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Abstract 

 

Severe thermal injury induces a profound immune-inflammatory, endocrine and 

hypermetabolic response associated with poor outcomes including delayed wound 

healing, sepsis, multiorgan failure (MOF) and mortality. One urgent clinical need is to 

understand the mechanisms mediating the systemic response in order to identify 

prognostic biomarkers of outcome and develop new therapies. 

This thesis analysed stored serum samples from a large observational study of severely 

burned patients (≥20% TBSA) at the Queen Elizabeth Hospital Birmingham. The 

HPA/HPG, Vitamin D, inflammatory, immune and adipokine responses were 

characterized from day of injury to 12 months post-injury and related to clinical 

outcomes including sepsis, MOF, wound healing, scarring and mortality.  

Low DHEA, DHEAS, Testosterone and Vitamin D (25D3, Free 25D3, Bioavailable 25D3) 

status showed significant associations with poor outcomes including delayed wound 

healing, sepsis and mortality independent of age, gender and injury severity. Higher 

levels of DHEA, DHEAS, testosterone, Vitamin D and adiponectin were associated with 

improved scarring. Current burn treatments with potential influence on the endocrine 

system were also assessed. Corticosteroid use was associated with poor prognosis 

including sepsis, MOF and mortality, whereas Oxandrolone use was associated with 

improved outcomes. The data reveal several novel biomarkers of outcome that could 

also have therapeutic value. 
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1.1 The Burden of Thermal Injury 

1.1.1 Aetiology and Epidemiology of Burn Injuries 

Burn injury is a form of traumatic injury to skin or other tissues, incurred primarily 

through a heat-based external stimulus. In the UK the most common mechanisms of 

thermal injury and subsequent admission to burn centers are scald (39%), flame/flash 

(30%) and contact (19%)(1). In the US, the most prevalent causes of burn injury are 

flame, scald, contact, electrical and chemical accounting for 43%, 34%, 9%, 4% and 3% 

respectively (2). The incidence of the above causes behind burn injury have remained 

stable for many years (3). Other geographical regions have reported similar 

observations (4-6). 

Thermal injury is a serious worldwide public health issue. In the UK, approximately 

250,000 individuals sustain burn injuries with 112,000 attending emergency 

department annually (7). Almost 189,000 acute burn admissions were reported in 

England from 1991-2010, with the number of burn-related hospitalizations appearing 

to increase across these decades (8). Similarly, 40,000 burned patients were admitted 

in hospitals for treatment in the US , with an average of greater than 200 admissions to 

burn centers per year (2). Globally, the incidence of burns ranked 4th in all injuries that 

required medical assistance with 11 million people affected (9).  

1.1.2 Outcomes of Thermal Injury 

Although there is an increasing trend of burn hospitalizations in some countries, a 

global decreasing trend in burn incidence and severity has been reported (10). 

Furthermore, mortality rates have dramatically improved with time in the UK, US and 
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several other countries (10-13). This can be attributed to medical advancements in 

burn treatment, evolution of a multidisciplinary team approach in burn care and 

development of regional systems optimizing distribution and allocation of burned 

patients to the appropriate facilities and surveillance of medical care (11, 14-17).  

Despite this, a global annual estimate of 180,000 deaths is attributed to thermal 

injuries – with most occurring in low and middle-income countries (18). Therefore, 

more effective and efficient burn treatment and management is required to further 

improve survival rates following thermal injury. 

With the number of burn survivors increasing, thermal injury is becoming a leading 

cause of morbidity (18). Morbidity following thermal injury can be classified into short-

term and long-term consequences. Short-term causes of increased morbidity in burned 

patients include sepsis, multiorgan failure (MOF) and delayed wound healing. Long-

term reasons for morbidity following thermal injury include scarring and development 

of chronic illness. 

Burned patients are at increased risk of developing infections. Pneumonia, urinary 

tract infections, cellulitis and wound infections ranked in the top 5 of the ten most 

clinically relevant complications following thermal injury (19). Bacteremia and sepsis 

have been reported to affect approximately 26 - 69% of burned patients (20-23). 

Furthermore, the incidence of multiorgan dysfunction and failure following thermal 

injury is 63% and 19-37% respectively (20, 24) . Both sepsis and multiorgan 

dysfunction/failure are  also the most reported causes of mortality in the burn 

population (25). Another recognized cause of mortality following injury is connected 
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with burn wounds. Survival rates following thermal injury has improved dramatically 

owing to early burn excision and wound closure through aseptic techniques, as well as 

advances in general wound care (26, 27). Therefore, clinical and research effort is 

currently focusing on addressing wound healing duration and prevention/minimization 

of sub-sequent scarring (28). 

The incidence of scarring following thermal injury has been reported to be 

approximately  32-72% (29).  Physical consequences of burn scars include contractures 

which potentially could affect activities of daily living. Additionally, burn scars can be 

symptomatic and have psychological consequences. Survivors of thermal injury may 

complain of scar pruritis and pain, as well as feeling shame and social anxiety (30). 

Anxiety in burn patients with visible scarring is probably attributed to experiencing 

stigmatizing behavior on a regular basis such as staring, startled reaction, whispering, 

teasing, rude comments, eye contact avoidance and manifestations of pity (29). 

Subsequently, it may lead to social isolation adversely affecting mental health (31). 

Burn patients have significantly higher mental health-related hospital admission, and 

are at increased risk of developing mood/anxiety disorders, psychotic disorders and 

alcohol/drug behavioral disturbances years following initial injury (32). 

In addition to long-term mental health effects of burn injury, multiple reports 

demonstrated associations between thermal injury and various chronic illnesses. 

Epidemiological studies observed increased risk of various disease states in burned 

patients compared to un-injured patients including cardiovascular disease, diabetes 
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mellitus, gastrointestinal disease, infectious diseases, musculoskeletal diseases, neuro-

pathologies and respiratory infections (33-39).  

1.2 Pathophysiology of Thermal Injury 

Cutaneous thermal injury can be caused by various sources of heat including flame, 

scalds with hot solutions and contact with hot objects. Other mechanisms include 

chemical, friction/trauma, frostbite, electrical and radiation. The haemodynamic 

consequences following burns is dependent on the mechanism of injury. Burns 

sustained through chemical and electrical means, due to their different pathological 

nature and the fact that they were not studied in this thesis, are not discussed further. 

Thermal injury results in immediate, multiple pathophysiological responses, both at 

local and systemic levels. Such responses differ significantly from other forms of 

trauma. Therefore, a thorough understanding of the physiological implications of 

severe thermal injury is required to improve clinical burn care.  

1.2.1 Pathology of Burn Wound and its Clinical Relevance 

Burn wounds were described into three pathological zones by Mr. Douglas Jackson in 

1953 (40). These include the central zone of coagulation or necrosis, intermediate zone 

of stasis and peripheral zone of hyperemia. The zone of coagulation is the zone of 

maximal direct damage and contains irreversible necrosis. The zone of stasis is a 

compromised zone associated with tissue ischemia. This zone is potentially salvageable 

with adequate resuscitation and treatment (41). The zone of hyperaemia is 

characterized by increased tissue perfusion and usually recovers without 

complications. Burn injury is a dynamic process with the overall depth and surface area 
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of the injury open to influence by addressing the zone of stasis and halting cellular 

apoptosis (42). By limiting the depth and surface area of burn wounds, the prognosis of 

burned patients can be improved (43, 44). The zones of burn wounds are summarised 

in Figure 1.1. 

 

 
Figure 1.1. Overview of the three concentric zones of burn wounds.  

The three zones of burn wounds form the local response following thermal injury. Burn 
exhibits a dynamic pathology. Inadequate treatment following thermal injury leads to 
progressive necrosis of burn wounds and loss of zone of stasis. Figure taken from “ABC 
of burns: pathophysiology and types of burns” by Hettiaratchy S et al (41). 

 

Burn wounds are clinically classified by depth and extent of surface area involved. 

Depth of thermal injury is sub-divided into 4 categories: superficial, superficial partial 

thickness, deep partial thickness and full thickness. Superficial burns are confined to 

the epidermis and typically exhibit erythema and pain that resolves within a few days 
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with minimal medical intervention, usually without complications. Hence, the extent of 

epidermal burns is not usually calculated. Superficial partial thickness burns 

encompass both epidermis and papillary dermis. Superficial partial thickness wounds 

are characterized by blisters, erythema and edema, as well as blanching on pressure 

with brisk capillary refill on release. Deep partial thickness burns extend into the 

reticular dermis. Manifestations of deep partial thickness injuries include fixed red 

staining, marked oedema, moist wounds, slow capillary refill and reduced sensation. 

Partial thickness burn wounds usually requires medical and/or surgical intervention 

and is associated with patient outcomes including hypertrophic scarring(45). Full 

thickness burn involves all layers of skin and may extend into subcutaneous tissues, 

fascia and other sub-dermal structures. Full thickness injuries invariably require 

excision of necrotic tissues and resurfacing surgery including skin grafts/skin 

substitutes (46). Correct diagnosis of burn depth is thus clinically important. Re-

epithelization of burn wounds occurs by a complex set of actions involving somatic and 

stem cells within different skin layers, with keratinocyte migration from skin 

appendages and release of various growths factors from cells within reticular dermis 

(46, 47). The anatomy of skin in relation to burn depth is illustrated in Figure 1.2. 
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Figure 1.2. Overview of burn depth in relation to skin anatomy.  
A) Three-dimensional illustration of skin anatomy and burn depth. B) Skin histological 
layers with dermal and sub-dermal contents. Figure taken from “A Review of the Local 
Pathophysiologic Bases of Burn Wound Progression” by Shupp JW et al (48). 
 

The extent of burn wound surface area can be assessed by at least, 3 methods. These 

include the Wallace rules of 9s, the Lund and Browder chart and the 1% patient’s 

palmar surface (49-51). These burn size estimation techniques are illustrated in Figure 

1.3. Among these methods estimation of burn surface area using the Lund and 

Browder chart is reported to be the most accurate (52). However, burn estimation 

using these methods is subjective with significant wide discrepancy between assessors 

(53, 54), which could be attributed in part to clinical experience. Nevertheless, 

estimating the injury size is clinically important.  Burned patients with total burn 
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surface area (TBSA) ≥10% should be referred to a burn unit or center as they may 

require specialized care including systemic medical interventions (55-57). 

 

Figure 1.3. Methods of estimating burn wound surface area.  

A) Patient’s palmar surface equates to approximately 1%. B) Wallace’s rule of nines. C) 
Lund and Browder Chart. Figure acquired from “The validation study on a three-
dimensional burn estimation smart-phone application: accurate, free and fast?” by 
Cheah AKW et al (58). 
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1.2.2 Systemic Response Following Thermal Injury 

The primary aim of establishing referral criteria is to capture patients with severe-

enough burns at risk of profound systemic pathophysiological response (59). 

Furthermore, prompt clinical treatment of patients following severe thermal injury is 

essential to improve prognosis (60).  However, the definition of severe burns in the 

literature has been variable. Recently, adult patients with ≥20% TBSA have 

demonstrated robust and complex pathophysiological responses comparable to those 

with larger thermal injury (61). Response following severe thermal injury is 

characterized by burn shock and global disruption of immune-inflammatory, metabolic 

and endocrine processes and these will now be discussed in more detail as they form a 

central aspect of this thesis. 

1.2.3 Hypovolemia and Shock Following Severe Thermal Injury 

Severe thermal injury results in significant systemic and microcirculatory alterations 

associated with shock. Shock is clinical phenotype of circulatory failure with 

subsequent tissue hypoperfusion,  inadequate cellular oxygenation and metabolism 

(62). Burned patients exhibit substantial distributive shock and significant tissue 

trauma. Severe thermal injury leads to increased vascular permeability with 

subsequent fluid shifts and intravascular volume depletion, as well as  oedema 

formation (63).  This process results in hypovolemia and causes tissue injury secondary 

to translocation of fluids and protein into burned and non-burned tissues (64, 65). 

Subsequently, an imbalance between hydrostatic and oncotic pressures develops. The 

new interstitial contents create an osmotic gradient that draws in additional fluid from 

the vasculature, with subsequent and further loss of protein into the oedema fluid 
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(66). This cascade results in marked hypoproteinemia and massive oedema formation. 

Subsequently, intravascular hypovolemia and haemoconcentration occurs within the 

first 12-24 hours of severe thermal injury (67). This first period following severe burns 

is called the ‘ebb’ phase and typically lasts 24-72 hours (65). Approximately 58% of 

burn-related deaths occur within the first 72 hours (68). This indicates that burn shock 

is still a major cause of mortality. Corticosteroids are sometimes used to address burn 

shock refractory to resuscitation following severe thermal injury. The use of 

corticosteroids in burned patients will be discussed further in Chapter 3. 

Following the ‘ebb phase’, the second period of burn resuscitation begins and is called 

the ‘hyperdynamic and hypermetabolic’ or ‘flow’ phase. At 24-48 hours post-thermal 

injury, microvasculature integrity and systemic vascular resistance, as well as cardiac 

output improves leading to enhanced blood flow to burn wounds (69). The 

pathophysiological response following thermal injury is summarized in Figure 1.4. 

Severe burn affects multiple organs and tissues with inflammation, immune 

dysfunction, hypermetabolism and endocrine disturbances being the hallmarks of the 

pathophysiological response following injury (63, 70, 71). 
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Figure 1.4. The pathophysiological responses following severe thermal injury.  
Severe thermal injury induces multiple reactions with consequences on various 
organs and tissues. A) The pathophysiological response during the ‘ebb’ phase in 
burned patients. B) The pathophysiological response during the ‘flow’ phase in 
burned patients. Figure acquired from “Acute and Perioperative Care of the Burn-
Injured Patient” by Bittner EA et al (69) 
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1.2.4 Systemic Inflammatory Response following Severe Thermal Injury 

Burns and other traumatic injuries are associated with the release of damage-

associated molecular patterns (DAMPs) (72-74). DAMPs originate from the 

extracellular matrix, such as decorin and biglycan, or intracellular compartments(75). 

DAMPS deriving from intracellular compartments can be cytosolic (such as F-actin and 

S100 proteins), nuclear (e.g. histones and DNA), mitochondrial (such as mtDNA and 

Formyl peptide), endoplasmic reticulum-based (e.g.  Calreticulin), Granular (such as 

Defensins and Cathelicidin) and Plasma membrane-derived (such as Syndecans and 

Glypicans) (75).  Following tissue injury or cellular apoptosis, discharged DAMPs initiate 

an immune response and sterile inflammation (72, 76). Inflammation is an acute host 

reaction to tissue injury and pathogens. It is a defense mechanism that aims to remove 

injurious stimuli, restore tissue homeostasis and initiate the healing process (77). 

However, in extreme circumstances like burn injury, severe tissue trauma results in an 

overwhelming release of inflammatory mediators into the circulation resulting in 

complex multi-system effects. Clinically, this is recognized as systemic inflammatory 

response syndrome (SIRS). The definition of SIRS was set up in a consensus conference 

involving the American College of Chest Physicians and Society of Critical Care 

Medicine in 1991(78). Clinically SIRS is diagnosed when 2 of following criteria are met: 

Temperature >38⁰C or <36⁰C, Heart Rate >90 beats/min, Respiratory Rate >20 

breaths/min or PaCO2 <4.3kPa and White Cell Count >12,000 cells/mm3, <4000 

cells/mm3 or immature bands >10%. Additionally, the same consensus conference 

defined sepsis, septic shock and multiple organ dysfunction syndrome (MODS)(78). 

These definitions are as outlined: Sepsis – SIRS with documented microbial source, 
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Septic Shock – SIRS with hypotension refractory to fluid resuscitation, and MODS – SIRS 

with organ dysfunction. 

Originally, severe forms of trauma were thought to induce an initial excessive SIRS 

response followed sequentially by a compensatory anti-inflammatory response 

syndrome (CARS)(79). Furthermore, multiple inflammatory events or ‘second hits’ 

were thought to complicate patient outcomes by inducing a secondary exaggerated 

response (80). This classical consecutive SIRS/CARS paradigm was questioned when 

septic murine models exhibited concurrent pro- and anti-inflammatory responses (81, 

82). Recently, a clinical study examined circulating leukocytes in trauma patients 

observing similar findings and as a result a new paradigm of concomitant SIRS and 

CARS has been proposed (83). Burned patients demonstrated simultaneous and rapid 

significant elevations of systemic anti- and pro-inflammatory gene expressions. 

Furthermore, outcomes following injury were associated with the magnitude and 

duration of the acute inflammatory response. No evidence of ‘second hit’ 

phenomenon was observed. The SIRS/CARS paradigms of burns and major trauma are 

illustrated in Figure 1.5. 
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Figure 1.5. Inflammatory paradigms following injury.  
A) Classical trauma paradigm demonstrating SIRS followed temporally by CARS with a 
‘second hit’ phenomenon. B) New proposed trauma paradigm of simultaneous SIRS 
and CARS. Figure taken from “A genomic storm in critically injured humans” by Xiao W 
et al (83). 
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1.2.5 Cytokine Response following Severe Thermal Injury 

The severe inflammatory response exhibited following burn injury is primarily 

mediated by cytokines released from innate immune cells as a result of activation by 

DAMPs (84, 85). Cytokines are proteins with autocrine/endocrine properties that 

modulate cellular activities and interactions including angiogenesis, cellular apoptosis, 

proliferation and repair, as well as the immune response itself (86). Similar to the 

SIRS/CARS paradigm, the understanding of cytokine responses following injury has 

been evolving. Initially, outcomes were proposed to be driven by the sequential 

release of cytokines, referred to as the “cytokine cascade”(87). More recently the term 

“cytokine storm” has emerged (88) from large scale studies such as the “Glue Grant” 

study in the US. The cytokine storm concept suggests outcomes are associated with an 

exaggerated release of primarily pro-inflammatory cytokines. The current 

understanding involves an interplay between various cytokines of different roles which 

aim to dampen the inflammatory response and restore body homeostasis and immune 

equilibrium (89). Cytokines can be broadly classified into pro and anti-inflammatory 

roles and their numerous functions have been extensively reviewed (90) and are 

summarized in Table 1.1.  

Severe thermal injury induces a hyper-inflammatory response with multiple cytokines 

demonstrating up-to 200 fold elevations compared to un-injured individuals (91). 

Similar perturbations of cytokine kinetics in burned patients were observed in multiple 

studies (61, 92-97).  Furthermore, alterations in circulating cytokine levels post-burn 

are significantly associated with outcomes following thermal injury. Elevated serum 

levels of IL-1Ra, IL-6, IL-8 and MCP-1 at day 1 post-burn injury were significantly 
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associated with mortality (95, 97). Potentially, these cytokines may be used as 

prognostic biomarkers of survival once clinically validated. Interestingly, these 

perturbations in cytokine profiles can be persistent and may last for up to 3 years 

following severe thermal injury (94) 

Studies profiling the cytokine response in burned patients have demonstrated that not 

all pro-inflammatory cytokines are elevated (91, 93, 94, 97). This observation could be 

due to various influencing variables including age, gender, burn size, injury severity, 

time of sample from injury, patient co-morbidities and treatments given prior to 

sampling.  Additionally, such an observation may suggest the presence of a possible 

regulatory mechanism attempting to maintain cytokine equilibrium and its associated 

functions including the immune response. 
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Table 1.1. Overview of cytokines and other signaling proteins analyzed in this 
thesis 

   

Cytokine/Protein Source Role 

Interleukin-1 Receptor 
Antagonist (IL-1Ra) 

Immune cells including 
monocytes and 
neutrophils 
Epithelial cells 
Adipocytes 

Anti-Inflammatory 
effects(98) 

Granulocyte-Colony 
Stimulating Factor (GCSF) 

Immune cells including 
macrophages 
Endothelial cells 

Anti-inflammatory 
effects(99) 

Interleukin 6 (IL6) 

Immune cells including 
macrophages 
Myocytes 
Adipocytes 

Anti-inflammatory and 
Pro-inflammatory 
effects(100, 101) 

Interleukin 8 (IL8) 

Immune cells including 
macrophages 
Epithelial cells 
Endothelial cells 
Myocytes 

Pro-inflammatory 
effects(102) 

Interleukin 10 (IL10) 
Immune cells including 
monocytes and 
lymphocytes 

Anti-inflammatory 
effects(103) 

Interleukin 12-p70 
(IL12p70) 

Immune cells including 
dendritic cells, 
macrophages and 
neutrophils 

Pro-inflammatory 
effects(104) 

Interleukin 17 (IL17) 
Immune cells including 
natural killer cells and T 
cells 

Pro-inflammatory 
effects(105) 

Monocyte 
Chemoattractant Protein-1 
(MCP-1) 

Immune cells including 
Epithelial cells 
Endothelial cells 
Fibroblasts 
Myocytes 

Pro-inflammatory 
effects(106) 

Tumour Necrosis Factor 
alpha (TNFα) 

Immune cells including 
macrophages, and 
lymphocytes 

Pro-inflammatory 
effects(107) 

Insulin-like Growth Factor-
1 (IGF-1) 

Liver 
Anti-inflammatory 
effects(108) 

Interleukin-1 beta (IL-1β) Macrophages 
Proinflammatory 
effects(109) 

Transforming Growth 
Factor beta 1 (TGF-β1) 

Immune cells 
Pro-inflammatory 
effects(110) 
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1.2.6 Immune Dysfunction following Severe Thermal Injury 

Dysfunction of the immune system has been demonstrated in burned patients and is 

mediated by a ‘genomic storm’ that dysregulates both the innate and acquired 

immune system (83). The innate immune system responds instantaneously without 

programming or differentiation and consists of cells like neutrophils and monocytes. 

The acquired immune system needs activation and programming by cell-to-cell contact 

by antigen presenting cells such as dendritic cells and consists of T- and B- 

lymphocytes. The various roles and components of the innate and acquired immune 

system have been summarized in several comprehensive reviews (111). 

Severely burned patients exhibit significant dysfunction of neutrophils with 

simultaneous release of immature granulocytes, these immature cells may in part 

explain reduced neutrophil function after burn injury (112). Thermal injury results in 

immediate and persistent impairment in chemotaxis, phagocytosis and reactive oxygen 

species production (112, 113). Furthermore, burn injury induces significant changes in 

surface expression of adhesion molecules and chemokine receptors of neutrophils 

facilitating their recruitment to the burn site (114) and also to other organs such as the 

lungs, contributing to outcomes such as Acute Respiratory Distress Syndrome (ARDS). 

Moreover, cell-free DNA, a marker of neutrophil extracellular traps, are elevated 

during the acute phase of burn injury (112). Interestingly, neutrophil phagocytic 

capacity, immature granulocyte count and cell-free DNA levels in blood at day one 

post-thermal injury were predictive of subsequent sepsis development (112).  This 

indicates that burns induced significant alterations to neutrophil function resulting in 

increased susceptibility to infection and poorer outcomes. Alterations in the innate 



20 
 

immune system following severe thermal injury may also have long-term implications. 

Burned patients exhibited a subpopulation of peripheral blood mononuclear cells that 

potentially may modulate connective tissue cells, such as fibroblasts, by producing pro-

fibrotic cytokines and mediators (115). 

Severe thermal injury significantly reduces levels of circulating lymphocytes during the 

acute phase (116). This could be secondary to burn-induced dysregulation of 

lymphocyte apoptosis (117). Abnormal circulating lymphocyte levels in burned patients 

is associated with poor prognosis including increased risk of infections (118). 

1.2.7 Metabolic Response following Severe Thermal Injury 

Burn injury induces an exaggerated metabolic response that differs from other forms 

of trauma and critical illness in magnitude and persistence (119, 120). Significant 

metabolic disturbances following severe thermal injury are characterized by significant 

elevated metabolic rates, hyperdynamic circulation, disrupted temperature regulation 

and several biochemical/physiological alterations resulting in a severe catabolic state. 

This state is termed the hypermetabolic response. This hypermetabolic response is 

characterized by significant cardiac dysfunction, protein catabolism and lean body 

mass loss, hyperglycemia and substantial insulin resistance, as well disruption of lipid 

metabolism and fat composition (91, 121). This hypercatabolic state results in 

significantly increased metabolic rates with resting energy expenditure (REE) reaching 

180% of predicted values (122). Furthermore, hypermetabolic responses following 

injury correlate with patient age, burn mechanism and burn size (92, 123, 124). 

Metabolic rates of burned patients increases in a curvilinear fashion from being 
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approximately normal for TBSA <10% to double that of predicted values at ≥40% TBSA 

(125). Additionally, severely burned patients demonstrate significantly increased 

resting metabolic rates at 6, 12 and 24 months following injury (91, 94, 120). Such 

significant increases in catabolism can lead to poor outcomes including loss of lean 

body mass, decreased immune defenses, slower wound healing and mortality (120, 

126). The hypermetabolic response and associated outcomes are summarized in Figure 

1.6. 

 

 

Figure 1.6. The effects of metabolic dysfunction following severe thermal injury.  
Figure taken from Total Burn Care (5th Edition) (121). 
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Due to poor outcomes associated with the hypermetabolic response following severe 

thermal injury, research has been focused on dampening the response and addressing 

responsible mediators. One of which is the endocrine and stress response following 

thermal injury (94, 121). Current pharmacological agents used to dampen the 

hypermetabolic response following severe thermal injury is oxandrolone. Oxandrolone 

use in burned patients will be discussed in Chapter 3. 

1.2.8 Endocrine Response following Severe Thermal Injury 

The endocrine system is crucial in initiating and managing systemic responses 

following trauma (127). Major thermal injury induces an exaggerated sympathetic 

activation eliciting significant ‘flight or fight’ stress responses. In turn, this leads to 

major disturbances in multiple endocrine systems including the hypothalamic-

pituitary-adrenal (HPA) axis and gonadal hormones (128). Severely burned patients 

thus exhibit elevated serum levels of catecholamines and cortisol (91). Additionally, 

urinary catecholamines and cortisol levels in burned patients are increased, 5-8 fold, 

following injury (91). This surge in systemic levels of catecholamines and cortisol 

reflects the stress levels exhibited in burned patients, a phenotype that can persist for 

years following injury (94).  

Other hormones profiled following thermal injury include dehydroepiandrosterone 

(DHEA), dehydroepiandrosterone-sulfate (DHEAS), estrogen, progesterone, 

testosterone (91, 94, 129). Although the status of these hormones is affected in 

burned patients, the responses these hormones displayed are diverse. The status of 

other hormones have been investigated but not characterized longitudinally following 
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thermal injury including vitamin D and adipokines (130, 131). Furthermore, no studies 

have explored the effects and status of upstream metabolites of vitamin D, HPA and 

gonadal axes on outcomes following thermal injury. Moreover, no studies evaluated 

the kinetics of HPA and gonadal hormones, vitamin D hormones and adipokines 

immediately following thermal trauma and in the long term. By profiling the post-

thermal injury responses of various hormones longitudinally and analyzing associations 

with outcomes, potential clinical and therapeutic benefits may be identified and 

explored further to improve outcomes of burned patients. 

1.3 Current Knowledge Gaps  

The systemic response following thermal injury is similar to those observed in critical 

illness and trauma; however, the magnitude, persistence and severity of the post-burn 

response is significantly greater(132). This potentially also includes the endocrine 

response following severe thermal injury (71), though this is less well researched. 

Observations and reports investigating such responses in critically ill and trauma 

populations, burned or otherwise, could be of value. Such data may act as a guide for 

setting up studies or optimize analytical and experimental methodologies. Therefore, 

reviewing the literature reporting on endocrine responses following critical illness and 

trauma is valuable. This includes the HPA and gonadal axes, vitamin D metabolism 

pathway and adipokines. The endocrine responses of these hormones and their 

associations with outcomes in critically ill and trauma populations have been 

summarized and published (133-136) and are described in brief here.  
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1.4 Sex Steroid Hormones in Critical Illness and Trauma 

1.4.1 Gender Disparities on Outcomes Following Trauma 

Sepsis and subsequent MOF continue to be a major cause of morbidity and mortality in 

trauma patients (137). Gender differences for sepsis, MOF and mortality have been 

reported in the literature. In a study of 681,000 trauma patients, females 

demonstrated significantly lower complications and mortality rates compared to males 

(138). A recent meta-analysis of 100,566 male and 39,762 female trauma patients 

found male gender was associated with higher incidence of complications, lengthier 

hospital stay and increased mortality (139). In addition, male gender has been 

identified as a risk factor in the development of infection and MOF (140-142) and 

males suffer from significantly lower survival rates following sepsis when compared to 

females, 31% vs. 74% (143). This suggests that sex steroid hormones (SSH) may play a 

role in the maintenance of immune-inflammatory function in the trauma setting. This 

is further supported by the work of Haider et al who concluded that females aged 13-

64 exhibited significantly lower mortality outcomes following trauma-associated shock 

when compared to males, and that this difference was abolished in the extremes of 

age when the effects of sex hormones were either absent or diminished (144).  

Trentzsch et al, who performed a matched-pair analysis of 29,353 prospectively 

recorded trauma cases, concluded that males were more susceptible to MOF, sepsis 

and mortality (145).   

Female patients appear to benefit from better physiological reserves and thereby are 

more protected against the consequences of trauma and shock. A prospective clinical 

study reported that female trauma patients required less fluid resuscitation volumes 
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(12L vs 8L, p <0.05), less Starling curve intervention (42% vs 15%, p <0.05) to maintain 

oxygen delivery index and less inotrope and/or vasopressor support (36% vs 10%, p 

<0.05) compared with similarly injured male patients and a standardized management 

protocol(146). Another prospective clinical study involving more than 4,000 patients 

reported that premenopausal women exhibited lower serum lactate levels and 

required less blood transfusion despite having more severe injuries(147).   

However, the role of gender in modifying the response to trauma is still not clear cut, 

with multiple conflicting clinical reports in the literature. Rappold et al concluded that 

the female gender offered no protection from the development of acute respiratory 

distress syndrome, pneumonia or sepsis nor was it associated with decreased mortality 

rates post trauma (148). This finding was replicated by other studies which have 

demonstrated equivalent mortality rates in both genders following traumatic injury 

(149-151). Other studies have suggested that female gender is a risk factor in trauma 

patients and is associated with increased complication and mortality rates (152-154).  

