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Abstract
Although advances in cancer treatment and early diagnosis have significantly improved cancer survival rates, cancer therapies
can cause serious side effects, including ovarian failure and infertility, in women of reproductive age. Infertility following cancer
treatment can have significant adverse effects on the quality of life. However, established methods for fertility preservation,
including embryo or oocyte cryopreservation, are not always suitable for female cancer patients because of complicated indi-
vidual conditions and treatment methods. Ovarian tissue cryopreservation and transplantation is a promising option for fertility
preservation in pre-pubertal girls and adult patients with cancer who require immediate treatment, or who are not eligible to
undergo ovarian stimulation. This review introduces various methods and strategies to improve ovarian tissue cryopreservation
and transplantation outcomes, to help patients and clinicians choose the best option when considering the potential complexity of
a patient’s situation. Effective multidisciplinary oncofertility strategies, involving the inclusion of a highly skilled and experi-
enced oncofertility team that considers cryopreservation methods, thawing processes and devices, surgical procedures for
transplantation, and advances in technologies, are necessary to provide high-quality care to a cancer patient.

Keywords Fertility preservation . Ovarian freezing . Autologous transplantation . Cancer treatment . Oncofertility . Primary
ovarian insufficiency

Introduction

A large number of young women of reproductive age are
diagnosed with cancer each year. In 2018, approximately 8.6
million women worldwide struggled with a malignancy [1, 2];
although most of these women were of advanced age, 10%
were under the age of 45 [3]. In 2020, an estimated 89,500

cancer cases and 9270 cancer deaths occurred among adoles-
cents and young adults aged 15 to 39 years in the USA [4].
Early diagnosis and follow-up methodologies, especially che-
motherapy and radiotherapy, have increased the survival rates
of these patients [1]. However, both of these treatments can
cause loss of ovarian function and primary ovarian insuffi-
ciency (POI) due to follicular depletion [5, 6], with alkylating
agents, such as cyclophosphamide, known to be severely
gonadotoxic [7]. In addition, ovarian surgeries to treat endo-
metriosis or other benign ovarian tumors, and the cytotoxic
agents used to treat some benign diseases, have also been
associated with fertility loss [8, 9].

In recent years, there has been a sharp increase in the num-
ber of women diagnosed with cancer seeking to preserve their
future fertility [10]. Embryo and oocyte cryopreservation are
well-established methods of fertility preservation. Early refer-
ral to reproductive specialists is crucial for patients of pre-
pubertal and childbearing age with cancer [11–13]. Ovarian
tissue cryopreservation and transplantation (OTC-T) is an es-
sential option for fertility preservation, particularly for post-
pubertal women with cancer who require immediate chemo-
therapy or who are not eligible for ovarian stimulation;
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however, for pre-pubertal female patients, it is the gold stan-
dard in fertility preservation [14].

A recent study evaluating 364 women who had undergone
ovarian tissue cryopreservation (OTC) showed that more than
95% had experienced long-term restoration of ovarian func-
tion [15]. Since 2004, when the first human live-birth relating
to ovarian cortex auto-transplantation was recorded, technique
improvements have resulted in an estimated live birth rate
between 35 and 40% [16]. Although the exact number of
OTC, or OTC-T cases is unknown, and given that the effec-
tiveness of the procedure cannot be calculated definitively, it
is estimated that, worldwide, more than 130 children, with a
30% conception rate, have been conceived following ovarian
tissue transplantation (OTT) [10, 15, 17]. OTC and re-
transplantation were previously considered “experimental”;
however, following heavy debate, and given the increasing
number of reported live births and experience in surgical and
laboratory techniques, it is now registered by major societies
of reproduction as an acceptable procedure for fertility pres-
ervation [18, 19]. A key drawback of this procedure is the risk
of malignant contamination on the ovarian graft following
auto-transplantation. To date, not a single case of relapse
due to malignant cell debris in transplanted tissue has been
reported in humans; however, some studies have indicated an
increased risk of hematological malignancy relapse in xeno-
transplantation models involving only immunosuppressed an-
imals [20, 21].

