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Common Statin Intolerance Variants 
in ABCB1 and LILRB5 Show 
Synergistic Effects on Statin 
Response: An Observational Study 
Using Electronic Health Records
Alaa’ Lutfi Melhem 1†, Mehul Kumar Chourasia 1†, Margherita Bigossi 1,2, Cyrielle Maroteau 1, 
Alasdair Taylor 1, Roberto Pola 2, Adem Y. Dawed 1, Aleksi Tornio 1,3, Colin N. A. Palmer 1 and 
Moneeza K. Siddiqui 1*

1 Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of 
Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom, 2 Section of Internal 
Medicine and Thromboembolic Diseases, Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 
Rome, Italy, 3 Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland

Background: Statin intolerance impacts approximately 10% of statin users, with side 
effects ranging from mild myalgia to extreme intolerance resulting in myopathy and 
rhabdomyolysis. Statin intolerance results in poor adherence to therapy and can impact 
statin efficacy. Many genetic variants are associated with statin intolerance. The effect of 
these variants on statin efficacy has not been systematically explored.

Methods: Using longitudinal electronic health records and genetic biobank data from 
Tayside, Scotland, we examined the effect of seven genetic variants with previously 
reported associations with simvastatin or atorvastatin intolerance on the outcome of statin 
response. Statin response was measured by the reduction achieved when comparing 
pre- and post-statin non-high-density lipoprotein-cholesterol (non-HDL-C). Post-treatment 
statin response was limited to non-HDL-C measured within 6 months of therapy initiation. 
Univariate and multivariable linear regression models were used to assess the main and 
adjusted effect of the variants on statin efficacy.

Results: Around 9,401 statin users met study inclusion criteria, of whom 8,843 were first 
prescribed simvastatin or atorvastatin. The average difference in post-treatment compared 
to pre-treatment non-HDL-cholesterol was 1.45 (±1.04) mmol/L. In adjusted analyses, only 
two variants, one in the gene ATP-binding cassette transporter B1 (ABCB1; rs1045642), 
and one in leukocyte immunoglobulin like receptor B5 (LILRB5; rs12975366), were associated 
with statin efficacy. In ABCB1, homozygous carriers of the C allele at rs1045642 had 
0.06 mmol/L better absolute reduction in non-HDL-cholesterol than carriers of the T allele 
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INTRODUCTION

Statins, or 3-hydroxy-3-methylglutaryl coenzyme A reductase 
inhibitors, are the most commonly prescribed cholesterol-
lowering therapy (Ward et  al., 2019). Statin at maximum 
doses can reduce low density lipoprotein-cholesterol (LDL-C) 
levels by 50% (Schachter, 2005; Mangravite et al., 2006; Taylor 
and Thompson, 2018; Newman et al., 2019). Large randomized 
clinical trials have reported a 20–30% reduction of 
cardiovascular diseases (CVD) among statin users (Baigent 
et  al., 2005; Mangravite et  al., 2006; Mihaylova et  al., 2012).

However, there are interindividual differences in response 
to statin treatment: both in the ability of statins to reduce 
the LDL-C levels and in observed statin-related adverse drug 
reactions (ADRs) (Turner and Pirmohamed, 2019). It is estimated 
that 30% of statin users cease therapy by the end of the first 
year of treatment. Approximately 50% of patients at high risk 
of developing CVD discontinue taking their statins (Pedro-
Botet et al., 2019; Bair et al., 2020). Among those who withdraw 
from treatment, about 1–7% discontinue taking statins due to 
ADRs (Vermes and Vermes, 2004; Oh et  al., 2007; Donnelly 
et  al., 2011).

Stain-induced ADRs can range from complaints of muscle 
pain referred to as myalgia to the more severe cases of myopathy, 
and finally, in extreme cases, can result in rhabdomyolysis 
(Alfirevic et  al., 2014; Selva-O’Callaghan et  al., 2018; Newman 
et  al., 2019). Almost 60% of adults who discontinue statin 
therapy report muscle pain as the major cause of non-adherence 
(Pedro-Botet et al., 2019). It is understood that myalgia, whether 
or not associated with an elevation in the creatine kinase (CK) 
level, is the most common statin-induced ADR and is included 
in definitions of statin intolerance (Bair et  al., 2020). The risk 
of ADR is greater during the first year of therapy (Armitage 
et  al., 2010) and can be  exacerbated by increases in statin 
dose, interacting concomitant medications, advanced age, or 
comorbidities (Newman et  al., 2019). The exact prevalence of 
statin intolerance is difficult to estimate. It has recently been 
reported that myopathy is increased by <0.1% in individuals 
on statins than those on placebo (Amarenco et al., 2006; Ridker 
et  al., 2008; Armitage et  al., 2009; Newman et  al., 2019). 

Randomized controlled trials using strict criteria to define 
myopathy suggested that prevalence is 1–3%. In studies with 
a more inclusive definition of statin intolerance, prevalence 
could be  as high as 10–25% of cases (Oh et  al., 2007).

