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Key Points: 

 The effect of urbanization on the surface air temperature (SAT) decreases over time as 

regional vegetation greening increases. 

 The urbanization effect on the land surface temperatures (LST) from the long time series 

of satellite retrievals remains significant. 

 The anthropogenic heat was found to have a limited influence on SAT, but more 

significant and tangible effects on LST. 

Abstract 

Previous studies show that the environment in the Guangdong, Hong Kong, and Macao region (GHMR) is 

under the double stress of global warming and urbanization. Here we show that due to the increase of regional 

greenness, the effect of urbanization warming on surface air temperature (SAT) decreased with time and became 

statistically insignificant from 2004 to 2018, compared to 1979 onward; while the urbanization itself has 

significantly warmed land surface temperature (LST), with a warming rate of 0.14±0.04 ℃/10a at daytime and 

0.02±0.02 ℃/10a at nighttime during 2004-2018, respectively. The anthropogenic heat was found to have a 
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limited influence on SAT, but more significant and tangible effects on LST. It is essential to improve the control 

of additional warming effects caused by urbanization. 

Plain Language Summary 

The Guangdong, Hong Kong, and Macao region is the most economically developed region in China, and 

the urbanization impact on the regional warming is frequently discussed during recent decades. We found that 

the urbanization warming on surface air temperature (SAT) has decreased to insignificant during the recent 

decade due to regional greening, while the warming of land surface temperature (LST) remains tangible. This 

result is related to the different effects of two moderating drivers (anthropogenic heat and vegetation index) on 

both SAT and LST. Thus it is essential to increase urban greenness and reduce anthropogenic heat fluxes in 

parallel. 

1 Introduction 

The impact of urbanization has always been one of the main foci for studies on climate and climate change 

(Hartmann et al., 2013; Oke et al., 2017). Although there are still some differences in research data, metadata 

classifications, and research methods (Peterson et al., 2003; Li et al ., 2009; Qian, 2015; Wang et al., 2015; Li et 

al., 2017), it is believed that urbanization has a relatively small impact on the average surface air temperature 

(SAT) at the global scale or at a national scale for China (Wang et al., 2015; Jones et al., 1990; Li et al., 2004a; 

Parker et al., 2004; Li et al., 2020a). However, urbanization has significant influences at regional scale or over 

typical urban agglomerations in some parts of China (Jones et al., 2008; Yan et al., 2009; Yang et al., 2011; Li 

et al., 2014; Qian, 2015; Chao et al., 2020). Recently, more scientists began to use satellite retrieved land surface 

temperature (LST) data to study the urbanization impacts on ground temperature (Rao et al., 1972; Roth et al., 

1989; Gallo et al., 1993). They presented strong evidence of such impacts over individual cities and economically 

developed agglomerations (Peng et al., 2012; Zhao et al., 2014; Yao et al., 2017; Rao et al., 2019), and correlated 

the impacts with local climatic conditions, economic development, city design and city scale (Watkins et al., 

2007; Manoli et al., 2019). The effect of urbanization warming on SAT and LST have been studied from a range 

of aspects (Streutker et al., 2002; Schwarz et al., 2011; Wang et al., 2017), separately, but rarely collectively and 

at the inter-decadal scale due to the limited length of satellite data. 

The Guangdong, Hong Kong, and Macao region (GHMR) is a typical monsoon climatic region of the 

tropical and subtropical transition in South China. It is also the region with the highest level of economic 
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development in China. Due to the small regional size of Hong Kong and Macao, their urbanization level is not 

representative over the whole region (Chao et al., 2020), and in consideration of their particular characteristics 

of their observations without compromising the regional representation, we chose the entire GHMR as the study 

region, but the Hong Kong and Macao stations were not used. We mainly tend to answer three questions: 1) 

What are the similarities and differences between urbanization warming for surface and ground temperature? 2) 

What are the main drivers of regional warming from urbanization, and 3) the proportional contribution of each? 

2 Materials and Methods 

2.1 Regions and SAT/ LST Data 

The study area of this paper is the Guangdong, Hong Kong, and Macao Greater Bay Area of China (Fig. 1a), 

and the station observations used are 86 fixed-observation meteorological stations (including national basic, 

benchmark, and general climate stations) from summer (June-August) 2004-2018. The observed SAT data 

include monthly averages of daily mean maximum temperature (Tmax), minimum temperature (Tmin), 

precipitation (PRE), and sunshine hours (SSD) (see Text S1 in the Supporting Information (SI)). For LST data, 

we use the MODIS (MYD11A2) SIN grid version 6 product based on quality control flags, which has a spatial 

resolution of 1000 meters and is provided every 8 days (see Text S2 and S3 in the SI). 

