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This contribution presents a screw theory-based method for
determining the mobility of fully parallel platforms. The
method is based on the application of three stages. The first
stage involves the application of the intersection of subalge-
bras of Lie algebra, se(3), of the special Euclidean group,
SE(3), associated with the legs of the platform. The sec-
ond stage analyzes the possibility of the legs of the platform
generating a sum or direct sum of two subalgebras of the
Lie algebra, se(3). The last stage, if necessary, considers
the possibility of the kinematic pairs of the legs satisfying
certain velocity conditions; these conditions reduce the plat-
form’s mobility analysis to one that can be solved using one
of the two previous stages. Several examples are illustrated.

1 INTRODUCTION
One of the most challenging problems in theoretical and

computational kinematics is that of determining the mobil-
ity of kinematic chains. The first contributions are due to
Grübler and his disciple Kutzbach. However, even before
the Kutzbach-Gr̈ubler criterion was formulated, there were
already kinematic chains whose mobility could not be com-
puted correctly by the criterion. The work of Gogu [1], re-
lated to the analysis and compilation of different mobility
criteria can provide an idea of the complexity of the task.

Since the ’60s of the last century, different approaches
for determining the mobility of kinematic chains began to be
developed:

1. Group theory. Within the group theory developments,
Hervé [2], in a seminal contribution, enumerated the
subgroups of the Euclidean group and classified the
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kinematic chains into trivial, exceptional, and paradox-
ical.1 However, Herv́e was unable to find a criterion
for the mobility of exceptional chains. His results are
very relevant for the mobility determination of kine-
matic chains, notwithstanding. Fanghella and Galleti
also applied the composition of subgroups of the spe-
cial Euclidean group,SE(3), to the mobility of kine-
matic chains [4] and the synthesis of kinematotropic
linkages [5]. In 2006, Rico et al. [6] presented a mo-
bility criterion based on the theory of subgroups of the
Euclidean group,SE(3), generated by the legs of a fully
parallel platform and their intersections. Even then, the
authors knew the existence of parallel platforms that the
mobility criterion failed to correctly determine their mo-
bility.

2. The theory of screws. Screw theory was initiated by
Ball, [7]. However, the knowledge remained forgotten
until the ’60s of the last century. On the one hand, the
Romanian school represented by Vionea and Atanasiu,
[8], presented a failed mobility criterion based on the
dimension of the space generated by the screws of the
kinematic chain. On the other hand, Hunt [9] presented
a classification of screw systems, subspaces of the Lie
algebra,se(3), ofSE(3), including screw systems that
allow full-cycle mobility. These last screw systems were
characterized by Selig [10], as subalgebras ofse(3). In
2006, Rico et al. [11] presented a mobility criterion for
fully parallel platforms, which considers the subalgebras
of se(3)generated by the legs and their intersections.
This criterion is equivalent to that presented using group
theory, [6].

1In a recent contribution, Rico et al. [3] showed that Jordan discovered
the subgroups of the Euclidean group one century before Hervé.



In this contribution, only two of the most relevant mobil-
ity criteriadeveloped in the last fifteen years are considered:

1. Huang and his coworkers [12–15] developed a mobil-
ity criterion based on the subspace of reciprocal screws
to the subspace generated by the screws that represent
the kinematic pairs of a kinematic chain under consid-
eration. However, the subspace of reciprocal screws is
determined in a particular position, and the subspace and
its dimension may change with a change of the position.
For example, Huang and Ge [13] successfully applied
their method to the Sarrus linkage; however, the same
method determines, incorrectly that a Sarrus-like link-
age presented by Rico et al. [16] has mobility 1 while it
is actually a structure.

2. Yang and his coworkers [17–22] developed a method
for the synthesis of kinematic chains, including paral-
lel platforms, that also determines their mobility. At
first sight, Yang’s method uses neither group theory nor
screw theory. Yang and his coworkers employ structural
units formed by open chains, denoted by SOCs. These
SOCs can be connected in a serial or parallel fashion.
From these SOCs it is possible to obtain the matrix of
position and orientation characteristics, POC. This ma-
trix indicates the translation and rotation independent
and dependent “elements”. The intersection of the POC
matrices requires 6 linear rules or criteria for rotational
elements, and 6 linear rules or criteria for translational
elements, [21]. Besides, the POC matrix composition
requires 2 linear rules or criteria, and 1 nonlinear rule or
criterion for translational elements, [22].
Finally, Yang and his coworkers published a book, [20].
In such contribution, the authors indicate that serial
chains require 8 linear and symbolic operation rules and
2 non-linear criteria; while parallel linkages require 12
linear and symbolic operation rules and 2 non-linear cri-
teria. Yang et al. [20,21] compare these number of rules
or criteria with the number of conditions employed by
Fanghella and Galletti [4, 5] who, as indicated by Yang
et al. [23], employed 107 rules for the composition of
subgroups. It can be implied that Yang’s method is, at its
core, an application of group theory. However, it seems
that Yang and his coworkers are not aware that em-
ploying the Lie algebra,se(3), of the special Euclidean
group,SE(3) —isomorphic to the screw algebra— it is
possible to avoid the 107 rules of Fanghella and Gal-
letti, and also and the 22 criteria proposed by Yang and
his coworkers.

It is important to note that any local mobility criterion
can, in general, only determine the mobility in a neighbor-
hood of the kinematic chain in the analyzed position. The
mere existence of kinematotropic linkages is proof of that.
The method proposed in this paper provides the correct so-
lution for fully parallel platforms, where there is no bracing
between the legs, the analyzed position is not singular and no
“paradoxical” linkage, as defined by Hervé, [2], is part of the
parallel platform. Under these circumstances, the approach
presented in this contribution provides the correct mobility

of a wide range of configurations of fully parallel platforms.
The approach uses only solid mathematical foundations from
screw algebra.

