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ABSTRACT

The study of exercise physiology involves the integration of the physiology of 

many systems. The determination of athletic performance is an amalgamation of 

yet more factors drawn from not only physiology, but also psychology and 

biomechanics. The subject of this thesis incorporates various aspects of 

respiratory and exercise physiology (control of breathing, dyspnea, perceived 

exertion, respiratory mechanics, warm-up, hypoxemia, muscle physiology, etc.) 

that it would not be appropriate to discuss in a comprehensive manner. Thus, the 

approach that has been adopted in the introduction is to present only a distillation 

of the most relevant and contemporary research in these areas, in order to provide 

the scientific background for the research chapters that follow.

Even though it is traditionally thought that ventilation does not limit exercise 

performance in the healthy adult, in recent years it has been demonstrated that 

individuals with a high work capacity may be prone to respiratory limitations. 

Respiratory limitations may arise in terms of gas exchange, respiratory mechanics, 

energetics of the respiratory muscles, or because of the development of 

respiratory muscle fatigue.

During rowing the combination of the entrained breathing pattern, the mechanical 

limitations of the pulmonary system and the additional static supportive work for 

the upper body, place high demands upon the respiratory muscles. These 

demands predispose the respiratory muscles to fatigue despite of the high fitness 

levels observed in rowers. Due to the various implications that respiratory muscle 

fatigue can have upon rowing performance, the aim of this thesis will be: a) to 

investigate the incidence of respiratory muscle fatigue during rowing, b) to reduce 

respiratory muscle fatigue by means of inspiratory muscle training and a specific 

respiratory warm-up and c) to evaluate the effect of such interventions upon 

rowing performance.
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Chapter One

Introduction



1-1. Breathing During Rowing

An appreciation of the pattern of breathing adopted in rowing requires an 

explanation of the total ventilatory response and the factors that influence the 

depth and frequency of breathing. These factors can be divided into two 

categories. The first consists of factors that influence the total ventilation and are 

mainly dependent on metabolism, the gas exchange efficiency, and mechanisms 

for the control of breathing. The second category consists of mechanical factors 

that tend to modify the pattern of breathing with certain constrains arising mainly 

from resistive and elastic forces and the capacity of the respiratory muscles to 

overcome those impedances.

1-1.1 Factors Contributing to Ventilation

Metabolism

Energy requirements

The majority of rowing competitions are raced over 2000 metres, although during 

many locally organised Head of the River events rowers may compete over longer 

distances. Depending on the type of boat, a typical race may require between 220 

and 250 strokes to complete, with the forces being exerted on the oar handle for 

each stroke being the equivalent of 400-500 N. As a consequence rowers require 

very high muscular strength and power in order to sustain maximal effort during a 

race which typically lasts between 5.5 to 7.5 minutes.

A study which used actual rowing times (Secher, 1983) calculated the metabolic 

cost to be about 6.4L (Vm in , assuming a constant mechanical efficiency of 22 

percent. Rowing a six-minute “all-out” effort on an ergometer has been used as a 

simulation of rowing competition (Hagerman, 1971; Secher, 1982). Even though, 

the ideal method of physiological testing is to measure oxygen consumption on the
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water, using a Douglas bag (Jackson & Secher, 1976; Chenier & Leger, 1991) ora  

modern telemetric oxygen consumption monitor (Kawakami et al, 1992), a 

kinematic comparison of rowing and rowing ergometry (Lamb, 1989) has shown 

that the dominant movements of the legs and trunk are similar for the two types of 

activity and ergometry yields very similar aerobic power values to those obtained 

on the water (Martindale & Robertson, 1984).

During ergometer rowing, Droghetti et al (1991) calculated the metabolic cost of a 

6 min all-out effort with 33 strokes/min, and an average work output of 410 watts, 

to be approximately 7.0 L CVmin.

Oxygen uptake (V02) requirements

Over the course of a race, elite rowers have been found to exercise at what may 

be called “severe steady state”, with the majority of work performed at between 95 

and 98% of maximal aerobic capacity. In male national level athletes, a V02 of up 

to 6 L/min and up to 6.5 L/min in elite male athletes can be expected. For female 

athletes, the corresponding values are about 4 L/min and 4.4 L/min, respectively.

The racing pattern commonly used in rowing is unique. This is depicted by a short 

sprint of about 40 seconds at the start, requiring a large energy turnover, placing 

large demands on the anaerobic energy system, and a high stroke cadence of 

about 40-50 strokes per minute. During the middle part of the race the stroke rate 

is reduced to approximately 35 strokes per minute before increasing again over 

the last 500 metres. A physiological explanation for the initial spurt performed is 

given by Secher et al (1982) who suggest that the rate of increase in oxygen 

uptake at the onset of exercise is highest the greater the work load. Accordingly, 

the total oxygen uptake and work output during a given period of exercise is larger 

when an initial spurt is performed than when one attempts to keep exercise at an 

average intensity throughout a race (Secher et al, 1982). Oxygen uptake reaches
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its highest value after 90 sec and balances out at a level that shows only a slight 

decrease during the remaining 4 minutes.

Carbon dioxide (VC02) Production

The VCOz is significantly above the V02 from the second minute onwards and that 

results to a respiratory exchange ratio (RER) which exceeds 1.15. Up to the fourth 

minute, VC02 increases exponentially and thereafter exhibits a slight, almost linear 

increase. Towards the end of the maximal test simulating racing conditions, VC02 is 

more than 0.5L/min higher than the V02 (Hartmann, 1993).

Gas Exchange Efficiency

The alveolar ventilation (VA) required depends on the level of the arterial tension 

of carbon dioxide (Pac02) which is to be regulated. At any set point of PaC02 the

demands for VA increase as a linear function of VC02. But a lower Pacc>2 set point 

would require a higher VA for the same VC02. The increase in ventilation needed to 

reduce PaCOj by a particular amount is progressively greater the higher the VCOz

(Whipp & Ward, 1998). Therefore elite rowers have to increase their VA 

appreciably more than moderately fit rowers with lower achievable metabolic rates 

and related VC02.

The anatomical and alveolar dead space contribute to the differences between 

minute ventilation (v E) and alveolar ventilation. The ratio of dead space to the 

tidal volume (Vq/Vt) is an index of ventilatory efficiency with respect to gas 

exchange (Jones, 1991). The high Vt achieved by rowers decreases VdA/t to a 

value as low as 5% despite the actual increase of the dead space during exercise
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(Whipp & Ward, 1998). A low V dA/t requires less vE to maintain a given level of 

PaCOj as work rate is increased.

Minute Ventilation (v E)
The dynamic characteristics of the VE response to a high level of exercise at which 

a sustained lactic acidocis ensues are complex, non-linear, and often a steady- 

state is unattainable. For moderate intensity exercise the C 0 2 exchange can be 

considered the dominant determinant of the magnitude of exercise hyperpnea, but 

during rowing competition the metabolic acidosis leads to additional vE drive that 

provides respiratory compensation for the acidosis. Additionally, circulating 

catecholamines, high body temperature and increased blood osmolarity may also 

contribute to the hyperventilation seen at these high work rates. In addition, 

increases in plasma potassium have been related to hyperpneic responses during 

rowing (Newstead, 1990).

Very large respiratory minute volumes are developed during competition, typically 

greater than 200 L/min and sometimes as high as 250-270 L/min(McKenzie & 

Rhodes, 1982). Performance capacity is more favourable for rowers with large 

total lung and vital capacities (Donnelly et al, 1991). The importance of initial 

selection of future rowers is suggested, since intensive training does not increase 

total lung capacity or vital capacity once adult stature has been attained (Danuser 

& Buhlman, 1983).

Some reports suggest that in rowers the ventilatory response to exercise is usually 

characterised by a low ventilatory equivalent (VE/V^XMahler, 1991a; 1991b;

Secher, 1983) presumably because the rower maintains a cramped body position 

during the initial or catch phase of the stroke, thus impairing normal excursion of 

the diaphragm (Cunningham, 1975). However, earlier reports suggest that 

ventilatory equivalents for rowers equal or exceed those for most other endurance 

athletes (Hagerman, 1972; 1975; 1975a; 1975b; 1984).

5



These discrepancies suggest, as argued by Whipp & Ward (1991), that inter- and 

intra-individual variations in the levels of RER, the set point for PaC(V and the

efficiency of the lung (Vd/Vt), can require levels of minute ventilation (vE) for a 

particular work rate that vary as much as four times. They also suggest that vE 

should be measured directly and not predicted. In this respect we site previous 

data describing the pattern of the ventilatory response to simulated rowing 

ergometry (Hartmann, 1993). During the 6 min all-out rowing VE rises 

exponentially until the third minute. At this point the rate of increase slows down, 

but nevertheless, it continuous to increase until the end of the test (Hartmann, 

1993).

1-1.2 Mechanical Factors: Impedances to Breathing

Determinants of Mechanical Breathing Pattern

The v E and the pattern of breathing are the result of the pattern of respiratory 

muscle contraction acting on the mechanical properties of the respiratory system. 

The extent of the tidal volume is determined by the size of the lungs, and both 

inspiratory and expiratory times are influenced by maximum airflow. The lungs of 

rowers reflect their large bodies. Vital capacities up to 9.1 L have been recorded 

(Secher, 1983). Maximal V j during simulated competitive rowing average ~55% of 

vital capacity (Siegmund et al, 1999), which is very close to the asymptotic plateau 

described by Hey (1966).

In the Hey plot, the relationship between VT and VE is expressed graphically in 

terms of two straight lines, and it depicts the VT increasing up to an asymptote of 

about ~60% of vital capacity, above which point increases in VE are mainly 

achieved by increases in breathing frequency. Inspiratory flow rate is limited
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primarily by the ability to generate inspiratory muscle pressure (Pmus). In contrast, 

expiratory flow rate is limited by airway mechanics, not the ability to generate 

expiratory pressure. Peak expiratory flow rates reach values of 15 L/sec in elite 

male competitors, but some of these individuals also show a plateau in expiratory 

flow rates suggestive of airway collapse (Carles etal, 1980; de Swiniarski, 1990; 

Steinacker et al, 1993). The net dynamic pressure resulting from the contraction of 

all the inspiratory muscles (Pmus) can be calculated by the following equation:

Pmus = Pel "*■ Pres " Ppi

where Pei is the pressure used to overcome chest wall elastance , Pres is the 

pressure used to overcome resistance and Ppi is the pleural pressure (Younes and 

Kivinen, 1984). Ppi has frequently being used as an index of net inspiratory muscle 

pressure (Pmus) by ignoring Pei and Pres. However, these two components can 

make up a significant fraction of Pmus in cases where compliance of the chest wall 

is reduced and resistance due to increased flow rates is increased.

A study investigating the influence of heavy rowing work on the lungs of female 

rowers suggested that female rowers have a higher specific static and dynamic 

lung compliance and a lower recoil pressure at functional residual capacity as 

compared with other female athletes or male rowers (Biersteker et al, 1986). The 

physical stress on the thorax during rowing is not alike for women and men. In 

contrast to men, women have to contract additional muscle groups to stabilise 

their longer trunk during the drive phase of the stroke (Hoske, 1953). For the same 

body height, women have a lower fat-free mass and a greater trunk length than 

men. This makes their trunk less stable as compared with men. The extra trunk 

length of about 2 cm is located in the abdominal region for reproductive purposes. 

In activities where the trunk is used as a lever for large forces women have to 

fixate the diaphragm and the abdominal muscles. Measurements of 

transpulmonary pressure during rowing have indeed shown an intrathoracic
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pressure rise during the pull phase of the rowing stroke in female rowers, but not 

in male rowers (Biersteker etal, 1986).

The reduced lung elastance was interpreted as being responsible for the 

significant expiratory flow limitation observed in the female subjects of Biersteker 

et at, (1986). A similar reduction in lung elastance, but to a lesser degree, was also 

present in the male subjects of Steinacker etal, (1993). An expiratory flow 

limitation results in a dynamic hyperinflation of the lungs which a) increases the 

elastic work and b) reduces the mechanical efficiency of the respiratory muscles 

by affecting their length-tension relationship and c) by combining the two previous 

points, potentially induce respiratory muscle fatigue and dyspnea.

Entrainment

Entrainment or synchronisation between limb movements and breathing pattern is 

commonly observed in exercising humans and quadrupeds (Asmussen, 1964; 

Bramble & Carrier, 1983). In humans, entrainment has been reported during 

cycling, running and rowing (Bechbache & Duffin, 1977; Kohl etal, 1981; Paterson 

et al, 1986; Szal & Schoene, 1989) and, although the exact “stimulus” for 

entrainment remains obscure, several factors are associated with its occurrence. 

Contraction of the thoracic musculature is required both for respiration and for 

stabilisation of the trunk during locomotion. Consequently, it is important that 

breathing and locomotion are synchronised so that the one does not interfere with 

the other (Bramble & Carrier, 1983). The physiological benefit from such coupling 

could be an improvement in the efficiency of the respiratory muscles, possibly 

improving gas exchange and deterring the development of diaphragmatic fatigue 

(Johnson et al, 1993), or reducing respiratory sensation. Indeed, locomotion may 

influence the efficiency of respiratory activity or conversely, respiratory muscles 

may modulate locomotory functions.

There are three locomotory-associated biomechanical forces, that have been 

identified in horses, 1) visceral piston movement, 2) foot impact, 3) lumbosacral
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flexion and extension. However, their contributions on human respiratory patterns 

have not been quantified (Bramble, 1989). The impact of abdominal compressive 

forces, secondary to lumbosacral flexion and extension, on breathing patterns has 

been examined in studies of elite rowers. The cramped body position assumed by 

the rower at the start of the rowing stroke has been thought to impair 

diaphragmatic excursions (Cunningham etaI, 1975), and that was expected to 

affect the pattern of breathing adopted by the rowers. However, Siegmund et al 

(1999) suggested that a greater limitation of diaphragmatic function exists in the 

finish position than in the catch. This limitation was attributed to the transient 

abdominal pressure induced by co-contraction of the diaphragm and abdominal 

muscles at the finish to stabilise the upper body. This was supported by Manning 

et al (1998) who reported that expiring during the drive phase creates a higher 

intra-abdominal pressure at the mid-drive position. They suggest that the high 

levels of shear and compression to which the lower lumbar vertebrae are exposed 

may be partially compensated by the high intra-abdominal pressure. A structural 

manifestation of what is essentially a Valsalva manoeuvre is the cardiac 

hypertrophy found in rowers (Secher, 1993; Clifford etal, 1994).

Steinacker et al (1993) studied oarsmen performing incremental rowing ergometry. 

They found that as work intensity increased, rowers shifted from a 1:1 to a 2:1 

breath/stroke ratio. They concluded that this transition was due to pulmonary 

mechanical constraints. As the demand for tidal volume increased with increasing 

work intensity, breathing efforts encroached upon the flat portion of the pulmonary 

compliance curve. Hence, a greater portion of the negative intrapleural pressure 

change is used to overcome pulmonary elastic work. However, although the 

transition from a 1:1 to a 2:1 ratio circumvented the mechanical limitation of lung 

distension during inspiration, the respiratory system was now confronted with a 

different mechanical constraint, that of expiratory flow limitation.
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Interestingly, given that such mechanical limitations developed, one would have 

predicted that the onset of inspiration relative to the stroke cycle would have been 

tightly regulated. This was specifically examined by Mahler et al (1991a), who 

studied the breathing pattern of elite oarswomen. They found that, whereas the 

rowers consistently entrained breathing and stroke frequencies 1:1 or 2:1, 

considerable variability in the onset of inspiration during the rowing cycle occurred. 

Some rowers initiated inspiration prior to the “catch” or start of the cycle, some 

inspired at the point of the catch, and others inspired at the finish of the stroke 

cycle. Thus, despite the development of a significant biomechanical limitation, 

optimisation of the onset of either inspiration or expiration was not apparent. A 

possible explanation for this finding may be the incremental nature of the rowing 

protocol used and the variable level of rowing skill and experience of the subjects 

used.

In a resent study (Siegmund et al, 1999) investigating entrainment during a 

simulated 2,000m race, rowers were found to breathe at similar times in the stroke 

cycle. Inspiration occurred most frequently during the first 40% of recovery, 

followed by expiration during the latter part of recovery. It was also suggested that 

there are advantageous times in the stroke for large inspired and expired volumes 

and rowers appeared to be taking advantage of them. Breaths are taken at times 

where muscle synergy produces larger volumes for a given amount of respiratory 

work, or alternatively, the same volume for less respiratory work.

1-1.3 Conclusions

The available data support the behavioristic approach to breathing in exercise 

advocated by Wallace Fenn (1963). Even though it has long been recognised that 

the breathing pattern is being optimised, the variables being minimised are 

uncertain. Fenn’s main point was that the breathing pattern is modified in order to 

achieve the greatest comfort. It seems that during competitive rowing the support 

of external work is far more important than achieving greater comfort. Even though
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previous reports speculated that breathing drives locomotion during rowing, recent 

findings support the theory that locomotion drives ventilation (Siegmund et al, 

1999).

From the foregoing it is also evident that there is a discrepancy in the literature as 

to whether rowers hypoventilate, due to the mechanical constraints secondary to 

the entrained breathing pattern, or develop an appropriate hyperventilatory 

response during simulated rowing. In a recent study, Dempsey et al ( 1998) 

suggested that vE of female subjects is increased when breathing a Helium 

mixture (HeC>2) during high intensity exercise due to a reduction in expiratory flow 

limitation. These data provide evidence that even relatively small amounts of 

expiratory flow limitation have an inhibitory effect-acting via reflex feedback 

inhibition from narrowed airways- on the magnitude of the ventilatory response 

during exercise in women. Even though rowing was not the exercise modality used 

in the above study, it suggests that a similar inhibition of the ventilatory response 

exists during rowing when expiratory flow limitation occurs. The forgoing data also 

highlight the importance of breathing in rowipg. The following section will examine 

evidence for an influence of ventilatory factors upon exercise tolerance

1-2 Ventilatory Factors Limiting Exercise Tolerance

The following section presents a brief presentation of the pathways through which 

the function, or dysfunction, of the respiratory pump can directly, or indirectly, 

affect exercise tolerance. Factors that may limit exercise tolerance include the 

cardiovascular consequences of exercise hyperpnea, the exercise-induced arterial 

hypoxaemia, the exercise-induced respiratory muscle fatigue and the dyspneic 

sensations of heavy exercise
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1-2.1 Cardiovascular Consequences of Exercise Hyperpnea 

Oxygen Cost Associated With Exercise Hyperpnea

The cardiovascular and pulmonary systems, which support the muscle-tissue 

requirements for gas exchange and acid-base regulation, themselves require 

increased blood flow and gas exchange. At high work rates, a progressively 

greater component of total body energy exchange is required to “support" these 

systems.

The increased elastic and resistive work of rowing hyperpnea, described 

previously, not only affects the breathing pattern but also increases respiratory 

muscle V02 (McCool et al, 1986). Additionally, it is likely that extra work is 

performed by the respiratory muscles during deformation of the rib cage and 

abdominal walls (Goldman et al, 1976). Indeed, a study investigating the factors 

involved in rib fracture incidents in rowers found that there was a sudden 

compression of the ribcage displayed after the catch during the first part of the leg 

drive (which was greater when the rower was breathing), which was not 

simultaneous with chest wall muscle activity (Wasjwelner, 1996).

A series of studies investigating the oxygen cost of breathing during incremental 

exercise have shown an exponential increase in the metabolic requirements of the 

respiratory muscles with progressive hyperventilation. Indeed, these requirements 

comprised a greater and greater share of the rise in the total body V02 (Aaron etal, 

1992a; 1992b). As a result, the respiratory oxygen cost at V02max intensity was 

about 8%-10% of the total V02, but with a very large variability, with values also in 

the range of 13%-16% of V02max. Interestingly, the subjects demonstrating these 

higher values had greater than average V02max, experienced significant expiratory 

flow limitation, had very high levels of inspiratory and expiratory work of breathing,
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and had to perform substantial additional work on a distorted chest wall. The 

above description fits the profile of the elite rower

Effects of Respiratory Muscle Work on Limb Locomotory Blood Flow

The functional significance of such high respiratory metabolic cost was 

demonstrated in a study by Harms etal, (1997) who found a significant effect of 

the work of breathing during maximal exercise upon locomotor muscle perfusion 

and V02 in healthy trained humans. Their data suggest that the level of respiratory 

muscle work normally experienced during maximal exercise in humans attenuates 

the rise in blood flow and O2 transport to working locomotor muscles. Experimental 

manipulations (increase and reduction) of the work of breathing during maximal 

exercise caused significant changes in locomotor muscle vascular resistance and 

perfusion. Specifically, the respiratory muscles under load competed effectively 

with limb locomotor muscles for a significant portion of available total cardiac 

output at maximal exercise and the size of this redistribution averaged 13% or, ~2 

l/min. When the respiratory muscles were unloaded, maximal pulmonary V02 and 

cardiac output were reduced by 7-10%, whilst leg blood flow and leg V02 increased 

by 3-5%. These findings suggest that respiratory muscles significantly compete 

with limb muscles for total cardiac output during maximal exercise.

Implications of Respiratory Work for Exercise Performance

From the above data it can be deduced that when the respiratory muscles are 

unloaded the legs should be able to do more work. Indeed, a further study by 

Harms et al, (1998) showed that increased power by the legs at V02max is possible 

with respiratory muscle unloading. However, in terms of the practical implications 

of respiratory muscle unloading, very little can be done to influence any of the 

factors that can minimise the work of breathing (i.e., further minimising airway 

resistance) since airways are maximally dilated during exercise. However, specific
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respiratory muscle training may increase the mechanical efficiency of ventilation, 

thereby reducing the metabolic requirements of the respiratory muscles (Harms & 

Dempsey, 1999).

1-2. 2 Exercise-Induced Arterial Hypoxaemia (EIAH)

Definition and Mechanisms

The level of oxygenation in arterial blood during exercise is defined by 

measurements of arterial P02 (Pa02), HbC>2 saturation, and O2 content (Dempsey &

Wagner, 1999).

EIAH is broadly defined as reduced arterial oxygenation, which may result from a 

fall in Pa0j(and thus also in Sa02), from a rightward shift of the O2 dissociation

curve without a fall in Pa02 or from a combination of these processes (Dempsey & 

Wagner, 1999).

Specifically, Pa02 is determined by the level of alveolar ventilation at any given

metabolic demand, together with the efficiency with which 0 2 is exchanged 

between alveolar gas and arterial blood, as indicated by the alveolar-to-arterial P0j

difference (A -a D 02). Arterial O2 saturation (Sa02) follows Pa02but may be

modified by O2 dissociation curve shifts caused by changes in pH, PaC02, and

blood temperature during maximal exercise. Arterial O2 content (Ca^) follows

saturation but may be modified by the slight increase in Hb concentration 

developing from rest to heavy exercise.

Reductions in Pa02 during maximal exercise in highly fit male subjects have been

linked to an excessive alveolar-to-arterial oxygen difference which can reach 20 to 

30 mm Hg or, in severe cases, 35 to 40 mm Hg (Dempsey et al, 1984). Three 

potential mechanisms have been thought to be responsible for the EIAH: 1)
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insufficient compensatory hyperventilatory response, 2) ventilation-perfusion 

inequalities and 3) a diffusion impairment.

Variations in O2 saturation at maximum exercise have been predicted from a 

multiple linear regression model, where ventilation (as reflected by PaC02) explains

60% of the variance in Sa02, V 02max accounts for 25% of it, and A -a D 02 for the

remainder (Dempsey & Wagner, 1999). It is beyond the scope of this thesis to 

further elaborate on all the factors involved in the mechanisms responsible for the 

EIAH which is a multi-factorial phenomenon. For the purpose of providing 

background information it will suffice to acknowledge that even though EIAH 

cannot be completely prevented by increasing alveolar ventilation an adequate 

hyperventilatory response should minimise the A -a D 02 and mitigate falls in

hemoglobin saturation.

Evidence of EIAH

Exercise-induced arterial hypoxemia has been well documented in elite young 

male athletes (Dempsey et al, 1984; Powers et al, 1992), older athletes (Prefaut et 

al, 1994) and healthy young women (Harms etal, 1998). The EIAH found in many 

active healthy young women was at a V02max substantially less compared with their 

male counterparts. The authors suggest that the smaller lung volumes and 

diffusion surface, narrowed airways, and even reduced levels of circulating 

haemoglobin in healthy women provide a morphological basis for gender 

differences in both diffusion capacity and in the uniformity of intra-regional 

distribution of ventilation (Harms et al, 1998). Futhermore, an argument is made 

for the presence of mechanical limitation in the hyperpneic response to maximal 

exercise. Additional data from the same group suggests that the existence of a 

mechanical limitation in the ventilatory response is further supported by the 

presence of expiratory flow limitation in female athletes (McClaran et al, 1998). 

The commencement of EIAH during submaximal exercise lead these authors to
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favour the VA/Q C maldistribution as the responsible mechanism for EIAH in 

women (Harms etal, 1998).

