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Abstract
Understanding how habitat, landscape context, and human disturbance influence local species-specific deer density provides 
evidence informing strategic management of increasing deer populations. Across an extensive (187  km2) heterogeneous 
forest-mosaic landscape in eastern England, spatially explicit density surface models of roe deer Capreolus capreolus and 
introduced muntjac Muntiacus reevesi were calibrated by thermal imaging distance sampling (recording 1590 and 400 munt-
jac and roe deer groups, respectively, on 567 km of driven transects). Models related deer density to local habitat composi-
tion, recreational intensity, and deer density (roe deer models controlled for muntjac density and vice versa) at a local grain 
across 1162 composite transect segments, incorporating geographical coordinates accounting for spatial autocorrelation. 
Abundance of both species was lower in localities with more grasslands (inter-quartile, IQ, effect size: roe −2.9 deer/km2; 
muntjac −2.9 deer/km2). Roe abundance (mean = 7 deer/km2, SD = 6) was greater in localities with more young stands (IQ 
effect size, + 1.3 deer/km2) and lower at localities with more recreationists (−1.1 deer/km2). Muntjac density (mean = 21 
deer/km2, SD = 10) was greater in localities with more recreationists (+ 2.4 deer/km2), with more mature (≥ 46 years) stands 
(+ 1.5 deer/km2), or calcareous soil (+ 7.1 deer/km2). Comparison of models incorporating candidate variables and models 
comprising geographical coordinates only shows candidate variables to be weak predictors of deer densities. Adapting forest 
management to manipulate habitat and recreational access may influence local deer densities, but only subtly: effect sizes 
are not sufficient to mitigate deer impacts through planting vulnerable tree crops in areas avoided by deer. Effective culling 
remains the most viable management option.

Keywords Landscape-scale deer management · Forest management · Introduction biology · Species-habitat model · 
Sustainable hunting

Introduction

Increasing deer abundance across Europe and North Amer-
ica has important consequences for humans and ecosystems. 
Deer contribute to rising incidence of tick-borne encephalitis 
(Jaenson et al. 2018) and Lyme borreliosis (Gilbert et al. 
2012; Kilpatrick et al. 2014). Deer populations influence 
forest structure, composition, biodiversity, and nutrient 
cycling (Trdan and Vidrih 2008; Ramirez et al. 2018) and at 
high densities, can limit forest regeneration (Gill 1992; Côté 
et al. 2004), with implications for climate change mitiga-
tion strategies through land use change, woodland expan-
sion, and increased carbon sequestration (Bastin et al. 2019; 
UK Climate Change Committee 2020). In the absence of 
top predator regulation, deer management primarily utilises 
shooting to control deer abundance and impacts (Depart-
ment for Environment 2010); however, for ethical wildlife 
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control, it is important to assess whether altering human 
practices could mitigate problems reducing reliance on 
culling (Dubois et al. 2017). Immunocontraception remains 
problematic, while fencing is expensive to install, costly 
to maintain, can cause access problems, and in some land-
scapes risks collision mortality of forest grouse (e.g. black 
grouse Tetrao tetrix, and capercaille Tetrao urugallus, Moss 
2001; Baines & Andrew 2003). The local distribution and 
aggregation of deer and the severity of their impacts can be 
influenced by habitat and landscape attributes (Hurley et al. 
2012; Jarnemo et al. 2014; Royo et al. 2017; Spake et al. 
2020) and forest management (Reimoser and Gossow 1996; 
Vospernik and Reimoser 2008; Reimoser et al. 2009; Redick 
and Jacobs 2020). If landscape context effects are sufficient, 
it may be possible to influence local deer activity-abundance 
away from patches where vulnerable, browsing-sensitive, 
tree crops are grown, thus reducing the need for lethal con-
trol (provided that any impact other than that on vegetation 
is absent), or conversely, it may be possible to create high 
deer density areas with few public recreationists, for more 
effective culling in terms of the effort required.

