules [38] is also a hybrid approach to relation extraction.

It uses a set of hand-crafted rules to determine the relation between
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two entities. If the relation cannot be classified by any of the rules, they

classify it using SVM and K-Nearest Neighbor (KNN) machine learning

classifiers. It achieved an F-score of 0.702.

• 1d-CNN-BERT [39] is a neural networks model. It uses a pre-trained

model instead of word embeddings as an input to a one-dimensional

convolutional neural network (1d-CNN). Then it combines the 1d-CNN

with Bidirectional Encoder Representations from Transformers (BERT)

and uses the 1-dCNN to fine-tune the parameters of the BERT model.

It achieved an F-score of 0.709.

Two recent state-of-the-art methods, which focus on direct temporal

relations (i.e., relations between EVENTs and TIMEXs only) in the i2b2 2012

temporal relation corpus, were also compared to our Att-BiLSTM results.

• re-SVM-CRF [40] is a re-implemented version of SVM-CRF [13],

that is the top performing system in the i2b2 2012 shared task. It is

re-trained on temporal relations between EVENTs and TIMEXs only

and achieved an F-score of 0.557.

• SVM [41] is another hybrid approach composing of an SVM-based

system tailored to relations between EVENTs and TIMEXs, and deter-

ministic rules to fix common errors observed during the development

period. It achieved an F-score of 0.638.

Table 3 shows a performance comparison of our models with these state-

of-the-art methods. With only word vectors entity position indicators and

without using additional NLP sources to extract high-level features, the

Att-BiLSTM models demonstrate improved performance.
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Model Feature set

DCT

F-score

E/T

F-score

Overall

F-score

SVM-CRF [13] Entity position, bag-of-words, part-

of-speech, tense, dependency features,

time attributes, event attributes, con-

junction and distance.

- - 0.695

SVM-rules [37] Linguistic features, discourse features

and semantic features.

- - 0.695

SVM-KNN-rules [38] Part-of-speech, event attributes,

UMLS features, dependency features,

special words, section ID, conjunction

and distance.

- - 0.702

1d-CNN-BERT [39] BERT with general embeddings

(GloVe) and PubMed embeddings.

- - 0.709

SVM-CRF-re [40] Entity position, bag-of-words, part-

of-speech, tense, dependency features,

time attributes, event attributes, con-

junction and distance.

- 0.557∗ -

SVM [41] BERT with pre-trained model. - 0.638∗ -

Att-BiLSTM (GloVe) Entity position indicators as input and

general word embeddings (GloVe).

0.852+ 0.706∗ 0.811

Att-BiLSTM (MIMIC) Entity position indicators as input and

word embeddings from the clinical do-

main (MIMIC).

0.893+ 0.738∗ 0.791

E/T: EVENTs/TIMEXs relations,

∗F-score obtained from training and testing the Att-BiLSTM on DCT relations only,

+F-score obtained from training and testing the Att-BiLSTM on EVENTs/TIMEXs relations only.

Table 3: Summary comparison of different models evaluated on the i2b2 2012 temporal

relation test corpus.
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4. Discussion

We found that the attention-based model, with only word embeddings,

is an effective approach for extracting temporal links from clinical notes.

Its performance (0.811 F-score) compete with complex features-based and

neural networks state-of-the-art temporal relation classification systems. The

improvement may come from the attention over multiple instances, which

is expected to reduce the weights of those noisy instances dynamically. The

general word embedding (GloVe) and the domain-specific word embeddings

(MIMIC) work on par with each other. The clinical-domain specific represen-

tation (i.e., MIMIC) shows a slight advantage (0.893 and 0.738 F-score for

DCT and EVENTs/TIMEXs relations respectively) over GloVe (0.852 and

0.706 F-score for DCT and EVENTs/TIMEXs relations respectively) when

evaluated on individual relations (Table 3).

One of the reasons behind using the attention mechanism in this study

was its ability to capture the most important parts of the text to identify

temporal relations. In fact, this issue has been raised as a result of error

analysis in a previous study: Nikfarjam et al. in [14] realised that, for many

misclassified TLINKs, there were temporal trigger phrases in the text (e.g.,

“history of”, “continued”, “repeat”, “consecutive”, “subsequently”) that might

provide important features if modelled properly. We noticed that using the

attention mechanism positively impacted the model’s ability to overcome

such an issue. To demonstrate this, we applied our best-performed model

(Att-BiLSTM(GloVe)) to the following two examples, which were misclassified

previously (in [14]):

• “He was given D50, but continued to have progressive respiratory
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failure”

• “A bone marrow biopsy revealed the transformation of his CMML to

acute myelogenous leukemia”

We found that the Att-BiLSTM(GloVe) was able to successfully classify the

relation between “D50” and “progressive respiratory failure” as OVER-

LAP, and the relation between “his CMML” and “acute myelogenous

leukemia” as BEFORE.