Recovery of endocrine function and fertility through OTC-
T may improve the quality of life of women of reproductive
age following cancer survival [14]. This review discusses nov-
el methods and strategies to improve the outcomes of OTC-T;
thus, allowing physicians to choose the most appropriate fer-
tility preservation technique for their patients.

Ovarian Toxicity Caused by Cancer Treatment

Although advances in chemotherapy and radiation therapy have
greatly improved the effects of cancer treatment and the surviv-
al rate of cancer patients, gonadal damage remains a serious
complication. The incidence of chemotherapy-induced amen-
orrhea reportedly ranges from 53 to 89% in patients with breast
cancer [22]. Iatrogenic POI caused by conventional chemother-
apy treatments depends on the type, dosage, and duration of
chemotherapy drugs, as well as the age of the patient [23].
Primordial follicles decline with increasing age, with a higher
risk of gonadal damage and infertility in older patients. Since
most cancer patients are treated with multiple chemotherapy
drugs, it is difficult to assess the extent of reproductive damage
caused by each specific agent [24, 25].

Anticancer drugs primarily exert their gonadotoxic effects
through the direct induction of DNA double-stranded breaks,
resulting in the activation of apoptosis and/or autophagy-
related pathways [26–29]. Second, anticancer drugs can

indirectly cause primordial follicle loss via microvascular
and stromal damage through ischemia, necrosis, or inflamma-
tion [26, 28, 30]. Third, studies have shown that anticancer
drugs can activate the PI3K/AKT/FOXO3a pathway, leading
to follicular loss via the activation of primordial follicles [29,
31, 32]. Follicle activation and ovarian reserve burn-out are
also potentially important mechanisms of follicle loss post-
transplantation of OT grafts [33].

Primordial follicles are very sensitive to radiation, and the
degree of damage to the ovaries depends on the total dose,
field of treatment, fractionation schedule, and age at the time
of treatment [34]. Radiotherapy-induced amenorrhea can oc-
cur when pelvic or whole abdominal areas are exposed to a
radiation dose ≥ 6 Gy in adult women, ≥ 10 Gy in post-
pubertal girls, and ≥ 15 Gy in prepubertal girls [34–36].

Comparison of OTC Techniques: Slow Freezing
vs Vitrification

The age of the patient, presence of a partner, treatment meth-
od, and possibility of treatment delay should all be considered
when considering fertility preservation. Cryopreservation of
both embryos and oocytes requires a period of approximately
10–14 days from the onset of menstruation for ovarian stim-
ulation; however, since all oocytes and embryos are frozen at
the end of a cycle, random start protocols may be used for
controlled ovarian stimulation. Although embryo cryopreser-
vation was considered to be the best-established fertility pres-
ervation technique worldwide, in jurisdictions where each
partner has equal legal rights over an embryo, their utilization
is subject to each parent’s consent. Furthermore, divorce rates
are known to increase in families where one partner is receiv-
ing cancer treatment, especially in women [37]. As such, em-
bryo cryopreservation can become an option that limits the
freedom of a divorced woman seeking to reconsider her fer-
tility preferences in the future, as accessing the cryopreserved
embryos is dependent on her ex-partner’s consent. Since oo-
cyte cryopreservation is considered a standard procedure in
modern assisted reproductive technologies, it should be of-
fered as the first option for post-pubertal women applying
for fertility preservation [34, 36].

As OTC has the advantage of not requiring a sperm donor
or ovarian stimulation, it is the only possible choice for pre-
pubertal girls and patients who cannot postpone cancer treat-
ment for ovarian stimulation. In contrast to freezing individual
oocytes or embryos, OTC can effectively preserve hundreds
of primordial follicles simultaneously [14]. This technique can
be performed using slow freezing or vitrification. Using the
slow freezing method, OT is frozen slowly in a controlled
manner down to −140 °C, and then stored at −196 °C, in liquid
nitrogen. Using this technique, no serious tissue deformation
is observed; however, there is a risk of ice crystal formation
causing mechanical damage to the cells [38]. In contrast,
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vitrification involves instantaneous solidification of the solu-
tion, with viscosity maintained using a high concentration of
cryoprotectant agents [16]. Notably, this technique has a low
risk of ice crystal formation, reduced handling time, and inex-
pensive equipment.

