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Abstract—Currently, collision detection methods based on
visual cues are still challenged by several factors including ultra-
fast approaching velocity and noisy signal. Taking inspiration
from nature, though the computational models of lobula giant
movement detectors (LGMDs) in locust’s visual pathways have
demonstrated positive impacts on addressing these problems,
there remains potential for improvement. In this paper, we pro-
pose a novel method mimicking neuronal refractoriness, i.e. the
refractory period (RP), and further investigate its functionality
and efficacy in the classic LGMD neural network model for
collision perception. Compared with previous works, the two
phases constructing RP, namely the absolute refractory period
(ARP) and relative refractory period (RRP) are computationally
implemented through a ‘link (L) layer’ located between the
photoreceptor and the excitation layers to realise the dynamic
characteristic of RP in discrete time domain. The L layer,
consisting of local time-varying thresholds, represents a sort
of mechanism that allows photoreceptors to be activated in-
dividually and selectively by comparing the intensity of each
photoreceptor to its corresponding local threshold established by
its last output. More specifically, while the local threshold can
merely be augmented by larger output, it shrinks exponentially
over time. Our experimental outcomes show that, to some extent,
the investigated mechanism not only enhances the LGMD model
in terms of reliability and stability when faced with ultra-fast
approaching objects, but also improves its performance against
visual stimuli polluted by Gaussian or Salt-Pepper noise. This
research demonstrates the modelling of refractoriness is effective
in collision perception neuronal models, and promising to address
the aforementioned collision detection challenges.

I. INTRODUCTION

Accurate and reliable collision detection plays a fairly cru-
cial role for most insects. Locusts, benefiting from thousands
of decades’ evolution, have been equipped with a vision
system which improves their success rate of evading from
their natural predators coming in the blink of an eye. Within
this relatively short period of time, several sets of neurons,
namely the LGMDs, which respond selectively to targets on
a collision course, and the descending contralateral movement
detectors (DCMDs) to pass neuronal spikes to trigger evasive
glide, collaborate closely to achieve avoidance [1]. Hence,
upon the LGMDs, models have been established for quick
collision detection, which have demonstrated reliability and
robustness. Compared to conventional and complex methods
such as expansion segmentation [2], these bio-plausible mod-
els, inspired from and built upon solid prior knowledges of

neuroscience, have their own superiority. Not only have they
taken advantages of reliable conclusions summed by neurobi-
ologists, it is also their being low in algorithm complexity that
makes it possible to be integrated with low energy-consuming
platforms, Colias, for instance [3].

However, with respect of all these pros that bio-plausible
neural networks are distinguished by, they can be deficient in
certain aspects. In terms of robustness and accuracy, there is
no doubt that convolutional neural networks of lane/vehicle
detection and ROI (Region Of Interest) are there to be caught
up with [4]. Multiple methods that require various sorts of
hardware have also been proposed for solving the collision
detection problem. For example, in [5], they propose a method
based on visual cue captured and processed by one onboard
camera together with a high-performance GPU, succeeding in
detecting long distance collision (400 metres to 900 metres)
and accordingly sending out warnings. Fusion of sensors for
collision perception and drivable tunnel recreation has also
been realized by Nedevschi et al., utilizing stereo vision [6].
It as well detects pending collision quickly at acceptable
success rate. Thus, in what way improvement on bio-plausible
methods’ performance and reliability can be achieved when the
velocity of objects on approaching trajectory is beyond fast,
as well as when input signals are noise-polluted, remains to
be explored.

Refractoriness, known also as Refractory Period (RP) in
both invertebrates’ and vertebrates’ neural system, is a com-
mon phenomenon. Caused by inactivation of sodium channels
that help depolarize the membrane, one entire process of RP is
divided into ARP and RRP as shown in Fig. 1(a). Within the
short period of time of ARP, neurons remain completely silent
while during RRP, they retain the possibility of producing
spikes again for stronger stimuli [7].