These conflicting findings may be attributed to many factors such as study sample size, 

triage, treatment speed, management protocol etc.  

This apparent lack of agreement in the literature highlights the need for further studies 

in better controlled environments, comparing similar types of injury and taking age 

and gender into account in order to obtain more conclusive data. In addition, there 

remains a paucity of data on the mechanisms that may underlie gender differences in 

humans, with the majority of such research done in animal models of trauma. In this 

section, the potential impact of gender and SSH on different aspects of the response to 
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trauma are discussed, and it has been made clear where the data rely almost entirely 

on animal studies. 

1.4.2 The Effects of Sex Steroid Hormones on the Immune-Inflammatory Response 

following Trauma 

Various clinical and experimental studies have demonstrated that gender influences 

both humoral and cell-mediated immune responses and SSH receptors have been 

identified in multiple lymphoid tissues such as the bone marrow, spleen and thymus, 

as well as in different immune cells including lymphocytes, mast cells, granulocytes and 

macrophages (155). Trauma has been shown to lead to immune dysfunction which, in 

turn, is associated with increased susceptibility to sepsis, MOF and mortality (156-159).  

The processes driving immuneparesis after trauma are complex and include the 

cytokine storm elicited by tissue damage, which includes concomitant release of pro- 

and anti-inflammatory cytokines and the suppression of a variety of cell-mediated 

immune responses, which we have reviewed previously (160).  This immune 

suppression is mediated largely by the effects of cortisol released as a result of 

activation of the hypothalamic-pituitary-adrenal axis, but there is evidence that sex 

hormones represent an additional influence.    

Wichmann et al reported significant gender differences in B-lymphocyte, T-lymphocyte 

and natural killer (NK) cell counts following surgery despite comparable preoperative 

cell counts (161), with men showing reductions in cell numbers for up to 5 days. In 

addition, women exhibited a more pronounced pro-inflammatory response, with 

elevated circulating IL-6 levels, postoperatively (161). Conversely, other studies have 
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observed increased levels of IL-6, TNF-α and procalcitonin in male trauma patients 

compared to females (162, 163). What may be pertinent is the ratio of pro- to anti-

inflammatory cytokines and the chronicity of the response: a profound initial 

inflammatory response may favour prevention of infection, but if inflammation is not 

resolved promptly this can prevent wound healing and lead to organ damage. 

Experimental studies in animal models of trauma have shown the modulation of 

immune responses by sex hormones. Overall testosterone appears to have anti-

inflammatory and immune suppressive effects, promoting synthesis of anti-

inflammatory cytokines such as IL-10 by murine macrophages (164), reducing NK cell 

activity and the synthesis of pro-inflammatory cytokines, such as TNF-α, via the 

inhibition of nuclear factor kappa B (NFκB) (165, 166).  Testosterone has also been 

associated with decreased expression on macrophages and monocytes of toll-like 

receptor 4 (TLR4) which is involved in the activation of the innate immune system and 

production of inflammatory cytokines (167) by DAMPs.  

Progesterone also exerts an immunosuppressive effect by inhibiting the activation of 

NFκB and increasing the expression of suppressor of cytokine signalling protein 1 

(SOCS1)(168). In addition, progesterone reduces the activity of macrophages and NK 

cells, as well as the synthesis of antibodies by B cells (169-172). Elevated levels of 

progesterone during pregnancy have been associated with decreased development of 

pro-inflammatory helper T-cell type 1 (Th1) immune responses while promoting the 

immune responses of Th2 including the synthesis of anti-inflammatory cytokines such 

as IL-4, IL-5 and IL-10 (173). 
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In contrast, estradiol has typically been shown to enhance cell-mediated and humoral 

immune responses. It augments NK cell cytotoxicity, as well as stimulating the 

production of pro-inflammatory cytokines including IL-1β, IL-6 and TNFα (171, 174) and 

inhibits the synthesis of anti-inflammatory cytokines such as IL-10 (175). In addition, 

oestrogens have been shown to increase survival and prevent apoptosis of immune 

cells (176, 177). The balance of sex hormones in the circulation may thus be a key 

modulator of immune responses to trauma and tissue injury in humans. 

Several murine studies have shown depressed immune responses in males as well as 

oophorectomized and aged females following trauma, haemorrhage and sepsis (178, 

179). Interestingly, pre-treatment of female mice with 5-dihydrotestosterone (DHT) 

prior to trauma haemorrhage resulted in depressed macrophage function and reduced 

levels of cytokines comparable to that seen in males (180, 181). Moreover, castration 

and depletion of male sex hormones prior to trauma haemorrhage resulted in 

enhanced immune responses (182-184). In contrast, female sex hormones are 

associated with enhanced cell-mediated immune responses to trauma.  Elevated 

systemic levels of estradiol in proestrus female mice played a pivotal role in post 

trauma and haemorrhage immunocompetence (185). Furthermore, administration of 

17β-estradiol (E2) was associated with improved survival rates in animal models of 

sepsis (186). A single dose of estradiol following trauma-haemorrhage and 

resuscitation was shown to restore depressed immune responses (187).  

In animal studies, the effect of SSH on splenic immune response has been evaluated 

with studies demonstrating that E2 played a critical role in restoring splenic 
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macrophage and immune functions post injury by depressing pro-inflammatory 

cytokine production (185, 188).  Furthermore, Knoferl et al reported that splenocyte 

proliferation and the release of IL-2, IL-3 and IFN-γ were suppressed in 

oophorectomised females following trauma-haemorrhage to levels comparable to 

those observed in males(185). Moreover, castration prior to injury attenuated the 

depression of major histocompatibility complex (MHC) II (Ia) expression in mice, 

thereby improving cell-mediated immunity (189). Oestrogen enhances splenic 

macrophage (TNF-α and IL-6) and T-lymphocyte (IL-2 and IL-6) cytokine secretion 

following trauma (190-192). In addition, E2 and ER-α agonist, prevented the apoptosis 

of splenic dendritic cells and attenuated the depression of splenic dendritic cell 

cytokine production, co-stimulating factors and MHC II expression as well as antigen 

presentation capacities (193). These effects of E2 on splenic function appear to be 

predominantly mediated via ER-α (192, 193). This protective role of female sex 

hormones is associated with significantly increased survival rates in animal models 

(185). 

Clinical studies investigating the effect of SSH on the immune-inflammatory cascade 

following trauma are more limited. Male patients of virtually all age groups have been 

reported to have higher incidence of sepsis following trauma and haemorrhagic shock 

suggesting the immune-suppressive effect of testosterone (194). In addition, Zolin et al 

reported that early elevations and increasing levels of testosterone over the initial 24 

hour period after injury were associated with an exaggerated inflammatory response 

and significantly increased risk of nosocomial infections and MOF. Interestingly, high 

circulating levels of estradiol at 24 hours were associated with a four-fold greater risk 
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of developing MOF (195). Another study observed negative correlations between 

estradiol levels and TNFα on day 1 and day 2 following trauma.  However no significant 

relationships were identified between SSH levels and IL-6, IL-8 or leukocyte counts 

(196). Moreover, Lopez et al concluded that while there is sexual dimorphism in the 

leukocyte genomic response following severe injury that are associated with more 

severe and prolonged organ failure, these differences were not in sex-linked genes or 

linked to differences in systemic levels of cytokines and therefore do not translate into 

sex-specific organ dysfunction or 28 day in hospital mortality (197). 

The overall picture in relation to the impact of gender onthe immune-inflammatory 

response to trauma and potential impact on outcomes such as sepsis, is one of a 

protective immune enhancing role of oestrogens and a contrasting immune 

suppressive effect of androgens. However, most data are derived from animal studies 

with very few studies in humans and there is thus a need for clinical research and RCTs 

to determine benefits of SSH in maintaining immune competence after trauma. 

1.4.3 Potential Clinical and Therapeutic Value of Sex Steroid Hormones  

1.4.3.1 Anabolic Androgenic Steroids  

Oxandrolone is an anabolic androgenic steroid (AAS) that is derived from testosterone 

and has a high anabolic:androgenic ratio (10:1)(198). Oxandrolone has been shown to 

improve prognosis of various catabolic conditions including severe burns and 

trauma(199). It is the only AAS approved by the FDA for weight restitution following 

extensive surgery and severe trauma. 
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To date, there has been one multicenter prospective randomized double-blind trial 

investigating the effects of oxandrolone in adult patients with severe burns. The 

authors reported significantly shorter lengths of inhospital stay in the oxandrolone 

group compared to placebo and this difference was strengthened when deaths were 

excluded and hospital stay indexed to burn size(200).  A recent meta-analysis of 15 

randomized controlled trials reported that oxandrolone use was associated with 

shorter inhospital length of stay by 3 days, donor site healing time reduced by 4.4 days, 

time between surgical procedures reduced by 0.7 days, as well as reduced weight loss 

by 5kg and nitrogen loss 8.19g/day. Moreover oxandrolone use in the rehabilitation 

phase was associated with reduced weight loss by 0.86kg/week and lean body mass by 

5% as well as gaining 3.99% and 10.78% lean body mass following severe thermal 

injury by 6 and 12 months respectively(201). Interestingly, oxandrolone and 

propranolol (β-blocker used in burns for its anti-catabolic effects) attenuated burn-

induced growth arrest in pediatric patients following thermal injury by shortening its 

duration by 84 days and increased growth rate by 1.7 cm per year(202). The use of 

oxandrolone in pediatric burn patients up to 2 years is associated with greater 

improvements in bone mineral content, bone mineral density and height velocity(203). 

1.4.3.2 DHEA/DHEAS  

DHEA, a major steroid hormone circulating in plasma, is produced in response to stress 

and is an intermediate that can be metabolised to both testosterone and oestrogen. It 

has been reported to exhibit pre-dominantly oestrogenic effects in the male 

androgenic milieu (204). In view of the immuno-enhancing properties of oestrogen, 

studies have investigated the effect of DHEA in animal models of trauma-haemorrhage 
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and sepsis. Angele et al demonstrated that administration of DHEA attenuated 

depression of splenic and peritoneal macrophage function post-injury and improved 

mortality rates from subsequent sepsis in a rodent model (205). Furthermore, DHEA, 

post trauma-haemorrhage, restored splenocyte functions by directly stimulating T-cell 

functions and preventing increases in serum corticosterone (206). Interestingly, DHEA 

has been shown to antagonize the immunosuppressive effects of glucocorticoids such 

as dexamethasone on lymphocyte proliferation (207) and the sulphated form of DHEA, 

DHEAS, has been shown to potentiate neutrophil function via direct activation of 

neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and 

reactive oxygen species (ROS) generation (208).   

There are no human trials of DHEA intervention in trauma and this androgenic 

hormone has mainly been used in trials for Addisons Disease and some chronic 

inflammatory conditions including Rheumatoid Arthritis. As the HPA axis is disrupted 

after trauma we suggest that supplementation with DHEA may offer a novel, safe and 

inexpensive route in improving a range of outcomes after injury.  

1.4.3.3 Androgen Receptor Antagonists  

Several animal studies have indicated that testosterone depletion exerts numerous 

beneficial effects prior to any systemic insult.   Administration of flutamide following 

trauma-haemorrhage and resuscitation normalised depressed splenic and peritoneal 

macrophage cytokine release (209). Angele et al showed that flutamide administration 

for three consecutive days not only restored diminished immuno-inflammatory 

responses but also decreased mortality rates associated with subsequent septic 
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challenge (210). Lin et al evaluated the use of flutamide in animal models of 

heatstroke, reporting that flutamide attenuated hypothermia, decreased the number 

of apoptotic cells within the hypothalamus, spleen, liver and kidney, diminished the 

plasma index of toxic oxidized radicals such as nitric oxide metabolites, attenuated 

systemic inflammatory responses including TNF-α and IL-6 release and reduced the 

infiltration of neutrophils into the lungs. All of which contributed to significantly 

improved mortality rates (211). Furthermore, flutamide is frequently used in the 

clinical management of testicular cancer over prolonged periods without major 

adverse effects. Therefore, short-term use can be considered safe and feasible. Again, 

there are currently no human studies investigating administration of androgen 

antagonists following trauma or burn injury. 

1.5 Vitamin D in Critical Illness and Trauma 

1.5.1 Vitamin D and Acute Clinical Care 

Vitamin D insufficiency and deficiency is common in the general population (212), and 

can be present at up to 76% in critically ill patients (213). This is concerning as vitamin 

D is increasingly recognized for its wide ranging biological effects, including modulation 

of bone metabolism and muscle mass, enhancing immune function and cardiovascular 

effects (214, 215). Despite these roles, the clinical implications of hypovitaminosis D 

remains partially understood and therefore often overlooked in acute clinical contexts 

including burns and trauma. The literature investigating vitamin D deficiency and its 

consequences in adult burn patients is limited. Following thermal injury, patients are at 

prone to develop low vitamin D levels, the impact on short and long-term outcomes of 

which are relatively unknown. 
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1.5.2 Biological Effects of Vitamin D 

Classically, Vitamin D is associated with musculoskeletal health by maintaining calcium 

homeostasis and bone mineralization, decreasing the risk of muscle weakness, 

osteopenia, osteoporosis and fractures (215, 216). Vitamin D exerts most of its 

physiological effects via 1,25(OH)2D which when bound to its cognate nuclear Vitamin 

D receptor (VDR) is able to act as a transcription factor in concert with its retinoid x 

receptor heterodimer partner (217, 218).  Gene expression analysis of 53 different 

tissues from over 500 human donors has shown VDR gene expression in more than half 

of samples including adipose tissue, adrenal glands, bladder, colon, fibroblasts, kidney, 

liver, lung, lymphocytes, pituitary glands, skin (219, 220). Accordingly, vitamin D 

actions are not limited to the skeletal system. The effects of vitamin D on various cell 

types and tissues are summarised in Table 1.2. 

Of relevance to this thesis, vitamin D has a broad range of beneficial effects on the 

immune system (221). An association between the adaptive immune system and 

vitamin D status was initially observed when VDR levels were shown to be enhanced in 

activated T- and B-cells (222). In VDR-expressing T-cells, 1,25(OH)2D promotes a 

tolerogenic immune response by favoring Th2 and Treg cell differentiation over the 

more inflammatory Th1 and Th17 cells, thereby limiting deleterious inflammatory 

activity (223-227). Other immune-modulatory effects of vitamin D include differential 

modulation of the response of the innate immune system (monocytes, macrophages 

and dendritic cells)(228) with upregulation of anti-microbial peptides such as 

cathelicidin and β-Defensin 2  from various cells including human keratinocytes and 

intestinal epithelial cells (229, 230); enhancing autophagy of intracellular 
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microbes(231) and regulation of antigen-presentation in dendritic cells, monocytes and 

macrophages to facilitate a non-exaggerated immune response(232). Crucially, 

antigen-presenting cells from the innate immune system express the vitamin D-

activating enzyme CYP27B1, and are therefore able to metabolise 25(OH)D in a tissue-

specific fashion (233). This ‘intracrine’ mode of 25(OH)D metabolism appears to be the 

principal mechanism by which vitamin D is able to regulate T-cell function (234), and 

provides a mechanism by which vitamin D-deficiency (low serum 25(OH)D) can 

influence immune function.    The various effects of vitamin D upon the immune 

response are summarised in Table 1.2. 

Vitamin D Binding Protein (VDBP) and albumin are the main transporters of 

vitamin D. However, sterol-binding capacity is not the only attribute of VDBP and 

albumin. Multiple roles of VDBP have been described including actin scavenging, 

binding of fatty acids and endotoxins, modulation of immune and innate immune 

responses, as well as the influence on bone metabolism via VDBP-macrophage 

activating factor(235). Albumin has been reported to exert antioxidant, immune-

modulatory and anti-inflammatory effects, as well as antibiotic transportation and 

endothelial stabilization(236, 237). 
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Table 1.2. Effects of Vitamin D on various human cell types and tissues 
Target Cells / 

Tissues 
Effects of Vitamin D Reference 

Adipocytes • Inhibits intracellular fat accumulation 

• Enhances basal lipolysis without cell toxicity 

• Upregulation of β-oxidation-related genes, lipolytic 
enzymes and vitamin D responsive genes 

• Increased levels of nicotinamide adenine dinucleotide 
and sirtulin 1 expression 

(238) 

Cardiomyocytes • Inhibition of cell proliferation without apoptosis 

• Downregulation of expression of genes associated with 
cell cycle regulation 

• Promotes cardiomyotube formation 

• Induces cardiac differentiation 

(239, 240) 

Hepatocytes • Protects against insulin resistance 

• Downregulates fibrogenic TGF-β signaling 

• Anti-inflammatory effects by inhibiting  monocyte 
activation, TNF-α and IL-1 expression 

(241-243) 

Myocytes • Modulation of calcium homeostasis and influx 

• Induces cellular proliferation and differentiation 

• Protects against insulin resistance 

• Stimulation of arachidonic acid mobilization 

(244, 245) 

Nephrocytes • Upregulation of cellular metabolic activity, IL-6 and 
reactive oxygen species  

• Restoration of transepithelial barrier function 

(246) 

Neurons • Neuroactive steroid modulating spontaneous regular 
firing, actin potential duration and intrinsic excitability 

• Enhances sensitivity to neurotransmitters and 
neurotransmitter receptors 

• Upregulation of neuronal growth factors, nerutrophin 3 
and glial cell line-derived neurotrophic factor 

(247, 248) 

T Cells • Inhibits Th1/Th17 chemokine/cytokine secretion (CXCL-
10, IFN-γ, TNF-α and IL-17)  

• Enhances Th2 cytokine release (IL-4 and IL-5) 

(249),(226) 
 

B Cells • Downregulates the proliferation of memory B cells 

• Inhibits plasma cell differentiation 

• Reduces Ig production 

(250) 

Antigen 
Presenting Cells 

• Inhibits the expression of class II MHC molecules (HLA-
DR) 

• Inhibition of co-stimulating molecules expression (CD80, 
CD83 and CD86) 

• Augments chemotaxis and phagocytosis of monocytes  

• Downregulates the maturation of dendritic cells 

• Induces tolerogenic dendritic cells capable of inducing 
Treg cells / Inhibits IL-12 p70 release 

• Decreases macrophage-stimulated pro-inflammatory 
cytokine production (IL-1, IL-1β, IL-6, IL-8, MCP-1 and 
RANTES) 

(251), 
(252),(253), 
(254) 

Macrophages • Attenuates M1 Macrophages pro-inflammatory response 

• Promotes M2 Macrophage response 

(256, 257) 

NK cells • Inhibition NK cell development and differentiation 

• Reduced INF-γ and cytotoxicity 

(255) 
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1.5.3 Vitamin D Status in Critically Ill and Trauma Patients 

Considering the pleotropic effects of vitamin D, its role in the severely ill has been a 

subject of growing interest.  Thousands of patients are admitted to intensive care units 

(ICU) each year (258), and up to 77% of critically ill patients have vitamin D deficiency 

(213, 259-262).  Alizadeh et al reported that 74% of critically ill surgical patients 

exhibited vitamin D deficiency (263). Similarly,  Dickerson et al reported that 76% of 

critically ill patients following traumatic injury were vitamin D deficient or severely 

deficient(213). In such contexts, it is important to recognize patient demographic 

factors that may be associated with vitamin D deficiency including age, ethnic group 

(skin pigmentation), obesity, medical history (such as malabsorption/chronic 

pathologies and liver/renal disease), season, latitude and time of day(215). However, it 

is also vital to comprehend that vitamin D-deficiency may itself be a consequence of 

illness. 

Low serum 25(OH)D levels, has shown a significant association with the magnitude of 

the critical illness and SIRS (262, 264, 265). The well-documented immunomodulatory 

effects of 1,25(OH)2D suggest that vitamin D deficiency may be a causative factor for 

critical illness and resulting morbidity and mortality.  The observed vitamin D 

deficiency in critically ill and trauma maybe due to diminished epidermal vitamin D 

production secondary to limited sunlight exposure and malnutrition, as well as 

enhanced conversion of 25(OH)D to active 1,25(OH)2D to meet increased tissue 

demand, notably to promote 1,25(OH)2D-mediated immunoregulatory effects (266). 

Finally, critical illness, notably in the setting of inflammation, may promote enhanced 

catabolism of 25(OH)D and 1,25(OH)2D to downstream metabolites via the enzyme 24-
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hydroxylase (CYP24A1) (267). Interpretation of circulating vitamin D levels in critical 

illness is further complicated by the fact that critically ill patients usually require major 

fluid resuscitation resulting in low levels of 25(OH)D and 1,25(OH)2D secondary to 

acute fluid shifts and haemodilution(268). Vitamin D concentration in critically ill 

patients post-resuscitation may take, at least, a few days to recover(268). Secondly, 

VDBP and albumin levels fall, as part of the systemic inflammatory response, reducing 

plasma levels of 25(OH)D significantly (269-271). This appears to be the case in the 

acute phase of the response to injury. Furthermore, disruption of the vitamin D axis in 

ICU patients can be attributed to hepatic, parathyroid and renal dysfunction, as well as 

reduced end organ resistance (272). 

Clinical studies have associated low levels of circulating vitamin D with various poor 

outcomes in critically ill patients including sepsis (273, 274), organ failure (275, 276), 

short and long term mortality (259, 273, 275, 277, 278). Similar findings have also been 

reported among both critically ill surgical or trauma patients. For example, low vitamin 

D levels correlated with higher infection rates, length of stay, duration of organ 

dysfunction, ICU readmission, surgical intensive care treatment costs and mortality 

(279-282). However such associations are not universal, other observational studies 

have reported no association between vitamin D deficiency, sepsis and mortality (283, 

284), as well as other ICU outcomes such as duration of ventilation and length of stay 

(285). Despite this, several meta-analysis studies have concluded that vitamin D 

deficiency is associated with significantly increased susceptibility to infections and 

sepsis, as well as greater incidence of mortality in critically ill patients (286-288). 
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1.5.4 Therapeutic Value of Vitamin D in Critically Ill Patients 

Vitamin D3 supplementation maybe associated with decreased mortality in the general 

population (289). In addition, vitamin D status has been associated with adverse 

outcomes in the critically ill. Despite this, there are only a few clinical studies that have 

evaluated vitamin D supplementation in critically ill patients. In 2014, Amrein et al 

conducted the largest randomized controlled trial (RCT) to date investigating the 

influence of a high dose bolus enteral vitamin D3 supplementation on outcomes of 475 

critically ill medical and surgical adult patients with vitamin D deficiency (≤20 ng/mL), 

the VITdAL-ICU trial (290). The authors concluded that high-dose vitamin D3 did not 

reduce hospital length of stay, hospital mortality or 6-month mortality (290). However, 

they observed lower hospital mortality following subgroup analysis of patients with 

severe vitamin D deficiency (≤12 ng/mL) at baseline (290). A systematic review and 

meta-analysis of 7 RCTs (716 patients) concluded that vitamin D administration was 

associated with decreased mortality in critically ill patients without serious adverse 

events (291). Interestingly, another recent meta-analysis of 6 RCTs (695 patients) 

reported no improvement on outcomes in critically ill patients supplemented with 

vitamin D (292). The difference between these two studies is related to inclusion and 

exclusion of various trials in the analysis. Other potentially important confounders in 

both studies are the inclusion of trials investigating cholecalciferol (vitamin D) and 

calcitriol (1,25(OH)2D) using various dosing regimens that were administered through 

different routes (enteral and intravenous). Furthermore, the VITdAL-ICU trial has a 

larger cohort than all the other RCTs combined and therefore has major influence in 

the statistical analysis. These trials are summarized in Table 1.3. 
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Table 1.3. Summary of clinical trials investigating vitamin D supplementation in critically ill 
patients 
 

Trial 
Settings & 
Cohort Size 

Intervention Regimen Outcome Adverse Events 

Amrein 
2011 
(293) 

Single 
Center ICU  

25 

Oral - Single dose 
cholecalciferol 

540,000 IU 

No difference in clinical 
outcome or mortailty 

None 

Amrein  
2014 
(290) 

Single 
Center ICU 

475 

Oral - Single dose 
cholecaciferol 540,000 

IU followed by 
monthly 90,000 IU for 

5 months 

Significant lower 
hospital mortality in 

severe vitamin D 
deficient patients only. 

At month 6, 11% of 
vit D group 

developed total 
calcium levels of 

>10.6mg/dL 

Leaf 
2014 
(294) 

Multicenter 
ICU patients 
with severe 
sepsis and 

septic shock 
67 

IV - Single dose 
calcitriol 2µg 

No influence on clinical 
outcome, mixed effects 

on inflammatory 
markers 

None 

Quraishi 
2015 
(295) 

Single 
center ICU 

patients 
with severe 
sepsis and 

septic shock 
30 

Oral - Single dose 
cholecalciferol 

200,000 IU or 400,000 
IU 

Associated with 
increased cathelicidin 

levels, no effect on CRP 
None 

Nair 
2015 
(296) 

Single 
center ICU 

patients 
with SIRS 

50 

Oral - Single dose 
cholecalciferol 

150.000 IU or 300.000 
IU 

Increased levels of 
cathelicidin and 

reduction in interleukin 
6 

None 

Han 
2016 
(297) 

Multicenter 
ventilated 

ICU patients 
30 

Oral - Daily doses 
cholecalciferol 50,000 
IU or 100,000 IU for 5 

days 

Hospital length of stay 
significantly decreased 

None 

Alizadeh 
2016 
(298) 

Single 
center 

Surgical ICU 
patients 

59 

IM - Single dose 
cholecalciferol 

600,000 IU 

Adiponectin significantly 
elevated. 

Not reported 

Han 
2017 
(299) 

Multi center 
ventilated 

ICU patients 
30 

Oral - Daily doses 
cholecalciferol 50,000 
IU or 100,000 IU for 5 

days 

Increased systemic 
mRNA expression of 

human cationic 
antimicrobial protein. 

No effect on circulating 
cathelicidin and human 

β-defensin. 

None 
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1.6 Adipokines in Critical Illness and Trauma 

1.6.1 Obesity and Adipose Tissue in Critical Illness 

Obesity is a complex multifactorial condition that affects over a third of the world’s 

population (300). With increasing prevalence of overweight and obese individuals 

(301, 302), obesity is being described as a global pandemic (303) as obesity greatly 

impacts the individual’s health status and quality of life(304, 305) being a major risk 

factor for various pathologies including cancer, cardiovascular disease, diabetes and 

osteoarthritis (306).  

In this context a recent and intriguing observation is that all-cause mortality is 

reported to be significantly lower in overweight and some obese patients (307). This 

phenomenon, where outcomes are paradoxically better in overweight and obese 

patients compared to normal weight individuals, is described as the ‘obesity paradox’ 

and is the subject of increasing interest in scientific and medical communities (308-

311). The underlying mechanisms behind this phenomenon remain poorly understood 

and this is particularly the case in critically ill populations where the data on the 

obesity paradox are limited. 

Adipose tissue is one of the largest organs in the human body. Importantly, it is no 

longer deemed an inert tissue that serves the roles of thermal/mechanical insulation 

protecting internal organs from external stimuli (such as cold and shock) or as an 

energy storage modality. Since the discovery in 1994 of leptin, an adipokine or 

adipose-derived hormone capable of controlling body energy balance (312), adipose 

tissue is now recognised as endocrine organ able to influence metabolism and 
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inflammatory status. As a result extensive research has been carried out investigating 

potential roles of adipokines in various clinical conditions including autoimmune and 

inflammatory disorders and connective tissue diseases (313), metabolic disorders (314, 

315), cardiovascular and neurovascular diseases (316), and cancer (317, 318). 

Despite increasing interest in adipose tissues’ role in clinical pathologies, its role in the 

context of critical illness including burns and trauma remains to be fully elucidated. 

With thousands of critically ill patients admitted to intensive care units every year 

(258) some interesting observations have been made. Patients requiring prolonged 

critical care were reported to lose lean body mass while adipose tissue mass remained 

preserved or even increased (319, 320). Furthermore, although morbid obesity (BMI ≥ 

40 kg/m2) is an independent risk factor for mortality in critically ill patients (321), 

improved survival rates were observed among overweight (BMI 25-30 kg/m2) and 

obese (BMI 30-40 kg/m2) patients compared to normal BMI patients during critical 

illness (321-324). These paradoxical findings have stimulated research in to the 

interplay between critical illness and adipose tissue and their influence on patient 

outcomes. Moreover, the profound inflammatory and metabolic response to burn and 

trauma related critical illness suggest a potential involvement for adipose tissue and 

adipokines. 
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1.6.2 Biological Effects of Adipokines 

There are approximately 600 identified hormones secreted by adipose tissue (325), 

providing a rich source of potential novel biomarkers  and therapeutic targets for the 

management of various pathologies. In this thesis, the focus will be on Adiponectin, 

Ghrelin, Leptin, Resistin and Visfatin as the best characterised adipokines.  

Adiponectin is released exclusively from white adipose tissue(326), and is the most 

abundant adipose-specific adipokine, with expression in subcutaneous fat being 

greater than visceral fat (327). Adiponectin has anti-inflammatory effects (328). 

Ghrelin is an orexigenic hormone that is an endogenous ligand to growth hormone and 

was initially thought to be produced mainly by the stomach (329), but has 

subsequently been identified in other tissues including adipose tissue (330). Ghrelin 

signaling is associated with adiposity, changes in fat distribution and mobilisation, 

independent of growth hormone and dietary intake(331, 332). Leptin is primarily 

secreted by subcutaneous white adipose tissue, the amount of leptin secreted into the 

circulation is proportional to adipose tissue mass and nutritional status(328). Leptin 

exhibits structural similarities to cytokines (333) and is pro-inflammatory (334). 