A recent systematic review and meta-analysis of 14 exper-
imental studies compared vitrification with slow freezing for
OTC [39]. In pooled analyses, no significant difference in
follicular density or proportion of intact primordial follicles
was observed between the two methods; however, vitrifica-
tion was associated with significantly less damage to follicular
DNA and better preservation of stromal cells. This review also
emphasized the diversity of the vitrification protocols used in
the studies, thereby highlighting the lack of standardization
[39]. Some studies suggested that regardless of the freezing
method, type of follicle, or species involved in an experiment,
vitrification resulted in greater damage to the follicles than
slow freezing [40]. In addition, the ability of frozen thawed
cortical tissue to produce anti-Müllerian hormone (AMH) in
tissue cultures was superior after slow freezing [41].
According to previous studies, only a small percentage of
children have been conceived following transplantation of
vitrified-warmed OT [15, 42–44]. Furthermore, for vitrifica-
tion, the volume of the sample must be reduced in order to
reach the maximum rate of heat exchange. Considering the
size of OT biopsies, obtaining very small fragments may hin-
der long-term cryo-storage methods and jeopardize surgical
procedures during re-transplantation. Even minimally
fragmented ovarian pieces are thousands of times larger than
the volume of an oocyte. Practically, smaller fragments in-
crease the number of pieces to be vitrified, and an operator
must conduct each step, namely, equilibration, loading, and
vitrification, individually for each fragment, each of which
requires an optimum, yet limited, duration in the highly con-
centrated and toxic equilibrium and vitrification media [45].
This method significantly extends the total duration of the
freezing process, thereby increasing the risk of toxicity due
to a high CPA concentration. Slow freezing is currently con-
sidered a more appropriate method for OTC than vitrification
[46]. Considering the limited comparisons between the effects
of vitrification and slow freezing on OT, further studies inves-
tigating the efficiency of vitrification are required.

Potential Considerations for Improving the Outcomes
of OTC

Considering that majority of pregnant women reported in the
literature have been under the age of 30 at the time of cryo-
preservation, patient age is a key factor for predicting its suc-
cess. Thirty-five years of age is generally considered the upper
limit for OTC, as primordial follicles are primarily preserved
during this procedure, and their number decreases significant-
ly with age [47]. AMH levels and antral follicle count can be

used to test the ovarian reserve; patients should be informed
about their chances of future pregnancy prior to fertility pres-
ervation [48]. Recently, many suggestions regarding the
criteria for selecting patients for ovarian cryopreservation
have been proposed [49]; however, some criteria require eth-
ical consideration.

Cryoprotectants

Multiple cryoprotectants are used for OTC, with several of
those used for slow freezing human OT been previously stud-
ied, including glycerol, ethylene glycol, dimethyl sulfoxide
(DMSO), and propanediol. Follicle survival was evaluated
after thawing fragments of frozen ovarian cortical tissue with
cryoprotectants. The highest and lowest follicle survival rates
were obtained with ethylene glycol and glycerol, respectively
[50]. Although the most commonly used cryoprotectants are
ethylene glycol and DMSO, propylene glycol is also used by
some centers [51–53]. One vitrification protocol used 20%
DMSO and 20% ethylene glycol, while another used 10%
DMSO and 26% ethylene glycol, resulting in a higher propor-
tion of primordial follicles [54]. DMSO, a low molecular
weight organic molecule, rapidly penetrates cell membranes
and further reduces intracellular ice nucleation, which is gen-
erally combined with non-penetrable sucrose [55]. Although
used frequently in vitrification protocols, DMSO is usually
combined with ethylene glycol and propanediol due to toxic-
ity concerns [56, 57]. DMSO has recently been extracted from
some oocyte/embryo vitrification solutions, in which case, a
combination of ethylene glycol and propanediol is used
[58–60]. Although sucrose is the most commonly used non-
penetrating agent in freezing and thawing processes, trehalose
has been used as its alternative in recent years [61].
Cryopreservation followed by transplantation is affected by
the clinical environment; most studies have evaluated the ef-
ficiency of OTC after warming or in vitro culture [54]. Further
research is needed to determine the most efficient protocol for
vessel formation and cell proliferation after OTC-T.

