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Pigeon pea (Cajanus cajan L. Millsp. ) is a legume crop resilient to climate change due

to its tolerance to drought. It is grown by millions of resource-poor farmers in semiarid

and tropical subregions of Asia and Africa and is a major contributor to their nutritional

food security. Pigeon pea is the sixth most important legume in the world, with India

contributing more than 70% of the total production and harbouring a wide variety of

cultivars. Nevertheless, the low yield of pigeon pea grown under dry land conditions and

its yield instability need to be improved. This may be done by enhancing crop nodulation

and, hence, biological nitrogen fixation (BNF) by supplying effective symbiotic rhizobia

through the application of “elite” inoculants. Therefore, the main aim in this study was

the isolation and genomic analysis of effective rhizobial strains potentially adapted to

drought conditions. Accordingly, pigeon pea endosymbionts were isolated from different

soil types in Southern, Central, and Northern India. After functional characterisation of

the isolated strains in terms of their ability to nodulate and promote the growth of pigeon

pea, 19 were selected for full genome sequencing, along with eight commercial inoculant

strains obtained from the ICRISAT culture collection. The phylogenomic analysis [Average

nucleotide identity MUMmer (ANIm)] revealed that the pigeon pea endosymbionts were

members of the genera Bradyrhizobium and Ensifer. Based on nodC phylogeny and

nod cluster synteny, Bradyrhizobium yuanmingense was revealed as the most common

endosymbiont, harbouring nod genes similar to those of Bradyrhizobium cajani and

Bradyrhizobium zhanjiangense. This symbiont type (e.g., strain BRP05 from Madhya

Pradesh) also outperformed all other strains tested on pigeon pea, with the notable
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exception of an Ensifer alkalisoli strain from North India (NBAIM29). The results provide

the basis for the development of pigeon pea inoculants to increase the yield of this legume

through the use of effective nitrogen-fixing rhizobia, tailored for the different agroclimatic

regions of India.

Keywords: Bradyrhizobium, Ensifer (Sinorhizobium), pigeon pea (Cajanus cajan), nod cluster, nodulation outer

proteins (Nop), comparative genomics, India

INTRODUCTION

Pigeon pea (Cajanus cajan L. Millsp.) is grown by millions of
resource-poor farmers in semiarid and tropical subregions of
Asia and Africa as a major contributor to their food security
(Mula and Saxena, 2010; Varshney et al., 2010). The initial
domestication of pigeon pea was started in central India over
3,500 years ago, from its wild progenitor Cajanus cajanifolius
(Vavilov, 1951; Saxena et al., 2014). Pigeon pea is the sixth most
important legume in the world, representing 5% of the total
pulse production (4.92M ha), with India contributing more than
70% of the total (3.6M ha) and harbouring a wide variety of
cultivars (218 making up 73% of the total) (Saxena, 2006). It
was estimated by the Food and Agriculture Organisation (FAO)
that the worldwide annual production of pigeon pea in 2019
was 5.6 Mt, of which ∼59% was produced by India alone [FAO
statistics (www.fao.org/faostat)].

Pigeon pea is a perennial shrub normally cultivated as
an annual crop and, in India, can be used in rotation and
intercrop systems with different cereal crops. Moreover, pigeon
pea develops a deep root system, making it drought tolerant.
These traits encourage cultivation in rain-fed drylands, although
the poor growth conditions (e.g., aridity, nutrient-poor soils)
mean that yields remain low. Effective symbiosis may improve
nitrogen (N) content in this pulse legume and, hence, seed
quality and quantity. However, legume-rhizobium symbioses are
sensitive to drought, and, therefore, N fixation can be inefficient
(Serraj et al., 1999; Mula and Saxena, 2010; Varshney et al., 2012).
Selecting from among the diversity of pigeon pea cultivars sown
in India may lead to improved symbiotic partners, as in the case
for other legumes like soybean (Yang et al., 2010). To increase
pigeon pea yields, it is important to select superior rhizobial
strains that perform well under a wide variety of various stresses.
Such bacteria can be developed into pigeon pea inoculants,
tailored to perform well under different agroclimatic conditions.

However, until now, genomic diversity studies have only
been performed in countries in the American and African
continents, showing that the preferred endosymbionts are
Bradyrhizobium spp. In Trinidad and Tobago, themain symbiont
was Bradyrhizobium elkanii (Ramsubhag et al., 2002), whereas,
in the Dominican Republic, Bradyrhizobium yuanmingense
dominated. In the Ivory Coast, two different clades can nodulate
pigeon pea, one associated with the B. elkanii group and a
second one later assigned as the new species B. ivorense (Fossou
et al., 2016, 2020). Additionally, another new species isolated
from pigeon pea in the Dominican Republic has been defined
as Bradyrhizobium cajani (Araújo et al., 2017), illustrating the
great diversity present within pigeon pea endosymbionts across

the world. Ensifer (syn. Sinorhizobium) has been reported as a
symbiont only rarely, but strains were isolated using pigeon pea
as a trap plant in soybean fields in Brazil (Coutinho et al., 1999;
Stepkowski et al., 2003). Diverse pigeon pea rhizobia have been
reported in Indian soils and have a long history of usage as
inoculants; nevertheless, rigorous diversity studies have not been
performed on these endosymbionts. In this study, we applied a
mechanistic-holistic approach to study the diversity of pigeon pea
native endosymbionts across India.

The aim in this study was to characterise the pigeon pea
endosymbiont population isolated from a diversity of soil
types in South (Alfisols), Central (Vertisols), and North India
(Inceptisols). To achieve this, we isolated representative Indian
pigeon pea rhizobia, sequenced representative strains, assessed
their ability to nodulate pigeon pea and promote its growth, and
analysed their genetic and genomic features. We uncovered the
diversity of this population and the relationship between pigeon
pea and members of the genera Bradyrhizobium and Ensifer.
Comparisons of symbiotic-related features and the putative
proteomes of these strains reveal the preferred pigeon pea
endosymbionts in India.

MATERIALS AND METHODS

Strain Isolation From Nodules
Pigeon pea nodules were collected from three different regions
in India: South India representing Alfisols (Telangana/Andhra
Pradesh, Hyderabad University, HU strains), Central India
representing Vertisols (Madhya Pradesh, Bhopal Rhizobia
Pigeon pea, BRP strains), and North India, representing
Inceptisols (Uttar Pradesh/Haryana/Punjab, National Bureau
of Agricultural Important Microorganisms, NBAIM strains)
(Supplementary Table S1). Nodules were surface sterilised by
washing with ethanol (70%) for 1min, followed by 2% sodium
hypochlorite for 5min, and finally washing with sterile-distilled
water. The nodules were homogenised in 0.9% NaCl and directly
streaked on Yeast Mannitol media (YM), supplemented with
Congo red (0.0025%) (CRYEMA) for visual screening (Vincent,
1970; Somasegaran and Hoben, 1994). Plates were incubated at
28◦C for up to 3–5 days. Selected colonies were streaked onto
fresh CRYEMA plates to obtain pure cultures.