Resistin is also a pro-inflammatory adipokine expressed by adipocytes and other 

tissues including skeletal muscle (335, 336). Visfatin, also called pre-B-cell colony 

enhancing factor, is primarily secreted by adipocytes in visceral white adipose tissue 

and exhibits pro-inflammatory effects (337).  

Relevant to this thesis, adipokines have been reported to influence skin and adipose 

tissue. Adiponectin and ghrelin have been observed to exert anti-inflammatory and 



44 
 

anti-fibrotic effects on skin (338-340) and were reported to enhance wound healing 

rates (341, 342). Similarly, leptin has been observed to enhance human epidermal 

keratinocyte and epithelial cell proliferation, differentiation and migration, as well as 

promote angiogenesis within dermal connective tissues (343). However, leptin was 

also found to be overexpressed in hypertrophic and keloid scars (344). This could be 

due to increased pro-inflammatory cytokine release associated with leptin, as seen in 

inflammatory skin conditions (345). Visfatin has been reported to enhance chemokine 

and antimicrobial peptide production in human keratinocytes (346, 347), as well as 

exhibit anti-fibrotic properties(348). 

Adiponectin and leptin have been reported to induce browning of adipose tissue (349, 

350) and adiponectin promotes adipogenesis as well as increasing lipid accumulation 

and insulin responsiveness of adipocytes (351). In contrast, leptin inhibits insulin-

dependent glucose uptake and lipogenesis and reverses insulin-induced lipolysis (352). 

Ghrelin stimulates adipogenesis and glucose uptake, as well as inhibiting lipolysis, 

apoptosis and autophagy of adipocytes (353, 354). Resistin and visfatin enhance pro-

inflammatory cytokine expression in adipose tissue including TNF-α and IL-6 (355, 356). 

Similarly, resistin and visfatin induce insulin resistance in adipocytes (356, 357). The 

influence of these adipokines is not limited to skin and adipose tissue. The beneficial 

and detrimental effects of these adipokines on various cell types and tissues are 

summarized in Figure 1.7.  and in recent detailed reviews (316, 358-365). 
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Figure 1.7. Effects of adipokines on various tissues and organs 

 

1.6.3 Adipokines in Critical Illness 

Several studies have demonstrated acute reductions in circulating adiponectin levels in 

critical illness (131, 366-371). In addition, an inverse association was reported between 

serum adiponectin levels and severity of illness as measured by C-Reactive Protein 

(CRP), Simplified Acute Physiology Score (SAPS) II and Sequential Organ Failure 

Assessment (SOFA) scores (367, 368, 371). Similar findings were observed in patients 

with acute pancreatitis, where adiponectin levels in the blood were negatively 

associated with severity of disease and incidence of tissue necrosis (369). Furthermore, 
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adiponectin levels progressively increase with patient recovery (367, 370). Although 

the above findings indicate that decreased serum adiponectin levels may lead to poor 

outcomes, other research has reported different findings. Circulating adiponectin 

levels in severely ill patients did not correlate with inflammatory markers including IL -

6, IL-10 and TNF-α (131, 372, 373) and clinical scores including Acute Physiologic 

Assessment and Chronic Health Evaluation (APACHE) II score and SOFA (372, 374, 375). 

Furthermore, higher blood adiponectin levels were associated with increased risk of 

mortality during critical illness(376-379). 

Only two studies have investigated circulating ghrelin levels in critical illness. Wade et 

al reported significantly reduced ghrelin levels in severely burned patients correlating 

with metabolic/caloric needs.  No other associations with other parameters such as 

injury severity and inflammatory status were observed (131). Santacruz et al also 

observed significantly reduced plasma ghrelin levels in critically ill patients but saw no 

correlations with feeding status (380). 

Leptin levels in the blood have been reported to be elevated in critical illness (381-

384). Furthermore, leptin was positively associated with pro-inflammatory status of 

severely ill patients, as measured by CRP, IL-6, soluble tumour necrosis factor receptor-

1 and TNF-α (382, 384-387). Additionally, other studies have reported that serum-

soluble leptin receptor (SLR) in patients correlated with inflammatory response and 

illness severity as measured by IL-6, lactate, procalcitonin and APACHE II score (388, 

389). Interestingly, elevated levels of leptin were observed in survivors of acute sepsis 

(381), while increased soluble leptin receptor (SLR) levels in critically ill patients were 
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associated with increased mortality (388). However, other studies have reported 

different findings. Blood leptin levels in severely ill patients were similar or reduced 

compared to healthy volunteers (131, 370, 371, 385, 388, 390) and no associations 

were found between circulating leptin levels and inflammatory status, illness severity, 

or mortality in critical illness (370, 371, 383, 385, 387, 388, 390).  These contradictory 

reports could be owing the complex condition mediated properties of leptin, as well as 

difference in patient demographic, pathologies of critical illness and management 

given. 

In contrast to the heterogeneity of results reported on the impact of adiponectin, 

ghrelin and leptin on critical illness outcomes, the influence of resistin and visfatin on 

outcomes of severely ill patients is consistent in the literature. Critically ill patients 

exhibit significantly elevated circulating levels of resistin (131, 371, 374, 375, 387, 391-

396) and visfatin (387, 397-403). Additionally, both resistin and visfatin significantly 

correlated with pro-inflammatory responses (including CRP, IL-6, IL-8  and TNF-α), and 

worse clinical severity scores (including APACHE II, Glasgow Coma score, multiple 

organ dysfunction score, SAPS II and SOFA)(131, 371, 374, 375, 387, 391-395, 397-403). 

Furthermore, high resistin and visfatin levels in blood were associated with poor 

outcomes including mortality (392, 393, 398-402). 

A systematic review examining the evidence for adipokines having an influence on 

critical care patients has been published recently (404). It concludes that although 

strong observations were reported indicating the influence of adipokines on the 

prognosis of critical illness, additional larger studies that incorporate more diverse 
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cohorts (such as age, gender, BMI, ethnic groups and different pathologies) is required 

to better understand the relationship between adipokines and critical illness. This is 

essential in order to validate the potential clinical value and utility of adipokines as 

diagnostic and/or prognostic biomarkers, as well their potential as therapeutic targets 

in critical illness including burn and trauma. Furthermore, studies to date have 

investigated the association of adipokines with critical illness in the acute setting only. 

This focus on the acute setting has further limited the translation of adipokines in 

clinical settings. Importantly, since medical care advancements have improved survival 

rates after critical trauma (405-407), greater emphasis is now placed on the  

prevention and treatment of potentially debilitating long-term sequelae experienced 

by survivors of severe illness including chronic critical illness (408-410), prolonged 

pathophysiological responses(94) and scarring (411).  

1.7 Conclusions 

The endocrine response following critical illness have demonstrated promising clinical 

value. Data investigating the HPA, HPG, vitamin D and adipokine status in critically ill 

populations are limited. This is especially true in burns patients where published 

studies investigating the endocrine response and influence on outcomes following 

severe thermal injury are scarce. Exploring the endocrine response following in 

severely burned patients may lead to the identification of novel biomarkers and 

treatments. Ultimately, this can significantly improve the short-term and long-term 

prognosis of burns patients. 
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1.8 Thesis Hypothesis 

We hypothesize that major burn injury results in significant endocrine disturbances 

affecting HPA, HPG, vitamin D and adipokine responses and that the status of these 

hormones post-injury is associated with outcomes including sepsis, MOF, mortality, 

wound healing and scarring. We hypothesize that supplementation of adiponectin, 

DHEA, testosterone and vitamin D may improve outcomes. 

1.9 Thesis Aims  

The aims of this thesis were to: 

• Determine the status of the adrenal and gonadal axes, vitamin D axis and 

adipokine levels in severely burned patients; 

• Characterize these endocrine responses longitudinally from day 1 following 

severe thermal injury till month 12 post-injury; 

• Explore associations between the longitudinal endocrine response and clinical 

outcomes in burned patients including mortality, MOF, sepsis, wound healing 

and scarring; 

• Identify any potential clinical or systemic biomarker that may improve 

prognosis of burned patients or identify novel therapeutic targets via statistical 

modeling; 

• Investigate the effects of pharmacological agents, corticosteroids and 

oxandrolone, on the endocrine response and outcomes following severe 

thermal injury. 
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2.1 Scientific Investigation of Biological Pathways following Thermal Injury Study 

(SIFTI) 

The Scientific Investigation of biological pathways Following Thermal Injury in Adults 

and Children (SIFTI) is a UK multi-centre prospective observational cohort study 

(UKCRN ID: 13654 / IRAS ID: 2003666). The aim of the study is to characterise and 

profile the immune, inflammatory, coagulation, endocrine and metabolic response in 

burned adult, elderly and paediatric patients. Participating burn centres include the 

Queen Elizabeth Hospital Birmingham (QEHB), Birmingham Children’s Hospital, Saint 

Andrews Hospital, Chelmsford, UK and Queen Victoria Hospital, East Grinstead, UK. 

This is the first observational study of 150 patients following thermal injury involving 

multiple burn centres to be conducted in Europe. The reports in this thesis investigates 

only a subset of patients with ≥20% TBSA  recruited in this study. This sub-study is 

called endocrine-SIFTI (e-SIFTI). 

Ethical Approval for the SIFTI study was granted by the National Research Ethics 

Service Committee East Midlands, UK (Reference 12/EM/0432). 

2.1.1 Study Cohort 

Fifty-two burn patients admitted in the QEHB burn centre from January 2013 till 

October 2015 were recruited into the study. The inclusion and exclusion criteria of the 

e-SIFTI study are summarised in Table 2.1. Eligible patients were recruited into the 

study following written informed consent. When patients initially lacked capacity to 

consent secondary to injury severity, enrolment into the study was achieved through a 
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legal consultee, either personal or nominated, until they regained capacity to consent 

themselves.  

 

Inclusion Criteria Exclusion Criteria 

Arrival to burn centre within 24 

hours of injury 

Deep electrical or chemical burn 

injury 

Adult/Elderly (16-99 years) burn 

patients (≥20% TBSA) 

Associated multiple injuries with 

injury severity score (ISS) >25 

Adult/Elderly patients with full 

thickness burns (>1% TBSA) 

Decision not to treat 

 Congestive cardiac failure (ejection 

fraction <20%) 

 Active malignancy 

 History of prolonged glucocorticoid 

therapy 

 Multiple limb amputations (>1) 

Table 2.1. Inclusion and exclusion criteria for e-SIFTI study.  

 

All recruited burn patients were managed according standardised QEHB burn care 

guidelines on review. This includes fluid resuscitation using intravenous crystalloid 

infusion, Hartmann’s solution, as guided by Parkland’s formula (4ml/kg/%TBSA burn) 

for the first 24 hours, invasive monitoring of arterial blood pressure and central venous 
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pressure. Resuscitation endpoints include urine output of 0.3-0.5mLs/kg/hr and mean 

arterial pressure of >60mmHg. In the presence of persistent hypotension and/or 

oliguria despite adequate intravenous crystalloid infusion, 5% human albumin solution 

was given as boluses. Further cardiovascular support is achieved through 

pharmacological means involving inotropes, such as noradrenaline, when required. 

Other organ support measures used when clinically needed include mechanical 

ventilation and haemodialysis. Early enteral nutrition was started in all patients 

according to a standard formula, as well as glutamine and trace elements 

supplementations through enteral and intravenous means respectively. Other 

pharmacological interventions include the use of oxandrolone by burn surgeons and 

intensivists for its anabolic effects (200, 412), as well as systemic steroids by 

intensivists for shock control as per surviving sepsis campaign guidelines (413, 414). 

All burn wounds were debrided as per local guidelines with 24 hours of admission. 

Patients requiring burn excision underwent surgery within 72 hours of admission. 

Coverage of resulting wounds was decided by burns consultant performing the surgical 

procedure and typically involves the use of split thickness autografts, cadaveric 

allografts, porcine xenografts and skin substitutes either alone or in-combination. 

Patients with full thickness burns who were medically unfit for surgical intervention 

were initially treated with daily application of topical silver sulfadiazine/cerium nitrate. 

This is to achieve a dry adherent eschar till the patient is optimised for excisional 

surgery. 
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Ten healthy volunteers were recruited as the control cohort to allow comparison. At 

the time of enrolment, all control participants were in good health and without 

significant co-morbidity. In addition, all participants were not on any medication 

known to influence their immune or endocrine status and had not had an acute 

infection in the preceding 2 weeks. 

2.1.2 Blood Sampling 

Blood samples of burned patients were acquired at specific timepoints; day 1 (within 

24h post-injury), day 3 (±1 day), day 7 (±1 days), day 14 (±3 days), day 21 (±3 days), 

month 2 (±3 days), month 3 (±7 days), month 6 (±7 days) and month 12 (±7 days) as 

illustrated in Figure 2.1. Blood samples were collected into BD vacutainers® (Becton 

Dickinson, Oxford, UK) containing 1/10 volume of 3.2% trisodium citrate, EDTA, lithium 

heparin or z-serum clotting activator. Patients who died or were lost to follow-up were 

included in the analysis.  

 

 

Figure 2.1. Timeline of blood sampling in e-SIFTI study.  

Abbreviations: D (Day), M (Month). 
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One-off blood samples were collected from healthy study participants. Samples from 

healthy volunteers and burns patients (excluding day 1) were taken in the mornings 

between 0800 – 1000 hours. 

2.1.3 Preparation of Serum 

Blood samples collected in BD vacutainers® containing z-serum clotting activator were 

allowed to clot for 30 minutes at room temperature prior to processing. The samples 

were then centrifuged at 1500xg for 10 mins at room temperature. The top two-thirds 

of the serum was carefully removed and stored at -80°C in aliquots prior to analysis. 

2.1.4 Measurement of Immune Function, Cytokines and Hormones 

Quantification of immune function was performed by Dr. Peter Hampson, Dr. Jon 

Hazeldine and Dr. Robert Dinsdale. Immune functions assessed in this study include 

neutrophil extracellular trap generation (NETs), phagocytosis and production of 

reactive oxygen species (ROS) by neutrophils and monocytes. Quantification of 

immune function in healthy volunteers and burned patients was performed using 

commercially available kits for ROS generation in response to E.coli (Phagoburst, BD 

Pharmingen, UK) and phagocytosis of FITC-conjugated E.coli (Phagotest, BD 

Pharmingen, UK) with quantification by flow cytometry. This methodology has been 

published in detail previously (112). 

Methodologies used to quantify steroid hormones, vitamin D and adipokines are 

described in chapters 3, 4 and 5 respectively. Quantification of cytokines and other 

hormones was performed Dr. Jon Hazeldine, Dr. Robert Dinsdale and Khaled Altarrah. 

This panel included: IL-1Ra, GCSF, IL-6, IL-8, IL-10, IL-12p70, IL-17, MCP-1, TNF-α, IGF-1, 
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IL-1β and TGF-β1. These cytokines in healthy volunteers and burned patients were 

measured using commercially available kits (Bio-Rad, Hertfordshire, UK and RnD 

Systems™, Oxfordshire, UK) using enzyme-linked immunosorbent assay ELISA or 

multiplex technology. Processing and quantifications of cytokines and other analytes 

were done as per manufacturer’s instructions.  

2.1.5 Data Collection 

Data including patient demographics, burn injury characteristics, daily physiological 

status and clinical outcomes were prospectively recorded using case-report forms 

(CRF). Recorded outcomes used in this thesis include sepsis, MOF, wound healing, 28-

day mortality and in-hospital mortality.  

2.1.6 Definitions of Clinical Outcomes 

Sepsis in burn patients was defined using the American Burn Association criteria 

agreed in 2007(415). Sepsis was diagnosed when at least 3 trigger criteria were met 

along with positive microbiological culture or when clinical response to antimicrobials 

was observed. The trigger criteria include: Temperature >39°C or <36.5°C, progressive 

tachycardia >110 beats per minute, progressive tachypnoea >25 breaths per minute or 

minute ventilation >12 L/min, presence of thrombocytopenia (platelet count 

<100,000/mcl), hyperglycaemia (Untreated plasma glucose >200 mg/dl or intravenous 

insulin >7 units/hr IV or  significant resistance to insulin - >25% increase in insulin 

requirements over 24 h) and poor tolerance to enteral feedings >24 h (abdominal 

distension, enteral feeding intolerance [2x feeding rate], uncontrollable diarrhoea 

>2500 ml/day) (112). 
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MOF was defined using the Denver2 score as published in 1996 (416). A diagnosis of 

MOF following injury was made when a score >3 was established on two consecutive 

days involving at least two organ systems. This scoring system is summarised in Table 

2.2. Denver2 scoring has demonstrated better specificity for outcomes associated with 

post-traumatic MOF compared to other scoring systems (417-419). This method has 

been validated for use following trauma (420), and  its use in burn patients has been 

published (112, 421). 

Organ dysfunction was quantified using components of the SOFA scoring system as 

described (422, 423). SOFA score evaluates the extent and rate of failure of 6 different 

organs and systems. These include respiratory, cardiovascular, hepatic, coagulation, 

renal and neurological systems. The SOFA scoring system is summarised in Table 2.3. 

Global SOFA scores have demonstrated reduced specificity, compared to Denver2 

scores, in predicting outcomes following trauma (417, 419). Despite this, its individual 

components were reliable in describing organ dysfunction and predicting outcomes in 

critically ill/trauma patients (424-426). 

Wound healing is the total duration of time taken in days for wounds to be considered 

95% healed as per daily clinical review by a consultant burn surgeon. Mortality is 

analysed as two entities and is defined as non-survivors following thermal injury within 

28 days of injury or during hospital admission accordingly. Patient characteristics and 

study process are summarised in Supplementary Table 1 and Supplementary Figure 1 

respectively. 
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Organ 

Dysfunction 

Score 

Respiratory 

Dysfunction 

(ARDS Score) 

Renal 

Dysfunction 

(Creatinine - 

mg/dL) 

Liver 

Dysfunction 

(Bilirubin – 

mg/dL) 

Cardiac 

Dysfunction 

(Inotrope Use) 

1 >5 >1.8 >2 Minimal* 

2 >9 >2.5 >4 Moderate** 

3 >13 >5 >8 High*** 

Table 2.2. Components of Denver2 Scoring System for MOF 

Global score of all components of Denver2 is used to diagnose MOF (dysfunction 
should not related to chronic disease). ARDS score is a global score based on chest x-
ray findings, PaO2:FiO2 ratio, minute ventilation, positive end-expiratory pressure 
and static compliance(416). Liver dysfunction should not be secondary to biliary 
obstruction or resolving hematoma. Cardiac dysfunction is defined as cardiac index 
<3L/min/M2 requiring dopamine or dobutamine support. * <5µg/kg/min, ** 5-15 
µg/kg/min, ***>15 µg/kg/min. 
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System Dysfunction 0 1 2 3 4 

PaO2:FiO2 ratio 

(mmHg) 

≥400 <400 <300 <200 with 

mechanical 

ventilation 

<100 with 

mechanical 

ventilation 

Glasgow Coma 

Scale 

15 13-14 10-12 6-9 <6 

Vascular 

Pressure/Support 

MAP 

≥70mmHg 

MAP 

<70mmHg 

Minimal 

Inotropes* 

Moderate 

Inotropes** 

High 

inotropes*** 

Bilirubin (mg/dL) <1.2 1.2-1.9 2.0-5.9 6.0-11.9 >12.0 

Platelets (x103/µL) ≥150 <150 <100 <50 <20 

Creatinine (mg/dL)  

or Urine output 

(mL/24hrs) 

<1.2 1.2-1.9 2.0-3.4 3.5-4.9  

or <500 

>5.0 

 or <200 

Table 2.3. Components of SOFA scoring system for organ dysfunction 

SOFA scores each organ and body systems. This is done on daily basis using the worst 
physiological values over 24 hours. Higher scores indicate poorer prognosis. * 
dopamine ≤ 5 µg/kg/min or dobutamine, ** dopamine > 5 µg/kg/min OR epinephrine ≤ 
0.1 µg/kg/min OR norepinephrine ≤ 0.1 µg/kg/min, *** dopamine > 15 µg/kg/min OR 
epinephrine > 0.1 µg/kg/min OR norepinephrine > 0.1 µg/kg/min. 
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2.2 Birmingham Objective Scar Scale Study 

The Birmingham Objective Scare Scale (BOSS) is a UK single centre prospective, non-

blinded single-arm observational study (IRAS ID: 181543). The study utilises 3 

independent assessors and aims to measure the intra and inter-rater reliability of 

different objective scar measurement tools in terms of reproducibility. Furthermore, 

this study aimed to create a global objective scar scale to be used in burn patients by 

combining the scores of various scar measurement tools used. This study was 

conducted in the Wellcome Trust Clinical Research Facility at QEHB.  

Ethical Approval for the BOSS study was granted by the South Birmingham National 

Research Ethics Service Committee West Midlands, UK (Reference 15/WM/0378). 

Details regarding recruitment, procedures and ethics were provided by Dr. Kwang 

Chear Lee as he was an investigator in this study and was a member of the assessment 

team that evaluated the scars (K C Lee, PhD thesis, University of Birmingham 2019).  

Only scar measurements performed in BOSS were analysed in this thesis.  

2.2.1 Study Cohort 

A total of 23 e-SIFTI participants were invited to undergo scar assessments. A summary 

of inclusion and exclusion criteria is listed in Table 2.4. Eligible participants were 

recruited into this study following written informed consent. Eleven e-SIFTI 

participants were enrolled and had their scars assessed at an average of 18 months 

following the date of 95% wound healing. 
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Inclusion Criteria Exclusion Criteria 

Age >18 years History of pathological skin conditions 

Presence of hypertrophic scar Chronic steroid use 

Scar age ≥6 months (calculated from 

date of 95% wound healed) 

Presence of scars only in facial and/or 

perineal regions 

History of skin grafting during burn 

treatment 

 

Burn wound with documented delayed 

healing (>2 weeks) 

 

Scar size ≥10cm2  

Table 2.4. Inclusion and exclusion criteria for scarring measurements in e-SIFTI 

cohort. 

 

2.2.2 Scar Assessment 

A snapshot scar assessment was done to each participant. A single site with the worse 

scarring as regarded by both the burn patient and assessors was chosen as the area for 

investigation. Furthermore, one site of normal skin with similar anatomical qualities 

(contralateral or adjacent anatomical site) was also chosen as controls to allow for 

comparison and analysis of objective scar measures (Figure 2.2).  Within the chosen 

sites, a 3x3 cm area was demarcated. A 1cm circle within this region in scar and normal 

skin sites was then selected and marked using a stencil and marker in each participant 

for evaluation using a variety of scar measures. Evaluation of chosen sites was 
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conducted during the same day by three appropriately trained individuals of different 

clinical backgrounds including a clinician, nurse and therapist. Assessment of these 

chosen sites involved the use of subjective and objective scar measurement tools. 

 

 

Figure 2.2. Overview of scar assessment pathway. 

 

Burn patients whose scars were actively treated with pressure garments or topical 

medications, such as silicone gels or moisturisers, were asked to remove them prior to 

their appointments by at least 20 minutes. Both scar and normal sites were examined 

in the same temperature-controlled room (22±1ᵒC) with the patient lying in the same 

position for each consecutive assessment. Furthermore, the temperature and humidity 

of the room was measured and monitored throughout the process. 

2.2.3 Subjective Scar Measurement Tools 

Two published subjective scar measurement tools were used in this study to assess the 

scar site, the modified Vancouver scar scale (mVSS) (427) and the patient and observer 

scar assessment scale (POSAS) (428). The mVSS utilises a numerical score of four scar 

features including height, pliability, vascularity and pigmentation as shown in Table 
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2.5. The assessors assign a numerical score for each of these characteristics upon 

evaluation of the chosen scar site. 

 

Score Pliability Height Vascularity Pigmentation 

0 Normal Flat Normal Normal 

1 Supple <2mm Pink Hypopigmentation 

2 Yielding 2-5mm Red Mixed 

3 Firm >5mm Purple Hyperpigmentation 

4 Ropes    

5 Contracture/Adherent    

Table 2.5. Parameters of mVSS. 

 

The POSAS tool comprises of two subjective scar scales as evaluated by both the 

patient and assessor. Both scales consist of 6 scar characteristics that are scored 

numerically on a scale from 1-10 as compared to normal skin. The patient segment of 

the POSAS examines the following scar features; pain, itch, colour, stiffness, thickness 

and irregularity. While the observer portion of the POSAS assesses scar vascularity, 

pigmentation, thickness, relief, pliability and surface area. Furthermore, an overall 

score in each scale is given to the scar site as judged by the patient (OPSS) and 

assessor/observer (OOSS) respectively. 
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Figure 2.3. Parameters of POSAS patient and observer scales.  

Figure taken from www.posas.org(391). 
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2.2.4 Objective Scar Measurement Devices 

The different features of scars were objectively measured by an appropriate 

corresponding device. Measurement of scar and normal skin thickness was done using 

Dermascan® C USB (Cortex Technology ApS, Denmark).  Scar and normal skin pliability 

were assessed using Cutometer® MPA 580 (Courage and Khazaka GmbH, Germany). 

Scar and normal skin pigmentation were examined using DSM II Colorimeter® (Cortex 

Technology ApS, Denmark). The use of such devices in the assessment of burn scars 

has been published in a recent systematic review by Lee KC et al (429). 

The Dermascan® C USB is a high frequency (20MHz) ultrasound scanner that comes 

with a dedicated software (Advance Control 6 Analysis SW Package, Cortex) and 

provides high resolution images of soft tissue with automated skin thickness 

measurement. A thin layer of conducting ultrasound gel was applied to the probe 

which was held perpendicular to the examined site. This provides and records an 

echographic image of the assessed site. All measurements were carried out with the 

ultrasound frequency set at 1580m/s, using a medium focus transducer with a 12mm 

wide viewing field and 15mm depth penetration. All scans were set at Mode 4 and a 

gain profile of 13. All images were analysed in B-Mode. This mode provides a two-

dimensional pixelated image of varying intensities representing the amplitude of 

reflected signal and its use in burn scar assessment has been published (430). Normal 

skin appears highly echogenic as it is composed of dense connective tissue and 

collagen, while scar tissue is hypoechoic due to increased water content possibly 

secondary to aberrant proteoglycan metabolism (431). The recorded thickness of scar 
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and normal skin is the distance (mm) measured between the stratum corneum and the 

inner surface of the dermis. 

 

 

Figure 2.4. Dermascan® C USB images of normal skin and scar tissue.  

A) Ultrasound image of normal skin. B) Ultrasound image of scar tissue. C) Ultrasound 
image of normal skin and adjacent scar tissue. Figure taken from “A systematic review 
of objective burn scar measurements” by Lee KC et al (429). 

 

The Cutometer® MPA 580 is an instrument that assesses skin elasticity by measuring 

the amount of skin displacement within the probe’s hollow aperture via an optical 

system. This is achieved by placing the probe over the examined area and creating an 

air-tight seal. Negative pressure is then generated pulling the skin or scar into the 

aperture. All measurements were carried out using mode 1 sequence of “on/off” 
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pressure cycle. This involves the delivery of 3 cycles of negative pressure (500mbar) for 

2 seconds followed by no pressure for a further 2 seconds. In addition, a 6mm 

diameter hollow aperture probe was used for all assessments in this study as this 

probe size was reported to be most efficient in measuring the dermis’ viscoelastic 

properties (427, 432). This method of scar evaluation in burn patients has been 

published (427). Reported parameters in this study are R0 and R2. R0 is defined as the 

maximum deformation (extension) of skin or scar. R2 is defined as the final retraction 

to maximum deformation ratio of examined area. 

The DSM II Colorimeter® is a handheld device that examines skin and scar’s level of 

erythema and pigmentation. The device utilises 2 colour technologies, narrow-band 

spectrophotometry and tristimulus reflectance colorimetry, in a single measurement. 

This instrument consists of a probe with a transparent dome housing 2 white LED lights 

and colour sensor. All measurements were taken by gently placing the probe 

perpendicular to the examined site, to avoid blanching of skin or scar, to ensure 

accuracy of readings.  The use of this device in the assessment of burn scars has been 

published (433). The following parameters were then recorded: Erythema, Melanin 

(pigmentation), L* (paleness/lightness/brightness), a* (redness/erythema) and b* 

(blueness/pigmentation). 

2.2.5 Data Collection 

Patient demographics, location normal skin and scar sites, subjective and objective 

scar measures and patient satisfaction were documented in CRFs. Recorded subjective 
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and objective scar measures of participants previously enrolled in the SIFTI study only 

are used in this thesis. 

2.3 Statistical Analysis  

As the number of patients with severe burn injury (≥20% TBSA burn) recruited was 

small, the timepoints investigated were combined to reflect post-injury stages clinically 

and statistically. This process is illustrated in Supplementary Figure 2. The clustered 

timepoints were allocated to the following groups: D01, D03-D07, D14-D28 and M02-

M12. This potentially increases the generalisability and eases clinical interpretation of 

the data, as well as minimises attrition effects over time. Furthermore, grouping of 

timepoints allows more robust modelling and analysis due to increased numbers in 

groups (434). 

All statistical analyses were done using Prism® version 7 (GraphPad Software Inc., 

California, USA) and IBM SPSS® Statistics version 25 (IBM Corp, New York, USA). All 

data were checked for normality using the Shapiro-Wilk test. Normally distributed data 

are reported as mean and standard deviation (SD), while non-normal data are 

presented as median and inter-quartile range (IQR). When comparing with healthy 

controls, one-way ANOVA followed by Bonferroni’s post hoc test was performed when 

data were normally distributed. When the data distribution was non-normal, Kruskal-

Wallis test followed by Dunn’s multiple comparison test was performed. Continuous 

variables were compared using independent t or Mann-Whitney tests depending on 

normality of data. Categorical variables were assessed using Chi-Square test. 

Spearman’s rank or Pearson’s correlation co-efficient was used to determine 
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correlations between continuous variables such as analyte levels and clinical outcome 

dependant on data normality. Linear and binary logistic regression were utilised to 

allow multivariate analysis depending on outcome (categorical or continuous). 