Anti-apoptotic Agents

Other key factors that ensure the survival of OTC-T are revas-
cularization and apoptosis prevention. Several studies have
reported that increased apoptotic follicles were observed
shortly after OTT [62–64]. Sphingosine-1-phosphate (S1P),
an anti-apoptotic substance in oocytes [65, 66], and ceramide
play central roles in apoptosis. S1P inhibits ceramide, which
induces cell cycle arrest and promotes apoptosis [67]. S1P has
been shown to protect vitrified ovarian grafts from ischemic
reperfusion injury and promote neo-angiogenesis in ovarian
transplants [68, 69]. However, we found that S1P did not help
preserve, or increase the proliferation of, follicles, nor did it
protect against DNA damage during the freezing-thawing
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process (unpublished results). In contrast, Z-VAD-FMK ad-
ministration improved follicle preservation and follicular cell
proliferation, also preventing DNA damage during the
freezing-thawing process [70]. Although these substances
are known to contribute to follicle protection by reducing ap-
optosis in transplanted OT, their routine use is not possible in
contemporary practice; further investigation is warranted.

AMH

AMH, another promising agent for fertility preservation, be-
longs to the transforming growth factor (TGF)-beta family of
proteins, and plays a key role in controlling sexual differenti-
ation and follicular genesis. Although serum AMH has long
been used in reproductive biology as a key marker of ovarian
reserve, it has also recently been investigated as a protective
agent [71, 72]. Administration of recombinant AMH inhibits
the initiation of primordial follicle recruitment [73, 74]; re-
cently, co-administration of AMH and chemotherapy agents
has been shown to protect the ovarian reserve by suppressing
primordial follicle recruitment [75].

One challenge in OTC is mass primordial follicle loss in
the OT immediately after transplantation, resulting in the
shorter longevity of transplanted ovarian function [64].
Using AMH to inhibit primordial follicle recruitment has
proven useful in reducing this initial follicular loss; co-
transplantation of the graft with exogenous endothelial cells
engineered to produce AMH in situ significantly decreased
primordial follicle loss in human xenotransplants [76, 77].
These studies suggest that it may be possible to protect the
ovarian reserve from gonadotoxic drugs; further human clin-
ical trials are warranted [78].

Slush Nitrogen (SN)

Liquid nitrogen is limited in its efficiency as a coolant due to
the Leidenfrost effect, namely, it boils immediately upon con-
tact with a warmer object, forming insulating nitrogen gas.
Recently, SN has been proposed as a new agent for increasing
the cooling rate, avoiding the Leidenfrost effect, and facilitat-
ing the use of low concentrations, or reduced exposure times,
of cryopreservation agents (CPAs) [79]. Reportedly, fresh and
SN-vitrified mouse oocytes develop to the same blastocyst
stage and produce similar proportions of healthy offspring.
SN has improved the vitrification outcomes of both human
oocytes and OT, including recovering healthy oocytes, gran-
ulosa cells, and stromal cells via an increased cooling rate
[80–83]. At the tissue level, where larger volumes of samples
are prepared, faster cooling rates are required to maintain vit-
rification; SN can be used as an alternative method through
which to rapidly reduce the temperature.