The main contribution of this work is to present, a
method based on screw theory, isomorphic to the Lie alge-
bra se(3)of SE(3), that in three seamless stages,correctly
computes the mobility of the great majority of fully parallel
platforms. The method can be programmed using standard
computer algebra programs. Unlike the methods reviewed in
this section, the method developed here requires neither the
analysis of reciprocal screws nor the use of a large number of
conditions and definitions, other than those well established
in spatial kinematics and screw theory.

This paper is structured as follows. Section 2 explains
the details of each of the three steps of the method proposed
in this paper. Section 3 presents a parallel platform whose
mobility can be correctly determined using the first step of
the method that involves the intersection of the subalgebras
and subspaces ofse(3)generated by the platform’s legs. Sec-
tion 4 presents three examples of parallel platforms whose
legs generate a sum of subalgebras ofse(3). Their mobility
can be determined from the intersection of those sums. Sec-
tion 5 presents a parallel platform whose legs contain closed
loops. The kinematic analysis of these loops yields velocity
conditions that allow mobility computations to be solved us-
ing one of the two previous steps. Finally, some conclusions
are drawn in Section 6.

2 FUNDAMENTALS OF THE METHOD
The main fundamentals of the method for determining

the mobility of fully parallel platforms proposed in this con-
tribution, without indicating the details, will be presented in
this section. As it was delineated in the abstract, the method
has three stages:

1. Stage I of the method analyzes fully parallel platforms
whose mobility can be explained and computed us-
ing simple mathematical structures associated with the
screws of the serial connector chains, or legs. These
legs connect the fixed and moving platforms. Usually,
these mathematical structures aresubalgebras of se(3),
the Lie algebra of the Euclidean group,SE(3). How-
ever, in a few cases, the mathematical structures associ-
ated with the serial connector chains, or legs, that con-
nect the fixed and moving platforms might be only sub-
spaces ofse(3). This stage of the method has been al-
ready presented, with new small corrections, since 2003,
see Aguilera [24], Rico et al. [6] and [11]. However,
even then, it was recognized that this stage was not able
to determine the mobility of a large number of parallel
platforms. For example, those presented by Huang and
Li [25] and [26].

2. Stage II of the method analyzes fully parallel platforms
where the screws of the serial connector chains, or legs,
are the sum, direct or not, of two subalgebras ofse(3)
the Lie algebra of the Euclidean group,SE(3). These
mathematical structures are denominatedscrew systems



of locally constant rank and sharemany of the prop-
erties of the subalgebras ofse(3), the Lie algebra of
the Euclidean group,SE(3). Considering the intersec-
tion of these mathematical structures, this stage can ex-
plain and compute the mobility of a far larger group of
fully parallel platforms than those successfully consid-
ered using only the first step. The details of this stage
were presented since 2006, in Tadeo-Chávez and Ṕerez-
Soto [27], Rico et al. [28], or Tadeo-Chávez [29]. How-
ever, the focus of these publications was the kinematic
synthesis of fully parallel platforms.

3. Stage III of the method analyzes fully parallel platforms
with serial connector chains, or legs, that either contain
closed chains, or have parallel revolute or helical pairs.
When the screws of these serial connector chains sat-
isfy certain velocity conditions, the mathematical struc-
tures associated with the screws of the serial connector
chain can be reduced to either a subalgebra or screw sys-
tems of locally constant rank.The velocity conditions
are usually obtained by solving the velocity analysis of
closed chains or by making the sum of angular veloci-
ties of revolute or helical joints with parallel axes equal
to zero. Then, it is possible to explain and compute the
mobility of these parallel platforms using the processes
indicated either in the first or second stage. With this
third step, it is possible to compute the mobility of even
a greater group of fully parallel manipulators. Some de-
tails of this approach were illustrated in Tadeo-Chávez
et al. [30] and Ṕerez-Soto [31]. Similarly, the focus of
these publications was the kinematic synthesis of fully
parallel platforms.

In this contribution, we present several examples that
illustrate how stages II and III compute the mobility of par-
allel platforms. These computations were impossible using
the techniques of stage I. The three stages must work itera-
tively; namely, after applying stage III, the results must be
reanalyzed using the techniques developed in stages I or II.

3 Parallel platforms whose mobility can be determined
using stage I of the method
This section presents a parallel platform whose mobility

can be computed by the intersection of subalgebras and vec-
tor spaces ofse(3)associated with the platform’s legs. Since
this stage was discussed in great detail in Aguilera [24], Rico
et al. [6, 11], only one example, which requires a modifica-
tion of a definition in those manuscripts, is presented.

3.1 Parallel platform RRPS-2RPU
Figure 1 shows the parallel platform proposed by

Álvarez-Ṕerez [32] as a possible alternative to rehabilitation
therapy performed by skilled health workers. The applica-
tion of the Kutzbach-Gr̈ubler criterion indicates that the plat-
form has 2 DOF.

This platform has three connecting serial chains. The
first one has an RRPS topology, while the remaining two

legs have an RPU topology. The fixed and moving plat-
forms are indicated by the numbers 1 and 11. The coordi-
nate systemOXYZ is rigidly attached to the fixed platform
with its origin, O, located at the center of the equilateral tri-
angle formed byA1, E2, andE3. PointP is located along the
common rotation axis of the revolute pairs that connect the
moving platform with the second and third legs. Its position
vector with respect to the coordinate system in figure 1 is
~rP = (0, 100,0)T .
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X
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Fig. 1. The parallel platform proposed by Álvarez-Pérez, [32].