4.1. Error Analysis

4.1.1. Statistical significant difference

To gain insight into the errors made by the two temporal relation classifica-

tion models (i.e., Att-BiLSTM with GloVe and with MIMIC) and to evaluate

any statistical significance of the differences between them, we performed an

error analysis by running paired sample t-tests, with the differences considered

significant if the P -value was <0.05. We found that there is a statistically

significant difference between the two models (P -value = 3.7e-06), with the

model using GloVe performing better than the domain-specific embeddings.

Thus, applying word embeddings trained on corpora in a general domain

seems useful for this type of clinical narrative. This result is consistent with,

but more general than, the conclusion drawn by Wang et al. in [42]. This

suggests that a lack of access to a domain-specific corpus is not necessarily

a barrier for the use of word embeddings in implementations for specific

document types.
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Figure 2: Confusion matrices for the performance of Att-BiLSTM models on the official

benchmark test set of the i2b2 2012 temporal relation corpus.

4.1.2. Common classifications errors

We also constructed confusion matrices based on the gold standard and

predicted relation types on the test set to determine the errors made by

the models (see Figure 2). We found that in both models there are two

common types of confusion that account for nearly 80% of the classification

errors. These are the confusion between BEFORE and OVERLAP relations

(accounting for 50% of the errors), and the confusion between AFTER and

OVERLAP (accounting for 30% of the errors). Below we illustrate these

types of confusion with examples.

Example (1):

Admission Date: 07/10/1991

Discharge Date: 07/18/1991

The patient is an 85-year-old male with a history of ischemic

bowel status post recent admission for urosepsis and C. dif-
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ficile colitis.

In this example, the system was able to correctly classify most of the

TLINKs in the sentence, such as the relations between “ischemic bowel status”

and “Admission” (BEFORE), “admission” and “the Admission” (BEFORE)

and “admission” and “07/10/1991” (OVERLAP). However, the TLINK be-

tween “Admission” and the occurrence events “urosepsis” and “C. difficile

colitis” was misclassified as OVERLAP, while the correct relation is BE-

FORE. It seems the confusion arises from both the mention of the word

“admission” and the presence of the coordinating conjunction “and”, which

frequently appears together with the OVERLAP-ed events. In this example,

determining whether the relationship should be BEFORE or OVERLAP

requires understanding the narrative chains (including the disambiguation

of two different admission references). One possible solution is that utilising

phrase embeddings beside the word embeddings as phrases can be critical for

capturing lexical meaning for many tasks [43].

Example (2):

He was able to communicate appropriately as his level of

narcotic medications waned in his blood.

In this example, event “able to communicate appropriately” hap-

pened AFTER the treatment event “narcotic medications”, but the rela-

tion is incorrectly identified as OVERLAP. The difficulty in correctly classi-

fying this relation as AFTER arises from the fact that when events appear

to occur simultaneously, they tend to have temporal synchronicity, and in
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this case, the entity type may not be important. However, for clinical events,

when there is not temporal synchronicity (as in the above example), the

entity type is of great significance. To illustrate that, in order to classify the

relation type correctly, we may need to include the event type as a feature (for

example, DRUG for treatment events, ADE for adverse drug events, TEST

for clinical trials, etc.). This could give an understanding of the nature of

the events as the relation cannot simply be inferred based on the expression

pattern. If the system had the knowledge that once narcotic medications

waned, a patient could communicate, then it could predict the right link

type. Incorporating similar knowledge in NLP systems requires creating

and incorporating comprehensive ontologies of clinical events is an ongoing

research problem [44, 45, 46]. We also note that — if the treatment event has

been recognised as “narcotic medications waned in his blood”, then the

OVERLAP relation with “able to communicate appropriately” would

be correct.

4.1.3. Training size effect on classifier

Training set characteristics such as class imbalance can significantly affect

the performance of classifiers [47, 48]. The imbalanced data are characterised

as having many more examples of certain classes than others. In such a case,

classifiers tend to make a biased learning model that has a poorer predictive

accuracy over the minority classes compared to the majority classes. Too

few examples might result in low test accuracy, perhaps because the model

overfits the training set or the training set is not sufficiently representative of

the problem.