2.2 Quantitative method of urbanization 

For the urban and rural site division of surface air temperature, the station data were divided into 44 urban 

stations and 42 rural stations, using the method of Chao et al (2020), in which the night-light remote sensing 

data and land use data were used (see Texts S4 and S5 in the SI). At the same time, this study also refers to the 

calculation method of average regional series (Li et al., 2004a; Li et al., 2004b; Chao et al., 2020), which is 

conducive to reducing the influence of sampling bias and removing the deviation caused by individual stations 

with data quality problems. 

For the urban and rural area division of LST, we used anthropogenic heat flux as the main basis for 

classifying LST in urban and rural areas(see Text S6 and S7 in the SI). The land use and nighttime light remote 

sensing data were combined as a secondary reference. Because the cities cause a complex series of changes in 

the interaction "land surface-atmosphere" that affect radiative and thermal processes in urban areas and their 

surroundings. As the main factor for forming surface urban heat islands, anthropogenic heat flux (AHF) is one 
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of the key factors when evaluating and analyzing surface urban heat islands (Zhao et al., 2014). Chen et al (2019) 

applied the CAM5 model and found that AHF can increase the global annual average surface temperature by 

0.02±0.01 K. In addition, we considered the influence of tree canopy and elevation on LST and filtered the LST 

in the pixels from the forest and high mountains (Huang et al., 2017). However, according to the experimental 

results, this screening did not affect our conclusions, so the data used in the subsequent study were the unscreened 

surface temperature data (see Text S8, S9 and Table S1 in the SI).    

2.3 Drivers Analysis Methods 

Before driving factor analysis, the stations are matched with remote sensing data. According to previous studies, 

the underlying surface and surrounding thermal environment of the station buffer zone have a significant impact 

on the temperature, especially under the effect of turbulence and advection; The maximum scope of the influence 

of the surrounding environment on the observed records of meteorological stations does not exceed 5 km (Ren 

et al., 2011; Yang et al., 2013; Li et al., 2015). Therefore, the buffer zone of 5 km around the weather station is 

considered the critical area affecting the data quality. The data matching steps in this study are as follows: (1) 

first, establish a buffer zone with a radius of 5 km centered on the station, and (2) extract raster data (LST, 

Normalized Difference Vegetation Index (NDVI)/Enhanced Vegetation Index (EVI), AHF) based on the 5 km 

buffer zone of the station. 

For the driving factor analysis method of mean SAT and LST for GHMR, we used SAT (mean Tmax and 

Tmin) as dependent variables, and daytime and nighttime LST (LST_d, LST_n), digital elevation model (DEM), 

SSD, PRE, EVI and AHF as independent variables to model partial least squares regression (PLSR) (see Texts 

S10, S11 and Figures S1, S2 in the SI). It showed a good performance in distinguishing the different independent 

contributions of multiple correlated factors (such as EVI and AHF, LST_d and mean Tmax, etc., see Table S2 

in the SI), with the results broadly agreeing with those by the Random Forest (RF) (see Texts S12 and Table S3 

in the SI). Further, PLSR can also provide significance level tests for driving factor analysis in climate change 

(Li, 2020b; Qian et al., 2021). 

3 Results 

3.1 Analysis of the SAT /LST warming due to urbanization  

Chao et al. (2020) have systematically analyzed the impact of urbanization on GMHR's SAT and showed that 

the contribution rate (see Table S4 in the SI) of urbanization is about 11.3% (reaching the 5% significance level), 
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to the GMHR mean SAT warming, 6.6% to the average maximum SAT (Tmax) (but statistically insignificant) , 

and 12.9% to the mean minimum SAT (Tmin) (significantly significant) from 1979 to 2018. Comparisons 

indicated that the contribution of urbanization to the GMHR warming is most prominent in summer (reaching 

15.7% average highest) ~ 23.4% (average lowest) (see Table S4 in the SI). With the same methods, this study 

finds that for the period 2004-2018 (Fig. 1b-c), the urbanization impacts do not reach the 5% significance level 

(0.00±0.08℃/10a for mean Tmax, and 0.07±0.10℃/10a for mean Tmin, respectively) (Fig.1f). Besides summer, 

only the autumn (SON) mean Tmax and Tmin see significant impacts (at the 5% level), but the overall trends during 

this period are both negative showings no statistical importance for urbanization effects. This implies that the 

impact of urbanization on summer (JJA) SAT warming in GHMR changed significantly, from a significant 

acceleration of summer SAT warming in 1979-2018 and 1979-2003 (during this period, the urbanization 

warming are 0.105±0.04, 0.084±0.03 ℃/10a for summer Tmax and Tmin, respectively) to an insignificant effect 

in 2004-2018 (see Table S5 and Figure S3 in the SI). 