The architecture of the RRPS leg is shown on the left
side of figure 2. The revolute axes associated with the points
A1 andB1 are perpendicular and, together with the prismatic
pair and the spherical joint located at pointD1, form a me-
chanical generator of the complete Lie algebrase(3). In the
remainder of the contribution, whenever there is no possibil-
ity of confusion, the points will be used also to indicate the
corresponding kinematic pairs. The subscripts of the points
or kinematic pairs indicate the platform’s leg number.
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Fig. 2. The geometry of the connecting chains, R-R-P-S, and R-P-

U.

TheRPU architecture of leg 2 is shown on the right-hand
side of figure 2. These characteristics are also valid for leg 3.
The axis associated with the revolute joint located at pointEi

and the axis of the first revolute pair of the Hooke joint with
center at pointGi are parallel to theY-axis. The direction
of the prismatic pair, ˆu8i , is located in the planeX −Z, this
result is also valid for the third leg. Finally, the rotation axis



of the second revolute that forms the Hooke joint located at
Gi is parallel to the unit vector ˆu9i . Furthermore, the last
revolutes that form the Hooke joints, for the second and third
legs, are coaxial.

The screws coordinates, reference points of the kine-
matic pairs of each connecting chain, and the corresponding
Jacobian matrices are given now. The nomenclature follows
figure 2 and the subscript, in the points and the Jacobian ma-
trices, indicates the leg number. The rest of the paper will
follow this convention.
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For leg 2. E2 = (−200√
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It shouldbe noted that[Ji ] represents the column space
of Ji ; namely, the vector space spanned or generated by the
columns of the matrix. This convention will be used for the
rest of the paper.

The screw system given by the columns of the Jacobian
matrix J1 is the mechanical generator of the whole Lie al-
gebrase(3), ofSE(3). Thus, the dimension of the column
space of the Jacobian matrixJ1, i.e. its rank, is equal to 6.
Similarly, it can be proved that the dimension of the column
space generated by the Jacobian matricesJ2 andJ3 is equal
to 4. Moreover, by computing the intersection of the column
spaces of these Jacobian matrices it follows that

[J2]∩ [J3] = [J2] = [J3] = Vm/f
T . (1)

Therefore, these column spaces are equal and they are not the
mechanical generator of any subalgebra ofse(3), they only

form a vector subspace, denoted byVm/f
T .

The next step is to determine the common closure alge-

bra, Am/f
G∗ , associated with all the infinitesimal mechanical

liaisons,2 Vm/f
j j = 1,2,3, or connections, associated with

the legs. In this platform, the closure algebra of all legs is
se(3):

Am/f
G∗ = Am/f

1 = se(3) (2)

Furthermore, for this parallel platform the subspaceVm/f
T is

obviously contained inAm/f
G∗ = se(3):

Vm/f
T < Am/f

G∗ (3)

Thus, stage I of the method identifies the parallel plat-
form as a trivial of Tanev’s type. Moreover, its mobilityF
can be determined using the following equation, see Rico et
al. [11]:

F = dim(Vm/f
T ) = 4 (4)

Stage I of the method shows that the subspaceVm/f
T gen-

erated by the columns of the Jacobian matricesJ2 or J3 rep-
resents the relative motion of the moving platform relative to
the fixed platform. Rico et al. [6, 11] concluded that this is
a trivial parallel platform Tanev’s type with four degrees of
freedom given by a planar motion in the planeX−Z, namely,
gû j , followed by a rotation around a fixed axis that passes
through pointsG2b andG3b. In Rico et al. [6, 11] it was as-
sumed that a trivial parallel platform Tanev’s type could only
have one leg generating the subspace. This example shows
that it is possible to have more than one leg generating the
subspace.

4 Parallel platforms whose mobility can be determined
using stage II of the method
This section presents two examples of parallel platforms

whose mobility is computed by determining the sum of sub-
algebras, ofse(3), associated with some of the legs of the
platform.

4.1 Parallel platform RRPU-2RPU
The parallel platform shown in figure 3 is an improve-

ment of the one proposed býAlvarez-Ṕerez [32], and ana-
lyzed in section 3.1, where the spherical pair that connects
links 11 and 4 in figure 1 is replaced by a Hooke joint lo-
cated at pointD1. The application of the Kutzbach-Grübler
criterion indicates that the platform has 1 DOF.

2The infinitesimal mechanical liaisons is the subspace generated by all
the screws that belong to a serial connection chain, while the closure alge-
bra is the smallest subalgebra that contains the corresponding infinitesimal
mechanical liaisons, for additional details see Rico et al. [16].



The platform has three legs. The first one has an RRPU
topology,while the remaining two legs have an RPU topol-
ogy. The fixed and moving platform are indicated by the
numbers 1 and 12. The coordinate systemOXYZ is rigidly
attached to the fixed platform and the origin,O, is located at
the center of the equilateral triangle formed byA1, E2, and
E3. Finally, pointP is attached to the moving platform and it
is located along the common axis of the last revolute axes of
legs 2 and 3.

X

Y

Z

O

Fig. 3. Parallel Platform with three legs RRPU-2RPU.

The architectureof the RRPU leg is shown on the left
side of figure 4. The axis of the revolute joint located at
pointsA1, B1, and the axis of the first revolute pair of the
Hooke joint with center atD1 are parallel and their direction
is that ofû11; i.e. parallel to theZ-axis. The direction of the
prismatic pair, ˆu21, is parallel to theXZ plane. Finally, the
axis of the second revolute joint that forms the Hooke joint
with center atD1, remains parallel to theY-axis.

The architecture of the second leg RPU is shown on the
right-hand side of figure 4. These characteristics are the same
as those indicated in the platform of section 3.1.
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Fig. 4. The topology of the connecting chains R-R-P-U and R-P-U.