Eight pigeon pea inoculant strains were obtained from
the Microbial Germplasm collection of the International
Crops Research Institute for the Semiarid Tropics (ICRISAT),
Hyderabad, India, were also included as reference strains
(Supplementary Table S1).
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Assessment of Bacterial Diversity by
BOX-PCR
DNA extraction was achieved by alkaline lysis (0.05-M NaOH,
0.25% SDS) (Rivas et al., 2001). Isolated DNA was used
as a template to generate BOX-PCR fingerprints, using the
specific BOXA1R primer (CTACGGCAAGGCGACGCTGACG)
(Versalovic et al., 1994). Amplification was carried out in a 25-
µl PCR reaction containing 5–10 ng of isolated DNA and 1U of
OneTaq polymerase (NEB). BOX-PCR products were visualised
on 2% agarose gels at 100V until clear band separation. Gel
images of the BOX-PCR fingerprint of each strain in the IU
population were compared to find those that were the same and
those that were different from each other.

Nodulation Test
Seeds of C. cajan cv. Asha (ICPL 87119) were surface sterilised
with sodium hypochlorite (3% active chlorine) and 0.1% (v/v)
Tween 20 for 6min and rinsed three times with sterile-distilled
water. Surface-sterilised seeds were germinated on 0.5% distilled
water agar in petri plates at 28◦C in the dark. Germinated
seedlings were transferred to sterile test tubes containing 30ml
of vermiculite: perlite mixture (1:1) and 30ml of B&D nutrient
solution. The tubes were transferred to a growth chamber at
a temperature of 28◦C, 16/8-h day/night light regime, a 70%
moisture level, and 100 µmol m−2 s−1 irradiances. Each tube
was inoculated with 1ml of bacterial liquid culture (108 CFU).
Negative control tubes were left uninoculated. Five test tubes for
each isolate were completely randomised in the growth chamber.
Plants were harvested and scored for nodulation after 8 weeks
of growth.

Assessment of Plant Growth Promotion
A representative strain from each BOX-PCR pattern was used
as an inoculant with pigeon pea to assess its plant growth-
promoting potential, using a temperature of 28◦C, 16/8-h
day/night light regime, a 70% moisture level, and 100 µmol
m−2 s−1 irradiances. The experiment was run as a completely
randomised design with five replications. Sterile 1 L pots were
filled with a 1:1 mixture of vermiculite: perlite and 400ml B&D
nutrient solution (Broughton and Dilworth, 1971). Seeds were
surface sterilised and germinated as described above. Seedlings
were transferred to 1-L pots and inoculated with 1ml of bacterial
liquid culture (108 CFU). To prevent cross-contamination during
watering, the pots were covered with plastic film with a hole for
the shoot. Plants were fed weekly with a B&D nutrient solution
and watered daily, or as required. The plants were harvested 8
weeks after inoculation, and shoot and root biomass obtained
from five replicates was quantified after drying in an oven at
70◦C for 5 days. The pigeon pea endosymbiont reference strains,
IC3195, IC3342, IC4059, IC4060, and IC4062 were included as
positive controls.

Genome Sequencing, Annotation and
Analysis
Culture samples were outsourced to Microbes NG, Birmingham,
United Kingdom for Illumina sequencing (MiSeq v2, PE 2 ×

250 bp). The closest available reference genome for each sample

was identified with Kraken v2 (Wood and Salzberg, 2014), and
reads were mapped to the reference genome using bwa-mem
v0.7.17 (Li and Durbin, 2009) to assess the quality of the data. De
novo assembly was performed with SPAdes v3.14.1 (Bankevich
et al., 2012). Automated annotation was made using Prokka
v1.12 (Seemann, 2014). Geneious R10 (v10.2.6) was used to
investigate genome annotation. The rRNA copy number was
estimated by calculating the relative coverage of 16S rRNA vs.
that of rpoB, a single-copy gene. All genomes were uploaded to
GenBank (BioProject PRJNA679722). BioSample IDs are given
in Supplementary Table S2.

Phylogenetic and Phylogenomic Analysis
nodC sequences from strains were extracted from annotated
genomes or obtained from GenBank (Supplementary Table S3).
Alignment was performed using MUSCLE software (Edgar,
2004). Distances were calculated according to the two-parameter
model of Kimura (1980). Phylogenies of nodC were inferred
using the neighbour-joining (NJ) method. All analyses were
performed using MEGA X software (Kumar et al., 2018). All
nodes with a bootstrap value lower than 70% were removed.
The similarity of draught genome sequences of India-UK (IU)
strains and ICRISAT (IC) strains (Table 1), together with genome
sequences from closely related species considered as references,
was analysed by calculating pairwise average nucleotide identity
(ANI) values (Konstantinidis and Tiedje, 2005; Goris et al.,
2007). ANI was performed using the Nucmer algorithm [Average
nucleotide identity MUMmer (ANIm)] (Kurtz et al., 2004) as
implemented in the JSpecies software v.1.2.1. Pairwise similarity
percentage was transformed into a dissimilarity distance matrix
and plotted as an NJ cladogram (Saitou and Nei, 1987) onMEGA
X (Kumar et al., 2018). BioSample codes for each genome used
can be found in Supplementary Table S3.

Cluster Synteny
nod cluster regions were extracted from GenBank files using
Geneious R10 (v10.2.6). Synteny analysis was performed in
CloVR-Comparative (Angiuoli et al., 2011; Agrawal et al., 2017)
and visualised with Sybyl in this platform (Riley et al., 2011).
Sybyl defines an orthologue when a protein sequence has an
identity >70%, a coverage cutoff of 80%, and an e-value >1e−5.

Nodulation Outer Protein (Nop) Analysis
A local blast database was constructed with IU and IC draught
proteomes. Well-characterised genes associated with Type 3
Secretion System (T3SS) machinery (rhcQ, rhcU, ttsI, nolU, and
nolV) and its putative effectors (Nop: nopA, nopB, nopC, nopD,
nopE, nopF, nopJ, nopL, nopM, nopP, nopT, nopX, nopAA,
nopAC, and nopAR) were obtained from UniProt and NCBI
databases (as shown in Supplementary Table S4), and blastp
was performed. A blastp hit of at least 50% identity, 50%
coverage, and e-value >1e−5 in protein sequence was considered
an orthologue (as shown in Supplementary Table S4 for locus
tags). Clustered heatmaps were generated using the pheatmap R
package (Kolde, 2019).
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TABLE 1 | Strains sequenced and used for genomic comparison.