AHF is attributed to the consumption of all energy sources (including fossil energy and clean energy, see 

Texts S6 in the SI). According to our estimation, this energy is about 0.03 W/m2 as a global average, accounting 

for 0.015% of the total solar radiation (Chaisson et al., 2008), which is negligible compared to other climate 

factors. Meanwhile, AHF is closely related to the change of built-up areas around weather stations (Yang et al., 

2020). Therefore, AHF contains both anthropogenic emission effects and land use change effects related to 

surface heat fluxes (Chen et al., 2020a; Jiang et al., 2019) and thus can be regarded as heat emissions caused 

solely by humans in urban activities (Chen et al., 2016). Therefore, it can be used to distinguish the degree of 

urbanization impacts to a certain extent, from the global scale warming caused by increasing greenhouse gases 

(Yang et al., 2020; Chen et al., 2016). In order to compare the impacts of urbanization on SAT and LST, we 

calculated the impact of urbanization on LST (daytime and nighttime) and SAT for the same period (2004-2018) 

(LST is retrieved by satellite, see Text S2 in the SI) (Fig.1d-e). The warming trend of LST is statistically 

significant at the 5% level, reaching 0.14±0.04℃/10a at daytime due to solar heating and rapid surface warming 

of urban concrete pavement (although the average daytime LST in the whole GMHR shows a slightly 

insignificant cooling trend). The nighttime LST is also statistically significant at reaching about 0.02±0.02℃

/10a (Fig. 1f, see Table S1 and Figure S4 in the SI). 
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Fig.1 Impacts of urbanization on summer SAT and LST changes in the GHMR from 2004-2018. (a) Regional and observatory 

distribution, urban and non-urban divisions. (b-e) Comparison of regional mean variations of summer SAT max (b), SAT_min  

(c), LST_d  (d) and LST_n (e), for the whole GHMR, in urban areas and in rural areas; (f) Contribution of urbanization to the 

trends of summer SAT and LST changes in GHMR and its significance (at the 5% level) 

3.2 Analysis of modulation factors of urbanization warming 

Yang et al. (2020) adopted the RF machine learning method and concluded that the diurnal temperature range 

(DTR) in specific urban areas in the central part of the Yangtze River Delta Region was modulated by urban 

AHF emissions (see Texts S12 and Table S3 in the SI). Considering the relatively smaller sample size in this 

study, we used another analysis method - the PLSR to analyze modulation factors on average SAT and LST in 

GHMR from 2004 to 2018.  

Figure 2 shows the results of the modulation factor analysis for GHMR of the mean Tmax (Fig. 2a-c), mean 

Tmin (Fig. 2d-f), mean daytime LST (Fig. 2g-i) and mean nighttime LST (Fig. 2j-l) in GHMR as a whole, in 

rural and urban areas, respectively. Overall, the regression fit performs better at nighttime than daytime (with a 

larger fitted R2) for both SAT and LST, indicating different physical processes in controlling day and night 

temperatures. For the summer mean Tmax over the whole GHMR (Fig. 2a-c), the coefficients' ranking in order of 

their weights (the horizontal bars at the right side of each panel) is as follows: LST_d, PRE, SSD, DEM, EVI, 
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LST_n, and AHF. Although the ranking of the coefficients does not change much for rural and urban areas,the 

only three factors that reach statistical significance at the 5% level are LST_d, PRE, and SSD. Besides, these 

factors have a low overall explained variance for summer SAT. For the mean Tmin of GHMR in summer (Fig. 

2d-f), the total explained variance of all factors improved significantly, and the factors with larger weights in the 

coefficients are mainly LST_n, PRE, SSD, and LST_d. However, the factors that reach significance at the 5% 

level are still mainly dominated by natural factors. Only the modulating factor AHF for the mean Tmin in urban 

areas reaches the 5% significance level, indicating that the nighttime LST in urban areas of GHMR is modulated 

to some extent by AHF emissions, which is also consistent with the previous study (Chao et al., 2020). For the 

modelling of day-and-night LST, the situation differs significantly compared to the SAT results: for the average 

diurnal LST of GHMR in summer (Fig 2g-i), the factors with the maximum coefficient weights are consistently 

EVI, PRE, and AHF, whether for the whole region, for rural areas or the urban areas, and all of them reach 

significance (at the 5% level). For urban areas, the weight of AHF is the highest, i.e., indicating that AHF is the 

predominant driver of daytime LST in urban areas. For summer mean nighttime LST over the whole GHMR 