Laser-assisted Thawing

Successful vitrification depends largely on the rate of
warming, rather than the type and concentration of cryopro-
tective agent, and successful osmotic dehydration before
cooling, to avoid the re-crystallization of water in the thawing
cycle, when very rapid warming is essential. A recent study
reported high oocyte and embryo survival rates following vit-
rification, without cryoprotectant permeation after thawing via
ultra-fast warming using an infrared laser pulse [84]. Another
study used a laser beam to dehydrate the blastocoel before
vitrification, finding significant improvements in clinical out-
comes due to decreased ice recrystallization [85].

Cryopreservation as a Method to Reduce the Risk of Cancer
Cell Reimplantation

OTC may be possible for patients with aggressive cancer who
require immediate chemotherapy; however, contaminating
OT with malignant cells is a major concern when considering
this technique [86, 87]. A small number of malignant cells
may be present in OT, with relapses following transplantation
having been observed in both human and mouse hematologic
malignant tumor models [88, 89]. Although no case in which a
relapse occurred following OT auto-transplantation has been
reported, animal studies have shown that hematological ma-
lignancies can settle in the ovary, potentially causing relapses
or metastases under appropriate conditions. These results were
predominantly derived from xenografting studies using im-
munosuppressed mice. Malignant cells in grafted OT may
never undergo activation or may be eliminated due to the
patient’s newly formed immune system following bone mar-
row transplantation. Therefore, although the experimental xe-
nograft model highlights the importance of remaining alert, it
may be inadequate for demonstrating the accurate clinical sit-
uation. Therefore, despite two recent publications reporting
successful fertility preservation after ovarian transplantation
in acute leukemia, this techniquemay not be suitable for wom-
en with ovarian or hematologic malignancies [90, 91]. In the
future, reproductive function or fertility may be preserved in
these patients via the in vitro maturation (IVM) of oocytes and
artificial ovary techniques [87]. Some studies have proposed
that even if ovarian function is impaired, OT can be cryopre-
served after undergoing an initial chemotherapy process to
reduce the risk of cancer contamination [21, 92]. Reportedly,
in vitro incubation with YAP/TAZ inhibitor verteporfin prior
to auto-transplantation eliminates rhabdomyosarcoma and
leukemia cells that have metastasized to the OT [93]. These
studies strongly recommend the wide screening of tissue sam-
ples containing fragments intended for transplantation using
both histological examinations and possible molecular bio-
markers. Polymerase chain reaction, flow cytometry, or im-
mune labeling should be used to rule out tumor contamination
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in transplanted tissues, especially in malignancies prone to
ovarian metastasis [94, 95].

Surgical Considerations to Improve the Outcomes of
OTT

Introduction to Surgical Techniques

Prior to receiving cancer treatment, OTC-T in women diag-
nosed with cancer is an effective option for preserving fertility
and restoring reproductive endocrine function [96]. Various
surgical techniques have been introduced to transplant human
OT following cryopreservation, including open laparotomy,
mini-laparotomy, laparoscopy, and robot-assisted transplanta-
tion [97]. The first ovarian transplantation with cryopreserved
OTwas performed in 1999 [98, 99]. In 2004, the first success-
ful live birth was reported following the transplantation of OT
that was cryopreserved using the slow freezing method [100].
In recent years, the number of pregnancies and births follow-
ing cryopreserved OTT using different surgical techniques has
steadily increased [17]. Robot-assisted transplantation may
have several advantages over laparoscopic transplantation, in-
cluding precision, more delicate graft handling, and reduced
time from tissue thawing to transplantation [101]. Physicians
should select the most suitable technique through which to
maximize OTT outcomes by considering their own clinical
experience and animal experiments.

As the decision to perform ovarian cryopreservation is often
made clinically when patients have limited time before starting
chemotherapy, a laparoscopic approach, involving minimally
invasive surgery, is a very useful technique. One of the most
important advantages of laparoscopic surgery is that patients
recover very quickly, enabling them to promptly start chemo-
therapy [97]. In particular, a single-port laparoscopy is widely
used in surgical gynecology and is associated with a low rate of
complications following OT extraction [102].

