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The reduced Tomgro model is one of the popular biophysical models, which can reflect the actual growth process 

and model the yields of tomato-based on environmental parameters in a greenhouse. It is commonly integrated 

with the greenhouse environmental control system for optimally controlling environmental parameters to maxi- 

mize the tomato growth/yields under acceptable energy consumption. In this work, we compare three mainstream 

evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution- 

ary (DE)) for calibrating the reduced Tomgro model, to model the tomato mature fruit dry matter (DM) weights. 

Different evolutionary algorithms have been applied to calibrate 14 key parameters of the reduced Tomgro model. 

And the performance of the calibrated Tomgro models based on different evolutionary algorithms has been eval- 

uated based on three datasets obtained from a real tomato grower, with each dataset containing greenhouse 

environmental parameters (e.g., carbon dioxide concentration, temperature, photosynthetically active radiation 

(PAR)) and tomato yield information at a particular greenhouse for one year. Multiple metrics (root mean square 

errors (RMSEs), relative root mean square errors (r-RSMEs), and mean average errors (MAEs)) between actual 

DM weights and model-simulated ones for all three datasets, are used to validate the performance of calibrated 

reduced Tomgro model. 
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. Introduction 

Nowadays, greenhouses are preferred by many tomato growers.

ompared with the field growing, growing tomatoes in a greenhouse

an extent the tomato growing season, protect tomatoes against temper-

ture and weather changes as well as provide tomatoes with a safe grow-

ng environment [15] . With the development of modern techniques, the

nvironmental parameters (e.g., carbon dioxide concentration, temper-

ture, photosynthetically active radiation (PAR)) in a greenhouse nowa-

ays can be controlled to guarantee tomatoes to grow at the most appro-

riate environmental conditions [18,23] . The optimal control of green-

ouse environments is vitally important for optimizing the cultivation

anagement to guarantee the maximum tomato yield. And to determine

he optimal greenhouse environmental parameters, most importantly, it

s needed to accurately model the tomato growth/yield based on envi-

onmental parameters in a greenhouse 

A variety of models have been developed for crop yield modelling,

hich is divided into two categories: data-driven model and explanatory

iophysical model as in [14] . Data-driven ones ( [1,2,13] ) estimate crop
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ield by machine learning/deep learning models trained from a large

ollection of environmental parameters and historical yield data. While

he explanatory model describes the relationship between greenhouse

nvironmental factors (e.g., CO2, temperature, etc.) and crop morpho-

ogical development based on ordinary differential equations (ODEs),

or modelling the crop yield. Compared with the data-driven model, a

iophysical model is more practical to reflect the actual growth process

f crops, which is commonly integrated in the greenhouse environmen-

al control system for optimizing the tomato yields [24] . 

Different biophysical models have been applied for the greenhouse

rop yield modelling. The common-use HORTISIM [4] is a greenhouse

rop system simulation model that can be used to predict crop yield in

esponse to climate conditions inside a greenhouse and cultural oper-

tions, which is developed for providing effective strategies for green-

ouse environmental control and management. Ritchie et al. [19] pro-

osed the CERES model, which simulates a variety of factors (such as

bove-ground biomass, harvest index) related to crop yield in response

o climate, soil, genotypes and management. Van Keulen [12] proposed

he SUCROS model, which simulated the dry matter yield in various or-
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o  