Support for a hypoventilatory mechanism comes from an earlier study by the 

same group (Johnson etal, 1992). A borderline effective (PaCOj 35-38 mmHg) or

an absent hyperventilatory response (PaCOj>38 mmHg) may indirectly exacerbate

the arterial hypoxaemia in the sense that alveolar P02 is prevented from increasing

to a very high value to compensate for the excessively widened alveolar-to-arterial 

difference and prevent Pa02 from falling (Johnson etal, 1992). Indeed, the recent

report of Durand et al (2000) provides additional support for this mechanism. All 

the highly trained male athletes in this study demonstrated a decrease in Pa02and

a relative hypoventilation during the submaximal stages of an incremental test. 

However, not all athletes developed EIAH during the maximal stages of test. The 

authors concluded that the degree and the time of onset of the hyperventilatory 

response was the determinant factor for the development of EIAH in their subjects.

The reasons for the relative hypoventilation, present even at sybmaximal exercise, 

are not clear. It has been proposed that the ventilatory control system in 

hypoxaemic athletes is less ‘responsive’ (or sensitive) to a given sensory stimulus 

throughout all exercise intensities (Harms etal, 1998). Whether or not these 

stimuli are the chemoreceptor feedback influences, the locomotor-linked stimuli 

responsible for ‘exercise hyperpnoea’, per se, or their combination is unknown. 

Hypoventilation has also been related to the training volume of the athletes 

(Durand et al, 2000). Indeed, these authors suggest that athletic training may 

reduce the chemoresponsiveness of the ventilatory control system and result in a 

relative hypoventilation for a given metabolic rate.

Another explanation for the relatively small hyperventilation of highly trained 

subjects may be the mechanical constraints on vE during maximal exercise.
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Significant feedback inhibition of respiratory motor output during heavy exercise 

has been suggested following dynamic hyperinflation and increase of end- 

expiratory lung volume (EELV). A rise in EELV could inhibit the inspiratory motor 

output via lung stretch at high end-inspiratory lung volume (McClaran et al, 1999).

Exhaustive rowing has been associated with marked hypoxaemia. In cases where 

a marked hyperventilation is present, arterial oxygen tension declines from a PO2 

of 105mmHg at rest to 88 mmHg during the last minute of maximal simulated 

rowing (Clifford et al, 1990). However, Rasmussen et al (1991), who found a 

haemoglobin saturation of 91% during simulated rowing, reported a slightly 

elevated arterial oxygen tension subsequent to the presence of a moderate 

hyperventilation. These authors suggested that pulmonary factors were not 

responsible for the observed arterial desaturation. A more recent report by Nielsen 

et al (1998) found saturation levels below 90% following maximal rowing. Even 

though in some subjects PaCOz remained elevated (39 mmHg), the authors

concluded that hypoventilation was not evident since the minute ventilation and 

alveolar oxygen tension were not compromised.

Consequences of EIAH for Performance

EIAH reduces V0jmax. The threshold of desaturation at which this effect is 

measurable is somewhat variable among subjects, but a consistent effect appears 

to be initiated at 3-4% 0 2 desaturation below resting levels (Wagner et al, 1991). 

The further reduction of V02max beyond this threshold of desaturation changes 

linearly with Sa0j (and Ca^) such that V02max is affected by 15% in subjects who 

desaturate to a maximum of 85-90%  Sa0j at V02max. This effect of EIAH on V02max 

is theoretically based on the reduction in Sa0¡¡ and Ca^ and consequently, on the

limits placed on the widening of the maximal arterial-to-venous 0 2 content 

difference across the working muscle.
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A study by Nielsen et al (1998) investigated the effect of desaturation upon rowing 

performance. Following the administration of a hyperoxic mixture the severe 

desaturation to 85% was alleviated and V02max increased by 13%. However, the 

effect on rowing performance, which increased by a non-significant 3%, was 

minimal. (Nielsen et al, 1998). The authors suggested that the elevated V02 may 

reflect enhanced metabolic rate in ‘non-exercising’ tissues. These data also 

suggest that V02max is not a sensitive index for monitoring improvements in rowing 

performance.

In conclusion, there is no supporting evidence that minimising EIAH through an 

enhanced hyperventilatory response would be beneficial to rowing performance. If 

anything, the additional ventilation required to improve the saturation of 

hemoglobin is likely to be at a very high metabolic cost, in terms of respiratory 

muscle blood flow, that could adversely affect performance. It seems that 

hypoventilation may be a beneficial strategy in elite rowers. Indeed, a reduction of 

the metabolic cost of breathing may spare a fraction of the total cardiac output, 

otherwise allocated to the respiratory muscles, and improve peripheral muscle 

perfusion and consequently performance.
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Although entrainment and the associated changes in breathing pattern are of 

interest in their own merit, they also exert important influences on the “operational 

strength” of the inspiratory muscles (Clanton etal, 1985). “Operational strength” is 

defined as the capacity to achieve pleural pressure (Ppi) under the conditions that 

exist for the given tidal volume (VT) and inspiratory flow (Vi). The pressure-flow 

relationship in the intact respiratory system is a reflection of the force-velocity 

relationship of the individual skeletal muscles (Agostoni & Fenn, 1960). According 

to Hill (1938), for the same level of activation, a muscle’s ability to generate 

tension decreases as its velocity of shortening increases. Leblanc et al (1988) 

confirmed the original descriptions of Agostoni & Rahn (1960) according to which 

strength declines by 1.7% for every 1% of vital capacity increase in V iand by 5% 

for each 1L/min increase in flow. Thus, the pressure or force developed by the 

inspiratory muscles, may approach 90% of their capacity at peak exercise in fit 

subjects.

P pi may be expressed as a fraction of the subject’s maximum capacity (Ppicap) to 

generate that pressure ( P pi/P picap). Ppicap varies with muscle length and velocity of 

shortening, which change with lung volume and respiratory flow, respectively. 

Clearly, inspiratory Ppi (Ppi I) varies throughout the breathing cycle and a more 

representative index of respiratory muscle activity is given by the mean P pi/P picap, 

or tension-time index (TTI), which is the Ppi/Ppicap averaged over the respiratory 

cycle (Bellemare & Grassino, 1982). The TTI is defined as the product of the ratio 

of mean pressure to maximal pressure generating capacity and the inspiratory 

duty cycle (T| /Ttot).

In a similar fashion to P pi, diaphragmatic pressure (Pd i) has been expressed as a 

fraction of Pd.caP. The tension-time index of the diaphragm (T T d i) is a major 

determinant of the energy cost of breathing and of susceptibility to fatigue. It has 

been suggested that once T T d i (T i  /Ttot * Pdi/Pdim«) exceeds 0.15-0.18 the

1-2.3 Exercise-Induced Respiratory Muscle Fatigue
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development of muscle failure is related to the duration of contractile activity 

(Bellemare & Grassino, 1982). The inherent difficulties with TTdi during exercise is 

that the Pdi is a dynamic measurement expressed relative to a static measurement 

of Pdimax. Furthermore, Pdimaxdepends on the conditions of both the chest and the 

abdominal cavities at the time of measurement. If the abdomen is relaxed, Pdjmax is 

equal to the maximal mouth or esophageal inspiratory pressure. However, 

increased pressure in the abdomen increases Pdjmax due to reduced compliance of 

the abdominal wall.

It is also inherent in the definition of TTi that fatigue is an ongoing process which is 

initiated once a recruitment threshold is passed. At this state a reduction of force is 

observed without the presence of the ultimate “task failure”. Therefore, the original 

definition of Edwards (1981) of skeletal muscle fatigue as a “failure to maintain the 

required or expected force” has been extended for respiratory fatigue to include 

also the state of muscle weakness during which an additional respiratory motor 

output is required for a given force. (National Heart, Lung and Blood Institute, 

1990).

Assessment of Fatigue
The identification of fatigue in respiratory muscles is not as clear as with skeletal 

muscle, making it difficult to identify whether respiratory muscle fatigue limits 

exercise, or influences the pattern of breathing. The development of a rapid 

shallow breathing pattern has been suggested as an indirect indicator of 

respiratory muscle fatigue (Gallagher et al, 1985). However, the adoption of this 

breathing pattern during exercise may also signify an attempt to minimise effort in 

the face of developing fatigue, rather than a consequence of fatigue itself.

The maximum voluntary mouth pressure measurement, used to indirectly monitor 

the progressive decrease in the force output capacity at a given muscle length, is 

the most commonly used technique (Black & Hyatt, 1969). Reductions of
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maximum mouth pressure interpreted as evidence for respiratory muscle fatigue 

following exercise have been found (Mahler & Loke, 1981; Loke & Virgulto, 1982; 

Bye et al, 1984). A number of methodological considerations such as the variability 

in response to repeated measurements, the day to day biological variability similar 

to any measure of strength, and the learning effect, have rendered this technique 

vulnerable to criticism and the conclusions of these studies open to debate. 

However, these measurements, when performed by motivated individuals, have 

provided very useful information about the overall strength of the respiratory 

muscles, which is relevant to the ability of the system to meet the ventilatory 

demands (Black & Hyatt, 1969).

Bilateral phrenic nerve stimulation (BPNS) and concomitant measurements of 

trans-diaphragmatic or airway occluded mouth pressures can also be used to 

assess diaphragmatic fatigue. Although several other respiratory muscles are 

recruited with whole-body exercise (i.e., external intercoactals, scalenes and 

sternocleidomastoid muscles), the diaphragm is the primary inspiratory muscle 

and the most effective pressure generator; thus providing the best index of 

respiratory system muscular function. Initially, the practical difficulties associated 

with this technique raised some doubts as to its applicability during exercise 

(Levine & Hanson, 1988). The results of Levine and Hanson’s study suggested 

that the human diaphragm was not fatigable with short-term progressive exercise 

to exhaustion, unless a resistive load was added. However, in a later study, 

significant reduction in the twitch trans-diaphragmatic pressure (Pen) ranging 

between 15% and 26% was found following exercise to exhaustion at a power 

output equivalent to 80%-95% of V 02max (Johnson et al, 1993). Thus, BPNS 

assessment of diaphragmatic function supports the findings of studies using 

voluntary measurement of global inspiratory muscle strength (Mahler & Loke, 

1981; Loke & Virgulto, 1982), (i.e.), inspiratory muscles are susceptible to fatigue.
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Factors Influencing Exercise-Induced Respiratory Fatigue

It seems from the above that the development of fatigue may be related to the 

combination of intensity and duration of the performed exercise. There has also 

been a suggestion that the fitness level of the subjects may play a role in the 

occurrence of diaphragmatic fatigue during exercise. Specifically, it has been 

suggested that the respiratory muscles of ‘athletic’ individuals have superior 

strength and greater fatigue resistance (Coast et al, 1 9 9 0 ) .  However, BPNS 

provided a contrasting view since no difference was found in the degree of 

diaphragmatic fatigue between highly and average fit subjects post exercise at 

9 5 %  of V 0jmax (Johnson etal, 1 9 9 3 ) .

McConnell et al (1997) showed that even though respiratory muscle fatigue is 

independent of whole-body fitness level, a relationship exists between baseline 

maximum inspiratory mouth pressure (MIP) and percentage fall in MIP post 

exhaustive exercise. They concluded that individuals with the stronger inspiratory 

muscles showed significantly smaller reductions in MIP than the individuals with 

modest baseline capacity. In this regard a comparative study between rowers and 

normal subjects found greater respiratory muscle pressures in the rowers 

(Donnely et al, 1991). Donnely et al concluded that their data argue against the 

development of respiratory muscle fatigue in rowers.

Significance of Respiratory Muscle Fatigue to Exercise Performance 

The development of respiratory muscle fatigue could limit exercise in different 

ways. First, a greater respiratory motor command must be produced for the higher 

activation of the respiratory muscles required to maintain the same ventilatory 

output. An increased respiratory motor outflow, being the major determinant of the 

sense of respiratory effort, will considerably increase dyspnea (Altose, 1986; 

Killian and Campbell, 1986). Consequently, exercise could be terminated by 

dyspneic sensations, or because of the contribution dyspnea makes to perceived 

exertion. If activation of the respiratory muscles is not increased, then
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hypoventilation will occur and exercise may be terminated by unfavorable gas 

exchange and acid-base balance. Finally, the adoption of a rapid shallow pattern 

of breathing could further affect gas exchange and interfere with the entrainment 

of the breathing with the locomotory pattern. Such an interference could affect 

exercise by decreasing the mechanical efficiency of locomotion.

However, fatigue of the diaphragm can occur without compromising the ventilatory 

response to exercise (Babcock et al, 1 9 9 5 ) .  A study in a group of rowers examined 

the effect on exercise performance of unloading the respiratory system by helium 

mixture breathing (Aaron et al, 1 9 8 5 ) .  It was found that at an intensity of 9 0 -9 5 %  

V 02 max the time to exhaustion increased by 4 0 %  while breathing helium. Later, 

studies using mechanical pressure assist for unloading of the respiratory muscles 

have also shown increases in exercise tolerance (Harms et al, 1 9 9 8 ) .  Even though 

this design did not ascertained whether the increase in exercise tolerance was due 

to avoiding respiratory fatigue per se, it clearly showed that the respiratory load is 

important to the exercise tolerance, or dyspnea, or breathing pattern.

Studies that have compared exercise performance with and without prior 

respiratory fatigue suggest that reduced ventilatory capacity alone is sufficient to 

decrease short term maximal exercise performance. Martin et al, (1982) found that 

running performance was reduced from 7.6 min in the ‘fresh’ state to 6.5 min 

following the induction of respiratory fatigue with 150 min of isocapnic hyperpnea. 

This study may be particularly relevant to rowing since the performance times are 

comparable to competitive rowing.

More recent studies by Mador & Acevedo (1991a, 1991b) showed similar results 

following respiratory fatigue induced by resistive loading to failure with a pressure 

threshold of 80% of maximal mouth pressure. Cycling times to exhaustion at 90% 

of maximal capacity were reduced from 311 ± 9 6  to 238 ± 69 (SD)s. Following the
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induction of respiratory fatigue, the cycling trials were characterised by a rapid 

breathing pattern and increased respiratory sensation.

In conclusion, during rowing the combination of the entrained breathing pattern, 

the mechanical limitations of the pulmonary system and the additional static 

supportive work for the upper body, place high demands upon the respiratory 

muscles. These demands predispose the respiratory muscles to fatigue despite of 

the high fitness levels observed in rowers. Due to the various implications that 

respiratory muscle fatigue can have upon rowing performance, the aim of part of 

this thesis will be: a) to rigorously investigate the incidence of respiratory muscle 

fatigue during rowing, b) to reduce any respiratory muscle fatigue by means of 

inspiratory muscle training, and c) to evaluate the effect of such an intervention 

upon rowing performance.

1-2.4 Dyspnea 

Definition

Dyspnea has been defined as: “difficult, labored, uncomfortable breathing” (Wright 

& Branscomb, 1954), “awareness of respiratory distress” (Wasserman & 

Cassaburi, 1988), “the sensation of feeling breathless or experiencing air hunger” 

(Simon et al, 1989), or as “an uncomfortable sensation of breathing” (Mahler et at, 

1996). However, these definitions sometimes mix the true symptom (i.e., what the 

subjects say) with physical signs (i.e., what the investigator observes about the 

subject, e.g., “exhibits labored breathing”). Nevertheless, a symptom can only be 

described by the person who experiences it and in this context, recent 

investigations of the perception of breathlessness suggest that there are several 

types of dyspnea (Simon etal, 1990; Schwartzstein & Cristiano, 1996; Mahler et 

al, 1996). The sensation of air hunger or breathlessness has been associated with
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stimulation of the chemoreceptors (Banzett et al, 1989) while the sense of effort to 

breathe or dyspnea is believed to reflect central respiratory motor command (El- 

Manshawi et al, 1986). Even though there is an argument that dyspnea associated 

with pathological states should be regarded as distinct from the breathlessness 

reported by healthy subjects on exertion, there is no good evidence that the 

sensory experiences are different.

In the 1950s and 1960s much of the work on dyspnea focused on the impact of 

mechanical loads on respiratory symptoms (Howell & Campbell, 1966). While 

there was an awareness that there may be several different qualities of dyspnea, 

the general consensus was that the sense of effort was the primary factor of 

breathing discomfort. In the past decade, great steps have been made to 

distinguish the sensations included in the term dyspnea and in defining a 

vocabulary to facilitate communication between subjects and investigators about 

these sensations (Simon et al, 1990; Schwartzstein & Cristiano, 1996; Mahler et 

al, 1996). We now have a greater appreciation for the differences between a 

respiratory “sensation,” the neural activation resulting from stimulation of a 

peripheral receptor, and “perception,” the reaction of the sentient individual to the 

sensation (Guz, 1997).

Psychological and cultural factors may influence the reaction to a sensation, e.g., 

a stoic individual may deny respiratory discomfort and push beyond the limitations 

experienced by another person more sensitive to bodily messages. Indeed, taking 

part in competition is always associated with psychological stress and, therefore, 

psychophysical resilience is one of the most important aspects of the long 

preparation of athletes for high level performance. The context in which a 

sensation occurs can also influence the perception of the event. The sensation 

experienced by an individual during maximal exercise and/or competitive 

situations may evoke very different reactions than the same sensation occurring at 

rest.
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It has been suggested that dyspnea is a term used to characterize a subjective 

experience of breathing discomfort that consists of qualitatively distinct sensations 

that vary in intensity. This experience is derived from interactions among multiple 

physiological, psychological, social, and environmental factors, and may induce 

secondary physiological and behavioral responses. This broad definition of 

dyspnea will be used herein.

Mechanisms of Dyspnea

Physiological

The sensation of dyspnea seems to originate with the activation of sensory 

systems involved with respiration. Sensory information is, in turn, relayed to higher 

brain centers in the sensory cortex where central processing of respiratory related 

signals and contextual, cognitive, and behavioral influences shape the ultimate 

expression of the evoked sensation. Respiratory motor activity emanates from 

clusters of neurons within the brainstem in the medulla. Feedback modifying this 

activity is projected by chemoreceptors in the vasculature/carotid and brain, 

mechanoreceptors in the airways, lungs, and chest wall. Furthermore, these 

receptors project a sensory input and may have a direct dyspnogenic effect.

Additionally, corollary signals or efferent copies of brainstem respiratory center 

motor output are transmitted to higher brain centers and result in a conscious 

awareness of the outgoing motor command (McClosky, 1978). These corollary 

discharges are thought to be important in shaping the sense of respiratory effort. It 

is well established that factors that necessitate a greater motor command to 

achieve a given tension in the muscle, such as decreasing muscle length, muscle 

fatigue, or respiratory muscle weakness, cause a heightened sense of respiratory 

effort (Killian etal, 1984; Campbell etal, 1990; Supinski etal, 1987). The sense of
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respiratory effort intensifies with increases in central respiratory motor command 

and is proportional to the ratio of the pressures generated by the respiratory 

muscles to the maximum pressure-generating capacity of those muscles (El- 

Manshawi et al, 1986).

Conditions affecting dyspnea

1. Elevated Ventilatory Demand

Dyspnea intensifies in parallel with exercise minute ventilation both in normal 

individuals and in patients with lung disease (Killian et al, 1992). This has been 

attributed to the increase in respiratory motor output and to a corresponding 

increase in the sense of effort. While the level of ventilation often correlates well 

with the intensity of dyspnea, increases in central inspiratory activity alone are 

unlikely to explain respiratory discomfort in all settings (Manning , 1998). An 

example of this mismatch is the paradox observed immediately following the 

termination of exercise when ventilation is dropping sharply and dyspnea 

increases. Indeed, a key observation for the understanding of neurophysiological 

basis of dyspnea is that isocapnic voluntary hyperventilation to a level associated 

with substantial discomfort during exercise or hypercapnia causes little or no 

discomfort (Adams et al, 1985). Thus, it appears that dyspnea depends on the 

nature of the ventilatory stimulation (i.e., automatic vs. voluntary).

2. The theory of “length-tension inappropriateness”

When changes in respiratory pressure, airflow, or movement of the lungs and 

chest wall are not appropriate for the outgoing motor command, the intensity of 

dyspnea is heightened. In other words, a dissociation between the motor 

command and the mechanical response of the respiratory system may produce a 

sensation of respiratory discomfort. This theory, which was first introduced by 

Campbell and Howell in the 1960s, provides a unifying mechanism by which the 

dyspnea in many pathological conditions such as respiratory muscle 

abnormalities, altered chest wall mechanics and blood-gas abnormalities is
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explained. Respiratory diseases that usually cause dyspnea include asthma and 

COPD, which narrow airways and increase air-way resistance, as well as, 

diseases of the lung parenchyma, such as interstitial pneumonitis and pulmonary 

fibrosis, which increase lung elastance.

Assessment of Dyspnea

Dyspnea, like hunger or thirst, is largely a “synthetic sensation” in that it often 

arises from multiple sources of information rather than from stimulation of a single 

neural receptor. In addition, the severity of dyspnea as well as the qualitative 

aspects of unpleasant breathing experiences varies widely among subjects. The 

variable nature of dyspnea reduces the likelihood that any single estimate of 

organic disease, or illness, or exercise performance will provide a fixed index 

either to establish the intensity of dyspnea or to evaluate the success of a given 

therapy. Therefore, dyspnea itself needs to be measured. Any assessment of 

dyspnea must consider whether we are trying to measure the intensity, quality of 

the sensation or the emotional or behavioral response to the discomfort.

Measurements of dyspnea during exercise can be examined in relation to 

workload, power production, maximal oxygen uptake, or interactions among a 

range of respiratory-related variables. In normal subjects, dyspnea intensifies as 

the oxygen uptake and carbon dioxide output increase with muscular activity. The 

intensity of dyspnea is considered appropriate when the ventilation is increased or 

when the ventilatory capacity is reduced. Respiratory muscle effort intensifies with 

ventilation as the load opposing inspiratory muscle contraction increases or when 

the inspiratory muscles are intrinsically weak or weakened by hyperinflation or 

fatigue.

The exertional activity of the inspiratory muscles depends on the neural activity 

responding to metabolic demand; the mechanical properties of the muscles,
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including length and strength of the inspiratory muscles; the endurance of the 

muscles, which depends on the ability of the heart and blood to supply oxygen to 

the tissue in combination with the nutritional and metabolic capacities of the 

muscles, and the load against which the muscles must contract.

Maximal ventilation requires repetitive maximal inspiratory muscle contraction, and 

this results in fatigue. More effort in terms of motor unit recruitment and/or 

activation is required to achieve the same ventilatory task if the activity is 

sustained. Therefore, fatigue may contribute to the intensity of dyspnea 

experienced during sustained effort. The formal measurement of dyspnea during 

incremental exercise to symptom-limited capacity has become increasingly 

popular in the investigation of dyspnea. Ventilatory capacity is measured prior to 

exercise, ventilation is measured during exercise, and these are related to the 

intensity of dyspnea. Even though other scales exist the most popular in exercise 

physiology studies are the Borg Scale and the Visual Analogue Scale.

The Borg Scale

Borg (1970) first described a scale ranging from 6 to 20 to measure perceived 

exertion during physical exercise. The scale was subsequently modified to a 10- 

point scale with verbal expressions of severity anchored to specific numbers 

(Altose and Cherniack, 1981; Borg, 1976) (fig. 1.1). Additional terms at the ends of 

the scale anchor the responses, thus facilitating more absolute responses to 

stimuli and enabling direct inter-individual comparisons (Borg, 1973; Borg, 1982). 

The scale is open at the high end to accommodate for the ceiling effect and 

improve the reliability. Care must be taken to provide consistent, specific 

instructions when using the scale. For example, different investigators have asked 

subjects to rate “severity of breathlessness,” “need to breathe,” and “effort of 

breathing”. Extensive reports demonstrate the reliability and validity for Borg 

ratings of dyspnea from 1 day to 1 year. (Adams et al, 1985a; El-Manshawi et al, 

1986; LeBlanc etal, 1986; Silverman et al, 1988; Skinner et al, 1973). Normative
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data are available for the Borg scale during incremental cycle ergometry (Killian et 

a/, 1992).

HOW WOULD YOU RATE YOUR BREATHLESSNESS ?

0 Nothing at all

0.5 Very, very slight Gust noticable)

1 Very slight

2 Slight

3 Moderate

4 Somewhat severe

5 Severe

6

7 Very severe

8

9 Very, very severe (almost maximal)

10 Maximal

Fig 1.1 The modified Borg scale for breathlessness (Borg, 1982).
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The Visual Analogue Scale (VAS)

The VAS consists of a line, usually 100 mm in length, placed either horizontally or 

vertically on a page, with anchors to indicate extremes of a sensation (fig 1.2)(Gift, 

1989). The subject judges intensity by marking a point on the line (or moving a 

pointer), and distance along the line is taken as the measure of sensation. It is a 

continuous interval scale with very high resolution and it has been be used to 

monitor the time course of changing sensations (Adams et al, 1985) with good 

reliability and validity (LeBlanc et al, 1986; Adams et al, 1985a). Common 

problems encountered in administering the VAS are difficulty seeing the line and 

anchors as well as forgetting how the scale is oriented.