The screws coordinates, reference points of the kine-
matic pairs of each connecting chain, and the corresponding
Jacobian matrices are given now. The nomenclature follows
figure 3.
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For leg 2. E2 = (−200√
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In thissection, the red dashed vertical lines indicate the sep-
aration of the Jacobian matrices in two parts; each of one
forms a subalgebra.

It can be shown that the dimension of the column space,
or rank, ofJ2 andJ3 is 4. However, the screw systems as-
sociated with these legs are not the mechanical generators of
any subalgebra of the Lie algebra,se(3). Furthermore, the
screw systems associated withJ2 andJ3 represent the same
subspaceV2. Similarly, the dimension of the column space
or rank ofJ1 is 5, and since there is no subalgebra ofse(3)
of dimension 5 the screw system associated withJ1 is also a
subspaceV1. MoreoverV2 < V1.

Since the screw systems associated with the three legs
are not the mechanical generators of a subalgebra of the Lie
algebra,se(3), stage I of the method is unable to determine
the mobility of the platform. However, stage II of the method
determines that subspaceV2 is the direct sum of two subal-
gebrasg ĵ ⊕ rGib

of se(3). The first subalgebrag ĵ represents
the general planar motion in a plane perpendicular to theY-
axis. This subalgebra is generated by the three first columns
of the Jacobian matricesJ2 andJ3. The second subalgebra,
rGib

, represents a rotation around the axis intersecting points
G2b andG3b. The screw that generates subalgebrarGib

is lo-
cated in the fourth column of both Jacobian matricesJ2 and
J3.

Similarly, stage II of the method determines that sub-
spaceV1, associated with the first leg, is the direct sum
of two subalgebrasxk̂ ⊕ rD1b

. The first subalgebra,xk̂ rep-
resents the subalgebra of Schönflies motions with rotation
about theZ-axis. This subalgebra is generated by the first
four columns. The second subalgebrarD1b

represents a ro-
tation around an axis parallel to theY-axis intersecting point



D1. The screw that generates this last subalgebra is located
in thefifth column of the Jacobian matrixJ1.

Stage II of the method computes the intersection of the
subspaces associated with the Jacobian matrices of the legs

[

Jm/f
n

]

=
3⋂

i=1

[

Ji
m/f

]

= [J1]∩ [J2]∩ [J3] = [J2] = [J3] = V2

(5)
The intersection of subspaces provides the motion of the
moving platform relative to the fixed platform. It is the col-

umn space of the matrixJm/f
n denoted

[

Jm/f
n

]

. It represents

a planar translation in the planeXZ together with rotations
around theX andY-axes. Further, it can be proved that the
mobility of the parallel platform is given by

F = dim[Jm/f
n ] = rankJm/f

n = rank(J2) = rank(J3) = 4 (6)

The characteristics of this platform are similar to that of the
previous section; i.e. a trivial platform of Tanev’s type. How-
ever, in this case, none of the legs generate a subalgebra, but
the first connecting chain generates a screw system of locally
constant rank that contains the screw system of the remain-
ing two serial chains. Furthermore, legs 2 and 3 generate the
same screw system.

4.2 Parallel Platform 4-RRUR.
The 4-RRUR parallel platform shown on the right side of
figure 5 was proposed by Fang and Tsai, [33]. The platform
has 4 legs with the same topology indicated on the left side
of figure 5. The kinematic joints located at the correspond-
ing pointC of each leg are Hooke joints that can be replaced
by two intersecting revolute pairs whose directions are per-
pendicular. The platform has 18 links and 20 revolute pairs.
The application of the Kutzbach-Grübler criterion indicates
that the platform has 2 DOF. A Cartesian coordinate system
OXYZ is attached to the fixed platform for reference pur-
poses.
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Fig. 5. The topology of the i-th leg of a parallel platform R-R-U-R

and the complete platform. The leg illustrated corresponds to the

third leg.

The characteristics of the kinematic pairs are:

1. The revolute joints located at pointsAi , andBi , and the
first revolute joint of the Hooke joint at pointCi are par-
allel, and its unit vector is given by ˆu1i . The unit vectors
û1i for legs 1 and 3 are parallel to theZ-axis; while the
unit vectors ˆu1i for legs 2 and 4 are parallel to theX-axis.

2. The direction of the second revolute joint of the Hooke
joint at pointCi , represented by the unit vector ˆu2i , is
perpendicular to ˆu1i and also to ˆu3i , which is associated
to the revolute joint located atDi . It should be noted that
the axes of these two revolute joints intersect at pointQ.

Finally, point Q is assumed to be attached to the moving
platform and it is used to represent the relative motion
between the moving and the fixed platforms. Its position
vector relative to originO of the coordinate systemOXYZis
given by~rQ = (0,150,0)T .

The screws coordinates, reference points of the kine-
matic pairs of each connecting chain, and the corresponding
Jacobian matrices are given now. The nomenclature follows
figure 5.

For leg 1. A1 = (100,20,30),1$2;B1 = (120,65,0),2$3;
C1 = (100,110,0),3$4;4$5;D1 = (0,150,0), 5$18.
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For leg 2. A2 = (−30,20,100),1$6;B2 = (0,65,120),
6$7;C2 = (0,110,100),7$8;8$9;D2 = (0,150,0),9$18.