e  
ans of wheat-based on solar radiation. The biophysical model proposed

n [17] describe the effects of electrical conductivity, nitrogen, phospho-

us, potassium, and light quality on dry matter yield and photosynthesis

f greenhouse cucumbers. With respect to the biophysical models fo-

using on tomato growth modelling, the developed Tomgro model in

10] models the evolution of seven state variable vectors related to the

omato growth: numbers of leaves, numbers of main stem segments,

umbers of fruits, dry weights of leaves plus petioles, dry weights of

ain stem segments, dry weights of fruits, and areas of leaves based on

ynamically changing temperature, solar radiation and CO2 concentra-

ion inside a greenhouse. A more complex Tomsim biophysical model

s proposed in [7] , which contains multiple sub-modules developed for

odelling different aspects (i.e., photosynthesis, dry matter production

russ appearance rate, fruit growth period and dry matter partitioning,

tc.) related to tomato growth. A model that describes the effects of

reenhouse climate on tomato yield based on a series of ODEs was de-

cribed and validated in [24] . This yield model was validated for four

emperature regimes. Results demonstrated that the tomato yield was

imulated accurately for both near-optimal and non-optimal tempera-

ure conditions in the Netherlands and southern Spain with varying light

nd CO2 concentrations. An integrated yield prediction model, which is

n integration of Tomgro model [10] and Vanthoor model [24] , is ap-

lied in [14] to predict the tomato yield in greenhouses based on con-

rollable greenhouse environmental parameters. 

Although different models [7,10,14,24] have been proposed for

odelling tomato growth/yield, these models are complex with tremen-

ous amounts of state variables and associated model parameters (for

xample, the Tomgro model in [10] has 69 state variables and that in

7] has 574 state variables), which makes it inconvenient for calibrating

elated models for accurately modelling tomato yield at a real green-

ouse site. To ameliorate this, a reduced Tomgro model is proposed in

9] . Compared with models in [7,10,14,24] , the reduced Tomgro model

s relatively simple and has much fewer model parameters, which makes

t more convenient to be calibrated for real-site tomato growth mod-

lling as shown in [9] . And the reduced Tomgro model has been suc-

essfully applied to model the tomato yield on different real greenhouse

ites, as reported in [3,20,25] . 

The genetic algorithm (GA) is usually applied as detailed in [25] ,

o calibrate the reduced Tomgro model to make it applicable to model

omato yield on a particular site. The results obtained on a real tomato

rowing site has shown the fruit dry matter (DM) weights simulated by

he calibrated reduced Tomgro model are close to the actual measure-

ent data as shown in [25] . Although there are many other evolutionary

lgorithms that have been successfully applied in different engineering

pplications [21] , however, no research of exploiting other optimization

trategies for calibrating the reduced Tomgro model is investigated. To

ll this gap, in this work we have evaluated different evolutionary algo-

ithms for calibrating the reduced Tomgro model, to model the tomato

ruit DM yield at a real greenhouse site. The chosen evolutionary al-

orithms include genetic algorithm (GA), particle swarm optimization

lgorithm (PSO) and differential evolutionary (DE) algorithm, which all

ave been successfully applied for a variety of optimization problems

n different domains [8,11,16] . Each algorithm is applied to tune op-

imal model parameters in the reduced Tomgro model for modelling

omato fruit DM yields. The performance of each evolutionary algo-

ithm for calibrating the reduced Tomgro model is evaluated on three

atasets obtained from a tomato grower, with each dataset containing

ecorded carbon dioxide concentration, temperature, photosynthetically

ctive radiation (PAR) and yield information in a greenhouse during one

ear’s period. From statistical analysis of different error metrics (include

oot mean square errors (RMSEs), relative root mean square errors (r-

MSEs) and mean absolute errors (MAEs)) obtained from the model

imulated DM yields and ground-truth ones recorded in every dataset,

t is shown that the reduced Tomgro model calibrated by the PSO al-

orithm achieves the most accurate result for modelling the fruit DM

ields. 
2 
This paper is organized as below: Section 2 gives the descriptions of

he reduced Tomgro model and different evolutionary algorithms: GA,

E and PSO. Detailed experimental studies on the performance of three

volutionary algorithms for calibrating the reduced Tomgro model are

rovided in Section 3 . Dicussions of this research work are provided in

ection 4 . 