Species Strain Host Location

Bradyrhizobium yuanmingense BRP05 Cajanus cajan cv Asha Madhya Pradesh

Ensifer sp. BRP08 Cajanus cajan cv Asha Madhya Pradesh

Bradyrhizobium yuanmingense BRP09 Cajanus cajan cv Asha Madhya Pradesh

Ensifer aridi BRP14 Cajanus cajan cv Asha Madhya Pradesh

Bradyrhizobium yuanmingense BRP19 Cajanus cajan cv Asha Madhya Pradesh

Bradyrhizobium yuanmingense BRP20 Cajanus cajan cv Asha Madhya Pradesh

Bradyrhizobium sp. BRP22 Cajanus cajan cv Asha Madhya Pradesh

Bradyrhizobium yuanmingense BRP23 Cajanus cajan cv Asha Madhya Pradesh

Bradyrhizobium brasilense BRP56 Cajanus cajan cv Asha Madhya Pradesh

Bradyrhizobium yuanmingense NBAIM01 Cajanus cajan cv Asha Uttar Pradesh

Bradyrhizobium yuanmingense NBAIM02 Cajanus cajan cv Asha Punjab

Bradyrhizobium yuanmingense NBAIM03 Cajanus cajan cv Asha Punjab

Bradyrhizobium yuanmingense NBAIM08 Cajanus cajan cv Asha Uttar Pradesh

Bradyrhizobium yuanmingense NBAIM14 Cajanus cajan cv Asha Punjab

Bradyrhizobium yuanmingense NBAIM16 Cajanus cajan cv Asha Punjab

Bradyrhizobium yuanmingense NBAIM18 Cajanus cajan cv Asha Uttar Pradesh

Bradyrhizobium yuanmingense NBAIM20 Cajanus cajan cv Asha Uttar Pradesh

Ensifer alkalisoli NBAIM29 Cajanus cajan cv Asha Punjab

Bradyrhizobium yuanmingense NBAIM32 Cajanus cajan cv Asha Uttar Pradesh

Bradyrhizobium yuanmingense IC4061 Pongamia pinnata Uttar Pradesh

Bradyrhizobium yuanmingense IC4060 Pongamia pinnata Haryana

Bradyrhizobium yuanmingense IC3069 Indigofera glandulosa Telangana

Bradyrhizobium yuanmingense IC4059 Pongamia pinnata Tamil Nadu

Bradyrhizobium yuanmingense IC3195 Macroptilium atropurpureum Telangana

Bradyrhizobium yuanmingense IC3123 Aarachis hypogaea Maharashtra

Ensifer sp. IC3342 Macroptilium atropurpureum Telangana

Ensifer sp. IC4062 unknown Maharashtra

Genetic Features Analysis
CMG-Biotools were used to infer core genomes and pangenomes
of IU and IC strains using for orthologue analysis protein
files (Vesth et al., 2013). Protein files were uploaded to
OrthoVenn2 running locally. Orthovenn2 uses a cutoff 1e−5

to define paralogues (within genomes) and orthologues
(between genomes).

Statistical Analyses
For PcoA plots construction, data were analysed in PRIMER 6
(PRIMER-E). Data were normalised and a similarity matrix was
calculated using Euclidian distance. Strain samples that lacked
a value in any tested variable were removed from the analysis.
Permutational multivariate analysis of variance (PERMANOVA)
was run in PRIMER 6 (PRIMER-E) using 9,999 unrestricted
permutations of raw data. PERMANOVA produces pseudo-F
values as a proxy for the difference between beta-diversity and
alpha-diversity using a given factor. Statistical analyses were
performed on PRISM 9 v9.0.2.

RESULTS

Bacterial Diversity Revealed by BOX-PCR
A total of 111 strains [termed collectively India-UK (IU) strains]
were isolated from C. cajan root nodules in three different
regions of India with different soils: 32 from South India

(Alfisols; Telangana/Andhra Pradesh, HU strains), 47 from
Central India (Vertisols; Madhya Pradesh, BRP strains), and 32
from North India (Inceptisols; Uttar Pradesh/Haryana/Punjab,
NBAIM strains) (Supplementary Table S1, Figure 1A). BOX-
PCR showed a total of 59 different profiles (a to bg)
(Supplementary Table S5). A single representative strain from
each region was selected from each BOX-PCR profile group,
resulting in a total of 65: 20 HU strains, 27 BRP strains, and 18
NBAIM strains (Supplementary Table S5).

Ability of Isolates to Nodulate and
Influence Plant Growth
The 65 IU strains selected were used to investigate their
effect on the growth of pigeon pea plants under controlled
conditions (Supplementary Table S6). Some of these IC strains
were included as positive controls since some of these are
used as pigeon pea inoculants in India. In addition, B. cajani
AMBPC1010T and B. cajani AMBPC1011, isolated from C. cajan
in the Dominican Republic (Araújo et al., 2017), were included
as controls. Nineteen of the tested strains produced nodules on
pigeon pea: 9 (BRP) and 10 (NBAIM) (Supplementary Table S6).
None of the strains selected from the Telangana/Andhra Pradesh
region (HU) formed nodules on C. cajan under these test
conditions. Results varied from the increased dry weight of both
root and shoot to a detrimental effect when inoculated with
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FIGURE 1 | Isolation location and effect of bacterial inoculation on pigeon pea (Cajanus cajan L. Millsp.) of all India-UK (IU) strains and ICRISAT (IC) strains. (A) Map of

India with isolation location for all IU and IC strains. In green, strains isolated by the University of Hyderabad (HU), yellow by ICAR-Indian Institute of Soil Science (BRP),

blue by ICAR-National Bureau for Agriculturally Important Microorganisms (NBAIM), and pink ICRISAT pigeon pea reference strains. (B) Mean of dry weights of root

(X-axis) and shoot (Y-axis) of C. cajan plants, following inoculation with bacterial strains. B. cajani reference strains AMBPC1010T and AMBPC1011 are represented by

crossed squares, IC strains by crossed circles, HU isolates by squares, BRP isolates as circles, and NBAIM isolates as triangles. White symbols represent

non-nodulating strains (nod-), and yellow symbols show nodulating strains (nod+) under controlled conditions. (C) Mean plant dry weight for each strain. White circles

represent nod- strains, black circles nod+, and blue circles water control. A horizontal dashed line represents the water control dry weigh average. One-way ANOVA

analysis (F = 15.43, R2
= 0.8076, p < 0.0001) was performed followed by Sidak’s post-hoc test. Asterisks represent a significance level vs. water control (WC) (*p <

0.05, **p < 0.01, ***p < 0.005, and ****p < 0.0001).

NBAIM24 where plants were dead (Figures 1B,C). It is clear that
IC strains have a less beneficial effect on the growth of these plants
than any of the IU-nodulating strains isolated in this study. Even
though IC strains are used as pigeon pea inoculants across India,

none were originally isolated from pigeon pea plants (Table 1)
(Rupela et al., 1991). The strains that show the most significant
increases in plant dry weight compared to uninoculated water
controls are NBAIM29 (nod+) and BRP05 (nod+) (Figure 1C).
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It is important to mention that there are non-nodulating strains,
which under these conditions promote the growth of pigeon pea
by an unknown mechanism. The nod− strain NBAIM30 has the
best performance of a strain that does not form any nodules,
with a positive effect on both shoot and root, outcompeting many
nodulating strains (Figure 1C).

Phylogenomic Diversity
We sequenced 27 genomes, 19 IU strains, which formed nodules
under the test conditions, together with 8 IC strains (Table 1), for
comparison with reference strains and to decipher the taxonomic
diversity among them. Based on ANIm phylogeny, IU and IC
strains were associated either with Bradyrhizobium (22 strains)
or Ensifer (5 strains) (Figure 2). Twenty strains are related to B.
yuanmingense CCBAU 10071T, showing ANIm similarity values
96.8–98.3%. They all show lower ANIm values (82.3–90.7%)
with the next most similar type strains: Bradyrhizobium forestalis
INPA54BT, Bradyrhizobium liaoningense CCBAU 83689T, B.
cajani AMBPC1010T, and Bradyrhizobium japonicum USDA 6T