Although local habitat preferences are well understood for 
many deer species (Acevedo et al. 2010), landscape context 
effects are less well studied (though see Saïd & Servanty 
2005; Lamberti et al. 2006; Coulon et al. 2008), with the 
potential influence of recreational activity on deer distribu-
tion (Stankowich 2008) often overlooked. Countryside recre-
ation is encouraged for health and human wellbeing, and lev-
els are increasing (Johna et al. 2010); in the UK, through the 
Countryside and Rights of Way Act 2000 (CROW Act) 
large areas are now designated as open access, including 
much of the national forest (Edward and Kazushige 2015) 
where recreation is balanced with deer control to allow for-
est regeneration. Sustained high levels of recreational access 
may constrain deer management through safety concerns over 
shooting, but if deer are sufficiently disturbance-averse then 
changing the location of car-parks, access points, and path-
ways (Mallord et al. 2006) could potentially facilitate deer 
management. Building on the ‘landscape of fear’ hypothesis 
(Laundré et al. 2001), there is interest in using perceived 
predation risk both from stalking on foot and recreationists 
with dogs, to shift deer distribution away from areas requir-
ing protection (Miller et al. 2001; Cromsigt et al. 2013). 
Human disturbance can affect deer habitat use and ranging 
behaviour (Coulon et al. 2008; Bonnot et al. 2013), and deer 
increase vigilance (Ciuti et al. 2012) and flush away from 
recreationists (Miller et al. 2001; Taylor and Knight 2003). It 
is unclear whether individuals in hunted populations consist-
ently perceive recreationists as a predatory threat (Altmann 
1958; Behrend and Lubeck 1968; Frid and Dill 2002), as deer 
may learn to avoid the characteristic behaviour of stalkers 
but habituate to and tolerate recreational walkers or tourists 
(Laundre et al. 2010).

In an extensive study across a large heterogeneous land-
scape, we quantified the local abundance at scales of 49.2 ha 
and 37.2 ha (SD = 11.5, SD = 9.6 for roe deer and munt-
jac respectively, representing aggregation or settlement, 
not sub-populations) of re-introduced roe deer (Capreolus 
capreolus, Ward 2005) and introduced invasive non-native 
muntjac (Muntjacus reevesi; DEFRA 2018), by extensive 
thermal imaging distance sampling with robust sample sizes. 
Local abundance was related to fine-grained habitat suit-
ability using spatially explicit modelling that accounts for 
spatial intercorrelation (Miller et al. 2013). We tested habitat 
and landscape context features known or likely to influence 
local abundances of roe deer and or muntjac (Sinclair 1997; 
Putman and Moore 1998), and whether local deer distribu-
tion was affected by levels of recreational activity, using 
a spatially explicit extensively calibrated recreational path-
network model. Roe deer model controlled for muntjac den-
sity and vice versa muntjac models controlled for roe deer 
density. We a priori considered that roe would respond more 
strongly to recreation, as they are considered sensitive to dis-
turbance (Hewison et al. 2001; Coulon et al. 2008; Bonnot 
et al. 2013), while muntjac appear tolerant of human contact 
at least in their introduced UK range. Last, we examined the 
effectiveness of landscape, habitat, and recreation as tools 
for vegetation impact mitigation, contrasting the spatial vari-
ation in local deer density accounting for the fine-grained 
variables against a null model ignoring these variables.

Methods

Study area

The study was conducted in a 187-km2 conifer-dominated, 
lowland plantation forest landscape in eastern England, 
Thetford Forest, characterised by a semi-continental 
climate and sandy soils varying from acidic podsols to 
calcareous redzinas. Four deer species are resident: roe 
deer, muntjac, red deer (Cervus elaphus), and fallow deer 
(Dama dama) (Zini et al. 2019); these are managed by a 
professional ranger team to mitigate browsing impacts, 
particularly on vulnerable tree crop species. The forest 
landscape spans 12 ‘blocks’ that vary in predominant 
soil type and configuration — from contiguous blocks in 
‘core’ forest-dominated landscape to outlying fragments 
providing easier access to surrounding arable fields and 
grasslands (Supplementary material, Appendix A). Con-
figuration and soil type are independent (Zini et al. 2019) 
providing landscape-scale replication. Planted in the 
1930–1950s, plantations are managed to maturity, clear-
felled, and replanted (Eycott et al. 2006). With 63% of the 
forest in the second crop rotation, the felling-replanting 
cycle has been slowed to sustain the local forestry indus-
try and important open-habitat species (Lin et al. 2007;  
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Wright et al. 2009; Sharps et al. 2015), creating a fine-
grained mosaic within each block that comprises even-
aged stands (mean area = 4.5  ha, SD = 6.5; Zini et  al. 
2019) permeated by an extensive trackway network. In 
addition to timber, carbon, and biodiversity, recreational 
amenity is an important social benefit of multi-criteria 
forestry (Oh et al. 2017) and most of the forest (75%) is 
designated open access being visited by approximately 
1 million people annually (1064 visitors  km−2   year−1; 
Armour-Chelu, Brooke & Riley 2014).