. Methods 

.1. Reduced Tomgro model 

The reduced state-variable tomato model [9] is used for the simula-

ion of tomato growth on the basis of three inputs that are measured in-

ide a greenhouse environment: the photosynthetically active radiation

n [mmol/m 

2 /s] or photosynthetically active radiation (PAR) ( 𝑊 ∕ 𝑚 2 ),
ir temperature [ ◦C] and CO2 concentration [ppm]. The reduced state-

ariable tomgro model, with a number of mainstem nodes ( 𝑁), leaf area

ndex ( 𝐿𝐴𝐼), total plant weight( 𝑊 ), fruit weight( 𝑊 𝐹 ), and mature fruit

ry weight ( 𝑊 𝑀 

) as state variables, contains the same process equations

or photosynthesis, respiration, and development as the comprehensive

omgro/TomSim model in [7,10] , but with new leaf area and dry mat-

er growth relationships being developed. The dynamics of the total dry

atter production and distribution in fruit and mature dry weight in the

educed state-variable tomgro model are dependent on photosynthesis

nd respiration processes, based on temperature, CO2 concentration and

AR radiation. 

In specific, main process equations for the reduced state-variable

omgro model are shown in the following equations: 

𝑑𝑁 

𝑑𝑡 
= 𝑁 𝑚 ⋅ 𝑓 𝑁 ( 𝑇 ) (1) 

𝑑( 𝐿𝐴𝐼) 
𝑑𝑡 

= 𝜌 ⋅ 𝛿 ⋅ 𝜆( 𝑇 𝑑 ) 
𝑒𝑥𝑝 ( 𝛽 ⋅ ( 𝑁 − 𝑁 𝑏 )) 

1 + 𝑒𝑥𝑝 ( 𝛽 ⋅ ( 𝑁 − 𝑁 𝑏 )) 
⋅
𝑑𝑁 

𝑑𝑡 
(2) 

𝑑𝑊 

𝑑𝑡 
= 

𝑑𝑊 𝐹 

𝑑𝑡 
+ ( 𝑉 𝑚𝑎𝑥 − 𝑝 1 ) ⋅ 𝜌 ⋅

𝑑𝑁 

𝑑𝑡 
(3) 

𝑑𝑊 𝐹 

𝑑𝑡 
= 𝐺𝑅 𝑛𝑒𝑡 ⋅ 𝛼𝐹 ⋅ 𝑓 ( 𝑇 𝑑 ) ⋅ (1 − 𝑒𝑥𝑝 (− 𝑣 ( 𝑁 − 𝑁𝐹 𝐹 ))) ⋅ 𝑔( 𝑇 𝑑𝑎𝑦𝑡𝑖𝑚𝑒 ) (4) 

𝑑𝑊 𝑀 

𝑑𝑡 
= 𝐷 𝐹 ( 𝑇 𝑑 ) ⋅ ( 𝑊 𝐹 − 𝑊 𝑀 

) (5) 

The rate of node development 𝑑𝑁 
𝑑𝑡 

was modelled as a the maximum

ate of node appearance rate per day 𝑁 𝑚 multiplied by a function that re-

uces vegetative development depending on non-optimal temperatures.

eaf area index is updated daily in the reduced model based on (2),

hich is dependent on the node number 𝑁 and affected by the daily

emperature 𝑇 𝑑 . 𝑊 in (3) indicates the total above-ground dry weight.

rom Eq. (3) , we can see that the growth rate of 𝑊 is calculated as a

eighted sum of the fruit growth rate and node growth rate. The parti-

ioning of above-ground growth to fruit each day begins at node position

𝐹 𝐹 and increases asymptotically to a maximum partitioning using the

q. (4) . While in the reduced Tomgro model, the average development

ate of mature fruit DM weight 
𝑑𝑊 𝑀 

𝑑𝑡 
, used to move the fruit from green

o mature stages is given in (5), from which we can see that it depends

n the daily average temperature 𝑇 𝑑 , fruit weight 𝑊 𝑓 and mature fruit

eight 𝑊 𝑀 

. More detailed descriptions of relevant equations and pa-

ameters can be found in [9] . 

.2. Evolutionary algorithms 

The calibration of the reduced Tomgro model can be regarded as an

ptimization problem, that is, finding the optimal set of model param-

ters to model the tomato yield to be as approximate as the actual one
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25] . In this work, we have compared three mainstream evolutionary

lgorithms (GA,DE and PSO) for reduced Tomgro model calibrations.

lgorithm descriptions are shown in the next sections. 

