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This contribution presents a screw theory-based method for
determining the mobility of fully parallel platforms. The
method is based on the application of three stages. The first
stage involves the application of the intersection of subalge-
bras of Lie algebra, se(3), of the special Euclidean group,
SE(3), associated with the legs of the platform. The sec-
ond stage analyzes the possibility of the legs of the platform
generating a sum or direct sum of two subalgebras of the
Lie algebra, se(3). The last stage, if necessary, considers
the possibility of the kinematic pairs of the legs satisfying
certain velocity conditions; these conditions reduce the plat-
form’s mobility analysis to one that can be solved using one
of the two previous stages. Several examples are illustrated.

1 INTRODUCTION 2.

One of the most challenging problems in theoretical and
computational kinematics is that of determining the mobil-
ity of kinematic chains. The first contributions are due to
Grubler and his disciple Kutzbach. However, even before
the Kutzbach-Gibler criterion was formulated, there were
already kinematic chains whose mobility could not be com-
puted correctly by the criterion. The work of Gogu [1], re-
lated to the analysis and compilation of different mobility
criteria can provide an idea of the complexity of the task.

Since the '60s of the last century, different approaches
for determining the mobility of kinematic chains began to be
developed:

1. Group theory. Within the group theory developments,
Heng [2], in a seminal contribution, enumerated the
subgroups of the Euclidean group and classified the

*Addres all correspondence to this author.

kinematic chains into trivial, exceptional, and paradox-
ical. However, Heré was unable to find a criterion
for the mobility of exceptional chains. His results are
very relevant for the mobility determination of kine-
matic chains, notwithstanding. Fanghella and Galleti
also applied the composition of subgroups of the spe-
cial Euclidean groupSE(3), to the mobility of kine-
matic chains [4] and the synthesis of kinematotropic
linkages [5]. In 2006, Rico et al. [6] presented a mo-
bility criterion based on the theory of subgroups of the
Euclidean groupSE(3), generated by the legs of a fully
parallel platform and their intersections. Even then, the
authors knew the existence of parallel platforms that the
mobility criterion failed to correctly determine their mo-
bility.

The theory of screws. Screw theory was initiated by
Ball, [7]. However, the knowledge remained forgotten
until the '60s of the last century. On the one hand, the
Romanian school represented by Vionea and Atanasiu,
[8], presented a failed mobility criterion based on the
dimension of the space generated by the screws of the
kinematic chain. On the other hand, Hunt [9] presented
a classification of screw systems, subspaces of the Lie
algebra,se(3), of SE(3), including screw systems that
allow full-cycle mobility. These last screw systems were
characterized by Selig [10], as subalgebraseff3). In
2006, Rico et al. [11] presented a mobility criterion for
fully parallel platforms, which considers the subalgebras
of se(3)generated by the legs and their intersections.
This criterion is equivalent to that presented using group
theory, [6].

In arecent contribution, Rico et al. [3] showed that Jordan discovered

the ctitharoirine of the Eiriclidean arotin one centiiry beforeadderyv



In this contribution, only two of the most relevant mobil-of a wide range of configurations of fully parallel platforms.
ity criteriadeveloped in the last fifteen years are considered@he approach uses only solid mathematical foundations from

1. Huang and his coworkers [12-15] developed a mobl“?—
ity criterion based on the subspace of reciprocal screws,
to the subspace generated by the screws that repre
the kinematic pairs of a kinematic chain under consid-
eration. However, the subspace of reciprocal screws i
determined in a particular position, and the subspace an
its dimension may change with a change of the positiof..
For example, Huang and Ge [13] successfully applie
their method to the Sarrus linkage; however, the same
method determines, incorrectly that a Sarrus-like link=
age presented by Rico et al. [16] has mobility 1 while it
is actually a structure.

2. Yang and his coworkers [17-22] developed a meth
for the synthesis of kinematic chains, including paral
lel platforms, that also determines their mobility. Ai
first sight, Yang’s method uses neither group theory n
screw theory. Yang and his coworkers employ structur
units formed by open chains, denoted by SOCs. The
SOCs can be connected in a serial or parallel fashio
From these SOCs it is possible to obtain the matrix i
position and orientation characteristics, POC. This m%
trix indicates the translation and rotation independen(%
and dependent “elements”. The intersection of the oled
matrices requires 6 linear rules or criteria for rotation
elements, and 6 linear rules or criteria for translation
elements, [21]. Besides, the POC matrix composition
requires 2 linear rules or criteria, and 1 nonlinear rule or
criterion for translational elements, [22]. 2
Finally, Yang and his coworkers published a book, [20].

crew algebra.

The main contribution of this work is to present, a

en%hod based on screw theory, isomorphic to the Lie alge-
zprase(S)of SE(3), that in three seamless stagew;rectly
computes the mobility of the great majority of fully parallel
pgtforms. The method can be programmed using standard
computer algebra programs. Unlike the methods reviewed in
[h‘ls section, the method developed here requires neither the
analysis of reciprocal screws nor the use of a large number of
conditions and definitions, other than those well established
In spatial kinematics and screw theory.

This paper is structured as follows. Section 2 explains

&}e details of each of the three steps of the method proposed
n this paper. Section 3 presents a parallel platform whose
mobility can be correctly determined using the first step of
tpe method that involves the intersection of the subalgebras
pd subspaces sé(3)generated by the platform’s legs. Sec-
an 4 presents three examples of parallel platforms whose
egs generate a sum of subalgebrase(f3). Their mobility

n
on 5 presents a parallel platform whose legs contain closed

be determined from the intersection of those sums. Sec-

ops. The kinematic analysis of these loops yields velocity
nditions that allow mobility computations to be solved us-

Apg one of the two previous steps. Finally, some conclusions
gre drawn in Section 6.