Survey method

We used extensive nocturnal thermal imaging distance 
sampling conducted in late winter (January to March 2018) 
when low temperatures enhance thermal contrast and detec-
tion is improved by leaf-drop of deciduous under-canopy and 
collapse of herbaceous vegetation and bracken Pteridium 
aquilinum (Wäber and Dolman 2015). One-sided (from 
passenger-window) vehicle-based distance-transect surveys 
were conducted on the trackway network, using a thermal 
imager (Pulsar Helion XP50), while driving at ≤ 16 km/h 
with headlights off, between 20.00 and 02.00 h. Each tran-
sect was driven twice totalling 567 km; overall sampling 
intensity (3.02 km/km2) was similar in each of the 12 blocks 
(mean = 3.3 km/km2, SD = 0.8; see Supplementary material, 
Appendix A for transect routes). Each deer detected was 
briefly illuminated by a roof-mounted spotlight (‘lamped’) 
allowing its distance  (distancesighting) to be measured using 
Leica Geovid 10 × 42 laser rangefinder binoculars. Lamped 
animals remained stationary or slowly walked away; this lack 
of urgent escape behaviour is consistent with a lack of night 
hunting (professional rangers do not operate at night, and 
poaching gangs were not detected during extensive multi-
annual fieldwork). The angle of the observed animal relative 
to the surveyed transect line  (anglesighting) was estimated to 
5° using an angle board and perpendicular distance (from 
the transect line) was calculated as.

Perpendicular distance was reduced (near-truncated) 
by the mean verge width of the trackway class (forest 
roads = 8 m, SD = 6; fire routes = 3.8 m, SD = 2.1; forest 
rides = 0.60 m, SD = 0.2) following Wäber and Dolman 
(2015). Stands were categorised into three visibility classes 
(open, dense, mature) depending on their age and whether 
they had been thinned (see Supplementary material, Appen-
dix B for details), following Zini et al. (2019). Data were 
recorded from 2414 single-sided transect ‘sections’ defined 
by the adjacent surveyed stand (mean length = 225  m, 
SD = 128), but these were not suitable for density surface 
modelling due to zero inflation and overdispersion (with 

(1)Distanceperpendicular = cos(anglesighting) . distancesighting

potential for biased parameter estimates; Tu 2006). Con-
sequently, sections of the same visibility class lying within 
600 m of each other (along either side of the transect centre-
line) were combined for analysis as 1162 composite ‘seg-
ments’ (mean length = 462 m, SD = 297), irrespective of 
whether they were contiguous or interrupted by sections of 
another visibility class (see Supplementary material, Appen-
dix B for further details). Thus, segments may partially over-
lap, or be nested within, others that differed in detectability 
class but sampled similar neighbourhood characteristics; 
their lack of spatial independence was accounted for by 
spatially explicit analysis (see below).

Candidate variables

Local abundance of muntjac and roe deer were then related 
to the local intensity of recreational activity, roe deer density 
(only in the muntjac model), muntjac density (only in the 
roe deer model), and four environmental variables quanti-
fying habitat and landscape context (Table 1), informed by 
the ecology of the two deer species modelled, and extracted 
from buffers around each transect-segment (hereafter ‘locali-
ties’; for details of buffer radii, see below).

Both muntjac and roe are small- to medium-sized deer 
(10–18 kg and 17–23 kg respectively, Macdonald 2009) 
that, as concentrate selectors (Tixier et al. 1997), require 
more nutritious forage relative to grazers and bulk feeders. 
This, combined with a requirement for thermal shelter and 
security (Mysterud and Østbye 1995), affects the habitat 
selection preferences of both species (Hemami et al. 2005). 
In conifer-dominated plantations, density of roe deer is 
greater in young or mature forest stands, while density of 
muntjac is greatest in mature stands; both have low den-
sities in closed-canopy (pole-stage) stands (Hemami et al. 
2004) in which ground vegetation is suppressed by shade 
(Eycott et al. 2006). We therefore extracted the proportion 
of forest habitat in each locality comprising young (aged 
0–5 years since planting; Table 1) and mature (> 45 years, 
following Hemami et al. 2004) stands from the Forestry 
England (FE) forest management database (mean polygon 
area = 2.9 ha, SD = 3.0) and, for surrounding areas, from the 
Centre for Ecology and Hydrology Land Cover Map 2015, 
hereafter LCM2015 (Rowland et al. 2017). Forest extracted 
from LCM2015 was classified as mature forest after ground-
truthing. LCM2015 land cover is classified from composite 
summer–winter satellite images (pixel resolution 20–30 m), 
spatially referenced to digital cartography (Ordnance Sur-
vey MasterMap topographic layer) with a minimum polygon 
resolution > 0.5 ha.