Multivariate regression analysis was performed to account for variables that may 

influence outcomes and estimate treatment effects. Both uni-analyte and multi-

analyte regression models were performed.  Multi-variate cox regression analysis was 

performed to assess survival or hazard distributions of outcomes and estimate 

treatment effects in burns patients accounting for confounding variables. Area under 

the Curve (AUC)/Receiver Operating Characteristics (ROC) curve analysis was 

performed to assess predictive strength of studied biomarkers and/or statistical 

regression models found significant in categorical clinical outcomes including sepsis, 

MOF and mortality. 

Heatmap data visualization and qualitative analysis was performed by Dr. Animesh 

Acharjee. The mean of each feature (including cytokines, immune function, injury 

severity and hormones) across different timepoints is shown in figures.  Each feature 

was standardised by subtracting the mean of each feature and dividing by their 

respective standard deviation. This was done to allow comparison of all features 

included in this qualitative analysis. The distance between each feature was measured 

using a hierarchical clustering method. Data visualisation was performed using ggplot2 

library in R version 3.6.0 (The R Foundation for Statistical Computing, Vienna, Austria). 

In instances where burn patients received treatments of interest such as 

hydrocortisone, a propensity score matching (PSM) analysis was performed using 
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above software packages and extension bundle Propensity Sore Matching version 3.0.4  

for IBM SPSS® Statistics version 25 (IBM Corp, New York, USA), Python version 3.4 for 

IBM SPSS® Statistics version 25 (IBM Corp, New York, USA) and R version 3.3.1 (The R 

Foundation for Statistical Computing, Vienna, Austria). Propensity scores were 

calculated via logistic regression analysis of timepoints and variables of interest 

including patient demographics, injury characteristics and haemodynamic status. This 

was done to balance the differences in co-variates between the treated and non-

treated groups. The matching ratio was set at 1:1 using nearest neighbour matching 

algorithm with replacement. The maximum caliper distance was at 0.2. As the model 

allows replacement, multiple controls may match with cases if the propensity scores 

were within the caliper distance. This matching method was used to minimise bias 

(435-437). Analysis following PSM, was performed as described earlier.  

Data are represented as bar charts, box-and-whisker plots or line graphs unless 

otherwise stated. Box and whisker plots utilised the Tukey method with the whiskers 

calculated as 1.5 times the inter-quartile range added or subtracted from 75th or 25th 

percentile respectively. Any value outside this calculated range is designated as an 

outlier and charted accordingly. Bar charts and line graphs are plotted as mean values 

with error bars representing the standard error of the mean. Statistical significance is 

set at p < 0.05 unless otherwise stated. 
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3.1 Introduction 

The HPA and HPG axes are a cascade of processes resulting in steroidogenesis from 

cholesterol. The processes and pathways involved in steroidogenesis are outlined in 

Figure 3.1. Burn injury and other forms of physical trauma have been reported to 

affect HPA and HPG axes (129, 438). Despite this, clinical studies investigating the 

outcomes associated with disturbances in steroidogenic processes following trauma 

and thermal injury remain limited. The current understanding of the influence of 

steroid hormones on outcomes following injury and potential mechanisms behind such 

observations was previously summarised in chapter 1 and in a recent review(133). 

There is growing evidence that steroids, including sex steroid hormones, are major 

determinants of prognosis following burn injury. An 11-year review of data in the UK 

Greater Manchester region reported that the largest proportion of burn-related deaths 

(24.8%) was among older individuals (≥75 years in age) and that the relative risk of 

mortality was approximately 1.5x higher in males (439). An analysis of the 

international burn injury database for England and Wales (2003-2011) concurred that 

patients aged 65 years or over suffered longer in-hospital length of stay, as well as the 

highest mortality rates among all other age groups, 19.24%. Interestingly in this 

analysis mortality was generally higher in females than males over the eight-year 

period (1.86 % vs. 1.32%) and in each individual year examined (440). This was further 

supported by Moore et al who showed that risk of death in women admitted to 

intensive care post-thermal injury was double when compared with males, OR 2.35 

(441). Gender dimorphism in burn injury thus appears to be the opposite to other 

forms of injury. This is further supported by Summers et al who concluded female 
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gender is associated with poorer outcomes following severe thermal injury(442). A 

systematic review of literature published from 1965 till 2012 identified the female 

gender as a risk factor for hypertrophic scarring in patients who survived their burn 

injury(443). 

Due to the limited number of clinical studies investigating gender dimorphism on 

outcomes following thermal injury, animal studies offer insight into potential 

mechanisms that may explain these epidemiological findings. Anathakrishnan et al 

described similar responses in rats following burn injury (40% TBSA) and trauma-

haemorrhage, in which both acute lung and intestinal injury were potentiated by 

oophorectomy and prevented by castration (178). Wigginton et al stated that a single 

intravenous dose of E2 reduced burn injury severity through regulation of the immuno-

inflammatory cascade, as well as its anti-oxidant and anti-apoptotic properties (444) 

and other studies reported estradiol administration, following severe thermal injury, 

attenuated body mass loss associated with the hypermetabolic response (445).  

Gregory et al suggested that gender dimorphism relating to immune function following 

severe thermal injury was mediated by oestrogen and its impact on IL-6 production. 

This study reported that while intact females, at day 10 post-burn, exhibited three 

times higher levels of plasma IL-6,  they also demonstrated suppression of splenocyte 

proliferation and delayed type hypersensitivity reactions (446). In contrast, Gatson et 

al found administration of E2 after thermal injury attenuated both brain inflammation 

and apoptotic signalling by down-regulating TNF-α, IL-1β and IL-6 levels within brain 

tissue (447). Increasing concentrations of estradiol, through castration or treatments 

with E2 or anti-androgens, post-burn was also associated with reduced remote organ 



74 
 

inflammation (448). The data concerning the involvement of oestrogens in regulating 

the response to burn injury remains mixed and is dominated by studies in animal 

models, with few studies involving human patients. Comparisons of burn injury 

outcomes in pre- and post-menopausal women, or those on HRT would be beneficial, 

albeit difficult, in this respect. 

Steroids exert various physiological effects on different organ systems. While the use 

of anabolic steroids in major burn jury is well-established (201), the therapeutic use of 

other forms of steroids such as corticosteroids remains controversial and the benefits 

are unclear (449, 450). In such circumstances, the literature relating trauma and non-

trauma critical illness is referred to by clinicians to guide their clinical practice. This, 

potentially, may not be beneficial to all patients due to unique and extensive 

differential pathological responses involved following major thermal injury influenced 

by factors such as patient sex and age(133).   

In order to address gaps in our understanding of the steroid response to burn injury 

and associations with clinical outcomes, an observational cohort study, SIFTI, was set 

up to characterise the steroid response in the serum of burned patients from 

admission to 12 months post-injury (see chapter 2).  

In addition to this extensive kinetic profiling of the endocrine response to burn injury, 

the study also addressed the lack of a detailed analysis of steroid metabolism after 

burn injury.  Technological advances, notably the use of liquid 

chromatography/tandem mass-spectrometry (LC-MS/MS) analysis has allowed 

detailed analysis of systemic steroid status in a variety of conditions(451-453). 
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Therefore, high performance LC-MS/MS was applied to the serum samples. 

Additionally, this study investigated any potential associations with short-term and 

long outcomes, as well as identifying any potential clinical value relating to steroid 

status post-burn injury. Finally, the use of current steroid-based therapies and their 

influence on outcomes in patients admitted to a tertiary burn centre was also 

evaluated. 

We hypothesize that major burn injury results in significantly affects the HPA/G axis. 

HPA/G hormonal disturbances post-injury are associated with outcomes including 

sepsis, MOF, mortality, wound healing and scarring. We hypothesize that 

supplementation of DHEA and testosterone may improve outcomes. 

The aims of this thesis include determining the status of the adrenal and gonadal axes 

in severely burned patients; characterising these HPA/G axis longitudinally from day 1 

following severe thermal injury till month 12 post-injury; exploring associations 

between the longitudinal HPA/G response and clinical outcomes in burned patients 

including mortality, MOF, sepsis, wound healing and scarring and identify any potential 

biomarkers that may improve prognosis of burned patients or identify novel 

therapeutic targets. Furthermore, we investigate the effects of corticosteroids and 

oxandrolone on the HPA/G response and outcomes following severe thermal injury. 
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Figure 3.1. Overview of the steroidogenesis process.  
Underlined analytes were analysed in this thesis. 
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3.2 Methods 

The general methodology of the studies described here, including ethical approval and 

statistical analysis, are described in Chapter 2. In this chapter, quantification of steroid 

hormones and DHEAS was performed by Khaled Altarrah in a GCP validated lab in the 

IMSR, Birmingham University Medical School. Raw data acquired from LC-MS/MS 

analysis was quantified using Waters TargetLynx™ Application Manager (Waters Ltd, 

Elstree, UK) quantitative software by Dr. Angela Taylor. Overall data analysis was 

performed by Khaled Altarrah. 

3.2.1 Measurement of Serum Steroid Hormone and DHEAS 

All serum steroids were assessed using liquid chromatography/tandem mass-

spectrometry (LC/MS-MS). Cortisol, cortisone, 11-deoxycortisol and corticosterone 

were extracted from 200-400µL of serum using a double liquid-liquid extraction 

consisting of 2x1mL of tert-butyl-methyl-ether (MTBE). Following evaporation of the 

MTBE layer to dryness, the samples were then reconstituted in methanol/water 

(50/50%) and analysed as previously described (454). Samples were then re-dried and 

derivatised to form oximes by employing 100 μL derivatization mixture (0.16 g 

hydroxylamine in 8 mL pyridine). Following this, testosterone, androstenedione and 

DHEA were measured as previously described (455, 456). DHEAS were measured from 

20µL serum following protein precipitation using 20µL ZnSO4, 0.1mM and 100µL 

acetonitrile. The acetonitrile fraction was removed and evaporated to dryness before 

reconstitution in methanol/water 50/50 and analysis by LC-MS/MS using a Waters 

Xevo TQ-S mass spectrometer (Waters, Manchester, UK)(457, 458). 
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All samples were analysed using a Waters Xevo mass spectrometer with Acquity uPLC 

(Waters Ltd, Elstree, UK). DHEAS analysis was carried out in negative mode, whereas 

other steroids and steroid-oxime analysis was performed in positive mode. All steroids 

were separated using an optimised gradient system consisting of H20 with 0.1% formic 

acid (FA) and methanol with 0.1% FA. All analytes were quantified relative to a linear 

calibration series with appropriate internal standards. Each steroid was measured 

relative to its deuterated analogue with the exception of androstenedione and 

cortisone which were quantified to testosterone-d3 and cortisol-d4 respectively. Each 

steroid was identified by matching retention times and two mass transitions in 

comparison to a reference compound. Precision data for each steroid assay has been 

previously described (415, 459-461). 

3.3 Results 

3.3.1 Patient Demographics 

Fifty-two burn patients admitted to QEHB and 14 healthy volunteers were enrolled 

into this study. Owing to limited samples, only 46 burn patients had their serum 

analysed for HPA/G hormones. The process is summarised in Supplementary Figure 3. 

The baseline characteristics including age and gender were similar between healthy 

volunteers and burn patients. Median burn size was 42% TBSA and median revised 

BAUX score was 98. Burn patients underwent fluid resuscitation for the first 24 hours 

post-injury receiving a median of 18.6L of intravenous fluids (IVF) equating to a median 

of 5.53 mls/kg/%TBSA. Haemodilution effects of fluid resuscitation were measured 

using haematocrit (HCT). The median time for the first sample taken from burn 
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patients following injury was 7 hours (±6 hours SEM). HCT levels were similar between 

burn patients at day 1 post-injury and healthy volunteers.  Twenty-two patients were 

given intravenous glucocorticoids to address treatment refractory shock, starting at 

median day 3 post-injury for median total duration of 5 days. Thirty-four burn patients 

were given oxandrolone to manage the post-burn hypermetabolic response, starting at 

median day 5 following injury for a median total duration of 19 days. 

Burn patients at day 1 following injury had significantly elevated levels of cortisol 

(p=0.011), 11-deoxycortisol (p=0.003), corticosterone (p=0.007), androstenedione 

(p=0.001) and DHEA (p=0.033) compared to healthy volunteers. Cortisone levels were 

significantly lower in burn patients (p=0.01).  Testosterone and DHEAS levels did not 

differ between burn patients and healthy volunteers. These findings are summarised in 

Table 3.1. 

3.3.2 Patient outcomes 

All burn patients recruited into the e-SIFTI study are included in this analysis, including 

non-survivors and participants lost to follow-up.  From a total of 46 burn patients who 

had their serum analysed, 19% died at or before 28 days following injury and 35% died 

during their admission episode. Thirty-five percent of burn patients were diagnosed 

with MOF at median day 3 (min-max 2-11) post-injury. Seventy percent of burn 

patients developed sepsis at median day 5 (min-max 3-14) following injury. Other 

parameters including Time to 95% heal, as well as subjective and objective scar 

measures are summarised in Table 3.2. Scar measures were performed at an average 

of 18 months following the date of 95% wound healing. 
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 Healthy Controls n Burns Patients  n p-value 

Age 38 (31 - 70) 14 41 (33 – 55) 46 0.8 

Gender (M/F) 8/6 14 30/16 46 0.753 

% Total Burn Surface Area - - 42 (25 – 53.5) 46 - 

Revised Baux Score - - 98 (79-111) 46 - 

Hematocrit 0.399 (0.371-0.415) 12 0.429 (0.374-0.468) 31 0.127 

Cortisol(nmol/L) 201.7 (166.7 – 223.9) 14 548.5 (172 – 673) 46 0.011 

Cortisone (nmol/L) 52.8 (47.9 – 63.6) 14 36.4 (28.4 – 51.5) 46 0.01 

11-Deoxycortisol (nmol/L) 0.9 (0.9 - 1.4) 14 2.85 (1.4 – 6.0) 46 0.003 

Corticosterone (nmol/L) 0.4 (0.4 – 3.7) 14 13.55 (1.8 – 34.7) 46 0.007 

Androstenedione (nmol/L) 1.65 (1.4 – 2.2) 14 3.9 (2.4 – 6.4) 46 0.001 

Testosterone (nmol/L) 3.2 (1.3 – 9.1) 14 2.45 (1.4 – 4.5) 46 0.506 

DHEA (nmol/L) 1.9 (1.9 – 16.2) 14 15.6 (3.7 – 34.5) 46 0.033 

DHEAS (µmol/L) 3.2 (1.14 – 5.61) 14 2.1 (1.5 – 4.35) 46 0.507 

Table 3.1.Demographics and serum analyte levels in healthy volunteers and burns patients 
at day 1 post injury.  

Continuous variables are shown as median values with inter-quartile range. Burn patients 
and healthy volunteers were compared using Mann-Whitney test for continuous variables 
and Chi-squared test for categorical variables. Significant relationships are highlighted in 
bold. 
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Outcomes Measure n Details 

28D Survivor (Y/N) 9/37 46 Mortality at 28 days 

Survivor (Y/N) 16/30 46 Mortality in hospital 

MOF (Y/N) 16/30 46 DENVER score >3 for 48 hrs 

Sepsis (Y/N) 32/14 46 ABA Sepsis Trigger Criteria ≥3 

Time to 95% Heal (Days) 35 (18-59) 23 Higher number worse outcome 

mVSS Total Score 6.67 (6-7) 11 Higher number worse outcome 

Overall Observer Scar Score (POSAS) 4.67 (4-6) 11 Higher number worse outcome 

Overall Patient Scar Score (POSAS) 8 (3-10) 11 Higher number worse outcome 

Ultrasound Scar Thickness 1.7 (1.35-2.48) 11 Higher number worse outcome 

Ultrasound Scar Intensity 0.45 (0.24-0.54) 11 Higher number worse outcome 

Cutometer Scar Pliability R2 0.97 (0.93-1.17) 11 Lower number worse outcome 

Cutometer Scar Pliability R0 0.56 (0.4-0.69) 11 Higher number worse outcome 

DSM Colorimeter - Erythema Scale 1.27 (1.07-1.77) 11 Higher number worse outcome 

DSM Colorimeter - Melanin Scale 1.21 (1.04-1.32) 11 Higher number worse outcome 

DSM Colorimeter - L Scale 0.81 (0.72-0.86) 11 Subjective – scar paleness 

DSM Colorimeter - a Scale 1.18 (1.02-1.43) 11 Higher number worse outcome 

DSM Colorimeter - b Scale 0.79 (0.48-0.97) 11 Higher number worse outcome 

Table 3.2. Summary of patient outcomes following injury.  

Continuous variables are shown as median values with inter-quartile range.  
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3.3.3 Longitudinal Steroid Response Following Thermal injury 

Cortisol, corticosterone, androstenedione and DHEA were all significantly elevated in 

burn patients at day 1 following injury (Table 3.1). Cortisol levels remained significantly 

elevated for the first month following thermal injury compared to healthy volunteers, 

median 353.7 nmol/L vs. 201.7 nmol/L (p = 0.001). In contrast cortisone levels in burn 

patients remained significantly reduced till day 28 post-injury compared to healthy 

controls, median 35.0 nmol/L vs. 52.8 nmol/L (p <0.001), this suggests an activation of 

the 11βHSD1 pathway generating cortisol from cortisone. Interestingly, cortisone 

levels remained low despite a 5-day course of intravenous glucocorticoids being 

started for 63% of patients at timepoint D03-D07. The significant elevation of systemic 

cortisol and simultaneous reduction of cortisone demonstrate the prolonged pro-

inflammatory state of patients following severe thermal injury, which may be the 

cause of any elevation as this enzyme is activated by inflammatory cytokines(462). 

Testosterone levels in burn patients were significantly reduced at D03-D07 compared 

to healthy volunteers, median 1.3 nmol/L vs 3.2 nmol/L (p=0.027). This timepoint 

matches the median start day of oxandrolone supplementation at day 5. Testosterone 

began to increase and return to healthy volunteer levels thereafter. DHEAS levels in 

blood started to decrease following severe thermal injury becoming significant at week 

2-4 post-injury compared to healthy controls, median 1.5 µmol/L vs. 3.2 µmol/L (p = 

0.026). The steroid levels in serum of burn patients are summarised longitudinally in 

Figure 3.2. 
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Figure 3.2. Burn injury significantly disrupts the HPA/G endocrine response.  
Systemic steroids were analysed longitudinally over a 12-month period. a. Cortisol; b. 
Cortisone; c. 11-Deoxycortisol; d. Corticosterone; e. Androstenedione; f. Testosterone; 
g. DHEA; h. DHEAS. Analyte levels at timepoints were compared to healthy controls 
(HC) using Kruskal-Wallis test with Dunn’s multiple corrections; * p < 0.05.  
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3.3.4 Longitudinal Steroid Response and Mortality Following Thermal Injury 

Systemic levels of cortisol were generally elevated among non-survivors of burn injury 

compared to survivors. Burns patients who died in-hospital had significantly elevated 

levels of cortisol in serum compared to survivors, median 640.1 nmol/L vs. 320.1 

nmol/L (p = 0.014). Furthermore, cortisol levels were significantly elevated among 

burns in-hospital non-survivors compared to survivors at month 2 till month 12 post-

injury, median 546.2 nmol/L vs. 219.4 nmol/L (p = 0.008). Cortisone levels following 

thermal injury were similar among in-hospital non-survivors and survivors at most 

timepoints, though non-survivors had significantly reduced levels of cortisone from 

month 2 onwards post-injury, median 32.3 nmol/L vs. 47.8 nmol/L (p = 0.021).  

Interestingly, day 1 systemic 11-deoxycortisol levels were significantly higher in burns 

patients who died at/before 28 days and during their admission episode compared to 

survivors, median 6.0 nmol/L vs 2.5 nmol/L (p 0.034) and 5.8 nmol/L vs. 2.1 nmol/L (p = 

0.001). Furthermore, corticosterone levels in serum were significantly increased in 

non-survivors compared to survivors of thermal injury, median 31.2 nmol/L vs. 8.7 

nmol/L (p = 0.029). The longitudinal steroid response among survivors and non-

survivors of severe thermal injury is summarised in Figure 3.3 and Figure 3.4. 
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3.3.5 Longitudinal Steroid Response and MOF Following Severe Thermal Injury 

Burns patients diagnosed with MOF exhibited significantly different systemic steroid 

responses compared to patients who did not develop MOF. At Day 1 post-burn injury, 

patients with MOF had significantly increased serum levels of DHEA, median 32.8 

nmol/L vs. 9.1 nmol/L (p = 0.038). Subsequently at D14-D28, burns patients with MOF 

exhibited significantly elevated systemic levels of cortisol, androstenedione and DHEA 

compared to patients who did not develop MOF, median 468.0 nmol/L vs. 347.4 

nmol/L (p = 0.001), 2.9 nmol/L vs. 2.2 nmol/L (p = 0.008) and 3.25 vs. 1.9 nmol/L (p = 

0.026) respectively. The longitudinal steroid response in burns patients who developed 

and did not develop MOF is summarised in Figure 3.5. 
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Figure 3.3. 11-Deoxycortisol and Androstenedione levels were significantly elevated in 28-
day non-survivors following burn injury. 
Serum steroid levels in 28-day burn survivors and non-survivors were analysed across all 
timepoints. a. Cortisol; b. Cortisone; c. 11-Deoxycortisol; d. Corticosterone; e. 
Androstenedione; f. Testosterone; g. DHEA; h. DHEAS. Analyte levels at each timepoint was 
compared between both cohorts (28D survivors vs. 28D non-survivors) using Mann-Whitney 
Test; * p <0.05.  
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Figure 3.4. Cortisol, 11-Deoxycortisol and Corticosterone were significantly elevated 
among in-hospital non-survivors at Day 1 following burn injury. 
Serum steroid levels in burn survivors and non-survivors were analysed across all 
timepoints. a. Cortisol; b. Cortisone; c. 11-Deoxycortisol; d. Corticosterone; e. 
Androstenedione; f. Testosterone; g. DHEA; h. DHEAS. Analyte levels at each timepoint were 
compared between both cohorts (survivors vs. non-survivors) using Mann-Whitney Test; * p 
<0.05.  
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Figure 3.5. Cortisol, Androstenedione and DHEA were significantly elevated in burn 
patients diagnosed with MOF. 
Serum steroid levels in burn patients who did and did not develop MOF were analysed 
across all timepoints. a. Cortisol; b. Cortisone; c. 11-Deoxycortisol; d. Corticosterone; e. 
Androstenedione; f. Testosterone; g. DHEA; h. DHEAS. Analyte levels at each timepoint were 
compared between both cohorts (MOF vs. No MOF) using Mann-Whitney Test; * p <0.05.  
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3.3.6 Longitudinal Steroid Response in Septic and Non-Septic Patients Following 

Severe Thermal Injury 

Septic burns patients demonstrated an altered and prolonged steroid response 

compared to non-septic patients. Androstenedione, DHEA and DHEAS levels in serum 

were significantly reduced in septic patients compared to non-septic patients at D03-

D07 following thermal injury, median 2.0 nmol/L vs. 2.8 nmol/L (p = 0.046), 1.9 nmol/L 

vs. 4.6 nmol/L (p = 0.017) and 1.5 µmol/L vs. 1.9 µmol/L (p = 0.017) respectively. 

Thereafter, circulating levels of DHEA and DHEAS remained significantly lower in septic 

burn patients compared to non-septic patients at M02-M12, median 1.9 nmol/L vs. 

10.3 nmol/L (p = 0.004) and 2.8 µmol/L vs. 4.0 µmol/L (p = 0.007) respectively. 

Systemic cortisol levels were significantly elevated in septic patients compared to non-

septic patients following thermal injury at D14-D28, median 411.5 nmol/L vs. 277.6 

nmol/L (p <0.001). While testosterone levels in serum of septic burns patients were 

significantly depressed compared to non-septic patients at D14-D28, median 1.4 

nmol/L vs. 2.2 nmol/L (p = 0.047). The longitudinal steroid response in septic and non-

septic burns patients is summarised in Figure 3.6. 

3.3.7 Longitudinal Steroid Response and Wound Healing following Severe Thermal 

Injury 

Serum steroid levels were significantly associated with time taken to achieve wound 

healing at various timepoints throughout the study period.  At D01 post-burn injury, 

lower levels of circulating testosterone and DHEAS were significantly associated with 

longer wound healing times, rho -0.421 (p = 0.045) and rho -0.602 (p = 0.002) 
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respectively. Furthermore, depressed testosterone levels in the serum of burns 

patients at D14-D28 post-injury were significantly associated with increased days taken 

to achieve wound healing, rho -0.389 (p = 0.001). Interestingly, longer wound healing 

times were significantly associated with prolonged reduction of circulating levels of 

various steroids including testosterone, DHEA and DHEAS. Correlations between 

longitudinal serum steroids and duration of wound healing are summarised in Figure 

3.7. 

3.3.8 Longitudinal Steroid Response and Scarring Following Severe Thermal Injury 

3.3.8.1 Subjective Scar Measures 

Systemic levels of steroids in burns patients were significantly associated with scarring 

outcomes, as measured subjectively by total mVSS and overall POSAS scores. Lower 

levels of serum 11-deoxycortisol at D03-D07 was significantly associated with worse 

scarring outcomes in both scar scoring systems. Thereafter, elevated systemic levels of 

cortisol were significantly associated with higher mVSS scores at D14-D28, rho 0.534 (p 

= 0.002). Interestingly, higher levels of DHEAS in blood at D14-M12 was significantly 

associated with higher OOSS scores, rho 0.375 (p = 0.002). Significant correlations 

between serum steroids measured longitudinally and subjective scar scoring systems 

are summarised in Figures Figure 3.8 and Figure 3.9. 
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Figure 3.6. DHEA, DHEAS and Testosterone were significantly reduced in septic 
burn patients. 
Serum steroid levels in septic and non-septic burns patients were analysed across all 
timepoints. a. Cortisol; b. Cortisone; c. 11-Deoxycortisol; d. Corticosterone; e. 
Androstenedione; f. Testosterone; g. DHEA; h. DHEAS. Analyte levels at each 
timepoint were compared between both cohorts (Sepsis vs. No Sepsis) using Mann-
Whitney Test; * p <0.05.  
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Figure 3.7. Testosterone and DHEAS significantly correlated with time to 95% 
would healing following severe thermal injury. 
Serum steroid levels and days taken to achieve 95% wounds healed in burns patients 
were analysed across all timepoints. a. Testosterone at D01; b. DHEAS at D01; c. 
Testosterone at D14-D28. Correlations were performed between analyte levels at 
timepoints and time to 95% heal using Spearman’s rank correlation co-efficient; * p 
<0.05. 
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Figure 3.8. Steroid response and mVSS score correlations following severe thermal 
injury. 
Serum steroid levels and total mVSS scores in burns patients were analysed across all 
timepoints. a. 11-Deoxycortisol at D03-D07; b. Corticosterone at D03-D07; c. Cortisol at 
D14-D28; d. Corticosterone at D14-D28; e. Androstenedione at D14-D28. Correlations 
were performed between analyte levels at timepoints and total mVSS scores using 
Spearman’s rank correlation co-efficient; * p <0.05. 
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Figure 3.9. Steroid response and POSAS score correlations following severe thermal 
injury. 
Serum steroid levels and POSAS (Patient and Observer) overall scores in burns patients 
were analysed across all timepoints. a. 11-Deoxycortisol vs. OOSS at D03-D07; b. 
Androstenedione vs. OOSS at D14-D28; c. DHEAS vs. OOSS at D14-D28; d. DHEAS vs. 
OOSS at M02-M12; e. Androstenedione vs. OPSS at D01; f. Corticosterone vs. OPSS at 
D14-D28. Correlations were performed between analyte levels at timepoints and 
overall POSAS scores using Spearman’s rank correlation co-efficient; * p <0.05. 
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3.3.8.2 Objective Scar Measures 

Throughout the study period, serum steroid levels in burns patients were significantly 

associated with multiple objective scar measures. Elevated cortisol levels at D14-D28 

were significantly associated with thicker scarring in burns patients, rho 0.571 (p 

<0.001). Furthermore, increased cortisone levels at D03-D07 post-thermal injury were 

significantly associated with more dense scarring, rho 0.47 (p 0.027). Interestingly, 

testosterone and DHEAS levels in serum had a significant inverse association with 

dense scars at M02-M12 post-burn injury, rho -0.363 (p 0.029) and rho -0.448 (p 0.006) 

respectively. Significant correlations between systemic steroids and ultrasound scar 

measures are summarised in Figure 3.10. 

Scar pliability and firmness as measured by cutometer demonstrated significant 

relationships with systemic steroid levels of burns patients. Immediately following 

thermal injury, lower androstenedione levels were significantly associated with 

increased scar pliability, rho -0.755 (p = 0.010). Furthermore, increased DHEAS levels in 

serum at D03-D28 post-burn injury were significantly associated with better scar 

pliability, rho 0.434 (p = 0.001). Additionally, elevated testosterone levels in blood of 

burns patients at M02-M12 were significantly associated with improved scar pliability, 

rho 0.515 (p = 0.001). Similarly, reduced systemic testosterone levels at D14-D28 post-

burn injury were associated with increased scar firmness, rho -0.368 (p = 0.038). 