Several genetic variants have been identified to be  potentially 
associated with statin ADRs through genome-wide, exome-wide, 
and candidate gene studies. However, the impact of these variants 
on cholesterol reduction on a population level has not been 
understood (Canestaro et  al., 2014; Brunham et  al., 2018; Turner 
and Pirmohamed, 2019; Ward et  al., 2019). In the present 
retrospective observational study, single nucleotide polymorphisms 
(SNPs) in the genes of ATP-binding cassette transporter B1 
(ABCB1), Solute Carrier Organic Anion Transporter Family Member 
1B1 (SLCO1B1), Leukocyte Immunoglobulin Like Receptor B5 
(LILRB5), and Cytochromes P450 (CYP) family having known 
associations with statin ADRs were selected to assess their statin 
efficacy using electronic health records.

ABCB1
Polymorphisms in ABCB1 play a vital role in the lipid-lowering 
response of statins. Variants such as rs1128503 (Gly412Gly, 
1236C>T), rs2032582 (Ser893Ala, 2677G>A/T), and rs1045642 
(Ile1145Ile, 3435C>T) have been linked to statins 
pharmacokinetics and statin tolerability (Fiegenbaum et  al., 
2005; Becker et  al., 2009; Hoenig et  al., 2011). In a study by 
Fiegenbaum et  al. (2005), the 3435T variants at rs1045642 
were associated with decreased risk of myalgia for people 
treated with simvastatin compared to allele C.

In another study, the T allele variants in rs1045642 were 
more frequently present in patients on atorvastatin who 
experienced muscle symptoms compared to those without the 
variant allele (Hoenig et  al., 2011).

LILRB5
Leukocyte immunoglobulin like receptor B5 is highly expressed 
in skeletal muscle, liver, and gallbladder. LILRB5 rs12975366 
(Asp247Gly, T>C) was associated with important indicators 
of muscle damage such as serum CK (creatinine phosphokinase) 
and lactate dehydrogenase (LDH) levels as well as with statin 

(95% CI: 0.01, 0.1). In LILRB5 (rs12975366), carriers of the C allele had 0.04 mmol/L better 
absolute reduction compared to those homozygous for the T allele (95% CI: 0.004, 0.08). 
When combined into a two-variant risk score, individuals with both the rs1045642-CC 
genotype and the rs12975366-TC or CC genotype had a 0.11 mmol/L greater absolute 
reduction in non-HDL-cholesterol compared to those with rs1045642-TC or TT genotype 
and the rs12975366-TT genotype (95% CI: 0.05, 0.16; p < 0.001).

Conclusion: We report two genetic variants for statin adverse drug reactions (ADRs) that 
are associated with statin efficacy. While the ABCB1 variant has been shown to have an 
association with statin pharmacokinetics, no similar evidence for LILRB5 has been 
reported. These findings highlight the value of genetic testing to deliver precision 
therapeutics to statin users.

Keywords: pharmacogenomics, non-HDL-cholesterol, ABCB1, LILRB5, statins, hyperlipidaemia
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intolerance and statin-induced myalgia. Individuals homozygous 
for the wild Asp247 (TT) genotype were more likely to experience 
elevated CK and LDH levels as well as statin intolerance 
(Dubé et al., 2014; Kristjansson et al., 2016; Siddiqui et al., 2017).

SLCO1B1
Many studies extensively focused on SLCO1B1 polymorphisms 
and their association with statin-induced myopathy 
(Puccetti et al., 2010; Donnelly et al., 2011; Brunham et al., 2012).

The SLCO1B1 rs4149056 (Val174Ala, 521T>C) reduces hepatic 
uptake of statins. Recessive carriers of the variant experience a 
higher rate of ADRs (Link et  al., 2008; Donnelly et  al., 2011). 
SLCO1B1 rs2306283 (Asp130Asn, 388 A>G) is a gain of function 
variant and is associated with statin tolerance (Donnelly et al., 2011).

Cytochrome P450 enzyme: CYP3A4 and 
CYP3A5
Cytochromes P450 is a superfamily of enzymes involved in 
the metabolism of several drugs including statins. Variants in 
CYP3A4 (rs2740574), CYP3A5 (rs776746) have been shown 
to affect statin intolerance (Wilke et al., 2005; Becker et al., 2010).

Statin Response
Statin response is measured by reduction of cholesterol, typically 
LDL cholesterol. Recently, research has determined that non-high-
density lipoprotein (non-HDL) cholesterol rather than LDL 
cholesterol is a better predictor of long-term residual cardiovascular 
risk (CV) risk in statin-treated individuals (Johannesen et  al., 
2021). Calculating non-HDL concentration provides a simple 
way to assess the total amount of pro-atherogenic lipoproteins 
(apolipoprotein B, i.e., apoB). Guidelines from the American 
Heart Association (AHA), European Society of Cardiology (ESC), 
and European Atherosclerosis Society (EAS) indicate using 
non-HDL cholesterol (non-HDL-C) calculated as total cholesterol 
minus HDL cholesterol to estimate the CV risk (Grundy et  al., 
2019; Mach et  al., 2020; Johannesen et  al., 2021).