.2.1. Genetic algorithm 

Genetic Algorithm (GA) [6] is an adaptive heuristic search based

volutionary algorithm, which is based on the ideas of natural selection

nd genetics and commonly used to generate solutions for optimiza-

ion problems. It simulates the process of natural selection which means

hose species who can adapt to changes in their environment are able

o survive and reproduce and go to the next generation. 

To exploit GA to solve an optimization problem requires a genetic

epresentation of the solution domain of the problem as well as a fitness

unction for evaluating a solution. Once the genetic representation and

he fitness function are defined, the GA proceeds to initialize a popula-

ion of individuals(solutions) and then to improve it to obtain optimal

olutions through repetitive application of the following operators: 

Selection Operator : This operator gives preference to the individ-

als with good fitness function scores and allows them to pass to the

uccessive generations. 

Crossover Operator : This operator ‘mates’ between individuals.

wo individuals are selected using the selection operator and crossover

ites are chosen randomly. Then the genes at these crossover sites are

xchanged thus creating a completely new individual (offspring). 

Mutation Operator : This operator inserts random genes in offspring

o maintain the diversity in the population to avoid premature conver-

ence. 

The aforementioned three operators are applied repeatedly until a

ermination condition has been reached, for example, a fixed num-

er of generations reached or the highest-ranking solution’s fitness is

eaching or has reached a plateau such that successive iterations no

onger produce better results. The procedure of the GA is described as

n Algorithm 1 . More details of the genetic algorithms can be found in

lgorithm 1 Genetic algorithm procedure. 

1) Randomly initialize populations p 

2) Determine fitness of population 

repeat 

a) Select individuals from population 

b) Crossover and generate new population 

c) Perform mutation on new population 

d) Calculate fitness for new population 

until convergence 

6] . 

.2.2. Differential evolution algorithm 

Differential evolution algorithm [22] is a stochastic, population-

ased optimization algorithm for solving a nonlinear optimization prob-

em. Similar to the generic algorithm, a fitness function and an initial

opulation of individuals(solutions) are both defined for using DE to

olve an optimization problem. However, it does not require the genetic

epresentation of the solutions. 

In specific, for exploiting the DE algorithm to solve an optimization

roblem, initially a population of N candidate solutions [ 𝑋 

0 
1 , … , 𝑋 

0 
𝑁 
] is

efined, where 𝑁 represents the population size and 0 represents that

t is the initial 0-th generation. Mutation, recombination and selection

perations are performed to update candidate solutions until termina-

ion condition is satisfied. Details of different operations are described

s follows: 

Mutation : Based on a particular candidate solution 𝑋 

𝑔 

𝑖 
at the 𝑔th

eneration, randomly select three other individuals ( 𝑋 

𝑔 

𝑟 1 , 𝑋 

𝑔 

𝑟 2 , 𝑋 

𝑔 

𝑟 3 ) and

onstruct a donor vector 𝑉 
𝑔+1 
𝑖 

by using the following equation: 

 

𝑔+1 
𝑖 

= 𝑋 

𝑔 

𝑟 1 + 𝐹 ( 𝑋 

𝑔 

𝑟 2 − 𝑋 

𝑔 

𝑟 3 ) (6) 
3 
here 𝐹 is a number between 0 and 1. 

Recombination : A trail vector 𝑈 
𝑔+1 
𝑖 

is develop from 𝑋 

𝑔 

𝑖 
and the

onor vector 𝑉 
𝑔+1 
𝑖 

by: 

 

𝑔+1 
𝑖,𝑗 

= 

{ 

𝑉 
𝑔+1 
𝑖,𝑗 

𝑟𝑎𝑛𝑑() ≤ 𝐶 𝑝 𝑜𝑟 𝑖 = 𝐼 𝑟𝑎𝑛𝑑 

𝑋 

𝑔 

𝑖,𝑗 
𝑟𝑎𝑛𝑑() > 𝐶 𝑝 𝑜𝑟 𝑖 ≠ 𝐼 𝑟𝑎𝑛𝑑 

(7) 

here 𝑈 
𝑔+1 
𝑖,𝑗 

, 𝑉 
𝑔+1 
𝑖,𝑗 

and 𝑋 

𝑔 

𝑖,𝑗 
mean the 𝑗th element of 𝑈 

𝑔+1 
𝑖 

, 𝑉 
𝑔+1 
𝑖 

and 𝑋 

𝑔 

𝑖 
.