FUNDAMENTALSOF THE METHOD

The main fundamentals of the method for determining

In such contribution, the authors indicate that serid® mobility of fully parallel platforms proposed in this con-

chains require 8 linear and symbolic operation rules atgdbution, without indicating the details, will be presented in
2 non-linear criteria; while parallel linkages require 130is section. As it was delineated in the abstract, the method

linear and symbolic operation rules and 2 non-linear citas three stages:

teria. Yang et al. [20,21] compare these number of rule
or criteria with the number of conditions employed by
Fanghella and Galletti [4, 5] who, as indicated by Yang
et al. [23], employed 107 rules for the composition of
subgroups. It can be implied that Yang’s method is, at its
core, an application of group theory. However, it seems
that Yang and his coworkers are not aware that em-
ploying the Lie algebrase(3), of the special Euclidean
group, SE(3) —isomorphic to the screw algebra— it is
possible to avoid the 107 rules of Fanghella and Gal-
letti, and also and the 22 criteria proposed by Yang and
his coworkers.

It is important to note that any local mobility criterion
can, in general, only determine the mobility in a neighbor-
hood of the kinematic chain in the analyzed position. The
mere existence of kinematotropic linkages is proof of that.
The method proposed in this paper provides the correct so-
lution for fully parallel platforms, where there is no bracing 2.
between the legs, the analyzed position is not singular and no
“paradoxical” linkage, as defined by Hén{2], is part of the
parallel platform. Under these circumstances, the approach
presented in this contribution provides the correct mobility

. Stage | of the method analyzes fully parallel platforms

whose mobility can be explained and computed us-
ing simple mathematical structures associated with the
screws of the serial connector chains, or legs. These
legs connect the fixed and moving platforms. Usually,
these mathematical structures aunbalgebr as of se(3),

the Lie algebra of the Euclidean groupE(3). How-
ever, in a few cases, the mathematical structures associ-
ated with the serial connector chains, or legs, that con-
nect the fixed and moving platforms might be only sub-
spaces ofe(3). This stage of the method has been al-
ready presented, with new small corrections, since 2003,
see Aguilera [24], Rico et al. [6] and [11]. However,
even then, it was recognized that this stage was not able
to determine the mobility of a large number of parallel
platforms. For example, those presented by Huang and
Li [25] and [26].

Stage Il of the method analyzes fully parallel platforms
where the screws of the serial connector chains, or legs,
are the sum, direct or not, of two subalgebrase(3)

the Lie algebra of the Euclidean groupE(3). These
mathematical structures are denomina@éw systems



of locally constant rank and sharenany of the prop- legs have an RPU topology. The fixed and moving plat-
erties of the subalgebras s&(3), the Lie algebra of forms are indicated by the numbers 1 and 11. The coordi-
the Euclidean groupSE(3). Considering the intersec- nate systenOXY Zis rigidly attached to the fixed platform
tion of these mathematical structures, this stage can exith its origin, O, located at the center of the equilateral tri-
plain and compute the mobility of a far larger group o&ngle formed byA;, E», andEs. PointP is located along the
fully parallel platforms than those successfully considccommon rotation axis of the revolute pairs that connect the
ered using only the first step. The details of this stagaoving platform with the second and third legs. Its position
were presented since 2006, in Tadeca@w and Brez- vector with respect to the coordinate system in figure 1 is
Soto [27], Rico et al. [28], or Tadeo-@hez [29]. How- Tp = (0,100,0)T.
ever, the focus of these publications was the kinematic
synthesis of fully parallel platforms.

3. Stagelll of the method analyzes fully parallel platforms
with serial connector chains, or legs, that either contain 5
closed chains, or have parallel revolute or helical pairs.

When the screws of these serial connector chains sat o

isfy certain velocity conditions, the mathematical struc- G _ .

tures associated with the screws of the serial connecto 5 Cpee

chain can be reduced to either a subalgebra or screw sy G F
tems of locally constant rankl he velocity conditions Z\f '

are usually obtained by solving the velocity analysis of b x0

closed chains or by making the sum of angular veloci- ' 5

ties of revolute or helical joints with parallel axes equal )
to zero. Then, it is possible to explain and compute the Fig. 1. The parallel platform proposed by Alvarez-Pérez, [32].
mobility of these parallel platforms using the processes

indicated either in the first or second stage. With this ) )
third step, it is possible to compute the mobility of even The architecture of the RRPS leg is shown on the left

a greater group of fully parallel manipulators. Some des_ide of figure 2. The revolute axes associated with the points
tails of this approach were illustrated in Tadeoa@éz AllandBl are perp(—?-ndic.:ullar and, together with the prismatic
et al. [30] and Rrez-Soto [31]. Similarly, the focus of PAir @nd the spherical joint located at poiby, form a me-

these publications was the kinematic synthesis of fulfj@nical generator of the complete Lie algebed3). In the
parallel platforms. emainder of the contribution, whenever there is no possibil-

ity of confusion, the points will be used also to indicate the
In this contribution, we present several examples th§Prresponding kinematic pairs. The subscripts of the points

illustrate how stages Il and 11l compute the mobility of par®" kinematic pairs indicate the platform’s leg number.

allel platforms. These computations were impossible using

the techniques of stage I. The three stages must work itefa-

tively; namely, after applying stage IlI, the results must be,

reanalyzed using the techniques developed in stages | or Il.