OT Extraction and Surgical Tools

Various pinions exist on the volume of tissue that should be
extracted when collecting OT. Large samples have the advan-
tage of allowing for repeat transplantations, which potentially
maintains reproductive and endocrine ovarian function longer.
Different strategies may be considered depending on a pa-
tient’s situation. If aggressive chemotherapy with alkylating
agents, pelvic irradiation, or high-dose chemotherapy is nec-
essary prior to bone marrow transplantation, large amounts of
OT should be removed before ovarian failure. However, keep-
ing more OT in situ may be a more desirable strategy when
less toxic chemotherapy is scheduled. For OT excision, ovar-
ian cortical biopsy, or partial or complete oophorectomy, may
be performed [103]. According to the von Wolff group, 50%
resection of the ovary may be sufficient for cryopreservation

[104]. Following cancer treatment completion, frozen OT can
be prepared and grafted onto the surface of the remaining
ovary or the pelvic peritoneum [105]. Although frozen-
thawed OT is orthotopically transplanted in most cases, het-
erotopic transplantation into the subcutaneous space of the
abdominal wall or the forearm can be considered in unavoid-
able circumstances [106, 107].

Generally, scissors or a scalpel without coagulation are
recommended to use when extracting and transplanting OT,
as electrocoagulation may damage OT and reduce ovarian
reserve [108, 109]. Using sutures or fibrin adhesives on the
ovarian surface may be considered during tissue transplanta-
tion after weighing the potential risk of secondary bleeding. In
pre-pubertal patients whose treatment regime contains highly
toxic interventions, such as alkylating agents or radiotherapy,
unilateral ovarian extraction should be considered following
parental consultation. As the organ size is significantly smaller
in this age group, optimal fertility preservation can be
achieved using one whole ovary.

Potential Sites for Transplantation

Potential sites for transplanting frozen-thawed OT are (i) on
the remaining menopausal ovary [110], (ii) into the ovarian
ligament [111], (iii) a pre-prepared peritoneal pocket [91], or
(iv) heterotopic transplantation [107]. Potential advantages of
an ovary as a transplantation site include that the tissue was
originally collected from the same site; hence, transplanted
samples could easily be located and revived. However, the
risk of bleeding and the possibility of ovarian trauma due to
sutures must be considered; the peritoneal pocket may be an-
other option if the remaining OT is not sufficient to receive the
transplant. Although heterotopic transplantation has the ad-
vantage of not requiring abdominal surgery, all births reported
thus far have been from orthotopic transplants; spontaneous
pregnancies are difficult to predict, and in vitro fertilization is
required [14, 46]. Reports of spontaneous pregnancies and
live births following heterotopic transplantations have caused
controversy regarding stem cell migration between tissues.
Further basic and clinical studies are required to elucidate
these mechanisms [112]. Heterotopic transplantation is con-
sidered a rarely applied method, as multiple physical and bi-
ological requirements related to OT are not met via this ap-
proach. In animal studies, offspring are reportedly obtained
from heterotopic transplants placed close to the cutaneous area
[113, 114]. Additionally, oocytes and embryos have been ob-
tained in humans as a result of subcutaneous transplantation
[115]. Although it may be controversial to classify transplants
placed intraabdominally into the peritoneal wall as heterotop-
ic, pregnancy and live births have been obtained using assisted
reproduction in this region [116]. Heterotopic transplantation
may be suggested if the pelvic region is deemed unsuitable for
transplantation due to scars following radiotherapy.
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Current and Future Perspectives on Fertility
Preservation