< 100 mm *►

Extremely
Breathless

Fig 1.2 The Visual Analogue Scale (VAS)

Not at all 
Breathless

Treatment of Dyspnea

From the above it can be deduced that any therapeutic intervention that reduces 

ventilatory demand, reduces mechanical loading, or strengthens inspiratory 

muscles, should relieve dyspnea by reducing the required motor output and/or by 

reducing fatigue.
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Reduced Ventilatory Requirement

Interventions that reduce C 0 2 output (VC02), physiologic dead space (VDA/T), 

arterial hypoxemia, metabolic acidosis or alter the set point for arterial C 0 2, will 

reduce VE and dyspnea at a given work rate during exercise. Dyspnea 

improvement is multifactorial, but in a study that used regression analysis with 

multiple relevant independent physiologic variables, reduced vE per work rate 

slopes emerged as the only significant predictor of change in Borg ratings 

following exercise training in patients with chronic obstructive pulmonary disease 

(C O P D )(0 ’Donnell et al, 1995). Reduction in VE was achieved primarily by a 

reduction in breathing frequency with little change in tidal volume (VT) (O'Donnell 

et al, 1995). In this setting, reduced ventilatory demand is likely related to 

improved efficiency, seen as VC02 and oxygen consumption (V02) that are reduced 

at a given work rate after training (O’Donnell et al, 1995). Altered central 

perception of the breathing discomfort, i.e., desensitization to dyspnea may also 

account in part for the findings observed in the above study.

Reduced Lung Hyperinflation

The functional residual capacity (FRC) is determined dynamically and not statically 

in patients with obstructive lung disease and in athletes with expiratory flow 

limitation (Mota et al, 1999). In the setting of expiratory flow limitation and 

increased ventilatory demand (e.g., during exercise or hyperventilation), the 

interval between successive breaths is insufficient to re-establish the FRC. In the 

presence of expiratory flow limitation, expiration is prematurely terminated by a 

reflex response to dynamic airway compression (Pellegrino et al, 1993). 

Consequently, end-expiratory lung volume is increased above the volume normally 

dictated by the balance between the recoil forces of the chest wall and lung (i.e., 

passive FRC). This condition is termed dynamic lung hyperinflation, which has
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been shown to have serious mechanical and sensory consequences on the 

respiratory system.

Dynamic hyperinflation results in the operating V j being positioned at the upper 

nonlinear extreme of the respiratory system’s pressure-volume relationship, where 

there is a substantial elastic load. Furthermore, the presence of positive pressure 

in the airways at the end of exhalation, so called auto-positive end-expiratory 

pressure (auto-PEEP or intrinsic PEEP), imposes an additional threshold 

inspiratory load on the ventilatory muscles which must be overcome at the 

initiation of each breath. Dynamic hyperinflation also results in severe mechanical 

constraints on tidal volume at rest and at low levels of exercise in patients with 

severe expiratory flow limitation. McClaran et a i, (1999) suggested that similar 

mechanical constraints occur in competitive athletes during high intensity exercise. 

Indeed, when the expiratory flow limitation in a group of male cyclists was 

prevented, by expanding the maximum flow-volume envelope through He0 2  

breathing, both minute ventilation and tidal volume increased significantly.

Dyspnea relief and improved exercise tolerance has been documented following 

lung reduction surgery (Martinez etal, 1997). Improvements have been correlated 

to the reduced hyperinflation and improved diaphragmatic function.

Improving Inspiratory Muscle Function

Dyspnea has been related to weakness and fatigue of respiratory muscles 

(Macklem, 1995). As previously mentioned, COPD is characterized by 

hyperinflation, a condition in which the respiratory muscles must function at a 

mechanical disadvantage and an increased load due to PEEP. Thus, their ability 

to generate pressure is reduced. As the pressure generated by the inspiratory 

muscles per breath approaches the maximal pressure that can be achieved, 

dyspnea worsens. Reduction of ventilatory demand and impedance will ultimately 

enhance respiratory muscle function, but specific strategies such as nutritional
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supplementation, or inspiratory muscle training can help to maintain or improve 

respiratory muscle function and add to the overall dyspnea diminution.

a) Nutrition

Alterations in respiratory muscle energy balance, either secondary to a reduction 

in energy supply to the muscle or an increase in respiratory muscle energy 

demand (depletion of muscle energy stores) (Braun, 1984) can lead to respiratory 

muscles weakness, fatigue (Roussos and Macklem, 1982), and increasing 

dyspnea. Decreased body weight has been associated with decreased diaphragm 

mass (Arora and Rochester, 1982), intercostal muscle fiber size (Thurlbeck, 1978), 

and sternomastoid thickness (Arora & Rochester 1984) and fatigability (Efthimiou 

et al, 1988). Several investigators have shown improvement in respiratory muscle 

function in response to nutritional repletion with short-term use of enteral or 

parenteral nutrition (Goldstein et al, 1986) as well as in controlled trials of 

outpatient and inpatient oral supplementation with a high caloric diet (Whittaker et 

al, 1990, Rogers et al, 1992). However, the choice of outcome measures to 

assess the impact of nutritional supplementation is controversial and the results of 

these studies are not conclusive.

b) Inspiratory Muscle Training.

Because of the association between respiratory muscle dysfunction and dyspnea, 

an improvement in respiratory muscle function with inspiratory muscle training 

(IMT) could lead to a reduction in dyspnea. A meta-analysis of IMT in 17 clinical 

trials found limited support for its use in terms of pulmonary function, respiratory 

muscle strength and endurance, exercise capacity, and functional status in 

patients with COPD (Smith et al, 1992). Nevertheless, the secondary sensitivity 

analysis of this study reported that in five studies in which strength or endurance of 

the respiratory muscles did improve a moderate treatment effect on functional 

exercise capacity was found. Further evidence showed that IMT with resistance 

breathing leads to a decrease in the intensity of dyspnea. Harver et al, (1989)
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showed a consistent improvement in clinical baseline and transition dyspnea 

indices with IMT. Weiner et al, (2000) also found improvements in dyspnea 

following a period of 3 months of specific IMT in patients with asthma. Nield (1999) 

found reductions in dyspnea during a submaximal cycling test following 6 weeks of 

pressure threshold IMT in COPD patients.

(See section 1-3 for more detailed description of respiratory muscle training.)

c) Altered Central Perception

Desensitization, or exposure to greater than usual sensations of dyspnea, has 

been shown to increase a patient’s ability to cope with a symptom and potentially 

heighten the perceptual threshold (Carrieri-Kohlman etal, 1993). The precise 

mechanisms behind these changes in dyspnea, independent of changes in VE, are

unknown. It is possible that a peripheral adaptation manifested as a decline in the 

firing rate of peripheral receptors may be responsible. The adaptation has been 

well documented for vagally mediated lung stretch receptors exposed to a 

sustained stimulus but there is no evidence that the same holds for the phasic 

stimulation of ventilation. Exercise training has been proposed as the most 

powerful means of desensitization to dyspnea (Haas etal, 1993).

Implications for Performance

Many attempts have been made by physiologists to explain exercise intolerance 

as the product of various fundamental physiological/biochemica! constraints. The 

physiological parameters that reach maximum values during maximal exercise 

have been considered as limiting. When considering peripheral limitations of 

performance, it is important to recognize that motor activation is also a 

determinant factor. The intensity of effort resulting from motor activation and the 

tolerance of the individual to this effort are the final limiting steps in intense 

muscular activity.
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Killian et al, (1995) state, “it is evident that people stop exercise at the point of 

limitation because the discomfort of continuing is intolerable”. Indeed, the 

sensation of peripheral muscle effort combined with dyspnea is a neural event with 

a sensory and perceptual nature which finally limits exercise tolerance. Tolerance 

for discomfort varies between subjects. The average healthy subject stops 

exercise at a symptom intensity rated “very severe” (7 on the Borg psychophysical 

rating scale)(Killian et al, 1992). A symmetry between the sensations of dyspnea 

and leg effort has been identified. As power output increases the intensity of 

dyspnea and leg effort increases, until at maximal exercise the intensity of 

dyspnea and leg effort is high, and one or both are limiting exercise tolerance 

(Killian, 1987).

In conclusion, it has been suggested that the perceptions of dyspnea and 

peripheral exertion share the same mechanisms and they both form a composite 

perception of exertion which ultimately limits performance.

1-2.5 Epitome

The studies presented in this thesis aimed to influence the above mentioned 

venilatory limiting factors by means of a specific respiratory warm-up and a period 

of respiratory muscle training. Specifically, we hypothesized that a specific 

respiratory warm-up and a period of respiratory muscle training may reduce the 

metabolic requirements of the respiratory muscles for a given work, reduce the 

exercise-induced respiratory muscle fatigue, increase minute ventilation, and 

reduce the dyspneic sensations of exercice. Consequently, the metabolic cost of 

the respiratory muscles, exercise arterial hypoxemia and overall perceived 

exertion may be reduced and rowing performance may be improved.
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1-3. Respiratory Muscle Training (RMT)

It is clear from the preceding sections that inspiratory muscle function and 

dysfunction have a central role in exercise tolerance. Thus, the question arises, 

can training the muscles of respiration improve performance? The following 

section presents a brief overview of previous studies on RMT and performance.

Various regimes of specific respiratory muscle training have previously been 

utilised to fulfil the principles of overload and specificity required for an adaptive 

response.

1-3.1 Voluntary Isocapnic Hyperpnea

This form of training involves sustained elevated ventilation. Experimental designs 

have included simple rebreathing through a dead space to avoid hypocapnia or 

supplementing oxygen and eliminating carbon dioxide to avoid hypoxemia and 

maintain isocapnia, respectively. The training stimulus has involved one or more 

10-15 min sessions daily at 70-90% of the pre-training maximal voluntary 

ventilation (Pardy & Rochester, 1992).

1-3.2 Flow Resistive Loading

The load in this form of training is provided by inspiring via flow restricting orifices 

with variable diameters. The main limitation of these devices is that the inspiratory 

pressure required varies with the rate of air-flow and not just orifice size. 

Therefore, a controlled breathing pattern is essential for the implementation of a 

quantifiable training stimulus (Anderson etal, 1979; Kim, 1981).

1-3.3 Elastic Loading

Elastic straps around the rib cage can also be used to train the respiratory 

muscles by restricting the thoracic excursions and increasing the elastic load on
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the chest wall. Similarly to the flow dependent loading, the main limitation of this 

technique is the quantification of the additional work imposed on breathing.

1-3.4 Pressure Threshold Loading

In threshold loading a device with an opening valve is used as a means of creating 

resistance. A certain percentage of maximum inspiratory pressure capacity is 

required to overcome the resistance set by the valve and initiate inspiratory flow. 

Different designs have used either a weighted plunger or a spring for resisting the 

opening of the valve (Nickerson & Keens, 1982; Larson et al, 1988). The 

expiration is usually performed through a different valve without the imposition of 

any load.

In summary, at the current time pressure threshold loading represents the most 

convenient and most reliable method of respiratory muscle training

The most critical consideration of any muscle training device is the loading profile 

generated by the imposed resistance. A description of the load profile of the 

threshold loading device used in the studies presented in this thesis follows. Upon 

initiation of an inspiratory effort, against a threshold load, the negative pressure 

generated at the mouth rises continuously until such a point where the threshold 

load is realised. At this point flow is initiated, and will continue until the time when 

pressure generation falls below the threshold load. Even though, the total 

resistance presented by the system is not only the positive force acting on the 

inspiratory valve but also the flow resistance generated as air passes through the 

valve, we can ignore the flow component for the quantification of training stimulus 

since variations in flow during the pressure plateau phase typically have a 

negligible impact upon the pressure profile observed (Caine, 1998).
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1-3.5 Specificity of Respiratory Muscle Training

Previous reports suggest that the principles of force-velocity specificity established 

for peripheral skeletal muscle training also apply to the conditioning of the 

respiratory muscles. Specifically, O’Kroy & Coast (1993), and Tzelepis et al, 

(1994a; 1994b) found that training protocols characterised by high inspiratory 

pressure or high inspiratory flow increase maximal inspiratory pressure or peak 

inspiratory flow, respectively. Furthermore, flow training improved not only flow but 

also resistive measures suggesting the existence of a cross over effect between 

training modalities. Finally, the greatest improvements in inspiratory muscle 

strength were specific to the lung volume at which training occurred.

1-3.6 Clinical Studies of Respiratory Muscle Training and Exercise Tolerance

The classic study of Leith and Bradley (1976) was the first to show that strength 

and endurance of the respiratory muscles can be increased following a specific 

respiratory muscle conditioning protocol. Following this work, the effects of both 

hyperpnea (Keens et al, 1977; Belman & Mittman, 1980) and resistive loading 

regimes (Anderson et al, 1979) were clinically examined. In their meta-analysis, 

Smith et al, (1992) showed that, even though the only significant effect of 

respiratory muscle training was an increase in maximal voluntary ventilation, the 

maximal inspiratory pressure, respiratory muscle endurance and functional 

exercise capacity all improved. Secondary analysis also revealed significant 

improvements in respiratory endurance, and functional exercise capacity, where 

flow resistive training with a controlled breathing pattern had been implemented. 

Furthermore, the clinical data suggest that both the type of intervention utilised 

and the specific regime implemented are crucial in determining the degree of 

improvement following training of the inspiratory muscles.
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More recent studies in patients with asthma (Weiner et a i, 2000) and COPD 

(Lisboa et a!., 1997) utilising pressure threshold loading have indicated positive 

outcomes for indeces including dyspnea and exercise tolerance.

1-3.7 Respiratory Muscle Training and Exercise Performance in Healthy Subjects 

and athletes

Some early studies have suggested that respiratory muscle training may have a 

beneficial effect upon exercise tolerance. Even though no increase in maximum 

exercise tolerance was observed in the early study of Haas and Haas (1980), 

submaximal work intensities were associated with lower heart rate and oxygen 

consumption following 16 days of hyperpnea at 85% peakMIP.

Chen and Martin (1983) showed a significant increase of 6% in treadmill work time 

at near maximal intensities (~90-95% V0jmax ) following 4 weeks of resistive load 

training of the inspiratory muscles for 15 min twice daily in a group of normal 

subjects. However, these improvements in performance were not related to any 

changes in V02 max.

The effect of isocapnic hyperpnea for 30 min per day, 4 days per week for a period 

of 8 weeks upon exercise performance in healthy elderly people was examined by 

Belman and Gaesser (1988). These authors reported a significant reduction in 

perception of dyspnea during a steady-state sub-maximal exercise. Consistent 

with these findings are those of Copestake and McConnell (1995) who reported 

similar reductions in dyspnea and a 20% increase in inspiratory muscle strength 

following pressure threshold training in healthy elderly men and women.

Hanel and Secher (1991) investigated the effects of resistive loading upon the 

Cooper running test in healthy adults. A comprehensive battery of lung function 

tests were performed prior and following the 27.5 days training period comprising 

two daily 10-min training sessions at 50% of the maximum inspiratory pressure.
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Since there were no differences in minute ventilation, maximum oxygen uptake, 

and distance covered in the 12-min run, between the control and the training 

group, the authors concluded that inspiratory muscle training does not change 

work capacity. However, in another study by Boutellier and Piwko (1992), the 

cycle time to exhaustion of sedentary subjects at a submaximal intensity 

(-64%  V 02m ax) was increased by 50% following 4 weeks of daily 30 min hyperpnea 

sessions.

The first study to examine respiratory muscle training upon exercise performance 

in trained subjects was by Morgan et al, (1987). Although peak minute ventilation 

was improved, no changes in cycling to exhaustion at 95% of V 02 max or V02 max were 

found following 3 weeks of isocapnic hyperpnea. In a later study by Fairbarn et al, 

(1991), where highly trained cyclists engaged in a total of 16 sessions of isocapnic 

hyperpnea, time to exhaustion at 90% V02max increased by 25% in the training 

group compared with a 4% increase in the control group. Due to the small sample 

size this difference did not reach statistical significance. No improvements were 

found in V 02max or v Emax during an incremental ride to exhaustion.

In another study by Boutellier etal, (1992) endurance trained individuals increased 

their cycling time to exhaustion at the anaerobic threshold (-77%  V 02max) by 38% 

following 4 weeks of isocapnic hyperpnea. An investigation of the exercise related 

metabolic changes following 4 weeks of respiratory training reported a 28% 

increase in time to exhaustion at the individual anaerobic threshold (Spengler et al, 

1996). Significant reductions of blood lactate concentrations were observed during 

the post-intervention cycling trials. Reductions in blood lactate concentrations 

during submaximal cycling were also found following 6 weeks of IMT (Sharpe, 

1999). These reductions in blood lactate concentrations are also reflected in the 

significantly improved cycling performance reported by Caine (1999). In this study 

4 weeks of IMT induced a 32.8% improvement in the time to exhaustion at an
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exercise intensity corresponding to approximately 80% V 02max. The same study 

also reported reductions in ratings of perceived exertion. Even though perception 

of dyspnea was not measured it is reasonable to assume that reductions in 

dyspnea contributed to the reduction in overall perceived exertion. They were no 

changes in any of the parameters measured in the control group.

The discrepancies amongst previous studies may reflect methodological 

differences concerning exercise protocols used in the various studies. One 

criticism of some of the studies demonstrating a positive effect has been the 

absence of a carefully matched control group and the use of volitional end points 

in their testing procedures. Further studies are required to elucidate the effect of 

inspiratory muscle training upon exercise performance, particularly using 

performance tests that simulate the competitive environment. These issues will be 

addressed in this thesis.

42



1-4. Warm-Up

1-4.1 Introduction

From the foregoing it has become evident that IMT may enhance performance. It 

is also thought that warm-up aids locomotor function. Therefore, two questions 

arise a) does warm-up aid inspiratory muscle function to the same extent as 

locomotor function and b) does a specific respiratory warm-up aid whole body 

performance?

The period of general preparatory activity before the start of an intense physical 

activity is known as 'warm-up'. This has been associated with a number of 

physiological and psychological benefits such as injury prevention (van Mechelen, 

1992), control of muscle soreness (Rodenburg etal, 1994) enhanced mechanical 

efficiency (deVries & Housh, 1994), and control of frustration and stress (Anshel, 

1993; Ainscoe & Hardy, 1987) prior to important performances. For the asthmatic 

athlete, the use of warm-up exercises has been shown to significantly decrease 

post-exercise bronchoconstriction (McKenzie etal, 1994). However, the actual 

warm-up methods (routines) when and if used, are frequently based on the trial 

and error experience of the athlete or coach, rather than on a scientific study and 

advice.

Warm-up in its literal meaning implies activities that increase body temperature. 

This increase results in improvement of certain physiological processes that can 

be seen from the single muscle fibre to the integrated body systems and 

performance parameters. For example, temperature increases have distinct 

effects on aerobic endurance, anaerobic endurance, speed, strength, and power 

as well as flexibility and co-ordination (Guellich & Schmidtbleicher, 1996; Black et 

al, 1984). However, across the wide spectrum of physical activities and sports 

these performance-related parameters are rarely seen in their pure form. Usually
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they blend together to meet the energy requirements and the movement profile of 

individual activities.

Warm-up activities have been previously classified as passive, and active 

(Shellock & Prentice, 1985; Astrand & Rodahl, 1987; Karvonen, 1992; deVries & 

Housh, 1994).

The active warm-up can be further divided into general and specific warm-up 

depending on its relevance with the subsequent main activity. The main purpose 

of the general warm-up is to raise the body temperature and facilitate all the 

temperature related physiological changes, while the specific warm-up aims to 

improve the neuromuscular co-ordination and enhance the mental readiness for 

physical performance. The elevation of body temperature resulting from an active 

warm-up is due to the heat produced from the transformation of chemical energy 

into mechanical work during muscle contraction. In contrast, the passive warm-up 

involves the rise of body temperature with external means such as sauna, hot 

shower or massage.

1-4.2 Physiological Changes Due to Warm-Up

There are a number of physiological changes due to warm-up, which are 

summarised in Table 1.1. It is clear that most of these changes are temperature- 

related phenomena that can be seen in the mechanical characteristics of the 

muscle fibre, the functional properties of the nervous system and the efficiency of 

the cardio-respiratory system. At the same time, body warming enhances the heat 

dissipating activity (Torii etal, 1996). In general, preliminary exercises have been 

shown to allow better adjustments in body temperature and increasing water loss 

during physical work, which, in turn, reduces the chances of exercise hyperthermia 

and may enhance performance (Mandengue etal, 1996).
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Table 1.1 The most common physiological changes due to pre-exercise warm-up 
activities

T Thermoregulatory responses during exercise Torij et al (1996)

t  Blood supply by vasodilatation Karvonen, (1978)

T Heart rate and blood pressure Barnard eta l (1973)

i  Affinity of haemoglobin for oxygen Barcroft & King, (1909)

T Oxygen release from myoglobin deVries, (1994)

T Mechanical efficiency Hill, (1927)

l  Time for redistribution of cardiac output Karvonen, (1978)

i  Reaction time Kleitman eta l (1938)

T Maximum Oxygen uptake Yamaguchi, (1967)

t  Hormonal mobilization Caralis efa/(1977)

t  Joint range of motion Lehmann et al (1970)

T Speed of nerve impulse Hill, (1927)

t  Muscle contractility Bergh, (1980)

T Cardiorespiratory kinetics Ingjer & Stromme,(1979)

T Neuromuscular co-ordination Zatsiorsky, (1995)

i  Bronchoconstriction in exercise-induced asthma McKenzie et al (1994)

i  Cardiac Ischaemia Barnard efa/(1973)

i  Feelings of muscular soreness Rodenburg efa/(1994)

T Rate of chemical (metabolic) reactions Bergh, (1980)

(T indicates ‘increases’ & i  indicates 'decreases’

1-4.3 Intensity, Type and Duration of Warm-up

Warm-up methods, when and if used, are more frequently based on the trial and 

error experience of the athlete or trainer, rather than on scientific study and advice. 

This is the case even when a relatively large number of performers have adopted 

warm-up practices. For example, Koutedakis etal, (1997) reported that, despite 

the fact that the majority of professional dancers are involved in warm-up routines,
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only a few execute the routines according to scientific evidence. This may be 

partly due to the fact that the available literature is not conclusive regarding key 

parameters such as intensity and duration of warm-up.

Mitchell and Huston (1993), studied the influence of differing warm-up intensities 

upon swimming performance. The results indicated that varying the intensity of the 

warm-up protocol (70% to 110% of V02max) brings about no beneficial effects on 

performance. However, the design of the higher intensity warm-up did not take into 

account the accumulation of lactate, which might have affected the subsequent 

performance. Furthermore, Houmard et al, (1991) failed to show a significant 

improvement with event-specific warm-up intensity, but they confirmed that a 

warm-up consisting of mild-intensity, long-duration exercise is beneficial compared 

to no warm-up. In contrast, Zintl (1990) suggested that the technique of an activity 

should be rehearsed at the same intensity that will be encountered in the 

competition, but only in intervals that will not incur fatigue. In conclusion, varying 

the intensity and duration of warm up does not appear to lead to a significant 

alteration of V02 (Teubes etal, 1992).

Warm-up has particular significance for the asthmatic athlete. McKenzie et al 

(1994) found that a continuous warm-up of 15 min at 60 % of V 02max can 

significantly decrease post-exercise bronchoconstriction in moderately trained 

asthmatic athletes. It is thought that moderate exercises may actually cause 

bronchodilation, as an acute response of the lungs. Training appears to reduce the 

bronchial narrowing response and increases the bronchodilator response. In a 

study of 14 elite athletes with asthma, Todaro(1996) found evidence for 

bronchodilation post-exercise.

It has been known for some time that athletes with exercise-induced asthma have 

a refractory period after exercise, during which further exercise causes little 

bronchoconstriction (Weiler, 1996). This refractory period can last 1 - 4  hours, but
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it may not occur in all individuals. The asthmatic athlete can make use of this by 

exercising at a level that does not induce bronchoconstriction for about 15 minutes 

before a performance. The mechanism(s) responsible for the refractory period is 

not fully understood.

The characteristics of warm-up such as intensity, duration, intervals between 

intensive exercise bouts and overall execution reflect on the effectiveness of each 

routine. Sen et al (1992) reported that an optimal combination of warm-up intensity 

with the intermission length allowed skiers to reach their maximal anaerobic power 

during laboratory assessments. It was suggested that the intensity of 50% of 

maximum heart rate was appropriate when skiing competition immediately follows 

warm-up preparations. When warm-up routines are completed five or more 

minutes prior to competition, then an intensity of 70% of maximum heart rate was 

suggested (Sen etal, 1992).

Even though body temperature increases can be induced by both passive and 

active warm-up protocols, there is a suggestion that the effect on performance 

varies. A study which examined the effects of a 45-min hot water immersion 

(44°C) prior to exercise, demonstrated no significant changes on selected 

isokinetic or isometric parameters such as knee extension peak torque, angle of 

peak torque, time to peak torque, average power, and isometric force (Stanley et 

al, 1994). The limited effectiveness of passive warm-up upon whole body 

performance suggests that a mere increase in body temperature is not the only 

responsible mechanism for the warm-up related performance enhancement 

(Astrand & Rodahl, 1987)

In competitive settings, warm-up activities also help to rehearse the skill 

component of the activity, focus on the upcoming event, and optimise the 

psychological component of competition. It has been suggested that pre- 

competitive preparation is experienced as a process resulting in optimal readiness
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(Keating & Hogg, 1995), and that this process may comprise at least three phases: 

getting the body ready (physiological), getting a feel (psychophysiological), and 

getting the mind ready (psychological). In fact, some authors have felt that the 

period of preparation has a greater importance for maintaining the athlete in a 

state of optimal attentiveness and vigilance before the effort, rather than 

influencing the adaptation of the circulatory and respiratory systems (Lefebvre & 

De Bruyn, 1985; De Bruyn, 1990).