3 Parallel platforms whose mobility can be determined o i A
using stage | of the method 5 6 R b,
This section presents a parallel platform whose mobility u, fo '
can be computed by the intersection of subalgebras and vec- 4, R ,
tor spaces o$e(3)associated with the platform’s legs. Since ‘ b AL Z‘ET Z:/\T
this stage was discussed in great detail in Aguilera [24], Rico , § 0 x<—0
et al. [6,11], only one example, which requires a modifica- t
tion of a definition in those manuscripts, is presented. Fig. 2. The geometry of the connecting chains, R-R-P-S, and R-P-
u.

3.1 Parallel platform RRPS-2RPU
~ Figure 1 shows the parallel platform proposed by TheRPU architecture of leg 2 is shown on the right-hand
Alvarez-Ferez [32] as a possible alternative to rehabilitatioside of figure 2. These characteristics are also valid for leg 3.
therapy performed by skilled health workers. The applicahe axis associated with the revolute joint located at pgint
tion of the Kutzbach-Gibler criterion indicates that the plat-and the axis of the first revolute pair of the Hooke joint with
form has 2 DOF. center at poinG; are parallel to thé’-axis. The direction
This platform has three connecting serial chains. Th# the prismatic pairyg;, is located in the planX — Z, this
first one has an RRPS topology, while the remaining twesult is also valid for the third leg. Finally, the rotation axis



of the second revolute that forms the Hooke joint located at The next step is to determine the common closure alge-
Gi is parallelto the unit vectorug. Furthermore, the last pra, AT/', associated with all the infinitesimal mechanical
revolutes that form the Hooke joints, for the second and th'ﬁ.j;\isons,z v/t j = 1,2.3, or connections, associated with

legs, are coaxial. : -
The screws coordinates, reference points of the kintgrée(;:gs' In this platform, the closure algebra of all legs is

matic pairs of each connecting chain, and the corresponding

Jacobian matrices are given now. The nomenclature follows

figure 2 and the subscript, in the points and the Jacobian ma- Ag*/f = AT/f =se(3) (2)

trices, indicates the leg number. The rest of the paper will

follow this convention.

For leg 1. Ay = (%32,20,0),"$%; By = (*?,170,0) 2$*;

C1,°$% D1 = (1001/3,120,-100) 42§18, 4 glL1d-4c glic,

Furthermore, for this parallel platform the subspb@é{f is

obviously contained ih[l/" = se(3):

- Ne B -
0 > 0 0 1 0 V[p/f < Ag*/f (3)
1 0 0O 1 0 o©
0 _% 0 0 o -1 Thus, stage | of the method identifies the parallel plat-
h=109 _g5 ? 100 0 —-120 |- formbasda trivigl o; Tanev’shty?e". Moreover, _its mobilig
200 1 can be determined using the following equation, see Rico et
0 5 7 0 10010073 al. [11]:
40 _g51/3 %2 100/3120 0
) ) F=dim(Vf/") =4 4)

For leg 2. Ep = (—2%,20,200°$% R, °¢;

Gz = (1%,120,100),72g112; 70 g1,

Stage | of the method shows that the subspéﬁ/é gen-
erated by the columns of the Jacobian matriesr J; rep-
(200 o _ 849. = 9al0. resents the relative motion of the moving platform relative to
For IS% 3 Bs=( \/150;2?’161 120(30)1)]13$ e 8 the fixed platform. Rico et al. [6, 11] concluded that this is
Gs = (—13,120,-100), 72,70 $2. a trivial parallel platform Tanev's type with four degrees of

o 0 0 -} ro 0 O 3 freedom given by a planar motion in the plaxie Z, namely,
1 0 1 0 1 0 1 o da;, followed by a rotation around a fixed axis that passes
/3 v through point$Gy, andGgy,. In Rico et al. [6,11] it was as-
o 0 0 % 0 0 0 % | sumedthatatrivial parallel platform Tanev's type could only
o= 72007§ ~100-60v/3 5= 200 ~% 100 60V3 |- havg one leg .generating the subspace. This examplg shows
o o0 o 0 0O 0 0 0 that it is possible to have more than one leg generating the
L0 1 10 g L2003 100 g subspace.
V3 2 3 . |~ Vva 2 .

It shouldbe noted thatJ;] represents the column spaceé Parallel platforms whose mobility can be determined
of J; namely, the vector space spanned or generated by theusing stage 1 of the method
columns of the matrix. This convention will be used for the ~ This section presents two examples of parallel platforms
rest of the paper. whose mobility is computed by determining the sum of sub-
algebras, ofe(3), associated with some of the legs of the
The screw system given by the columns of the Jacobi@atform.
matrix J; is the mechanical generator of the whole Lie al-
gebrase(3), of SE(3). Thus, the dimension of the columng 1 pgralld platform RRPU-2RPU
space of the Jacobian matdy, i.e. its rank, is equal to 6. The parallel platform shown in figure 3 is an improve-
Similarly, it can be proved that the dimension of the columpant of the one proposed Wyjvarez-Ferez [32], and ana-
space generated by the Jacobian matrgeEndJs is equal ;64 in section 3.1, where the spherical pair that connects
to 4. Moreover, by computmg tr_]e mFerschon of the columil,ks 11 and 4 in figure 1 is replaced by a Hooke joint lo-
spaces of these Jacobian matrices it follows that cated at poinD1. The application of the Kutzbach-Giler
criterion indicates that the platform has 1 DOF.