 𝑟𝑎𝑛𝑑 is a integer random number between [1,D], where D is the vector

imension. 𝐶 𝑝 is the recommendation probability. 

Selection : the target vector is compared with the trial vector and

he one with the lower fitness function value is select to replace for the

ext generation, as in the following equation: 

 

𝑔+1 
𝑖 

= 

{ 

𝑈 
𝑔+1 
𝑖 

𝑓 ( 𝑈 𝑔+1 
𝑖 

) < 𝑓 ( 𝑋 

𝑔 

𝑖 
) 

𝑋 

𝑔 

𝑖 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(8) 

here 𝑓 ( ⋅) represents the fitness function. 

.2.3. Particle swarm optimization algorithm 

Particle swarm optimization (PSO) [5] is a population-based stochas-

ic optimization algorithm motivated by the intelligent collective be-

aviour of some animals such as flocks of birds or schools of fish. In spe-

ific, initially N solution candidates (also called particles) [ 𝑋 

0 
1 , … , 𝑋 

0 
𝑁 
]

nd their associated velocities [ 𝑉 0 1 , … , 𝑉 0 
𝑁 
] are generated. All particles

ave a fitness value, which can be calculated using a fitness function

ssociated with a particular optimization problem. 

Particle values are updated by the following equations, until the op-

imal solution is found: 

𝑉 
𝑔+1 
𝑖 

= 𝑉 
𝑔 

𝑖 
+ 𝐶 1 ∗ 𝑟𝑎𝑛𝑑() ∗ ( 𝑃 𝐵 𝑖 − 𝑋 

𝑔 

𝑖 
) + 𝐶 2 ∗ 𝑟𝑎𝑛𝑑() ∗ ( 𝐺𝐵 𝑔 − 𝑋 

𝑔 

𝑖 
) 

𝑋 

𝑔+1 
𝑖 

= 𝑋 

𝑔 

𝑖 
+ 𝑉 

𝑔+1 
𝑖 

(9) 

here 𝑉 
𝑔 

𝑖 
and 𝑋 

𝑔 

𝑖 
represent the 𝑖 th velocity and particle in the 𝑔th gen-

ration. 𝑤 is the inertia weight and 𝐶 1 , 𝐶 2 represent the learning factors.

𝑎𝑛𝑑() generates a random number in [0,1]. 𝑃 𝐵 𝑖 and 𝐺𝐵 𝑔 represent per-

onal best performance for the 𝑖 th particle and the best performance of

he group for the 𝑔th generation respectively. 

. Results 

The evaluations of different evolutionary algorithms for calibrating

he reduced Tomgro model are presented in this Section. Detailed ex-

erimental analysis is given out in the following sub-sections. 

.1. Datasets descriptions 

Three datasets are collected from a tomato growing site in Newcastle,

K, which contain recorded CO2 concentrations (mmp), temperatures

 

𝑜 𝐶),photosynthetically active radiation (PAR) ( 𝑊 ∕ 𝑚 2 ) and tomato DM

ield information in different greenhouses during different time periods.

he details of these datasets are described in the following table: 

As an illustration, the daily recorded CO2 concentration, tempera-

ure and PAR for all three datasets are shown in Fig. 1 . Besides, the

escriptive statistics analysis on environmental parameters for different

atasets is summarized in Table 2 . We can observe that for Dataset 2, the

escriptive statistics (min, max median, and mean values) of recorded

O2 concentration values are comparatively lower than those in the

ther two datasets. While the descriptive statistics of other environmen-

al parameters for these three datasets are almost consistent. 