Whole Ovarian Transplantation

Whole-ovarian transplantation enables immediate revascu-
larization with blood vessel anastomosis, significantly re-
ducing the risk of ischemic injury [117]. Furthermore,
whole cryopreserved ovary transplantation may reduce
the risk of ischemic damage; however, cryopreserving a
large quantity of intact ovary is challenging due to diffi-
culties in dispersing a sufficient amount of cryoprotective
agent throughout the large tissue mass, and the potential
injury caused by ice formation in the blood vessels [118].
Considering that human ovarian arteries and veins have a
diameter of approximately 0.5 and 3 mm, respectively,
vascular anastomosis, a key technical issue, must be con-
sidered [119]. Whole ovary cryopreservation and trans-
plantation have been successfully achieved in several ex-
perimental animal studies [120, 121]. One group conclud-
ed that vitrification appeared to be more effective than
conventional freezing for whole-ovary cryopreservation.
However, another study reported that conventional slow
freezing of ovarian cortical strips was more suitable than
any other method of whole ovary cryopreservation [122].
Although obstacles and technical difficulties remain [123],
human whole ovary cryopreservation and transplantation
are encouraged, with future studies likely to solve a major-
ity of current issues [124].

IVM

IVM has been extensively applied to oocytes obtained from
women with polycystic ovarian syndrome [125]. This method
involves immature oocyte retrieval from ovaries and either
cryopreservation at an immature stage or at a post-IVM ma-
tured stage [126]. Both OTC and IVM can be applied to pa-
tients with cancer without delaying cancer treatment, includ-
ing for prepubertal girls and those who need immediate che-
motherapy. Moreover, in cancer patients who lack sufficient
time for an IVF cycle prior to chemotherapy or radiation ther-
apy, immature oocyte collection may be a promising alterna-
tive. Although many researchers aim to achieve improved
outcomes by combining IVM of oocytes and vitrification, no
live births have been reported from an IVM program in pa-
tients with cancer [125, 127]. A key concern, namely, the
auto-transplantation of malignant cells in women who have
recovered from cancer, may be eliminated by isolating ovarian
follicles from OT and maturing them in vitro [122]. Although
oocyte cryopreservation with IVM is still considered an ex-
perimental technique [125] that requires further technical im-
provements, it could potentially be used for fertility preserva-
tion in the near future.

Artificial Ovaries

Studies examining the use of artificial ovaries, or scaffolds, in
ovarian transplantation are increasing. The aim of
transplanting OT with a scaffold may be to accelerate tissue
vascularization through the release of various bioactive sub-
stances [128, 129] or to optimize tissue transplantation by
attaching it to the scaffold using laparoscopic or robotic sur-
gery [130]. Today, it is most commonly used to enable the
transplantation of various substances or accessory cells, such
as stem cells, together with OT [131–135]. In addition, the
technique may be used to develop follicles under in vitro con-
ditions, thereby avoiding tumor contamination or placing
these isolated follicles in the transplantation area with the as-
sistance of scaffolds. An artificial ovary can be used to mature
oocytes through a multistep process, including sequential
in vitro culturing of oocytes, isolated follicles, and OT
[136–145]. Multiple studies have shown that the live birth rate
using this option is comparable to that of conventional IVF
[146, 147].Moreover, ovarian follicles cultured in vitro can be
reimplanted within a 3D bio-degradable microenvironment.
To date, animal studies have demonstrated that this approach
restores endocrine function, also enabling in vivo follicular
development and successful pregnancy; however, no success-
ful human trials have been reported [138–140, 142].
Developing techniques through which to increase follicular
recovery rate and optimize scaffold design, as well as trans-
plantation techniques to prevent postoperative ischemia, and
genetic safety considerations, are all necessary for safer and
more consistent human clinical applications [136].

