
Multi-Modal Brain Segmentation Using Hyper-Fused 

Convolutional Neural Network 

Wenting Duan1, Lei Zhang1, Jordan Colman1,2, Giosue Gulli2 and Xujiong Ye1 

1 Department of Computer Science, University of Lincoln, UK 
2 Ashford and St Peter’s Hospitals NHS Foundation Trust, Surrey, UK 

wduan@lincoln.ac.uk 

Abstract. Algorithms for fusing information acquired from different imaging 

modalities have shown to improve the segmentation results of various 

applications in the medical field. Motivated by recent successes achieved using 

densely connected fusion networks, we propose a new fusion architecture for the 

purpose of 3D segmentation in multi-modal brain MRI volumes. Based on a 

hyper-densely connected convolutional neural network, our network features in 

promoting a progressive information abstraction process, introducing a new 

module – ResFuse to merge and normalize features from different modalities and 

adopting combo loss for handing data imbalances. The proposed approach is 

evaluated on both an outsourced dataset for acute ischemic stroke lesion 

segmentation and a public dataset for infant brain segmentation (iSeg-17). The 

experiment results show our approach achieves superior performances for both 

datasets compared to the state-of-art fusion network.    
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1 Introduction 

In medical imaging, segmentation of lesions or organs using a multi-modal approach 

has become a growing trend strategy as more advanced systems and data becomes 

available. For example, magnetic resonance imaging (MRI) that is widely used for brain 

lesion or tumor detection and segmentation comes in several modalities including T1-

weighted (T1), T2-weighted (T2), FLuid Attenuated Inversion Recovery (FLAIR) and 

Diffusion-weighted image (DWI), etc. Compared to single modality, the extraction of 

information from multi-modal images brings complementary information that 

contributes to reduced uncertainty and an improved discriminative power of the clinical 

diagnosis system [1]. Motivated by the success of deep learning, image fusion strategies 

have largely moved from probability theory [2] or fuzzy concept [3] based methods to 

deep convolutional neural network based approaches [1, 4].  

Promising performance has been achieved by deep learning based methods for 

medical image segmentation from multi-modal images. The most widely applied 

strategy is simply concatenating images or image patches of different modalities to 

learn a unified image features set [5–7]. Such networks combine the data at the input 

level to form a multi-channel input. Another straightforward fusion strategy is for 
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images of each modality to learn an independent feature map. Then these single-

modality feature sets will, either learn their separate classifiers and use ‘votes’ to arrive 

at a final output, or learn a multi-modal classifier integrating high-level representations 

of different modalities [8-10]. In comparison to the strategies mentioned previously 

where fusion happens either at the input level or the output/classifier level, some recent 

works [11-14] have proved that performing fusion within the convolutional feature 

learning stage instead generally gives much better segmentation results. Tseng et al. 

[14] proposed a cross-modality convolution to aggregate data from different modalities 

within an encoder decoder network. The convolution LSTM is then used to model the 

correlations between slices. The method requires images of all modalities to be co-

registered and the network parameters varies with the number of slices involved in the 

training dataset. For unpaired modalities such as CT and MRI, Dou et al. [15] developed 

a novel scheme involving separate feature normalization but shared convolution. 

Knowledge distillation-based loss is proposed to promote softer probability distribution 

over classes. However, the design so far is limited to two modalities. Another avenue 

of research on multi-modal fusion is based on DenseNet [16] where feature re-use is 

induced by connecting each layer with all previous layers. For example, Dolz et al. [13] 

extends the DenseNet so that the dense connections not only exist in the layers of same 

modality but also between the modalities. Their network (i.e. HyperDense-Net) made 

significant improvements over other state-of-art segmentation techniques and ranked 

first for two highly competitive multi-modal brain segmentation challenges. Dolz et al. 

[17] also explored the integration of DenseNet in U-Net, which involved a multi-path 

densely connected encoder and inception module-based convolution blocks with 

dilated convolution at different scales. However, the network input only accepts 2D 

slides and not 3D volumes. 