Tomato DM yield ( 𝑔∕ 𝑚 2 ) in different greenhouses is measured

eekly. Measured weekly DM yields associated with all three datasets

re shown in Fig. 2 . 
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Fig. 1. Daily recorded CO2 concentration 

(mmp), temperature ( 𝑜 𝐶) and PAR( 𝑊 ∕ 𝑚 2 ) as- 

sociated with dataset 1 (left column), dataset 2 

(middle column) and dataset 3 (right column). 

Fig. 2. Recorded weekly tomato DM yields in 

dataset 1 (left), dataset 2 (middle) and dataset 

3 (right). 

Table 1 

Datasets descriptions. 

Dataset1 Dataset2 Dataset3 

Location Greenhouse 1 Greenhouse 2 Greenhouse 2 

Time period 2018 2017 2018 

Information 

included 

yield information ( 𝑔∕ 𝑚 2 ) 
CO2 concentration (mmp) 

temperature ( 𝑜 𝐶) 

PAR( 𝑊 ∕ 𝑚 2 ) 

3
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.2. Algorithms evaluations 

Based on recorded environmental parameters and fruit DM yield in-

ormation in every dataset, we’ve exploited different evolutionary algo-
4 
ithms for calibrating the reduced Tomgro model for modelling tomato

ruit DM yield. The 14 key parameters of the reduced Tomgro model

hat needed to be tuned/calibrated are shown in Table 3 . The detailed

xplanations on the physical meanings of different parameters can be

ound in [9] . 

Three evolutionary algorithms (GA, PSO, DE) are exploited and com-

ared, for tuning the optimal set of model parameters (the ones in

able 3 ). For a fair comparison, both the initial populations of model

arameters settings and the iteration number for three algorithms are

et the same. In specific 100 initial solution candidates of model param-

ters are chosen randomly among the parameter ranges as in Table 1 , for

ll three algorithms. The iteration number for all three algorithms is set

o be 100. Note, we’ve also tried larger candidate and iteration numbers

such as 150 and 200), but found no obvious performance improvement

or reduced Tomgro model calibration. All chosen algorithm parameters
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Table 2 

Descriptive statistics of greenhouse environmental parameters associated 

with different datasets. 

Dataset1 Dataset2 Dataset3 

CO2 ( 𝑚𝑚𝑝 ) Min 535.97 370.94 478.05 

Max 1634.10 967.40 1691.43 

Median 793.95 629.97 769.79 

Mean 785.95 624.19 770.37 

Standard 

deviation 

152.52 129.58 175.61 

Temperature ( ◦𝐶) Min 4.73 3.68 4.72 

Max 23.73 23.89 23.69 

Median 18.30 18.46 18.31 

Mean 17.25 17.01 17.18 

Standard 

deviation 

3.97 4.25 3.94 

PAR ( 𝑊 ∕ 𝑚 2 ) Min 0.59 0.58 0.59 

Max 82.91 83.02 82.91 

Median 42.81 43.41 42.81 

Mean 42.17 42.19 42.17 

Standard 

deviation 

19.37 18.92 19.37 
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w

Table 4 

Chosen values for algorithm parameters. 

GA population size 100 

max. iteration 100 

mutation probability 0.001 

DE population size 100 

max. iteration 100 

F value in (2) 0.001 

crossover probability 𝐶 𝑝 𝑖𝑛 (2) 0.001 

PSO population size 100 

max. iteration 100 

w in (5) 0.8 

c1,c2 in (5) 0.5,0.5 

Table 5 

Performance comparisons on accumulated fruit DM yield es- 

timations using reduced Tomgro model calibrated by differ- 

ent evolutionary algorithms. 

Avg.RMSE Avg.r-RMSE Avg.MAE 

GA 0.057 0.06 0.046 

DE 0.078 0.08 0.066 

Dataset 1 PSO 0.043 0.05 0.032 

GA 0.052 0.06 0.043 

DE 0.041 0.05 0.033 

Dataset 2 PSO 0.037 0.03 0.031 

GA 0.082 0.09 0.073 

DE 0.075 0.08 0.069 

Dataset 3 PSO 0.068 0.07 0.059 
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g  

R  

l  
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r  
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e  

w  

g  

s  

e  
re summarized in Table 4 . The root mean square error (RMSE) between

he ground truth recorded DM yields in a dataset and ones estimated by

he reduced Tomgro model, is taken as the fitness function for all three

lgorithms and shown below. 