Arable fields provide high-quality food relative to the forest 
(Putman and Moore 1998), such that fragmented forest in arable 
landscapes may enhance habitat suitability for deer, and popu-
lation growth (Sinclair 1997). Adult female roe deer in forest 
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stands closer to arable have greater body mass (Zini et al. 2019). 
Cover of arable lands was extracted from the 2018 Crop Map of 
England (CROME2018) maps of crop types from supervised 
classification of Sentinel-1 Radar and Sentinel-2 Optical Sat-
ellite images. As both deer species avoided entering outdoor 
pig units (confirmed through extensive thermal imaging sur-
vey), these were mapped manually using satellite data derived 
from Sentinel-2 (Copernicus Sentinel data 2018) and excluded; 
remaining CROME2018 crop types were pooled as ‘arable’.

Within forest habitats, calcareous soils support mineral-
rich and palatable forage (important during gestation and 
lactation, see Brown 1990) and greater plant species richness 
(Eycott et al. 2006; Dolman et al. 2012), while acidic soils 
are often dominated by less-palatable Deschampsia flexuosa 
(Scurfield 1954), or bracken (Marrs and Watt 2006). High-
resolution mapping of forest soils (Corbett 1973) compris-
ing 18 soil series and Cranfield NATMAP data (coarser: 9 
series) for surrounding areas were reconciled to a common 
classification, following Zini et al. (2019). For each local-
ity, we calculated the percentage of the combined forest and 
grassland area overlaying calcareous soil, excluding arable 
lands that provide nutrition irrespective of underlying soils 
that are modified by marling and fertiliser application.

We extracted the proportion of grassland from each 
locality, combining permanent open habitat within the for-
est (from the FE management database, mostly grassland 
but including areas of bracken and scattered scrub and, for 
the surrounding landscape, pooling LCM2015 classes of 
improved grassland, rough grassland, neutral grassland, cal-
careous grassland, acidic grassland, and heather (as ground-
truthing showed finer-scale ecological-resolution was unreli-
able, Zini et al. 2019).

The local intensity of recreational activity in each locality 
was extracted from an empirical GIS-based Network Analy-
sis considering path element class (forestry road, fire route, 

ride), path network-distance from the lowest impedance 
access point (considering behavioural impedance account-
ing for path classes, as a weighted distance, following Oh & 
Jeong 2007), car parking capacity at this access point, and 
population density in concentric buffers around the access 
point, controlling for hour of day and day of week (Hornigold 
2016). Calibration data comprised 1536 observations (single 
recreational disturbance events) collected during 1713 one-
hour survey visits (controlling for time of day, day of week, 
and season), across 180 locations (intersection nodes in the 
pathway network) over five years (138 points surveyed in 
2007, 180 points in 2008 and 2009, and 26 in 2013–2014, for 
further details of methodology and recreational modelling see 
Supplementary material, Appendix C). The distribution of 
access points and housing have been stable from this earlier 
survey to the collection of deer data, so relative distribution 
of recreational intensity is expected to be unchanged. The 
model related the observed frequency of dog walkers for each 
footpath element, with mean marginal and conditional R2 
from tenfold cross validation of 0.13 and 0.41, respectively, 
was interpolated across the forest-wide trackway network to 
predict the mean frequency of disturbance events (DE) for 
each footpath element.

An index of the intensity of recreational activity across 
the footpath elements i within each segment-buffered local-
ity j, was calculated as:

where pdei is the predicted mean frequency of DE (per hour) 
on element i, lengthi is the length (m) of footpath element 
i intersected by the locality, and area j is the area  (m2) of 
the locality.

Species-specific deer densities were resampled from 
100-m resolution density surface model (DSM) rasters, 

(2)
∑n

i=1

pde i ∗ length i

areaj

Table 1  Candidate variables examined in density-surface models of local roe and muntjac deer abundance, showing for each: the mean, standard 
deviation (SD), and coefficient of variation (CV, SD: mean) across n = 1162 transect segments sampled for local deer abundance

Candidate variable Description Roe deer mean ± SD 
(CV)

Muntjac mean ± SD 
(CV)

Calcareous Percentage of calcareous soil in localities 36.7 ± 31.3 (0.8) 36.7 ± 31.3 (0.8)
Recreational 

intensity
Interpolated modelled disturbance events of dog walkers, across 

spring and summer in localities
0.4 ± 0.2 (0.5) 0.4 ± 0.2 (0.5)

Grassland Percentage of grassland in localities 9.1 ± 10.8 (1.2) 9.1 ± 10.8 (1.2)
Arable land Percentage of arable (crops and freshly ploughed) land in 

localities extracted from CROME 2018
26.9 ± 20.7 (0.7) 26.9 ± 20.7 (0.7)

Young stands Percentage of FC 1- to 5-year-old tree crop in localities 5.7 ± 8.5 (1.5) 5.7 ± 8.5 (1. 5)
Mature stands Percentage of FC tree crop aged > 45 years old in the localities 31.8 ± 18.2 (0.6) 31.8 ± 18.2 (0.6)
Roe deer density Mean roe deer density extracted from 100-m resolution DSM 

raster
68.9 ± 4.0 (0.59)

Muntjac density Mean muntjac density extracted from 100-m resolution DSM 
raster

21.8 ± 9.3 (0.4)
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generated from distance sampling data that incorporated 
geographical coordinates only (see below for more details 
on DSM models).