There are at least 30 points F-score difference between the AFTER and
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25% 50% 75% 100%

AFTER 0.358 0.433 0.467 0.485

BEFORE 0.863 0.849 0.880 0.878

OVERLAP 0.778 0.743 0.788 0.795

Overall 0.791 0.766 0.806 0.811

Table 4: Performance (Micro F-score) of Att-BiLSTM(GloVe) when trained on 25%, 50%,

75% and 100% per annotation type on the official benchmark test set of the i2b2 2012

temporal relation corpus.

other temporal relations (see Table 1). It is unclear if there is a relationship

between the size and the F-score or not in the i2b2 2012 temporal relations

dataset. One way to investigate this question is by evaluating the performance

of the Att-BiLSTM(GloVe) model on training datasets of different size. We

trained the model on variable sizes (25%, 50% and 75%) randomly selected

of data, and we use the same test set for each different sized training dataset.

Table 4 shows the performance of Att-BiLSTM(GloVe) when trained on

variable sizes per class, and Figure 3 shows a line plot of the relationship

between training set size and Att-BiLSTM(GloVe) model test set F-score.

The line plot shows a slight improvement in the test accuracy as the training

set increased for all classes, as we expect. The plot also shows small drops

in the performances from 25% to 50% examples for all classes except the

minority class, after which performances appear to level off. Thus, there is

a direct relationship between training dataset size and F-score. When the

training data set size increases, the model seems to learn more about the

various temporal relations in the data.

Another approach for investigating the problem of class imbalance is
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Figure 3: The relationship between training set size and Att-BiLSTM(GloVe) model test

set F-score. 100% training set size refer to using all of the available training data.

to randomly re-sample the training dataset. The two main approaches to

randomly re-sampling an imbalanced dataset are to delete examples from the

majority class, called under-sampling, and to add examples to the minority

class, called over-sampling. In order to under-sample the majority classes, we

randomly extracted only 25% of the annotated examples from the BEFORE

and the OVERLAP classes while keeping all available examples for the

AFTER class. For over-sampling the minority class, we expanded the number

of examples by using the transitive closure, which has proven to be effective

in several studies [3, 15, 37, 49, 13, 50, 26, 51, 52, 53, 40]. Thus, we derived

new implied AFTER relations from the existing labelled BEFORE relations.

In other words, we copy all examples in the BEFORE class, we swap the

relation entities, and then we change the relation from BEFORE to AFTER.

21



Under-sampling

(BEFORE and OVERLAP) Official dataset

Over-sampling

(After)

AFTER 0.200 0.485 0.389

BEFORE 0.381 0.878 0.857

OVERLAP 0.328 0.795 0.750

Overall 0.292 0.811 0.774

Table 5: Performance (Micro F-score) of Att-BiLSTM(GloVe) when applying different

data sampling techniques.

Table 5 shows that under-sampling of the majority classes leads to signifi-

cantly poorer results than the other data sampling techniques. This is most

likely due to the fact that random under-sampling may lead to loss of vital

information as some data points have been removed. Over-sampling with

transitive closure performed better than the Under-sampling but not than

the official dataset. This could be due to the fact that over-sampling has

disturbed the data distribution (within the AFTER class) either by overfitting

or by generating synthetic data points that do not follow the original class

distribution as we have very little information about the minority class.

5. Conclusions

Temporal relation classification represents a special challenge for the field

of clinical text analytics. The structure of clinical texts ranges from brief

statements to long stories describing a patient’s medical history, current

condition, diagnostic analysis, and management plan. It is often impossible to

interpret clinical texts without domain knowledge. It is even harder to extract

and classify temporal relationships. Still, there have been several attempts to
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extract and classify temporal relation from clinical text. We have explored a

neural network model (Att-BiLSTM) based on the attention mechanism that

is integrated into a Bidirectional Long Short-Term Memory Network. The

model does not rely on specific NLP pre-processing and uses raw text with

entity position indicators as input, alongside word embeddings that have been

generated either from a generic or domain-specific corpus. We demonstrate

the effectiveness of the proposed method by evaluating it on 140 discharge

summaries from the i2b2 2012 temporal relation corpus. The model achieved

an F-score of 0.811, which is at least 10% better than state-of-the-art in the

field. We show that the neural attention model can be remarkably effective at

classifying temporal relations when provided with word embeddings trained

from corpora in a general domain. Furthermore, we perform an extensive

error analysis to gain insight into the errors made by the models.

As future work, we plan to investigate how different semantic features

and ontologies contribute to the performance. We will also consider exploring

variations of the attention mechanisms such as multi-head attention [54] and

self-attention [55, 56], and other state-of-the-art text mining approaches that

have not been used for TLINKs yet, including, for instance, clinical contex-

tual models (e.g., BioBERT, clinicalBERT, etc.), bootstrapping, distance

supervision [57] and minwise hashing [58].
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