𝑀𝑆𝐸 = 

√ 

1 
𝑁 

Σ𝑁 
𝑖 =1 ‖𝑦 𝑟𝑒𝑎𝑙 𝑖 

− 𝑦̂ 𝑚𝑜𝑑𝑒𝑙 
𝑖 

‖2 (10) 

here 𝑦 𝑟𝑒𝑎𝑙 
𝑖 

and 𝑦 𝑚𝑜𝑑𝑒𝑙 
𝑖 

represent the i th recorded ground-truth DM yield

nd the corresponding estimated one by the calibrated reduced Tomgro

odel respectively. 

The evolutions of RMSE fitness function values with respect to itera-

ion numbers, for all three evolutionary algorithms applied to calibrate

he reduced Tomgro model based on all three datasets, are shown in

ig. 3 . From Fig. 3 , we can see that for all scenarios, as the iteration

umber increases, the minimum fitness value of solution candidates

represented by the blue line in the figure) all decrease and converge

o minimum values, which indicates model parameters solutions min-

mizing the fitness function can be successfully obtained after certain

teration numbers of all the three evolutionary algorithms. 

After obtaining model parameter solutions based on evolutionary al-

orithms, the calibrated reduced Tomgro model is then used to model

he fruit DM yield. Firstly, we evaluate the performance of the calibrated

odel for simulating the accumulated DM yields. Fig. 4 shows the com-

arisons between the accumulated ground-truth DM yields recorded in

ll three datasets and simulated ones by the calibrated reduced Tomgro

odel. We can observe the simulated accumulated DM yields match

ell with the ground-truth ones as shown in the figure. 
Table 3 

Key parameters for the reduced Tomgro model. 

Parameter Description 

𝑁 𝑚 Max. rate of nodes 

𝑁 𝑏 Param. in expolinear eq. 

𝛿 Max. leaf area expansion 

𝛽 Param. in eq. expolinear 

𝑉 max Maximum increase in vegetative tissue d.w. grow

𝜏 CO2 coefficiency 

𝑇 𝑐𝑟𝑖𝑡 Critic temperature 

𝑣 Transition from vegetative development to fruit d

𝐾 Development time from first fruit to fist ripe fruit

𝑚 Light transmission coefficient 

𝑁 𝐹𝐹 Nodes per plant when first fruit appears 

𝛼𝐹 Maximum partitioning of new growth to fruit 

𝐸 Growth efficiency 

𝐷 Conversion coefficient of CO2 to CH2O 

5 
A statistical study is made for quantitatively comparing the perfor-

ance of the reduced Tomgro models calibrated by different evolution-

ry algorithms for modelling/estimating the accumulated DM yields.

ach evolutionary algorithm is applied for calibrating the reduced Tom-

ro model multiple times. And for each time, a set of metrics (including

MSE, relative-RMSE and mean absolute error (MAE)) between simu-

ated accumulated DM yields by calibrated models and ground truth

ecorded ones is calculated. The averages of obtained RMSEs, relative-

MSEs and MAEs are calculated and summarized in Table 5 . We can

bserve that the reduced Tomgro model calibrated by the PSO algo-

ithm can always achieve the minimum values of different metrics for

ll three datasets, which indicates that calibrated model by the PSO algo-

ithm achieves the most accurate result for modelling the accumulated

omato fruit DM yield. 