There remains scepticism around ADRs to statin therapy. 
A recently concluded cross-over trial has found non-specific 
complaints of intolerance, i.e., equivalent rates of adverse effects 
reported, while on statins or placebo (Herrett et  al., 2021). 
However, if ADR and indeed the associated genetic variants 
result in poor compliance or adherence to statin therapy, a 
knock-on effect would be  observed on cholesterol reduction. 
Here, we  examine variants associated with statin ADRs to 
determine if they impact non-HDL cholesterol response in 
the 6 months following commencement of statin therapy. 
We hypothesize that these variants would impact statin efficacy 
by lowering compliance with statin use.

MATERIALS AND METHODS

Study Design
This study utilizes data from two cohorts that are part of the 
Tayside Bioresource, University of Dundee: The Genetics of 
Diabetes Audit and Research in Tayside Scotland (GoDARTS) 

and Scottish Health Research Register and Biobank (SHARE). 
Both cohorts are based in the Tayside Region of Scotland, 
United  Kingdom. Both cohorts have genetic biobanks alongside 
linked electronic health records and community prescribing 
records. All participants in GoDARTS and SHARE provide 
informed consent for their medical records to be  anonymized 
and linked to biobanks for clinical and epidemiological research. 
The cohorts have been used extensively for pharmacogenetic 
research: to establish associations between statin intolerance and 
genetic variants, such as SLCO1B1 and LILRB5 genotypes (Donnelly 
et  al., 2011; Siddiqui et  al., 2017). These cohorts were also used 
in the discovery of the association between variants of the F5 
gene and an increased risk of ADRs to ACE-I therapy (angiotensin-
converting enzyme inhibitors; Maroteau et  al., 2020).

These cohorts comprise a consented bioresource with 
longitudinal follow-up containing complete electronic health 
records from the same local population. Details of the individual 
cohorts have been described elsewhere (McKinstry et al., 2017; 
Hébert et  al., 2018). For the purposes of the current study, 
these cohorts were analyzed collectively as they are from the 
same base population, data are sourced identically and held 
in the same International Organization for Standardization 
27,001 – and Scottish Government accredited secure safe haven. 
This approach substantially improves the statistical power of 
this analysis and overcomes the obstacle faced by most 
pharmacogenetic studies of insufficient power to detect effects.

Study Population
The study period was from 1st January 1990 to 31st January 
2018. Prescribing and clinical data of cohorts were available 
from 78,534 individuals. The data linkage includes basic 
demographics, community prescribing records, biochemistry 
data from the region-wide clinical laboratory, Scottish Morbidity 
Records (SMR), detailing International Statistical Classification 
of Diseases and Related Health Problems (ICD) 9 and 10 
codes for hospital admissions. The use of electronic linkage 
allows access to automatically updated NHS data, which includes 
hospital admissions, laboratory results, and the provision and 
fulfilment of prescriptions. Together these were used to 
characterize statin usage patterns, non-HDL cholesterol response, 
comorbidities such as CV disease, type 2 diabetes.

Study Definitions
Data for non-HDL-C was sourced from biochemistry files. Sex 
and age were determined from demographic data. Type 2 diabetes 
status from the Scottish Care Information – Diabetes Collaboration 
(Scottish Diabetes Survey Monitoring Group, 2011). Major adverse 
cardiovascular events (MACE) were determined using hospital 
admissions data. All prescribing features such as statin type, dose, 
statin switching, duration of therapy, and adherence were 
determined using community prescribing data.

Statin Efficacy Using Non-HDL-C 
Response to Therapy
Baseline non-HDL-C (pre-treatment value) was calculated as 
the nearest value available before statin initiation. The first 
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available non-HDL-C measurement available between 28 and 
180 days after statin initiation was used. The non-HDL-C 
reduction was calculated as the difference between post-statin 
and pre-statin non-HDL-C (mmol/L). Absolute reductions are 
quoted in the text and tables throughout.

Statins
Individuals who changed statin type before the non-HDL-C 
measurement were defined as switchers. Duration of statin 
therapy was defined as the period between the first statin 
prescription and the follow-up non-HDL-C measure. The 
duration of therapy was calculated in days and then divided 
into 28 days to reflect the standard pack size of dispensed 
statin. To account for differences in potency among statin 
types, we  used a simvastatin equivalent daily dose (Maron 
et  al., 2000), and the mean of all doses during the follow-up 
was used as a covariate in the analysis. Any reduction or 
increase of the dose was also identified. Dose reduction 
before the first non-HDL-C reading was used as one of the 
predictors of statin intolerance. The percentage of daily 
coverage (PDC) was used as an indicator of adherence to 
medication, which can also indicate tolerability of statins. 
To do this, the quantity of dispensed pills (using pack size 
information) was calculated. Then the number of days of 
coverage was calculated based on dates of the first and last 
prescribed statins. Finally, using prescribing directions (e.g., 
1/day or 2/day), we  determined if the number of pills 
dispensed was sufficient for coverage over the period of 
study. The formula used has been described and used previously 
(Siddiqui et  al., 2017).