The principles of RP, plus mechanism, has been being under
researched since 1950s. Although RP has been mentioned as a
phenomenon in literature, hardly is it considered in modelling
for locusts’ visual system, not to mention in modelling for
LGMD for collision perception. Focused on filling the gap,
in the attempt to model RP mechanism for discrete signals,
comparative experiments have been conducted in a systematic
manner. From the collected consequences, our model shows,
this mechanism assists the classic LGMD model with de-
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Fig. 1. (a)Refractoriness schematic diagram. The orange curve shows the change of membrane potential. Depolarization and repolarization are represented
by dashed line with arrow. ARP corresponds to depolarization and part of repolarization while RRP is covered by hyperpolarization.(b) shows the curve of
Pt(x, y) − Lt(x, y) when a single stimulus is applied at 1st frame, which resembles the real membrane potential curve during RP.

tecting collision when inbound objects are ultra-fast; it also
contributes to suppressing the LGMD when collision is not de-
tected, reducing false alerts. And in a subtle manner, it equips
previous works with ability of eliminating influence of low
level noises to some extent. Thus, this research demonstrates
RP can be promising for enhancing LGMD model’s reliability
and stability in the future works.

The structure of the remaining is organised as follows: in
section II, most relative works are briefly reviewed. Section III
elucidates the model in detail as well as parameter settings.
Section IV explains materials that have been utilized in the
systemically comparative experiments, followed by section V
shows recorded outcomes of experimental evaluation. Section
VI concludes this study with discussion.

II. RELATED WORKS

In this section, we introduce the most related works in
the subsection A) bio-plausible collision perception models
inspired by locusts’ visual system, and B) modelling of
refractory period.

A. Bio-Plausible Collision Perception Models

Thanks to millions of years evolution, invertebrates have
been provided with reliable and robust visual systems that
allow them to survive clustered environments and predating
enemies coming out of nowhere at surprisingly high speed.

Though LGMD is widely researched in drosophila’s and
crab’s vision systems [8], [9], most literature take a locust
that flies as typical example for collision perception. LGMD1,
identified in the lobula layer inside its visual pathways, has
firstly been discovered as movement detectors in [10], then
been recognized to produce the most frequent spikes to
objects on an approaching course while respond weakly to
receding or translating objects [11]. Subsequently a neural

network composed of four groups of neurons, namely the
photoreceptor layer (P layer), the excitation layer (E layer),
the inhibition layer (I layer) and the summation layer (S
layer), was proposed by Rind together with Bramwell [12],
based on which mathematically modelling of the LGMD1 was
further accomplished by Gabbiani et al. focused on angular
velocity in [13], and Yue et al. in [14] by adding a novel group
layer (G layer), which concluded, through offline and online
experiments, that the classic LGMD model equipped the mini-
robot, Khepera robot (K-Team, Switzerland) at the speed of
32 mm/s, with the ability of cruising autonomously and free
of collision in real time inside the experimental arena. The
model was then similarly converted to an embedded visual
system strategy. Hu et al. applied this method to a micro-
robot, proving its high precision and reliability in collision
detection by running the micro-robot at various velocities
from 1.5 cm/s up to 17 cm/s in a arena with several sets
of densities of obstacles [3]. Recently, by choosing a larger
convolutional mask, Zhao et al. expanded LGMD1 model’s
application field to small quadcoptors, equipping them with
ability of sensing impending collision [15]. To enhance the
precision and expand the application of visual-based collision
detection neural networks, an integrated model of LGMD1
and translating sensitive neural network (TSNN), which con-
sists of four directionally sensitive neurons based correlated
elementary movement detectors (EMDs), was proposed by
Yue et al. in [16]. Additionally, a specialized decision-making
mechanism coordinates with the integrated model, achieving
more reliable and robust responses to clustered background.

As an interneuron of LGMD1, LGMD2, though shares the
same features of responding more strongly to looming objects,
has its distinct characterization. Having been found to mature
early in juvenile locusts, this group of neurons has been
investigated to show most preference to dark incoming objects



within a bright background, which resembles their surviving
environment as young individuals, than a dark background
[17]. Regardless of its significance for locusts that mainly live
on the ground, only a few studies have been published. It is
only after 2015 that computationally modelling of LGMD2
was completed by Fu and Yue [18], realising its selectivity
to light-to-dark luminance changing by introducing a novel
mechanism of ON & OFF parallel channels, discriminating
luminance increment and decrement. More specifically, in the
ON channels, which are rigorously sieved, inhibitions and
temporally delayed excitations are produced while in the OFF
channels, direct excitation and temporally delayed inhibition
are generated [19]. Both offline tests and real-time experiments
on the aforementioned micro-robot demonstrated feasibility
and robustness of this creative algorithm [20].