(Supplementary Table S7). We can consider that these twenty
strains (BRP05, BRP09, BRP19, BRP20, BRP23, NBAIM01,
NBAIM02, NBAIM03, NBAIM08, NBAIM14, NBAIM16,
NBAIM18, NBAIM20, NBAIM32, IC3069, IC3965, IC3123,
IC4059, IC4060, and IC4061) belong to B. yuanmingense;
henceforth, they are defined as such in subsequent figures. Two
strains cluster within Bradyrhizobium superclade II (Ormeño-
Orrillo and Martínez-Romero, 2019). BRP56 has an ANIm of
96.5% with Bradyrhizobium brasilense UFLA03-321T, 95.5%
with B. elkanii USDA 76T, and 95.4% with Bradyrhizobium
pachyrhizi PAC 48T; henceforth, it is referred to as B. brasilense
BRP56 in subsequent figures. Within the same superclade,
BRP22 shows an ANIm similarity lower than 85.9% to all closely
related type strains: Bradyrhizobium macuxiense BR 10303T, B.
ivorense CI-1BT, Bradyrhizobium tropiciagri SEMIA 6148T, B.
elkaniiUSDA 76T, B. brasilenseUFLA 03-321T, and B. pachyrhizi
PAC 48T. Strain BRP22 could represent a new species due
to its ANIm similarity value lower than 96%, although new
species descriptions based on a single strain are discouraged,
given the requirement to demonstrate intraspecific diversity
(De Lajudie et al., 2019). Therefore, we cannot, as yet, assign
BRP22 to any given species, so it will subsequently be referred
to as Bradyrhizobium sp. BRP22. For the five strains in the
Ensifer group, NBAIM29 showed 98.9% similarity with Ensifer
alkalisoli YIC4027T (E. alkalisoli NBAIM29), BRP14 showed
95.8% similarity with Ensifer aridi LMR002T (E. aridi BRP14),
and BRP08, IC3342, and IC4062 showed just 91.2, 91.1, and
90.9% similarity, respectively, with the closest type strain, Ensifer
terangae USDA 4894T, meaning that we cannot assign these
latter three strains to any known species, i.e., Ensifer sp.BRP08,
Ensifer sp.IC3342, and Ensifer sp.IC4062, respectively.

Genome Characteristics
The IU and IC Bradyrhizobium strains have a genome of 7.5–
9.2Mb, a GC-content >62.7%, absence of replication plasmid
genes (repABC), and 20 out of 22 have a single estimated copy
of 16S rRNA (Supplementary Table S2). Most Bradyrhizobium
genomes range between 7 and 10Mb with an average of 8.6Mb

(Ormeño-Orrillo and Martínez-Romero, 2019). However, B.
brasilense BRP56 presents a remarkably larger genome among
the IU and IC strains at 9.2Mb (Supplementary Table S2).
This strain is phylogenetically related to B. elkanii, which
characteristically contains genomes larger than 9Mb (Reeve
et al., 2017). Since there is an inherent difficulty in resolving
repetitive regions with short reads by assemblers (Waters et al.,
2018), we estimate the rRNA copy number as the coverage
ratio between 16S rRNA and the single-copy housekeeping gene
rpoB. Most Bradyrhizobium IU and IC strains showed a single
predicted copy, except for B. yuanmingense IC3069 and B.
yuanmingense NBAIM32. Even though it is uncommon within
the genus Bradyrhizobium, strains with closed genomes like B.
japonicum USDA 6T or Bradyrhizobium sp. BTAi1 have two
copies of the rRNA cluster (Cytryn et al., 2008; Kaneko et al.,
2011). There is a direct correlation between rRNA copy number
and the time taken for a soil bacterium to respond to nutrient
availability (Klappenbach et al., 2000), which could be translated
into an adaptive advantage in a rhizosphere environment. In
fact, B. yuanmingenseNBAIM32 showed a significantly improved
performance in plant growth experiments compared with other
members of the By group (Figure 3, Supplementary Table S6).
None of the IU and IC strains revealed the presence of plasmid-
like replication genes (Supplementary Table S2). Although
infrequent, plasmid presence was confirmed in Bradyrhizobium
sp. BTAi1 and in Bradyrhizobium sp. DOA9 (Cytryn et al., 2008;
Okazaki et al., 2015).

The IU and IC Ensifer strains showed a genome size of
6.5-7.4Mb, 61-62 GC%, 3-6 estimated rRNA copies, and 2-3
plasmids (Supplementary Table S2). Most Ensifer spp. genomes
have three copies of rRNA, as in Ensifer fredii NGR234 (Viprey
et al., 2000), with the exception of Ensifer sp. IC4062, which
shows six copies of rRNA. Ensifer IC strains have two copies
of repABC, whereas IU strains have three, reflecting a different
genomic organisation (Supplementary Table S2). These replicon
numbers are in agreement with the work of Sugawara et al. (2013)
with 48 different Ensifer spp., which showed 2–5 plasmids in
Eckhart gels.

Phylogeny-Based on nodC
The nodC phylogenetic tree (Figure 4) shows that the
twenty-seven sequenced strains fall into five main groups:
B. yuanmingense (By), 8 strains; B. cajani (Bc), 12 strains; B.
elkanii (Be), 1 strain; B. icense (Bi), 1 strain; and E. fredii (Ef), 5
strains. The IU and IC strains assigned as B. yuanmingense belong
to either the By or Bc group. In the By group, B. yuanmingense
NBAIM32, NBAIM18, NBAIM20, BRP09, IC4060, IC4061,
IC3069, and IC4059 show 95% nodC nucleotide identity with B.
yuanmingense reference strains, which were isolated in China
from Glycine max (soybean) or Lespedeza cuneata, among which
is B. yuanmingense CCBAU 10071T. These IU and IC By strains
share 89–90% nodC identity with the closed group formed by
B. diazoefficiens-related strains (Supplementary Table S8). The
second main group, Bc, comprises B. yuanmingense strains
IC3195, IC3123, BRP19, BRP20, NBAIM14, NBAIM03, BRP05,
BRP23, NBAIM02, NBAIM08, and NBAIM16, which showed
more than 96.8% nodC nucleotide identity with Bradyrhizobium
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FIGURE 2 | Average nucleotide identity MUMmer (ANIm) dendrogram. ANI-based UPMGA (unweighted pair group method with arithmetic mean) tree of IU, IC, and

closely related reference strains. Bar, 2 nt substitutions per 100 nt. **Strains isolated from C. cajan.

zhanjiangense CCBAU 51778T and more than 92% with B. cajani
AMBPC1010T (Figure 4). B. yuanmingense NBAIM01 is more
distant and shares 88.8–89.3% identity with other Bc, IU, and

IC strains, and 87–87.7% with the aforementioned reference
strains (Supplementary Table S8). The closest nodC sequence
to that of B. yuanmingense NBAIM01 is from Bradyrhizobium
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FIGURE 3 | The dry weight of plants inoculated with IU and IC strains. Each dot represents a biological replicate. ∧Represents significant differences for each strain

vs. BRP09 within the By group. *Represents significant differences for each strain vs. BRP05 within the Bc group. #Represents significant differences for each strain

vs. NBAIM29. Analysis was performed using one-way ANOVA (F = 17.51,R2
= 0.8318,p < 0.0001), with Sidak’s post-hoc test. WC, water control.

sp. LCT2 (91.23%). It is within this Bc group that 44% of the
sequenced strains clade together, showing that this is the most
common nodC type found in Indian C. cajan endosymbionts.
B. brasilense BRP56 (Be group) has a nodC very similar to that
of B. elkanii strains (99.7% identity) and 91.3% with that of B.
ivorense CI-1BT, a pigeon pea endosymbiont isolated in the
Ivory Coast (Fossou et al., 2020). Bradyrhizobium sp. BRP22
is found in group Bi, with its nodC sequence, showing 83.2%
and 81.9% similarity, respectively, to B. icense LMTR 13T and
Bradyrhizobium paxllaeri LMTR 21T (Figure 4).