92 N 3] = (3] = (5] = V" (1)

Therefore. these column spaces are equa| and they are not thzé'he infinitesmal mechanical liaisons is the subspace generated by all

mechanical generator of anv subal ebr&@@) thev onl the screws that belong to a serial connection chain, while the closure alge-
9 y 9 ’ y y bra is the smallest subalgebra that contains the corresponding infinitesimal

form a vector subspace, denoted\b@”. mechanical liaisons, for additional details see Rico et al. [16].



The platform has three legs. The first one has an RRPU For leg 1. A; = (%’730, 0),'$%B; = (%3,100,50),

topology,while the remaining two legs have an RPU topol2$3;cljs$4; D1 = (80v/3,150,0),4$5;5$12.
ogy. The fixed and moving platform are indicated by the - -
numbers 1 and 12. The coordinate sys@MY Zis rigidly 0 0 0 0] O
attached to the fixed platform and the origih,is located at 0 0 0 0 | 1
the center of the equilateral triangle formed Ay, E», and
Es. Finally, pointP is attached to the moving platform and it = -1 -10 -1]0
is located along the common axis of the last revolute axes of —30-100 § -150| 0 |’
legs 2 and 3.

9 00 40 0 8ov3| 0

0 0 3 0 [80/3

Fy

For leg 2. E» = (=23°,20,200),1 8% >, °7;

G, = (—40v/3,150,120), $8;8 $12.
g £ For leg 3. Es = (=73°,20,~200),"$% F5,°$™,
G Gz = (—40v/3,150,—120),10¢1; 11412,
c . [0 0o o | o | 0o 0o o | 0|
D,
z\% 5 1 0 1 | o0 1 0 1 | o0
By
X 0 0 0 | -1 o 0o o0 | 1
= 1 3= 1
2004 —120 | —150 200 -3 120 | 150
. 0 0 0 |-40/3 0 0 0 |40/3
-2 B _40/3| 0 | - 20 —3 _a0/3| 0

Fig. 3. Parallel Platform with three legs RRPU-2RPU. -
In thissection, the red dashed vertical lines indicate the sep-
aration of the Jacobian matrices in two parts; each of one

The architecturef the RRPU leg is shown on the leftforms a subalgebra.
side of figure 4. The axis of the revolute joint located at |t can be shown that the dimension of the column space,
points A1, By, and the axis of the first revolute pair of theor rank, ofJ, andJ; is 4. However, the screw systems as-
Hooke joint with center aD; are parallel and their direction sociated with these legs are not the mechanical generators of
is that ofui, ; i.e. parallel to the&Z-axis. The direction of the any subalgebra of the Lie algebisg(3). Furthermore, the
prismatic pair,u3,, is parallel to theXZ plane. Finally, the screw systems associated whandJs; represent the same
axis of the second revolute joint that forms the Hooke joidubspace/,. Similarly, the dimension of the column space
with center aD;, remains parallel to thg-axis. or rank ofJ; is 5, and since there is no subalgebraef3)

The architecture of the second leg RPU is shown on tlag dimension 5 the screw system associated itls also a
right-hand side of figure 4. These characteristics are the sagispaced/,. MoreoverV, < Vj.
as those indicated in the platform of section 3.1. Since the screw systems associated with the three legs
are not the mechanical generators of a subalgebra of the Lie
algebra;se(3), stage | of the method is unable to determine
A the mobility of the platform. However, stage Il of the method

determines that subspa¥e is the direct sum of two subal-

gebrasgj"@ rg, of se(3). The first subalgebg} represents

Iy the general plkénar motion in a plane perpendicular torthe
axis. This subalgebra is generated by the three first columns
of the Jacobian matricels andJs. The second subalgebra,
rg, . represents a rotation around the axis intersecting points
Gy, andGg,. The screw that generates subalge@g\is lo-
cated in the fourth column of both Jacobian matridgeand
Js.

Similarly, stage Il of the method determines that sub-
spaceV,, associated with the first leg, is the direct sum
of two subalgebras; ® rp, . The first subalgebras; rep-

The screws coordinates, reference points of the kineesents the subalgebra of Sciflies motions with rotation
matic pairs of each connecting chain, and the correspondialgout theZ-axis. This subalgebra is generated by the first
Jacobian matrices are given now. The nomenclature folloviecur columns. The second subalgeb@b represents a ro-
figure 3. tation around an axis parallel to tieaxis intersecting point

Fig. 4. The topology of the connecting chains R-R-P-U and R-P-U.



D1. The screw that generates this last subalgebra is locafutke characteristics of the kinematic pairs are:
in thefifth column of the Jacobian matrik.

Stage Il of the method computes the intersection of thel'
subspaces associated with the Jacobian matrices of the legs

The revolute joints located at poimdg andB;, and the
first revolute joint of the Hooke joint at poi; are par-
allel, and its unit vector is given hy;~ The unit vectors
Uy; for legs 1 and 3 are parallel to tixeaxis; while the

3 . N .
[Jr']“/f} _ ﬂ [Jim/f} = (3] N[ N [Js] = [J] = [Jg] = V2 unit vectorauy forlegs 2 and 4 are pare_lllgl to thkeaxis.
i1 2. The direction of the second revolute joint of the Hooke
(5) joint at pointC;, represented by the unit vectas,,”is

The intersection of subspaces provides the motion of the perpendicular tai;; and also taug, which is associated
moving platform relative to the fixed platform. It is the col-  to the revolute joint located &;. It should be noted that

umn space of the matrid”" denoted|J""|. It represents the axes of these two revolute joints intersect at pQint

a planar translation in the plan€Z together with rotations Finally, point Q is assumed to be attached to the moving

around theX andY-axes. Further, it can be proved that thglatform and it is used to represent the relative motion

mobility of the parallel platform is given by between the moving and the fixed platforms. Its position
vector relative to origirD of the coordinate syste@XY Zis

F =dim[J"" =rank 3" =rank(J,) =rank(Js) =4 (6) given byrq = (0,150,0)".