As reviewed in [3], dense connection-based layer-level fusion improves the 

effectiveness and efficiency of multi-modal segmentation network through better 

information propagation, implicit deep supervision and reduced risk of over-fitting on 

small datasets. While recognising the advantages provided by densely connected 

networks for multi-modal fusion, HyperDense-Net architecture has some limitations 

which we address in this paper. The first lies in the variation of filter depth. Compared 

to many other segmentation networks such as U-Net, HyperDense-Net contains no 

pooling layer between convolutional layers and is overall not so deep (i.e. contains nine 

convolution blocks and four fully-convolutional layers).  However, it retained the 

conventional way of increasing the number of filters (just like the networks with 

pooling layers) by doubling or multiplying 1.5 after every three consecutive 

convolution blocks, resulting in a drastic change in feature abstraction in the 4th and 7th 

layers and moderate learning in other layers. The other lacking aspect we identified is 

the way multi-modal feature maps concatenate. In HyperDense-Net, the feature maps 

from all modalities as well as previous layers are simply fused using concatenation 

along the channel dimension. We speculate this approach fails to consider the 

discrepancy in visual features under different modalities and the importance of modal-

specific learning, resulting in ineffective multi-modal feature merging and propagation. 

Given the challenges and limitations described above, we propose a new densely 

connected fusion architecture, which we refer to as HyperFusionNet, for multi-modal 
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brain tissue segmentation. The proposed network is trained in an end-to-end fashion, 

where a progressive feature abstraction process is ensured, and a better feature fusion 

strategy is integrated to alleviate the interference and incompatibility of feature maps 

generated from different modality paths. We compare the proposed architecture to the 

state-of-art method using both a private dataset on acute ischemic stroke lesions and 

data from the iSeg-2017 MICCAI Grand challenge [18] on 6-month infant brain MRI 

Segmentation. 

2 Method 

2.1 Baseline Architecture 

The pipeline of the baseline architecture – HyperDense-Net [13] is shown in Fig. 1, but 

without the added ResFuse modules. Taking the fusion of three modalities as an 

example, each imaging modality has its own stream for the propagation of the features 

until it reaches the fully convolutional layer. Every convolutional block includes batch 

normalization, PReLU activation and convolution with no spatial pooling. For a 

convolutional block in a conventional CNN, the output of the current layer, denoted as 

𝑥𝑙, is obtained by applying a mapping function 𝐹𝑙(∙)  to the output 𝑥𝑙−1 of the previous 

layer, i.e.  

  (1) 

However, in the HyperDense-Net, feature maps generated from different modalities as 

well as the feature outputs from previous layers are concatenated in a feed-forward 

manner to be input to the convolution block. Let 𝑀 represents the number of modalities 

involved in the multi-modal network, the output of the 𝑙𝑡ℎ layer along a stream 𝑚 =
1,2,… ,𝑀 in the baseline architecture is then defined as 

  (2) 

All streams are then concatenated together before entering the fully convolutional 

layers. The output of the network is fed into a softmax function to generate the 

probabilistic map. The final segmentation result is computed based on the highest 

probability value. The baseline network is optimised using Adam optimiser and cross-

entropy loss function. 

2.2 Proposed Architecture 

To avoid drastic changes of feature abstraction, we first modified the number of filter 

sizes in the baseline network. Instead of having equal number of filters for every three 

consecutive convolutional blocks, we gradually increase the number of filters in the 

successive blocks. Let 𝑤 denotes the increased value in filter number in the original 
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network, we add 𝑤 3⁄  filters to the successive convolutional layers in the proposed 

network. The effectiveness of such design is demonstrated previously in [19].  

To improve the fusion of the multi-modal features along each modality path, we 

propose to merge the feature maps via a ‘ResFuse Module’. Inspired by [20], the 

module (illustrated in Fig. 2) contains a residual connection where the main information 

belonging to that specific modality path is traversed directly. A 1×1 convolutional layer 

is also introduced to allow some comprehension of channel correspondence between 

the features of the specific path and the merging information from other modalities. For 

the concatenated feature maps, we apply non-linear PReLU activation before 

summation in order to promote better mapping and information flow in the fused 

propagation. Equation 2 is then updated to 

 𝑥𝑙
𝑚 = 𝐻𝑙(𝑥𝑙−1

𝑚 ) + 𝐺𝑙([𝑥𝑙−1
1 , 𝑥𝑙−1

2 , 𝑥𝑙−1
𝑀 , 𝑥𝑙−2

1 , 𝑥𝑙−2
2 , … , 𝑥𝑙−2

𝑀 , … , 𝑥0
𝑀]) (3) 

where 𝐻𝑙  applies the dimension expansion of 𝑥𝑙−1
𝑚 via the 1×1 convolution and 𝐺𝑙  

performs the concatenation of features from all modalities and the activation.  

