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Abstract—A common approach to the problem of fruit de-
tection in images is to design a deep learning network and
train a model to locate objects, using bounding boxes to identify
regions containing fruit. However, this requires sufficient data
and presents challenges for small datasets. Transfer learning,
which acquires knowledge from a source domain and brings that
to a new target domain, can produce improved performance in
the target domain. The work discussed in this paper shows the
application of transfer learning for fruit detection with small
datasets and presents analysis between the number of training
images in source and target domains. This investigation is based
on three datasets: two containing tomatoes and one containing
strawberries. Experimental results indicate that transfer learning
can enhance prediction with limited data.

Index Terms—fruit detection, limited datasets, transfer learn-
ing, target domain

I. INTRODUCTION

Within the task domain of plant phenotyping, fruit detection
is a difficult problem, particularly when trying to identify
objects of interest in small image datasets. Deep learning
is a common approach, using multi-layered Convolutional
Neural Networks (CNNs) to obtain feature maps, but these
networks require sufficient numbers of training examples in
order to produce accurate results. Transfer learning enables
reusing knowledge acquired previously from other tasks or
applications and could greatly improve the performance of
learning by avoiding various expensive efforts [7].

Recently, several deep learning architectures have been
developed from the basic Region-based CNN (R-CNN) [4],
including Faster R-CNN [9], YOLO [8] and Single Shot
MultiBox Detector (SSD) [6]. Most of the machine learning ap-
proaches to fruit detection apply these Faster or Mask R-CNN
methods [2], [13]. In contrast, transfer learning approaches
applied to the agriculture domain mainly focus on identifying
plant species [5], classifying pests [12] or diseases [1].

The general principle underlying transfer learning is to take
a model trained from data in a source domain and adjust this
model to a new dataset in a target domain. Research in this
area has explored the impact of the size of the source dataset
and number of labelled examples on the results [1], [2]; but
little work has studied these properties in the target domain.
The work presented here asks the following questions: Is
the size of the source and/or target training sets associated
with the accuracy of detection? Is it possible to get the ideal

performance in the target domain without carrying out training
on large amounts of annotated data (source domain)?

As we already have some knowledge learned from the
source domain, therefore it can be saving model training time
and resources consumed for the task.

II. METHODS

This section presents the basic SSD [6] framework we
applied for strawberry and tomato detection, then introduces
the transfer learning methods employed. We analyse the rela-
tionship between the training dataset size in the source domain
and the number of labels in the target domain with respect to
the results obtained.

SSD is a one-stage detection system; it eliminates proposal
generation and subsequent pixels or feature re-sampling stages,
then encapsulates all computation in a single network. This
model contains multi-scale feature maps and convolutional
predictors for detection, sets default bounding boxes and
aspect ratios and allows for different default bounding box
shapes in several feature maps to discretize the space of
predicted bounding boxes efficiently.

The experiments presented here explore the application of
transfer learning for detecting fruits in images. The features
learned from a source dataset are transferred to two different
new target datasets, each of which may not contain enough
training data, due to a paucity of examples or labels. We
analyse our results by comparing the accuracy values when
transferring from the source to each target, investigating the
relationship between these metrics and sizes of the source and
target training sets.
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Fig. 1. Tomato and strawberry examples in our datasets.
III. EXPERIMENTAL SETUP

a) Datasets and Training Parameters: Our experimental
data is comprised of three datasets: two different types of
tomato (T1, T2) and strawberry (SR). These datasets are
collected under different conditions: the strawberry images
are all from a polytunnel, whereas the tomato images in T1
are from a garden, showing different growth stages, and the
images in T2 are from the Internet.The backgrounds, lighting



conditions and other factors differ, so there is some diversity
across the data sets. Detailed information about our datasets is
shown in Table I and Fig. 1. In our SSD model, the backbone
is VGG-16 [11] and is pre-trained with ImageNet [3]. The
batch size is 4 and the learning rate is 1e − 4 with the SGD
optimizer [10] setting the momentum to 0.9.