The IU and IC Ensifer strains have a nodC similar to that of
E. fredii (Ef group), which clade in two subgroups, Ef-I (Ensifer
sp. BRP08, IC3342, and IC4062) and Ef-II (E. aridi BRP14 and
E. alkalisoli NBAIM29). Within Ef-I, the nodC similarity is 99.3–
99.9% and<94%with nodC from Ef-II. The Ef-II IU strains share
98.4% nodC identity, and circa, 96%, with E. fredii and E. sojae
reference strains in the same Ef-II group (Figure 4).

Nod Cluster Synteny
Nod gene cluster synteny analysis was performed for strains in
each nodC group: By, Bc, Be, Bi, and Ef (Figure 4). All IU and
IC strains have nodABCIJ as a core cluster, which is present in all
symbiotic nod factor (NF)-dependent rhizobia.

Bradyrhizobium
All newly sequenced strains in the By group show the
presence of the same nodulation-related genes, nolY-[]-nolA-
[]-D2-[]-D1YABCSUIJ-nolN-nodZ (Supplementary Figure S1).
Representative strains B. yuanmingense BRP09, B. yuanmingense
IC4060, and B. yuanmingense NBAIM32 were selected to further
investigate their synteny with B. yuanmingense CCBAU 10071T

and B. diazoefficiens USDA 110T (Figure 5A). B. diazoefficiens
USDA 110T has three extra nodulation-related genes, nolZ,
nolM, and nolO, not present in any of the newly sequenced
strains. The By nod cluster is highly conserved, albeit with

evidence of different insertion events. We can conclude that the
By strains B. yuanmingense NBAIM18, NBAIM20, NBAIM32,
BRP09, IC3069, IC4059, IC4060, and IC4061 have the same
nod cluster as B. yuanmingense CCBAU 10071T. A highly
conserved nod cluster, nolA-[]-nodD2D1YABCSUIJ-nolO-nodZ,
is present in the newly sequenced strains belonging to the Bc
group (Supplementary Figure S2). B. yuanmingense NBAIM08
and IC3195 were selected as representative and aligned with
B. cajani AMBPC1010T and B. zhanjiangense CCBAU 51778T

(Figure 5B). Notwithstanding transposase-related genes in B.
yuanmingense IC3195 (which are not present in either of the type
strains), we can conclude that the nod cluster and its genomic
context are the same as that of B. cajani AMBPC1010T and
B. zhanjiangense CCBAU 51778T. The nodC phylogeny shows
that B. brasilense BRP56 belongs to the Be group, together with
B. ivorense CI-1BT and B. elkanii USDA76T (Figure 4). The
observed nod cluster is nolY-[]-nolA-[]-nodD2D1-[]-ABCSUIJ-
nolO-nodZ (Figure 5C). B. brasilense BRP56 has a nodK gene
among nodD1 and nodA, which is not annotated in CI-1BT,
and neither is it in B. elkanii USDA 76T. Both reference strains
have an open reading frame (ORF) in this region, which, in
USDA 76T, has an amino acid (aa) identity of 97.7% to nodK
of B. brasilense BRP56, whereas, in CI-1BT, it is just 59.4%.
Furthermore, both B. brasilense BRP56 and B. elkanii USDA
76T have nopM downstream of nifA (Figure 5C). Overall, we
suggest that B. brasilense BRP56 has a typical B. elkanii-type
nod cluster. Bradyrhizobium sp. BRP22, together with B. icense
LMTR 13T and B. paxllaeri LMTR 21T, belongs to the Bi nodC
group (Figure 4). Analysis of their nod cluster synteny shows
that all strains have nolA-[]-nodD2D1-[]-ABCSUIJ-nolO-nodZ-
[]-noeE (Figure 5D). In addition, Bradyrhizobium sp. BRP22 and
B. icense LMTR 13T have nopM downstream of noeE, whereas
B. paxllaeri LMTR 21T shows a pseudogene (pg) with 50–54%
aa identity to the N-terminal part of nopM. We conclude that
Bradyrhizobium sp. BRP22 has a B. icense-type nod cluster.
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FIGURE 4 | Tree-based on nodC phylogeny. Neighbour-joining (NJ) phylogenetic tree based on nodC sequence (1,458 nt) of IU and IC strains with closely related

species. Each is shown together with the plant from which it was isolated. Bootstrap values (only values > 70%, expressed as a percentage of 1,000 replications) are

shown at the branching points. Bar, 5 nt substitutions per 100 nt. **Strains isolated from C. cajan. By (B. yuanmingense), Bc (B. cajani), Be (B. elkanii), Bi (B. icense),

and Ef (E. fredii).
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FIGURE 5 | The nod cluster synteny of IU and IC strains in the By, Bc, Be, and Bi groups. (A) By group, (B) Bc group, (C) Be group, and (D) Bi group. Each row

represents a single strain and shows the nod cluster organisation and its genomic context. The colour of the arrow reflects the genes: blue for nod, yellow for nol, pink

for fix-nif, green for nop, dark blue for noe, and black for transposase/insertion-related genes. Vertical markers indicate 5Kb in each genome. B (Bradyrhizobium sp.),

By (B. yuanmingense), Bd (B. diazoefficiens), Bc (B. cajani), Bz (B. zhanjiangense), Bi CI-1BT (B. ivorense CI-1BT ), Be (B. elkanii), Bb (B. brasilense), Bi LMTR13T (B.

icense LMT13T ) and Bp (B. paxllaeri).

Frontiers in Plant Science | www.frontiersin.org 10 September 2021 | Volume 12 | Article 680981

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Jorrin et al. Pigeon Pea Endosymbionts in India

In selected representative strains from each Bradyrhizobium
nodC group (Figures 4, 5), this region of DNA was aligned
(Supplementary Figure S3). As all strains have nolA-[]-nodD2-
[]-nodD1-[]-nodABCSUIJ-[]-nodZ, this could be considered the
minimum nod cluster necessary to nodulate pigeon pea. Other
nodulation-related genes (nolY, nodK, nodY, nolO, nolN, nolL, or
noeE) may be associated with host specificity and, therefore, play
a part in the symbiotic performance.

Ensifer
The nod cluster regions for the five newly sequenced Ensifer
strains were aligned and, together with reference strains in the
same nodC phylogenetic clade, reveal a high degree of synteny
within the group (Figure 6). The observed canonical nod cluster
is nodABCIJ-nolO-noeI-[]-noeE. There are two genomic contexts
for each nodC group (Ef-I and Ef-II), which suggests that they
could have a different origin (Figure 6). Despite this, the IU
and IC strains show great conservation of the nod cluster,
except for the absence of nolL from E. alkalisoli NBAIM29.
Instead, it has cysNC (adenylyl-sulphate kinase, A0A4S5J185).
The lack of nolL could give E. alkalisoli NBAIM29 an advantage
in plant recognition, which would explain its enhanced growth
promotion phenotype observed in planta (Figure 3), although,
as it is based only on a single strain, this is highly speculative.