Additionally, decreased levels of DHEA in burns patients were significantly associated 

with firmer scars, rho -0.491 (p = 0.020). Significant correlations between serum 

steroid levels in burns patients and cutometer scar measures are summarised in Figure 

3.11.  
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Figure 3.10. Steroid response and ultrasound scar measure correlations following 
severe thermal injury. 
Serum steroid levels and scar thickness/intensity in burns patients as measured by 
ultrasound were analysed across all timepoints. a. Cortisol vs. Scar Thickness at D14-
D28; b. Androstenedione vs. Scar Thickness at D14-D28; c. Cortisone vs. Scar Intensity 
at D03-D07; d. Androstenedione vs. Scar Intensity at D14-D28; e. Testosterone vs. Scar 
Intensity at M02-M12; f. DHEAS vs. Scar Intensity at M02-M12. Correlations were 
performed between analyte levels at timepoints and ultrasound scar measures using 
Spearman’s rank correlation co-efficient; * p <0.05. 
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Figure 3.11. Steroid response and cutometer scar measure correlations following 
severe thermal injury.  
Serum steroid levels and scar pliability (R2)/firmness (R0) in burns patients as 
measured by cutometer were analysed across all timepoints. a. Androstenedione vs R2 
at D01; b. Corticosterone vs. R2 at D03-D07; c. DHEAS vs. R2 at D03-D07; d. 
Corticosterone vs. R2 at D14-D28; e. DHEAS vs. R2 at D14-D28; f. Testosterone vs. R2 at 
M02-M12; g. Cortisol vs. R0 at D03-D07; h. Cortisone vs. R0 at D03-D07; i. 
Androstenedione vs. R0 at D14-D28; j. Testosterone vs. R0 at D14-D28; k. 
Androstenedione vs. R0 at M02-M12; l. DHEA vs. R0 at M02-M12. Correlations were 
performed between analyte levels at timepoints and cutometer scar measures using 
Spearman’s rank correlation co-efficient; * p <0.05. 
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Figure 3.12. Steroid response and colorimeter scar measure correlations following 
severe thermal injury (Part 1).  
Serum steroid levels and scar erythema/pigmentation in burns patients as measured 
by colorimeter were analysed across all timepoints. a. 11-Deoxycortisol vs. Erythema at 
D03-D07; b. Testosterone vs. Erythema at D03-D07; c. Corticosterone vs. Erythema at 
D14-D28; d. Androstenedione vs. Erythema at D14-D28; e. DHEA vs. Erythema at D14-
D28; f. DHEAS vs. Erythema at D14-D28; g. DHEA vs. Erythema at M02-M12; h. 
Androstenedione vs. Melanin at D01; i. Cortisol vs. Melanin at D14-D28; j. 
Testosterone vs. Melanin at M02-M12; k. Cortisol vs. L at D14-D28; l. Corticosterone 
vs. L at D14-D28. Correlations were performed between analyte levels at timepoints 
and colorimeter scar measures using Spearman’s rank correlation co-efficient; * p 
<0.05. 
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Figure 3.13. Steroid response and colorimeter scar measure correlations following 
severe thermal injury (Part 2).  
Continuation from Figure 3.12. a. Testosterone vs. L at M02-M12; b. Androstenedione 
vs. a at D14-28; c. Testosterone vs. a at D14-D28; d. DHEAS vs. a at D14-D28; e. 
Androstenedione vs. a at M02-M12; f. Testosterone vs. a at M02-M12; g. DHEA vs. a at 
M02-M12; h. Androstenedione vs. b at D01; i. DHEAS vs. b at D03-D07; j. Cortisol vs. b 
at D14-D28; k. DHEAS vs. b at D14-D28; l. Testosterone vs. b at M02-M12; m. DHEAS 
vs. b at M02-M12. 
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Throughout the study period, serum steroid levels demonstrated significant associated 

with subsequent scar erythema and pigmentation in burns patients. Significant 

correlations between systemic steroids levels and colorimeter scar measures are 

summarised in Figures Figure 3.12 and Figure 3.13. 

3.3.9 Therapeutic Potential of Steroids following Severe Thermal Injury 

The data so far suggest that supplementing burns patients with testosterone, DHEA 

and DHEAS may reduce the risk of developing sepsis and mortality following injury. At 

D03-D07, DHEA and DHEAS demonstrated significant association with sepsis 

development in burns patients independent of age, gender and injury severity, p = 

0.023 and p = 0.027 respectively. Supplementing patients with DHEA or DHEAS at D03-

D07 post-thermal injury may increase the odds of not developing sepsis by 13% and 

65% for 1ng/mL increase of serum DHEA and DHEAS respectively.  

Circulating levels of testosterone at D03-D07 was significantly associated with and 

predictive of 28-day mortality in burns patients, p = 0.028. This was independent of 

age, gender, injury severity and physiological state on admission. Supplementing 

patients with testosterone at D03-D07 post-burn injury may increase the odds of 28-

day survival by 104% for each 1 nmol/L increase in serum testosterone levels. 

Furthermore, serum DHEA levels at D14-D28 post-thermal injury was significantly 

associated with and predictive of in-hospital mortality independent of patient and 

injury characteristics, p = 0.036. A 1 nmol/L increase in serum DHEA in burns patients 

may improve the odds of survival following injury by 34%. The multi-variate analysis 
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and significant therapeutic potential of steroids following severe thermal injury are 

summarised in Table 3.3. 

 

     
Measure of Benefit  

(No Adverse Outcome) 

Timepoint Outcome Analyte Co-Variates p- value 
Odds 

Ratio 

Effect 

on OR 

for 1 

unit (%) 

Required 

units to 

increase 

OR by 1 

D03-D07 Sepsis DHEA Age, TBSA, 

Inhalation 

Injury, 

Gender, 

APACHE II 

0.019 1.15 13.8 7.25 

D03-D07 Sepsis DHEAS 0.042 1.58 46.7 2.14 

D03-D07 Sepsis Cortisone 0.044 0.96 -4.3 -23.26 

D03-D07 Sepsis DHEAS 

Age, TBSA, 

Inhalation 

Injury, 

Gender, 

APACHE II, 

All Steroids 

0.014 2.15 76.6 1.31 

D03-D07 Sepsis Cortisone 0.047 0.93 -7.1 -14.1 

D03-D07 
28D 

Mortality 
Testosterone 0.028 2.83 104.2 1.0 

D14-D28 Mortality Corticosterone 0.047 0.68 -38.4 -2.6 

D14-D28 Mortality DHEA 0.036 1.40 33.6 3.0 

D14-28 MOF Cortisol 0.022 0.99 -1 -100 

Table 3.3. Supplementing DHEA, DHEAS and Testosterone may improve outcomes 
following severe thermal injury.  
Outcomes and Steroids at all timepoints were assessed using uni-analyte and multi-
analyte regression models to estimate treatment effects. Multi-variate binary logistic 
regression was performed accounting for patient demographics, injury severity and/or 
physiological state on admission. Significant associations p <0.05. 
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Timepoint Outcome Analyte Co-Variates p-value 

1% analyte 

increase reduces 

healing days by 

(%) 

D01 95%heal Testosterone Age 

Gender 

TBSA 

Inhalation 

Injury Excision 

No. 

Grafting No. 

0.024 0.666 

D03-D07 95%heal Testosterone 0.032 0.287 

D14-D28 95%heal Testosterone 0.007 0.274 

D01 95%heal DHEAS 0.034 0.555 

D03-D07 95%heal Corticosterone 0.039 0.101 

Table 3.4. Supplementing DHEAS and Testosterone may improve wound healing 
times following severe thermal injury.  
Wound healing and steroids at all timepoints were assessed using uni-analyte and 
multi-analyte regression models to estimate treatment effects. Multi-variate linear 
regression was performed using categorical variables and natural logarithm of 
continuous variables accounting for patient demographics, injury severity and 
surgical procedures performed. Significant associations p <0.05. 
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On admission, testosterone and DHEAS were significantly associated with wound 

healing times in burns patients independent of baseline patient and injury 

demographics, as well as surgical interventions. Increasing serum testosterone and 

DHEAS by 100% on admission may decrease wound healing duration by 66% and 55% 

respectively. Multi-variate analysis and significant therapeutic potential of steroids on 

wound healing following thermal injury are summarised in Table 3.4. Multi-analyte 

multi-variate regression models of steroids and wound healing in burns patients 

demonstrated minimal therapeutic value. Therefore, multi-analyte regression data on 

wound healing are not reported. Multi-variate regression analysis could not be 

performed using scarring data due to low patient numbers. 

3.3.10 Steroids Potential as Diagnostic/Prognostic Biomarkers Following Severe 

Thermal Injury. 

At D01 post-burn injury, serum levels of 11-Deoxycortisol in patients was significantly 

different between survivors and non-survivors (Figure 3.3 and Figure 3.4). 11-

Deoxycortisol levels in serum may predict 28-day mortality and in-hospital mortality 

with 72% and 79% accuracy. When combining circulating levels of 11-Deoxycortisol 

with APACHE II score on admission, the predictive power is further increased to 74% 

for 28-day mortality and 84% for in-hospital mortality. AUC/ROC curve analysis for 11-

Deoxycortisol and mortality outcomes are summarised in Figure 3.14 and Figure 3.15. 
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Figure 3.14. Serum 11-Deoxycortisol levels at D01 post-injury and 28-day mortality in 
burns patients.  
Predictive strength of serum 11-Deoxycortisol levels at D01 post-injury on 28-day 
mortality were assessed using AUC/ROC curve analysis. a. ROC curve analysis of 11-
Deoxycortisol levels and clinical scores both alone and in-combination; b. AUC analysis 
of 11-Deoxycortisol levels and clinical scores both alone and in-combination. 
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Figure 3.15. Serum 11-Deoxycortisol levels at D01 post-injury and in-hospital 
mortality in burns patients.  
Predictive strength of serum 11-Deoxycortisol levels at D01 post-injury on in-hospital 
mortality were assessed using AUC/ROC curve analysis. a. ROC curve analysis of 11-
Deoxycortisol levels and clinical scores both alone and in-combination; b. AUC analysis 
of 11-Deoxycortisol levels and clinical scores both alone and in-combination. 
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3.3.11 Longitudinal Steroid and Immune-Endocrine Response following Severe 

Thermal Injury 

The immune and endocrine systems are closely integrated. Acute severe burn injury 

induces major simultaneous and persistent immune-endocrine responses. Following 

injury, patients exhibited increased expression of both upstream and final metabolites 

of the HPA axis. Furthermore, elevated levels of both pro-inflammatory and anti-

inflammatory cytokines and hormonal responses were observed following thermal 

injury. In addition, increased expression of multiple immune functions was exhibit in 

acutely burned patients(112).  

Burn patients exhibited a prolonged differential immune-endocrine response when 

compared to healthy volunteers. The behaviour and expressions of immune and 

hormonal status between burned patients and healthy volunteers remained altered for 

at least one year following injury. This was particularly in the case of cortisol, cortisone, 

testosterone, DHEAS, neutrophil responses (ROS generation and phagocytosis), IGF-1, 

IL-β1 and TGF-β1.  

At D01-D28, burns patients demonstrated a higher systemic expression of cortisol and 

cortisone. Interestingly, the expression of circulating cortisol was higher when 

compared to cortisone during the acute phase of burn injury followed by reversal in 

levels of circulating cortisol and cortisone levels at M02-M12. Additionally, higher 

systemic expression of pro-inflammatory cytokines, including IL-1β, TNF-α, IL-17 and 

IL12p70, was observed for the first month following thermal injury. This further 



107 
 

suggests the conversion of cortisone to cortisol secondary to induction of 11βHSD1 by 

the overwhelming systemic pro-inflammatory milieu following severe thermal injury.  

Immediately following major burn injury, patients had elevated levels of circulating 

DHEAS and testosterone that coincided with increased levels of their respective 

upstream metabolites, DHEA and androstenedione.  Throughout the course of 

treatment and management of acutely injured patients, the systemic concentrations of 

all four analytes declined progressively. Interestingly, DHEAS and testosterone levels in 

blood of burned patients increased dramatically at M02-M12 post-injury while their 

upstream metabolites remained low. This suggests increased production of DHEAS and 

testosterone from their precursors secondary to increased demand and utility by 

various cells and tissue during the prolonged hypermetabolic response following 

severe thermal injury. 

The longitudinal immune-endocrine status in burned patients and healthy volunteers 

are summarized in Figure 3.16. 
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Figure 3.16. The longitudinal steroid and immune-endocrine response following 
major burn injury.  
Circulating status of cytokines, immune function and steroid hormones were 
analysed across all timepoints accounting for the revised Baux score. Immune-
endocrine status of healthy volunteers was performed to allow comparison.  This 
heatmap represent expressions of molecules in serum by colour with high 
expressions being red and low expressions being blue. Immune function tests include 
Monocyte and neutrophil ROS generation (Phagoburst MFI), neutrophil phagocytosis 
MFI (% positive) and nuclear cfDNA (marker of NETs). Cytokines and other hormones 
analysed include IL-1Ra, GCSF, IL-6, IL-8, IL-10, IL-12p70, IL-17, MCP-1, TNF-α, IGF-1, 
IL-β1 and TGF-β1. 
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3.3.12 Subgroup Analysis 

3.3.12.1 Gender Influence on Longitudinal Steroid Response following Severe Thermal 

Injury 

Male and female burns patients exhibited significant differences in the steroid 

response following injury, despite the injury severity (rBaux Score) being similar 

between both cohorts, p 0.565.  

Male burns patients had significantly reduced levels of systemic cortisone at D01- D28 

post-injury compared to male healthy controls, median 34.3 nmol/L vs 52.8 nmol/L (p 

<0.001). Systemic levels of cortisone were similar between female healthy controls and 

burns patients at all timepoints. Furthermore, male patients had significantly higher 

levels testosterone compared to female patients at D01 and D14-M14 post-burn 

injury, median 3.5 nmol/L vs. 1.6 nmol/L (p 0.001) and 4.0 vs. 1.3 nmol/L (p <0.001) 

respectively. 

Male burns patients exhibited generally lower levels of DHEA compared to female 

patients with D01 post-injury being significant, median 8.8 nmol/L vs. 21.6 nmol/L (p = 

0.036) respectively. Conversely, male patients demonstrated generally increased levels 

of DHEAS compared to female patients with D03-D07 and M02-M12 post-thermal 

injury being significantly different, median 1.8 µmol/L vs 1.3 µmol/L (p = 0.005) and 3.4 

µmol/L vs. 2.0 µmol/L (p = 0.008). Systemic steroid levels in male and female burns 

patients are summarised longitudinally in Figure 3.17. 
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Figure 3.17. Longitudinal steroid response in females and males following burn 
injury. 
Serum steroid levels in female and male burns patients were analysed across all 
timepoints. a. Cortisol; b. Cortisone; c. 11-Deoxycortisol; d. Corticosterone; e. 
Androstenedione; f. Testosterone; g. DHEA; h. DHEAS. Analyte levels at each timepoint 
was compared between both cohorts (Female vs. Male) using Mann-Whitney Test; * p 
<0.05. Analyte levels of female and male burns patients were compared to female and 
male healthy controls (HC) using Kruskal-Wallis test with Dunn’s multiple corrections; + 
Female vs. HC Female, p <0.05; # Male vs. HC Male, p <0.05. 
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3.3.12.2 Influence of age on Longitudinal Steroid Response following Severe Thermal 

Injury 

Age significantly affected the steroid response following burn injury. Age is defined as 

young (< 65 years) and old (≥65 years). Injury severity and gender were similar 

between both cohorts, p = 0.328 and p = 0.618 respectively.   

Older patients had significantly elevated circulating levels of cortisol and 11-

deoxycortisol following severe thermal injury compared with younger patients, median 

643.8 nmol/L vs. 263 nmol/L (p = 0.001) at D01-D07 and 6.8 nmol/L vs. 2.1 nmol/L (p = 

0.012). Subsequently at D14-D28 post-thermal injury, older patients exhibited 

significantly decreased serum cortisol levels compared to younger patients, median 

233.9 nmol/L vs. 372.2 nmol/L (p = 0.012). Circulating steroid levels in young and old 

burns patients are summarised longitudinally in Figure 3.18.  
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Figure 3.18. Longitudinal steroid response in young (<65 years) and old (≥65 years) 
patients following burn injury.  
Serum steroid levels in young and elderly burns patients were analysed across all 
timepoints. a. Cortisol; b. Cortisone; c. 11-Deoxycortisol; d. Corticosterone; e. 
Androstenedione; f. Testosterone; g. DHEA; h. DHEAS. Analyte levels at each timepoint 
was compared between both cohorts (Young vs. Old) using Mann-Whitney Test; * p 
<0.05. Analyte levels of young and old burns patients were compared to young and old 
healthy controls (HC) using Kruskal-Wallis test with Dunn’s multiple corrections; + 
Young vs. HC Young, p <0.05; # Old vs. HC Old, p <0.05. 
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3.3.12.3 Corticosteroid Influence on Longitudinal Steroid Response and Outcomes 

following Severe Thermal Injury 

Patient demographics were similar between controls and corticosteroids groups. 

Corticosteroid-treated patients had significantly elevated revised Baux score compared 

to controls, median 106 vs. 84 (p 0.006). Patient demographics and outcomes are 

summarised in Supplementary Table 2. Corticosteroid treatment did not appear to 

influence the longitudinal steroid response in burns patients. Serum levels of steroid 

hormones in control and corticosteroid treated groups following severe thermal injury 

are summarised in Figure 3.19. 

PSM analysis was performed to explore indications of corticosteroid administration 

and investigate the differences in outcomes of treated and non-treated burns patients. 

In this sub-group analysis of outcomes, 52 burns patients with ≥20% TBSA were 

assessed. Twenty-two patients received corticosteroids. The analysis accounts for 

sequential organ dysfunction over 4 timepoints spanning two weeks following severe 

thermal injury.  

Corticosteroid-treatment and control burns patients were matched according to age, 

gender, TBSA, presence of inhalation injury, revised Baux score and timepoints. Out of 

110 controls and 83 corticosteroid-treated burns patients, 98 and 41 were matched 

respectively. Matching was done within the designated caliper distances. Standardised 

mean differences (SMD) of co-variates pre- and post-matching were assessed for co-

variate balance. Median SMD of pre-matched covariates was -0.278 with some co-

variates exceeding 1.0. Median SMD of co-variates post-matching was 0.041 with all 
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co-variates within 0.130 range with exception of one count being 0.375. Furthermore, 

propensity score comparison between control and corticosteroids groups was not 

significant post-matching (p 0.793). This indicates robust matching. Propensity scores 

before and after matching are summarised in Figure 3.20. 
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Figure 3.19. Longitudinal steroid response in burns patients who received and did 
not receive corticosteroids.  
Serum steroid levels in burns patients who received corticosteroids and those who 
did not (control) were analysed across all timepoints. a. Cortisol; b. Cortisone; c. 11-
Deoxycortisol; d. Corticosterone; e. Androstenedione; f. Testosterone; g. DHEA; h. 
DHEAS. Analyte levels at each timepoint was compared between both cohorts 
(Corticosteroid vs. Control) using Mann-Whitney Test; * p <0.05.  
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Figure 3.20. Propensity score balance plots matching control and corticosteroids 
burns patients. 
Patient demographics, injury characteristics and timepoints were matched using 
PSM analysis. a. Propensity scores dot plot of baseline demographics and timepoints 
before and after matching. b. Propensity scores boxplot of control and 
corticosteroids burns patients before and after matching. Propensity scores of 
control and corticosteroid cohorts were compared using Mann-Whitney Test; * p 
<0.05. 
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Following severe thermal injury, sequential organ failure assessment (SOFA) cardiac 

scores were utilised as an indicator of haemodynamic instability and vasoplegia during 

the acute stage. Corticosteroid therapy was started at median day 3 following burn 

injury for a median total duration of 5 days. At D03 post-injury, burns patients who 

were started on corticosteroid therapy have significantly higher SOFA cardiac score 

compared to control group, median 4 vs. 1 (p = 0.027). Furthermore, SOFA cardiac 

score was significantly higher in treated group compared to controls at D14 post-

injury, median 1 vs. 0 (p = 0.037). This may indicate that the corticosteroid cohort were 

generally more critically ill than controls. SOFA cardiac scores of corticosteroid and 

control cohorts are summarised longitudinally in Figure 3.21. 

Corticosteroid therapy had significant effects on outcomes following severe thermal 

injury. Burns patients treated with corticosteroids had significantly increased odds of 

developing sub-sequent sepsis, OR 6.0(p <0.001). Furthermore, corticosteroid therapy 

was associated with significantly increased odds of mortality, OR 2.86 (p = 0.016). In 

addition, MOF is independently associated with corticosteroid use. These effects are 

independent of baseline characteristics and SOFA cardiac scores with their associated 

timepoints. The influence of corticosteroid therapy in burns patients is summarised in  

Figure 3.22. Furthermore, survival distributions of significant outcomes associated with 

corticosteroid therapy in severely burned patients are summarised in Figure 3.23. This 

could be secondary to a corticosteroid induced alternations in immune-endocrine 

response as outlined in Figure 3.24.  
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Figure 3.21. SOFA cardiac scores of PSM-matched control and corticosteroid burns 
patients. 
Extent cardiac dysfunction of burns patients was examined at D01, D03, D07 and D14 
post-injury. SOFA cardiac scores of control and corticosteroid cohorts were compared 
at each timepoint using Mann-Whitney Test; *p <0.05.  
 

 

Figure 3.22. Corticosteroid use independently associated with mortality, MOF and 
sepsis following severe thermal injury. 
Outcomes in PSM-matched control and corticosteroid groups were compared using 
logistic regression model accounting for age, gender, TBSA, inhalation injury, 
timepoints, SOFA cardiac score and corticosteroid use. Forest plots are odds ratios of 
outcomes with horizontal lines as 95% confidence intervals; *p <0.05. AUC analysis 
performed for each significant outcome regression model; * AUC p value <0.005. 
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Figure 3.23. Kaplan-Meier survival graphs demonstrating significant distribution 
differences for in-hospital mortality and sepsis among control and corticosteroid 
treated burns patients.  
Survival distribution analysis in PSM-matched control and corticosteroid groups was 
performed using Cox Regression accounting for age, gender, TBSA, inhalation injury, 
timepoints, SOFA cardiac score and corticosteroid use. a. Survival curve distributions 
for in-hospital mortality in control and corticosteroid groups. b. Survival (No MOF) 
curve distributions for MOF diagnosis in control and corticosteroid groups. c. Survival 
(No Sepsis) curve distributions for Sepsis diagnosis in control and corticosteroid 
groups; *p <0.05 
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Figure 3.24. The longitudinal steroid and immune-endocrine response of PSM-
matched burns patients treated and not treated (control) with corticosteroids. 
Circulating status of cytokines, immune function and steroid hormones were analysed 
at day 1, day 3, day 7 and day 14 post-thermal injury accounting for the revised Baux 
score and SOFA cardiac score. This heatmap represent expressions of molecules in 
serum by colour with high expressions being red and low expressions being blue. 
Immune-endocrine status of healthy volunteers was assessed for reference. Immune 
function tests include Monocyte and neutrophil ROS generation (Phagoburst MFI), 
neutrophil phagocytosis (Phagotest, % positive) and Nuclear cfDNA concentration 
(marker of NETs). Cytokines and other hormones analysed include IL-1Ra, GCSF, IL-6, 
IL-8, IL-10, IL-12p70, IL-17, MCP-1, TNF-α, IGF-1, IL-β1 and TGF-β1. 
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3.3.12.4 Influence of oxandrolone on the Longitudinal Steroid Response and Outcomes 

following Severe Thermal Injury 

Patient demographics were similar between controls and corticosteroids groups. 

Oxandrolone-treated patients had significantly higher % TBSA compared to controls, 

median 45 vs. 27 (p 0.027). Patient demographics and outcomes are summarised in 

Supplementary Table 3. 

Oxandrolone treatment may influence specific steroid hormones in burns patients. On 

treatment, systemic cortisone and 11-deoxycortisol levels were significantly reduced in 

the oxandrolone therapy group compared to the patients who did not receive 

oxandrolone (controls) at D03-D07, median 36.3 nmol/L vs. 42.3 nmol/L (p = 0.02) and 

0.8 vs. 0.9 nmol/L (p = 0.010) respectively. Serum cortisol levels in burns patients 

treated with oxandrolone were generally reduced compared to the control group at 

D03-D07 post-injury, median 295.0 vs. 309.0 nmol/L (p = 0.088). Furthermore, serum 

DHEA levels in burns patients were significantly higher in the oxandrolone group 

compared to controls, median 2.9 nmol/L vs 1.9 nmol/L (p = 0.013) This may indicate 

that oxandrolone-treated burns patients were more stable systemically than the 

controls. The longitudinal steroid response in control and corticosteroid groups 

following severe burn injury is summarised in Figure 3.25. 

PSM analysis was performed to explore the systemic status of burns patients who 

received and did not receive oxandrolone administration, as well as investigating the 

differences in outcomes of treated and non-treated burns patients. In this sub-group 

analysis of outcomes, all burns patients within e-SIFTI were assessed. Thirty-four burns 
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patients received oxandrolone. The analysis accounts for sequential organ dysfunction 

over 4 timepoints spanning two weeks following severe thermal injury. Oxandrolone-

treated and control burns patients were matched according to age, gender, TBSA, 

presence of inhalation injury, revised Baux score and timepoints. Out of 51 controls 

and 115 oxandrolone-treated burns patients, 32 and 93 were matched respectively. 

Matching was done within the designated caliper distances. Standardised mean 

differences (SMD) of co-variates pre- and post-matching were assessed for co-variate 

balance. Median SMD of pre-matched covariates was 0.124with some co-variates 

exceeding 1.0. Median SMD of co-variates post-matching was 0.02 with all co-variates 

within 0.2 range. Furthermore, propensity score comparison between control and 

groups was not significantly different post-matching (p = 0.570). This indicates robust 

matching. Propensity scores before and after matching are summarised Figure 3.26. 
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Figure 3.25. Longitudinal steroid response in burns patients who received and did not 
receive oxandrolone.  
Serum steroid levels in burns patients who received and did not receive oxandrolone 
were analysed across all timepoints. a. Cortisol; b. Cortisone; c. 11-Deoxycortisol; d. 
Corticosterone; e. Androstenedione; f. Testosterone; g. DHEA; h. DHEAS. Analyte levels 
at each timepoint was compared between both cohorts (Oxandrolone vs. Control) 
using Mann-Whitney Test; * p <0.05. 
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Figure 3.26. Propensity score balance plots matching control and oxandrolone burns 
patients. 
Patient demographics, injury characteristics and timepoints were matched using PSM 
analysis. a. Propensity scores dot plot of baseline demographics and timepoints before 
and after matching. b. Propensity scores boxplot of control and oxandrolone burns 
patients before and after matching. Propensity scores of control and oxandrolone 
cohorts were compared using Mann-Whitney Test; * p <0.05. 



125 
 

Following severe thermal injury, sequential organ failure assessment (SOFA) liver 

scores were utilised as liver function dictates the initiation/delay of oxandrolone 

therapy in burns patients following the establishment of nutrition. Oxandrolone 

treatment was started at median day 5 following burn injury for a median total 

duration of 19 days. At D03 post-injury, burns patients who were subsequently started 

on oxandrolone therapy had similar SOFA liver scores compared to the control group, 

median 3 vs. 3 (p = 0.744). Following administration of oxandrolone, treated burns 

patients exhibited significantly lower SOFA liver scores compared to controls at D07 

post-injury, median 2 vs. 3 (p <0.001). This may indicate that the oxandrolone may 

have been omitted in burns patients due to liver dysfunction. SOFA liver scores of 

oxandrolone and control cohorts are summarised longitudinally in Figure 3.27.  

 

Figure 3.27. SOFA Liver scores of PSM-matched control and oxandrolone burns 
patients. 
Extent of liver dysfunction of burns patients was examined at D01, D03, D07 and D14 
post-injury. SOFA liver scores of control and corticosteroid cohorts were compared at 
each timepoint using Mann-Whitney Test; *p <0.05. 



126 
 

Oxandrolone therapy had significant effects on outcomes following severe thermal 

injury. Oxandrolone treatment reduced the risk 28-day mortality (p <0.001), in-hospital 

mortality (p <0.001) and sepsis (p = 0.008). Conversely, oxandrolone use was 

associated with significantly increased risk of MOF, OR 7.90 (p <0.001). These effects 

are independent of baseline characteristics and SOFA liver scores with their associated 

timepoints. The influence of oxandrolone therapy in burns patients is summarised in 

Figure 3.28. Furthermore, survival distributions of significant outcomes associated with 

oxandrolone treatment in severely burned patients are outlined in Figure 3.29. These 

effects could be due to alternations in immune-endocrine response mediated by 

oxandrolone as illustrated in Figure 3.30. 

 

Figure 3.28. Oxandrolone use was independently associated with improved sepsis 
and survival rates following severe thermal injury. 
Outcomes in PSM-matched control and oxandrolone groups were compared using 
logistic regression model accounting for age, gender, TBSA, inhalation injury, 
timepoints, SOFA liver scores and oxandrolone use. Forest plots are odds ratios of 
outcomes with horizontal lines as 95% confidence intervals; *p <0.05. AUC analysis 
performed for each significant outcome regression model; * AUC p value <0.005. 
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Figure 3.29. Kaplan-Meier survival graphs demonstrating significant differences in 28-
mortality, in-hospital mortality and MOF distributions in control and oxandrolone 
treated burns patients. 
Survival distribution analysis in PSM-matched control and corticosteroid groups was 
performed using Cox Regression accounting for age, gender, TBSA, inhalation injury, 
timepoints, SOFA liver score and oxandrolone use. a. Survival curve distributions for 
28-day mortality in control and oxandrolone groups. b. Survival curve distributions for 
in-hospital mortality in control and oxandrolone groups c. Survival (No MOF) curve 
distributions for MOF diagnosis in control and corticosteroid groups. d. Survival (No 
Sepsis) curve distributions for Sepsis diagnosis in control and corticosteroid groups; *p 
<0.05 
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Figure 3.30. The longitudinal steroid and immune-endocrine response of PSM-
matched burns patients treated and not treated (control) with oxandrolone. 
Circulating status of cytokines, immune function and steroid hormones were analysed 
at day 1, day 3, day 7 and day 14 post-thermal injury accounting for the revised Baux 
score and SOFA Liver score. This heatmap represent expressions of molecules in serum 
by colour with high expressions being red and low expressions being blue. Immune-
endocrine status of healthy volunteers was assessed for reference. Immune function 
tests include Monocyte and neutrophil ROS generation (Phagoburst MFI), neutrophil 
phagocytosis (Phagotest, % positive) and Nuclear cfDNA concentration (marker of 
NETs). Cytokines and other hormones analysed include IL-1Ra, GCSF, IL-6, IL-8, IL-10, IL-
12p70, IL-17, MCP-1, TNF-α, IGF-1, IL-β1 and TGF-β1. 
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3.4 Discussion 

On admission, severely burned patients are assessed using multiple clinical scoring 

systems aiming to predict outcomes (463-465). This is primarily done to aid clinical 

judgement and treatment, as well as resource allocation. Even when the decision for 

active treatment is made, identification of burned patients at risk of developing 

adverse outcomes remains a challenge. This could be attributed to overlap of 

symptoms and signs of sepsis and MOF/organ dysfunction with SIRS following major 

burn injury (466). Furthermore, any delay in identification or treatment of sepsis or 

organ dysfunction was shown to significantly increase mortality (467, 468). This has led 

to multiple studies identifying potential biomarkers to predict outcomes (112, 469-

471).  