 

Fig. 1. The proposed HyperFusionNet architecture in the case of three imaging modalities. The 

feature map generated by each convolutional block is colour coded; the deeper the colour the 

deeper the layer. The stacked feature maps show how the dense connection and layer shuffling 

happens originally along each path. The ResFuse Module is added to replace the original 

concatenation. 

 

Fig. 2. Proposed residual fusion module for the multi-modal feature merging. 
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Table 1. The HyperFusionNet architecture detail. Notations: CB - convolutional block; RFM – 

residual fusion module; FC - fully convolutional layer. 

Network 

components 

No. filters Output 

size 

Network 

components 

No. filters Output 

size 

CB1 25 253 
RM6 

CB7 

819 

75 
133 

RFM1 

CB2 

75 

33 
233 

RM7 

CB8 

1044 

83 
113 

RFM2 

CB3 

174 

41 
213 

RM8 

CB9 

1293 

91 
93 

RM3 

CB4 

297 

50 
193 

RM9 

FC1 

1566 

600 
93 

RM4 

CB5 

447 

58 
173 

FC2 300 93 

FC3 150 93 

RM5 

CB6 

621 

66 
153 FC4 No. classes 93 

The layer details are presented in Table 1, which shows the layer parameters involved 

in the proposed network. The overall architecture layout is presented in Figure 1, which 

we term HyperFusionNet.  

2.3 Learning Process and Implementation Details 

Another change we made to the baseline network was to the loss function. Instead of 

using cross entropy loss, we propose to use Combo Loss, which is the combined 

function of Dice Loss (DL) and Cross-Entropy (CE). The Combo Loss function allows 

us to benefit from DL for better handling the lightly imbalanced class and the same time 

leverage the advantage of CE for curve smoothing. It is defined as 

𝐿 = 𝛼 (−
1

𝑁
∑𝛽(𝑔𝑖 log 𝑠𝑖) + (1 − 𝛽) [(1 − 𝑔𝑖) log(1 − 𝑠𝑖)]

𝑁

𝑖=1

)

− (1 − 𝛼)(
2 ∑ 𝑠𝑖𝑔𝑖 + 𝜀𝑁

𝑖=1

∑ 𝑠𝑖
𝑁
𝑖=1 +∑ 𝑔𝑖

𝑁
𝑖=1 + 𝜀

) 

  (4) 

where 𝑔𝑖 is the ground truth for pixel 𝑖 , and 𝑠𝑖  is the corresponding predicted 

probability.  

The model is implemented in PyTorch and trained on a single NVIDIA GTX 1080Ti 

GPU. Images from each modality are skull stripped and normalized by subtracting the 

mean value and dividing by the standard deviation. 3D image patches of size 27×27×27 

are randomly extracted and only ones with lesion voxels are used for training. The 

Adam optimization algorithm used for optimization is set with default parameter 

values. The network was trained for 600 epochs. For model inference, the testing 
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images are first normalised and non-overlapping 3D patches are extracted. The output, 

which is the 9×9×9 voxel-wise classification obtained from the prediction at the centre 

of the patch, is used to reconstruct the full image volume by reversing the extraction 

process. The source code for the implemented model is available on GitHub1. 

3 Experiments and Results 

3.1 Datasets 

The proposed HyperFusionNet is evaluated both on a hospital-collected multi-modal 

dataset of acute stroke lesion segmentation and on the public iSeg-17 MICCAI Grand 

Challenge dataset. The hospital-collected dataset was divided into 90 training cases and 

30 testing cases, with three modalities in each case, i.e., T2, DWI-b1000 and DWI-b0. 

All images are of size 256 × 256 × 32. The ground truth for the acute stroke lesion in 

the dataset is annotated by experienced physicians and there are two classes involved: 

lesion and non-lesion. Comparably, iSEG17 is a much smaller dataset containing 10 

available volumes with two modalities, i.e., T1- and T2- weighted. To be consistent 

with the experiment carried out in the original baseline paper [13], we also split the 

dataset into training, validation and testing sets, each having 6, 1, 3 subjects, 

respectively. There are four classes involved in iSeg-17 dataset, i.e., background, 

cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM). 

 

Fig. 3. Validation accuracy measured using mean DC during proposed model training on the 

stroke lesion dataset. 