Statistical analysis

We obtained a large sample size with 1590 muntjac groups 
and 400 roe groups observed. We built separate DSMs for 
muntjac and roe deer as a two stage process, following 
(Miller et al. 2013). First, a detection function, account-
ing for the decline in detection probability with increasing 
perpendicular distance from the transect line, was fitted to 
the observations using package “Distance” (Miller 2016), 
accounting for segment detectability class (categorical 
covariate, three levels), after right-truncating data exclud-
ing the 5% most distal observations, following Buckland 
et al. (2001). The best-fitting function (uniform; half-normal; 
or hazard-rate), adjustments (hermite; cosine; polynomial), 
detectability covariate, and whether group size was related to 
perpendicular distance (accounting for lower probability of 
detecting distal smaller groups) were selected by comparing 
model AIC (see Supplementary material, Appendix B). The 
selected model structure provided detection probabilities per 
segment, from which density per segment was calculated 
(accounting for effective strip width). Then, a generalised 
additive model (GAM) was fitted, relating density per seg-
ment to geographical coordinates of latitude and longitude 
using a penalised thin plate regression spline accounting for 
spatial autocorrelation giving a smoothed surface best-fitting 
the data, simultaneously considering the set of a priori can-
didate variables at each locality as linear predictors with 
Gaussian error, using package “dsm” (Marshall et al. 2017).

Variables were extracted from a buffer radius around each 
locality, informed both by home-range size reported in the 
literature and statistical analysis of our dataset. For roe deer, 
winter home-ranges measuring 75 ha were reported from radio-
telemetry in our study area (Chapman et al. 1993), correspond-
ing to a circular home-range of 500-m radius. A 500-m radius 
represented a coarser grained scale than that of individual stands 
(mean width = 355 m, SD = 60); thus, we inspected a series of 
full DSMs (including all candidate variables, geographical coor-
dinates as smoothing parameters, and the random effect of forest 
block, n = 12) across a range of buffer radii (100–650 m at 50 m 
increment step, where 650 m was the maximum roe deer home-
range reported see Appendix D). This showed a clear AIC min-
ima at 300 m that was selected for subsequent modelling. For 
muntjac, the reported winter home-range from radio-telemetry 
of 18 ha (Chapman et al. 1993) corresponds to a circular home-
range of 250-m radius. Inspecting AIC values across DSMs 
built with incremental buffers ranging from 100 to 700 m (at 
50 m increments, maximum roe deer home range reported, see 
Appendix D) showed an inflexion at 250 m that was selected 
for subsequent modelling (for more detail see Supplementary 

material, Appendix D). Analyses were conducted in R software 
(R core Team 2018). Variables were non-collinear across all 
candidate buffer widths (r ≤ 0.7; Freckleton 2002).

Whether candidate variables contribute to explaining 
local deer density, was assessed using multi-model infer-
ence in an information theoretic framework (Burnham and 
Anderson 2002), applied across the full set of alternative 
models comprising all possible combinations of candidate 
variables at the selected buffer radius (geographical coordi-
nates were included in all models as smoothing parameters), 
using ‘MuMIn’ package (Bartoń 2018). A variable was con-
sidered supported if included in the 95% model confidence 
set (the sub-set of candidate models for which cumulative 
Akaike weights amount to 95% of the total) with a model-
averaged CI that did not span zero (Boughey et al. 2011). 
We report model-averaged coefficients and quantify effect 
sizes as the magnitude of change in local deer density for an 
increase in the candidate variable from its lower, to its upper, 
distribution quartile (hereafter ‘inter-quartile range’, IQ). As 
a measure of explanatory power, we report the adjusted R2 
of a model constructed comprising geographical coordinates 
and supported variables, as well R2 of the model comprising 
geographical coordinates only — where thin plate regression 
splines will model spatial variation in deer density encom-
passing both the unmodelled effect of candidate variables as 
well as other variance due to unexplained effects. We expect 
that a model specifying the candidate variables directly 
would have a greater R2 than a model using geographical 
coordinates only if these variables greatly affect deer density. 
Lastly, we predicted muntjac and roe deer densities using 
the supported variables and geographical coordinates in a 
raster of 100 × 100 m and compared it to the prediction of 
the simpler model, comprising geographical coordinates 
only. To compare the change in the spatial prediction of deer 
numbers generated by the supported variables and the model 
including geographical coordinates only, we calculated the 
correlation coefficient between the two raster predictions.