This study was carried out to profile the steroid response for up to 12 months 

following severe burn injury using high sensitivity LC-MS/MS to gain an in depth 

understanding of steroid species changing after injury. It also investigated the 

associations between the altered steroid axis and outcomes in burn patients at various 

timepoints throughout the first year following thermal injury. Furthermore, this study 

explored the diagnostic and therapeutic potential of steroid changes and examined the 

efficacy of current steroid-based therapeutics, specifically oxandrolone, used as 

standard of care in a tertiary burn center in the West Midlands region, UK. This is the 

first report exploring these areas simultaneously. 

Several reports have observed age and gender differences in short and long-term 

outcomes following major burn injury, with females and older patients  associated with 
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poorer prognosis (406, 440-443). Although the mechanisms behind such observations 

are complex, it may partly be explained by differences in adrenal and gonadal steroid 

hormones. Although some studies have investigated the influence of steroids following 

burn injury, these studies typically involved testosterone and/or estradiol use in 

experimental animal models (133). These animal burn models suggest the beneficial 

role of estradiol in ameliorating the immune-inflammatory and hypermetabolic 

responses following injury(444, 445). Additionally, anti-androgens and castration 

treatments were reported to reduce remote end-organ inflammation and damage in 

animal models following thermal injury(178, 448). However, such studies should be 

interpreted with caution due to poor correlation between animal models and human 

counterparts of similar pathologies (472). This may, in part, explain the significant 

differences in outcomes following major burn injury between experimental animal 

models and clinical epidemiological studies. 

Bergquist et al explored the adrenal/gonadal steroid axis in 16 adult burn patients 

prospectively and profiled the adrenal/gonadal response longitudinally till day 21 post-

thermal injury using LC-MS/MS(129). The findings reported by Bergquist et al include: 

serum cortisol, cortisone and DHEA remained within reference range throughout the 

study period; reduced circulating levels of testosterone throughout the study period; 

estrone was mostly elevated throughout the study period while estradiol was within or 

below the reference range.  

There were therefore significant differences and similarities in the observations made 

in Bergquist et al report and this study. Firstly, serum cortisol in burned patients were 
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significantly increased compared to healthy volunteers in this study and other 

published literature (473, 474). Simultaneously, serum cortisone levels in patients 

were significantly reduced compared to healthy individuals for the first month post-

burn injury. This observation is novel as no other published reports describing 

cortisone levels following thermal injury were identified. Severe thermal injury is a 

stressor that is associated with release inflammatory cytokines and subsequent 

systemic elevation of cortisol (474, 475). Inflammatory environments were reported to 

induce the enzyme 11β-HSD1 converting cortisone to cortisol at both local and 

systemic levels (462, 476, 477).  Subsequently, this systemic increase in cortisol levels 

can lead to significant immune-inflammatory modulation and metabolic effects in 

burned patients including immunosuppression and catabolism (475, 478-480). In this 

study, acute thermal injury resulted in immediate increased immune function 

(including ROS production, phagocytosis and NETosis), inflammatory cytokines 

(including IL-1β, TNF-α, IL-10, IL12p70, IL-17 and MCP1), cortisol and cortisone.  Low 

circulating cortisone in burned patients compared to healthy volunteers suggests 

increased metabolism and conversion to cortisol through induction of 11β-HSD1 

pathway. Subsequently, at D03-D28 following injury, burned patients maintained 

elevated systemic cortisol with reduced immune function, indicated by lower ROS 

production. These data are novel as we could not find critical care or trauma studies 

exploring cortisol associations with various immune function in the literature. 

However, studies have reported similar findings following severe psychological stress 

in bereaved individuals(481, 482). Furthermore, similar results were reported in equine 

models(483). Interestingly, this inverse relationship between neutrophil oxidative 
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burst and cortisol remains maintained at M02-M12 post-burn injury when systemic 

cortisol was low while ROS production expression of circulating monocytes and 

neutrophils was high. This highlights the need for robust quantitative statistical 

analysis of the data to conclude these findings. 

Secondly, severe thermal injury significantly elevated systemic levels of DHEA but did 

not affect circulating levels of testosterone in patients at D01 in this study. Apart from 

Bergquist et al’s study (129), no other studies explored the gonadal axis in adult 

burned patients using LC-MS/MS techniques. Jeschke et al has reported similar 

findings with testosterone levels in serum being maintained immediately following 

thermal injury in the paediatric population (474). Due to scarcity of data, definitive 

conclusions may prove difficult to make on the status of sex steroids following thermal 

injury. However, the status of DHEA/DHEAS and testosterone proved important in this 

study due to their association with mortality, sepsis and wound healing following 

multi-variate analysis (discussed below). This highlights the need for further 

exploration and profiling of sex steroid hormones status in critically ill populations 

including burns and trauma.  

Berquist et al’s report on the influence of steroids on outcomes has been limited to 

mortality (129). Elevated serum levels of androstenedione, cortisone, DHEA, 

pregnenolone, 17-OH pregnenolone and 17OH-progesterone at D01 post-injury was 

associated with mortality following thermal injury (129). Sepsis data was collected but 

no associations were reported (129). This could be attributed to the low number of 

burned patients recruited during the study period and the high cost of sample 
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processing using high sensitivity LC-MS/MS. Other limitations include the male-only 

cohort and the analysis being confined to the acute phase of injury. Thus, 

generalisability and clinical applicability of the results cannot be made from this study.  

In this study, the longitudinal HPA and HPG responses in female and male burned 

patients, as well as young and elderly patients were assessed from day one up to 1-

year post-injury. Significant differences in circulating steroid hormone levels and their 

up-stream metabolites were observed between the cohorts of both groups. Similarly, 

significant differences in the HPA and HPG status on burn patients who developed 

adverse outcomes and those who did not. Such steroid hormones influencing 

outcomes included cortisol, DHEA, DHEAS and testosterone, as well as their respective 

up-stream metabolites. However, results should be adjusted to confounding variables 

including age, gender and injury severity, to generalise interpretation and permit 

clinical translation.  

In this study, 11-deoxycortisol, an upstream metabolite to cortisol, was found to be 

significantly elevated at D01 among non-survivors of major burn injury. Circulating 

levels of 11-Deoxycortisol at D01 post-injury had a moderate predictive value for 28-

day and in-hospital mortality, AUROC 0.72 and 0.79 respectively. The predictive value 

of serum 11-Deoxycortisol levels increased when accounting for APACHE II score of 

severely burned patients, AUROC 0.74 (28-day mortality) and 0.84 (in-hospital 

mortality). When compared to other published biomarkers, serum 11-Doxycortisol 

levels perform similar to, or better in predicting mortality at D01 post-injury. For 

example,  Cato et al reported platelets as a predictor of survival following major burn 
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injury with AUROC of 0.53 (stand-alone) and 0.85 when combined with rBaux (471). 

Furthermore, Yang et al reported circulating neutrophil gelatinase-associated lipocalin 

levels may predict mortality in burn patients admitted to intensive care, AUROC 0.80 at 

6 hours post-admission (484).  

Additionally, lower levels of circulating DHEA, DHEAS and testosterone during the 

acute phase were independently and significantly associated with sepsis, 28-day 

mortality and mortality in this study. This suggests that supplementation of these 

steroids may improve outcome for the following reasons. DHEAS and testosterone 

were reported to exert important immune-inflammatory and metabolic effects. DHEAS 

directly increases superoxide generation by human neutrophils and therefore 

enhances immune system response to pathogens (208). While testosterone was 

reported to regulate neutrophil function by increasing phagocytic capacity and 

supressing oxidative stress in neutrophils (485). Both DHEAS and testosterone 

modulated the immune-inflammatory responses in a dose-dependent fashion (208, 

485). Furthermore, serum DHEAS and testosterone levels were reported to be directly 

associated with greater muscle mass in healthy individuals (486). This could be 

attributed to anabolic effects secondary to improve local synthesis of 

dihydrotestosterone in skeletal muscle from DHEA and testosterone (487). 

Furthermore, DHEAS demonstrates to protective effects of skeletal muscle and 

maintaining muscle mass (488). Oxandrolone is an anabolic androgenic steroid derived 

from testosterone. Oxandrolone is currently approved the food and drug 

administration in the US as adjunctive therapy for weight restitution following 
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extensive surgery, chronic infections or severe trauma(489). The effects of 

oxandrolone therapy following severe thermal injury will be discussed further below. 

The importance of addressing the acute challenges of severe thermal injury is 

paramount. However, with improved medical advancements and treatment, survival 

rates have significantly improved with time (405, 407). This, in turn, has led to further 

interest in addressing longer-term sequelae of major burns including wound healing 

rates and scarring (28, 490, 491). In this study, the steroid responses following thermal 

injury significantly correlated with time to achieve 95% wound healing and subsequent 

scarring. In agreement with the published literature (492) low levels of circulating 

testosterone following acute burn injury was significantly associated with longer 

durations to achieve wound closure. Similarly, lower serum levels of DHEAS at D01 

post-thermal injury was associated with longer wound healing times. Furthermore, 

circulating levels of testosterone and DHEAS in burn patients at D01 post-injury were 

independently and significantly associated with lower wound healing times. This 

suggest that supplementation of DHEAS and testosterone at D01 following major burn 

injury may significantly reduce wound healing times for the following reasons. DHEAS 

stimulated keratinocyte and fibroblast migration through genomic and non-genomic 

signalling in human dermis and epidermis (493). Furthermore, DHEA was reported to 

promote pro-collagen synthesis and inhibit collagen degradation (494). Testosterone 

had little effect on keratinocyte and dermal fibroblast migration in a human epidermal 

study (493). However, oxandrolone treatment was reported to significantly 

accelerated wound healing in murine full thickness burn models (495). Potential 

mechanisms behind oxandrolone improving wound healing rates remains to be 
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established. By addressing wound healing duration, post-burn scarring outcomes may 

be improved (28). 

Significant correlations were observed between DHEA, DHEAS, testosterone and 

scarring outcomes at various timepoints following major burn injury. Lower levels of 

the above steroids were associated with worse scarring as assessed subjectively and 

objectively. This indicates that potential long-term modulation of these responses 

during the acute phase of burn injury maybe of value. However, no clinical studies 

investigating the influences of these steroids on scarring outcomes following burn or 

trauma have been reported in the literature. A larger prospective study designed to 

allow multi-variate analysis accounting for surgical intervention and wound healing 

times would be ideal prior to suggesting potential therapeutic value in these steroids in 

the context of scarring. 

Steroid use in burn care and management is a subject for discussion involving various 

specialities including scientists, burn surgeons and intensive care physicians. Steroid 

therapies involving DHEA and DHEAS following burn and trauma are yet to be 

established. Anabolic androgenic steroids, such as oxandrolone, became gold standard 

in burn care due to its multiple positive effects (496, 497). While the use of 

corticosteroids, such as hydrocortisone, remain controversial in burn (449, 450, 498-

501). In this study, both oxandrolone and corticosteroids were used in burned patients 

when clinically required as dictated by treatment protocols at the tertiary burn centre. 

In both groups, no major differences in steroid levels during the first year following 

burn injury in patients who received treatment and those who did not were seen. 
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Corticosteroid therapy in critically ill septic patients has been fiercely debated (502, 

503). In 2016, the Surviving Sepsis Campaign (SSC) adopted the use of intravenous 

hydrocortisone therapy in critically ill patients with treatment-refractory septic shock 

(504). Since then, two major RCTs reported the benefits of corticosteroid use in critical 

illness (505, 506). This was the rationale behind corticosteroid use in burns patients 

recruited into this study. Hence, corticosteroids were given to address persistent 

vasoplegia despite adequate resuscitation as indicated by increased cardiac SOFA 

scores. Despite this, corticosteroid therapy was associated with poorer outcomes 

independent of injury severity and hemodynamic status. Corticosteroid use in burned 

patients significantly increased the odds ratio (OR) and hazard ratio (HR) of subsequent 

mortality, MOF and sepsis. 

Ever since initial reports of the successful use in burn injury of oxandrolone this 

became standard-of-care (496, 497). Since then, multiple studies reported the 

beneficial effects of oxandrolone during the acute and rehabilitative phases of burn 

injury (201, 507). Observations made in this study agree with the published literature. 

Oxandrolone use following burn injury was associated with reduced risk of sepsis and 

improved 28-day and in-hospital survival rates respectively. Interestingly, oxandrolone 

use was significantly associated with increased risk of MOF. This association between 

oxandrolone and MOF should be interpreted with caution for the following reasons. 

Firstly, the 95% confidence interval of the odds ratio is 18.7 which is large. Secondly, 

the median start day of oxandrolone therapy was at D05 post-burn injury while the 

median day of MOF diagnosis in this study was D03 post-burn injury. Thirdly, no 
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significant associations between oxandrolone and MOF were previously reported (507, 

508). 

This study has limitations. The status of oestrogen, progesterone and their respective 

upstream metabolites in burned patients were not quantified. This was due to mass 

spectrometer specifications. Furthermore, steroid-binding globulins levels following 

thermal injury were not measured due to limited amounts of serum and extensive 

nature of the SIFTI study. Quantification of female sex steroid hormones and steroid-

binding globulins would have been important assessing their relative influence on 

outcomes following thermal injury. Therefore, observational studies investigating the 

longitudinal response of these molecules are encouraged. 

3.5 Conclusions 

Severe burn injury influences the HPA and HPG axis. The status of steroid hormones in 

burned patients appears to affect outcomes following injury including mortality, sepsis, 

wound healing and scarring. The data reported here suggest that steroid use following 

thermal injury is a double-edged sword. The use of corticosteroids in severely burned 

patients was associated with significantly increased odds of sepsis, MOF and in-

hospital mortality independent of injury severity and haemodynamic status. While 

oxandrolone therapy following major thermal injury was significantly associated with 

improved prognosis. Scarring data suggests continued oxandrolone use or 

testosterone supplementation following discharge may improve post-burn scarring. 

Similarly, our data suggest that DHEA and/or DHEAS may be of potential therapeutic 

value and immediate long-term supplementation may improve outcomes. Further 
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clinical studies are required to validate these observations. Pilot studies assessing the 

effects of immediate and long-term use of oxandrolone/DHEA/DHEAS on short and 

long-term outcomes following major burn injury would prove useful prior to designing 

RCTs. 
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CHAPTER 4: VITAMIN D STATUS AND 

ITS INFLUENCE ON OUTCOMES 

FOLLOWING SEVERE BURN INJURY 
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4.1 Introduction 

The Vitamin D axis involves conversion of inert vitamin D, cholecalciferol, from sun and 

diet into 25D3 and 1,25D3 by various organs. The pathways and metabolism of vitamin 

D are summarized in Figure 4.1. Vitamin D insufficiency/deficiency is common among 

the general population, with 20% of adults and up to 24% of children affected (212). 

Moreover, low vitamin D status has been reported in up to 76% of critically ill patients 

(213). Similarly, low vitamin D levels were observed among burned patients (130, 509). 

Despite this, mechanisms affecting vitamin D status following critical illness remain 

unclear and its influence over patient outcomes is poorly understood. The literature 

addressing these issues was previously summarised(134). 

Critically ill populations are clearly identified to be at-risk of vitamin D deficiency, but 

there are sub-populations where there is insufficient literature on the status of vitamin 

D and its influence on outcomes, including patients with thermal injuries. Although 

studies investigating vitamin D levels in burns patients are scarce, vitamin D levels have 

been shown to decrease following thermal injury (130, 510). This may be both as a 

primary effect of the injury or secondary response to the injury itself and/or the clinical 

management initiated such as fluid resuscitation and use of pressure garments. 
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Figure 4.1. Overview of vitamin D biosynthesis and metabolism.  

The underlined vitamin D metabolites were examined in this chapter. 
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Severe burn injury thus induces persistent disturbances of multiple immuno-

inflammatory and physiological responses simultaneously, befitting the designation: 

persistent inflammation, immunosuppression, and catabolism syndrome, PICS (511). 

This includes reduced circulating levels of vitamin D and its carrier proteins, VDBP and 

albumin (130). Based on the literature concerning non-burn and burn trauma, we 

propose that this can be explained through a variety of potential mechanisms:  First, as 

previously postulated (266), there may be attempts to maintain immune homeostasis 

via increased conversion of 25D to active 1,25D, thereby reducing circulating 25D 

levels. In individuals who are vitamin D-sufficient prior to injury, this effect may have a 

negligible impact on serum 25D status, but for those who are vitamin D-deficient at 

injury, this effect may lead to exacerbation of low serum 25D concentrations. Second, 

fluid resuscitation and a compromised vascular integrity results in decreased serum 

vitamin D levels and its metabolites secondary to haemodilution and fluid shifts (268). 

VDBP and albumin are also affected in the acute response, thereby reducing bound 

vitamin D levels and impacting its delivery to target tissues (269-271). This 

phenomenon of binding protein extravasation would be temporary as microvascular 

integrity is re-established 6 hours following thermal injury (512). Third, VDBP levels are 

reduced in the acute stage buffering actin’s deleterious effects as part of the actin 

scavenging system (513, 514).  

Although not firmly established, it appears that VDBP levels recover during the acute 

phase of thermal injury (509), while albumin levels may recover as early as 6 months 

(515). Due to this multiplicity of factors, interpretation of 25D levels and diagnosing 

vitamin D deficiency in burn patients remains challenging (516) . 
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Vitamin D levels following severe thermal injury can also be reduced secondary to 

extrinsic causes including prolonged in-hospital stay (including ICU), prolonged 

immobilization and lack of supplementation. Although critically ill burn patients receive 

oral or enteral feed supplements, current regimens have proved ineffective in 

replenishing vitamin D levels in the acute phase (510). Furthermore, current long-term 

burn management regimens involve scar management comprising mainly of sun 

avoidance and protection, as well as the use of pressure garments. These factors 

minimize sun exposure, hence reducing 25D levels. In addition, both burn scar and 

adjacent normal skin in burn patients exhibit subnormal conversion levels of 7-DHC to 

pre-D3 compared to healthy individuals (517).  This further potentiates vitamin D 

deficiency, resulting in low levels of 25D and 1,25D for many years, at least seven, 

following burn injury (518). The potential causes of hypovitaminosis D following injury 

is summarized in Figure 4.2. 
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Figure 4.2. Potential causes of low vitamin D status in burned patients 

 

Low vitamin D levels in patients with minor burns, median TBSA of 5%, has been 

associated with increased length of hospital stay (519).  Although not statistically 

significant, the authors also observed higher complication rates in burn patients with 

low vitamin D including sepsis, pneumonia, cardiovascular complications and graft loss 

(519). It is important to note that low vitamin D status in this study cohort most likely 

represents the population’s pre-injury 25D levels rather than a consequence of the 

burn. Furthermore, this study has some limitations. Thirty percent of the cohort was 

admitted to ICU with relatively minor injuries, which is unusual. No description of 

patient pre-morbid state or other pathologies were reported which may potentially 
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affect vitamin D status or outcomes in general. In addition, the cohort is comprised 

mostly of minor partial thickness thermal injuries limiting its application in severe 

burns. There are no reports investigating the influence vitamin D levels on short-term 

outcomes of major burn patients.   

Low serum levels of vitamin D in major burn patients have shown to persist for at least 

one year (509). Long term outcomes assessed include bone mineral density and leg 

muscle strength. Although not statistically significant, quadricep muscle strength was 

lower at month 12 than the month of injury in burn patients with low vitamin D levels 

(509). Another long-term consequence of major thermal injury is scarring. A cross-

sectional study has reported a strong negative correlation between circulating 25D 

levels at year 1 post-injury and subjective scar measures (mVSS) (520). Both studies 

were limited by small sample sizes. There are no other studies investigating the 

influence of vitamin D on long-term outcomes of burned adult patients. While studies 

have reported increased incidence of long bone fractures among children with major 

burns following discharge(521). This is most likely attributed to reduced bone mineral 

density and vitamin D levels (518, 522). Vitamin D supplementation in paediatric burn 

patients may be beneficial in reducing fracture risk(522). 

Due to current gaps in our understanding of the impact of vitamin D metabolism 

changes in trauma patients, vitamin D supplementation in critical illness and burned 

patients is often overlooked. We hypothesize that major burn injury results in 

significantly affects the vitamin D metabolism axis and that Vitamin D status post-

injury are associated with outcomes including sepsis, MOF, mortality, wound healing 
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and scarring. We hypothesize that supplementation of vitamin D may improve 

outcomes. 

The aims of this thesis include determining the status of the vitamin D axis in severely 

burned patients; characterising these vitamin D axis longitudinally from day 1 following 

severe thermal injury till month 12 post-injury; exploring associations between the 

longitudinal vitamin D response and clinical outcomes in burned patients including 

mortality, MOF, sepsis, wound healing and scarring and identify any potential clinical 

biomarkers that may improve prognosis of burned patients or identify novel 

therapeutic targets.  
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4.2 Methods 

The general methodology used including ethical approval and statistical analysis are 

described in Chapter 2.  

Only this chapter incorporates healthy volunteer data and serum vitamin D levels from 

the healthy ageing  study published by Dr. Zaki Hassan-Smith (523, 524), conducted in 

Wellcome Trust Clinical Research Facility at QEHB. Details regarding volunteer 

recruitment, procedures and ethics were provided Dr. Zaki Hassan-Smith and Dr. Carl 

Jenkinson as they were investigators in this study. In addition to the published data, 

this information is outlined in Dr. Zaki Hassan-Smith’s doctorate thesis. This is data is 

added to the healthy volunteer data recruited in e-SIFTI. The healthy ageing study did 

not perform vitamin D derivatisation and hence not all vitamin D metabolites were 

quantified as compared to the e-SIFTI cohort. HAS participants with full demography 

data were used in statistical analysis used in this chapter. 

In this chapter, quantification of vitamin D was performed by Khaled Altarrah in a GCP 

validated lab in the IMSR, Birmingham University Medical School. Raw data acquired 

from LC-MS/MS analysis was quantified using Waters TargetLynx™ Application 

Manager (Waters Ltd, Elstree, UK) by Dr. Carl Jenkinson. Overall data analysis was 

performed by Khaled Altarrah. 

4.2.1 Healthy Ageing Study (HAS)  

4.2.1.1 Study Cohort 

A total of 98 healthy adult volunteers (60 female/38 male; age 20-75 years) from the 

local population were invited to participate. A summary of inclusion and exclusion 
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criteria are summarised in Table 4.1. Eligible participants were recruited into this study 

after obtaining written consent. Results presented in this chapter only include HAS 

participants who had their vitamin D metabolites analysed. Ethical Approval for the 

study was obtained from the Coventry and Warwickshire Research Ethics Committee, 

UK (Reference 07/H1211/168).  

Inclusion Criteria Exclusion Criteria 

Adult (≥16 years) Pregnancy 

BMI 20-30kg/m2 Significant past medical history including 

diabetes mellitus, ischemic heart disease, 

cerebrovascular disease, severe 

respiratory disease and epilepsy 

Females in follicular phase of menstrual 

cycle 

Glucocorticoid therapy in past 12 months 

 Use of medication/drugs affecting 

growth hormone release 

 Oral anti-coagulant use 

Table 4.1.  Inclusion and exclusion criteria for the Healthy Ageing study. 

 

4.2.1.2 Blood sampling 

One-off blood samples were collected from fasted study participants and were taken in 

the mornings between 0900 – 1100 hours. 
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4.2.1.3 Preparation of Serum 

Blood samples collected in BD vacutainers® containing z-serum clotting activator were 

allowed to clot for 30 minutes at room temperature prior to processing. The serum 

was carefully extracted thereafter and stored at -80°C in aliquots prior to analysis. 

4.2.1.4 Data Collection 

Data including patient demographics and observations were prospectively recorded 

using CRFs. Participants with vitamin D metabolite levels only are used in this chapter.  

4.2.2 Measurement of Vitamin D Metabolites 

All serum vitamin D metabolites were assessed using LC-MS/MS as previously 

described (523, 525). Vitamin D metabolites including 25OHD3, 3-epi-25OHD3, 

24,25(OH)2D3 and 25OHD2 were extracted from 50-220µl of serum using supportive 

liquid-liquid extraction. Vitamin D metabolites were eluted from the SLE plate using 

two 800µL volumes of MTBE/ethyl acetate (90/10%) following protein precipitation 

using 80µL of methanol, 50µL isopropanol and 80µL of water.  Samples were eluted 

from the SLE plate under gravity and a vacuum (5Hg) was applied. The solvent was 

then evaporated using nitrogen at 50ᵒC after each 800µL addition. Following this, 

samples were reconstituted in 125µL of water/methanol (50/50%) and analysed. 

Samples were then re-dried and processed via Vitamin D derivatisation using 200µL 

derivatisation mixture (0.5mg of 4-Phenyl-1,2,4-triazoline-3,5-dione (PTAD) per 1mL 

acetyl nitrile). Following this, 1a25D3, 23,25D3 and 24,25D3 were measured previously 

published (525). 
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All samples were processed using an ACQUITY ultra performance liquid 

chromatography (uPLC) coupled to a Waters Xevo TQ-S mass spectrometer (Waters, 

Manchester, UK). Vitamin D metabolite analysis was performed in positive ion node 

and ionisation was done using electrospray ionisation (ESI) mode. Chromotography 

separation of all analytes was carried out using a Lux Cellulose-3 chiral column 

(100mm,2mm,3µm) maintained at 60ᵒC. All metabolites were separated using an 

optimised gradient system consisting of methanol, water and 0.1% formic acid and a 

flow rate of 330µL/min. All vitamin D metabolites were quantified using a linear 

calibration series with appropriate internal standards. Each metabolite was recognised 

by matching retention times and two mass transitions in comparison to a reference 

compound. Each metabolite was quantified against a vitamin D internal standard, 

using the internal standards; 25OHD3-d3, 3-epi-25OHD3-d3, 24,25(OH)2D3-d6 and 

1α(OH)2D3-d3. Precision data for each vitamin D metabolite assay has been previously 

published (525).  

4.2.3 Measurement of VDBP 

VDBP levels were measured from serum samples using ELISA Kits (K2314, 

ImmunoDiagnostik, Germany).  Plate preparation and reconstitution of assay reagents 

were done accordingly as per manufacturer’s protocol. Samples were prepared and 

diluted in sample buffer solution (SAMPLEBUF) to a factor of 40,000 utilising a three-

step procedure. Following this, 100µL of the final diluted samples were added to the 

plates and left to incubate for 1 hour at room temperature with shaking at 550rpm. 
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Following incubation, the well contents were discarded and washed 5 times using 

250µL of wash buffer solution to remove unbound material. Next, 100µL of 

peroxidase-labelled antibody was added to each well and left to incubate for 1 hour at 

room temperature with shaking. The contents of the wells were then discarded and 

washed 5 times using wash buffer to remove unbound antibody. One hundred 

microliters of TMB solution was then added to each well, followed by incubation at 

room temperature for 10 min.  Following this, 100µL of stop solution was added to 

each well. 

Following the assay procedure, absorption of each plate was determined using BioTek 

ELx808™ Absorbance Microplate Reader and BioTek Gen5™ Data Analysis Software 

(BioTek®, Swindon, UK) at 450nm against 630nm as reference.  VDBP levels were 

extrapolated from standard curves using Graphpad PRISM® (GraphPad Software Inc., 

California, USA). Interplate and intraplate variability are 14.9% and 4.5% respectively. 

The standard curves are illustrated in Supplementary Figure 4. 

4.2.4 Free and Bioavailable 25vitD3 Calculations 

The concentration of free 25vitD3 in serum was evaluated using the formula described 

by Bikle et al (526). The concentration of the bioavailable (free and albumin-bound) 

fraction of 25vitD3 in blood was calculated using the formula published by Vermeulen 

et al (527). These formulae are illustrated in Supplementary Figure 5. The use of these 

formulae in clinical studies investigating vitamin D, including burn and critically ill 

patients has been previously published (130, 299, 528, 529). 
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4.3 Results 

4.3.1 Patient Demographics 

Forty-six patients admitted to the burn centre in QEHB and 110 healthy volunteers 

participated in this study. The process is illustrated in Supplementary Figure 6.  Both 

burns patients and healthy volunteers had similar demographics with exception of 

gender. Injury and burn resuscitation details were previously described in Chapter 3. 

HCT between both burn and healthy cohorts were similar. 

Both healthy volunteers and burn patients were vitamin D deficient with the median 

25D3 levels of both cohorts being <20ng/mL. Additionally, burn patients at day 1 

exhibited decreased levels in almost all vitamin D metabolites and VDBP compared to 

the healthy volunteers. Vitamin D metabolites significantly reduced in burn patients 

included 25D3 (p<0.001), 1α25D3 (p<0.001), 3-epi-25D3 (p<0.001), 23,25D3 (p = 0.018) 

and 25D2 (p<0.001) levels. Furthermore, the median levels of free and bioavailable 

25D3 in burn patients were 8.9 fg/mL and 0.3 ng/mL respectively. These findings are 

summarized in Table 4.2. The outcomes for burn patients assessed in this chapter are 

described in Chapter 3, Table 3.2. 