(Fig 2j-l), EVI becomes the most heavily weighted driver, but AHF also reaches significance at the 5% level 

(see Table S6 in the SI). 
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Fig.2 Modulation factor analysis of mean summer Tmax (a-c), mean Tmin (d-f), mean daytime LST (g-i), and mean nighttime 

LST (j-l) in GHMR region, in urban areas and in rural areas. (Left: standardized coefficients of each factor and their significance 

(at the 5% level); Right: comparison in the weight of each factor’s coefficient) 

4 Discussion 

4.1 Changes of vegetation greening and its possible links to urbanization warming 

The above analysis highlights the significant difference of the impact of urbanization on the SAT of GHMR 

during the past 40 years compared to that during the past 15 years. Fig.3 shows the spatial distribution of two 

vegetation indices (NDVI and EVI, see Figure S5 in the SI) and their temporal variation in the summer for 

GHMR, since the 1980s. Considering the data coverage period, two NDVI/EVI datasets (from GIMMS and 

MODIS, see Texts S10 and S13 in the SI) are used to describe the urbanization development characteristics of 

GHMR. Obviously, the average value of NVDI in the Greater Bay Area (GBA) (the most developed area in 

GHMR, Fig. 1a) is the lowest, indicating the highest urbanization development level in this region. 

Simultaneously, the urbanization development level in some areas in eastern and western Guangdong has also 

reached a certain scale but is much lower than that in the GBA. During the past 40 years, the average NDVI 

changes in GHMR show significant decreasing trends from 1982 to 1997, but a trend shift there after that. 

Therefore, we divided the data in our study region into two periods: 1982-2003 and 2004-2018, according to the 

temporal coverage of satellite-derived LST data. During the period of 1982-2003, in the whole GHMR region, 

except for only a few southern coastal (including the GBA area) areas showing a significant increasing trend of 

NDVI, most areas exhibited a significant decreasing trend or insignificant change. Moreover, as a whole, the 

regional average showed a slightly decreasing trend (but insignificant) during the period 1982-2003. In contrast, 

after 2004, the entire GHMR region showed a significant increasing trend of NDVI (i.e., a widespread greening) 

in summer. In terms of the regional average, both the NDVI derived from GIMMS (2004-2015) and that from 

MODIS (2004-2018) show a significant increasing trend (at the 5% level). According to previous studies (Zhou 

et al., 2004; Peng et al., 2012; Oke et al., 2017), vegetation (NDVI) has a moderating effect on SAT warming, 

and the greening largely decreases daytime LST and slightly increases nighttime LST. 
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Fig.3 Changes in vegetation greenness index over the GHMR from 1982 to 2018. (Left: 1982-2015 NDVI (GIMMS) and 2003-

2018 NDVI (MODIS) time series, linear trends, and their uncertainties (at the 5% significance level); Top right: distribution of 

NDVI (MODIS) means for 2004-2018; Middle right: distribution of linear trends of NDVI (MODIS) for 2004-2018; Bottom 

right: distribution of NDVI (GIMMS) means for 1982-2003) 

The widespread greening over the GHMR may be the direct and primary reason to explain why urbanization 

has no significant impact on the change in mean SAT in the study region during the period of 2004-2018. It is 

worth mentioning that urban areas have much less vegetation than rural areas and so urbanization has an overall 

warming effect on urban ground and air temperatures (Eliasson et al., 1996; Onishi et al., 2010; Peng et al., 

2014). This warming effect is particularly strong on ground temperature during the daytime in summer (the LST 

is less affected by the clouds during the day than at night (see Figure S6 in the SI), when the ground temperature 

is usually much higher than the air temperature, and due to the differences in land surface properties, the urban 

ground has more heat storage and lower heat dissipation rate than rural areas (Eliasson et al., 1996; Oke et al., 

2017). So we expect to see highly significant urbanization warming in daytime LST (Fig. 1f). However, the net 

temperature changes over the GHMR depends on the combination of the local warming effect associated with 

urbanization and the daytime cooling and nighttime warming effects associated with the large-scale greening. 

During the daytime, the opposite sign of the greening and urbanization effects over urban areas results in small 
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or insignificant daytime and mean SAT changes, In contrast, the same sign of these two effects enhances the 

urbanization signal and results in a net warming SAT trend. 