- . . The screws coordinates, reference points of the kine-
The characteristics of this platform are similar to that of thﬁ]atic pairs of each connecting chain, and the corresponding

previous section; i.e. atrivial platform of Tanev's type. Howy,cohian matrices are given now. The nomenclature follows
ever, in this case, none of the legs generate a subalgebra,f e 5

the first connecting chain generates a screw system of local

constant rank that contains the screw system of the remain-_. leg 1. Ay = (100,20,30)1$2B; = (120,65,0) 2%
ing two serial chains. Furthermore, legs 2 and 3 generate @1e: (100’110,0)73$4;4$:5; Isl :’ (O,'150,0), 5$18,. ,U),797
same screw system.

0 0 O | % ]
4.2 Parallel Platform 4-RRUR. 0 0 0 | -4 =
The 4-RRUR parallel platform shown on the right side of 1 1 1 | 8279 %73
figure 5 was proposed by Fang and Tsai, [33]. The platformrt = 20 65 110 | 0 0 )
has 4 legs with the same topology indicated on the left side ~100 -120 100 | 0 0
of figure 5. The kinematic joints located at the correspond- 0 0 0 | 750 _ 450
ing pointC of each leg are Hooke joints that can be replaced L V29 Vi3

by two intersecting revolute pairs whose directions are PeEL, leg 2. A, = (~30,20,100)1$5:B, = (0,65,120)
pendicular. The platform has 18 links and 20 revolute pair§$7;C2 ~ (0,110 100)7$8.é$9’. D, :7 (0.1500) 9é18_7 )
The application of the Kutzbach-Giler criterion indicates Y U U
that the platform has 2 DOF. A Cartesian coordinate system _

OXY Zis attached to the fixed platform for reference pur- _01 _01 _01 I 02 2
poses. V29 V13
N T R
2= 0 0 o | /0 A0 ¢
B V29 V13
N -100 -120 -100 | 0 0
"o D D | 20 65 110 | O 0
Q For leg 3. Ag = (—100,20,—30) 1$%; By = (—120,65,0),
o ¢ 10§11, C3 = (—100,110,0) 11 $!2; 12813, D3 = (0,150,0),
; “ o 13g18,
b~ @ g ' - 5 .3 7
el . ; 0 0 0 | - e
B; 1
e By = o Bo| 1 -1 -1 | 0 0
. OTAZ . ZX, 4 ~20 -65 —110 | 0 o |’
o 0>z —100 —-120 -100 | 0 0
750 450
L T - B

Fig. 5. The topology of the i-th leg of a parallel platform R-R-U-R  For leg 4. A4 = (30,20,—100)1$'* B, = (0,65,—120),
and the complete platform. The leg illustrated corresponds to the  14¢15:C, — (0,110,—100)1°$'6;16¢$17 D, = (0,150,0),
third leg. 17418,



1 1 1 02 (23 1 of the Jacobian matrices of the lejsherefore
0 0 0 | ~ 5% 75
0 0 0 | % s -
el P I /] = ORI = BNRIN NI =V, (7)
V29 V13 i=1
—-100 -120 -100 | 0 0
-20 65 -110 | 0 0 | The result is given by
The rankof all the Jacobian matrices is equal to 5. Since T 0 0 % 226 i
there are no subalgebras of dimension S&{3), none of 2 2 0
the legs are the mechanical generators of any subalgebra V3 V2o 0 0
of se(3). The matrices only generate a subspacse(3). Jm = _75103 @ 8)
Hence, stage | of the method is unable to compute the 13 /29 0 0
mobility of the parallel platform. 0 o0 =% 1o
0 0 -5

Stage Il of the method shows that the column space each
of the Jacobian matrices is the non-direct sum of two sub- The columnsof the matrixJ,™/f, see equation (5), in-

algebras ofse(3)and, as a consequence, the column spaggate that the parallel platform has mobility 4. However,
forms screw systems of locally constant rank. the columns ofl,™/f do not provide a clear interpretation of
the relative motion between the platforms. To address this
1. The screws of the revolute joints locatedAn andB;, issue, Rico and Duffy, [34], resorted to the definition of a
and the first revolute joint of the Hooke joint indicatedscrew system as a subspac¢ef the Lie algebrase(3), of
by Cia, are parallel to the unit vectar, "appear in the SE(3). Hence, the screw system has an infinite number of
first three columns of the Jacobian matrix. These screwases. Thus, the last step is to find another basis of the col-
generate the subalgebra of planar displacemgntsn  ymn space JE = [$1,$2,$3,$4] that provides a simpler
a plane perpendicular t@,”
2. The screws associated with the second revolute of
Hooke joint indicated by, and the revolute located in
D; appear in the last two columns of the Jacobian matri
These screws generate a subspégecontained in the
subalgebresg of spherical displacements around point _

interpretation of the relative motion between the moving and
iXed platforms. This new basis is given by the column space
Qf anew matrix]rﬂ/ f or, equivalently, the space generated by

the matrix’ columns:

0 1 0 07
Q. 0 0 2 2
. . . . “ " 0 0 —-= >
T"he red dashed line, in the Jacobian matrices, sepaﬁ]ﬂ/ } = [$1n, $2n, $an, $an] = R _@ ﬁ* , (9)
rates” the complete subalgebra from the subspace. /13 V29
Therefore, the column space of each Jacobian matrix 1 0 0 O
forms a non-direct sunga,, + SQ, sincegfjli Nsg #0. The |10-150 0 O |

linear complement for the subspa®®, to generate the

subalgebrasg is the screw of a revolute pair that passesvhere

through pointQ and its direction is parallel to the unit vector, 13 26 ~ 923 B B
0y, This screw is precisely the intersectiongaf Nso. 1= 520% 505 P = 534 % 5% S = %1, S =%,

The screws for the linear complement\6, relative to From equation(9), it follows that the parallel platform

so for each of the legs are given by: 4RRUR features acrew system of locally constant ranI?
and it has 4 degrees of freedom, the rank of the mdﬂ’fx
m/f - .
1. Leg 1.9$% —[0,0, —1; —150,0, O]T andqnl . Furth_ermore, the motion of the moving platform
8ac8h 0.0:0.0 ol relative to the fixed platform consists of a translation along
2. Leg2.75% = [1’ ,0:0,0,-15 ]T theY-axis together with any spherical displacement centered
3. Leg 3.12¢2 — [0, 0, 1; 150,0, 0] in pointQ.
4. Leg 4.16g1 _ [_1 0,0;0,0,150]

4.3 Exechon Parallel Platform
If one wishes to exhibit the two subalgebras associatathe mobility of the Exechon parallel platform, shown in fig-
with each leg, the screw must be “virtually” placed in therre 6, has been studied by Bi and Jin, [36] and Zoppi et
middle of the third and fourth columns, in the corresponding
matrix, J;. .
Then, the motion of the moving platform relative to the 3theproces is not included due to space considerations. However, the
fixed platform is obtained by intersecting the column spacep-by-step process is thoroughly describedéincdez-Gaiia et al [35].



al. [37] using heuristic methods. The platform has 3 legs.

Two of these legs have the same topology UPR, while the (10 0 0] 10 0 0]
remaining leg has an SPR topology. The Hooke joints can be 00 0 0 00 0 o0
replaced by two intersecting revolute pairs whose directions

are perpendicular. The platform has 10 links, 10 revolute . 01 01 S o1 0 1
pairs, and 1 spherical pair. The application of the Kutzbach- "“loo ﬁ 15 2o o —ﬁ 15
Gribler criterion indicates that the platform has 1 DOF. A 3 3
Cartesian coordinate syste@XY Zis attached to the fixed 010 7% ° 0-10 735 3
platform for reference purposes. 00 0 O] (00 0 0]

For leg 2. A, = (0,0,10,/3) 1 $%8; 2ag?b: 2bg8- B, 849,
C = (0,15,5V/3) 2310,

G
G 10 0 0 17
C .
! G 00 1 0 0
g, B ‘
. \ . 01 0 0 0
i LR 3 -
; B 0 0-10V/3 0 ©
/ \ 1v30 0 543
B B 00 0 -}-15
b fﬁjl
4 < The rankof both matricesl; andJs are 4. They do not
LIX ’ generate a subalgebras#(3), since they include a rotation
0>z i around two independent axes. Similarly, the rank of matrix
7t d rs Jyis 5, and it does not generate a subalgebised8). There-
“iah, 4 o fore, stage | of the method is unable to determine the plat-

form’s mobility. However, stage Il of the method determines
that the subspacaé; = V3. These subspaces s£(3), gen-
erated by legs 1 and 3, are the direct sum of two subalgebras
ro; @ g; of se(3); a subalgebra associated with a rotation

The topologyof the two UPR legs, denoted as 1 an@round theX-axis th_at passes thr(_)ugh poidtand the s_ub-
3, are similar. The axes of the first revolute joint of all th&!9ebra of planar displacements in a plane perpendicular to
Hooke joints, located at point, are coaxial and in the di- tN€Z-axis. The subspace generated by leyZ, represents
rection of the unit vectou;f parallel to theX-axis. The sec- & non-direct sum of two subalgebis +g;. The first subal-
ond revolute joint of the Hooke joints located at potaand ge.brasA2 represents the spherical subalgebra associated with
the revolute joints located at poi6t are parallel. These rev- POINtA2. The second subalgebgy represents the subalge-
olute joints have the direction indicated by the unit vecigy ~ Pra of planar displacements in a plane perpendicular to the
parallel to theZ-axis. The directions of the prismatic pairsx'ax's' . . .
located aB; are different but both lie in thXY plane. Then, the motion of the moving platform relative to the
In the topology of the SPR leg, denoted as 2, one Cfixed platform is obtained by intersecting the column spaces

a . .
assume that the spherical pair, located at pajnts replaced 0? the Jacobian matrices of the lefisherefore
by three revolute joints whose directions are parallel to the
X, Y, andZ-axes respectively. The prismatic pair, located at
pointB,, has a general direction in theZ plane. Finally, the
revolute pair, located at poifk, has the direction indicated

by the unit vectouys, parallel to theX-axis. L
. . . The vector subspaceé is given by the column space of the
The screws coordinates, reference points of the k'nﬁfatrixJn. The columns o8, form a basis foV

matic pairs of each connecting chain, and the corresponding

Fig. 6. Parallel platform Exechon.