According to anecdotal evidence, warm-up routines prior to a rowing competition 

consist of both a general and specific warm-up during which both the physiological 

and psychological components of warm-up are addressed. A short period of 

general activity and stretching routines on-land comprises the general warm-up. 

On the water, a period of low intensity complements the general warm-up and 

prepares the peripheral muscles for the specific warm-up. During the specific 

warm-up intervals of high-intensity rowing are performed in an attempt to simulate 

the co-ordination and the recruitment level of the competitive movement pattern. 

However, no previous studies have investigated the effectiveness of such practice 

upon subsequent rowing performance .

1-4.4 Benefits for Long-term Performance

The recent work of Kesavachandran et al (1997) is in agreement with the view of 

Yamaguchi (1967) that warm-up increases vital capacity and decreases the minute 

ventilation for the same absolute workloads in preadolescent athletes. Similarly, 

warm-up has been shown to improve aerobic performances in both athletic and 

non-athletic children (Luehnenschloss & Niklass, 1988). Also, the study by Tomai 

et al (1996) supports the conclusions of Barnard et al (1973) on the effects of 

warm-up in delaying cardiac ischaemia.

A study with a 10-min cycling bout as warm-up, at a power output corresponding 

to the individuals’ anaerobic threshold, showed significantly higher anaerobic
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threshold values during a subsequent test compared to those of the control group 

(Black et al, 1984). It was concluded that cycling warm-up exercise can increase 

the sub-threshold oxygen uptake (V02) response. On the same note, Yoshida et al 

(1995) indicated that, at the onset of exercise, V02 kinetics are affected by the 

metabolic status of the active muscle. This finding suggests that V02 kinetics can 

be effectively influenced by prior warm-up activity of the muscle. According to 

Gerbino et al (1996) the faster V02 rise could be attributed to: a) an improved 

perfusion of the exercising muscles consequent to a vasodilatation effect of the 

acidaemia caused by a prior high-intensity exercise, and b) an acidaemia-induced 

Bohr shift of the haemoglobin dissociation curve leading to an improved O2 

diffusion gradient between the capillary blood and the mitochondria of the 

exercising muscle.

More recently, Koppo et al (1998) who investigated the V02 kinetics during high 

intensity cycling exercise preceded by high-intensity arm or cycling exercise, 

suggested that the faster V02 kinetics cannot be explained only by the effects of 

the induced acidaemia but other mechanisms related to the exercising 

musculature may also be involved. The same researchers also added that the total 

amount of prior work performed has an effect on V02 kinetics regardless of the 

chosen intensity (Koppo etal, 1998). Finally, Dempsey et a / (1998) suggested that 

the exercise induced arterial hypoxemia observed during maximal exercise was 

decreased following prior preparatory activity.

These data suggests that warm-up can have a favorable impact on both the 

circulatory and respiratory systems. Consequently, long-term endurance 

performance may be enhanced.
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1-4.5 Benefits for Short-term Performance

The suggestion of earlier studies (Karvonen, 1978; Bergh, 1980) that warm-up 

exercises are particularly beneficial in anaerobic physical efforts has been further 

supported by more recent studies. For example, the effects of a variety of warm-up 

routines on peak power (PP) and work capacity (WC) were studied by McKenna et 

al (1987). Using an air-braked cycle ergometer, these authors showed that warm­

up significantly improved both PP and WC. However, an inverse relationship 

between warm-up intensity and short-term power output was observed by 

Sargeant and Dolan (1987) when warm-up activities exceeded 60% of the 

individuals’ V02 max.

Following a maximal sprint cycle-ergometer test, blood lactate accumulation was 

decreased by approximately 50% when blood lactate levels were pre-elevated by 

arm-crank exercise (Bogdanis et al, 1994). It was speculated that this effect was 

caused by the reduced lactate efflux from the muscle rather than an improved 

lactate removal induced by the preliminary activity. Similarly, a standardised 200- 

m front crawl sprint swim was used to evaluate the effects of a variety of warm-up 

exercises -  consisting of a 400-m front crawl swim (82% V 02max), 400-m flutter 

kicking (45% V 02max), and 4x50-m front crawl sprints (111% V 02max) -  on lactate 

levels (Robergs et al, 1990). Even though the warm-up resulted in increased pre­

trial lactate concentrations, no further rise during the sprint swim was observed. 

These results indicate that selected warm-up exercise can minimise the 

disturbance in blood acid-base equilibrium during 2-min of intense swimming. It 

was proposed that the acid-base differences resulted from increased oxidative 

energy metabolism and a subsequent reduction in lactate and CO2 production. 

However, when the effects of warm-up on glycogen degradation and energy 

metabolism during intense cycling exercise were studied, no statistical differences
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were found between the ‘warm-up’ group and their controls, suggesting that warm­

up does not have a direct effect on lactate production per se (Robergs et al, 1991).

In conclusion, there is good evidence suggesting that warm-up activities do 

improve short endurance performance by minimising the detrimental effects that 

exercise metabolites have on homeostasis and work capacity.

1-4.6 Benefits for Strength and Power Performance

Maximal strength, speed-strength and strength-endurance are the most common 

categories of strength, which are determined by the concerted activity of many 

muscles. It has been suggested that this intermuscular co-ordination should be 

optimised during warm-up by rehearsing the motor pattern of the event to follow 

(Zatsiorsky, 1995).

Guellich & Schmidtbleicher (1996) found that maximal volitional contractions, 

carried out during warm-up, could lead to a considerable increase in power 

performances of the lower extremities in athletic sprint and jumping events, as well 

as performance of the upper extremities in throwing events.

Comparing passive stretching and active warm-up (e.g. 10-min jogging), reaction 

time and force production were improved following the latter (Rosenbaum & 

Hennig, 1997). Similarly, the changes observed after a combined stretching and 

light-run protocol had a more pronounced improvement in force development (3%) 

and decrease (6%) in EMG activity, which can be viewed as performance­

enhancing effects, than a stretching only treatment. (Rosenbaum & Hennig, 1985). 

It was noted that changes in the force characteristics such as reductions in the 

peak force, the force rise rate, the half relaxation rate, the EMG amplitudes and 

integrals and increases in EMG latencies observed after the stretching treatment 

indicate improved muscle compliance that might reduce the risk of injury.
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Also, previous bouts of tetani have been shown to augment the subsequent tetanic 

force in isolated skeletal muscle fibres (Bruton et al, 1996). This potentiation, 

which lasted for at least 15 min, was thought to be due to a reduction in inorganic 

phosphate and may be a component of the physiological phenomena observed 

during warm-up.

Muscle power (P=W/t) is the explosive aspect of strength (often called “fast 

strength”). It is the functional application of both speed and strength, and is a key 

component in many human movements. A study by Rademaker (1996) found that 

a 45-min hot water immersion, which increased the muscle temperature by about 

3°C, can have a significant increase in the power output at high velocities of 

human locomotion. The same authors also suggested the power output of type I 

fibres to be more sensitive to changes in muscle temperature than the output of 

type II fibres of human subjects.

In a study of baseball, DeRenne et al (1992) have shown that warming-up with an 

implement weighing within 10% of the bat’s standard weight produces the highest 

bat swing velocities. In fact, a trend of decreasing velocity was found following 

warm-up, the more the weight of the bat deviated from the standard weight bat. 

However, this is in contrast with the findings of Bramford (1985) which suggest 

that using heavier equipment for warm-up can improve performance in 

competition. Perhaps, such results reflect the psychological advantage that is 

created by the sensation of overcoming greater loads.

In summary, the data presented are supporting the contention that warm-up may 

be beneficial to performances requiring strength and power.

52



1-4.7 Conclusions

In long-term endurance events, the functional status of the peripheral musculature 

is usually neglected by the athletes in favor of the more centrally oriented 

adaptations, brought about by temperature increases. Similarly, there is good 

evidence suggesting that warm-up activities have a positive effect on short-term 

performance. Temperature increases have also a positive effect on flexibility and 

range of movement with subsequent increases in mechanical efficiency, while the 

use of warm-up exercises prior to performance can reduce the chance of exercise- 

induced asthma occurring. Further research with elite performers will give us more 

insights into the optimal dose-response relationships for given sports. The studies 

presented in this thesis will aim to a) investigate whether the function of the 

respiratory muscles is improved following a specific respiratory warm-up protocol 

in a fashion similar to that observed in locomotory muscles, b) assess the effect of 

such intervention upon rowing performance and c) compare the effectiveness of 

different warm-up protocols upon rowing performance.
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1-5. Summary

As described in the foregoing, respiratory limitations of exercise performance may 

arise in terms of gas exchange, respiratory mechanics, energetics of the 

respiratory muscles, or because of the development of respiratory muscle fatigue. 

Previous studies have suggested that respiratory muscle training can decrease 

exercise induced respiratory fatigue and associated dyspnea. Consequently, 

exercise performance may be improved in both patient and healthy populations.

During rowing the combination of the entrained breathing pattern, the mechanical 

limitations of the pulmonary system and the additional static supportive work for 

the upper body, place high demands upon the respiratory muscles. These 

demands predispose the respiratory muscles to fatigue despite the high fitness 

levels observed in rowers. Due to the various implications that respiratory muscle 

fatigue can have upon rowing performance, the aim of this thesis will be: a) to 

investigate the incidence of respiratory muscle fatigue during rowing, b) to assess 

the influence of IMT and specific inspiratory muscle warm-up upon inspiratory 

muscle fatigue and c) to evaluate the effect of such interventions upon rowing 

performance.

Our hypothesis is that inspiratory muscle loading (acute or chronic) can have a 

favorable effect upon rowing performance.
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Chapter Two

The Influence o f Prior Activity Upon Inspiratory 

M uscle Strength in Rowers and Non-rowers.



Parts of this chapter have been published in the International Journal of Sports 

Medicine 20: 542-547, 1999.

2-1. ABSTRACT

The aim of this study was to investigate whether a ‘warm-up’ phenomenon exists 

for the inspiratory muscles and, under this assumption, to compare the benefits of 

a whole body warm-up and a specific respiratory warm-up.

Eleven club level rowers performed a rowing warm-up and twelve university 

students performed a general cycling warm-up. Both groups also performed a 

specific respiratory warm-up. Inspiratory muscle strength (Mueller manoeuvre) and 

lung function (flow-volume loops) were measured before and after the three 

conditions. Isokinetic strength during knee extension was measured before and 

after the rowing warm-up.

The two whole body warm-up protocols had no effect on inspiratory muscle 

strength or any lung function parameter despite the significant (3.8 ±  SD 1.4 %; p 

< 0.05) increase in peak torque that the rowing warm-up elicited. The respiratory 

warm-up induced an increase in inspiratory mouth pressure (8.5 ± 1 . 8  %; p < 

0.0001) but not in any other lung function parameter. Following the rowing 

incremental test to exhaustion maximum inspiratory pressure decreased by 7.0 ± 

2.0 %, which was interpreted as an indication of respiratory muscle fatigue.

These data suggest that the inspiratory muscle strength can be enhanced 

with preliminary activity, a phenomenon similar to the one known to exist for other 

skeletal muscles. In addition, a specific respiratory warm-up is more effective in 

this respect than whole body protocols.
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2-2. INTRODUCTION

Warm-up may be defined as any preliminary activity that is used to enhance 

physical performance and to prevent sports-related injuries. There are various 

types of warm-up techniques that competitors use to prepare for their event. The 

most widely used methods are classified as passive, general and specific warm-up 

(Shellock & Prentice, 1985).

Competitive rowing is considered to be one of the most demanding sports, as 

rowers work near their maximal physical capacities and recruit a very large muscle 

mass. Open class rowers generate amongst the highest values of any athletes in 

selected physical fitness parameters, including those related to cardiorespiratory 

and muscular function (Koutedakis et al, 1990). Warm-up is an integral part of the 

preparation before the start of the race.

Most general warm-up protocols are of moderate intensity and characterised by a 

low ventilatory demand (Karvonen, 1992). In competitive rowing, however, a 

higher intensity specific warm-up usually follows the general warm-up in an 

attempt to practise the racing pace (Grosser, 1991). The higher intensity of the 

specific warm-up, among other peripheral adaptations, elicits an elevated 

ventilatory response that may prepare the respiratory muscles for the demanding 

entrained breathing of rowing (Mahler et al, 1991; Steinacker et al, 1993). The 

effect of warm-up upon locomotor muscle strength is well documented (Hill, 1927; 

Binkhorst et al, 1977; Bergh & Ekblom, 1979; de Vries, 1980) but very little 

scientific attention has been directed towards the effect of warm-up on pulmonary 

function and specifically inspiratory muscle strength.

The present study addressed the following questions: a) Does a whole body 

warm-up influence inspiratory muscle strength? b) Does a specific respiratory 

warm-up affect the inspiratory muscle strength? Accordingly, we compared the
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effects of 3 warm-up protocols, a general cycling warm-up, a rowing warm-up and 

a specific respiratory warm-up. Our hypothesis was that the inspiratory muscles 

will exhibit an improvement in performance similar to that observed in other 

skeletal muscles following at least one of the 3 warm-up protocols.

2-3. METHODS

2-3.1 Subjects

Twenty-three subjects participated after giving informed written consent to the 

study that was approved by the local Ethics Committee. Twelve Sport Science 

students formed the ‘non-rowing’ group and eleven club level rowers formed the 

‘rowing’ group (table 2.1). One of the subjects was removed from the study 

because he developed a respiratory tract infection within two weeks of the data 

collection, a condition known to have potential effects on respiratory muscle 

strength (Mier-Jedrzejowicz et al, 1988).

Table 2.1 Characteristics of the two groups.
Mean ±  SD Non-rowing (n=12) Rowing(n=11)

Age (yr) 20 ± 1 20 ± 2

Height (cm) 175 ± 8 180 ± 6

Weight (kg) 70+11 74 ± 8

F V C  (L ) 5.4 ± 0.9 5.3 ± 0.6

F E V i  (L ) 4.6 ±  0.6 4.5 ± 0 .5

F E V i / F V C  (% ) 8 6  ± 8 87.2 ± 7

V 02max (ml-kg'1 min‘1) 47 ± 7 * 58 ± 7**

* Measured during cycling, ** measured during rowing.
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2-3.2 Procedure

Before data collection, all subjects visited the lab on two occasions to be 

familiarised with mouth pressure measurements and flow volume manoeuvres. 

Following familiarization, two additional visits took place for collection of 

reproducibility data. Subsequently, both groups performed an incremental test to 

volitional exhaustion, a whole body warm-up and a specific respiratory warm-up, 

which took place in three separate occasions. The non-rowing group, which used 

a cycle ergometer for the incremental test and the whole body warm-up, 

performed a general warm-up while the rowing group, which used a rowing 

ergometer for the respective exercise sessions, performed a rowing warm-up 

consisting of a general and a sport specific warm-up. The specific respiratory 

warm-up was performed using a pressure threshold inspiratory muscle training 

device. Maximum mouth pressures and pulmonary function were assessed before 

and after every treatment condition. Additionally, as an index of the warm-up effect 

on the peripheral musculature, isokinetic strength of the quadriceps was measured 

before and after the rowing warm-up.

2-3.3 Maximum Inspiratory Pressures (MIP)

MIP is commonly used to measure inspiratory muscle strength. It reflects the 

force-generating capacity of the combined inspiratory muscles during a brief, 

quasi-static contraction (Mueller manoeuvre)(Larson et al, 1993). MIP was 

recorded using a portable hand held mouth pressure meter, (Precision Medical, 

UK). This device has been shown to measure inspiratory efforts accurately and 

reliably (Hamnegard et al, 1994). A minimum of five and a maximum of nine 

technically satisfactory measurements were conducted and the highest of three 

measurements with 5% variability or within 5 cm H2O difference, was defined as 

maximum (Wen et al, 1997). The initial length of the inspiratory muscles was 

controlled by initiating each effort from residual volume (RV). This procedure was 

adopted because, from our experience, RV is more reproducible than functional 

residual capacity (FRC). Subjects were instructed to take their time and to slowly
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empty their lungs to RV, thereby avoiding problems associated with variability in 

lung volumes. All manoeuvres were performed in the upright standing position and 

verbal encouragement was given to help the subjects perform maximally.

2-3.4 Static Spirometry

Pulmonary function was assessed with a Vitalograph 2120 portable spirometer 

(Vitalograph Ltd., Buckingham, England), which was calibrated prior to each 

testing session using a 3 litre calibration syringe (Hans Rudolph inc., Kansas, 

USA). Following familiarisation, the best of three manoeuvres were recorded. 

Forced vital capacity (FVC), forced expiratory volume in one second (FEVi), 

percentage expired (i.e. 100 x FEVi/FVC)( FEVi %) and peak inspiratory flow rate 

(PIFR) were the parameters recorded before and after every treatment condition.

2-3.5 Incremental Test to Exhaustion (PeakV02)

The non-rowing group performed a continuous incremental protocol to volitional 

exhaustion on an Excalibur Sport V2.0 electromagnetically braked cycle 

ergometer. The work rate was increased every fifteen seconds and was designed 

to elicit maximal oxygen uptake ( peak V02) within ten to twelve minutes. The test

was terminated at volitional exhaustion or when the subject failed to maintain a 

pedalling frequency higher than 50 rpm.

The rowing group performed an incremental test to volitional exhaustion on a 

wind-resistance braked rowing ergometer (Concept II, model c, Morrisville, USA) 

starting at an individually chosen light work intensity and increasing the workrate 

by 50 W  every 3 minutes. The wind damper was at the fourth setting. Power was 

calculated from acceleration of the flywheel and displayed on a monitor. Maximal 

power (Pmax) was calculated as

P  max =  Pn- 1 + ([[P n - P n -l] * tn] / 1 8 0 )
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with Pn = power of the maximum stage, Pn-i = power of the stage before, and t„= 

time of work of the maximum stage in seconds (Lormes etal, 1993).

Breath by breath gas analysis was made with an MGA 2000 Mass Spectrometer 

(Airspec Ltd., Kent, UK) in conjunction with an ultrasonic phase-shift flowmeter 

(Birmingham Flowmetrics, Birmingham, UK). Data processing was performed on­

line (Labview 3, National Instruments, Austin TX, USA) on a Powermac 7100/80 

(Macintosh Ltd., USA). Calibration of the flowmeter was performed before each 

test using a 1 litre calibration syringe (PK Morgan Ltd., Kent, UK). The heart rate 

was telemetrically monitored with Polar Accurex Plus heart rate monitor (Polar 

Electro, Finland).

2-3.6 General Warm-Up

Twenty min of cycling was performed on the same cycle ergometer as in the 

incremental test. The first 10 min were performed at 30% of peak work rate 

(WRpeak), the next 5 min at 35% and the final 5 min at 40%. Pedalling frequency 

was maintained between 70-80 rpm. This modest-intensity protocol was intended 

to assimilate the general warm-up preceding the sport specific warm-up. Breath by 

breath gas exchange analysis and heart rate data were collected as during the 

peak V02test. Post warm-up measurements were made within two minutes of 

completion.

2-3.7 Rowing Warm-Up

The protocol was designed to mimic as closely as possible the routine that is 

usually adopted in preparation for a rowing race. Five minutes of very light jogging 

on the treadmill, at a heart rate of 110-130b/min, were followed by 10 minutes of 

stretching. Subsequently, 12 minutes rowing of gradually increasing intensity were 

performed during which the heart rate increased from 148 (±2) to 178 (±2) b/min. 

The increase in intensity was achieved primarily by increasing the stroke rate.
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Then, 5 sprints with increasing stroke rate and power output were performed. 

Between each sprint there was an active rest interval of light paddling which lasted 

approximately 2 minutes. At the end of the sprints, the rower rested for 

approximately 5-7 minutes before any further measurements were made. This rest 

interval was designed to simulate the small pause between the end of the warm­

up and the start of the race. Details of the structure of the Rowing Warm-up can be 

seen in table 2.2. Breath by breath gas analysis and heart rate data were collected 

throughout.

Table 2 .2  Description of the Rowing Warm-Up on the rowing ergometer.
Warm-Up (time) Stroke rate/min @ Percent Power Max 

(% Pmax)

1x12min (4-4-3-1) 18-20-22-24 50-60-70-75

2x30s 26-28 94.7(±3.7) -103.6(±2.6)

2x45s 28 108.9(±2.9) -115 (±2.6)

1 min 30-32 132.2 (±5.0)

%Pmax = percentage of maximum power output achieved during the 6 min all-out 
effort

2-3.8 Respiratory Warm-Up

Two sets of 30 breaths were performed using POWERbreath® inspiratory muscle 

trainer (IMT Technologies Ltd., Birmingham, UK) at 40% of the MIP measured 

previously. Between the two sets there was a short rest interval while an 

intermediate MIP measurement was made. Forty percent of maximum capacity 

has been suggested to approximate the upper loading limit before fatigue of the 

diaphragm occurs (Roussos & Macklem, 1977). POWERbreath® is a pressure- 

threshold device which requires continuous application of inspiratory pressure 

throughout inspiration in order for the inspiratory regulating valve to remain open. 

As with the maximal inspiratory pressures, subjects were instructed to initiate 

every breath from RV. They continued the inspiratory effort up to the lung volume
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where the inspiratory capacity for the given resistance limited further excursion of 

the thorax. Powerful execution of the manoeuvres was encouraged to ensure 

maximal voluntary output for the given loading conditions. Because of the 

increased tidal volume, a decreased but spontaneous breathing frequency was 

adopted by the subjects in order to avoid hyperventilation.

2-3.9 Isokinetic Strength

Dynamic isokinetic strength was measured before and after the rowing warm-up. 

Peak Torque (Nm) and angle (degrees) of peak torque was measured during a 

concentric knee extension of the dominant leg on a Cybex Norm isokinetic 

dynamometer (Cybex International, Inc. Ronkonkona, New York, USA). A 

relatively slow speed of 60°/sec was chosen to approximate the slow velocity 

encountered in rowing. All subjects had at least two practice trials on previous 

occasions for familiarisation with the nature of the dynamometer and the specific 

testing velocity. On the test day three practice trials with a light effort preceded the 

three maximum efforts from which the best value was taken for further analyses.

2-3.10 Statistical Analyses
Student’s t-test for paired samples was used to compare differences between the 

MIP values before and after the two whole body warm-up protocols. ANOVA with 

repeated measures and Scheffe post-hoc test was used to assess differences in 

the RespWU. Values of P  <0.05 were considered statistically significant. Data 

points were means (± SE) unless otherwise stated.

2-4 RESULTS

2-4.1 Rowing Warm-Up and General Warm-Up Characteristics

Compared with the peak test the Rowing Warm-up and the General Warm-up

elicited a ventilatory response with the characteristics shown in table 2.3.
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Table 2.3. Data obtained from the General and the Rowing warm-up expressed as 
percent peak values observed during the peak V02test (Data for the Rowing warm- 
up is from the 12 minutes continuous rowing phase).________________________

Mean ( ± SE) General Rowing

VE% 40.1 (±6.9) 70.1 (±2.6)

Vo2% 62.3 (± 9.5) 80.5 (± 2.4)

fc% 71.2 (± 3.2) 90.1 (±1.0)

VT% 88.1 (± 12.6) 88.2 (±1.7)

fR% 52.7 (± 5.8) 76.6 (± 3.1)

PIFR % 47.4 (± 9.6) 65.1 (±1.3)

VE= minute ventilation, Vt= tidal volume (inspired), fR = frequency of breathing, 
PIFR = peak inspiratory flow rate, fc= cardiac frequency.

2-4.2 Isokinetic Strength

The peak torque of the leg extension increased significantly after the rowing warm­

up by 3.8 (± 1.4)% (P < 0.05). The angle of peak torque increased by 2.8 (± 3.1)% 

but this increase was not significant.

2-4.3 MIP
Test - Retest Reproducibility of MIP

The two baseline measurements, i.e., before the whole body and respiratory 

warm-ups, permitted a test-retest assessment of MIP. For the comparison of 

baseline MIP values the data of both groups were pooled. The mean baseline MIP 

values of the whole body warm-up protocols and the respiratory warm-up were not 

significantly different, the mean difference being less than 5 cm FfeO. The mean (± 

SE) coefficient of variation (CV = 100% x SD/mean) for the baseline MIP 

measured on the two occasions was 4.65 (± 0.76) %. Additional analysis using the 

Bland-Altman plot (6)(fig. 2.1), revealed a repeatability coefficient of 26.6 cm H2O.
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Fig 2.1 Bland- Altman plot for reproducibility of baseline MIP between whole 
body warm-up protocols and Respiratory Warm-up.

Influence of Maximal testing Upon MIP

Immediately after the incremental cycling (peak V02) test MIP decreased by 2.2 ± 

3.0 % from the baseline; this difference was not significant. After the incremental 

rowing (peakV02) test MIP decreased by 7.0 ± 2.0 % (P< 0.01).