Presence of Gene-Encoding Nops
There are multiple pieces of evidence supporting a T3SS and
Nops and their key roles in the establishment of symbiosis
and host specificity in certain rhizobia-legume interactions
(Pueppke and Broughton, 1999; López-Baena et al., 2016). We
have confirmed the presence of T3SS machinery by finding
orthologues (>50% aa identity and coverage) for rhcQ, rhcU, ttsI,
nolV, and nolU from the well-characterised T3SS of B. vignae
ORS3257 (Teulet et al., 2019) and E. fredii NGR234 (Freiberg
et al., 1997) in all the newly sequenced strains presented in
this study (Supplementary Table S4). To determine the putative
range of T3SS effectors, we have based analysis on the Nops
and used Nop sequences from well-characterised Ensifer and
Bradyrhizobium spp. to find homologues in the IU and IC
genomes (as shown in Supplementary Table S4).

Within the Bradyrhizobium strains, all IU and IC strains have
orthologues for nopT, nopP2, nopM2, and nopM3. These T3SS
effectors could be needed for establishing symbiosis between
Bradyrhizobium spp. and pigeon pea (Figure 7A). The groups
formed based on the presence and absence of Nop orthologues
in Bradyrhizobium spp. (Figure 7A) are highly correlated with
those observed in the nodC phylogeny and nod cluster synteny
(Figures 4, 5). Cluster I (By) and cluster II (Bc) are distinguished
from each other by the presence or absence of two groups of
nop genes: group A (nopC, nopAA, nopM1, and nopX), group
B (nopD, nopAR, nopL, and nopE), where cluster I (By) has
group A genes but not those of group B and cluster II (Bc), vice
versa (Figure 7A). There are a few orphan strains that present a
different presence/absence pattern, e.g., B. yuanmingense BRP09
has all the Nop genes present in the other By strains (cluster
I), plus nopAA (Figure 7A). However, we have not observed
differences in plant dry weight between B. yuanmingense BRP09

and other IU strains of the By group (Figure 3), suggesting that
the presence of nopAA is uncorrelated with plant performance.
Bradyrhizobium yuanmingense NBAIM01 belongs to the Bc
nod group (cluster II), although it shows a very different set
of Nop homologues. Its lack of nopX and nopC (nolJ) could
be counterbalanced by the presence of nopB, nopL, and/or
nopE effectors since the plant performance of B. yuanmingense
NBAIM01 is similar to that of other Bc members (Figure 3).
Finally, B. yuanmingense BRP05 displays the common Nop genes
for Bc strains (group II), plus nopA (Figure 7A). This strain
promotes plant growth significantly more than any other Bc
member or, indeed, any other Bradyrhizobium strains tested
(Figure 3), which could be a result in part of the presence of
this T3SS effector, although, without further strains showing
similar characteristics, it is impossible to draw firm conclusions
at this stage.

In comparison to Bradyrhizobium, a total of only seven nop
genes are present in Ensifer (Figure 7B). All Ensifer IU and
IC strains show orthologues for nopA, nopB, nopL, nopM, and
nopX. Nevertheless, only E. alkalisoli NBAIM29 has nopC, nopP,
and nopT, and, together with the lack of nolL, could equip it
for improved performance on pigeon pea (Figure 3). However,
further strains showing the same characteristics are required to
test this speculation.

Genetic Features
Putative proteomes of Bradyrhizobium and Ensifer IU and
IC strains were analysed to infer their core genome and
pangenomes (Figures 8A,D). Both groups of strains showed an
open pangenome of 17,596 and 10,458, respectively, and a core
genome of circa 3,500 genes for both. Non-core genes present
in each group of strains could play a role in soil endurance,
competition for root colonisation, host specificity, or symbiosis
establishment and, therefore, may help explain the differences
observed in plant growth promotion (Figure 3).

Bradyrhizobium Orthologues
To reduce the complexity and computational time, we chose
representative strains (shown in bold) between those sharing
ANIm values greater than 99% similarity: B. yuanmingense
BRP05-BRP23 (99.91%), IC3069-IC4069 (99.86%), NBAIM03-
NBAIM14 (99.18%), NBAIM32-IC4060-IC4061 (99.27-99.28%),
and NBAIM18-NBAIM20 (99.89%). All IU and IC strains
share a total of 3,879 orthologue clusters with enrichment
of DNA-related functions (GO:0006412, GO:0006313,
and GO:0003700), transmembrane transport (GO0055085
and GO:0008643), and cell shape regulation (GO:0008360)
(Figure 8B). Thirteen out of 16 analysed strains show exclusive
orthologue clusters, which are not present in any other strain.
Bradyrhizobium sp. BRP22 and B. brasilense BRP56 show
the greatest number of exclusive groups of orthologues, 98
and 93, respectively (Figure 8B), which could be the result
of the phylogenomic differences with other B. yuanmingense
strains (Figures 2, 4, 5).

Since the most distinct feature observed among IU and
IC strains is the nodulation-related gene groups (Figure 5,
Supplementary Figure S3), we have compared the orthologue
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FIGURE 6 | The nod cluster synteny of IU and IC strains in the Ensifer group together with type strains. Each row represents a single strain and shows the nod cluster

organisation and its genomic context. The colour of the arrow reflects the genes: blue for the nod, yellow for nol, pink for fix-nif, and black for

transposase/insertion-related genes. Vertical markers indicate 5Kb in each genome. E (Ensifer sp.), Ef (E. fredii), Es (E. sojae), Eal (E. alkalisoli) and Ear (E. aridi).

clusters shared among By, Bc, Be, and Bi (Figure 8C). The
exclusive genes for each group represent orthologue clusters
that are present in all strains within that specific group.
By is the only group that exclusively shows enrichment in
GO functions for carbohydrate transport (GO: 0008643 and
GO: 0015407). Among the 1,117 orthologue groups shared
between By and Bc strains there is enrichment in clusters
associated with chemoreceptors (GO: 0007165), permeases
(GO: 005585), and flagellum-dependent cell motility (GO:
0071973), which are not present in Bradyrhizobium sp.
BRP22 and B. brasilense BRP56. Nevertheless, these strains
could partially compensate for this absence through the
catabolism of aromatic compounds (GO: 0019439), which
are a component of pigeon pea root exudates (Ae et al.,
1990).

Ensifer Orthologues
We compared the orthologues groups of IU and IC Ensifer
strains, which all share 3,730 orthologue clusters (Figure 8E).
In this core set, there is enrichment in different DNA-related
biological processes (GO: 0006412, GO: 0006313, and GO:
0035556) and transmembrane transport (GO: 0055085). The
comparison between IU and IC strains shows enrichment

for IC strains in an orthologue cluster annotated as putative
adenylate cyclase 3 (cya3, GO: 0035556), which could be the
reason for the significantly different plant performance between
IC and IU strains (Figure 3). Ensifer sp. IC3342, Ensifer sp.
IC4062, Ensifer sp. BRP08, and E. aridi BRP14 strains shared
626 orthologues families that are not present in E. alkalisoli
NBAIM29 (Figure 8E). Within this group of orthologues, there is
enrichment in the biosynthesis pathway of rhizobactin 1021 (GO:
0019289). Since E. alkalisoli NBAIM29 has a significantly better
plant performance (Figure 3), we hypothesise that synthesis of
rhizobactin 1021 might be a cost, which E. alkalisoli NBAIM29
would not sustain.