3
[J{,”/ f} = N3] = [HN[%]N (% =V
i=1

(10)

Jacobian matrices are given now. The nomenclature follows [100]
figure 6. 000

For leg 1. Ay = (—10,0,0) 1$% 2$3: By 3$%;
Cy = (-5,15,0)*¢° r_|0to

) ) . Jnm/ = (11)
000
For leg 3. As = (10,0,0),1$%; 5% B3,6$; 001
Cs = (5,15,0),"$™.

|000]




G

From this result, it follows that the moving platform of G Lo
the Exechon can translate along tHeaxis and rotate along
the X andY-axes passing through the orighh Thus, it has D £ D £ E b
three degrees of freedom. E
It should be noted that the intersection of the column
spaces of the Jacobian matrices of the Idgsannot be
blindly computed. The approach followed by Huang and
his coworkers, see for example [13], rely on the constraint 5 o P
screws associated with each leg. Huang’s approach is equiy- £ B &
alent to employing only the first order or velocity analysis of G ’
parallel platforms; and it is, in some cases as reported in [16], ' A
unable to distinguish between mobile linkages or platforms 4,

Y
A4
and structures. 4 p
o
Z

5 Parallel platforms whose mobility can be determined
using stage I 1 of the method. Fig. 7.
In this section, an example of a parallel platform whose
mobility is computed by determining the velocity conditions 0,
of the kinematic pairs of at least some connecting chains of f
the platform will be presented.

B

pes|

Parallel platform 3T-R1-B.b of 4 DOF.

5.1 Paralld platform 3T-R1-B.b

Figure 7 presents the parallel platform 3T-R1-B.b proposed E; b
by Ting-Li [20]. The platform has 4 connecting chains or
legs with the same topology; each leg contains a closed @
chain. The numbering of the legs is indicated by the com-

mon subscript of the points associated with the kinematic
pair of the leg. The fixed and moving platforms are links 1 .
and 22 respectively. The platform has 22 links and 28 kine- s BT
matic pairs, 8 of them spherical pairs, all the remainder revo- e
lute pairs. The application of the Kutzbachi®ter criterion

indicates that the platform has 2 DOF. A coordinate system
OXY Zhas been rigidly attached to the fixed platform. A; =1

The kinematic topology of theth connecting chain is
shown in figure 8, and it corresponds to leg 2 of the plat- o X
form shown in figure 7. Moreover, all the characteristics and Z
results are also valid for the remaining legs.

It should be noted that the axes of the revolute paijrs
andB; of legs 1, 3, and 2, 4 are parallel tg,,"see figure
7. However, this direction changes for each pair of legs. On
the contrary, the direction of all the revolute joilgs whose matrices are given now. The nomenclature follows figure 7.
unit vector isug,, is parallel to they-axis. For leg 1. A; = (200,40,—90),1 $?; B, = (220,130,—90),

As shown in figure 8 the kinematic paiEsandD; are spher- 2$%Cy = (220,130,—130)3$* D; = (120,250,—130),
ical joints that can be replaced by 3 revolute pairs whod8$%3;40$5;4c$5; E; = (120,250,—50) 52 $53;60 $50;6c gc;
axes are linearly independent. Therefore, the directions lf = (220,130,—50),°$%; G, = (120,350,—90) 2 $?2

the three revolute pairs that substitute the spherical pair are:

Fig. 8. Structure of the i-th serial connector chain of the parallel
platform 3T-R1-B.b.

_ _ ' 0 | % 0 %1 0 0 %1 0 %1 | 07
1. The unit vectouy, is parallel to the rotation axes of the s 5 5 5
L . o 0 0 | % 0 £ 1 0 & 1 & |1
revolute joints aC; andF. The unit vector is different
with each connecting chain. |t e om0 0 0o
2. Another revolute joint & andD; is parallel to the unit —40 -130 | 58 -250 52 130-250 2% 50 2B | 90
vectory, of each extremity. 20 220 | -0 10 -0 0 120 3% 0 -3 | o
3. The final revolute joint &; andD; is parallel tous,, and
i 0 0 | 3 o _901n g _9 3y 320 |10
therefore to th& -axis. - Vel Vel Vel Vel .

The screws coordinates, reference points of the kine-For leg 2. A; = (120,40,150)2$'; B, = (120,124,186),
matic pairs of each connecting chain, and the correspondif&f;C, = (160,124,186)8$% D, = (160,268,90) 22 $112;



9bglb-9e glle: £, — (80,268,90) 112 $L0c; 11b G100 1ic gloc. As already indicated, each connecting chain has a

F> = (80,124,186)19%%; G, = (120,320,90) 11 $?? closed-loop formed by the parallelogradn D;,E;,F. The
corresponding Jacobian matrix is given by the 8 screws of
¢ +fpo 1 0 o0 1 0 0 07]07 thetwo revolute and two spherical pairs that belong to the
0 0| &% 0o X 1 0 Z 1 Z |1 loop. Therefore, stage Il of the method is employed to find,
0 0 & o0 X 0 0 & 0 o0 if possible, velocity conditions that may reduce the pseudo-

Jacobian matrices. In the case of closed-loops, the velocity
conditions are obtained by carrying out the velocity analysis

N

0 0 | 0O 0 48/13-90 0 48/13-90 0 | -90

480 480 240 240 .