Influence of Whole Body Warm-Up on MIP

For the comparison between whole body warm-up protocols the two groups have 

been analysed separately. After the General Warm-up, MIP increased from a 

baseline of 171.4 (± 9.0) cm H2O to 178.8 (± 12.6) cm H20, a mean (± SE) percent 

increase of 3.4 (± 2.5) %; this difference was not significant (p >0.05). After the 

Rowing Warm-up, baseline MIP increased from a mean of 161.1 (± 7.5) cm H2O to
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162.8 (± 10.7), a mean (± SE) percent increase of 0.3 (± 3.2)% which again was 

not significant (p >0.05).

Influence of Respiratory Warm-Up on MIP

For the comparison of MIP values before and after the Respiratory Warm-Up 

which was common for both groups the data were pooled. The Respiratory Warm- 

Up induced a significant increase in MIP from a mean baseline of 171.2 (± 7.0) cm 

H2O to 178.1 (± 6.8) cm H20  after 30 breaths, a 4.5 ±1.1 % increase (P<0.001). 

After 60 breaths the mean MIP increased further to 184.2 (± 6.4) cm H2O, an 

additional significant increase of 3.8 ± 1 .3  % (p< 0.01). The total increase from 

baseline was 8.5 ± 1.8 % (P<0.0001).

2-4.4 Lung Function

There were no significant changes in the parameters measured other than MIP. 

Pulmonary function data obtained after the General, Rowing and Respiratory 

Warm-ups are summarised in table 2.4.

Table 2.4. Mean (SE) percent changes between baseline and the three warm-up 
protocols. Results shown under Respiratory warm-up are pooled data for both 
groups. _____________________________________________

General

(n=12)

Rowing 

(n=11)

Respiratory

(n=23)

MIP % 3.4 (±2.5) 0.3 (±3.2) 8.5 (±1.8)*

FVC % 1.9 (±2.4) -1.0 (±1.4) 1.0 (±1.2)

FEV1 % -1.0 (±1.3) 0.4 (±0.9) 0.4 (±0.9)

FEV1/FVC % -1.3 (±1.5) 1.4 (±1.5) 1.4 (±1.5)

PIFR % -1.2 (±2.3) 0.3 (±3.1) 1.7 (±2.1)

MIP = maximum inspiratory pressure, PIFR = peak inspiratory flow rate, 
"Denotes significance (p<0.0001)
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2-4.5 Prediction of Warm-Up Effect

Post-Respiratory Warm-Up MIP was significantly correlated with the baseline MIP 

(p<0.001) and this relationship can be described by the two linear models on table 

2.5, derived from data taken after the two sets of 30 breaths of the Respiratory 

Warm-up.

Table 2.5. Predictive equations for MIP.
Respiratory Warm-up R* Regression equation

30 breaths 0.9409 y = 0.9344 x +  18.099

60 breaths 0.8667 y = 0.8506 x + 38.539

y = New MIP, x = baseline MIP.

2-5 DISCUSSION

The main finding of this study was that MIP increased significantly following the 

Respiratory Warm-up but not following the two whole body warm-up protocols. 

This phenomenon, which emerges with at least 30 breaths using POWERbreath®, 

raises the possibility that the respiratory system may have different warm-up 

requirements (threshold) than the locomotor system.

Emphasis was given to the methodological issues related with the Mueller 

manoeuvre. The variability in MIP between baselines is in agreement with 

previous reports on test-retest reproducibility (Larson et al, 1993). The mean 

coefficient of variation, which was smaller than reported previously (Black & Hyatt, 

1969; Wilson et al, 1984; Aldrich & Spiro, 1995), as well as the coefficient of 

repeatability from the Bland-Altman plot, which is in agreement with the study of 

Maillard et al (1998), suggest that the task learning effect was expressed and 

reliable baselines were established.

Another interesting observation was that following the incremental rowing test to 

exhaustion MIP decreased, whilst no significant changes occurred after the 

incremental cycling protocol. These data are suggestive of respiratory muscle
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fatigue and are in agreement with previous reports of the effect of exhausting 

exercise upon respiratory muscle function (Mahler & Loke, 1981; Hill etal, 1991; 

Johnson et al, 1996; McConnell etal, 1997). During rowing, thoracic muscles are 

responsible not only for the act of breathing but also for the stabilisation of the 

thorax (Dal Monte & Komor, 1989). This additional role of respiratory muscles in 

the locomotive work of rowing might be the reason for the development of 

inspiratory muscle fatigue in such a short time compared with longer exercise 

durations reported previously. Even though the entrained breathing observed in 

rowing is suggestive of a possible scenario for respiratory muscle fatigue no study 

has reported it previously. Clearly, more work needs to be done in the breathing 

requirements of rowing to understand the functional significance of these findings.

The precise mechanism(s) responsible for the increase in MIP following the 

Respiratory Warm-up can not be identified easily. A skeletal muscle warm-up has 

been reported to have an effect on maximum isometric force when the change in 

the muscle temperature is substantial (Bergh & Ekblom, 1979; Ranatunga etal, 

1987). However, since in the present study it was not possible to measure the 

temperature of the diaphragm or the intercostal muscles, we can only suggest that 

a temperature related effect, if any, was unlikely. This suggestion is justified under 

the assumption that the temperature of the diaphragm and the other inspiratory 

muscles is essentially equal to the core temperature because of their location.

Thus, by a process of elimination, an altered motor control hypothesis is 

suggested. It is possible that the intermuscular co-ordination between inspiratory 

and expiratory muscles is improved in a manner similar to the one identified for 

other skeletal muscles (Komi, 1992). Repeated performance of the specific 

recruitment pattern might decrease the degree of co-contraction known to exist 

between inspiratory and expiratory muscles at RV and consequently improve force 

generation.
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The protocols used in the General Warm-up and the Rowing Warm-up, did not 

alter MIP. A possible explanation may be that, due to the modest ventilatory 

response elicited by the General Warm-up, the threshold required for the 

respiratory muscles ‘warm-up’ was not achieved. However, during the Rowing 

Warm-up the ventilatory response was more pronounced, as can be seen from 

table 3, but again MIP did not change. Comparing the breathing patterns of the 

two whole body warm-up protocols we notice that thoracic excursions were of 

similar magnitude. The elevated minute volume of the Rowing Warm-up was 

effected through increases in breathing frequency as expected. These sub- 

maximal unloaded breathing patterns, predominantly characterised by diaphragm 

participation, are different from the pattern of a relative chest wall muscle 

recruitment observed during the Mueller manoeuvre (Nava etal, 1993). Therefore, 

the recruitment pattern involved could be suggestive of a relative insensitivity of 

the Mueller manoeuvre to tension changes effected by diaphragm participation.

In contrast, during the Respiratory Warm-up the recruitment of the chest wall 

muscles is substantial as loading compensation enhances the inspiratory activity 

of the external intercostal muscles. Furthermore, deliberate inspiratory efforts tend 

to make greater use of inspiratory intercostal muscles of the chest wall than do 

spontaneous metabolically stimulated inspirations (Whitelaw & Feroah, 1989). It 

has often been observed in strength-training studies that increases in strength 

depend on how similar the strength test is to the actual training exercise in terms 

of muscle fibre length and type of contraction (Sale & MacDougall, 1981). Indeed, 

the recruitment pattern of the Mueller manoeuvre is more similar to the pattern of 

the Respiratory Warm-up than the pattern of the two whole body warm-up 

protocols.

The Rowing Warm-Up increased the peak torque measured during concentric 

knee extension and confirms its effectiveness as a preliminary activity. These data 

are also in agreement with previous reports on the beneficial effects of sport
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specific warm-up (Karvonen, 1992; Shellock & Prentice, 1985). The fact that the 

rowing warm-up failed to enhance MIP suggests that the respiratory muscles may 

not be optimally prepared before the start of a rowing race. Additionally, the 

possibility of a discrepancy between the work intensity required, for an enhanced 

function of the respiratory muscles and the muscles of locomotion, is raised. An 

improved functional capacity of the inspiratory muscles, as a result of warm-up, 

may allow a decrease in recruitment requirements and minimise in doing so the 

sensation of breathlessness. Indeed, strong relationship between recruitment of 

the inspiratory muscles and the perception of dyspnea has been suggested (Killian 

& Jones, 1988). More work is needed to investigate the potential effect of this 

upon the perception of breathlessness and rowing performance.

Finally our data suggest that in the clinical and academic fields, studies that 

examine the function of the inspiratory muscles under different treatment 

conditions should account for a ‘warm-up’ effect on baseline MIP. Indeed, studies 

examining post-exercise inspiratory muscle fatigue might reveal that the degree of 

fatigue reported is larger than previously thought. Likewise, results from studies 

that have failed to observe the presence of fatigue may have done so because it 

was masked by the ‘warm-up’ effect.

2-6 CONCLUSIONS

A warm-up phenomenon, similar to the one present in locomotion, exists in the 

inspiratory muscles. This enhancement is more effectively elicited by specific 

inspiratory manoeuvres than by whole body warm-up protocols.
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Chapter Three

Prior Submaximal Respiratory Muscle Activity 

(‘W arm Up’) Enhances Maximum Inspiratory Pressure 

(PImax) and Improves Reliability of the 

Assessment/M easurement of PImax.
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Part of this chapter have been accepted for publication in Respiration.

3-1 ABSTRACT

The variability of maximal inspiratory pressure (Plmax) in response to repeated 

measurement affects its reliability; published studies have used between three and 

twenty Plmax measurements in a single occasion. This study investigated the 

influence of a specific respiratory ‘warm-up’ upon the repeated measurement of 

inspiratory muscle strength and attempts to establish a procedure by which Plmax 

can be assessed with maximum reliability using the smallest number of 

manoeuvres.

Fourteen healthy subjects, familiar with the Mueller manoeuvre, were 

studied. The influence of repeated testing on a single occasion was assessed 

using an 18 measurements protocol. Using a randomised cross-over design 

subjects performed the protocol, preceded by a specific respiratory warm-up 

(RWU) and on another occasion without any preliminary activity (Control). 

Comparisons were made amongst 'baseline' (best of the first 3 measurements), 

'short' series (best of 7th to 9th measurement) and 'long' series (best of the last 3 

measurements).

Under control conditions the mean increase (‘baseline’ vs. 'long' series) was 

11.4 (5.8)%; following the RWU the increase (post RWU ‘baseline’ vs. ‘long’ 

series) was 3.2 (10.0)%. There were statistically significant differences between 

measurements made at all 3 protocol stages (‘baseline’, ‘short’ and ‘long’ series) 

under control conditions, but none following the RWU.

The present data suggest that a specific RWU may reduce the 'learning 

effect’ during repeated Plmax measurements which is one of the main contributors 

of the test's variability. The use of a RWU may provide a means of obtaining 

reliable values of Plmax following just 3 measurements.
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3-2 INTRODUCTION

Maximal inspiratory pressure (Plmax) is a commonly used index of inspiratory 

muscle strength; it reflects the combined force-generating capacity of the 

inspiratory muscles during a brief, quasi-static contraction (Mueller 

manoeuvre)(Larson et al, 1993). The reliability of Plmax has been questioned, 

particularly in the context of its variability in response to repeated measurement. 

Day to day fluctuations similar to those seen with other measures of strength have 

been reported to be + 10 percent (Astrand & Rodahl, 1986). However, the 

variability relating to the number of manoeuvres that are performed can result in 

an underestimate of Plmax of as much as 20 CIT1H2O (Wen et al, 1997). Reports 

suggest that a learning effect can be significant in both short series (3-5 

measurements) and longer series (up to 20 measurements) protocols (Fiz et al, 

1989; Wen etal, 1997).

In a recent study, we have shown that prior activity of the inspiratory muscles, i.e., 

breathing against a modest threshold load using an inspiratory muscle trainer, 

induced a statistically significant increase in Plmax (Volianitis etal, 1999).

Thus, the aims of the present study were to investigate the influence of a specific 

respiratory ‘warm-up’ upon the repeated measurement of inspiratory muscle 

strength and to attempt to establish a procedure by which Plmax can be assessed 

with maximum reliability using the smallest number of manoeuvres. The influence 

of repeated testing was assessed on a single occasion using a protocol which 

consisted of a total of 18 maximal efforts.
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3-3 METHODS

3-3.1 Subjects

Fourteen healthy subjects were studied following informed, written consent and 

local Ethics Committee approval. Their mean ± SD characteristics were: age 26 ±  

3 yrs; weight 72 ± 9 kg; and height 1.80 ±  0.06 m. None reported any history of 

respiratory or neuromuscular disease. Subjects were removed from the study if 

they reported a respiratory tract infection within the two weeks of data collection 

because of the potential effects upon respiratory muscle strength (Mier- 

Jedrzejowicz et al, 1988).

3-3.2 Procedure

Subjects were experienced with the nature of the Mueller manoeuvre or had 

visited the laboratory at least twice for familiarisation prior to data collection. These 

two preliminary sessions were designed to allow for the initial learning effect and 

to assess test-retest reliability. Larson et al (1993) reported that performance 

plateaus between the 3rd and 4th test session. The familiarisation sessions 

consisted of the same protocol as in the actual data collection. The influence of 

repeated testing on a single occasion was assessed using a protocol consisting of 

a total of 18 measurements, performed in 6 sets of 3 efforts. One minute rest was 

allowed between individual measurements and a 3 min rest between sets to 

minimise the effects of fatigue.

Subjects performed the protocol under two conditions, in a randomised cross over 

design. On one occasion, the test protocol was preceded by a specific respiratory 

warm-up (RWU); on another occasion, the protocol was performed without any 

preliminary activity (Control). Both data collection sessions (Control and RWU) 

were performed at the same time of the day and within 5-7 days of each other.
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3-3.3 Maximum Inspiratory Pressures

Peak maximum inspiratory pressure (P.PImax) and maximum inspiratory pressure 

averaged over 1 sec (Plmax) were recorded using a portable hand held mouth 

pressure meter, (Morgan Medical, UK). This device, equipped with a flanged 

mouthpiece, has been demonstrated to measure inspiratory efforts accurately and 

reliably (Hamnegard et al, 1994). A small hole in the system was preventing 

closure of the glotis during inspiration and a noseclip was used in all efforts. The 

subjects were asked to sustain a maximal inspiratory effort for 2-3 sec.

The initial length of the inspiratory muscles was controlled by initiating each effort 

from residual volume (RV). Subjects were instructed to take their time and to 

slowly empty their lungs to RV. All manoeuvres were performed in the upright 

standing position and verbal encouragement was given to help the subjects 

perform maximally. The trials which did not represent the subjects’ maximum 

effort, according to their subjective feeling, were discarded.

Comparisons were made according to the following definitions: ‘baseline’ series 

measurement was defined as the highest of the first 3 measurements. The ‘short’ 

series measurement was defined as the highest among the 7th to the 9th efforts 

(Wen et al, 1997). The ‘long’ series measurement was defined as the highest 

value amongst the last 3 of the 18 measurements.

3-3.4 Specific Respiratory Warm-Up (RWU)

Two sets of 30 breaths were performed with a POWERbreathe® inspiratory 

muscle trainer (IMT Technologies Ltd., Birmingham, UK), with mouth pressures 

being measured within 2 minutes of completion of each set. The pressure load 

was set at 40% of the Plmax measured before the commencement of the protocol. 

This level of recruitment has been suggested to approximate the upper loading 

limit before fatigue of the diaphragm occurs (Roussos & Macklem, 1977).
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PO W ERbreathe is a pressure-threshold device which requires continuous 

application of inspiratory pressure throughout inspiration in order for the inspiratory 

regulating valve to remain open. Subjects were instructed to initiate each breath 

from RV and to continue the inspiratory effort up to the lung volume where the 

inspiratory muscle force output for the given load limited further excursion of the 

thorax. Because of the increased tidal volume, a decreased breathing frequency 

was adopted in order to avoid hyperventilation and the consequent hypocapnia.

3-3.5 Statistical Analyses

Student’s t-test for paired samples was used to compare differences before and 

after the two conditions. The coefficient of variation (CV = 100% x SD/mean) and 

the coefficient of repeatability for agreement (Bland & Altman, 1986) was used to 

evaluate the within-sessions reproducibility of the baseline and final maximum 

values. One-way ANOVA with repeated measures and Scheffé post-hoc test was 

used to detect differences between the 'baseline', 'short' and 'long' series values. P  

< 0.05 was considered statistically significant.
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3-4 RESULTS

3-4.1 Test-retest Reproducibility

The group mean ± SD ‘baseline’ and ‘long’ series Plmax and P.PImax values 

measured under the two test conditions are summarised in Table 3.1 (note that the 

‘baseline’ value presented here for RWU is the value recorded prior to the RWU).

Table 3.1 Mean (SD) values of Plmax and P.PImax (kPa): difference between
baseline series values without RWU and long series values with and 
without RWU.

Plmax P.PImax
Baseline Long Baseline Long

Control 13.5±2.4 14.7±2.8 13.5±2.4 15.9±2.8
RWU 13.5±2.4* 14.7+3.0 13.9±2.1* 15.7±2.9

Baseline: highest of the first 3 measurements, * record ed prior to the RWU; Long:
highest of the last 3 measurements; Plmax: Maximum inspiratory pressure 
averaged over 1s; PPImax: Peak maximum inspiratory pressure; RWU- 
Respiratory warm-up. Note: Baseline value for RWU in the value recorded prior to 
the RWU.

The mean (SE) coefficient of variation (CV = 100% x SD/mean) and the 

repeatability coefficient (Bland & Altman, 1986) of the ‘baseline’ and ‘long’ series 

Plmax and P.PImax values for the two conditions are shown in Table 3.2.

Table 3.2 Reproducibility data for the ‘baseline’ and ‘long’series measurements
of Plmax and P.PImax.

Plmax P.PImax
Baseline Long Baseline Long

CV (%) 8.4±3.7 5.3±3.1 8.2±4.7 5.6±3.7
CR (kPa) 3.7 2.5 3.7 3.0

CV-Coefficient of variation, mean (SD); CR-Coefficient of repeatability for 
agreement.
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3-4.2 Response to the RWU

Following the RWU, there was a significant increase in the mean baseline values 

of both Plmax and P.PImax (P < 0.01) which, in absolute values, was 1.4 ± 0.5 

kPa (13.8 ± 5.6 cm H20 ) and 1.6 1  0.6 kPa (15.9 1 5.8 cm H20), or 10.1 1 8.1% 

and 11.2 ±  9.0 %, respectively.

Response to repeated measurement

The development of Plmax and P.PImax values during the 18 measurement 

protocol under both conditions is summarised in Table 3.3 and for Plmax in Figure 

3.1. Under control conditions the mean increase (‘baseline’ vs. ‘long’ series) was 

11.4 (5.8)%; following the RWU the increase (post RWU ‘baseline’ vs. ‘long’ 

series) was 3.2 (10.0)%. There were statistically significant differences between 

measurements made at all 3 protocol stages (‘baseline’, ‘short’ and ‘long’ series) 

under control conditions, but none following the RWU.

Table 3.3 Mean 1  SD development of Plmax and P.PImax values (kPa)
throughout the 18 measurement protocol for the two conditions (* P< 
0.05, ** P< 0.01)._____________

Plmax P.PImax
Baseline Short Long Baseline Short Long

Control 13.2±2.2 *13.8±2.7 **14.712.8 14.212.3 *15.0+2.8 **15.912.8
RWU 14.3±2.9 14.2±2.3 14.7+3.0 15.512.7 15.512.8 15.712.9
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Fig 3.1 Development of Plmax during the Warm-up and the following 18 
measurement protocol under both conditions. Comparisons are 
between RWU and control conditions. (* P< 0.05, ** P< 0.01) (&: 
baseline' values of the trial without RWU are repeated for comparison 
purposes).
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Fig 3.2 Development of Plmax during the 18 measurement protocol without 
RWU.

During the 18 measurements without the RWU, Plmax developed a plateau at the

8-10 measurement and a further stabilisation at the 17-18 measurement (fig. 3.2).

Plmax
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Fig 3.3 Development Plmax during the 18 measurement protocol after the RWU.

Plmax after RWU

98



3-5 DISCUSSION

The main finding of the present study was that following a specific RWU the 

response to repeated measurement of both Plmax and P.PImax was attenuated 

such that there was no statistical difference between the post-RWU ‘baseline’ 

measurement and the ‘long’ series measurement.

This finding confirmed our original hypothesis and has important implications for 

the administration of the Mueller manoeuvre and the measurement of inspiratory 

muscle function. In the control condition, both Plmax and P.PImax continued to 

increase throughout the 18 measurements with significant differences in all stages 

(Table 3.3). These data are in agreement with previous reports on the ‘learning 

effect’ of Plmax (Fiz et al, 1989; Wen et al, 1997) but in contrast with reports of no 

effect for P.PImax (Wijkstra etal, 1995). When the ‘baseline’ measurement was 

preceded by a RWU, Plmax and P.PImax showed only modest increases of the 

order of 2-4 cm H2O across the 18 measurements. This difference was not 

significant statistically nor, it could be argued, is it significant functionally.

Our data show that following preliminary submaximal activity of the inspiratory 

muscles (RWU) a reliable baseline value can be measured, for both Plmax and 

P.PImax, with the first trial. However, it is acknowledged that all of our subjects 

were well acquainted with the Mueller manoeuvre before the 18 trial protocol was 

initiated. It is possible that, for subjects that are more naive, the RWU may be 

insufficient to fully enhance Plmax. However, the mean increase in Plmax over the 

18 measurements was around 12% in our subjects, which is comparable with that 

observed by others in more naive subjects over a similar number of trials (Fiz et al, 

1989; Wen etal, 1997).

The within-session reproducibility of the two conditions was assessed using the 

coefficient of variation. The coefficients of variation for Plmax were similar or
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smaller than those reported previously (Aldrich & Spiro, 1995; Maillard etal, 1998), 

whilst those for P.PImax were considerably smaller than the 11.2 % reported by 

Wijkstra et al (1995). The coefficient of repeatability for Plmax for the maximum 

value (‘long’) was similar to that reported previously (Maillard etal, 1998), 25 cm 

H2 O compared to 28 cm H2 O. The coefficient of repeatability for the ‘baseline’ 

measurement was larger than Maillards' (1998), but this can be attributed in part to 

the differing absolute values of Plmax of our subject populations. Our group had 

mean Plmax of 138 cm H20  whilst Maillards' was 115 cm H20 . Since the 

coefficient of repeatability is expressed in absolute values a larger absolute 

biological variability will be expressed in its values.

It is difficult to identify the mechanism(s) responsible for the increase in Plmax and 

P.PImax following the RWU, but it is unlikely that it was due to the learning effect 

reported previously (Larson et al, 1993). It is possible that part of the observed 

increase was due to a placebo effect. Whilst the Mueller manoeuvre is a highly 

effort-dependent test, earlier studies have shown that in well motivated healthy 

subjects full activation of the diaphragm is possible (Bellemare & Bigland-Ritchie, 

1984; Gandevia & McKenzie, 1985). However, a recent study by McKenzie et al 

(1996) found that voluntary activation of the diaphragm declines during maximal 

Mueller efforts at volumes below FRC. They conclude that amongst a number of 

mechanisms which could contribute to the influence of lung volume on voluntary 

drive to the diaphragm, reflexes dependent on muscle afferents might be involved.

In common with other skeletal muscle, the development of maximal force by the 

inspiratory muscles requires substantial reflex facilitation (most likely from muscle 

spindle afferents) in addition to the descending drive (Gandevia etal, 1990). It has 

been suggested that the sudden loading of the inspiratory muscles experienced 

during the Mueller manoeuvre may produce a reflex inhibition of motorneurones 

(Butler et al, 1995). It is possible that the preliminary respiratory activity of the 

RWU improves the intramuscular co-ordination and removes some of the reflex
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inhibition, resulting in greater force generation. Alternatively, even though the two 

conditions are different in terms of muscle contraction pattern, the muscle length 

specificity between the RWU and the Mueller manoeuvre may have contributed to 

the changed inspiratory muscle performance following RWU. In both test 

conditions, due care was taken to ensure that the manoeuvres were initiated from 

RV. This volume represents a specific muscle length of the inspiratory muscles 

that is not normally involved during quiet breathing. It is quite possible that when a 

particular movement is repeated many times, alterations occur in the complex 

interactions amongst muscles, with the result that performance is enhanced (Komi, 

1992). Further work is required in this area and the response of trans- 

diaphragmatic pressure to bi-lateral phrenic nerve stimulation with and without 

RWU would be of particular interest.

Whilst there were no statistically significant differences between any of the 18 

measurements following RWU, there is a suggestion that the RWU may have 

induced a small degree of fatigue which appeared to recover after about 15 

measurements (see figure 3.3). We were not able to calculate the Tension-Time 

Index (TTI) because the duty cycle (T|/TTot) of the breathing pattern was not 

measured during the RWU. However, as can be seen in the methods, the 

breathing frequency adopted during the RWU was reduced. The subjects following 

expiration were pausing at FRC until they felt an urge to breath. This breathing 

pattern was characterised by a breathing frequency of about 6/min and an 

estimated T|/Ttot value of around 0.1. Therefore, we are reasonably confident that 

the TTI was below the fatigue threshold of 0.15 suggested by Bellemare and 

Grassino (1982). Even if we accept that some level of fatigue was induced by the 

RWU the effect that we report is still significant. If the suggested fatigue was 

prevented the warm-up effect would have been even larger. Therefore we don’t 

believe that the presence, or not, of fatigue is a fundamental limitation of our study 

or that it should alter our conclusions. In any case, since both protocols resulted in 

the same absolute inspiratory pressures we can assume that RWU did not induce
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any additional fatigue than that, if any, induced by the 18 MIP manoeuvres. 