Selection of Statin ADR Variants
Seven SNPs from five different genes were identified through 
recent systematic reviews (Canestaro et  al., 2014; Turner and 
Pirmohamed, 2019; Ward et  al., 2019; Kee et  al., 2020) and 
were selected based on their association with simvastatin and 
atorvastatin ADRs.

In order to detect genotyping errors, all SNPs were tested 
for the Hardy-Weinberg equilibrium. We considered the following 
variants: ABCB1 rs1128503, ABCB1 rs1045642, SLCO1B1 
rs4149056 and rs2306283, LILRB5 rs12975366, CYP3A4 
rs2740574, and CYP3A5 rs776746.

Post hoc, on the basis of the variant effects (dominant, 
recessive, etc.) and their association with non-HDL-C response 
to statins, we  developed a two-SNP unweighted risk score by 
considering risk alleles from both ABCB1 rs1045642 and LILRB5 
rs12975366. There are two levels of this risk score; the protective 
genotypes were grouped into level 0 (individuals with LILRB5 
rs12975366 genotypes CC or TC and ABCB1 rs1045642 genotype 
CC were classified as protected), while individuals with risky 
genotypes were grouped into level 1 (LILRB5 rs12975366 
genotype TT+ABCB1 rs1045642 genotypes CT or TT) and 
were classified as at risk of poor response to statins.

Statistical Methods
Continuous data were presented as a mean and SD; categorical 
data were expressed as counts and proportions. Analyses 

were carried out in the entire study population and then 
was restricted to simvastatin and atorvastatin users only. 
The association of non-genetic covariates with the outcome 
of non-HDL-C response was examined using univariate linear 
regression. Next, the univariate effect of the genetic variants 
with non-HDL-C response was examined in additive, recessive, 
and dominant models to determine the genetic effect model 
based on value of p and in concordance with literature. 
Subsequently, the appropriate genetic effect was examined 
in models adjusted for features of statin intolerance and in 
a model adjusted for all measured potential confounders. 
In the first adjusted model, features of statin intolerance 
were adherence to therapy (PDC was used as surrogate), 
switching to another type of statins, and dose reduction. 
In the second multivariable model, covariates added were 
the average dose of statin, duration of therapy, the diabetic 
status of the participant, a history of MACE, and finally, 
the model was adjusted for baseline level non-HDL-C. 
Analyses were conducted for each variant, with the hypothesis 
that they would be associated with statin response. However, 
these associations are likely to be  confounded by statin 
intolerance and other measured confounders. Therefore, 
we  selected variants that were significant after adjustment 
for all measured confounders. This included testing for 
epistasis and non-additive effects. Given the a priori hypothesis, 
results for SNP-wise association testing were considered 
statistically significant at a 5% level of significance. However, 
a correction for multiple testing (seven SNPs, three genetic 
models resulting in 21 independent test) was applied for 
the two-SNP risk score and results in a threshold of value 
of p < 0.002 for significance.

Guidelines and Guidance STrengthening the REporting of 
Genetic Association Studies (STREGA) were used to report 
this study (Little et  al., 2009). All Statistical analysis was 
performed with SAS statistical software version 9.4 (SAS Institutes, 
Cary, NC, United  States).

RESULTS

A total of 9,401 statin users with genotypic information met 
study inclusion criteria. A population flow chart details the 
definition of the study population and reasons for exclusion 
(Supplementary Figure  1). Briefly, of a total of 37,990 statin 
users, only 19,280 had the necessary baseline and follow-up 
non-HDL-C measured, of which 9,401 had genotype 
data available.

Demographics and Clinical  
Characteristics
At the time of commencement of statin therapy, the mean 
age of the participants was 63 years (SD ± 10.97). Females 
in the cohort constituted 45.3% of the total population 
(Table  1). About 71.4% of participants had type 2 diabetics 
and 18.6% had a history of prevalent CV disease before 
starting statin therapy. The majority of participants were 
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initiated on simvastatin (74.7%) or atorvastatin (19.4%) 
therapy, of which 3.1% switched therapy to another type 
of statin. About 38.6% of cases were prescribed a starting 
dose of 20 mg of simvastatin or an equivalent dose of 
other statins.

Statin Mediated Non-HDL-C  
Response
Pre-treatment non-HDL-C levels were measured at a median 
of 12 days (IQR: 4–35 days) before statin initiation. Post-
treatment non-HDL-C measures were taken at a median 
of 75 days (IQR: 49–112 days) after commencing therapy. 
The mean baseline non-HDL-C level was 4.43 
(±1.19)  mmol/L, and the mean on-treatment change of 
non-HDL-C levels was calculated as an absolute reduction 
of 1.45 (±1.0)  mmol/L. The difference in non-HDL-C levels 
was also calculated as percentage change from pre-treatment, 
where the median percentage reduction was 35.7% 
(IQR = 21.1–45.5%; Table  1).

Non-genetic Predictors of Non-HDL-C 
Response to Statins
Multiple covariates were significantly associated with non-HDL-C 
response to statin therapy; baseline non-HDL-C level was the 
major predictor of non-HDL-C reduction within 6 months of 
commencing statin therapy (beta 0.53 CI: 0.51, 0.54; p < 0.001). 
PDC, a surrogate for adherence to therapy, was also a significant 
predictor of non-HDL-C reduction (beta 0.26 CI: 0.23, 0.28; 
p < 0.001). The significant results of univariate regression of 
non-genetic variables and non-HDL cholesterol response are 
presented in Supplementary Table  1.