150 186 | —U 90 -Jf 0 90 -gm 0 —7m | 0 of the closed-loop given by
320 320 160 160

—40 —124 | Vs —268 Vi3 160 —268 i 80 i | 120

ubi &:I + Qbia$Dia + OJDib $Dib + Q)Dic$Dic
For leg 3. Az = (—200,40,90) 1 $'%; B3 = (—220,130,90),

12313 Cg = (~220,130,130)1°$%; D3 = (~120.250,130), 0, e, + 08, B, + e e +0R%R =0 (12)
1aglea; 14b gleb:1dc gl6e; £, — (-120,250,50) 2§12,
16bg1%0-16c 15 B3 — (—220,130,50) 15$13; where the actual screw in equation (12), depends on the cor-
Gs = (—120,320,90) 64?2 responding leg. The velocity analysis yields the following
conditions:
ro 0\7%107%1 0 07%1 0 7%1\
00 & 0 & 10 & 1 tp, =wr = o, = W, (13)
110 1 0 0 1 0 0 0] 0 Wp;, = —WE,, wp,, = wg, =0 (14)
k=140 130 — %0 250 - 82 130250 - 22 50 — 2% | —90
200220 -7 120-78 o0 10-3 o | o0 The reduced screw system associated with the closed loop
0 03 0 % 1200 %0 120 ~120] becomes
For leg 4. Ay — (~120,40,~150) 1§V, o, [ (30, - %) — (37— 3, )| + w0, (%0, ~%,) (15)

Bs = (—120,124,—186)17$!8,C, = (—160,124,—186),
18$19; D, = (_16072687_90)719a$21a;19b$21b;190$210; . ) )
Es — (—80,268,—90) 218 §208:21b §200. 21c g20c. Equation (13) represents the relationship between the angu-

lar velocities of the revolute pairs paralleltg that belong
_(_ _ 20428 = _ (_ _9op) 21¢22
Fa=(-80,124,-186)7$% G4 = (-120,320,-90). % loop 1, shown in figure 8. Similarly, the first equation in

21 -1] 0 -1 0 0 -1 o0 0 0 | 01 (_14) represents the rglationship between the angular veloci-
0 0| 2 o 2 o 2 1 2z | 1 ties of the revolute pairs p_aralllel t, “thgt belong tolloop l.
Vi vis vis vis Finally, the second equation in equation (14) indicates that
0 0 - 0 —7% 0 0 -F 0 -0 both angular velocities are zero. Hence the screyysahd
%=10 0| 0 0 —48/13 90 0 —48/13 90 0 | 90 $EiC will be discarded in the analysis. Furthermore

150186 | — 480 90 —480 o 9o -—290 o _280 | g

Vi3 Vi3 Vi3 Vi3
40 124| 320 268 30 150268 160 _gp 160 | 130 Sri=%, % =% —%, and =%, =%
Vi3 Vi3 Vi3 Vis b b a a

. . ) ) These two “equivalent” screws substitute the columns 3to 10
Pseudo Jacoblar_natrlces of the connecting Ch?'ns aArdf these pseudo-Jacobian matrices and also appear between

shown next. - Their common rank .Of these matrices IS pyy gashed lines. The results of this step are the following

They are not actual Jacobian matrices due to the presengg, o4 jacobian matrices whose ranks are all equal to 5.

of the screws associated with the kinematic pairs withinr o o | o o | o 1 1| o0 1] 0
the closed-loop of each connecting chain. These screw 01 01 } 8 01 } é 8 8 } 8 g } Cl)
correspond from the third to the tenth columns “bracketed”| 40 10| o 250/ 90 | =| 0 0o |-48/3 0 | -9
by red and dashed lines. 200 220 | 0 120 | O 150 186 | 0 9 | o

0 0 [20/61 0O [120 —40 -124| 0  —268| 120

All the Jacobian matrices associated with each of the

connecting chains have rank 5. Sirssg3)does not have a 8 (0) } 8 8 } (l) s } 8 L | g
subalgebra of dimension 5, stage | of the method is unalale 11 0 1] 0|, 0 0| 0 o } 0
to determine the mobility of the parallel platform. Similarly,® ~ | 40 130| 0 250| —90 |*~* ™| 0 0 [48/13 0 | 90
tage Il of the method is unable to find tems of |0’ %° Lomie o 1088 0 0] 0
stage Il of the method is unable to find screw systems of |"y" 5" 2061 0 | —120 40 124| 0 268| —120

locally constant rank that can be expressed as a sum, direct

or not, of two subalgebras s&(3). One can assume that the  Sincetherank of all the pseudo-Jacobian matrices is 5,
presence of the closed-loop makes it impossible to find thed there is no a subalgebra s€#(3)of dimension 5, it is

sum of any subalgebras. clear that the connecting chains do not generate a subalgebra



of se(3). Therefore, the application of stage | of the methaaf conditions presented there. Finally, this contribution re-
is, again, unable to compute the mobility of the parallel platveals the need for a more complete classification of fully
form. However, stage Il of the method reveals that the suparallel platforms, and for a renewed version of the work
space generated by each connecting chain is given by tfeGogu, [1], that should review critically the newly devel-

direct Sumxg, ©rg . of a Sctonflies subalgebra and a rev-oped mobility criteria. Both endeavors remain important, yet

olute pair. The unit vectou; is k for legs 1 and 3; and untulfilled, tasks.

for legs 2 and 4. The revolute; ., has, also the common
direction, |, but the location of the revolute axis is different
for each chain. Acknowledgements
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[3r] = (Fr) = [Bar) N [T N [Jae] N [Iar] = Xj (16)
i=1
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