Clearly, further work is necessary to identify an optimal RWU which retains the 

properties of the warm-up utilised in our study.

3-6 CONCLUSIONS

The present study confirms our previous observation that the inspiratory muscles 

exhibit a ‘warm-up’ phenomenon following prior submaximal activity. Further, the 

present data suggest that a specific RWU may negate the so-called ‘learning 

effect’ which is one of the main contributors of the test's variability. In both the 

clinical and academic fields, the use of a RWU may provide a means of obtaining 

reliable values of Plmax and P.PImax following just 3 measurements.
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Chapter Four

Specific Respiratory Warm-Up Improves Rowing 

Perform ance and Exertional Dyspnea.
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Parts of this chapter have been accepted for publication in Medicine and Science 

in Sports and Exercise.

4-1 ABSTRACT

In a previous study (chapter 2) we have found that the strength of the inspiratory 

muscles is enhanced following a specific respiratory warm-up. The purpose of this 

study was a) to compare the effect of three different warm-up protocols upon, 

rowing performance and perception of dyspnea, b) to investigate the effect of a 

respiratory warm-up upon rowing performance.

A group of well-trained club rowers (N  = 14) performed a 6 min all-out 

rowing simulation (Concept II). We examined differences in mean power output 

and dyspnea measures (modified CR-Borg scale) under three different conditions; 

following a submaximal rowing warm-up (SWU), a specific rowing warm-up (RWU) 

and a specific rowing warm-up with the addition of a respiratory warm-up 

(RWUplus) protocol.

Mean power output during the 6 min all-out rowing effort increased by 1.2% 

following the RWUplus compared to that obtained after the RWU (P < 0.05) which, 

in turn, was by 3.2% higher than the performance after the SWU (P < 0.01). 

Similarly, following the RWUplus, dyspnea was 0.6 ±  0.1 (P < 0.05) units of the 

Borg scale lower compared to the dyspnea after the RWU and 0.8 ±  0.2 (P < 0.05) 

units lower than the dyspnea following the SWU.

These data suggest that a combination of a respiratory warm-up protocol 

together with a specific rowing warm-up is more effective than a specific rowing 

warm-up or a submaximal warm-up alone as a preparation for rowing 

performance.
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4-2 INTRODUCTION

Warm-up may be defined as any preliminary activity that is used to enhance 

physical performance and to prevent sports-related injuries. There are various 

types of warm-up techniques that competitors use to prepare for their event. The 

most widely used methods are classified as passive, general and specific warm-up 

(Shellock & Prentice, 1985).

Competitive rowing is considered to be one of the most physiologically demanding 

sports, as rowers work near their maximal physical capacities and recruit a very 

large muscle mass. Open class rowers generate amongst the highest values of 

any athletes in selected physical fitness parameters, including those related to 

cardiorespiratory and muscular function (Koutedakis & Sharp, 1990). Warm-up is 

an integral part of the preparation before the start of the race.

Most general warm-up protocols are of moderate intensity and characterised by a 

low ventilatory demand (Karvonen, 1992). In competitive rowing, however, a 

higher intensity specific warm-up usually follows the general warm-up in an 

attempt to practise the racing pace (Grosser, 1991). The higher intensity of the 

specific warm-up, amongst other peripheral adaptations, elicits an elevated 

ventilatory response that may prepare the respiratory muscles for the demanding 

entrained breathing of rowing (Mahler et al, 1991; Steinacker et al, 1993). 

However, data from a previous study (chapter 2) have shown that a specific 

respiratory warm-up protocol is more effective in enhancing inspiratory muscle 

strength than a whole body specific rowing warm-up protocol (Volianitis et al, 

1999).

The purpose of this study was a) to compare the effect of three different warm up 

protocols, b) to identify the functional significance of the respiratory warm-up, in 

terms of rowing performance and perception of dyspnea.
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4-3 METHODS

4-3.1 Subjects

Fourteen competitive club rowers (7 male) participated in the study after giving 

informed written consent approved by the local Ethics Committee. One of the 

subjects was removed from the study because he developed a respiratory tract 

infection within two weeks of the data collection, a condition known to have 

potential effects on respiratory muscle strength (Mier-Jedrzejowicz et al, 1988). 

Subject characteristics are shown in table 4.1.

Table 4.1. Group characteristics.
(Mean ±  SD) Male (n=7) Female(n=7)

Age (yr) 19.9 ± 0 .7 20.1 ± 0 .9

Height (cm) 181.6 ± 5 .8 174.7 ± 2 .3

Weight (kg) 78.0 ±10 .7 62.9 ± 4 .2

FVC(I) 5.7 ±  0.9 4.2 ± 0.3

FEVi (I) 4.8 ± 0.8 4.5 ±0 .5

FEW FVC  (%) 84.7 ±7 .0 88.3 ± 6 .3

V0j(mlkg'1 min'1) 61.3 ± 9 .0 54.3 ±2.1

4-3.2 Procedure

Before data collection, all subjects visited the lab on two occasions to be 

familiarised with mouth pressure, spirometry and dyspnea measurements. The 

subjects performed three different warm-up protocols, on different occasions, 

followed by an assessment of rowing performance. The three protocols were a 

submaximal rowing warm-up (SWU), a specific rowing warm-up (RWU) and the 

same specific rowing warm-up with the addition of a respiratory warm-up 

(RWUplus). The respiratory warm-up was performed using a pressure threshold
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inspiratory muscle-training device (POWERbreathe®, IMT Technologies Ltd., 

Birmingham, UK). Rowing performance was assessed with a 6 min all-out effort, 

on a rowing ergometer (Concept II, model c, Morrisville, USA) as the maximum 

oxygen uptake (V0jmax) and average power output obtained from this test are

strongly related to competitive rowing (Secher, 1993). Following SWU, the same 

all-out rowing effort was duplicated on two separate occasions, in order to 

evaluate the reproducibility of our protocol. Mouth pressure and spirometry 

measurements where made before and after every protocol. The heart rate was 

telemetrically monitored with Polar Accurex Plus heart rate monitor (Polar Electro, 

Finland).

4-3.3 Maximum Inspiratory Pressures (MIP)

MIP is commonly used to measure inspiratory muscle strength. It reflects the 

force-generating capacity of the combined inspiratory muscles during a brief, 

quasi-static contraction (Mueller manoeuvre)(Larson et al, 1993). MIP was 

recorded using a portable hand held mouth pressure meter, (Precision Medical, 

UK). This device has a constant leak to preclude spurious results, due to closure 

of the glottis and activity of bucal muscles, and has been shown to measure 

inspiratory efforts accurately and reliably (Hamnegard et al, 1994). A minimum of 

five and a maximum of nine technically satisfactory measurements were 

conducted and the highest of three measurements with 5% variability or within 5 

cm H20  difference, was defined as maximum (Wen etal, 1997). The initial length 

of the inspiratory muscles was controlled by initiating each effort from residual 

volume (RV). This procedure was adopted because, from our experience, RV is 

more reproducible than functional residual capacity (FRC). Subjects were 

instructed to take their time and to slowly empty their lungs to RV, thereby 

avoiding problems associated with variability in lung volumes. All manoeuvres 

were performed in the upright standing position and verbal encouragement was 

given to assist the subjects to perform maximally. MIP was measured after each

109



warm-up protocol and following the 6 min all-out effort. During the RWUplus 

protocol MIP was also measured before and after the specific respiratory warm-up 

to evaluate its efficacy.

4-3.4 Static Spirometry

Pulmonary function was assessed with a Vitalograph 2120 portable spirometer 

(Vitalograph Ltd., Buckingham, England), which was calibrated prior to each 

testing session using a 3 litre calibration syringe (Hans Rudolph Inc., Kansas, 

USA). Following familiarisation, the best of three manoeuvres were recorded. 

Forced vital capacity (FVC), forced expiratory volume in one second (FEVi) and 

percentage expired (i.e. 100 x FEVi/FVC)(FEVi %) were recorded before and after 

every treatment condition.

4-3.5 Respired Gas Analysis

Breath by breath gas analysis was made with an MGA 2000 Mass Spectrometer 

(Airspec Ltd., Kent, UK) in conjunction with an ultrasonic phase-shift flowmeter 

(Birmingham Flowmetrics, Birmingham, UK). Data processing was performed on­

line (Labview 3, National Instruments, Austin TX, USA) on a PowerMac 7100/80 

computer (Macintosh Ltd., USA). Calibration of the flowmeter was performed 

before each test using a 1-litre calibration syringe (PK Morgan Ltd., Kent, UK).

4-3.6 Submaximal Warm-Up (SWU)

Eight minutes of submaximal rowing at about 65-70% of the subjects' best 

previously measured power output during a 6-min all-out effort were performed. 

The stroke rate was controlled between 22-24 strokes/min. Following the 8-min 

warm-up there was 3-min rest before the commencement of the 6-min all-out 

effort. This protocol has been routinely used for physiological assessment of 

rowers (Two Stage Test)(Steinacker et al, 1985). All subjects were familiar with the 

6-min all-out effort on the rowing ergometer as part of their training.
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4-3.7 Rowing Warm-Up (RWU)

The protocol was designed to mimic as closely as possible the routine that is 

usually adopted in preparation for a rowing race. Five minutes of very light jogging 

on the treadmill, at a heart rate of 110-130b/min, were followed by 10 minutes of 

stretching. Subsequently, 12 minutes rowing of gradually increasing intensity were 

performed during which the heart rate increased from 148 (± 2) to 178 (± 1.7) 

b/min. The increase in intensity was achieved primarily by increasing the stroke 

rate. Then, five sprints with increasing stroke rate and power output were 

performed. Between each sprint, there was an active rest interval of light paddling 

which lasted approximately 2 minutes. At the end of the sprints, the rower rested 

for about 5-7 minutes before any further measurements were made. This rest 

interval was designed to simulate the small pause between the end of the warm­

up and the start of the race. Details of the structure of the Rowing Warm-up can be 

seen in table 4.2.

Table 4.2. Description of the Rowing Warm-Up on the rowing ergometer.
Warm-up (time) Stroke rate/min @ Percent Power Max 

(% Pmax)

1x12min (4-4-3-1) 18-20-22-24 50-55-57-62

2x30s 26-28 77 (± 5) - 80(± 2)

2x45s 28 91 (± 6) - 95(± 2)

1 min 30-32 108 (±9)

% Pmax = percentage of maximum power output achieved during 6 min all-out 
test.

This warm-up protocol has been shown to effectively enhance the isokinetic 

strength of peripheral musculature (Volianitis et al, 1999). Breath by breath gas 

analysis and heart rate data were collected throughout.
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4-3.8 Rowing Warm-Up plus respiratory warm-up (RWUplus)

RWUplus was a combined protocol consisting of a rowing warm-up (paragraph 4- 

3.7) and a specific respiratory warm-up. The specific respiratory warm-up 

consisted of two sets of 30 breaths using a POWERbreathe® inspiratory muscle 

trainer (IMT Technologies Ltd., Birmingham, UK) at 40% of the MIP measured 

before the start of the protocol. Between the two sets there was a short rest 

interval while an intermediate MIP measurement was made. Forty percent of 

maximum capacity has been suggested to approximate the upper loading limit 

before fatigue of the diaphragm occurs (Roussos & Macklem, 1977). 

POWERbreath® is a pressure-threshold device which requires continuous 

application of inspiratory pressure throughout inspiration in order for the inspiratory 

regulating valve to remain open. As with the maximal inspiratory pressures, 

subjects were instructed to initiate every breath from RV. They continued the 

inspiratory effort up to the lung volume where the inspiratory capacity for the given 

resistance limited further excursion of the thorax. Powerful execution of the 

manoeuvres was encouraged to ensure maximal voluntary output for the given 

loading conditions. Because of the increased tidal volume, a decreased but 

spontaneous breathing frequency was adopted by the subjects in order to avoid 

hyperventilation. This breathing pattern resulted in a very low duty cycle 

(inspiratory time/total breath duration) and further ensured that fatigue was 

avoided. The respiratory warm up was performed before the RWU. This protocol 

has been shown to enhance the strength of the inspiratory muscles (Volianitis et 

al, 1999).

4-3.9 Perception of Dyspnea
A category scale, the modified Borg scale (Borg, 1982), was chosen to evaluate 

the respiratory effort during exercise. The scale consists of a series of integers 

from zero to 10. The rower was asked to estimate the effort required to breath but 

not the effort of the exercise. During rowing, the Borg scale remained in front of 

the rower and an assessment was made immediately following the all-out effort.
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The rowers were asked to assess their dyspnea retrospectively, i.e. during the 6 

min effort.

4-3.10 Statistical Analyses

One-way ANOVA with repeated measures and Bonferroni post-hoc test was used 

to assess differences between the three different warm-up protocols and between 

the MIP values before and after the different warm-up protocols. Pearson's 

correlation coefficient was used to assess the association between variables. 

Values of P < 0.05 were considered statistically significant. Data points were 

means (± SE) unless otherwise stated.
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4-4 RESULTS

4-4.1 Test-retest Reliability of the 6min All-Out Effort

Reliability was expressed as a coefficient of variation, (SD/mean) x100, for mean 

power this was 0.36% and the retest correlation was 0.99 (see table 4.3).

Table 4.3. Coefficients of variation for selected parameters related with the 6 min 
all-out test.

cv%
MIP deficit (%) 10.1 +2 .7

Power (W) 0.36 ±0.12

Dyspnea 1.7+ 0.7

V02(L/min) 1.4+ 0.7

VE (L/min) 3.2 ± 0 .3

4-4.2 MIP Response to the Respiratory Warm-Up

The respiratory warm-up was effective in enhancing the strength of the inspiratory 

muscles. MIP increased by 7.0 (± 1.0) % from baseline values.
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4-4.3 Inspiratory Muscle Fatigue

Following the 6-min all-out rowing effort MIP was lower for all three protocols. After 

the SWU and the RWU the deficit in inspiratory muscle strength, were 10.2 (± 1.4) 

and 11.1 (± 1.3)%, respectively. In the RWUplus protocol fatigue was 

significantly reduced to 4.2 (± 0.3)% (P < 0.01) compared with the other two warm­

up protocols (see fig.4.1)

■ SWU □ RWU rn RWUplus

170 -I 

160  

150 

140 

130 

120
P re  P o s t

6 m in a ll-o u t row ing e ffo rt

Fig 4.1 Maximum Inspiratory Pressures (MIP) in cmH20 before and after the 6 
min all-out rowing test, for the three different warm-up protocols. Values 
are means (± SE). * = (P < 0.05) Significantly different reduction of 
baseline MIP from the two other conditions.
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4-4.4 Rowing Performance

As can be seen from table 4.4., power output in the 6 min all-out test was 3.2% 

higher following the RWU compared to power output following the SWU (P < 

0.01). After the RWUplus, power output increased significantly a further 1.2% 

compared with the power output following the RWU (P < 0.05). The distances 

covered in meters were increased by 11 (± 15) m (P< 0.05) and 18 (± 13) m (P< 

0.01) following the RWU and RWUplus protocols, respectively, compared with the 

SWU protocol. There were no significant differences between any gas exchange 

parameters.

Table 4.4. The effect of the three warm-up protocols on parameters related with
the 6min all-out effort.

SWU RWU RWUplus

MIP deficit (%) 10.2 ± 1 .4 11.1 ± 1 .3 NS 4.2 ±  0.3 *

Power (W) 292 ±14 302 ±  14 ** 305 ± 1 5

Distance (m) 1690 ± 2 9 1701 ±31 * 1708 ± 3 2 * *

Vo2(L) 4.17 ± 0.15 4.29 ±  0.21 NS 4.35 ±  0.21 NS

Ve(L) 155 ± 5 158 ± 6 NS 160 ± 6 NS

Dyspnea 7.8 ± 0 .3 7.6 ±  0.2 NS 7.0 ±  0.3 *

SWU = Submaximal Warm-Up, RWU = Specific Rowing Warm-Up,
RWUplus =Specific Rowing Warm-Up with Respiratory warm-up. Values are mean 
(SE). Comparisons between SWU and RWU. *  = P<0.05, * *  =P<0.01,
# = Significant difference between RWU and RWUplus (P<0.05).

4-4.5 Perception of Dyspnea

The perception of dyspnea during the 6 min all-out effort was not statistically 

different between the SWU and RWU protocols. However, it was significantly 

decreased following the RWUplus protocol by 0.8 (± 0.3) and 0.6 (± 0.3) units of 

the Borg scale compared with the SWU and RWU protocols, respectively (P < 

0.05). See table 4.4. Even though none of the parameters related to the 6 min all­
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out effort were significantly correlated, the association between changes in 

dyspnea and improvements in power output gave an r = 0.474 which accounts for 

22.5% of the variance.

117



4-5 DISCUSSION

The main finding of this study was that a specific respiratory warm-up has a 

significant impact upon rowing performance. Indeed, the RWUplus was more 

effective as a preparatory and warm-up routine for the 6-min all-out effort than 

both the RWU alone and the SWU protocols.

Reproducibility data for the 6 min all-out effort are in agreement with previous 

reports suggesting that this test is very reliable and suitable for monitoring rowing 

performance (Jensen, 1994; Schabort et al, 1999). Indeed, high reproducibility 

was observed in all of the parameters assessed. The coefficient of variation of

0.36% for the average power output, during the 6 min all-out test, is even smaller 

than the 0.9% reported by Schabort and colleagues.

Respiratory muscle fatigue has been reported following prolonged submaximal 

exercise (Loke etal, 1982), as well as short-term maximal exercise (Johnson etal, 

1996; McConnell etal, 1997). However, it has been suggested that the respiratory 

muscles of 'athletic' individuals have superior strength and greater fatigue 

resistance (Coast eta l, 1990). Nevertheless, the present data suggests that 

competitive rowers are susceptible to inspiratory muscle fatigue and confirm 

reports from Johnson and colleagues (Johnson etal, 1996) who suggest that a 

high level of aerobic fitness does not protect the inspiratory muscles from fatigue 

during heavy exercise. A possible explanation for this respiratory fatigue may be 

the high ventilatory requirements of rowing. The entrainment of breathing with the 

stroke rate, observed during rowing, as well as, the dual role assumed by the 

respiratory, both as actuators of the thoracic expansions and as stabilisers of the 

thorax for the promotion of external work (Steinacker et al, 1993), makes them 

susceptible to fatigue.
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Despite this fatigue, the respiratory muscles as a whole did not reach the point of 

"task failure" as was evident by the continuous rise of minute ventilation 

throughout the 6-min all-out test. However, the recruitment pattern of the 

respiratory muscles might have been altered as a result of this fatigue. 

Furthermore, the additional motor output to the fatiguing respiratory muscles, 

necessary to maintain the same pressure generation, would have been perceived 

as an increased breathing effort and associated dyspnea (Gandevia etal, 1981). 

The respiratory warm-up was effective in enhancing the functional capacity of the 

inspiratory muscles, confirming our previous findings (Volianitis eta l, 1999). 

Following this improved function of the inspiratory muscles, the inspiratory muscle 

fatigue and the associated dyspnea were decreased. These findings are 

consistent with previous data (McConnell etal, 1997) suggesting that the severity 

of the inspiratory muscle fatigue is related to their baseline strength. The most 

likely explanation for this is that greater absolute strength leads to a smaller 

relative demand for force generation during exercise.

Respiratory sensations are believed to be one subcluster of the overall perceived 

exertion which is responsible for exercise intolerance (Weiser eta l, 1973). 

Moreover, all subclusters are considered interdependent and a significant 

reduction of the respiratory cluster would improve somewhat, the perceived 

exertion of the peripheral musculature. A report from Killian et al (1992) has shown 

that, at maximal exercise capacity, dyspnea can be as important, or more so, than 

leg fatigue in limiting exercise. In this context, the improvements that we have 

demonstrated in rowing performance during the 6-min all-out test following the 

RWUplus, may be ascribed, at least partially, to the reductions in dyspnea.

The RWU was more effective as a pre-competitive preparation than the SWU, 

despite the fact that the intensity and duration of the SWU was sufficient for 

increasing the body's temperature and inducing the temperature related 

phenomena of warm-up, as evidenced by the profuse sweating of the subjects.
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However, the functional condition of the peripheral musculature is usually 

neglected in favour of the more centrally oriented adaptations, brought about by 

temperature increases. Blood flow to the muscles has been shown to increase 

depending on whether the muscle or muscle fibers (i.e., specificity of muscle fiber 

type recruited) was used prior to the main exercise (Armstrong, 1988). Therefore, 

it is possible that the specificity of the RWU in terms of race-pace intensity induced 

a more pronounced effect of blood flow elevation. Consequently, it could be 

speculated that both the improved muscle oxygenation and removal of metabolites 

induced by the increased blood flow, might have contributed the improvements in 

performance following the RWU protocol.

Another speculation, on the mechanisms responsible for the performance 

improvements that we observed, might be that the intermittent nature of the RWU 

was more effective than the equicaloric continuous nature of the SWU in improving 

the mechanical efficiency and the power output, as suggested by previous reports 

(Bar-Or, 1987; de Vries, 1994). Therefore, although V02Peak was not different

during the 6 min effort that followed each protocol, improvements in efficiency 

could have resulted in the observed improvements in power output during the 6- 

min all-out test after the RWU.

4-6 CONCLUSIONS

In summary, the RWUplus improved the subsequent performance in the 6 min all- 

out ergometer rowing effort more than the SWU and the RWU protocols. The 

mechanisms responsible for these improvements are probably associated with the 

concomitant decreases in dyspnea and inspiratory muscle fatigue. The principle of 

specificity of adaptive response is exemplified by our findings which suggest that 

the respiratory muscles should be adequately prepared for optimal performance.
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Chapter Five

Inspiratory Muscle Training Improves 

Rowing Performance



Parts of this chapter have been accepted for publication in Medicine and Science 

in Sports and Exercise.

5-1 ABSTRACT

We have shown that an acute resistive inspiratory load can enhance the strength 

of the inspiratory muscles (chapter 2) and subsequently rowing performance 

(chapter 4). The purpose of this study was to investigate the effects of a long-term 

inspiratory resistive loading upon rowing performance.

Performance was appraised in fourteen female competitive rowers at the 

commencement and following 11 weeks of inspiratory muscle training, on a rowing 

ergometer using a 6min all-out effort and a 5000 m trial IMT consisted of 30 

inspiratory efforts twice daily. Each effort required the subject to inspire against a 

resistance equivalent to 50% peak inspiratory mouth pressure (Plmax) using an 

inspiratory muscle training device. Seven of the rowers, who formed the placebo 

group, used the same device, but performed 60 breaths once daily with an 

inspiratory resistance equivalent to 15% Plmax.

The inspiratory muscle strength of the training group increased by 44 ±  25 

cml-feO (45.3 ± 29.7 %) compared to only 6 ± 11 cmH20 (5.3 ±  9.8%) of the 

placebo group (P < 0.05 within and between groups). The distance covered in the 

6min all-out effort increased by 3.5 ±  1.2 % in the training group compared with 1.6 

± 1 .0  % in the placebo group (P < 0.05). The time in the 5000 m trial decreased by 

36 + 9 sec (3.1 ±  0.8 %) in the training group compared with only 11 ±  8 sec (0.9 ±  

0.6 %) in the placebo group (P < 0.05). Furthermore, the resistance of the training 

group to inspiratory muscle fatigue following the 6min all-out effort was improved 

from an 11.2 ±  4.3 % deficit in Plmax to only 3.0 ±  1.6 % (P < 0.05) pre- and post­

intervention, respectively.

IMT and the placebo effect improve rowing performance on the 6min all-out 

effort and the 5000-m trial.
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5-2 INTRODUCTION

Historically, exercise performance has not been considered to be limited by 

ventilation or respiratory muscle function. However, the occurrence of respiratory 

muscle fatigue following prolonged submaximal exercise (Loke et al, 1982), as 

well as short-term maximal exercise (Johnson eta!, 1993; McConnell etal, 1997) 

has suggested that the ventilatory system might contribute to exercise limitation. 

Some studies in which the inspiratory muscles were partially unloaded during 

prolonged exercise, and supposedly respiratory muscle fatigue was alleviated, 

reported no effect on ventilation or exercise performance (Gallagher & Younes, 

1989; Krishnan et at, 1996), while other studies show significant improvements in 

performance (Harms etal, 1997; Harms etal, 1998).

In addition, several studies in recent years have examined the effects of specific 

respiratory muscle training upon exercise performance but the literature is 

inconclusive; some have shown improvements (Boutellier et at, 1992; Caine & 

McConnell, 1998; Spengler et al, 1999) whilst others show no effect on 

performance (Hanel & Secher, 1991; Fairbarn etal, 1991). The discrepancies 

between studies may reflect differences in the exercise intensities and durations 

used for testing, as well as differences in experimental design and fitness level of 

the subjects.