Association of Statin ADR Variants With 
Non-HDL-C Cholesterol Response to 
Statins
Minor allele frequencies of the variants were found to be similar 
to a reference white European population (Karczewski et  al., 
2020; Supplementary Table  2). The allele frequencies were in 
Hardy-Weinberg equilibrium for all seven SNPs.

We analyzed the effect of the variants on non-HDL-C 
in recessive, dominant, and additive genetic models, and 
the appropriate model was selected for further analyses 
(Supplementary Table  3). We  examined the association of 
all the ADR variants with statin response in models adjusted 
for all confounders (Table  2). The only variants associated 
with statin response were in ABCB1 rs1045642 (Ile1145Ile, 
3435C>T; Table  3) and LILRB5 rs12975366 (Asp247Gly, 
T>C; Table  4). Other selected variants did not show any 
significant association with change in non-HDL-C response 
in main effects or adjusted models (Supplementary  
Tables 4–9).

ABCB1 and LILRB5 Effects
We found that the ABCB1 rs1045642 (Ile1145Ile, 3435C>T) 
genotype as a recessive trait was associated with a 
significant reduction in non-HDL-cholesterol levels (beta 
0.09 CI: 0.04, 0.14; p = 0.001). In models adjusted for 
features of statin usage, baseline non-HDL-C, type 2 
diabetes, CVD, the outcome estimates were still significant. 
Individuals homozygous for the minor (C) allele had 
0.08 mmol/L greater reduction of non-HDL-C (CI: 0.03, 0.13; 
p = 0.003) compared to carriers of the (T) allele (Table  3). 
The effect of the LILRB5 rs12975366 variant was found to 
be  dominant. In an adjusted model, carriers of (C) allele 

TABLE 1 | Demographic and clinical descriptions of the study population.

Variables First measurement within 6 months post-statin 
therapy (n = 9,401)

Simvastatin and atorvastatin users (n = 8,843)

Age at starting therapy, mean (SD) 63.06 (10.97) 63.03 (11.01)
Sex
 Female, n (%) 4,262 (45.3) 4,023 (45.5)
BMI kg/m2, (n = 8,107), mean (SD) 30.49 (6.06) 30.49 (6.08)
Pre-statin non-HDL-C, mmol/L mean (SD) 4.43 (1.19) 4.42 (1.19)
Post-statin non-HDL-C, mmol/L mean (SD) 2.98 (1.03) 2.94 (1.01)
Mean absolute reduction in non-HDL-C, mmol/L (SD) 1.45 (1.04) 1.47 (1.04)
Median percentage reduction of non-HDL-C, % (IQR) 35.7 (21.1–45.5) 36.5 (22.4–45.9)
The first statin prescribed
 Simvastatin, n (%) 7,020 (74.7) 7,020 (79.4)
 Atorvastatin, n (%) 1,823 (19.4) 1,823 (20.6)
Starting Simvastatin equivalent dose, mg (%) 20 (38.6) 20 (39.8)
Statin switchers before the measurement, n (%) 294 (3.1) 268 (3)
Mean duration of statin therapy/28 days, periods (SD) 2.96 (1.43) 2.96 (1.43)
Records of dose change before measurement
 Dose reduction 4,589 4,224
 Dose increase 5,868 5,393
Mean adherence (SD) 1.54 (0.79) 1.54 (0.78)
Type 2 diabetes mellitus
 Yes, n (%) 6,715 (71.4) 6,285 (71.1)
History of MACE
 Prior to statin therapy, n (%) 1,749 (18.6) 1,603 (18.1)
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TABLE 4 | Effect of LILRB5 (rs12975366) with the absolute reduction in non-
HDL cholesterol to all statin treatment.

Variables Effect estimate (95% CI)

Univariate 
analysis 
(Model 1)

Model 2 Model 3

LILRB5 
rs12975366

0.04 
(−0.01,0.08)

0.04 
(−0.01,0.09)

0.05 
(0.01,0.08)*

Percentage of 
daily coverage

0.27 
(0.24,0.30)**

0.21 
(0.19,0.24)**

Switching −0.31 
(−0.43,−0.19)**

−0.25 
(−0.36,−0.14)**

Dose reduction −0.08 
(−0.12,−0.04)**

−0.18 
(−0.22,−0.14)**

Mean dose - 0.006 
(0.005,0.007)**

Duration of statin 
therapy

- −0.04 
(−0.06,−0.03)**

Type 2 diabetes - −0.12 
(−0.16,−0.08)**

History of mace - −0.04 
(−0.09,0.01)

Non-HDL-C 
(baseline)

- 0.47 
(0.45,0.49)**

Model 1: univariate effect, Model 2: features of statin intolerance, and Model 3: features 
of statin intolerance and important comorbidities. *p < 0.05; **p < 0.005.

at rs12975366 had a significantly greater reduction of 
non-HDL-C (beta 0.04 CI: 0.004, 0.08; p = 0.03) compared 
to non-carriers (Table  4).