Genotype-Metadata Correlation
We have analysed the pigeon pea population structure based on
GC%, genome length, number of tRNAs, rRNA clusters, repABC,
nod type, and presence/absence of nod and nop genes (Figure 9).
The population separates based on the nod group each strain
belongs to (Figure 9A). In addition, we have run PERMANOVA
using bacterial species (B. yuanmingense, Bradyrhizobium sp.,
Ensifer sp., E. alkalisoli, and E. aridi), nod type (By, Bc, Be,
Bi, Ef-I, and Ef-II), nop profile (B-nop-I, B-nop-II, B-nop-II,
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FIGURE 7 | The presence and absence of nop genes. (A) Bradyrhizobium IU and IC strains are shown as a heat map. (B) Ensifer IU and IC strains are shown as a

heat map.

B-nop-IV, B-nop-V, B-nop-VI, B-nop-VII, E-nop-I, E-nop-II, E-
nop-III, and E-nop-IV), location of isolation (Madhya Pradesh,
Uttar Pradesh, Punjab, Haryana, Tamil Nadu, and Maharashtra),
the plant host from which the strain was originally isolated (C.
cajan cv. Asha, C. cajan cv. Bahar, Indigofera glandulosa, Arachis
hypogaea,Macroptilium atropurpureum, and Pongamia pinnata),
and the culture collection (or origin) (BRP, IC, and NBAIM)
(Figure 9B). The main factor controlling the assembly of the
pigeon pea endosymbiont population is the type of nod genes,
followed by the species the strain belongs, to and finally, the
nop gene set that each strain contains. The factors that had no
significance were the location of isolation, the plant host from
which the strain was originally isolated, and the culture collection
from which the strain came (origin).

DISCUSSION

Among the BOX-PCR-reduced population of 65 strains, only 19
were able to establish symbiosis with pigeon pea under laboratory
conditions. The isolation of non-symbiotic bacteria from nodule
samples has previously been reported (Wu et al., 2011), as well as
opportunistic infection (Zgadzaj et al., 2015). Moreover, Fossou
et al. (2016) in their sampling of nodule-isolated strains from
pigeon pea in Ivory Coast showed that 22% of the population
did not display any rhizobia-like features. In addition, they were
unable to amplify nitrogenase-encoding sequences (nifH) from
5% of the selected strains.

In our pigeon pea endosymbiont population of 27 IU and IC
strains, the diversity is moderately driven by the species the strain

belongs to (Figure 9). The main species-nodulating pigeon pea
in India is B. yuanmingense (20 out of 27, Figure 2). In their
study of pigeon pea endosymbionts in the Dominican Republic,
Araújo et al. (2015) found that all strains investigated had a
99.8% identity to B. yuanmingense CCBAU 10071T. Moreover,
one of the sequenced pigeon pea endosymbionts from this
study, B. yuanmingense 3051 (ALSPC3051), shows a high ANIm
similarity (95.7–96%) to B. yuanmingense IU and IC strains
(Figure 2, Supplementary Table S7). It is interesting to note that
B. yuanmingense may be a predominant symbiont in India since
it has been isolated from several legumes throughout the country
(Ojha et al., 2017; Rathi et al., 2018). B. brasilense BRP56 and
Bradyrhizobium sp. BRP22 are rare strains in this population;
however, within this superclade II exist other pigeon pea-
nodulating species isolated in the Dominican Republic, Brazil,
and Ethiopia, such as B. ivorense and B. elkanii (Stepkowski et al.,
2003; Wolde-Meskel et al., 2005; Fossou et al., 2016, 2020).

Nodulation-related genes are the main diversity driver
in the pigeon pea endosymbiont population (Figure 9).
The nodC sequences defined clear groups, with Bc the
most common (12 out of 27). This sequence is similar to
the reference strains, including B. zhanjiangense CCBAU
51778T, a Chinese strain isolated from A. hypogaea (Li
et al., 2019), and B. cajani AMBPC1010T, a C. cajan strain
isolated in the Dominican Republic (Araújo et al., 2017).
Despite differences observed in nodC, all Bradyrhizobium
spp. share a common nod cluster nolA-[]-nodD2-[]-nodD1-[]-
nodABCSUIJ-[]-nodZ (Supplementary Figure S3). However,
different presence/absence patterns were observed for genes
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FIGURE 8 | Genetic features. (A) Core genome and pangenome of Bradyrhizobium where X-axis shows strains and the Y-axis, the number of genes. Blue line:

pangenome. Red line: core genome. New genes: bars. (B) Core and exclusive orthologue clusters for each Bradyrhizobium strain. (C) Venn diagram showing shared

and exclusive orthologue families among nodulation-type groups. By: the B. yuanmingensenod-type group. Bc: the B. cajaninod-type group. Be: the B.

elkaniinod-type group. Bi: the B. icensenod-type group. (D) Coregenome and pangenome of Ensifer where X-axis shows strains and the Y-axis, the number of genes.

Blue line: pangenome. Red line: core genome. New genes: bars. (E) Core and exclusive orthologue clusters for each Ensifer strain.

related to NF modifications, nolY, nodK, nodY, nolO, nolN,
nolL, or noeE for each Bradyrhizobium nodC type group, By,

Bc, Be, and Bi (Figures 4, 5). The IU and IC Bradyrhizobium
strains either have nodY or nodK between nodD1 and nodA
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FIGURE 9 | Population structure. (A) PCoA representing pigeon pea

population and shown with visual separation by nod type. (B) Influence of

different factors on pigeon pea endosymbiont population using PERMANOVA.

Pseudo-F value as a proxy. N = 27.

(Supplementary Figure S3), whose functions have not yet been
elucidated (Menna and Hungria, 2011). The IU and IC strains
from the Bc and Be groups have a nolY homologue upstream
from nolA (Figures 5B,C). In B. diazoefficiensUSDA 110T, a nolY
mutant showed a significant disadvantage in nodule kinetics on
Vigna radiata (mung bean), but this detrimental effect was not
so strong in soybean (Dockendorff et al., 1994), suggesting that
the presence or absence of nolY in Bradyrhizobium spp. could be
related to their host range. Bradyrhizobium sp. BRP22 is the only
strain with nolL and noeE homologues, which seem to modify the
NF playing a role in host specificity (Figure 5D) (Corvera et al.,
1999; Wei et al., 2008). Moreover, differences were observed in
the presence and absence of the annotated carbamoyltransferases
nolN and nolO (Supplementary Figure S3). Bc, Be, and Bi
strains have the nolO homologue between nodJ and nodZ,
whereas By strains have nolN. In B. diazoefficiens USDA 110T

nolMNO is part of the nod operon, and nolNO, together with
nodZ, acts in the NF 2-O-methylfucosylation. However, mutants
in nolO or nolNO in this strain showed the same phenotype:
delayed nodule formation and a reduced percentage of nodules

per plant in legumes like soybean or mung bean (Luka et al.,
1993). Since both genes encode carbamoyltransferases, which
probably undertake the same function, it is possible that NF
2-O-methylfucosilation is essential to establish symbiosis in
pigeon pea. Since differences in plant performance were not
observed (Supplementary Figure S4B), we conclude that the
common functional nod cluster for IU and IC Bradyrhizobium
spp. is nolA-nodD2D1-nodY/K-nodABCSUIJ-nolO/nolN. Genes
like nodY, nodK, noeE, and nolL only reflect phylogenetic
diversity among these strains. The absence of nolY could have
been positively selected, since the major group, Bc, does not
show a nolY homologue. However, this selection has no impact
on plant performance (Supplementary Figure S4A).