J2 =



















−1 −1 −1 | 0 0
0 0 0 | − 2√

29
2√
13

0 0 0 | 5√
29

3√
13

0 0 0 | 750√
29

450√
13

−100 −120 −100 | 0 0
20 65 110 | 0 0



















,

For leg 3. A3 = (−100,20,−30),1$10; B3 = (−120,65,0),
10$11;C3 = (−100,110,0),11$12; 12$13; D3 = (0,150,0),
13$18.
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For leg 4. A4 = (30,20,−100),1$14;B4 = (0,65,−120),
14$15;C4 = (0,110,−100),15$16;16$17,D4 = (0,150,0),
17$18.



J4 =



















1 1 1 | 0 0
0 0 0 | − 2√

29
2√
13

0 0 0 | − 5√
29

− 3√
13

0 0 0 | − 750√
29

− 450√
13

−100 −120 −100 | 0 0
−20 −65 −110 | 0 0



















.

The rankof all the Jacobian matrices is equal to 5. Since
there are no subalgebras of dimension 5 inse(3), none of
the legs are the mechanical generators of any subalgebra
of se(3). The matrices only generate a subspace ofse(3).
Hence, stage I of the method is unable to compute the
mobility of the parallel platform.

Stage II of the method shows that the column space each
of the Jacobian matrices is the non-direct sum of two sub-
algebras ofse(3)and, as a consequence, the column space
forms screw systems of locally constant rank.

1. The screws of the revolute joints located inAi , andBi ,
and the first revolute joint of the Hooke joint indicated
by Cia, are parallel to the unit vector ˆu1i appear in the
first three columns of the Jacobian matrix. These screws
generate the subalgebra of planar displacementsgû1i

in
a plane perpendicular to ˆu1i .

2. The screws associated with the second revolute of the
Hooke joint indicated byCib and the revolute located in
Di appear in the last two columns of the Jacobian matrix.
These screws generate a subspaceV2i contained in the
subalgebrasQ of spherical displacements around point
Q.

The red dashed line, in the Jacobian matrices, “sepa-
rates” the complete subalgebra from the subspace.

Therefore, the column space of each Jacobian matrix
forms a non-direct sumgû1i

+ sQ, sincegû1i
∩ sQ 6= /0. The

linear complement for the subspaceV2i to generate the
subalgebrasQ is the screw of a revolute pair that passes
through pointQ and its direction is parallel to the unit vector
û1i . This screw is precisely the intersection ofgû1i

∩sQ.

The screws for the linear complement ofV2i relative to
sQ for each of the legs are given by:

1. Leg 1.4a$4b =
[

0, 0, −1; −150,0, 0
]T

2. Leg 2.8a$8b =
[

1, 0, 0; 0, 0, −150
]T

3. Leg 3.12a$12b =
[

0, 0, 1; 150,0, 0
]T

4. Leg 4.16a$16b =
[

−1, 0, 0; 0, 0, 150
]T

If one wishes to exhibit the two subalgebras associated
with each leg, the screw must be “virtually” placed in the
middle of the third and fourth columns, in the corresponding
matrix,Ji .

Then, the motion of the moving platform relative to the
fixed platform is obtained by intersecting the column spaces

of the Jacobian matrices of the legsJi therefore

[

Jm/f
n

]

=
4⋂

i=1

[Ji ] = [J1]∩ [J2]∩ [J3]∩ [J4] = V. (7)

The result is given by

Jn
m/f =





















0 0 9
13

9
26

2√
13

2√
29

0 0

− 3√
13

5√
29

0 0

−450
13

750√
29

0 0

0 0 −900
13 −710

13
0 0 −1350

13 −675
13





















(8)

The columnsof the matrixJn
m/f , see equation (5), in-

dicate that the parallel platform has mobility 4. However,
the columns ofJn

m/f do not provide a clear interpretation of
the relative motion between the platforms. To address this
issue, Rico and Duffy, [34], resorted to the definition of a
screw system as a subspaceV of the Lie algebra,se(3), of
SE(3). Hence, the screw system has an infinite number of
bases. Thus, the last step is to find another basis of the col-

umn space
[

Jm/f
n

]

= [$1,$2,$3,$4] that provides a simpler

interpretation of the relative motion between the moving and
fixed platforms. This new basis is given by the column space

of a new matrixJm/f
n1 or, equivalently, the space generated by

the matrix’ columns:

[

Jm/f
n1

]

= [$1n,$2n,$3n,$4n] =



















0 1 0 0
0 0 2√

13
2√
29

0 0 − 3√
13

5√
29

0 0 − 450√
13

750√
29

1 0 0 0
0 −150 0 0



















, (9)

where3

$1n=
13
520

$3−
26
520

$4, $2n=
923
234

$3−5$4, $3n= $1, $4n= $2.

From equation(9), it follows that the parallel platform
4RRUR features ascrew system of locally constant rank
and it has 4 degrees of freedom, the rank of the matrixJm/f

n

andJm/f
n1 . Furthermore, the motion of the moving platform

relative to the fixed platform consists of a translation along
theY-axis together with any spherical displacement centered
in pointQ.

4.3 Exechon Parallel Platform
The mobility of the Exechon parallel platform, shown in fig-
ure 6, has been studied by Bi and Jin, [36] and Zoppi et

3Theprocess is not included due to space considerations. However, the
step-by-step process is thoroughly described in Sánchez-Garćıa et al [35].



al. [37] using heuristic methods. The platform has 3 legs.
Two of these legs have the same topology UPR, while the
remaining leg has an SPR topology. The Hooke joints can be
replaced by two intersecting revolute pairs whose directions
are perpendicular. The platform has 10 links, 10 revolute
pairs, and 1 spherical pair. The application of the Kutzbach-
Grübler criterion indicates that the platform has 1 DOF. A
Cartesian coordinate systemOXYZ is attached to the fixed
platform for reference purposes.
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Fig. 6. Parallel platform Exechon.