We tested the interaction between variants in ABCB1 and 
LILRB5 in a model also adjusted for the main effect of 
these variants. The interaction term was found to 
be  significant (p = 0.001). The most significant effect was 
observed in carriers of both variants (beta 0.14, CI: 0.08, 
0.21; p < 0.001) compared to non-carriers. Based on the 
significant interaction, we  developed a two-variant risk score 
by combining the recessive ABCB1 and dominant LILRB5 
variants. Carriers of both ABCB1 (CC) variant and the 
protective variants for LILRB5 (C allele) carriers had 0.1 mmol/L 
(CI: 0.05, 0.16; p < 0.001) reduction in non-HDL-C compared 
to non-carriers of the ABCB1 and LILRB5 variants 
(Supplementary Table 10). The combined effect of the ABCB1 
rs1045642 and the LILRB5 rs12975366 variants was 1.61% 

of non-HDL-C reduction. In comparison, the expected additive 
effect would be  0.95% (Table  5 and Figure  1), suggesting 
that the genetic effects are synergistic. Since ABCB1 is involved 
in the pharmacokinetics of simvastatin and atorvastatin only, 
we  restricted our analyses to individuals prescribed those 
two statins. We  found that the main effect of the two-SNP 
risk score was strongest in subjects prescribed simvastatin 
(beta 0.16, p < 0.001, n = 6,411; Supplementary Table 11) and 
slightly weaker in those prescribed either simvastatin or 
atorvastatin (beta 0.14, p < 0.001, n = 8,070; Table  6). In this 
sub-group, the two-SNP risk score in an adjusted model 
improved non-HDL-C response by 1.82%, whereas the expected 
additive effect would be  1.23% (Table  5), confirming the 

TABLE 2 | Univariate effects of statin ADR variants on non-HDL-C reduction.

Gene/SNP Genetic effect Statin specificity p (adjusted 
model)*

ABCB1/rs1128503 Dominant Simvastatin/Atorvastatin 0.278
ABCB1/rs1045642 Recessive Simvastatin/Atorvastatin 0.017

SLCO1B1/rs4149056 Recessive Simvastatin/Atorvastatin 0.56
SLCO1B1/rs2306283 Dominant Simvastatin/Atorvastatin 0.380
LILRB5/rs12975366 Dominant Not specific 0.03
CYP3A4/rs2740574 Recessive Simvastatin/Atorvastatin 0.140
CYP3A5/rs776746 Dominant Simvastatin/Atorvastatin 0.534

*Model adjusted for all measured confounders.

TABLE 3 | Effect of ABCB1 (rs1045642686 3435C>T) on the absolute reduction 
in non-HDL-cholesterol in simvastatin and atorvastatin users.

Variables Effect estimate (95% CI)

Univariate 
analysis (Model 1)

Model 2 Model 3

ABCB1 rs1045642 0.09 
(0.04, 0.14)**

0.08 
(0.03, 0.13)**

0.05 
(0.01, 0.1)*

Percentage of daily 
coverage

- 0.27 
(0.25, 0.30) **

0.22 
(0.19, 0.24)**

Switching - −0.21 
(−0.35, −0.08)**

−0.21 
(−0.33, −0.09)**

Dose reduction - −0.25 
(−0.36, −0.13)**

−0.18 
(−0.27, −0.08)**

Mean dose - - 0.006 
(0.005, 0.007)**

Duration of statin 
therapy

- - −0.04 
(−0.06, −0.03)**

Type 2 diabetes - - −0.13 
(−0.17, −0.09)**

History of mace - - −0.04 
(−0.09, 0.01)

Non-HDL-C 
(baseline)

- - 0.46 
(0.45, 0.48)**

Model 1: univariate effect, Model 2: features of statin intolerance, and Model 3: features 
of statin intolerance and important comorbidities. *p < 0.05; **p < 0.005.

TABLE 5 | Two-variant risk score for percentage reduction in non-HDL 
cholesterol.

Statin type

Effect estimate (95% CI)

LILRB5 
rs12975366 

n = 8569

ABCB1 
rs1045642 
n = 9256

Two-SNP 
risk score 
n = 8569

Percentage 
reduction of 
non-HDL-C 
in adjusted 
models

All statins 0.45 
(−0.45,1.35)

0.5 
(−0.5,1.5)

1.61 
(0.35,2.87)**

Simvastatin + atorvastatin 0.44 
(−0.48,1.35)

n = 8070

0.79 
(−0.25,1.8)

n = 8709

1.82 
(0.54,3.11)**

Models shown were adjusted for all features of statin intolerance, sex, age, BMI, daily 
dose, duration of therapy, switching therapy, prevalent type 2 diabetes, history of 
MACE, and baseline non-HDL cholesterol.**p < 0.005.
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synergistic nature of the interaction in adjusted and statin-
specific models.