Rowing is a sport requiring large aerobic power and a high minute ventilation, 

typically greater than 200 l/min in elite males (McKenzie & Rhodes, 1982). Peak 

expiratory flow rates can reach values up to 15 l/sec in elite male rowers (Carles et 

al, 1980). The entrainment of breathing in rowing (Steinacker etal, 1993) places 

additional demands on the respiratory muscles, which must stabilize the thorax 

during the stroke, as well as bringing about breathing related excursions of the 

thorax. If respiratory muscle fatigue occurs during competitive rowing it might be of 

physiological significance to the regulation of ventilation and breathing pattern, and
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to respiratory muscle recruitment and hence respiratory sensation. Furthermore, 

an alteration of the recruitment pattern could have an effect on the mechanical 

efficiencies of breathing and rowing, with detrimental consequences for 

performance.

In view of the unique respiratory demands of rowing and the discrepancies in the 

literature with regard to the benefits of inspiratory muscle training, this study 

investigated the effect of inspiratory muscle training upon rowing performance. 

The perfomance tests used in this study have a "real world" relevance since they 

are simulations of rowing competitions and used very frequently by rowers and 

coaches for training and squad selection.
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5-3 METHODS

5-3.1 Subjects

Fourteen female competitive rowers ( mean ± SD, age 23.8 ± 3.8 yr, height 173.4 

± 3.8 cm, weight 68.2 ± 4.6 kg, maximal oxygen uptake (V02«iax) 3.56 ± 0.17 L/min,

maximal power output (Pmax 229 ±  22 W), were assigned randomly to either an 

inspiratory muscle training (IMT) or placebo group. The subjects were informed 

about the nature and risks involved in participation in the experiments. The 

experimental protocol was approved by the local Ethics Committee and all 

subjects acknowledged voluntary participation through written informed consent. 

The subjects were instructed to adhere to their usual diet and not to engage in 

strenuous activity the day before an exercise test. On test days, the subjects were 

asked not to drink coffee or other caffeine-containing beverages. The tests were 

performed at similar times of the day. The initial performance assessment took 

place at the end of October which is the first month of the preparatory period of the 

rowing season. All the subjects where either national team members or candidates 

for the national team and had been competing for a minimum of 3-4 years.

5-3.2 Procedure

At the beginning of the study the subjects performed a submaximal incremental 

load test followed by a 6 minute all-out test on a rowing ergometer (Concept II, 

model c, Morrisville, USA). On the same occasion, baseline spirometry values and 

maximum respiratory mouth pressures were taken before and after the rowing 

tests. Both groups commenced an 11-week period of inspiratory muscle training. 

The effects of the intervention were evaluated, with the same battery of tests, at 4 

weeks and following completion of the training period. Mouth pressure 

measurements, for evaluation of respiratory muscle function during rowing, took 

place on all occasions. The manoeuvres were performed within 30 seconds after 

the completion of the maximum effort.
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5-3.3 Submaximal Incremental Load Test

The test protocol consisted of 5 stages of 4 minutes each with a 1min interruption 

for blood sampling. The initial work rate was individualised based on known work 

capacity. The rowers where asked to start rowing with a frequency of 18 

strokes/min at a work rate that they usually perform their daily warm-up. The work 

rate increments for each subsequent stage was 20 or 25 W  depending on the 

rower’s capacity. Once the protocol for a particular rower was established at the 

beginning of the study, it was not varied thereafter. Heart rate was monitored via a 

short-range telemetry system (Polar Sport Tester, Polar Electro, Finland). A pre­

exercise and post-stage blood sample was collected from the earlobe and 

analysed for lactate concentration. Stroke ratings (st.min'1), power output (W) were 

recorded for each stage. Continuous analysis of expired gases and static 

spirometry (flow-volume loops) were performed with an Oxycon Alpha diagnostic 

system (Jaeger b.v., Netherlands).

5-3.4 Maximal Performance Tests

Following the submaximal incremental load test, the rowers performed a 6 minute 

all-out effort which is a simulation of the competitive rowing duration. Rowing 

events last between 5.5 and 7.5 minutes depending on boat type, category and 

gender of the rowers. We chose 6 min for our test as it represents the duration of 

the women’s eight event. The rest period between the submaximal test and the 6- 

minute test was standardised at 8-10 minutes in order to minimize any fatiguing 

effect of the submaximal test but at the same time to maintain readiness of the 

rowers. Additional performance data has been obtained at baseline and after 4 

weeks of inspiratory muscle training by means of a 5000m ergometer trial which 

the subjects performed as part of their training control.

5-3.5 Maximum Inspiratory Pressure Measurement

Maximal static inspiratory mouth pressure (Plmax) is commonly used to measure 

inspiratory muscle strength. A portable hand held mouth pressure meter (Precision
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Medical, UK) was used for this measurement. This device has been shown to 

measure inspiratory and expiratory pressures accurately and reliably (Hamnegard 

et al, 1994). A minimum of five technically satisfactory measurements were 

conducted and the highest of three measurements with less than 5% variability or 

within 5 cm H20 (1kPa = 10.3 cm H20) difference, was defined as maximum (Wen 

et al, 1997). The initial length of the inspiratory muscles was controlled by initiating 

each effort from residual volume (RV). This procedure was adopted because, from 

our experience, RV is more reproducible than functional residual capacity (FRC). 

Subjects were instructed to take their time and to empty their lungs slowly to RV, 

thereby avoiding problems associated with variability in lung volumes and dynamic 

airway compression. All manoeuvres were performed in the upright standing 

position and verbal encouragement was given to help the subjects perform 

maximally. The subjects had been familiarized with the nature of the manoeuvres 

in order to reduce any learning effect.

5-3.6 Respiratory Muscle Fatigue

For practical purposes, "fatigue" was defined as the inability to continue to 

generate a given pressure with the same motor command as when the muscle 

was still rested. A condition like this does not necessarily imply any "task failure" in 

the form of inadequate pressure generation for the required ventilation, but it is an 

indication that the functional capacity is compromised and it will eventually lead to 

"task failure". Therefore, the original definition of Edwards (1981) of skeletal 

muscle fatigue as a "failure to maintain the required or expected force" has been 

extended for respiratory fatigue to include also the state of muscle weakness 

(National Heart, Lung and Blood Institute, 1990).

5-3.7 Perception of Dyspnea

A category scale, the modified Borg (1982) scale, was chosen to evaluate the 

respiratory effort during exercise. The scale consisted of a series of integers from 

0 to 10. The rower was asked to estimate the effort required to breathe but not the
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effort of the exercise. During rowing, the Borg scale remained in front of the rower 

and an assessment was made at the end of every stage and following the all-out 

effort.

5-3.8 Inspiratory Muscle Training

The training group performed 30 inspiratory efforts twice daily. Each effort required 

the subject to inspire against a resistance equivalent to 50% peak inspiratory 

mouth pressure (Plmax) using an inspiratory muscle trainer (POWERbreathe®, 

IMT Technologies Ltd., Birmingham, UK). POWERbreathe® is a pressure- 

threshold device which requires continuous application of inspiratory pressure 

throughout inspiration in order for the inspiratory regulating valve to remain open, 

while it allows unrestricted expiration. Subjects were instructed to initiate each 

breath from RV and to continue the inspiratory effort up to the lung volume where 

the inspiratory muscle force output for the given load limited further excursion of 

the thorax. Because of the increased tidal volume, a decreased breathing 

frequency was adopted in order to avoid hyperventilation and the consequent 

hypocapnia. Previous studies from our lab (Caine & McConnell, 1998b) have 

suggested that the protocol used by the training group is successful in eliciting an 

adaptive response. The placebo group trained using the same device, but they 

performed 60 breaths once daily, at a resistance to inspiration equivalent to 15% 

Plmax, a load known to elicit a negligible training effect (Caine & McConnell, 

1998). The two seemingly different training protocols were designed to maintain 

the naivety of the subjects who were told that one group was training for strength 

and the other for endurance of the inspiratory muscles. All subjects kept a training 

diary recording their adherence to the program. Each of the 2 daily sessions of the 

training group lasted approximately 5 minutes while the single training session of 

the placebo group lasted approximately 10-12 minutes, depending on the 

breathing frequency that each subject adopted.
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5-3.9 Blood Lactate

Arterialised capillary blood samples were taken from the ear lobe before the 

incremental load test and at the end of each stage. Analysis was done with an 

Analox GM7 (London, UK). The within-run precision was 1.6% at a whole blood 

lactate concentration of 5.0 mmol/l. At low levels of lactate concentration, 

measurement errors exceeding ±  0.2 mmol/l were rare. Thus, a measured rise of 

more than 0.4 mmol/l during the course of a progressive test was likely to 

represent a real increase in lactate concentration.

5-3.10 Statistical Analyses

Results were analysed using non-parametric statistics. Friedman’s test and 

Wilcoxon signed ranks test were used for intra- and inter-group comparisons, 

respectively. Probability values of less than 0.05 were considered significant. All 

results are expressed in means ±  SD unless otherwise stated.
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5-4 RESULTS

5-4.1 Respiratory Muscle Function: Plmax

Following the initial 4 weeks of the training period, Plmax increased by 40 ± 25 

cmH20 (40.7 ± 25.1 %)(P < 0.01) and by 5 ± 6 cmH20 (4.6 ± 6.0 %)(P = 0.083) 

from baseline, in the IMT and placebo groups, respectively. After 11 weeks of IMT, 

Plmax increased slightly more to a total increase of 44 ±  25 cmH20 (45.3 ±  29.7 

%)(P < 0.01) and 6 ± 11 cmH20 (5.3 ± 9.8%)(P = 0.21) from baseline, in the IMT 

and placebo groups, respectively (See table 5.1.) The Plmax improvements of the 

training group, expressed in percentage, were significantly different both between 

groups and across time within the group. Analysis of the training diaries revealed 

that both groups compliance with the prescribed training was between 96-97%.

Table 5.1. Plmax in centimetres of H20 (mean ± SE), and performance, in meters 
(m), during the 6 min all-out rowing effort for the training (IMT) and 
placebo groups, throughout the 11 weeks of inspiratory muscle

________ training.________________________________________________________
Plmax (cm H20) Performance (m)

IMT Placebo IMT Placebo

Baseline 104 ± 8 130 ±  12 1561 ±9 .3 1566 ±20.7

4 Weeks 144± 10** 135 ±11 1613 ±12.2** 1582 ±21.4*

11 Weeks 148± 10** 136 ± 1 2 1616 ±13.4** 1592 ±21.1**

Significantly different from baseline (P < 0.05),** Significantly different from 
baseline (P <  0.01)

5-4.2 Rowing Performance
6min all-out: After the first 4 weeks of the training period the performance in the 6 

min all-out test improved, from baseline, by 3.4 ± 1.0% (P < 0.05) in the IMT 

group, and by 1.1 ± 0.4 % (P < 0.05) in the placebo group. The absolute baseline 

values for the IMT and placebo groups were 228 ±  12 W  and 230 ± 25 W  

respectively. At 4 weeks power in the 6 min all-out test was 242 ±  13 W  for the
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IMT group and 236 ±  25 for the placebo group. Upon completion of the training 

period, performance had increased from baseline a total of 3.5 ±1 .2  % (P < 0.05) 

in the IMT group and 1.6 ±  1.0 % (P < 0.05) in the placebo group from their 

baseline values (See table 5.1). Power for the IMT group was 244 ± 22 W  and 235 

±26 for the placebo group. These improvements were also significantly different 

between the two groups after 4 weeks (P < 0.05) and after 11 weeks (P < 0.05). 

5000m: The time for the completion of the 5000m test, following the first 4 weeks 

of IMT, decreased by 36 ±  9 sec (3.1 ± 0.8 %)(P < 0.05) while the placebo group's 

time decreased by 11 ± 8 sec (0.9 ± 0.6 %)(P < 0.05). The difference in the 

improvement between the two groups was also significant (P < 0.05). There were 

no data available for the 5000m test upon completion of the 11 week IMT period.

5-4.3 Lactate

Following 4 weeks of inspiratory muscle training blood lactate was lower relative to 

baseline values by 0.3 ± 0.3 mmol/L (P < 0.05) in the third stage and 1.3 ±  1.3 

mmol/L (P  < 0.05) in the fifth stage of the submaximal incremental test for the IMT 

group. Even though there was also a decreasing trend in the placebo group it did 

not reach significance (P = 0.11, in the fifth stage). In the interval between the 

fourth and eleventh week of inspiratory muscle training blood lactate decreased a 

further 0.37 ± 0.32 mmol/L (P < 0.05) in the IMT group at the second stage of the 

incremental test with no significant changes in the placebo group. Overall, both 

IMT and placebo groups had a significant decrease in lactate of 1.3 ± 1.47 mmol/L 

and 1.3 ±  1.2 mmol/L, respectively (P < 0.05) in the fifth stage of the incremental 

test. There was no significant difference between the groups. No changes 

occurred in the blood lactate response to the 6 minute all-out effort throughout the 

study. Absolute blood lactate values can be seen in tables 5.2 and 5.3.
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Table 5.2. Blood lactate values (mmol/L) throughout the incremental stage and all- 
out tests for the three different testing periods of the placebo group.

Period/Stage 1 2 3 4 5 Max
Baseline 0.7±0.3 1.0±0.6 1.7±1.0 3.7±1.5 5.9±1.6 11.2±1.6
4 Weeks 0.6±0.2 0.9±0.3 1.6±0.6 2.9±0.9 4.9±0.9 10.7±2.3
11 Weeks 0.6±0.2 0.8±0.5 1.3±1.0 2.6±1.5 4.6+1.8 10.912.1

Table 5.3. Blood lactate values (mmol/L) throughout the incremental stage and all-
out test for the three different periods of the IMT group.

Period/Stage 1 2 3 4 5 Max
Baseline 0.810.3 0.810.4 1.510.6 2.411.4 4.312.0 9.912.2
4 Weeks 0.610.2 0.710.2 1.110.6 1.811.0 3.011.2 9.412.0
11 Weeks 0.510.3 0.410.2 1.110.9 2.011.7 3.012.4 9.512.5

5-4.4 Respiratory Muscle Fatigue

Baseline fatigue, defined as the decrease of maximum mouth pressure generating 

capacity, following the baseline 6 min all-out rowing effort, was 11.2 ±  2.6% (P < 

0.05) and 11.1 ±  0.8% (P < 0.05) for the IMT and the placebo groups, respectively. 

After the first 4 weeks of the training period the fatigue following the 6 min all-out 

effort in the IMT group decreased to 3.1 ±1 .1  % (P < 0.01) while the placebo 

group remained at 10.7 ±  2.8 %. Upon completion of the training period the fatigue 

for the IMT and the placebo groups did not change any further (4.5 ± 4.7 %, P  < 

0.01 and 10.7 ± 2.2%, NS, respectively). Between-group differences in fatigue 

where also significant for both the 4 and 11 weeks comparisons (P < 0.05)(See fig. 

5.1)
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Fig 5.1 Decrement in inspiratory muscle strength following the 6 min all-out test, 
in percentage decrease from resting mouth pressure generating 
capacity, throughout the 11 weeks of inspiratory muscle training in the 
training and placebo groups. Values are mean ± SD. ** P < 0.01 
different from the placebo group. IMT = Inspiratory Muscle Training 
group.
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5-4.5 Perception of Dyspnea

Significant improvements in the perception of respiratory effort during the 

incremental test were found in the IMT group throughout the training period (Fig. 

5.2). However, no change was found in the dyspnea following the 6 minute all-out 

effort. There were no significant changes in the control group either during the 

incremental test or the 6 minute all-out effort (Fig. 5.3).

IMT Group

Power (W)

Fig 5.2. Dyspnea-Power curves after 4 and 11 weeks of inspiratory muscle

training for the IMT group. Values are means ± SD. * Significantly 
different (P  < 0.05), ** significantly different (P < 0.01). Note: + 
significantly different (P  < 0.05) power output for the same dyspnea.
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Fig 5.3. Dyspnea-Power curves after 4 and 11 weeks of inspiratory muscle
training for the Placebo group. Values are means ±  SD. * Significantly 
different (P <  0.05), ** significantly different (P <  0.01). Note: + 
significantly different (P < 0.05) power output for the same dyspnea.

5-4.6 Ventilation and Breathing Pattern

Following the completion of the training period, there were no significant changes 

in the ventilatory volumes at any stage of the incremental test, for either the IMT or 

the placebo group. However, during the 6min all-out effort, minute ventilation 

increased for the placebo group, from a baseline of 120.3 ± 18.5 to 129.6 ± 13.4 

l/min (P < 0.05). The IMT group also increased minute ventilation from a baseline 

of 119.9 ± 12.8 to 122.5 ± 12.3 l/min, a difference which just failed to reach 

significance (P =  0.051). The breathing pattern of the IMT group at the 6 minute 

all-out effort changed following the completion of the training period. There was a 

shift to a significantly deeper breathing pattern with an increase of the tidal volume 

from 2.01 ± 0.16 to 2.16 ± 0.16 I (P <0.01). Breathing frequency did not change 

significantly. The placebo group did not exhibit any significant changes in 

breathing pattern, but there was a tendency towards a more tachypneic pattern
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with an increase of 4.5 % in their breathing frequency compared to only 1.5 % of 

the IMT group.

Table 5.2. A summary of statistical significance for within and between-groups 
comparisons following 11 weeks of IMT in selected parameters.________________
Parameter IMT group Placebo group Between Group 

Comparisons

Resting Plmax Improved No change Different

Plmax after exercise Improved No change Different

Lactate Incremental test Decreased Decreased No difference

Borg scale 6 min test Decreased No change No difference

Vo2max6 min test Increased Increased No difference

VE Incremental test No change No change No difference

Ve6  min test No change Increased No difference

Vt 6  min test Increased No change No difference

fR 6  min test No change No change No difference

PETco2 No change No change No difference

Pet02 Increased No change Different

6  min test Power Improved Improved Different

5000m trial Time Improved Improved Different
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5-5 DISCUSSION

The most important finding of this study is that inspiratory muscle training 

improved rowing performance to a greater extent than conventional training alone. 

To our knowledge, ours is the only study investigating the effect of inspiratory 

muscle training upon an index of sports performance rather than a marker of 

physiological capacity such as the time-limit test (Tnm). In the reports of Caine et al 

(1998) and Lisboa et al (1997), cycling time to exhaustion, a 6 min walk, or an 

incremental test are used for evaluation of exercise tolerance. Even though the 6 

min walk might be argued to be representative of a task encountered by patients 

with COPD, it is still not a simulation of any known sport. In contrast, the 6 min and 

the 5000 m time trial, represent very close simulations of competitive rowing 

events, and are therefore one step closer to actual sports performance than any 

test attempted in previous studies.

Since the early report of Leith & Bradley (1976) many different groups have 

demonstrated that ventilatory muscle training increases maximal voluntary 

ventilation, ventilatory muscle strength, ventilatory muscle endurance and 

functional exercise capacity. Our results, of 45.3 % improvement in Plmax, are 

similar in magnitude to other studies, (see Smith et al (1992) meta-analysis on 

patients with COPD) ranging from 32% to 53% (Suzuki et al, 1993; Lisboa et al, 

1997; Weiner et al, 1998). However, since there may well be important differences 

between healthy subjects and those with COPD, a more appropriate comparison 

would be with studies using healthy subjects (Hanel & Secher, 1991; Caine & 

McConnell, 1998) where Plmax also increases in the range of 34% to 45.3%, 

respectively following 4 weeks of inspiratory muscle training.

Previous reports (Boutellier et al, 1992; Caine & McConnell, 1998; Spengler et al, 

1999) have shown that following inspiratory muscle training a submaximal power
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output can be maintained for longer (Tnm test). However, the intensity used for the 

Tiim test in these studies was associated either with the anaerobic threshold (Than) 

or the maximum lactate steady state (MLSS). Even though these physiological 

markers correlate very well with endurance performance, this approach is one step 

removed from competitive sports performance. Our study shows that inspiratory 

muscle training can improve performance in 2 tests that simulate competitive 

performance as closely as possible in the laboratory context, viz. the 6 min all-out 

effort and the 5000m trial. Both tests are routinely used for rowing-specific 

performance evaluation by coaches. Both IMT and placebo groups improved their 

performance following 11 weeks of training. The margin of their improvement was 

expected because the study commenced at the beginning of the preparatory 

training period and lasted for the bigger part of it. Even though we acknowledge 

the possibility that the responses observed may have occurred as a result of the 

subjects' regular training, the 1.9% improvement of the IMT group in the 6 min all- 

out effort over and above the improvement of the placebo group suggests that this 

is unlikely. Therefore, the data suggest that the inspiratory muscle training had an 

additional effect upon rowing performance beyond that expected by regular 

training. The significance of this difference can be appreciated more within the 

context of competitive rowing where Olympic medals are decided with a much 

smaller margin than 1.9%.

W e believe that there are a number of reasons why other studies have not 

reported any significant improvements in performance following IMT. Arguably, the 

most important of which is the low reliability of the tests used to evaluate 

performance in other studies, compared with the 6min all-out effort used in our 

study, made the detection of a meaningful effect difficult. For example, the 

coefficient of variation for the T|im test has been reported to be anything between 

25-40%, while the 6 min all out test is only 2.4% (Jensen, 1994). Therefore, much 

larger improvements were required to assure that the observations were not due 

to the variability of the test itself. Other studies (Hanel & Secher, 1991; Fairbarn et
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al, 1991) have reported improvements in performance but failed to reach 

significance. W e suspect that insufficient statistical power, due to the small sample 

size of these studies, may have introduced a type II error and failed to reject the 

null hypothesis. Support of our findings is provided by studies using isocapnic 

hyperpnea training protocols which suggest that respiratory muscle training 

induces significant improvements in cycling performance (T|im) (Boutellier et al, 

1992; Spengler et al, 1999). In addition, a recently completed study showed that 

following 5 weeks of respiratory muscle training, using a high velocity (flow) and a 

high resistance (pressure) training protocol, cycling time trials improved 

significantly by approximately 2% (J. Dempsey, personal communication).

In the absence of any clear insight into the hard evidence of the underlying 

physiological mechanisms for the observed effects, we are forced to speculate on 

possible mechanisms, three of which are discussed below.

"Respiratory Muscle Fatigue". First, even though respiratory muscle fatigue of the 

IMT group was diminished there was no evidence for significantly different 

ventilatory response between the two groups. These data support the notion that 

respiratory muscle fatigue was without significant consequence for the ventilatory 

response. This is consistent with the suggestion that when the diaphragm is 

confronted by fatiguing contraction patterns, the accessory inspiratory muscles 

become more active and the overall ventilation is not compromised. Therefore, 

since the respiratory pump did not fatigue to the point of "task failure", it is unlikely 

that the improvements in performance were the result of improved gas exchange 

or a better compensation for metabolic acidosis. However, the altered breathing 

pattern observed following IMT suggests that respiratory muscle fatigue might 

have been of physiological significance to the regulation of the breathing pattern. 

In the IMT group tidal volume increased significantly, whilst the placebo group 

resorted to a more tachypneic breathing pattern, characteristic of respiratory 

muscle fatigue for the maintenance of minute ventilation. Indeed, as the breathing
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pattern during exercise seems to be optimised in order to avoid exhaustive fatigue 

and "task failure" of the respiratory muscles, the increased strength of the IMT 

group might have enabled them to increase tidal volume without fatiguing. In 

contrast, the placebo group, which was susceptible to fatigue, resorted to an 

increased breathing frequency. Even though we did not assess the degree of 

entrainment between breathing and stroke rate, it is possible that the prevention of 

a tachypneic breathing pattern in the IMT group enhanced the mechanical 

efficiency of the rowing work by enabling the maintenance of entrainment. Indeed, 

our data are in agreement with previous suggestions that breathing in rowing 

occurs at times where muscle synergy produces larger ventilatory volumes for a 

given amount of respiratory work, or alternatively, the same volume for less 

respiratory work (Siegmund et at, 1999); consequently performance may be 

improved.

"Altered Respiratory Sensation". The second putative mechanism for the improved 

rowing performance may be that the reduced respiratory muscle fatigue induced 

changes in the respiratory sensation. Respiratory muscle fatigue has been 

documented following prolonged submaximal exercise (Loke etal, 1982) as well 

as short-term maximal exercise (Johnson eta l, 1993; McConnell eta l, 1997). 

There is some suggestion that the respiratory muscles of 'athletic' individuals have 

superior strength and greater fatigue resistance (Coast eta l, 1990). Our data 

showing significant inspiratory muscle fatigue following a 6 min all-out rowing effort 

is in agreement with Johnson and colleagues (Johnson etal, 1996) who suggest 

that a high level of fitness does not protect the diaphragm muscle from fatigue 

during heavy exercise (95 % of V0jmax)* Following inspiratory muscle training the

IMT group showed significantly reduced fatigue after the 6 min all-out effort. 

Indeed, a recent report has shown that the baseline strength of the inspiratory 

muscles influences their fatigueability (McConnell etal, 1997). Interestingly, the 

fatigue of the placebo group remained the same which suggests that normal
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training for rowing does not elicit the same adaptations as a specific inspiratory 

muscle training program. The increase in strength may have attenuated the 

development of fatigue by decreasing the proportion of the maximal force capacity 

required for each breath (Hickson etal, 1988). Similarly, with greater inspiratory 

muscle strength, a smaller fraction of maximum tension is generated with each 

breath and it has been suggested that this reduces the motor output to the 

respiratory muscles and decreases the perceived sense of respiratory effort (El- 

Manshawi et al, 1986). Even though we do not have measures of dyspnea during 

the 5000m test, when asked to describe their feeling afterwards most subjects said 

that either the onset of breathlessness was delayed, allowing a longer 

maintenance of the previous pace, or a higher pace was kept throughout the test 

with the same breathing effort.