Results

Roe deer

For roe deer, a hazard-rate detection function incorporat-
ing segment-specific detectability class best explained 
the decline in detectability with distance. A model that 
incorporated a decline in observed group size (mean = 1.7, 
SD = 0.8) at greater detection distance received similar sup-
port (ΔAIC = 0.14, Supplementary material, Appendix B) 
and was therefore excluded by parsimony, so that no group 
size adjustment was made in subsequent density estimation. 
Effective strip (half) width averaged across the three detect-
ability classes was 90 m (SE = 4 m). Of the 1162 segments, 
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894 (77%) had zero roe deer detected, while 268 (23%) had 
one or more deer detections. Roe density across the forest 
(estimated for 100 × 100 m raster cells) ranged from a 0.9 to 
55.4 deer/km2 (Fig. 1). Averaging DSMs across combina-
tions of candidate variables showed that roe deer density was 
lower in localities (segment-buffers of mean length = 475 m, 
SD = 298, radius = 300 m, mean area = 49.2 ha, SD = 11.5) 
containing a greater intensity of recreational activity 
(Figs. 2–3A), or a greater cover of grassland (Figs. 2–3B) 
and was higher in localities with a greater cover of young 

stands (Figs. 2–3C). Roe deer density was not affected by 
the extent of mature stands, arable lands, calcareous soil or 
muntjac density (Fig. 2). Adjusted R2 of the DSM includ-
ing supported candidate variables was 0.17, compared to 
0.13 for the model including geographical coordinates only 
(which nevertheless captures some effect of local variables 
through the geographic model). The roe deer density raster 
predicted by the DSM comprising geographical coordinates 
and supported variables was positively related to that pre-
dicted using geographical coordinates only (R2 = 0.74).

Fig. 1  Muntjac and roe deer density (individuals /km2) predicted for a 100-m × 100-m raster, by models including supported candidate variables 
and geographical coordinates or by models including geographical coordinates only. All models included random effects of forest block (n = 12)
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Muntjac deer

For muntjac, a hazard-rate detection function, incorporat-
ing segment-specific detectability class, best explained the 
decline in detectability with distance. Greater group size 
(mean = 1.16, SD = 0.4) increased the probability of detec-
tion at greater distance (ΔAIC =  + 10.75 on removal of 
group-size term, Supplementary material, Appendix B); 
an adjustment for group size was therefore made in sub-
sequent density estimation. Effective strip (half) width 
averaged across detectability classes was 75 m (SE = 3 m). 
Of the 1162 segments, 481 (41%) had zero deer detected, 
while 681 (59%) had one or more deer detections. Muntjac 
density (at 100 × 100 m) ranged from 4.7 to 77.5 deer/km2 
(Fig. 1). Averaging DSMs across combinations of candidate 
variables showed that muntjac density was greater in locali-
ties (segment-buffers of mean length = 475 m, SD = 298, 
radius = 300 m, mean area = 37.2 ha, SD = 9.6) containing 
greater intensity of recreational activity (Figs. 2–3D) and 
with greater cover of mature stands (Figs. 2–3F) or of cal-
careous soil (Figs. 2–3G), but was lower in localities with 
a greater cover of grassland (Figs. 2–3E). Muntjac density 
was not affected by the extent of young stands, arable lands, 
or muntjac density (Fig. 2). Adjusted R2 of the DSM includ-
ing supported candidate variables was 0.33, compared to 
0.30 for the model including geographical coordinates. The 
muntjac density raster predicted by the DSM comprising 

geographical coordinates and the supported variables was 
positively related to that predicted using the DSM compris-
ing geographical coordinates only (R2 = 0.81).

Discussion

In this extensive landscape-scale study, with intensive rep-
lication of local habitat across multiple localities, roe deer 
had lower abundance in areas with highest levels of human 
recreational activity, while the reverse was true for muntjac. 
Although ecologically interesting, the effects on local deer 
density of recreation and other habitat variables (see below) 
were relatively small and thus unsuitable to be used as tools 
for deer impact mitigation.