4.2 Interrelationship of EVI and AHF with SAT/LST at local sites 

Both local EVI and AHF are indicative of the degree of urbanization development. The EVI/NDVI reflects the 

degree of vegetation greenness (or vegetation cover) of the land surface. With less vegetation in urban areas, the 

evaporative cooling of moisture evaporation and transpiration from plants is reduced, leading to an increase in 

SAT and LST over urban areas at low latitudes (the opposite effect is possible at higher latitudes) (Lee et al., 

2011;Schulze et al., 2014). However, note that greenhouse gases such as CO2 also have a certain effect on 

vegetation and temperatures; in contrast, AHF is an additional local heat in urban areas, but there is a clear 

negative correlation between the two (AHF and EVI). Fig. 4 analyzes the regressions of both AHF and EVI with 

the corresponding Tmax, Tmin, DTR, LST_d, LST_n, and LST_d-n, respectively, at the local scale (5 km around 

86 meteorological stations). Evidently, the R2 of the linear fitting of AHF and EVI for Tmax is small, indicating 

that an increase in AHF or a decrease in EVI does not lead to a significant increase in Tmax (Fig.4a). AHF and 

EVI improved the fitted R2 of Tmin, and there was a positive correlation between the increase in AHF and Tmin, 

while there was a negative correlation between the rise in EVI and Tmin (Fig. 4b). This indicates that although 

at the local scale the increase in AHF contributed to the warming of the mean Tmin, its contribution does not 

reach a significant level on the overall scale (Fig. 2d). In contrast, the decrease of EVI trend at the local scale 

contributes to the increase in Tmin, while in terms of overall contribution, the increase in EVI (Fig.3) is 

significantly correlated to the decrease in mean Tmin (Fig.2d). As a result, the increase in AHF and decrease in 

EVI favors the decrease in DTR (Fig.4c). On the contrary, whether the increase of LST_d, LST_n, and AHF or 

the decrease of EVI are all conducive to the rise of local surface temperature (Fig.4d, e), is an important issue, 

but this is more consistent with the situation of the whole region (Fig.2g, j) (the fitting effect is also better than 

SAT). However, unlike DTR, the correlation between EVI and AHF and LST_d-n (LST_d-LST_n) is not 

significant (Fig.4f). These results endorse the increase of vegetation enhanced the latent heat flux transfer 

between the land and the atmosphere, and the potential of greenery as an urban heat mitigation strategy (Chen 

et al., 2020b; Wong et al., 2021). 
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Fig.4 Map of the interrelationship of EVI and AHF distributions with SAT (Tmax, Tmin, DTR) and LST (LST_d, LST_n, 

LST_d-n) at local sites (86 meteorological stations) 

5 Conclusions 

This paper analyzes the impact of urbanization on SAT and LST in the GHMR during different periods, then a 

PLSR model was established to analyze its driving factors. The main conclusions are as follows: In GHMR, the 

influence of urbanization on surface temperature is obviously different between the recent 40 years and the recent 

15 years. From 1979 to 2018, urbanization contributed significantly to GHMR summer warming (at the 5% 

significance level) (Chao et al., 2020), the significant increase in regional vegetation in 2004-2018 led to a 

decrease in its contribution to SAT warming, but at the same time urbanization contributed 0.14 ± 0.04 ℃/10a 

during the day and 0.02 ± 0.02 ℃/10a during the night, that is to say, urbanization has significantly warmed the 

LST of GHMR. Our analysis further indicates that extensive greening (EVI/NDVI) and AHF (two different 

indicators of urbanization) in the GHMR during this period had a limited effect on the SAT, and their contribution 

to the warming of LST was significant and substantial.  It is also worth pointing out here that our conclusions 

are mainly based on the analysis of the LST retrieved under clear-sky conditions, which will lead to some 

uncertainties. The percentage of cloudy days leading to unavailability of LST data ranges only from 7% (daytime) 

to 41% (nighttime) in summer in the GMHR region (see the Figure S6 in the SI). 
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In summary, our findings have important implications for understanding the influences of human activities 

on regional climate and environmental change for other regions of the world that experience various urbanization. 

Its findings can also provide a frame of reference for decision-making in response to urban climate change at a 

larger scale. Our analysis results demonstrate that it is also essential to strengthen the control of additional 

warming effects caused by urbanization, and deal with global warming caused by greenhouse gases. In terms of 

reducing the additional warming of SAT by urbanization, increasing the regional EVI (NDVI) has a significant 

impact (especially for reducing the nighttime SAT) on it. In contrast, in order to mitigate the surface warming 

caused by urbanization, it is essential to increase EVI (NDVI) and reduce anthropogenic heat emission fluxes in 

parallel. Our results provide new methods for quantitative evaluation of different urbanization warming and how 

decision-making might mitigate the effects at regional scales. 
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