Based on the orthologue analysis, each Bradyrhizobium group
could have developed a different strategy to endure in the pigeon
pea rhizosphere (Figure 8C). Bc is the most common pigeon
pea symbiont group in our population, and we hypothesise that
it may be better adapted to the pigeon pea root environment.
Together with By, both have homologues of chemoreceptors
and flagella, which Be and Bi do not possess. These groups
of genes are essential in rhizobium-legume symbioses (Jiang
et al., 2016; Wheatley et al., 2020). However, Bradyrhizobium
sp. BRP22 and B. brasilense BRP56 could partially compensate
for this absence through the catabolism of aromatic compounds,
which are present in pigeon pea root exudates (Ae et al., 1990).
The By group shows enrichment in carbohydrate transporters.
Since sugars are one of the main components of root exudates
(Lynch and Whipps, 1990), it is possible that having a greater
pool of carbohydrate transporters could give the By group an
adaptative advantage in the pigeon pea rhizosphere, resulting in
their increased prevalence in nodules.

Among IU and IC Bradyrhizobium spp., the Bc strain B.
yuanmingense BRP05 promotes plant growth more significantly
than any other strain tested (Figure 3), which could be, in
part, a result of the presence of T3SS pili structures like nopA
(Figure 7A). NopA is part of the external T3SS apparatus, and
its deletion completely abolishes the secretion of other Nops,
since it is a major component of the T3SS pili (Krishnan et al.,
2003). However, in E. fredii USDA 257, the absence of nopA
extends the host range to other soybean varieties, whereas, in
cowpea, it has a slightly deleterious effect (Kim and Krishnan,
2014). Nevertheless, it is impossible to draw firmer conclusions
without further strains showing similar characteristics to B.
yuanmingense BRP05.

Ensifer spp. is an infrequent pigeon pea endosymbiont in
the population since only five (of 22) IU and IC strains were
assigned to this genus. There are a few records of Ensifer strains,-
nodulating pigeon pea, including strains isolated in Cerrado
soil in Brazil and India (Coutinho et al., 1999; Stepkowski
et al., 2003). Their rarity is probably related to pigeon pea
specificity rather than low Ensifer spp. numbers in soil, since,
in India, Ensifer spp. are common endosymbionts of native
legumes growing in alkaline soils (Gehlot et al., 2013; Tak et al.,
2016; Sankhla et al., 2017; Rathi et al., 2018; Choudhary et al.,
2020). Regarding nodulation genes, the most relevant feature is
nolL, where its absence correlates with a significantly improved
plant performance in E. alkalisoli NBAIM29 (Figures 3, 6). nolL
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determines 4-O-acetylation of the fucosyl residue in NF, and
its deletion has been shown to have a negative effect on R.
etli CE3 nodule kinetics in some Phaseolus vulgaris cultivars
and in V. umbellata (Corvera et al., 1999). Furthermore, the
heterologous expression of nolL in E. fredii USDA 257 extends
its host range to other legumes like Leucaena leucocephala and
L. halophilus (Berck et al., 1999). NolL plays a role in both host
specificity and host range. Therefore, we hypothesise that the lack
of the NF fucosyl acetylation might give E. alkalisoli NBAIM29
an advantage in plant recognition, explaining the phenotype
observed in planta (Figure 3). However, with only one strain, this
is highly speculative. Moreover, E. alkalisoliNBAIM29 is the only
IU and IC Ensifer spp. strain that has nopC, nopP, and nopT; all of
them are well-characterised T3SS effectors with functions related
to host-range and interaction with the plant immune system. The
deletion of any of these nop genes results in a reduction of nodules
in the symbiosis between E. fredii and different legumes (soybean
and P. vulgaris) (Boundy-Mills et al., 1994; Skorpil et al., 2005;
Dai et al., 2008; López-Baena et al., 2009).

The comparison of orthologue groups between the IU and IC
Ensifer spp. strains showed an exclusive group in IC annotated
as an adenylate cyclase 3 (cya3), which modulate the extent of
epidermal infection during nodulation (Tian et al., 2012). Indeed,
a mutation in cya3 (cya5) in E. meliloti CXM1-105 significantly
increased alfalfa shoot dry weight (Sharypova et al., 1999), which
could be reflected in the different plant performances between IC
and IU strains (Figure 3).

Remarkably, E. alkalisoliNBAIM29 lacks an orthologue family
related to the synthesis of rhizobactin 1021 (rhbBCDEF), a
siderophore that chelates iron (Fe) (Lynch et al., 2001). We
hypothesise that the biosynthesis of a siderophore might be
redundant in the pigeon pea rhizosphere since it exudes piscidic
acid, an aromatic compound that solubilises phosphorous (P) by
chelating Fe from P-Fe compounds (Ae et al., 1990). Siderophore
biosynthesis would represent a metabolic cost to the other
Ensifer strains, Ensifer sp. IC3342, Ensifer sp. IC4062, Ensifer sp.
BRP08, and E. aridi BRP14, and could explain their significantly
lower plant performance compared to that of E. alkalisoli
NBAIM29 (Figure 3). It is possible that the presence of these
Nop proteins, together with the lack of nolL and the rhizobactin
1021 biosynthesis pathways, endows E. alkalisoli NBAIM29 with
improved plant recognition machinery that could translate into
better performance with pigeon pea, but without further strains
showing the same characteristics, it is impossible to tell at
this stage.

Due to its intrinsic capacity to tolerate drought (grown on
drylands), pigeon pea is a promising candidate for resilience
to climate change; however, its yield remains low. The use of
symbionts well-adapted to the growth conditions of pigeon pea
could increase its productivity (Pellegrino et al., 2011; Pellegrino
and Bedini, 2014; Pastor-Bueis et al., 2019). Our findings
demonstrate that the most common pigeon pea endosymbiont in
India is a B. yuanmingense strain with a B. cajani-B. zhanjiangens
(Bc) nod type, defined mainly by the absence of nolY and the
presence of nolO. Since we have not observed location to be a
driving factor in population diversity, our findings may apply
to much, if not all, of India. Due to its intrinsic capabilities for

persisting and establishing symbiosis, in addition to its genetic
and genomic features, we suggest that B. yuanmingense BRP05
could be a good candidate for inclusion in inoculum formulations
for pigeon pea in India. However, testing a range of IU strains
for symbiotic performance in field trials is essential to assess
their real-world performance.Moreover, the less common Ensifer
strains, like E. alkalisoli NBAIM29, may be better for alkaline
conditions, where members of this genus often perform well
(Gehlot et al., 2013; Tak et al., 2016; Sankhla et al., 2017; Rathi
et al., 2018; Choudhary et al., 2020).

This study presents a first step in defining and collecting
strains that can nodulate pigeon pea in Indian soils. Their
ability to influence plant performance has been investigated
in glasshouse experiments under sterile conditions. Therefore,
extensive trialling in the field in India, using a range of
different varieties of pigeon pea, is now suggested to evaluate
their performance under these agronomic conditions. We are
confident that such studies will lead to the selection of a
group of highly effective strains for use in inoculant technology,
improving the symbiotic performance of this essential legume
in India.
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