The topologyof the two UPR legs, denoted as 1 and
3, are similar. The axes of the first revolute joint of all the
Hooke joints, located at pointsAi , are coaxial and in the di-
rection of the unit vector ˆui1 parallel to theX-axis. The sec-
ond revolute joint of the Hooke joints located at pointAi and
the revolute joints located at pointCi are parallel. These rev-
olute joints have the direction indicated by the unit vector ˆui2,
parallel to theZ-axis. The directions of the prismatic pairs
located atBi are different but both lie in theXY plane.

In the topology of the SPR leg, denoted as 2, one can
assume that the spherical pair, located at pointA2, is replaced
by three revolute joints whose directions are parallel to the
X, Y, andZ-axes respectively. The prismatic pair, located at
pointB2, has a general direction in theYZplane. Finally, the
revolute pair, located at pointC2, has the direction indicated
by the unit vector ˆu25, parallel to theX-axis.

The screws coordinates, reference points of the kine-
matic pairs of each connecting chain, and the corresponding
Jacobian matrices are given now. The nomenclature follows
figure 6.

For leg 1. A1 = (−10,0,0),1$2; 2$3;B1,
3$4;

C1 = (−5,15,0),4$5.

For leg 3. A3 = (10,0,0),1$5; 5$6;B3,
6$7;

C3 = (5,15,0),7$10.

J1 =































1 0 0 0

0 0 0 0

0 1 0 1

0 0 1√
10

15

0 10 3√
10

5

0 0 0 0































J3 =































1 0 0 0

0 0 0 0

0 1 0 1

0 0 − 1√
10

15

0 −10 3√
10

−5

0 0 0 0































For leg 2. A2 = (0,0,10
√

3),1$2a; 2a$2b; 2b$8;B2,
8$9;

C2 = (0,15,5
√

3),9$10.

J2 =































1 0 0 0 1

0 0 1 0 0

0 1 0 0 0

0 0 −10
√

3 0 0

10
√

3 0 0
√

3
2 5

√
3

0 0 0 − 1
2 −15































The rankof both matricesJ1 andJ3 are 4. They do not
generate a subalgebra ofse(3), since they include a rotation
around two independent axes. Similarly, the rank of matrix
J2 is 5, and it does not generate a subalgebra ofse(3). There-
fore, stage I of the method is unable to determine the plat-
form’s mobility. However, stage II of the method determines
that the subspacesV1 = V3. These subspaces ofse(3), gen-
erated by legs 1 and 3, are the direct sum of two subalgebras
rO,î ⊕ gk̂ of se(3); a subalgebra associated with a rotation
around theX-axis that passes through pointO and the sub-
algebra of planar displacements in a plane perpendicular to
theZ-axis. The subspace generated by leg 2,V2, represents
a non-direct sum of two subalgebrassA2 +gî . The first subal-
gebrasA2 represents the spherical subalgebra associated with
point A2. The second subalgebragî , represents the subalge-
bra of planar displacements in a plane perpendicular to the
X-axis.

Then, the motion of the moving platform relative to the
fixed platform is obtained by intersecting the column spaces
of the Jacobian matrices of the legsJi therefore

[

Jm/f
n

]

=
3⋂

i=1

[Ji ] = [J1]∩ [J2]∩ [J3] = V (10)

The vector subspaceV is given by the column space of the
matrixJn. The columns ofJn form a basis forV

Jn
m/ f =































1 0 0

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0































(11)



From this result, it follows that the moving platform of
the Exechon can translate along theZ-axis and rotate along
theX andY-axes passing through the originO. Thus, it has
three degrees of freedom.

It should be noted that the intersection of the column
spaces of the Jacobian matrices of the legsJi cannot be
blindly computed. The approach followed by Huang and
his coworkers, see for example [13], rely on the constraint
screws associated with each leg. Huang’s approach is equiv-
alent to employing only the first order or velocity analysis of
parallel platforms; and it is, in some cases as reported in [16],
unable to distinguish between mobile linkages or platforms
and structures.

5 Parallel platforms whose mobility can be determined
using stage III of the method.
In this section, an example of a parallel platform whose

mobility is computed by determining the velocity conditions
of the kinematic pairs of at least some connecting chains of
the platform will be presented.

5.1 Parallel platform 3T-R1-B.b
Figure 7 presents the parallel platform 3T-R1-B.b proposed
by Ting-Li [20]. The platform has 4 connecting chains or
legs with the same topology; each leg contains a closed
chain. The numbering of the legs is indicated by the com-
mon subscript of the points associated with the kinematic
pair of the leg. The fixed and moving platforms are links 1
and 22 respectively. The platform has 22 links and 28 kine-
matic pairs, 8 of them spherical pairs, all the remainder revo-
lute pairs. The application of the Kutzbach-Grübler criterion
indicates that the platform has 2 DOF. A coordinate system
OXYZhas been rigidly attached to the fixed platform.

The kinematic topology of thei-th connecting chain is
shown in figure 8, and it corresponds to leg 2 of the plat-
form shown in figure 7. Moreover, all the characteristics and
results are also valid for the remaining legs.

It should be noted that the axes of the revolute pairsAi

and Bi of legs 1, 3, and 2, 4 are parallel to ˆu1i , see figure
7. However, this direction changes for each pair of legs. On
the contrary, the direction of all the revolute jointsGi , whose
unit vector is ˆu3i , is parallel to theY-axis.
As shown in figure 8 the kinematic pairsEi andDi are spher-
ical joints that can be replaced by 3 revolute pairs whose
axes are linearly independent. Therefore, the directions of
the three revolute pairs that substitute the spherical pair are:

1. The unit vector ˆu2i is parallel to the rotation axes of the
revolute joints atCi andFi . The unit vector is different
with each connecting chain.