Stem Cells

Recent stem cell studies have investigated the use of ovarian
stem cells in fertility preservation. Tilly et al. reported the
successful detection and isolation of ovarian stem cells in
animals and humans [137, 141]. Furthermore, studies investi-
gating egg-producing stem cells isolated from women’s ova-
ries have observed that these cells differentiate into young
oocytes [137]. Oocytes differentiated from ovarian stem cells
(OSCs) retrieved from mice were suitable for fertilization and
implantation, as evidenced by embryo development and live
births [143]. This discovery suggests that therapeutic manip-
ulation of adult stem cells can potentially overcome infertility
and prevent ovarian failure. Stem cells may be an option for
pre-pubertal girls and women with diverse cancer-associated
infertility conditions. However, due to the insufficient clinical
application of OCSs in human-assisted reproduction, difficul-
ty in detecting OCSs due to their scarcity, and ethical issues
associated with using oocytes and embryos, this technique is
not commonly used in clinical practice, especially in cancer
patients [148–150].
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A recent study investigated the effects of adipose-derived
stem cells (ASCs) on OTT using an animal model [151]. High
ASC concentrations have been shown to increase the human
vessel area over time. The ability of ASCs to stimulate human
angiogenesis through differentiation and growth factor secre-
tion appears to depend on both cell concentration and time.
ASCs grown using a fibrin scaffold served as a substrate to
prepare the grafting site over 14 days, also enhancing vascu-
larization following transplantation of human OT. Promoting
revascularization by combining OTwith angiogenic factors or
pro-endothelial stem cells is another approach [152–154].
Further studies are required to implement these approaches
in human practice.

Substances for Revascularization

A key factor affecting the duration of ovarian graft function is
the number of surviving oocytes following freeze-thawing
and revascularization. Ischemia is a major cause of follicular
loss following transplantation, with reoxygenation taking ap-
proximately 4–5 days [155, 156]. Tissues predominantly de-
pend on anaerobic metabolism early in the post-
transplantation period; the shift to aerobic metabolism occurs
when oxygenation is provided by neo-vascularization. This is

evidenced by the microdialysis experiments performed by
Cacciottola et al., in which ischemia was not the only factor
in damage, with oxygenation following neo-vascularization
potentially triggering the formation of reactive oxygen radi-
cals and contributing to tissue injury during the late stage of
graft take [157]. Following the transplantation of frozen/
thawed OT into SCIDmice, approximately 28% of primordial
follicles survived the procedure; the remaining follicles died
due to ischemic damage [62]. Another study demonstrated
that the transplantation site could be treated with vascular
endothelial growth factor (VEGF) [158] and stromal cells
enriched in CD34 cells to improve angiogenesis [159].
Combined VEGF and bFGF administration induced angio-
genesis, reduced apoptosis and fibrosis, and increased the sur-
vival of transplanted human OT in a rabbit model [160].
VEGF coupled with FGF2 promoted revascularization and
significantly increased the survival rate of transplanted cryo-
preserved OT, compared with untreated controls, in a mouse
model [161]. Treatment with melatonin, or OT incubation
with hyaluronan-rich biological glue, in addition to VEGF-A
and vitamin E may improve graft survival [162]. In another
study, Zhang et al. supplemented the freezing medium with
FSH, resulting in increased revascularization and survival of
ovarian grafts following vitrification in mice [163].

Fig. 1 Current and future perspectives for improving the outcome of fertility preservation in women
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Conclusions

Advancements in the diagnosis and treatment of cancer have
increased the number, and improved the prognosis, of cancer
survivors. Although embryo or oocyte cryopreservation is the
standard method for fertility preservation, OTC has been de-
clared an acceptable alternative [18, 19]. Embryo or oocyte
cryopreservation for fertility preservation may not be appro-
priate in women with cancer due to complicated individual
conditions and treatment schedules. OTC-T is a promising
option for fertility preservation in both pre-pubertal girls and
adult patients with cancer who require immediate treatment.
The recovery of endocrine function following re-implantation
is well established, and the live birth rate has been steadily
increasing. To prevent fertility loss in women with cancer,
individualized fertility preservation options must be consid-
ered, including the patient’s age, marital status, chemotherapy
regimen, and possibility of treatment delay. Effective multi-
disciplinary oncofertility strategies (Fig. 1), involving the in-
clusion of a highly skilled and experienced team, freezing-
thawing methods, surgical procedures for transplantation,
and the latest scientific studies, should be carefully considered
for each patient to provide the highest quality of care.
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