Though the aforementioned models have made remarkable
contributions to collision detection systems based on visual
cues and in turn inspired exploration on coordination mech-
anism of interneurons, their performance could drop sharply
under certain circumstances, such as the velocity of an object
on a colliding trajectory is relatively high, up to 9.6 m/s and
the input signal (image) is noise-contaminated.

B. Modelling for Refractoriness

Refractoriness has been comprehensively noticed and in-
vestigated as a spontaneous mechanism inside animal neural
systems for a considerably long time. As far back as 1970s,
Ruzi introduced ARP into a model of RATEN, random-
threshold neuron-like element networks proposed by Amari, to
further improve its stability in [21], presenting positive impact
of integrating ARP with existing models.

As an issue of concern, after abundant efforts, mathe-
matically modelling has made extraordinary progresses. In
the attempts to reveal the code of information transmission
between spiking neurons, several sorts of stochastic processes
have been included to estimate refractoriness [22]. In [23], a
simplified Poisson process, which is utilized to estimate the
characteristics of refractoriness is further adopted to suit other
input inter-pulse intervals (IPIs). Another study from Schaette
et al. proposed a renewal process with a recovery function
to describe neural refractoriness. Though comparative experi-
ment, this estimation shows close match between the observed
locust auditory receptor neurons spike trains, presenting the
significance of refractoriness to artificial neural networks [24].
Though Song et al. touched the combination of refractoriness
and flies’ photoreceptor, and elucidated what role RP plays
in the encoding of graded neural responses, exploiting it for
collision detection has not been considered [25].

By building computational models of RP, these works
numerically contributed to our understanding the how under-
lying neuron circuits incorporate and the mechanism of how
non-linear calculation conducts inside the neuronal pathways.
However, infrequently are they considered to be integrated
with collision perception visual models to further improve their
accuracy and robustness.

III. FORMULATION OF THE METHOD

In this section, we present the strategy of the proposed RP
mechanism fused with LGMD model with formulations as
well as parameter settings.

Sharing most structures of classic LGMD neural network
in [14], the first layer, P layer of our proposed model
is composed photoreceptors that are sensitive to brightness
changing, and it is calculated by

Pt(x, y) = Bt(x, y)−Bt−1(x, y) (1)

where Bt(x, y) and Bt−1(x, y) respectively corresponds to the
luminance value of pixel (x, y) at the moment t and t−1. The
core of our proposed model lays in the L layer, which is placed
between P and E layer to determine whether the output of
P layer can be passed to its connected E layer. L layer, a
2-D matrix of the size of P layer, consists of local thresholds,
and is defined by both a decay indicator it and the value of
corresponding P layer cell:

Lt(x, y) =

{
Lmax, if |Pt(x, y)| > Lt−1(x, y)

Lmax · α · (1 + eit(x,y))−1, otherwise
(2)

where α is a coefficient to scale the decay function. While
Lmax is the upper boundary that Pt(x, y) can reach. More
specifically, if Pt(x, y) manages to exceed Lt−1(x, y), the
consecutive local threshold Lt(x, y) rises to Lmax; otherwise
Lt(x, y) decays exponentially and is updated with i, which is
determined by the following equation:

it =


1, if Pt(x, y) > Lt−1(x, y) or

it−1 > Tdecay

it−1 + 1, otherwise

(3)

where the Tdecay is a determining constant for how many
frames that a local threshold decays according to equation
(1) case otherwise. Subsequently, while values of activated
photoreceptor cells are inherited by cells in the E layer
at corresponding point, these values, with one image frame
delay, flows into I layer as well, where inhibition is passed,
elucidated by