2. Another revolute joint atEi andDi is parallel to the unit
vectorû1i of each extremity.

3. The final revolute joint atEi andDi is parallel to ˆu3i , and
therefore to theY-axis.

The screws coordinates, reference points of the kine-
matic pairs of each connecting chain, and the corresponding
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Fig. 7. Parallel platform 3T-R1-B.b of 4 DOF.
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Fig. 8. Structure of the i-th serial connector chain of the parallel

platform 3T-R1-B.b.

matrices are given now. The nomenclature follows figure 7.
For leg 1. A1 = (200,40,−90),1$2;B1 = (220,130,−90),

2$3;C1 = (220,130,−130),3$4;D1 = (120,250,−130),
4a$6a;4b$6b;4c$6c;E1 = (120,250,−50),6a$5a;6b$5b;6c$5c;
F1 = (220,130,−50),5$3;G1 = (120,350,−90),6$22

J1 =

































0 0 | 6√
61

0 6√
61

0 0 6√
61

0 6√
61

| 0

0 0 | 5√
61

0 5√
61

1 0 5√
61

1 5√
61

| 1

−1 −1 | 0 −1 0 0 −1 0 0 0 | 0

−40 −130 | 650√
61

−250 650√
61

130 −250 250√
61

50 250√
61

| 90

200 220 | − 780√
61

120 − 780√
61

0 120 − 300√
61

0 − 300√
61

| 0

0 0 | 320√
61

0 − 900√
61

120 0 − 900√
61

120 320√
61

| 120

































For leg 2. A2 = (120,40,150),2 $7;B2 = (120,124,186),
7$8;C2 = (160,124,186),8 $9;D2 = (160,268,90),9a$11a;



9b$11b;9c$11c;E2 = (80,268,90),11a$10c;11b$10b;11c$10c;
F2 = (80,124,186),10$8;G2 = (120,320,90),11$22

J2 =



































1 1 | 0 1 0 0 1 0 0 0 | 0

0 0 | 2√
13

0 2√
13

1 0 2√
13

1 2√
13

| 1

0 0 | 3√
13

0 3√
13

0 0 3√
13

0 3√
13

| 0

0 0 | 0 0 48
√

13 −90 0 48
√

13 −90 0 | −90

150 186 | − 480√
13

90 − 480√
13

0 90 − 240√
13

0 − 240√
13

| 0

−40 −124 | 320√
13

−268 320√
13

160 −268 160√
13

80 160√
13

| 120



































For leg 3. A3 = (−200,40,90),1$12;B3 = (−220,130,90),
12$13;C3 = (−220,130,130),13$14;D3 = (−120,250,130),
14a$16a;14b$16b;14c$16c;E3 = (−120,250,50),16a$15a;
16b$15b;16c$15c;F3 = (−220,130,50),15$13;
G3 = (−120,320,90),16$22

J3 =



































0 0 | − 6√
61

0 − 6√
61

0 0 − 6√
61

0 − 6√
61

| 0

0 0 | 5√
61

0 5√
61

1 0 5√
61

1 5√
61

| 1

1 1 | 0 1 0 0 1 0 0 0 | 0

40 130 | − 650√
61

250 − 650√
61

−130 250 − 250√
61

−50 − 250√
61

| −90

200 220 | − 780√
61

120 − 780√
61

0 120 − 300√
61

0 − 300√
61

| 0

0 0 | − 320√
61

0 900√
61

−120 0 900√
61

−120 − 320√
61

| −120



































For leg 4. A4 = (−120,40,−150),1$17;
B4 = (−120,124,−186),17$18;C4 = (−160,124,−186),
18$19;D4 = (−160,268,−90),19a$21a;19b$21b;19c$21c;
E4 = (−80,268,−90),21a$20a;21b$20b;21c$20c;
F4 = (−80,124,−186),20$28;G4 = (−120,320,−90),21$22

J4 =



































−1 −1 | 0 −1 0 0 −1 0 0 0 | 0

0 0 | 2√
13

0 2√
13

1 0 2√
13

1 2√
13

| 1

0 0 | − 3√
13

0 − 3√
13

0 0 − 3√
13

0 − 3√
13

| 0

0 0 | 0 0 −48
√

13 90 0 −48
√

13 90 0 | 90

150 186 | − 480√
13

90 − 480√
13

0 90 − 240√
13

0 − 240√
13

| 0

40 124 | − 320√
13

268 − 320√
13

−160 268 − 160√
13

−80 − 160√
13

| −120



































Pseudo Jacobianmatrices of the connecting chains are
shown next. Their common rank of these matrices is 5.
They are not actual Jacobian matrices due to the presence
of the screws associated with the kinematic pairs within
the closed-loop of each connecting chain. These screws
correspond from the third to the tenth columns “bracketed”
by red and dashed lines.

All the Jacobian matrices associated with each of the
connecting chains have rank 5. Sincese(3)does not have a
subalgebra of dimension 5, stage I of the method is unable
to determine the mobility of the parallel platform. Similarly,
stage II of the method is unable to find screw systems of
locally constant rank that can be expressed as a sum, direct
or not, of two subalgebras ofse(3). One can assume that the
presence of the closed-loop makes it impossible to find the
sum of any subalgebras.