DISCUSSION

This study, leveraging detailed genetic, clinical, and drug 
dispensing data from nearly 9,000 statin users, finds that 
two statin ADR variants in ABCB1 and LILRB5 are associated 
synergistically with non-HDL-cholesterol response to statin 
therapy. Together, individuals homozygous for the C allele 
in rs1045642 ABCB1 and carriers of the C allele in rs12975366 
LILRB5 were associated with 0.14 mmol/L greater reduction 
of non-HDL-C in response to simvastatin or atorvastatin 
therapy compared to those carriers of both the T allele in 
rs1045642 and those homozygous for the T allele in 
rs12975366. In main effects analyses, the actual observed 
effect was greater than the expected additive effect of these 
two variants. This effect was more pronounced when 

considering the percentage reduction of non-HDL-C as 
opposed to the absolute difference. The expected additive 
effect would be  1.23%, whereas the observed effect was a 
1.82% better reduction in variant carriers. Crucially, there 
was no significant association between these variants and 
baseline non-HDL-cholesterol or the duration of 
statin therapy.

Although, some previous studies have found a higher 
post-treatment reduction of LDL-C in individuals carriers 
of the T variant genotype at rs1045642 (Kajinami et  al., 
2004; Kadam et  al., 2016), results were inconclusive and a 
metanalysis indicated that CC variant was associated with 
decreases in LDL-C levels upon statin treatment when compared 
to the TT variation (Su et al., 2015). We report that individuals 
with the homozygous CC variant had 0.09 mmol/L higher 
reduction of non-HDL-C in comparison to those carriers 
of the T allele.

LILRB5 rs12975366 did not significantly predict the absolute 
non-HDL-C reduction univariately, but controlling for 

FIGURE 1 | Synergistic effect of LILRB5 and ABCB1 two-variant risk score on percent reduction of non-HDL cholesterol in simvastatin and atorvastatin users. The 
observed effect was a reduction of 1.82% whereas the expected effect was 1.23%.
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confounders and crucial covariates including baseline 
non-HDL-C in multiple regression models allowed us to 
estimate a less biased association between the Asp247Gly 
variant and the absolute reduction of non-HDL-C level. The 
genotype significantly predicted the percentage reduction of 
non-HDL-C in both univariate and adjusted models. 
We  hypothesize that together carriers of the C allele of 
rs12975366  in LILRB5, which has been shown to increase 
statin tolerance, and the CC genotype of rs1045642 in ABCB1, 
which impairs statin excretion from the liver leading to a 
higher hepatic concentration, result in an enhanced response 
to the drug.

A limitation of the study is that over 94% of the population 
were simvastatin or atorvastatin users. Therefore, the results 
can only be  generalizable to populations prescribed either of 
these drugs. Since these two statins share pharmacokinetic 
pathways, particularly since they are both substrates for the 
hepatic efflux transporter ABCB1, the results are likely to apply 
to users of either statin. However, the effects observed for the 
LILRB5 variant are not specific to the type of statin as the 
original effects of the variant were observed in users of 
simvastatin, atorvastatin, and rosuvastatin and since this is 
not a pharmacokinetic variant. Further analyses in large 
observational cohorts are necessary to understand the relationship 
of statin ADR variants with other statins such as rosuvastatin 
and pravastatin.

Furthermore, these results would need to be  replicated in 
post hoc analyses of randomized clinical trials and in 
pharmacokinetic studies in order to assess the value of 
clinical implementation.

Additionally, due to insufficient high-quality genetic data, 
a polymorphic variant in ABCB1 (rs2032582) was not examined 
in this study. This variant forms a haplotype along with the 
two other ABCB1 variants examined in this study. However, 
as documented, the haplotype effect is largely driven by the 
variant, we  have examined, rs1045642.

The lack of association with SLCO1B1 is surprising as it 
is the best-documented statin ADR variant. A SLCO1B1 risk 
score was also created based on the described haplotype 

effect by Donnelly et  al. (2011), who also did not find the 
genetic risk score to be  associated with LDL-c response in 
adjusted models. This gene risk score was also not associated 
with differential response to statins. Similar to our findings, 
no significant differences in lipid-lowering effect between 
different SLCO1B1 genotypes were reported in different studies 
including genome-wide association studies conducted in white 
Europeans (Turner and Pirmohamed, 2019; Chen et al., 2020). 
In a meta-analysis of 13 studies of the association between 
SLCO1B1 polymorphisms and the effectiveness of statin in 
lipid reduction, it was concluded that both 521C and 388G 
do not affect the lipid-lowering effects of statins. However, 
in two different sub-analysis one for subjects on a long term 
treatment of statins (>6 months), and another for individuals 
of non-Asian ethnicities, results showed that those with the 
wild variant TT had a significant more LDL reduction 
compared with CC and TC variants (Dai et  al., 2015). 
Similarly, no significant association between haplotype and 
mean percentage reduction in lipid and lipoprotein levels 
after simvastatin treatment for 6 months was reported in a 
study by Sortica et  al. (2012).