It(x, y) =
∑
i

∑
j

Pt−1(x+ i, y + j) · wI(i, j) (4)

wI =

0.125 0.25 0.125
0.25 0 0.25
0.125 0.25 0.125

 (5)

where It(x, y) represents the inhibition of the cell positioned
at (x, y) at t moment. wI(i, j) indicates a 3×3 local convolu-
tional kernel representing local inhibition weight, which allows
local inhibition to pass through to its neighbouring cells, thus
i and j shall not concurrently equal to zero. The following
layer is S layer, where excitation transmitted from E layer and
inhibition from I layer is summed by the following equation:

St(x, y) = Et(x, y)− It(x, y) ·WI (6)
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where WI is a weight parameter constant. Here, outcomes of S
cells, instead of being gathered immediately by the LGMD
neuron, are injected into a group layer (G layer) to further
enhance the developing edges derived from complex stimuli
via a specialized convolutional operation, which is given by

[Ce]t = [S]t ⊗ [we] (7)

we =
1

9
×

1 1 1
1 1 1
1 1 1

 (8)

where ⊗ is defined as a convolution operator, and we ac-
cordingly is the convolutional mask. The output Cet is then
forwarded to G layer. Please note that Cet shall be partially
discarded to match the magnitude of St. Capable of providing
stronger input to the consecutive LGMD cell, G layer is
explicit as follows:

firstly, raw data is calculated by

gt = w−1([S]t ∗ [Ce]t) (9)

where w−1 is a scalar for the Hadamard product of [S]t and
[Ce]t. The scalar is updated every frame by the following
equation:

w = ∆c+max(abs[Ce]t) · C−1
w (10)

within which ∆c is a small positive real number while C−1
w is

a constant, and max(abs[Ce]t) extracts the maximum value
within the matrix Cet.

Secondly, the raw gt is further selected by

Gt(x, y) =

{
gt(x, y), gt(x, y) · Cfa > Tfa

0, otherwise
(11)

where Cfa denotes the fading coefficient that belongs to (0,
1), and Tfa is the fading threshold. After the G layer, not
only the edge information collected from approaching motion
is further strengthened, but also the excitation collected from
clustered background is cancelled to a certain degree. The

product Gt subsequently is conveyed to the LGMD neuron
to be calculated by following equations divided into two steps:

Kt =
∑
x

∑
y

abs(Gt(x, y)) (12)

where firstly the summation of membrane potential, Kt, is
calculated by sum every absolute value of pixel in G layer.
Secondly the aforementioned summation is normalized utiliz-
ing a sigmoid function stated below:

LGMDt = (1 + e−Kt·n−1
cell)−1 (13)

where ncell counts photoreceptors on the retina. Once the
consequence of LGMD neuron, which is limited in the range
[0.5, 1], exceeds the stationary threshold Tlgmd, one spike is
fired:

spike =

{
1, if LGMDt > Tlgmd

0, otherwise
(14)

Under physical circumstances, turning provokes enormous
luminance change that triggers the LGMD model in a predom-
inant manner. Hence, the Feed Forward Inhibition (FFI) mech-
anism is introduced together with lateral inhibition to suppress
rapid luminance change caused by turning. It functions as the
following equations:

Ft = n−1
cell ·

∑
x

∑
y

|Pt−1(x, y)|+
na∑
i

(αF
t−1 · Ft−i) (15)

where αF
t−1 denotes a coefficient which belongs to (0, 1),

weighing the impact of previous Ft−i. Then the result Ft is
compared with a threshold, Tffi, which is updated to time by

Tffit = TO + αffi · Tffit−1
(16)

where TO is the original value of Tffi and αffi is a scalar.
Parameter settings refers to Table I.
Compared with those methods that require more computa-

tional power such as objective detection and large-scale driving



TABLE I
THE PARAMETERS SETTING

Parameter: Name, Value (Val)

Name Val Name Val Name Val

Lmax 255 ∆C 0.01 TO 7.5
α 2 Cw 4 αffi 0.02
Tdecay 7 Cfa 0.5 Tlgmd 0.7
WI 0.3 Tfa 15 i0 1

scene reconstruction [26], this LGMD1-based is acceptable
in terms of accuracy and robustness while considerably low
in algorithm complexity , which retains the potential for
being further embedded into low-energy consuming hardware
platforms.