4.3.2 Longitudinal Vitamin D Response Following Thermal Injury 

Burn patients exhibited a global decrease in vitamin D metabolites. Levels of 25D3 in 

serum of patients was significantly reduced up until one-month post-injury compared 

to healthy volunteers, median 8.6 ng/mL vs 16.2 ng/mL (p <0.001). Although 25D3 

returned to healthy control levels, on further analysis of the timepoints 25D3 levels in 
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burn patients became decreased at month 12, median 9.5 ng/mL vs. 16.2ng/mL (p = 

0.017).  

Likewise, 1α25D3 remained significantly decreased in burn patients throughout the 

study period compared to healthy individuals, median 36.2 pg/mL vs 82.5 pg/mL (p 

<0.001). Similarly, levels of 25D2 in serum were significantly lower in patients 

compared to controls throughout the first-year post-injury, median levels were 

undetectable vs. 0.18 ng/mL (p <0.001). VDBP was significantly reduced at day 1 in 

burn patients (p<0.001) but returned to healthy control levels thereafter. Vitamin D 

metabolites including biomarkers of alternative vitamin D metabolism pathways are 

summarised in Figure 4.3. 
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 Healthy Controls n Burns Patients n p-value 

Age 44 (28-61) 110 41 (33 – 55) 46 0.901 

Gender (M/F) 45/65 110 30/16 46 0.006 

% Total Burn Surface Area - - 42 (25 – 53.5) 46 - 

Revised Baux Score - - 98 (79.0-111.3) 46 - 

Hematocrit 0.399 (0.371-0.415) 12 0.429 (0.374-0.468) 31 0.127 

25D3 (ng/mL) 16.2 (9.5-22.9) 103 3.8 (2.0-12.6) 38 <0.001 

1α25D3 (pg/mL) 82.5 (67.4-119.7) 8 28.6(15.9-47.3) 38 <0.001 

3-epi-25D3 (ng/mL) 1.8 (1.1-2.3) 104 0.4 (0.1-0.8) 38 <0.001 

24,25D3 (ng/mL) 2.1 (0.8-4.0) 104 1.4 (0.8-2.5) 38 0.093 

23,25D3 (pg/mL) 126.5(43.8-181.4) 8 35.1 (19.8-61.6) 38 0.018 

25D2 (ng/mL)  0.2 (UD-0.8) 104 UD (UD-UD) 38 0.001 

VDBP (µg/mL)  696.1(475.0-756.6) 14 303.6(211.4-441.3) 45 <0.001 

Free 25D3 (pg/mL) - - 1.1 (0.5-3.2) 36 - 

Bioavailable 25D3 (ng/mL) - - 0.3 (0.2-0.8) 36 - 

Albumin (g/L) - - 34.0 (26.0-41.5) 44 - 

Calcium (mmol/L) - - 2.1 (2.0-2.3) 40 - 

Phosphate (mmol/L) - - 1.26 (1.1-1.5) 27 - 

Table 4.2. Demographics and serum analyte levels in healthy volunteers and burns 
patients at day 1 post injury.  
Continuous variables are shown as median values with inter-quartile range. Burn 
patients and healthy volunteers were compared using Mann-Whitney test for 
continuous variables and Chi-squared test for categorical variables. Significant 
relationships are highlighted in bold. 
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4.3.3 Longitudinal Vitamin D Response among Survivors and Non-survivors Following 

Thermal Injury 

Circulating levels of vitamin D and associated metabolites in blood were generally 

increased in survivors of severe burn injury compared to non-survivors. At D03-D07, 

burns survivors before/at 28 days post-injury had significantly elevated levels of 25D3, 

24,25D3 and 23,25D3 compared non-survivors, median 6.5 ng/mL vs. 3.2 ng/mL (p 

0.039), 1.4 ng/mL vs. 0.7 ng/mL (p 0.006) and 35.2 pg/mL vs. 20.7 pg/mL (p 0.028) 

respectively.  

Patients who survived their admission episode following thermal injury had 

significantly elevated levels of 25D3, 24,25D3 and 23,25D3 at D03 till D28 post-injury, 

median 10.6 ng/mL vs. 5.5 ng/mL (p <0.001), 2.1 ng/mL vs 1.0 ng/mL (p <0.001) and 

59.0 pg/mL vs. 29.0 pg/mL (p <0.001) respectively. Furthermore, serum levels of free 

and bioavailable 25D3 were significantly elevated in burns patients who survived their 

in-hospital admission compared to non-survivors at D03-D28 post-injury, median 1.3 

pg/mL vs. 0.86 pg/mL (p = 0.003) and 0.2 pg/mL vs. 0.1 pg/mL (p = 0.001) respectively. 

Additionally, VDBP levels in blood were significantly increased in survivors of thermal 

injury compared to non-survivors at D14-D28, median 764.4 µg/mL vs. 590.9 µg/mL (p 

= 0.002). The longitudinal vitamin D response in burns survivors and non-survivors are 

summarised in Figure 4.4 and Figure 4.5. 
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Figure 4.3. Severe burn injury causes significant reductions multiple vitamin D 
metabolites. 
Systemic vitamin D metabolites were analysed over a 12-month period. a. 25D3; b. 
1α25D3; c. 3-epi-25D3; d. 24,25D3; e. 23,25D3; f. 25D2; g. VDBP; h. Free 25D3; i. 
Bioavailable 25D3. Analyte levels at timepoints compared to healthy controls (HC) 
using Kruskal-Wallis test with Dunn’s multiple corrections; * p < 0.05. Analyte levels at 
timepoints compared to healthy controls (HC) using Kruskal-Wallis test with Dunn’s 
multiple corrections; * p < 0.05. 
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Figure 4.4. 28D burn survivors had significantly elevated levels of 25D3, 24,25D3 and 
23,25D3 compared to non-survivors. 
Serum vitamin D levels in 28-day burn survivors and non-survivors were analysed at all 
timepoints. a. 25D3; b. 1α25D3; c. 3-epi-25D3; d. 24,25D3; e. 23,25D3; f. 25D2; g. 
VDBP; h. Free 25D3; i. Bioavailable 25D3. Analyte levels at each timepoint was 
compared between both cohorts (28D survivors vs. 28D non-survivors) using Mann-
Whitney Test; * p <0.05.  
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Figure 4.5. Burns survivors had significantly elevated levels of 25D3, free 25D3, 
bioavailable 25D3, 24,25D3, 23,25D3 and VDBP. 
Serum vitamin D levels in burn survivors and non-survivors were analysed at all 
timepoints. a. 25D3; b. 1α25D3; c. 3-epi-25D3; d. 24,25D3; e. 23,25D3; f. 25D2; g. 
VDBP; h. Free 25D3; i. Bioavailable 25D3. Analyte levels at each timepoint was 
compared between both cohorts (Survivors vs. Non-survivors) using Mann-Whitney 
Test; * p <0.05.  
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4.3.4 Longitudinal Vitamin D Response and MOF following Severe Thermal Injury 

Following burn injury, patients who subsequently developed MOF demonstrated a 

different vitamin D response compared to patients without MOF. At D03-D07, patients 

with MOF had significantly lower levels of 25D3 and free 25D3 compared to those 

without MOF, median 3.0 ng/mL vs. 4.2 ng/mL (p = 0.014), 0.6 pg/mL vs. 1.2 pg/mL (p 

= 0.013) respectively. Furthermore, patients with MOF had significantly lower levels of 

23,25D3 and bioavailable 25D3 compared to those without MOF at D03-D28 post-

thermal injury, median 34.3 pg/mL vs. 57.6 pg/mL (p <0.001) and 0.2 ng/mL vs. 

0.3ng/mL (p = 0.012) respectively. Additionally, burns patients diagnosed with MOF 

has significantly reduced levels of 24,25D3 compared to those without MOF at D14-

D28 post-injury, median 1.8 ng/mL vs. 2.8 ng/mL (p = 0.024). The longitudinal steroid 

response in burns patients who developed and did not develop MOF is summarised in 

Figure 4.6. 

4.3.5 Longitudinal Vitamin D Response in Septic and Non-Septic Patients Following 

Severe Thermal Injury 

Immediately following burn injury, non-septic burns patients exhibited generally higher 

levels of vitamin D metabolites in serum compared to septic patients for the duration 

of the study. Circulating levels of 25D3, free and bioavailable 25D3 were significantly 

elevated in non-septic patients compared to septic patients at D01 following thermal 

injury, median 13.1 ng/mL vs. 2.6 ng/mL (p = 0.006), 3.4 pg/mL vs. 0.9 pg/mL (p = 

0.017) and 1.2 ng/mL vs. 0.2 ng/mL (p = 0.031) respectively. Additionally, 25D3 and 3-

epi-25D3 levels in serum were significantly increased in non-septic burns patients 
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compared to septic patients at M02-M12, median 18.0 ng/mL vs. 9.4 ng/mL (p=  0.005) 

and 0.8 ng/mL vs. 0.4 ng/mL (p = 0.025) respectively. 

Furthermore, systemic levels of 1α25D3, 24,25D3 and 23,25D3 were significantly 

higher in non-septic patients compared to septic patients at D14-28 following thermal 

injury, median 48.9 pg/mL vs. 35.8 pg/mL (p = 0.013), 3.2 ng/mL vs. 2.2 ng/mL (p = 

0.016) and 96.4 pg/mL vs. 56.8 pg/mL (p <0.001). The longitudinal vitamin D response 

in septic and non-septic burns patients is summarised in Figure 4.7. 

4.3.6 Longitudinal Vitamin D Response and Wound Healing following Severe Thermal 

Injury 

Systemic levels of vitamin D metabolites were significantly associated with wound 

healing times in severely burned patients throughout the study. Burn patients with 

lower levels of 25D3 in serum at D01 post-injury had significantly longer times of 

wound healing, rho -0.495 (p = 0.037). Furthermore, lower circulating levels of 24,25D3 

at D03-D07 post-burn injury were significantly associated with longer wound healing 

times in patients, rho -0.427 (p = 0.012).  Additionally, 23,25D3 levels in serum of burns 

patients at D14-D280 post injury demonstrated a significant inverse relationship with 

duration of wound healing, rho -0.423 (p <0.001). Conversely, circulating levels of 3-

epi-25D3 and 25D2 in patients at D14-28 post injury had significant positive correlation 

with time taken to achieve wound healing. Significant correlations between vitamin D 

metabolites at various timepoints and duration of wound healing are summarised in 

Figure 4.8. 
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Figure 4.6. Burn patients without MOF exhibited significantly elevated levels of 25D3, 
free 25D3, bioavailable 25D3 and 23.25D3 compared to burn patients with MOF. 
Serum vitamin D levels in burn patients who developed and did not develop MOF were 
analysed across all timepoints. a. 25D3; b. 1α25D3; c. 3-epi-25D3; d. 24,25D3; e. 
23,25D3; f. 25D2; g. VDBP; h. Free 25D3; i. Bioavailable 25D3. Analyte levels at each 
timepoint was compared between both cohorts (MOF vs. No MOF) using Mann-
Whitney Test; * p <0.05.  
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Figure 4.7. Septic burn patients had significant reductions of all vitamin D 
metabolites compared to non-septic patients. 
Serum vitamin D levels in septic and non-septic burns patients were analysed across all 
timepoints. a. 25D3; b. 1α25D3; c. 3-epi-25D3; d. 24,25D3; e. 23,25D3; f. 25D2; g. 
VDBP; h. Free 25D3; i. Bioavailable 25D3. Analyte levels at each timepoint was 
compared between both cohorts (Sepsis vs. No Sepsis) using Mann-Whitney Test; * p 
<0.05.  
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4.3.7 Longitudinal Vitamin D Response and Scarring following Severe Thermal Injury 

4.3.7.1 Subjective Scar Measures 

Circulating levels of vitamin D metabolites were significantly associated with scarring 

outcomes in burns patients throughout the study period. At D03-D07 post-burn injury, 

decreased serum 25D2 levels were significantly associated with worse scarring as 

assessed by clinicians, mVSS rho -0.570 (p = 0.015) and OOSS rho -0.567 (p = 0.015). 

Furthermore, reduced systemic levels of bioavailable 25D3 significantly correlated with 

poor scar formation as assessed by both clinicians and patients.  At D14-D28 post-

thermal injury, bioavailable 25D3 had negative correlations with mVSS and OOSS, rho -

0.583 (p = 0.009) and rho -0.485 (p = 0.036) respectively. At D03-D07, a negative 

correlation was observed between bioavailable 25D3and OPSS in burns patients, rho -

0.589 (p= 0.015).  A significant negative correlation between free 25D3 and OPSS was 

observed at D03-D07 post-thermal injury, rho -0.509 (p = 0.039). Interestingly, higher 

serum levels of VDBP at M02-M12 was associated with worse scarring outcomes, mVSS 

rho 0.364 (p = 0.035). Significant correlations between serum vitamin D metabolites 

measured longitudinally and subjective scar scoring systems are summarised in Figure 

4.9. 
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Figure 4.8. Reduced serum 25D3 at day 1 post-burn injury was significantly 
associated with longer wound healing times. 
Serum vitamin D levels and days taken to achieve 95% wounds healed in burns 
patients were analysed across all timepoints. a. 25D3 at D01; b.24,25D3 at D03-D07; c. 
3-epi-25D3 at D14-D28; d. 23,25D3 at D14-D28; e. 25D2 at D14-D28. Correlations were 
performed between analyte levels at timepoints and time to 95% heal using 
Spearman’s rank correlation co-efficient; *p <0.05. 
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Figure 4.9. Vitamin D response and correlations with subjective scar measures 
following severe thermal injury. 
Serum vitamin D levels and scar scores as measured using subjective scar assessments 
(mVSS and POSAS) in burns patients were analysed across all timepoints. a. 25D2 vs. 
mVSS at D03-D07; b. Bioavailable 25D3 vs. mVSS at D14-D28; c. VDBP vs. mVSS at M02-
M12; d. 25D2 vs. OOSS at D03-D07; e. Bioavailable 25D3 vs. OOSS at D14-D28; f. 3-epi-
25D3 vs. OPSS at D01; g. Free 25D3 vs. OPSS at D03-D07; h. Bioavailable 25D3 vs. OPSS 
at D03-D07. Correlations were performed between analyte levels at timepoints and 
subjective scar scores using Spearman’s rank correlation co-efficient; * p <0.05. 
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4.3.7.2 Objective Scar Measures 

Systemic levels of vitamin D metabolites were significantly associated with scarring 

outcomes in burns patients as per objective measures via various devices. Reduced 

levels of bioavailable 25D3 in burns patients was significantly associated with increased 

scar thickness, rho -0.549 (p = 0.015). Furthermore, increased serum levels of VDBP at 

M02-M12 following thermal injury significantly correlated with increased scar 

thickness, rho 0.466 (p = 0.006). Additionally, reduced levels of 1α25D3, 24,25D3 and 

23,25D3 in blood were significantly associated with firmer scars, rho -0.369 (p = 0.041) 

at D14-D28, rho -0.561 (p = 0.021) at D03-D07 and rho -0.358 (p = 0.012) at D03-D28 

respectively. Significant correlations between serum vitamin D metabolites measured 

longitudinally and objective scar measures via ultrasound and cutometer are 

summarised in Figure 4.10. 

Throughout the study period, serum levels of vitamin D metabolites significantly 

correlated with subsequent scar erythema and pigmentation in burns patients. 

Significant correlations between systemic vitamin D analyte levels and colorimeter scar 

measures are summarised Figure 4.11 and Figure 4.12. 
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Figure 4.10. Vitamin D response and correlations with objective scar measures via 
ultrasound and cutometer following severe thermal injury. 
Serum vitamin D levels and objective scar measures (ultrasound and cutometer) in 
burns patients were analysed across all timepoints. a. Bioavailable 25D3 vs. Scar 
Thickness at D14-D28; b. VDBP vs. Scar Thickness at M02-M12; c. 25D2 vs. Scar 
Intensity at D03-D07; d. 3-epi-25D3 vs. R2 at D14-D28; e. 24,25D3 vs. R0 at D03-D07; f. 
23,24D3 vs. R0 at D03-D07; g. 1α25D3 vs. R0 at D14-D28; h. 23,25D3 vs. R0 at D14-
D28; i. VDBP vs. R0 at D14-D28. Correlations were performed between analyte levels at 
timepoints and objective scar measures using Spearman’s rank correlation co-efficient; 
* p <0.05. 
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Figure 4.11. Vitamin D response and colormeter scar measure correlations following 
severe thermal injury (Part 1). 
Serum levels of vitamin D metabolites and scar erythema/pigmentation in burns 
patients as measured by colorimeter were analysed across all timepoints. a.25D3 vs. 
Erythema at D03-D07; b. VDBP vs. Erythema at D14-D28; c. Bioavailable 25D3 vs. 
Erythema at D14-28; d. VDBP vs. Erythema at M02-M12; e. 1α25D3 vs. Melanin at 
M02-M12; f. VDBP vs. Melanin at M02-M12; g. 3-epi-25D3 vs. L at D14-D28; h. VDBP 
vs. L at M02-M12; i. 25D3 vs. a at D03-D07. Correlations were performed between 
analyte levels at timepoints and colormeter scar measures using Spearman’s rank 
correlation co-efficient; * p <0.05. 
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Figure 4.12. Vitamin D response and colormeter scar measure correlations following 
severe thermal injury (Part 2). 
Continuation from Figure 4.11. a. VDBP vs. a at D14-D28; b. Bioavailable 25D3 vs. a at 
D14-D28; c. 3-epi-25D3 vs. a at M02-M12; d. VDBP vs. a at M02-M12; e. 25D3 vs. b at 
D03-D07; f. Free 25D3 vs. b at D03-D07; g. Bioavailable 25D3 vs. b at D03-D07; h. 
1α25D3 vs. b at M02-M12.  
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4.3.8 Therapeutic Potential of Vitamin D following Severe Thermal Injury 

Supplementing burns patients with vitamin D may reduce the odds of developing 

sepsis and mortality. Immediately following injury, serum levels of 25D3, Free 25D3 

and Bioavailable 25D3 were associated with and predictive of sub-sequent sepsis 

development in burns patients, p = 0.016, p = 0.022 and p = 0.025 respectively. This 

effect was independent of patient demographics and injury severity. Furthermore, 

increasing circulating levels of 25D3, Free 25D3 and Bioavailable 25D3 by 1ng/mL may 

increase the odds of avoiding sepsis development by 18%, 64% and 199% respectively. 

Furthermore, systemic levels of 23,25D3 at D03-D07 post-thermal injury were 

associated with and predictive of 28-day mortality. Increasing serum levels of 23,25D3 

in burns patients by 1 pg/mL may increase the odds of 28-day survival by 4.2%. At D14-

D28 post-injury, serum levels of 25D3 were significantly associated with and predictive 

of mortality during admission episode.  Increasing circulating 25D3 levels by 1 ng/mL 

may increase odds of survival following severe thermal injury by 32%. The multi-variate 

analysis and significant therapeutic potential of vitamin D metabolites following severe 

thermal injury are summarised in Table 4.3. 

Supplementing vitamin D immediately following severe thermal injury may 

significantly reduce wound healing duration. On admission, systemic levels of 25D3 

and bioavailable 25D3 in burns patients were significantly associated with and 

predictive of time taken to achieve 95% wound healing, p 0.042 and p 0.031 

respectively. This effect was independent of patient demographics, injury severity and 

number of surgical interventions. Increasing serum levels of 25D3 and bioavailable 

25D3 immediately following burn injury by 100% may reduce days taken to achieve 
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wound healing by 14% and 13% respectively. Multi-variate analysis and significant 

therapeutic potential of vitamin D metabolites on wound healing following thermal 

injury are summarised in Table 4.4. Multi-analyte multi-variate regression models of 

vitamin D metabolites and wound healing in burns patients demonstrated non-

significant therapeutic value. Therefore, multi-analyte regression data on wound 

healing are not reported. Multi-variate regression analysis could not be performed 

using scarring data due to low patient numbers. 

4.3.9 Vitamin D Metabolites Potential as Diagnostic/Prognostic Biomarkers 

Following Severe Thermal Injury 

Serum 25D3 levels between septic and non-septic burns patients were significantly 

different at D01 post-injury (Figure 4.7). Circulating 25D3 levels at D01 post-thermal 

injury may predict patients not developing sepsis by 76% accuracy. The accuracy is 

further increased when adjusting 25D3 levels to injury severity, 80% with rBaux score 

and 81% with APACHE II score. AUC/ROC curve analysis for 25D3 and sepsis outcomes 

are summarised in Figure 4.13. 

Serum levels of 25D3, 24,25D3 and 23,25D3 in burns patients were significantly 

different between survivors and non-survivors at D03-D07 post-injury (Figure 4.4 and 

Figure 4.5). Levels of 24,25D3 in serum may predict 28-day survival with 76% accuracy. 

Furthermore, serum 24,25D3 levels may predict in-hospital mortality with 76% 

accuracy. This is further enhanced when accounting for 23,25D3 and clinical scoring 

systems, 82% with rBaux and 84% with APACHE II. AUC/ROC curve analysis for vitamin 

D metabolites and survival outcomes are summarised in Figure 4.14 and Figure 4.15. 
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Measure of Benefit 

(No Adverse Outcome) 

Timepoint Outcome Analyte Co-Variates p-value 
Odds 

Ratio 

Effect 

on OR 

for 1 

unit (%) 

Required 

units to 

increase 

OR by 1 

D01 Sepsis 25D3 

Age, TBSA, 

Inhalation 

Injury, 

Gender, 

APACHE II 

0.014 1.25 22.2 4.50 

D01 Sepsis Free 25D3 0.018 1.88 63.3 1.58 

D01 Sepsis 
Bioavailable 

25D3 
0.026 7.30 199.1 0.50 

D01 Sepsis 25D2 0.043 3.77 132.7 0.75 

D03-D07 
28D 

Mortality 
23,25D3 0.049 1.042 4.2 23.81 

D14-D28 Mortality VDBP 0.022 1.004 0.4 250.00 

D14-D28 MOF VDBP 0.041 0.997 -0.3 -333.33 

M02-M12 MOF VDBP 0.035 0.997 -0.3 -333.33 

D14-D28 Mortality 25D3 
Age, TBSA, 

Inhalation 

Injury, 

Gender, 

APACHE II, All 

Analytes 

0.030 1.38 32.1 3.12 

D14-D28 Mortality VDBP 0.026 1.02 1.5 66.67 

Table 4.3. Potential Therapeutic Effects of Vitamin D on Binary Outcomes following 

Severe Thermal Injury.  

Outcomes and Vitamin D metabolites at all timepoints were assessed using uni-analyte 

and multi-analyte regression models. Multi-variate binary logistic regression was 

performed accounting for patient demographics, injury severity and/or physiological 

state on admission. Significant associations p <0.05. 
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Timepoint Outcome Analyte Co-Variates p-value 

1% analyte increase 

reduces healing 

days by (%) 

D01 95%heal 25D3 
Age 

Gender 

TBSA 

Inhalation Injury 

Excision No. 

Grafting No. 

0.042 0.14 

D01 95%heal 
Bioavailable 

25D3 
0.031 0.13 

Table 4.4. Potential Therapeutic Effects of Steroids on Wound Healing following 
Severe Thermal Injury.  
Wound healing and Vitamin D metabolites at all timepoints were assessed using uni-
analyte and multi-analyte regression models. Multi-variate linear regression was 
performed using categorical variables and natural logarithm of continuous variables 
accounting for patient demographics, injury severity and surgical procedures 
performed. Significant associations p <0.05. 
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Figure 4.13. Serum 25D3 levels at D01 post-injury and not developing sepsis in burns 
patients. 
Predictive strength of serum 25D3 levels at D01 post-injury on burns patients not 
developing sepsis were assessed using AUC/ROC curve analysis. a. ROC curve analysis 
of 25D3 levels and clinical scores both alone and in-combination; b. AUC analysis of 
25D3 levels and clinical scores both alone and in-combination. 
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Figure 4.14. Serum vitamin D metabolites levels at D03-D07 post-injury and 28-day 
survival in burns patients. 
Predictive strength of serum levels of vitamin D metabolites at D03-D07 post-injury on 
28-day survival were assessed using AUC/ROC curve analysis. a. ROC curve analysis of 
levels of vitamin D metabolites and clinical scores both alone and in-combination; b. 
AUC analysis of levels of vitamin D metabolites and clinical scores both alone and in-
combination. 
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Figure 4.15. Serum vitamin D metabolites levels at D03-D07 post-injury and in-
hospital survival in burns patients. 
Predictive strength of serum levels of vitamin D metabolites at D03-D07 post-injury on 
in-hospital survival were assessed using AUC/ROC curve analysis. a. ROC curve analysis 
of levels of vitamin D metabolites and clinical scores both alone and in-combination; b. 
AUC analysis of levels of vitamin D metabolites and clinical scores both alone and in-
combination. 
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4.3.10 Longitudinal Vitamin D and Immune-Endocrine Response following Thermal 

Injury 

Acute severe burn injury induces major simultaneous immune-endocrine responses. 

Following injury, patients exhibited increased expression of both upstream and final 

metabolites of the Vitamin D axis.  

Severe thermal injury induced an immediate reduction of circulating 25D3 and VDBP 

while elevating free and bioavailable 25D3 in serum. This suggests increased utilisation 

of 25D3 in its free and bioavailable forms following acute thermal injury through 

autocrine means. Interestingly, there was also simultaneous increase in albumin, 

calcium, phosphate, monocyte ROS production, IL-1Ra and IL10 at D01 post-injury. This 

may indicate enhanced systemic activity and interaction of free and bioavailable 25D3 

with various body systems including monocytes/immune cells, bone and 

gastrointestinal tract. 

Major burn injury appears to activate alternative pathways of vitamin D metabolism. 

This is evident by the increased expression of circulating levels of 23,25D3 in burned 

patients at D01 post-injury compared to healthy volunteers.  Furthermore, the C23-

hydroxylation pathways remain active in patients for, at least, 12 months post-thermal 

injury. The impact of this vitamin D metabolism pathway remains to be established. 

Burn patients exhibited a prolonged differential immune-endocrine response when 

compared to healthy volunteers. The immune and hormonal status between burned 

patients and healthy volunteers remain altered for, at least, one year following injury. 

This was particularly in the case in all vitamin D metabolites, immune responses (ROS 
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generation and phagocytosis), IL-β1 and TGF-β1 levels. Interestingly, the longitudinal 

response of IGF-1 was similar to 1,25D3 and 23,25D3 responses following severe 

thermal injury. This indicates possible interaction and feedback mechanism between 

the IGF and vitamin D axis in burned patients. Correlations between IGF-1 and vitamin 

D has been reported in other pathologies such as metabolic syndrome and 

cardiovascular disease (530-532). The longitudinal vitamin D and immune-endocrine 

status and interactions in burned patients and healthy volunteers are summarized in 

Figure 4.16. 

4.3.11 Subgroup Analysis 

4.3.11.1 Gender Influence on Longitudinal Vitamin D Response following Severe 

Thermal Injury 

Male and female burns patients exhibited significant differences in the vitamin D 

response immediately following injury. Injury severity between both cohorts were 

similar, p = 0.972. At D01 post-thermal injury, male patients had significantly increased 

levels of 25D3, 3-epi-25D3, VDBP, free 25D3 and bioavailable 25D3 compared to 

female patients, median 8.4 ng/mL vs. 2.2ng/mL (p = 0.008), 0.46 ng/mL vs. 0.20 ng/mL 

(p = 0.016), 346.7 µg/mL vs. 225.4 µg/mL (p = 0.023), 1.3 pg/mL vs. 0.7 pg/mL (p = 

0.028) and 0.34 ng/mL vs. 0.19 ng/mL (p = 0.034) respectively. Systemic vitamin D 

metabolite levels in male and female burns patients are summarised longitudinally in 

Figure 4.17. 
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4.3.11.2 Age Influence on Longitudinal Vitamin D Response following Severe Thermal 

Injury 

No major differences were observed in the vitamin D response in young and older 

burns patients. Injury severity and gender were similar between both cohorts, p = 

0.076 and p = 0.708. Circulating vitamin D metabolite levels in young and elderly 

patients following thermal injury are summarised longitudinally in Figure 4.18. 
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Figure 4.16. The longitudinal vitamin D and immune-endocrine response following 
major burn injury.  
Circulating status of cytokines, immune function and vitamin D metabolites were 
analysed across all timepoints accounting for the revised Baux score. Immune-
endocrine status of healthy volunteers was performed to allow comparison. This 
heatmaps represent expressions of molecules in serum by colour with high expressions 
being red and low expressions being blue. Immune function tests include Monocyte 
and Neutrophil ROS generation (Phagoburst MFI), monocyte and Neutrophil 
Phagocytosis (Phagotest, % positive) and Nuclear cfDNA concentration (marker of 
NETs). Cytokines and other hormones analysed include IL-1Ra, GCSF, IL-6, IL-8, IL-10, IL-
12p70, IL-17, MCP-1, TNF-α, IGF-1, IL-β1 and TGF-β1. 



182 
 

 
Figure 4.17. Longitudinal vitamin D response in females and males following burn 
injury. 
Serum vitamin D metabolite levels in female and male burns patients were analysed 
across all timepoints. a. 25D3; b. 1α25D3; c. 3-epi-25D3; d. 24,25D3; e. 23,25D3; f. 
25D2; g. VDBP; h. Free 25D3; i. Bioavailable 25D3. Analyte levels at each timepoint was 
compared between both cohorts (Female vs. Male) using Mann-Whitney Test; * p 
<0.05. Analyte levels of female and male burns patients were compared to female and 
male healthy controls (HC) using Kruskal-Wallis test with Dunn’s multiple corrections; + 
Female vs. HC Female, p <0.05; # Male vs. HC Male, p <0.05. 
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Figure 4.18. Longitudinal vitamin D response in females young and old following burn 
injury. 
Serum vitamin D metabolite levels in young and elderly burns patients were analysed 
across all timepoints. a. 25D3; b. 1α25D3; c. 3-epi-25D3; d. 24,25D3; e. 23,25D3; f. 
25D2; g. VDBP; h. Free 25D3; i. Bioavailable 25D3. Analyte levels at each timepoint was 
compared between both cohorts (Young vs. Old) using Mann-Whitney Test; * p <0.05. 
Analyte levels of young and old burns patients were compared to young and old 
healthy controls (HC) using Kruskal-Wallis test with Dunn’s multiple corrections; + 
Young vs. HC Young, p <0.05; # Old vs. HC Old, p <0.05. 
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4.4 Discussion 

This study was carried out to profile the vitamin D response for up to 12 months 

following severe burn injury using high sensitivity LC-MS/MS. This study also 

investigated the associations of altered vitamin D metabolism and status with 

outcomes in burn patients throughout the first year following thermal injury. 