A potential explanation for this lack of association is that 
the total hepatic exposure to a statin may not be significantly 
decreased by the change of hepatic uptake in the carriers 
of the alternative allele and that the effect is more significant 
on plasma exposure. Therefore, carriers of the minor allele 
have an increased risk of ADR without a remarkable change 
in efficacy. Hence, the association between the SLCO1B1 
genotype and ADR is more consistent than its association 
with the cholesterol-lowering effect of statins. It is also possible 
that hepatic concentration of statin and statin metabolites 
for SLCO1B1 variant carriers is enough to show a lipid-
lowering effect at higher daily doses and that the effect of 
the genetic variant may only appear at lower daily doses. 
Donnelly et  al. (2011) reported a significant association of 
rs4149056 (Val174Ala) with a higher incidence of statin 
intolerance and lower LDL-C response. However, when adjusted 
for features of statin intolerance, the effect was non-significant. 
Further, once statin-intolerant individuals were removed from 

TABLE 6 | Effect of LILRB5 and ABCB1 two-variant risk score on the absolute reduction of non-HDL cholesterol in simvastatin and atorvastatin users (n =8,070).

Variable Effect estimate (95% CI)

Univariate analysis (Model 1) Model 2 Model 3

LILRB5 rs12975366 (CC or TC) + ABCB1 
rs1045642 (CC) vs. LILRB5 rs12975366 
(TT) + ABCB1 rs1045642 (CT or TT)

0.14(0.08,0.21)** 0.13(0.07,0.19)** 0.10(0.04,0.15)**

Percentage daily coverage - 0.27(0.24,0.30)** 0.22(0.19,0.24)**
Switching - −0.31(−0.44,−0.18)** −0.24(−0.35,−0.13)**
Dose reduction - −0.06(−0.11,−0.02)* −0.15(−0.19,−0.12)**
Mean dose - - 0.006(0.005,0.007)**
Duration of statin therapy - - −0.04(−0.06,−0.03)**
Type 2 Diabetes - - −0.12(−0.17,−0.08)**
History of MACE - - −0.04(−0.09,0.01)
Non-HDL-Cat baseline - - 0.48 (0.46,0.49)**

Model 1: univariate effect, Model 2: features of statin intolerance, and Model 3: features of statin intolerance and important comorbidities. *p < 0.05; **p < 0.005.
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the analysis, the association between SLCO1B1 genotypes 
and LDL-C response remained non-significant. This result 
highlights the possibility that variants in this gene have a 
non-pleiotropic effect on statin ADRs (Donnelly et al., 2011).

A post hoc power analysis shows that the study is sufficiently 
powered to detect non-HDL-C changes as small as 0.07 mmol/L 
for genetic variants with MAF greater than 0.42. Whereas, for 
variants such as rs4149056 (Val174Ala; MAF = 0.16) the minimum 
detectable difference would be  0.2 mmol/L. Therefore, it is 
possible that this study is insufficiently powered to detect effects 
for rs4149056 (Val174Ala) variant in SLCO1B1 or for 
rs2740574  in CYP3A4.

It is also likely that individuals who were prescribed low 
doses of statins do not have a high non-HDL-cholesterol 
lowering requirement. While, we  have adjusted for dose, 
history of MACEs, and baseline non-HDL-C, there may 
still be  residual confounding diluting the genetic effects 
we  report. In our data, the median simvastatin equivalent 
daily dose was 20 mg, and only 5% of patients started on 
a therapeutic dose less than 10 mg daily, which implies that 
our analysis lacks the statistical power to detect differences 
in these groups.

The study demonstrates real-world prescribing, behaviors, 
and effects. The duration of follow-up allows us to avoid 
heterogeneous effects associated with differential lengths of 
statin use. With longer follow-up, other confounding factors 
arise – changes to, e.g., diet, exercise, changes to statin type, 
and dosing regimens. Some of these are hard to measure. It 
also reflects the first clinical interaction after the commencement 
of statin use, where a medical professional assesses the observed 
efficacy of the statin. This time point is crucial as 66% of the 
population in our cohort is assessed by the end of these 
6 months.

CONCLUSION

These results highlight the value in genotyping statin ADR 
variants, as they affect tolerance to statins and statin efficacy. 
Even though, some of these variants have proven evidence of 
association with statin ADRs (e.g., variants in SLCO1B1), genetic 
testing is still limited. Li et  al. (2014) compared a group of 
genotyped patients to a non-genotyped group. They found a 
significantly greater reduction in LDL-C within the genotyped 
group compared to non-genotyped. The same group also had 
more new statin prescriptions as well as better adherence. 
Interestingly in this study both carriers and non-carriers of 
the risk alleles benefited from genetic testing, which may suggest 
that genotyping may even provide benefits to the patient 
regardless of the test result.

Our two-SNP risk score was associated with a 1.82% change 
in statin treated individuals. Oni-Orisan et  al. (2018) recently 
demonstrated that doubling of statin dose was associated with 
an approximately 5–10% reduction in non-HDL cholesterol. 
Thus, our observed reduction due to the two-SNP risk score 
is equivalent to a 36–73% increase in statin dose. With the 
polemics around the nocebo effect in statin-treated individuals 

(Herrett et  al., 2021), such findings carry weight as they 
demonstrate an effect on statin efficacy independent of 
poor adherence.
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