IV. MATERIALS

Previously, while exploring performance of LGMD neural
networks, researchers utilize video signals, where the velocity
of objects is usually as low as no more than 1 m/s, as
their offline experimental materials. As for the real-time tests
carried on a micro-robot, the velocity is usually measured in
centimetres. Thus, in this study to explore how refractoriness
affects the performance of LGMD model when faced with
ultra-fast objects on a colliding course, we utilize videos
recorded under experimental circumstances, where the velocity
of the incomings is more than 5 m/s, up to around 9.6
m/s. As the RP is fairly short period of time [27], aiming
at mimicking the actual duration of RP, a high-speed dynamic
camera, GoPro8, is used to sample the processes of a black
ping-pang ball approaching and hitting its lens at sampling
rate of 240 Hz, that is to say, capture one frame every 4.1667
millisecond, 8 times as quick compared to 30 Hz which is the
sampling rate previous works adapts. In this way, we approach
closer to the real duration of RP.

In subsection V-B, 20 video clips shot on GoPro8 are
included. Individual clip at sampling rate (or frame rate) 240
Hz is resized to 320×180 from 1920×1080, then decimated to
sampling rate of 30 Hz and 24 Hz. To realise this, designated
frames from original videos are extracted according to the
targeting frame rate. Taking 120 Hz frame rate for example,
every 240Hz

120Hz frames makes up one ’frame set’, within which
every 1st frame is used to form new clips. Then frames of
the same amount that cover the whole approaching course are
intercepted to be input as signals.

In subsection V-C, the same 20 clips are then polluted by
Gaussian noise or Salt-Pepper noise at different Signal-to-
noise ratio (SNR).

A computer-generated simulative video is used as well,
where a black square at the heart begins to grow at 15th frame
and pauses at 36th frame within grey background.

V. EXPERIMENTAL EVALUATION

In this section, we step-by-step illustrate the experimental
results, divided into 3 steps: a) feasibility of the proposed
model with RP mechanism, b) effectiveness of proposed model

against ultra-fast inbound objects and c) performance against
noise-polluted signals.

A. Feasibility of RP

Firstly we test the model with aforementioned computer-
generated simulative signal and GoPro-captured video to val-
idate the feasibility of integrating RP mechanism with classic
LGMD model. Results are illustrated by Fig.3 and Fig.4
clearly. The orange curves represent the normalized responses
of LGMD neuron (Eq. 13) handled by L layer and RP
mechanism in our proposed model, while the blue ones show
output of classic LGMD model. The green horizontal lines are
Tlgmd we set to recognize collision. From the outcomes, it can
be noticed that RP mechanism causes LGMD observes and
spikes for collision with one or several frames delay, which
narrows down the range of collision.
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Fig. 3. Examples of snapshots of the computer-generated video with
corresponding frame number tagged below. With the black square grows,
the responses gets more intensive and trespasses the Tlgmd (set to 0.9 for
simulative signals) until reaches the upper boundary. Orange curve and blue
dashed curve clearly show that both models succeed in extracting the motion
pattern of approaching.
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Fig. 4. Snapshots of the recorded signal at 240 Hz with frame number tagged
below. At an average velocity of 0.8727 m/s and initial velocity of 0 m/s,
the black ball starts to roll to camera lens from 1 m away at 122nd frame,
and hits it at 401st frame, followed by frames where the ball goes backwards.
0.7 is set as Tlgmd in Eq.14 for real-world signals.



B. Effectiveness against Ultra-Fast Objects

Here when ’ultra-fast’ is talked about, we not only refer to
real-world velocity, but also mean angular velocity from the
perspective of the LGMD neural network, which triggers the
LGMD neuron falsely and repeatedly. By lowering sampling
rate of the 20 GoPro8-shooting videos, continuous motion is
further discretized in time dimension, thus objects seem to
move faster if the lowered sampling rate mapped again from
low to higher, due to comparatively more immense difference
between two frames.