3.2 Results and Discussion 

The proposed network is first evaluated by assessing its performance at segmenting 

acute stroke lesions in the hospital-collected dataset. In this experiment, the batch size 

was set to 10 and learning rate was set to 0.0002. Fig. 3 shows the comparison of the 

validation accuracy between the baseline and HyperFusionNet. The mean Dice score 

 
1  https://github.com/Norika2020/HyperFusionNet 
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of the validation set is calculated after every ten epochs. We can see from the learning 

curve that HyperFusionNet is not only more accurate compared to the baseline but also 

converges faster. This can be attributed to the synergy between the residual connections 

and the feature activation after concatenation. Table 2 shows the segmentation results 

on the testing volumes in metrices Dice coefficient (DC) and Hausdorff distance (HD). 

Both measurements suggest that the proposed network provides more effective fusion 

of multi-modal features than the original approach. Fig. 4 shows some examples of 

qualitative results on three kinds of stroke lesion conditions: a big lesion, multiple 

lesions and a small lesion. Overall, we observe that the proposed network is better at 

discarding outliers and predict stroke lesion regions of higher quality. 

To better understand how the proposed modifications to the baseline contribute to 

the network performance, we also did an ablation study. In this experiment, the 3D 

networks were changed to 2D (i.e. slice-by-slice input with patch size 27×27) to save 

training and computation time. As shown in Table 3, the accuracy is immediately 

decreased when the network is changed to 2D. This is expected and it also emphasises 

the importance of exploiting the slice dimension information for such networks. The 

results show the clear improvements made by each modification to the 2D baseline 

network, with ResFuse module making the biggest contribution. We also tested other 

loss functions – Dice Loss, Focal Loss and Tversky Loss. Comparably, Combo Loss 

has shown to be more advantageous in our proposed network.  

Table 2. The testing results on stroke lesion segmentation measured in DC (%) and HD with 

their associated standard deviation for the experimented networks. 

Network Mean DC DC Std Mean HD HD Std 

Baseline 65.6 18.0 87.756 20.386 

HyperFusionNet 67.7 16.5 85.462 14.496 

 

Fig. 4. Qualitative results obtained for the stroke dataset using the baseline and the proposed 

networks.  
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Table 3. The testing results of the proposed modification to the baseline on stroke lesion 

segmentation measured in DC (%). 

Network modification DC Other loss function DC 

Baseline 2D (CE loss) 41.9 HyperFusionNet (CE loss) 46.6 

+ Incremental filters 43.0 + Dice loss 45.9 

+ ResFuse module 46.6 + Focal loss 39.0 

+ Combo loss 47.1 + Tversky loss 43.6 

Table 4. The performance comparison on the testing set of the iSeg17 brain segmentation 

measured in DC (%). 

Architecture CSF WM GM 

Baseline 93.4 ± 2.9 89.6 ± 3.5 87.4 ± 2.7 

HyperFusionNet 93.6 ± 2.5 90.2 ± 2.2 87.8 ± 2.3 

We also tested the HyperFusionNet on the iSeg-17 dataset to investigate its 

performance on a smaller dataset with more classes involved. To allow a fair 

comparison, the parameters such as batch size (=5) and learning rate (initially =0.001 

and reducing by a factor of 2 every 100 epochs) are set to match the baseline paper. The 

results for the baseline are reproduced using their published code written in PyTorch2 

in order to compare results under the same experimental setting. Results in Table 4 

shows the proposed network yields better segmentation results than the baseline. 

Although there is not a significant improvement in the averaged Dice score, we 

observed that it worked well for challenging cases of segmenting GM and WM. Fig. 5 

depicts such a challenging example where the proposed HyperFusionNet shows a better 

contour recovery than that obtained by the baseline.  

 

Fig. 5. Qualitative results achieved by the baseline and proposed network compared to the ground 

truth contour.   

 
2  https://github.com/josedolz/HyperDenseNet_pytorch  

https://github.com/josedolz/HyperDenseNet_pytorch
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4 Conclusion 

In this work, we propose a novel method HyperFusionNet for brain segmentation using 

3D images captured with multiple modalities. The proposed network presents a new 

way to fuse features from different modalities in a densely connected architecture. A 

progressive feature abstraction process is promoted and a ResFuse module is introduced 

to replace the simple concatenated fusion used in the baseline network. The network is 

improved further with a Combo loss function. We evaluate the proposed network in 

both ischemic acute lesion segmentation and infant brain segmentation and compare it 

to a state-of-art multi modal fusion network. The experimental results demonstrate the 

effectiveness of HyperFusionNet and its capability to tackle challenging multi-modal 

segmentation tasks with different applications and dataset sizes. Our research largely 

focused on the fusion network itself, and little data augmentation and post processing 

was included. For future work, we will improve the network further by implementing 

pre and post enhancements. The influence of each modality on different applications 

will also be investigated. 
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