TABLE I
NUMBERS OF IMAGES IN OUR DATASETS

Dataset Total Training Testing
T1 496 396 (80%) 100 (20%)
T2 73 59 (80%) 14 (20%)
SR 124 99 (80%) 25 (20%)

b) Transfer learning between tomato and strawberry data
sets: Our goal is to quantify the influences of the numbers of
training images in the source (T1) and target domains (SR or
T2). The number of training images are randomly partitioned
as follows: into four parts for the source domain, T11; into
twelve parts for SR2; and into seven parts for T23. The number
of images in each test set (SR and T2) is almost 20% of each
total. Table II shows the results of transferring the T1 model to
different sized datasets of SR and T2 images. Results are also
shown graphically in Fig 2. For comparison, we also trained
SSD models with the SR and T2 datasets (3000 iterations).
The mAP values we obtained for these models are 0.354 and
0.789, respectively. TABLE II

RESULTS OF TRAINING ON SR AND T2 AND SELECTED MAP RESULTS
FOR TRANSFER LEARNING FROM DIFFERENT-SIZED T1 DATASETS TO SR

AND T2 (BEST PERFORMANCE IN EACH ROW IN BOLD)

Training/test mAP Training/test mAP
(SR) (99/25) 0.354 (T2) (59/14) 0.789

Source (T1)
(training/test) Target 0 10 50 60(59)1 90 Avg

62(49/13) SR 0.076 0.299 0.393 0.383 0.380 0.3363
T2 0.779 0.739 0.796 0.788 – 2 0.7714

124(99/25) SR 0.108 0.274 0.350 0.394 0.338 0.3154
T2 0.798 0.794 0.813 0.764 –2 0.7904

248(198/50) SR 0.067 0.334 0.359 0.401 0.381 0.3368
T2 0.827 0.764 0.827 0.829 –2 0.7961

496(396/100) SR 0.052 0.304 0.303 0.378 0.380 0.3240
T2 0.810 0.759 0.838 0.811 –2 0.7933

Avg SR 0.0758 0.3027 0.3513 0.3890 0.3698
T2 0.8035 0.7640 0.8186 0.7980 –2

1 60(59) means 60 training images for SR and 59 for T2.
2 – refers to the fact that T2 has fewer training images (i.e. < 90)
If we use the source model without any re-training (i.e.

number of target training images is 0), as the number of
training images in T1 increases, fruit detection performance
in SR decreases. This is because of the feature difference be-
tween strawberry and tomato: with more source data training,
features learned by the model are more related to tomatoes.
In contrast, detection accuracy for T2 improves as the source
dataset size increases. We also find that T2 provides better
detection results if we do not use any images to re-train the
source model.

Examining the relation between the numbers of training
images in the source and target datasets, the best average

1The four partitions of the T1 dataset each contain {62,124,248,496}
images, respectively.

2The twelve partitions of the SR dataset each contain
{0,5,10,20,30,40,50,60,70,80,90,99} images, respectively.

3The seven partitions of the T2 dataset each contain {0,5,10,20,40,50,59}
images, respectively.
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Fig. 2. Results of transfer learning from T1 to SR (left) and T2 (right). mAP
is shown for different numbers of images.
performance is with T1 = 248. For T2, the average results
are better than training on the target domain only (0.7961 >
0.789). As the size of the source training dataset increases,
the detection results in the target domain seem to reach a
saturation state. This suggests that we don’t need to train and
label large amounts of data in the target domain in order to
get high performance, thus saving model training time and
resources consumed for the task. Indeed, judging from the
current results, using a target dataset that is almost half the
size of the source dataset achieves high detection performance.

IV. SUMMARY AND NEXT STEPS

We applied transfer learning to fruit detection in limited
datasets and analysed the impact of the number of the training
images in the source and target domains. Next, we will
consider how to reduce the features distribution differences
between the source and target domains to improve detection
performance, discuss and explain the effects of transfer from
small samples to large data sets.
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