1Altered Ventilatory Efficiency”. Finally, it has been suggested that through 

inspiratory muscle training an increase in the mechanical efficiency of ventilation 

might take place, thereby reducing the metabolic requirements of the respiratory 

muscles. Previous studies have shown that during maximal exercise the V0j of the

respiratory pump can reach values up to 15% of the total (Aaron et al, 1992; 

Aaron et al, 1992b). Indeed, the metabolic cost of breathing becomes so great that 

any additional increase in total V02 contributes minimally to the external work. In

studies conducted at V02max, the respiratory muscles have been perceived as

"stealing" blood flow from the peripheral musculature to cover their metabolic 

requirements (Harms etal, 1997). Thus, decreasing the metabolic requirements of 

the inspiratory muscles could result in a diminished blood flow demand and reduce 

the competition with the locomotor muscles for limited blood flow. Since we did not 

see any significant differences in the V02max; by implication cardiac output was also

unchanged. Thus, we can assume that the fraction of the total cardiac output
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distributed to leg muscles may have increased following IMT and this may have 

led to improvements in performance (Harms etal, 1998).

5-6 CONCLUSIONS

In summary, significant improvements in the 6min all-out effort and 5000m time 

trial performance were observed following a period of inspiratory muscle training. 

These performance improvements were accompanied by a decrease in inspiratory 

muscle fatigue and perception of dyspnea. Even though the small sample size 

does not allow us to make inferences about the population from which the sample 

was drawn, it has not escaped our attention that our findings may have some 

bearing on rowing performance. The elucidation of the precise mechanisms 

responsible for our observations requires further studies involving the 

cardiovascular consequences of inspiratory muscle training and larger sample 

sizes.
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Chapter Six

General Discussion



6.1 Summary

In this section we will first summarise the major findings of this thesis and discuss 

on the possible mechanisms responsible for them.

The main focus of this thesis was to test the hypothesis that, "chronic and acute 

loading of the inspiratory muscles of competitive rowers bestows improvements in 

inspiratory muscle strength and rowing performance". To this end a series of 

research findings have been presented. These include:

1. Assessment of the reproducibility of the 6 min all-out rowing effort and 

development of a testing protocol to maximise the reliability of maximum 

inspiratory mouth pressure measurement.

2. Evaluation of the effectiveness of different warm-up protocols on 

inspiratory muscle strength.

3. Evaluation of the effect of a specific respiratory warm-up upon rowing 

performance, perception of dyspnea and comparison of two different whole 

body warm-up protocols

4. Evaluation of the effect of 11 weeks of inspiratory muscle training upon 

rowing performance and the perception of dyspnea.

5. Investigation of the incidence of inspiratory muscle fatigue following a 6 

min all-out rowing effort.

6-2 Assessment of the Reproducibility of the 6 min All-Out Rowing Effort

Very high reproducibility was demonstrated for the 6 min all-out effort. A 

determining factor for the high reproducibility may have been the high external 

validity of this test as a simulation of competitive rowing. The subjects used were 

all experienced rowers and they were all very familiar with the nature of the test 

and the pacing strategy required to produce a maximum effort within the 6min. 

The fact that the 6min all-out effort has been used regularly by the subjects for
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their training may also explain the high reproducibility observed. Another possible 

factor for the high reproducibility is the inherent stability of the rowing ergometer. 

The fixed resistance used to produce the workload and the absence of any 

requirement for calibration may influence the reproducibility of the ergometer. 

Whatever the reason of the high reproducibility, the 6 min all-out effort has been 

shown to be suitable for monitoring rowing performance.

6-3 Evaluation of the Effectiveness of Different Warm-Up Protocols on Inspiratory 

Muscle Strength

The main finding was that inspiratory muscle strength can be more effectively 

optimised using a specific respiratory warm-up than two differing whole body 

warm-up protocols. This is a novel concept that shows that the respiratory muscles 

are capable of the same acute responses as other skeletal muscles following 

preliminary activity.

The two whole body warm-up protocols included both a moderate and a higher 

exercise intensity. However, the ventilatory response of both protocols failed to 

impose a stimulus sufficient to improve muscular strength. In contrast, the use of 

an inspiratory threshold load improved inspiratory muscle strength significantly. It 

is possible that the required stimulus for the observed inspiratory muscle warm-up 

effect, may be related to the volume of respiratory work in the form of 

hyperventilation or inspiratory resistive loading (i.e., elevated respiratory motor 

output). However, since the hyperventilatory response occurs only at high and 

sustained rowing intensity, it appears that both of the whole body warm-up 

protocols were inadequate in this respect. In fact, most warm-up routines aim to 

optimise performance components with minimal induced fatigue, thus avoiding 

prolonged high intensity rowing and the associated hyperventilatory response.
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A proposed mechanism for the observation that a specific respiratory warm 

optimised the global inspiratory pressure generating capacity is that the specificity 

of the respiratory warm-up improved the neuromuscular co-ordination utilised by 

the complex respiratory "pump".

6-4 Development of a Testing Protocol to Maximise the Reliability of Maximum 

Inspiratory Mouth Pressure Measurement.

We found that a specific respiratory warm attenuates the learning effect observed 

with repeated Mueller manoeuvres and a more reliable baseline is established. 

Previous studies which have failed to show an exercise-induced respiratory 

muscle fatigue by measuring maximum mouth pressures may have been deluded 

by not establishing a reliable baseline (Warren et al, 1989; Hill et al, 1991). Our 

protocol may be more important in raising a methodological issue in respiratory 

studies than changing the clinical practice but, nevertheless clinicians should be 

aware of the possibility that respiratory fatigue may be "masked".

6-5 Evaluation of the Effect of a Specific Respiratory Warm-Up Upon Rowing 

Performance and Comparison of Two Different Whole Body Warm-Up 

Protocols

The main finding of this study was that a specific respiratory warm-up has a 

significant impact upon rowing performance. Indeed, the protocol that combined a 

specific rowing warm-up and a specific respiratory warm-up was more effective as 

a preparatory warm-up routine for the 6-min all-out rowing effort than either the 

specific rowing warm-up alone, or the submaximal warm-up protocol. In addition, 

the specific rowing warm-up was more effective in enhancing the subsequent 

rowing performance than the submaximal rowing warm-up.
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For an appreciation of the suggested mechanisms by which the different warm-up 

protocols may affect rowing performance it is appropriate to examine some of the 

potentially limiting factors of rowing performance:

6-5.1 Subjective Symptoms of Fatigue as a Limiting Factor in Rowing

Among the most pronounced symptoms of exercise intolerance is the sensation of 

fatigue. Subjective correlates of fatigue are complex, reflecting the integration of 

many discrete sensations having different physiological origins. A model of fatigue 

has been identified consisting of three relatively unique subsets, namely leg 

fatigue, general fatigue, and cardiopulmonary fatigue (i.e., sensation of dyspnea) 

(Weiser et al, 1973). The leg fatigue subcluster is presumed to be task specific to 

submaximal cycling to exhaustion which was used as the exercise mode for the 

construction of the model. While there is an absence of similar studies using 

rowing as the exercise mode, it is reasonable to assume that peripheral muscle 

fatigue is also a determinant subcluster in the overall sensation of fatigue in 

rowing. Furthermore, Horstman et al, (1979) concluded that these subjective 

symptoms arising form muscles, joints, and the cardiorespiratory system operate 

in consort with physiological processes to set the upper limits of endurance 

performance.

Sensations of fatigue are equally important as physiological determinants of 

fatigue in setting the limits of exercise performance (Kinsman & Weiser, 1976). 

The decision to continue or discontinue exercise is based on subjective symptoms 

that have their origin in underlying physiological events. These physiological 

events involve both the contractile functions of peripheral skeletal muscle and 

cardiorespiratory responses. During exercise functional changes in the 

neuromuscular and cardiorespiratory systems increase symptom severity, thereby 

subjectively setting the limits of endurance performance. This assumption has
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been validated for cycling (Weiser & Stamper, 1977) but no data exists for rowing 

performance.

Data from our studies suggest that the perception of dyspnea may be an important 

determinant of rowing performance. Indeed, alleviation of dyspnea subsequent to 

a specific respiratory warm-up was associated with improved rowing performance.

6-5.2 Peripheral Mediators of Exertion

Peripheral physiological mediators are primarily regionalised to exercising muscles 

in the limbs, trunk, and upper torso (including the shoulder and neck). The 

processes thought to mediate the intensity of peripheral exertional perceptions are 

1) metabolic acidosis (pH and lactate), 2) fast- and slow-twitch contractile 

properties of skeletal muscle fibre, 3) muscle blood flow, and 4) blood-bourne 

energy substrates (Noble & Robertson, 1996). It is beyond the scope of this thesis 

to analyse all these factors but for our purposes it is important to emphasise that a 

reduction in blood flow exacerbates peripheral muscle fatigue and intensifies 

peripheral exertional signals. Indeed, findings from Harms et a / (2000) suggest 

that the reduction in leg blood flow, associated with the work of breathing normally 

incurred during sustained heavy-intensity exercise (> 90% V^max) enhances both

the onset of leg fatigue and the intensity with which both leg and respiratory 

muscle efforts are perceived. The combination of these factors has a significant 

influence on exercise performance.

6-5.3 Possible Mechanism for the Effect of Warm-Up on Rowing Performance

It is possible that a specific rowing warm-up characterised by a specific muscle 

fibre recruitment pattern enhances (more effectively than other protocols) the 

blood flow and speeds V0j kinetics in the active musculature. In turn, the increased
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blood flow not only enhances muscle function but also reduces perceived exertion. 

Additionally, the specific warm up is a rehearsal of the physical, technical, and 

tactical performance requirements. In this way, attentional focus and arousal levels 

are optimised.

Altered Central Perception

Alternatively or additionally, an altered central perception of the breathing 

discomfort, i.e., desensitization to dyspnea may take place following the inspiratory 

muscle warm-up. Indeed, a study by Revelette & Wiley (1987) investigated the 

long-lasting plasticity of respiratory sensation. They found that after a 2 min period 

in which subjects were required to breathe through a high resistive load, the 

perceptual scores for a loading protocol were reduced compared with those before 

high resistance breathing. A later study by Wilson & Jones (1990) found that 

subjects could be conditioned to decrease the perceived magnitude of their 

dyspnea in an exercise test by the presence of a small inspiratory resistance prior 

to the test.

In conclusion, desensitisation of respiratory sensations may be responsible not 

only for a decrement in perceived dyspnea but also in the perceived peripheral 

effort. These responses induce a general state of readiness which is an important 

prerequisite for conscious, active and goal-oriented activity and ultimately, may 

improve rowing performance.

6-6 Evaluation of the Effect of 11 Weeks of Inspiratory Muscle Training Upon 

Rowing Performance and the Perception of Dyspnea

The main finding of this study was that inspiratory muscle training can have a 

significant effect upon rowing performance. Performance in both the 6min all-out 

effort and the 5000m trial improved following 11 weeks of inspiratory muscle
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training. The distance covered in the 6min all-out effort increased by 3.5 ± 1 .2  % in 

the training group compared with 1.6 ±  1.0 % in the placebo group. The time in the 

5000 m trial decreased by 36 ±  9 sec (3.1 ±  0.8 %) in the training group compared 

with only 11 ±  8 sec (0.9 ±  0.6 %) in the placebo group. In addition, perception of 

dyspnea was reduced in both the incremental test and the 6min all-out effort.

While definitive data demonstrating IMT induced hypertrophy in healthy humans 

do not exist, numerous studies, including those presented within this thesis, have 

demonstrated that IMT increases the peak force generating capacity of the 

inspiratory muscles. In addition, McCool et al (1997) concluded that the 

diaphragmatic cross-sectional area in healthy subjects can be increased by long 

term general or specific training. Given that specific IMT regimes have consistently 

augmented maximum inspiratory pressure (MIP) values it is reasonable to assume 

that the respiratory muscles respond in a similar manner to a progressive 

overloading stimulus to other skeletal muscle; that being to hypertrophy over a 

period of time.

With a higher absolute MIP capacity a smaller percentage of this capacity will be 

used to meet a given pressure requirement related with the hyperpneic response 

to rowing. Since the incidence of respiratory muscle fatigue has been related to 

the ratio of produced pressure to pressure generating capacity, fatigue of the 

inspiratory muscles should be decreased, if not prevented completely after 

training. Consequently, the increase in respiratory motor command outflow, 

secondary to the degenerating capacity of the respiratory muscles, should be 

avoided. As a result the perception of dyspnea should be relatively low and the 

overall perception of exertion improved. This hypothesis is in agreement with our 

findings.
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6-6.1 Improved Breathing Pattern

The hyperventilatory response of high intensity exercise is characterised by an 

altered respiratory muscle recruitment (Aliverti et a/, 1997). The diaphragmatic 

pressure production plateaus while the ventilatory pressure requirements continue 

to rise, presumably supported by increased accessory muscle activity. The altered 

recruitment model leads progressively to a tachypneic breathing pattern 

characterised by a curtailment of tidal volume and increased frequency. This 

pattern has been interpreted as a sign of respiratory fatigue. The mechanisms 

underlying this alteration in breathing pattern remain speculative, This tachypneic 

pattern is mechanically and metabolically inefficient and results in exponential 

rises of the total work of breathing and consequently of the blood flow 

requirements of the respiratory muscles. It can be hypothesised that a less 

tachypneic breathing pattern would uphold the metabolic cost of the respiratory 

muscles and favourably affect exercise performance.

After IMT, the training group was able to increase minute ventilation through 

further increases in tidal volume, whilst the control group had to resort to a 

tachypneic breathing pattern. Thus, improved functional capacity of the inspiratory 

muscles was manifested through a maintenance of a more efficient breathing 

pattern throughout the 6 min all-out effort. The benefits of such an adaptation may 

be twofold.

First, if we accept that the purpose of the entrained breathing pattern in rowing is 

to support the production of the external work, rowing efficiency may be optimised 

or at least maintained at the initial levels throughout the test. Secondly, a more 

efficient breathing pattern may have reduced energy requirements of the 

respiratory muscles and "spared" a portion of the cardiac output, otherwise 

allocated to them, for use by peripheral musculature.
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6-7 Investigation of the Incidence of Inspiratory Muscle Fatigue Following the 6 min 

All-Out Rowing Effort

Significant reductions of maximum inspiratory pressure were observed following 

the 6 min all-out rowing effort. MIP decreased from 142.8 (± 11.2) cmH20  baseline 

value to 126.8 (± 37.2) cmhbO post exercise, corresponding to a decrease of 11.2 

± 4.3 %.

Although the measurement of maximum mouth pressure is a volitional index of the 

respiratory muscle generating capacity, it is a very useful non-invasive technique 

which, if performed by fully motivated subjects, can provide a profile of the global 

respiratory muscle capacity. We are reluctant to conclude that these pressure 

reductions represent fatigue of the diaphragm but nevertheless, we can conclude 

that the overall volitional mouth pressure generating capacity was reduced. The 

reduction of the volitional capacity is more functionally relevant for the 

performance of the global respiratory system since the isolated fatigue of the 

diaphragm does not necessarily imply failure of the global respiratory "pump".

6-8 Future studies

The question of dose-response in inspiratory muscle training should be addressed. 

Future studies should evaluate the effect of different training protocols on the 

function of the respiratory muscles and rowing performance. In addition, the 

detraining effect should be investigated to establish the degree to which the 

adaptations are maintained. The question of diaphragmatic fatigue in rowing with 

the use of phrenic nerve stimulation following maximal rowing efforts should also 

be addressed in future investigations.

Studies of a more invasive nature could investigate the mechanisms responsible 

for the improvements in performance. Investigations of the cardiovascular
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consequences of inspiratory muscle training and specifically measurements of leg 

blood flow following inspiratory muscle training may give us some definitive 

answers to the suggested mechanism of blood flow redistribution.

Future studies should investigate the effect of sympathoexcitatory reflexes from 

the diaphragm and accessory respiratory muscles, activated under fatiguing 

conditions, upon the regulation of limb vascular resistance and blood flow in limb 

locomotor muscles during exercise. It is hoped that these studies will provide 

much needed insights into the poorly understood, complex relationships between 

respiration and circulation during exercise that we believe are critical to controlling 

blood flow distribution, cardiac output and exercise performance in healthy 

humans and in those with heart failure and respiratory disease.
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Appendix

Structure and Function 
of the

Respiratory Muscles



A.l Anatomy

The diaphragm , the external and internal intercostals and the principal accessory 

(abdominal, scalenes, sternocleidomastoid) muscles of respiration are 

morphologically, and functionally, the same as all skeletal muscles. The only 

distinguishing features are possibly their anatomy and patterns of use (Jones, 

1995). The diaphragm is internal to the ribs at its attachments and continuous with 

the innermost muscle layer of the abdominal wall. The thoracic wall muscles, in 

the plane of the ribs, are represented by the internal and external intercostals. 

The muscle layers external to the ribs stabilise the pectoral girdle and arm, and 

almost completely cloak the external surface of the thoracic cage.

A. 1.1 The Diaphragm

The diaphragm is a thin musculotendinous sheet of complex structure which forms 

the floor of the thoracic cavity. It is attached peripherally around the complete 

boundary of the inferior aperture, from which it passes upward, ascending high 

into the thoracic cavity to its two cupolae. The muscle of the diaphragm, all of 

which inserts into a roughly trilobed central tendon, falls into two main 

components, costal and crural according to its site of origin.

Functionally, the diaphragm can be considered as an elliptical cylindroid, capped 

by a dome. The dome of the diaphragm corresponds primarily to the central 

tendon, and the cylindrical portion corresponds to the muscle directly opposed to 

the inner aspect of the lower rib cage, the region termed the zone of apposition 

(Mead, 1979). When tension increases within the diaphragmatic muscle fibers, a 

caudally oriented force is applied on the central tendon, and the dome of the 

diaphragm descends. This has two effects, firstly, it expands the thoracic cavity 

along its craniocaudal axis, secondly it produces a caudal displacement of the 

abdominal visceral mass.
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A. 1.2 The Intercostal Muscles

There are 11 pairs of internal and external intercostals which fill the space 

between the ribs. The external intercostal run obliquely inferiorly and anteriorly 

beginning lateral to the rib tubercules and extending anteriorly to their costal 

cartilages. The internal intercostals run at right angles to the external intercostals 

with their fibers run inferiorly and posteriorly. When an intercostal muscle contracts 

it pulls the upper rib down and the lower rib up. However, the distinct orientations 

of the muscle fibers coupled with the different insertion points alter the torque 

characteristics upon each respective rib. Therefore, the external intercostals exert 

a greater force on the lower rib and produce an inspiratory action since they help 

raise the inferiorly positioned rib. On the other hand, the internal intercostals 

produce a downward movement of the ribs and therefore, considered as expiratory 

muscles.

A.1.3 Other Inspiratory Muscles

The parasternals and the scalenes are considered the most important assessory 

inspiratory muscles. The parasternals run inferiorly and laterally from the lateral 

margin of the sternum to the 2nd to 6th ribs. Their action is to create the "bucket 

handle" movement of the ribs. The scalenes run interiorly from the cervical 

vertebrae to the upper margin of the first two ribs. Due to the configuration of the 

first two ribs, contraction of the scalenes results in the "pump handle" movement. 

Other assessory inspiratory muscles are the sternocleiodomastoid , the levator 

costae and the serratus posterior superior.

A.1.4 The Abdominals

The abdominal muscles that have significant respiratory actions are the rectus 

abdominis, the external and internal oblique, and the transverse abdominis. The
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rectus abdominis runs inferiorly from the sternum and the 5th, 6th, and 7th costal 

cartilages to the pubis. The external oblique runs interiorly and medially to the iliac 

crest. The internal oblique runs outwards from the inguinal ligament , the 

thoracolumbar fascia and the iliac crest to a range of attachments at the lower ribs 

and the rectus sheath. Finally, the transversus abdominis runs horizontally around 

the abdomen from the inner surface of the power six ribs, the iliac crest and the 

lumbar fascia to the rectus sheath and the linea alba (Osmond, 1995). The 

abdominals are primarily expiratory muscles. Their expiratory actions are: 1) to pull 

the abdominal wall inward and increase the abdominal pressure, causing the 

diaphragm to move cranially into the thoracic cavity and 2) to pull the ribs caudally 

and thereby deflating the lungs. However, the abdominals also assist in 

inspiration. During quiet breathing the abdominals play no role in respiration, but 

during exercise, as ventilatory demands increase, they contract rhythmically in 

phase with the inspiration. This action increases the abdominal pressure and 

assist the diaphragmatic action by resisting the outward displacement of the 

abdominal wall.

A.2 Structure and Morphology

The structural characteristics of the diaphragm and accessory muscles of 

respiration can be described in terms of the proportion of different fiber types 

present and the motor unit organisation of the muscle (Edwards & Faulkner, 

1995). The adult diaphragm muscles are composed of 55 ±  5% type I, 21 ± 6% 

type IIA, and 24 ±  3% type IIB fibers (Lieberman et al, 1973). The intercostals 

muscles have 63 ± 2.7% type I fibers (Keens et al, 1978), with no significant 

difference between internal and external muscles. Although the percentage of type 

I fibers of the intercostal muscles is higher than that of the diaphragm muscle, the 

diaphragm demonstrates greater oxidative enzyme activity (Keens et al, 1978). 

The abdominal muscles are more variable in composition than the other accessory 

muscles with the range of type I fibers being 40-70%.

163



The diaphragm exhibits a twofold greater mitochondrial density than that found in 

limb muscle (Hoppeler et at, 1981). While the intercostals exhibit similar oxidative 

characteristics to the diaphragm, the accessory muscles show considerable 

variability in oxidative capacity.

Recruitment of motor units in the diaphragm appears to follow the general 

'Henneman size principle' (Henneman & Olson, 1965). Most likely, motor unit 

recruitment in the diaphragm is similar to that of thenar muscles (thumb), where 

motor units reach 50% of maximum force at a stimulation frequency between 8 

and 10Hz. According to Sieck (1988), recruitment by the size principle is to some 

extent moderated by the respiratory rhythm.

A.3 Function

The critical contractile variables in terms of understanding respiratory function are 

the maximum velocity of unloaded shortening (Vmax), the force developed, and the 

ability to sustain force and power (Edwards & Faulkner, 1995). The time to peak 

tension and Vmax of the respiratory muscles, being midway between fast and slow 

skeletal muscle fibers (Faulkner et al, 1979), are ideally suited to the diverse 

metabolic requirements of the respiratory muscles for sustained non-fatiguing 

contractions.

The respiratory muscles usually function at low afterloads, although increased 

resistance to airflow can raise it. As a consequence, the force-velocity relationship 

of fiber segments from the diaphragm muscle is intermediate between those of 

type I and type II skeletal muscles. Power decreases rapidly from the value 

produced during a single contraction to that sustained during repeated efforts. 

Following exhaustive exercise the sustained power may be reduced to 

approximately 30% of that generated during a single maximal contraction 

(Edwards & Faulkner, 1995).
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The resting position of the diaphragm and to a lesser extent other respiratory 

muscles are in dynamic equilibrium. The elastic recoil forces of the lung, the effect 

of gravity on the ribs and the contents of the thorax all interact to determine this 

equipoise (Rochester, 1992). Contractions of the respiratory muscles, at various 

power outputs, act on the volume of the thorax in a manner that facilitates a 

diverse variety of ventilatory manoeuvres. The transformation of diaphragmatic 

muscle force to pressure may be estimated from the Laplace relationship, 

however, this is somewhat complicated by changes in the curvature of the muscle. 

Unfortunately, for other respiratory muscles, shortening length and force 

developed are impossible to measure. It is acceptable to estimate the external 

work performed by calculating the area of the pressure-volume curve (Edwards & 

Faulkner, 1995).

Contraction of the diaphragm forces the viscera downwards and thereby pushing 

the abdomen outward. The extent to which this lifts and expands the ribs is 

dependent on the abdominal pressure, which is determined primarily by abdominal 

resistance to displacement. The external intercostal muscles expand the rib cage 

with some assistance from the abdominals whose contraction during inspiration 

aid rib expansion by increasing abdominal pressure (Grimby etal, 1976). During 

normal breathing, although the diaphragm is consistently involved and exhibits the 

most active motor units, parts of the internal intercostals, and the external 

intercostals are active. Furthermore, the scalene and sternocleidomastoid muscles 

are frequently employed. Increases in minute ventilation are accompanied by 

progressive recruitment of motor units in each of the respiratory muscles, the 

exact pattern of which is dependant on the stimuli causing the hyperpnea 

(Derenne etal, 1978).
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A.4 Summary

The structure and functional properties of the respiratory muscles reflect the 

unique functional requirements which they serve. The diaphragm in particular, with 

a high oxidative capacity, high maximum flow and an intermediate velocity of 

shortening is highly fatigue resistant. Furthermore, the abundance of highly 

oxidative fibers allows the diaphragm to perform at high percentages of maximum 

voluntary ventilation (Tenney & Reese, 1968) and as such is appropriately 

designed for the demands of exercise.
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