As already indicated, each connecting chain has a
closed-loop formed by the parallelogramCi ,Di ,Ei ,Fi . The
corresponding Jacobian matrix is given by the 8 screws of
the two revolute and two spherical pairs that belong to the
loop. Therefore, stage III of the method is employed to find,
if possible, velocity conditions that may reduce the pseudo-
Jacobian matrices. In the case of closed-loops, the velocity
conditions are obtained by carrying out the velocity analysis
of the closed-loop given by

ωCi $Ci +ωDia
$Dia

+ωDib
$Dib

+ωDic
$Dic

+ωEia
$Eia

+ωEib
$Eib

+ωEic
$Eic

+ωFi $Fi =
~0 (12)

where the actual screw in equation (12), depends on the cor-
responding leg. The velocity analysis yields the following
conditions:

ωDib
= ωFi = −ωCi =−ωEib

, (13)

ωDia
=−ωEia

, ωDic
= ωEic

= 0 (14)

The reduced screw system associated with the closed loop
becomes

ωCi

[(

$Dib
−$Ci

)

−
(

$Fi −$Eib

)]

+ωDia

(

$Dia
−$Eia

)

(15)

Equation (13) represents the relationship between the angu-
lar velocities of the revolute pairs parallel to ˆu2i that belong
to loop I, shown in figure 8. Similarly, the first equation in
(14) represents the relationship between the angular veloci-
ties of the revolute pairs parallel to ˆu1i that belong to loop I.
Finally, the second equation in equation (14) indicates that
both angular velocities are zero. Hence the screws $Dic

and
$Eic

will be discarded in the analysis. Furthermore

$R1 = $Dib
−$Ci = $Fi −$Eib

and $R2 = $Dia
= $Eia

These two “equivalent” screws substitute the columns 3 to 10
of these pseudo-Jacobian matrices and also appear between
red dashed lines. The results of this step are the following
reduced Jacobian matrices whose ranks are all equal to 5.

J1r =















0 0 | 0 0 | 0
0 0 | 0 0 | 1
−1 −1 | 0 −1 | 0
−40 −130 | 0 −250 | 90
200 220 | 0 120 | 0
0 0 | 20

√
61 0 | 120















,J2r =















1 1 | 0 1 | 0
0 0 | 0 0 | 1
0 0 | 0 0 | 0
0 0 | −48

√
13 0 | −90

150 186 | 0 90 | 0
−40 −124 | 0 −268 | 120















J3r =















0 0 | 0 0 | 0
0 0 | 0 0 | 1
1 1 | 0 1 | 0
40 130 | 0 250 | −90
200 220 | 0 120 | 0
0 0 | −20

√
61 0 | −120















,J4r =















−1 −1 | 0 −1 | 0
0 0 | 0 0 | 1
0 0 | 0 0 | 0
0 0 | 48

√
13 0 | 90

150 186 | 0 90 | 0
40 124 | 0 268 | −120















Sincetherank of all the pseudo-Jacobian matrices is 5,
and there is no a subalgebra ofse(3)of dimension 5, it is
clear that the connecting chains do not generate a subalgebra



of se(3). Therefore, the application of stage I of the method
is, again, unable to compute the mobility of the parallel plat-
form. However, stage II of the method reveals that the sub-
space generated by each connecting chain is given by the
direct sumxû1i

⊕ rGi ,û3i
of a Scḧonflies subalgebra and a rev-

olute pair. The unit vector ˆu1i is k̂ for legs 1 and 3; and̂i
for legs 2 and 4. The revoluterGi ,û3i

has, also the common

direction, ĵ, but the location of the revolute axis is different
for each chain.

In that case, the mobility of the platform can be found by
the intersection of the subspaces ofse(3)associated with the
matricesJi obtained after applying the conditions revealed
by the velocity analysis; namely

[Jf ] =
4⋂

i=1

[Jir ] = [J1r ]∩ [J2r ]∩ [J3r ]∩ [J4r ] = x ĵ (16)

The relative motion between the platforms is given the sub-
algebra ofse(3)generated by the columns of matrixJf . It
should be noted that these columns are linearly independent

Jf =

















0 0 0 0
1 0 0 0
0 0 0 0

−90 0 −1 0
0 −5 0 3

120 −19 0 −7

















(17)

It is straightforward to realize that the relative motion is a
Scḧonfliesx ĵ subalgebra that represents a spatial translation
together with a rotation around theY-axis. Thus, the mobility
of the parallel platform, which is equal to the rank ofJf is
4. Hence, the parallel platform 3T-R1-B.b has 4 degrees of
freedom. The same result was obtained by Yang et al. [20],
but in this contribution, the result was obtained following a
simpler process based only on the properties of the screw
algebra.

6 Conclusions.
The method presented in this contribution provides a

well-founded theoretical approach the correct determination
of the mobility of a wide range of fully parallel platforms.
The theoretical basis of the method is a careful application of
the Lie algebrase(3)of the special Euclidean group,SE(3),
isomorphic to screw algebra. The only requirements are a
sound understanding of the subalgebras and subspaces of
se(3), the concept of sum of subalgebras, and the conditions
imposed by the presence of closed chains in the legs of the
parallel platforms. The method can be implemented using
symbolic algebra software, so that tedious computations can
be completely avoided. It must be noted that the method
presented in this contribution determines, without any prob-
lem, the mobility of all parallel platforms proposed by Yang
et al. [20], without resorting to the rather complex variety

of conditions presented there. Finally, this contribution re-
veals the need for a more complete classification of fully
parallel platforms, and for a renewed version of the work
of Gogu, [1], that should review critically the newly devel-
oped mobility criteria. Both endeavors remain important, yet
unfulfilled, tasks.
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Rocha, J., 2008, New Considerations on the Theory of
Type Synthesis of Fully Parallel Platforms,ASME J.
Mech. Des.130, 112302 pp. 1-9.

[29] Tadeo-Ch́avez A., 2011,Determination of the Sub-
spaces of the Lie Algebra of the Euclidean Group that
Preserve the Mobility of Kinematic Chains, Ph. D. Dis-
sertation, DICIS, Universidad de Guanajuato, México,
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