Local habitat and density effects

The two species differed in their responses to forest habitat. 
Roe were more abundant in localities with greater percent-
age of young stands (inter-quartile, IQ, effect size, + 1.3 
deer/km2), while muntjac, as previously reported (Hemami 
et al. 2004, 2005), were more abundant in localities with 
greater percentage of mature stands (IQ effect size, + 2.4 
deer/km2). Younger stands have previously been shown to 
be important for roe deer populations, with increased recruit-
ment after extensive (75%) conifer re-planting of a woodland 

Fig. 2  Models of local roe deer 
and muntjac density showing 
effects of candidate habitat and 
landscape context variables. 
For each variable, model-
averaged coefficients following 
multi-model inference (red 
filled symbols non-supported 
variables, black filled symbols 
supported variables) with 95% 
Confidence Intervals (bars) are 
shown, calculated across the 
95% model confidence set. All 
models included the random 
effect of forest block (n = 12)
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in Dorset, and subsequent population declines as the forest 
matured (Gill et al. 1996). Earlier research in our study land-
scape similarly found roe deer density was higher in young 
stands, and muntjac density was higher in mature stands 
(Hemami et al. 2004). In a forest managed by clear fell-
ing and replanting, young stands offer the greatest amount 
of ground forage (Smolko et al. 2018), but mature stands 
(with open canopy) offer both ground vegetation and cover 
(Hemami et al. 2005). Bramble (Rubus fruticosa agg.) is 
widely exploited by deer (Holt et al. 2010; Wäber 2010) 
including roe and muntjac (Chapman et al. 1985) that both 
occur in higher densities where more bramble is available 
(Hemami et al. 2004, 2005); bramble is restricted to early 
and late forest growth stages by shading (Battles et al. 2001; 
Hemami et al. 2004). Differences in habitat use between 
these two species may be further explained by physiology 
and predator escape mode: while roe deer use open habitats 
to forage (Putman 1986) muntjac have shorter legs and more 
curved backs, adaptations that do not favour sustained run-
ning as an escape response but facilitate sheltering in dense 
low cover. The association of the smaller sub-tropical munt-
jac with dense shrub may be further explained by a greater 

requirement for thermal cover, relative to the temperate-
boreal distribution of roe deer (Dolman and Wäber 2008).

Muntjac abundance was higher in localities with more 
calcareous soil (IQ effect size, 7.1 deer/km2) that have more 
diverse forage (Eycott et al., 2006). Muntjac are smaller-
bodied than roe, potentially placing them at the extreme of 
the browser-grazer continuum (Bodmer 1990) compared 
to roe, further increasing the need to select nutritious food 
(sensu Gordon & Illius 1994). Roe deer and muntjac abun-
dance were both lower in localities with a greater percent-
age of grassland (IQ effect size, − 2.9 and − 2.6 deer/km2, 
respectively). This may be a direct consequence of habitat 
suitability, as both species have a concentrate-selector diet 
in contrast to larger grazing deer such as fallow and red deer 
(Gordon and Illius 1994; Obidziński et al. 2013). It is also 
possible that grassland extent may be a proxy for higher 
local abundance of these larger and potentially competitively 
dominant (Dolman and Wäber 2008) species that congregate 
around and graze within grassland areas (Thirgood 1995; 
Trdan and Vidrih 2008). Despite the two species using simi-
lar resources and the likelihood of these species to compete 
for resources (see Hemami et al. 2005), muntjac density was 

Fig. 3  Relation of local roe deer and muntjac density to supported 
habitat and landscape variables. Densities were predicted from den-
sity surface models including geographical coordinates and those var-
iables supported by multi-model inference. Shown are local density 
of roe (a–c) and muntjac (d–g) deer in relation to: recreational inten-

sity (number of disturbance events per hour; a, d): sum of disturbance 
events per hour across trackways per buffer weighted by buffer area; 
percentage of cover of grasslands (b, e); young stands (c); mature 
stands (f); and calcareous soil (g) within localities. Deer densities 
were predicted across the full range of each predictor variable
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not related to roe deer density and roe deer density was not 
related to muntjac density.

Recreational intensity

Roe deer local abundance was negatively affected by the 
local frequency of dog walkers (IQ effect size, − 1.1 deer/
km2). According to the ‘human-caused predation risk’ 
hypothesis, animals perceive disturbance from recreational 
activities as a predation risk (Frid and Dill 2002). This 
can ultimately result in avoidance of disturbed areas and 
increased energetic costs of antipredator behaviour reduc-
ing effective habitat quality (Gill et al. 2001). Animals may 
trade-off the degree of perceived risk against the resource 
value of a patch (Charnov 1976). For example, a study of 
flight responses in southwestern France showed roe deer 
were more vigilant when foraging in more open landscapes 
or when close to human settlements (Bonnot et al. 2017); in 
the same study area, GPS data from collared roe deer show 
this species uses open habitats (where forage is abundant) 
more during the night while using forests more during the 
day, likely to hide from humans; use of open habitats during 
the day also decreases with proximity to roads and human 
settlements (Bonnot et al. 2013). Similarly, avoidance of 
buildings and roads have been shown to be the most impor-
tant factors in roe deer habitat use (Coulon et al. 2008).