From the consequences of comparative experiments calcu-
lated by Eq.13, it can be noticed that when signals are sampled
at 240 Hz, both models succeed in recognizing impending
collision during the collision zone (between by 2 red dashed
lines), but without RP, LGMD neuron produces spikes several
frames earlier.
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Fig. 5. Example snapshots of one of video signals and statistical results below
frame number tags. Tlgmd illustrated by horizontal green line. Between two
red dashed lines are collision zone. The orange curve and blue curve represent
the average LGMD membrane potential at every corresponding frame or
moment in 20 video clips respectively. Light grey area covers the standard
deviation of all signals at a certain frame. Collision is reported by both models.
Orange curve shows collision is extracted while blue one reports collision
several frames earlier. The orange curve also shows stationary property before
collision, compared with the blue one.

For low sampling rate signals, we test both model with 30
Hz as well as 24 Hz. Though classic LGMD without RP
mechanism is activated during collision zone, it fires spikes
when the objects are still far away from the camera lens,
meaning false alert, while our proposed model with RP notifies
the right collision.

It is also worth paying attention to the results outside the
collision zone, where LGMD is not supposed to fire, our
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Fig. 6. Statistical results of signals at sampling rate 30 Hz
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Fig. 7. Statistical results of signals at sampling rate 24 Hz.

model demonstrates effectiveness on silencing the neuron in
Fig.5, and in Fig.6 and Fig.7, RP also shows influence on
weakening the fluctuation but not that obvious compared with
high sampling rate signals. This, to some extent, suggests
that useless and small edge expansion patterns may have
been filtered while continuous expansion reserved for further
collision perception.

C. Performance against Noisy-Polluted Signals

Subsequently, PR is tested for noise resistance ability, with
the same 240 Hz signals used in subsection V-B polluted
by either Gaussian noise or Salt-Pepper noise. Some of our
experimental results show delightful efficacy on resisting the
low-strength noise such as Gaussian noise (Fig.8). Although
compared to classic model, RP mechanism helps to purify
contaminated signals, it is still challenging to extract collision
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Fig. 8. Snapshots of 389th frame from original video and Gaussian-noise-
contaminated video.The orange curve represents LGMD membrane potential
(referring to Eq.13) with RP mechanism, comparatively blue one without
RP. While most of the blue curve stays at 1, orange curve can be easily
distinguished for the peak at 401st frame with violent fluctuation within first
40 frames.

and approaching motion pattern when SNR drops as shown in
Fig.9.

VI. CONCLUSION AND DISCUSSION

While cruising in complex real world, locusts amazingly
demonstrate their ability to avoid impending collision and
incoming objects at high speed, including those in complex
environments as well as the homologous. In this paper, we
propose an integrated model of LGMD and refractoriness
mechanism based on prior knowledges of locusts’ visual sys-
tem. Compared the original LGMD1 model, our method shows
advantages on three aspects: 1) feasibility of recognizing ultra-
fast objects on a colliding trajectory, the velocity of which
reaches up to 9.6 m/s; 2) stability outside the collision
zone where only useless edge expansion are filtered; 3) in
a subtle manner,it also improve the classic LGMD model’s
performance when input signals are impure, especially are
low-density Gaussian or Salt-Pepper noise polluted. Hence,
it is shown that RP is promising in modelling the collision
perception neural networks based on visual cues to handle
complex signals that resemble what locusts are seeing in a
gliding scene in the future.

Though our simplified model basically realises characteriza-
tion of RP mechanism together with the classic LGMD model,
compared to modelling RP based on stochastic processes, it re-
mains to be further accomplished in terms of algorithm of RP.
An question occurs then: is it possible to make LGMD model
noise-resisting in the meanwhile stays low demanding in terms
of computational power? It is believed an enhanced modelling
of RP integrated with LGMD models, including those focused
on angular velocity and those combining multiple neurons,
could be a solution for balancing noising-cancelling and low
algorithm complexity.
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Fig. 9. Here, spike frequency is the product of amount of spike divided by
amount of frames. (a) Orange bars illustrate that, spike frequency with RP
mechanism interfering is low at SNR equalling 14.96, while blue ones show
that LGMD is compromised by Gaussian noise. (b) Against low level Salt-
Pepper noise, both models work properly and observe collision successfully.
Comparatively, RP mechanism improves LGMD in terms of noise resistance.
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