Moreover, we’ve also made comparisons on reduced Tomgro mod-

ls calibrated by different evolutionary algorithms, for modelling the

eekly DM weights increases. An illustration of the comparison of the

round-truth weekly DM yields recorded in different datasets and the

imulated ones using reduced Tomgro models calibrated by different

volutionary algorithms is shown in Fig. 5 . Similar to the accumulative
Range of estimate Unit 

[0.35,0.4] 𝑛𝑜𝑑 𝑒 𝑑 −1 

[14,16] 𝑛𝑜𝑑𝑒 

[0.05,0.08] 𝑚 2 𝑛𝑜𝑑𝑒 −1 

[0.45,0.55] 𝑛𝑜𝑑𝑒 −1 

th per node [8,10] 𝑔[ 𝑑 .𝑤. ] 𝑛𝑜𝑑 𝑒 −1 

[0.08,0.12] 𝜇𝑚𝑜𝑙 𝑚 2 𝑠 −1 

[19,21] 𝑜 𝐶

evelopment [0.8,1] 𝑛𝑜𝑑𝑒 −1 

 [0.8,1] 𝑛𝑜𝑑𝑒 

[0.01,0.015] 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠 

[16,18] 𝑛𝑜𝑑𝑒 

[0.8,1] [ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ] 𝑑 −1 

[0.9,1.2] 𝑔 [ 𝑑.𝑤. ] 𝑔 −1 [ 𝐶𝐻2 𝑂] 
[4,6] 𝑔𝑚 −2 ℎ −1 
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Fig. 3. The evolution of RMSE fitness function 

values with respect to iteration numbers for dif- 

ferent evolutionary algorithms. 

Fig. 4. The comparisons of accumulated 

recorded DM weights ( 𝑔∕ 𝑚 2 ) in all three 

datasets and the ones simulated by the re- 

duced Tomgro model calibrated by different 

evolutionary algorithms. 

6 
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Fig. 5. The comparisons of recorded weekly 

DM weight growth ( 𝑔∕ 𝑚 2 ) in all three datasets 

and the ones simulated by the reduced Tomgro 

model calibrated by different evolutionary al- 

gorithms. 

Table 6 

Performance comparisons on weekly fruit DM yield estima- 

tions using reduced Tomgro model calibrated by different 

evolutionary algorithms. 

Avg.RMSE Avg.r-RMSE Avg.MAE 

GA 0.015 0.19 0.011 

DE 0.015 0.20 0.011 

Dataset 1 PSO 0.014 0.19 0.010 

GA 0.014 0.18 0.011 

DE 0.014 0.18 0.011 

Dataset 2 PSO 0.014 0.18 0.010 

GA 0.016 0.21 0.012 

DE 0.017 0.23 0.014 

Dataset 3 PSO 0.014 0.17 0.011 
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M yield scenario, a quantitative evaluation is also made and the results

re summarized in Table 6 . From this table, we can see that compared

ith the accumulative DM yield modelling scenario smaller RMSEs are

btained, however, the r-RMSEs are larger indicating higher relative er-

ors (compared with Table 5 ). And the model calibrated by the PSO

lgorithm still achieves the best performance for modelling the weekly

M weight increases, with the smallest RMSEs, r-RMSEs and MAEs for

ll three datasets. 

. Discussion 

In this work, we have evaluated three evolutionary algorithms

GA,PSO and DE) to calibrate the reduced Tomgro model, for modelling

he tomato mature fruit DM yield. From experimental analysis on mul-

iple datasets obtained from a tomato grower, it is shown that all three

lgorithms can successfully calibrate the reduced Tomgro model for

omato yield modelling. Especailly the PSO algorithm achieves the most

ccurate performance with smallest mean values of RMSEs, r-RMSEs and

AEs, for calibrating the reduced Tomgro mode for simulating both the
7 
ccumulative and week-by-week fruit DM yields. Although this work

rovides preliminary results of comparing different evolutionary algo-

ithms for calibrating the reduced Tomgro model, a more objective eval-

ation of evolutionary algorithms for model calibration is expected to

e made on more datasets collected from tomato growers in different

ocations. 

With respect to future works, firstly more advanced biophysical mod-

ls and optimization algorithms will be investigated. Besides, not only

imited to model/estimate fruit DM yields, the modelling of different

ther factors (such as leaf area index, above-ground biomass) related

o the growth of tomato and other crops will be investigated. Besides,

oth supervised and unsupervised machine learning models will also be

nvestigated for modelling crop growths. 
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