Across three study sites in northern and one in southwest-
ern France, roe deer occurred more frequently in areas with 
less human infrastructure (Hewison et al. 2001). Red deer 
and fallow deer have also been shown to be affected by rec-
reation (Boer et al. 2004; Sibbald et al. 2011; Westekemper 
et al. 2018) and in Germany, red deer used zones with lower 
recreational activity (Coppes et al. 2017); however, differ-
ences in recreational access were applied across a bigger 
scale than the one examined here.

Local abundance of muntjac was positively related to the 
local frequency of dog walkers (IQ effect size, + 1.5 deer/
km2); their smaller size makes it easier for them to hide in 
dense shrubs and avoid recreationists. Rangers in Thetford 
Forest avoid culling deer in areas popular with recreation-
ists over safety concern; animals more tolerant of recrea-
tion can therefore reduce the risk of being culled by estab-
lishing their home-range in these parts of the forest. While 
comparison of flight distances in different environments 
is not an accurate method for inferring behavioural differ-
ences it is notable that in a high-throughput ‘safari-park’, in 
southern England, muntjac flight distances were only 8 m 
in non-public areas, and 11 m in public areas (Champion 
1997), significantly less than those reported for roe deer 
in the Netherlands (64 m when walking down wind, 41 m 
upwind, 44 m in calm wind (Boer et al. 2004). This short 
flight distance, combined with the difficulty of culling deer 
in areas of high recreational pressure, suggests the trade-off 

of occupying areas with high number of recreationists is 
positive for muntjac. Numerous records report muntjac in 
urban gardens (Harris et al. 1994), suggesting muntjac to be 
tolerant of proximity to humans. When comparing results of 
surveys of muntjac and roe deer numbers in urban environ-
ments and rural areas muntjac seems to outnumber roe deer 
in urban environments. Data from the BTO UK-wide Breed-
ing Bird Survey (covering 3295 and 3941 1  km2 grid cells in 
2006 and 2017 respectively) provide observations of some 
mammal species including both deer, this shows that both 
roe and muntjac increased in rural areas by 81% and 117% 
respectively between 2006 and 2017 (Harris et al. 2018).

Models incorporating geographical coordinates and the 
set of supported candidate variables performed better than 
simpler models including solely geographical coordinates; 
however, the increase in variance explained was small, and 
the majority of the variance is to be attributed to unexplained 
spatial variation. Densities of fallow and red deer were not 
accounted for in our models and are likely to account for 
some of the unexaplained variation in local deer density. 
It is possible that the influence of variables reported here, 
relating to local deer distribution (aggregative response, 
Sutherland 1983), may not affect underlying demographic 
processes (driven by fertility or neo-natal survival) and 
therefore overall numbers across the landscape. Regard-
ing forest management, this study showed that felling and 
restocking tree crops may increase local roe deer abundance 
(as they tend to congregate more in young stands) while 
decreasing local muntjac abundance. As recreation appears 
to negatively affect roe deer local distribution, it may be 
possible to manage recreation (changing the spatial distri-
bution of access points and paths accessibility) and change 
local density of roe deer to create ‘safe refuges’ favouring 
greater local abundance. Culling in these areas would then 
be simultaneously safer and more cost-effective (in terms of 
the effort required to achieve a given harvest, Hatter 2001). 
Managing recreation however would only slightly improve 
forest management if roe was the only deer species present, 
or the species having the greatest impact. This solution is 
not suitable for managing muntjac, for which the opposite 
response to recreational intensity was found. Managing rec-
reation at a fine-scale does not appear to provide a useful 
tool for muntjac and roe deer management.

Conclusions

Our results show that forest management affects local deer 
density, but the effects found here were not strong enough to 
justify adapting forest management to mitigate impacts and 
would not allow the removal of lethal control by shooting. 
The variance explained by the models including the vari-
ables supported as well as the effect sizes of each variable 
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were relatively low, showing little effect on local deer aggre-
gation. Our conclusion is that culling deer continues to offer 
the most effective tool for local density and impact reduc-
tion. An ethical and effective culling program should start 
from an assessment of deer numbers to build a demographic 
model; culling should then be coordinated and take place 
at a relevant spatial scale for each culled species (Fattorini 
et al. 2020) and evaluation of impacts and population size 
will also be necessary to monitor its effectiveness (Dubois 
et al. 2017).
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