Furthermore, this study explored the diagnostic and therapeutic potential of vitamin D 

metabolites. This is the first report exploring these areas simultaneously and is 

warranted for the following reasons. 

Rousseau et al investigated vitamin D status following major burn injury using LC-

MS/MS and reported significantly low circulating 25D3, 1,25D3 in patients compared 

to healthy volunteers (130). Similar to their findings, here various vitamin D 

metabolites were significantly reduced immediately following thermal injury including 

25D3 and 1,25D3. Additionally, Rousseau et al demonstrated that burned patients 

exhibited significantly reduced levels of systemic free 25D3 compared to un-injured 

individuals, 3.8 pg/ml vs. 6.2pg/ml (p<0.05)(130). In this study, median free 25D3 levels 

in serum of burned patients were 1.1 pg/ml at D01 and 1.6 pg/ml at M02-M12. This 

indicates that altered vitamin D status and metabolism observed in burned patients 

persisted for at least 12 months following injury. Similar findings were previously 

reported (509). Interestingly, Klein et al reported significantly lower levels of 25D in 

serum in burned patients 7 years post-injury (518). This could be attributed to a 

persistent hypercatabolic state observed following thermal injury and sub-optimal 

production of vitamin D by skin in burned patients (517). Despite exhibiting 

significantly decreased levels of serum 25D3, circulating levels of 1,25D3 in burned 
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patients remained within reference range (15-75 pg/mL). This may indicate that 25D3 

is being utilised in an autocrine manner (non-classical vitamin D metabolism) following 

severe burn injury. Such significant reductions in vitamin D levels following major 

thermal injury may predispose patients to poorer outcomes. 

During the acute phase following thermal injury, the status of various vitamin D 

metabolites was associated with sepsis, survival and wound healing. Burned patients 

with higher levels of vitamin D metabolites exhibited better prognosis. Higher 

circulating levels of 25D3, 23,25D3 and 24,25D3 during the first 21 days was observed 

among survivors following thermal injury. Furthermore, these metabolites 

demonstrated good discriminatory power between survivors and non-survivors post-

thermal injury with AUROC >0.8 when adjusted with clinical scoring systems (Figure 

4.14 and Figure 4.15). Furthermore, the status of 25D3, 24,25D3 and VDBP were 

independently associated with survival of burned patients. This indicates that vitamin 

D supplementation may help in further reducing mortality rates following major 

thermal injury. Similar observations were reported in critically patients (259, 277, 278). 

However, no other reports investigating the influence of vitamin D on survival post-

major burn injury are currently reported.  

Associations between low vitamin D status and sepsis were reported in critically ill 

populations (273, 274). Similarly, patients with higher serum levels of 25D3 

immediately following major thermal injury did not progress to develop sepsis. This 

observation had good predictive value with AUROC >0.8 when adjusted to clinical 

scoring systems. Furthermore, circulating levels of 25D3, free 25D3 and bioavailable 
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25D3 demonstrated to be independently associated and predictive of subsequent 

development of sepsis in severely burned patients. Interestingly, high expressions of 

free and bioavailable 25D3 coincided with elevated expressions of monocyte ROS 

production at D01 post-injury. This is in keeping with reported immunomodulatory 

roles of vitamin D (533). Potential mechanisms revolve around the ‘free hormone 

hypothesis’ where free and bioavailable 25D access target cells via passive diffusion of 

lipid soluble 25D through cell membranes (534, 535). Furthermore, this suggests that 

immediate vitamin D supplementation following burn injury and increasing serum free 

and bioavailable 25D3 levels may prove to be immense potential therapeutic value in 

decreasing the risk of subsequent sepsis for the following reasons. Firstly, burned 

patients exhibit significant fluid shifts and protein translocation immediately following 

injury. Therefore, increasing circulating levels of free 25D3 may prove beneficial and 

improve monocytes and other immune cell functions through autocrine utilisation. 

Major thermal injury is known to significantly disrupt the immune system and 

response predisposing patients to sepsis (112). Secondly, burned patients exhibit 

significant systemic inflammatory response making the diagnosis of sepsis difficult and 

risks treatment delay (466). Lastly, delay of appropriate treatment is significantly 

associated with increased mortality and poorer prognosis (467). Hence, measurement 

of free and bioavailable 25D3 can be valuable in the management of burn patients.  

A recent review highlighted the importance of free vitamin D measurements as free 

25D levels are independent of confounding factors (such as liver function, kidney 

disease and pregnancy) and correlated well with pathological conditions including 

liver, kidney, tumour and allergic diseases (536). Interestingly, a recently published 
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case report described a 58-year-old with severe vitamin D deficiency was diagnosed 

with congenital VDBP deficiency associated with homozygous deletion of the GC gene 

(537).  Secondary to VDBP absence, serum 25D levels were persistently undetectable. 

On further analysis, free and bioavailable 25D were quantified with free 25D being 

directly measured. Despite lifelong VDBP deficiency with undetectable 25D, the patient 

did not develop rickets or osteomalacia and only presented to the medical services in 

her fifth decade due to osteopenia and fragility fractures. This case report presents the 

strongest clinical evidence thus far, in support of the ‘free hormone hypothesis’ and 

intracrine vitamin D metabolism (534, 535, 538). No other reports studying vitamin D 

status and sepsis in severely burned patients are in the literature. 

Vitamin D status and metabolism demonstrated significant correlations with wound 

healing and subsequent scarring. During the acute phase following thermal injury, 

circulating 25D3 levels and metabolism via both hydroxylation pathways had 

significant association with wound healing durations. Moreover, serum 25D3 and 

bioavailable 25D3 levels at D01 post-burn injury were associated and predictive of time 

taken to achieve wound closure independent of injury severity and subsequent surgical 

intervention. This suggests that immediate supplementation of 25D3 in severely 

burned patients may probably improve wound healing rates. Although, no studies 

examining wound healing and acute response of vitamin D following major thermal 

injury could be identified in the literature. Similar observations were made in other 

pathologies such as diabetic foot ulcers (539, 540). 
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In this study, various vitamin D metabolites throughout the first-year post-major 

thermal injury have shown significant correlations with subsequent objective and 

subjective scar measures. A relationship between lower vitamin D status in burned 

patients and poor scarring outcomes was previously reported (520). Furthermore, 

post-burn vitamin D deficiency was associated with worse biomechanical properties of 

subsequent hypertrophic scarring, including increased pigmentation, reduced skin 

barrier function, decreased scar pliability, and slower movement of interstitial fluid 

(541, 542). These observations could be secondary to amelioration of dermal immune-

inflammatory responses by vitamin D(543). This suggests that long term vitamin D 

supplementation following thermal injury may be beneficial. 

23,25D3 is one of the by-products of C23 hydroxylation pathway in vitamin D 

metabolism. In this study, higher serum levels of 23,25D3 were observed among 

survivors following thermal injury, as well as in burned patients who did not develop 

multi-organ failure and/or sepsis. Additionally, lower circulating levels of 23,25D3 

following thermal injury was significantly associated with delayed wound healing and 

poor scarring outcomes. This is a novel finding as no literature describing 23,25D3 and 

the C23 hydroxylation metabolism in the context of clinical care and outcomes exists. 

The biological activity of 23,25D3 remains to be established. Furthermore, Prof. Martin 

Hewison’s team and Prof. Ann Logan’s team explored potential effects of this molecule 

on monocyte function and mRNA levels of α-SMA, fibronectin and collagen I 

respectively. These experiments did not reveal any biological activity/effects of this 

metabolite (unpublished data). This suggests that 23,25D3 may be an intermediary by-
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product and biomarker of the c23 hydroxylation pathway of vitamin D metabolism. No 

published literature describing the biological activity of 23,25D3 were identified. 

This study has limitations. The addition of participants of the HAS study as healthy 

controls with inclusion criteria different from the e-SIFTI healthy controls. The 

stringent exclusion criteria in the HAS study may not reflect the co-morbid status of 

the burnd cohort. Furthermore, fibroblast growth factor-23 (FGF-23) levels in serum 

were not quantified owing to limited serum quantity. FGF-23 plays a complex and 

essential role in vitamin D metabolism. FGF-23 inhibits renal 1α-hydroxylase and 

subsequent production of 1,25D3 (544, 545). Additionally, FGF-23 stimulates the 

catabolism of 1,25D3 by activating 24-hydroxylase(546). Burned patients exhibited 

significantly elevated systemic levels of FGF-23 and lower vitamin D status compared 

to healthy volunteers (130, 510). This indicates that elevated FGF-23 levels following 

thermal injury is a potential mechanism associated with significant reduction in vitamin 

D levels observed in severely burned patients in this study. Therefore, elevated 

circulating FGF-23 levels may have adverse effect outcomes following thermal injury. 

This is concerning, as increased systemic levels of FGF-23 was associated with poor 

outcomes, including mortality, in critically ill patients (547-549).  

4.5 Conclusions 

Major thermal injury significantly influences vitamin D status and metabolism in 

patients for at least 12 months post-injury. Lower levels of various vitamin D 

metabolites in burned patients were significantly associated with poorer prognosis 

including sepsis, mortality, wound healing and subsequent scarring. Data indicate that 
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immediate and long-term vitamin D supplementation follow severe burn injury may 

greatly improve outcomes. Further studies are encouraged to validate the effects of 

post-burn vitamin D status and outcomes. RCTs investigating the influence of vitamin D 

supplementation, 25D3, on the prognosis of burned patients may be required for 

clinical implementation. 
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CHAPTER 5: ADIPOKINE STATUS AND 

ITS INFLUENCE ON OUTCOMES 

FOLLOWING SEVERE BURN INJURY 
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5.1 Introduction 

Adipose tissue is increasingly becoming recognised as a functional endocrine organ 

with potential roles in various pathologies including type 2 diabetes, cancer and 

dementia, through its pro-inflammatory actions(550-554). Hence, the relationship 

between adipose tissue and critical illness has been gaining interest. 

Critical illness following injury is a multifactorial heterogeneous disorder characterised 

by an overwhelming pro-inflammatory response accompanied by a compensatory anti-

inflammatory reaction and subsequent immunosuppression (555, 556). This classical 

paradigm also applies to severe forms of critical illness such as burns, the pathology of 

which we have described previously (133, 134). The human response to burn injury 

includes a so-called ‘genomic storm’(557), consistent with simultaneous increased 

systemic inflammation, innate immune activation and anti-inflammatory response (94, 

112), as well as suppression of adaptive immunity (557). In addition, burn patients and 

others with severe critical illness suffer from a prolonged hypermetabolic, 

hypercatabolic response (94, 558). 

The metabolic response following thermal injury is characterised as a two phase 

response: the ‘ebb’ phase within 48 hours where metabolism, cardiac output and 

oxygen consumption are reduced, followed by the ‘flow’ phase at approximately 120 

hours post-injury where these parameters increase and plateau (559). This metabolic 

response includes: peripheral lipolysis and free fatty acid (FFA) (513) oxidation leading 

to an acute, global and complex increase in FFA levels (560); systemic induction of 

endoplasmic reticulum stress and unfolded protein response (561); up to 6-fold 
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increase in breakdown rates of skeletal muscle protein (562); elevation in REE up to 

140%(474) that can be prolonged (94). 

Burns and other severe critical illnesses have been reported to influence adipose tissue 

morphologically and functionally.  Saraf et al reported the impact of severe burn injury 

on subcutaneous white adipose tissue in children and observed  significantly reduced 

adipocyte size, increased collagen deposition and cell mitochondria content, increased 

immune cells such macrophages, as well as increased inflammatory cytokine 

production (563). These morphological changes suggest “browning” of subcutaneous 

adipose tissue following thermal injury, a finding which was confirmed biochemically 

and functionally. Sidossis et al reported significantly increased mitochondrial density 

and mitochondrial respiratory capacity, as well as an 80-fold increase in the expression 

of uncoupling protein 1 (UCP1), a molecule abundantly observed in brown adipose 

tissue depots (564), in burn patients compared to healthy controls (565). In addition, 

Patsouris et al reported similar findings including significantly increased mitochondrial 

mass and adipose tissue browning markers in burn patients (566).  This could be a 

compensatory mechanism since brown adipose tissue is known to induce 

thermogenesis, modulate energy expenditure and exert local tissue effects such as 

stimulating angiogenesis and influencing macrophage polarization (567). Similar 

morphological and metabolic activity alterations of adipose tissue have been reported 

in critically ill patients (568, 569). A functional aspect of adipose tissue is its endocrine 

role through the production of adipokines, adipocyte derived cytokines, and these may 

mediate many of the effects seen in burns and critical illness. 
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There are many adipokines now described and they exert both anti-inflammatory and 

pro-inflammatory effects on various body systems. These include adiponectin, ghrelin, 

leptin, resistin and visfatin  Adiponectin is released exclusively from white adipose 

tissue (326), and is the most abundant adipose-specific adipokine, with greater 

expression in subcutaneous fat compared to visceral fat (327). Adiponectin exerts anti-

inflammatory effects (328). Ghrelin is an orexigenic hormone that is an endogenous 

ligand to growth hormone and was thought to be produced primarily by the stomach 

(329), but has subsequently been identified in other tissues including adipose tissue 

(330). Ghrelin signalling, independent of growth hormone and dietary intake, is 

associated with adiposity, changes in fat distribution and mobilisation (331, 332). 

Leptin is primarily secreted by subcutaneous white adipose tissue, the amount of 

leptin secreted into the circulation is proportional to adipose tissue mass and 

nutritional status (328). Leptin exhibits structural similarities to cytokines (333) and is 

pro-inflammatory (334). Resistin is also a pro-inflammatory adipokine expressed by 

adipocytes and other tissues including skeletal muscle (335, 336). Visfatin, also called 

pre-B-cell colony enhancing factor, is primarily secreted by adipocytes in visceral white 

adipose tissue and exhibits pro-inflammatory effects (337).  

More recently it has been shown that adipokine levels in the circulation have 

significant associations with outcomes in critically ill patients. These effects of 

adipokines on critical illness have been summarised in Chapter 1 and previously 

published (135). Systemic levels of adiponectin, ghrelin and leptin demonstrated 

heterogenous results and correlations illness severity, as measured through 

biomarkers and clinical scoring systems, and outcomes including mortality. Critically ill 
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patients exhibit significantly raised circulating resistin (131, 371, 374, 375, 387, 391-

396) and visfatin levels (387, 397-403). Additionally, both resistin and visfatin 

significantly correlated with pro-inflammatory responses as measured via systemic 

biomarkers (including CRP, IL-6, IL-8  and TNF-α), and worse clinical severity scores 

(such as APACHE II, Glasgow Coma score, multiple organ dysfunction score, SAPS II and 

SOFA)(131, 371, 374, 375, 387, 391-395, 397-403). Furthermore, high resistin and 

visfatin levels in blood were associated with poor prognosis in critically ill populations 

including mortality (392, 393, 398-402). 

A systematic review examining the evidence for adipokines having an influence on 

critical care patients has been published recently (404). It concludes that although 

strong observations were reported indicating the influence of adipokines on the 

prognosis of critical illness, additional investigations with more diverse study 

participants (such as age, gender, BMI, ethnic groups and different pathologies) are 

required to improve current understanding of adipokines in critically ill populations. 

This is essential in order to validate the potential clinical value and utility of adipokines 

as diagnostic and/or prognostic biomarkers, as well their potential as therapeutic 

targets in critical illness including burn and trauma. Furthermore, studies to date have 

investigated the association of adipokines with critical illness in the acute setting only. 

This focus on the acute setting has further limited the translation of adipokines in 

clinical settings. Importantly, since medical advancements have improved survival 

rates after critical trauma (405-407), greater emphasis is now placed on the  

prevention and treatment of potentially debilitating long-term sequelae experienced 
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by survivors of severe illness including chronic critical illness (408-410), prolonged 

pathophysiological responses(94) and scarring (411). 

Due to the scarcity of reported data, the adipokine response to burn injury and its 

possible effects on prognosis of patients remains unclear. We hypothesize that major 

burn injury results in significantly affects adipokines and that systemic levels of 

adipokines post-injury maybe associated outcomes including sepsis, MOF, mortality, 

wound healing and scarring. We hypothesize that adiponectin and ghrelin may have 

potential therapeutic value following major burn injury. 

The aims of this thesis include determining the status of the adiponectin, leptin, 

ghrelin, resistin and visfatin in severely burned patients; characterising these 

adipokines longitudinally from day 1 following severe thermal injury till month 12 post-

injury; exploring associations between the longitudinal adipokine response and clinical 

outcomes in burned patients including mortality, MOF, sepsis, wound healing and 

scarring and identify any potential clinical biomarkers that may improve prognosis of 

burned patients or identify novel therapeutic targets. 

 

5.2 Methods 

General methodology of the study, including ethical approval and statistical analysis, 

are described in Chapter 2. It is important to point out that patient weight and body 

mass index were not used in this chapter despite their importance for adipokine levels. 

This is because the weight and height recorded for burn patients were estimated 
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values rather than absolute measurements due to the critical state of burn patients 

and logistics of the intensive care unit in QEHB. 

5.2.1 Measurement of Adiponectin  

Adiponectin levels in serum samples were measured using Duoset® ELISA Kits (DY 1062 

RnD Systems™, Oxfordshire, UK). Plate preparation and reconstitution of assay 

reagents were done according to the kit protocol. Samples had been frozen at -80C 

and were thawed and diluted in Reagent Diluent at 1:5000. 100 µl of the final dilution 

was added to the plates and left to incubate overnight at 4ᵒC with shaking. 

Following incubation, the well contents were discarded and washed 3 times with 400µl 

of wash buffer. One hundred microliters of diluted biotinylated human adiponectin 

detection antibody were added to each well thereafter, followed by incubation for 2 

hours with shaking at room temperature. The contents of the well were then discarded 

and washed as previously mentioned. Following this, 100µl of Streptavidin-HRP was 

added to each well and left to incubate for 20 minutes at room temperature in the 

dark. The contents of the well were then discarded and washed 3 times to remove 

unbound antibody.  One hundred microliters of substrate solution were then added to 

each well and left to incubate for 20 minutes at room temperature in the dark. 

Thereafter, fifty microliters of stop solution were added to each well.  

The absorption of each plate was determined using a BioTek ELx808™ Absorbance 

Microplate Reader and BioTek Gen5™ Data Analysis Software (BioTek®, Swindon, UK) 

at 450nm against 550nm as reference.  Adiponectin levels were extrapolated from 

standard curves using Graphpad PRISM® (GraphPad Software Inc., California, USA). 



198 
 

Interplate and intraplate variability are 14.9% and 30% respectively. The standard 

curves are illustrated in Supplementary Figure 7.  

5.2.2Measurement of Ghrelin, Leptin, Resistin, Visfatin 

Levels of Ghrelin, Leptin, Resistin and Visfatin were measured in serum samples using a 

multiplex method and the Bio-Plex Pro™ Human Assay Kit (#171-304070M Bio-Rad 

Laboratories Inc., Hertfordshire, UK). Flat bottom plates and reconstitution of assay 

reagents including magnetic beads were prepared as per kit protocol. Samples were 

prepared and diluted using Sample Diluent to 1 in 4. Samples were then vortexed and 

50µl was added to each well. The plates were incubated for 1 hour at room 

temperature with shaking. 

Following incubation, the well contents were washed 3 times with 100µl of wash 

buffer. Next, 25µl of 1x diluted detection antibody was added to each well and left to 

incubate for 30 minutes at room temperature with shaking.  The contents of the well 

were then washed 3 times with wash buffer. Fifty microliters of diluted 1x 

Streptavidin-PE was then added to each well and left to incubate for a further 10 mins 

at room temperature with shaking.  The wells were then washed 3 times with 100µl of 

wash buffer to remove unbound antibody. All wash procedures were carried out using 

Bio-Plex Pro™ Wash Station (Bio-Rad Laboratories Inc., Hertfordshire, UK). 

Following the final wash, the beads were re-suspended in 125µl of assay buffer and 

incubated for 30 seconds at room temperature with shaking. The fluorescence of each 

plate was determined and converted into absolute concentrations using Bio-Rad Bio-
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Plex 200™ Plate Reader and Bio-Plex Manager™ (Bio-Rad Laboratories Inc., 

Hertfordshire, UK) with settings adjusted as per kit protocol. 

5.3 Results 

5.3.1 Patient Demographics and serum adipokines 

Forty-seven patients following burn injury admitted to QEHB and 10 healthy volunteers 

were enrolled in this study. This process is illustrated in Supplementary Figure 8. 

Patient demographics including age and gender were similar to healthy volunteers 

(Table 5.1). Median TBSA was 42% and median revised BAUX score was 101. Median 

fluid resuscitation of burn patients was 18.8L of intravenous fluids equating to a 

median of 5.51 mls/kg/%TBSA for the first 24 hours. HCT levels were similar between 

healthy volunteers and burn patients at day 1 post injury. 

Burned patients at day 1 had significantly reduced levels of adiponectin and leptin in 

serum compared to healthy volunteers, 38.8 µg/mL vs. 69.2 µg/mL (p = 0.001) and 2.8 

ng/mL vs. 7.0 ng/mL (p = 0.005) respectively. Resistin and visfatin were significantly 

elevated in patients at day 1 post injury compared to healthy volunteers, 26.0 ng/ml vs 

7.6 ng/ml (p<0.001) and 14.3 pg/ml vs 0.8 pg/ml (P<0.001) respectively. Systemic levels 

of ghrelin were similar between burn patients and healthy volunteers. Findings are 

summarised in Table 5.1. 
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 Healthy Controls n Burns Patients  n P value 

Age 38 (31-72) 10 41 (34-61) 47 0.875 

Gender (M/F) 5/5 10 30/17 47 0.485 

% Total Burn Surface Area - - 45 (25-53) 47 - 

Revised Baux Score   101 (80-116) 47 - 

Hematocrit 0.380 (0.369-0.404) 9 0.429 (0.374-0.459) 31 0.055 

Adiponectin (µg/mL) 69.2 (56.5-103.4) 10 38.8 (24.5-55.7) 46 0.001 

Leptin (ng/mL) 7.0 (5.9-10.4) 10 2.8 (1.0-5.9) 47 0.005 

Ghrelin (ng/mL) 0.9 (0.4-1.7) 10 0.5 (0.3-0.9) 47 0.190 

Resistin (ng/mL) 7.6 (6.6-8.9) 10 26.0 (15.3-53.7) 47 <0.001 

Visfatin (pg/mL) 0.8 (0.4-1.2) 10 14.3 (7.3-18.7) 47 <0.001 

Table 5.1. Demographics and serum adipokine levels in healthy volunteers and burns 
patients at day 1 post injury.  
Continuous variables are shown as median values with inter-quartile range. Burn 
patients and healthy volunteers were compared using Mann-Whitney test for 
continuous variables and Chi-squared test for categorical variables. Significant 
relationships are highlighted in bold. 
 

5.3.2 Patient Outcomes 

All burn patients recruited into the SIFTI study are included in this analysis, including 

non-survivors and participants lost to follow-up.  From a total of 47 burn patients, 21% 

died at or before 28 days following injury and 38% died during their admission episode. 

Thirty-eight percent of burn patients were diagnosed with MOF at median day 3 post-

injury. Seventy percent of burn patients developed sepsis at median day 5 following 

injury. Patient outcomes are summarised in Table 5.2. Scarring outcomes for burn 

patients assessed in this chapter are as described in Chapter 3, Table 3.2 
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Outcomes Measure n Details 

28D Survivor (Y/N) 37/10 47 Mortality at 28 days 

Survivor (Y/N) 29/18 47 Mortality in hospital 

MOF (Y/N) 18/29 47 DENVER score >3 for 48 hrs 

Sepsis (Y/N) 33/14 47 ABA Sepsis Trigger Criteria ≥3 

Time to 95% Heal (Days) 36 (22-60) 23 Higher number worse outcome 

Table 5.2. Summary of patient outcomes following injury.  
Continuous variables are quoted as median values with inter-quartile range. 
 

5.3.3 Longitudinal Adipokine response following thermal injury 

Levels of anti-inflammatory adiponectin were significantly reduced in burn patients 

throughout the 1-year study period compared to healthy volunteers, median 69.2 

µg/mL vs. 31.26 µg/mL (p <0.001). Additionally, levels of the pro-inflammatory 

adipokine leptin were significantly depressed in patients at day 1 post-burn injury but 

returned to healthy control levels thereafter. Other pro-inflammatory adipokines, 

including resistin and visfatin remained significantly elevated in patients for 1-month 

post-thermal injury compared to healthy individuals, median 36.7 ng/mL vs. 7.6 ng/mL 

(p <0.001) and 5.2 ng/mL vs. 0.9 ng/mL (p <0.001) respectively (Figure 5.1). 
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Figure 5.1. Major burn injury significantly reduces systemic adiponectin levels and 
simultaneously increases systemic resistin and visfatin. 
Adipokines in serum were analysed over a 12-month period in burn injured patients.  
a. Adiponectin; b. Leptin; c. Ghrelin; d. Resistin; e. Visfatin. Analyte levels at timepoints 
compared to healthy controls (HC) using Kruskal-Wallis test with Dunn’s multiple 
corrections; * p < 0.05. 
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5.3.4 Longitudinal Adipokine response among survivors and non-survivors following 

thermal injury 

Pro-inflammatory adipokines, visfatin and resistin, were significantly elevated in non-

survivors compared to survivors following severe burn injury. Serum visfatin levels 

were significantly increased in burns patients who died before/at day 28 post-injury 

compared to survivors on admission till day 7, median 6.7 ng/mL vs. 4.8 ng/mL (p= 

0.004). In addition, visfatin levels in blood were significantly higher in patients who 

died during their admission episode compared to survivors at day 1 post-burn injury, 

median 18.1 ng/mL vs. 10.5 ng/mL (p = 0.007). 

Circulating levels of resistin were significantly elevated in patients who died during 

their admission episode following severe burn injury compared to survivors at D14 

onwards, median 43.8 ng/mL vs 13.2 ng/mL (p <0.001). The longitudinal response of 

adipokines in burns survivors and non-survivors are summarised in Figures Figure 5.2 

and Figure 5.3. 

5.3.5 Longitudinal Adipokine response and MOF following severe thermal injury 

Following burn injury, patients who developed MOF demonstrated a different 

adipokine response compared to patients without MOF. At D01 post-injury, burns 

patients with MOF had significantly elevated levels of visfatin in serum compared to 

patients without MOF, median 16.4ng/mL vs. 9.2 ng/mL (p = 0.034). Subsequently, 

patients with MOF had significantly increased levels of resistin and visfatin compared 

with patients without MOF at D14-D28 post-burn injury, median 54.6 ng/mL vs. 28.2 

ng/mL (p <0.001) and 8.4 ng/mL vs. 4.0 ng/mL (p = 0.001) respectively. The longitudinal 
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adipokine response in burns patients who developed and did not develop MOF is 

summarised in Figure 5.4. 

 

Figure 5.2. 28D non-survivors had significantly elevated levels of visfatin compared 
to 28D survivors following burn injury. 
Serum adipokine levels in 28-day burn survivors and non-survivors were analysed 
across all timepoints.  a. Adiponectin; b. Leptin; c. Ghrelin; d. Resistin; e. Visfatin. 
Analyte levels at each timepoint was compared between both cohorts (28D survivors 
vs. 28D non-survivors) using Mann-Whitney Test; * p <0.05.  
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Figure 5.3. Burn non-survivors had significantly increased levels of resistin and 
visfatin compared to burn survivors. 
Serum adipokine levels in burn survivors and non-survivors were analysed across all 
timepoints.  a. Adiponectin; b. Leptin; c. Ghrelin; d. Resistin; e. Visfatin. Analyte levels 
at each timepoint was compared between both cohorts (survivors vs. non-survivors) 
using Mann-Whitney Test; * p <0.05.  
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Figure 5.4. Burn Patients with MOF exhibited significantly increased levels of resistin 
and visfatin compared to burn patients without MOF. 
Serum adipokine levels in burn patients who developed and did not develop MOF were 
analysed across all timepoints.  a. Adiponectin; b. Leptin; c. Ghrelin; d. Resistin; e. 
Visfatin. Analyte levels at each timepoint was compared between both cohorts (MOF 
vs. No MOF) using Mann-Whitney Test; * p <0.05.  
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5.3.6 Longitudinal Adipokine response in Septic and Non-Septic patients following 

severe thermal injury 

Severely burned patients with sepsis demonstrated a significantly different 

inflammatory response compared to non-septic patients. Following thermal injury, 

septic patients exhibited a significant reduction of anti-inflammatory adipokine 

response and a simultaneous significant increase in pro-inflammatory adipokines. Both 

responses were prolonged.  

Systemic adiponectin levels in septic burns patients remained significantly reduced 

from admission till M12 post-injury compared to healthy individuals, median 28.4 

µg/mL vs. 69.2 µg/mL (p <0.001). Furthermore, adiponectin levels in serum of septic 

burns patients were significantly reduced at D03-D28 post injury compared to non-

septic patients, 25.8 µg/mL vs. 38.0 µg/mL (p <0.001). 

Systemic pro-inflammatory adipokine levels were significantly elevated in septic 

patients compared to non-septic patients at D14-28 post-burn injury. This included 

leptin (median 6.7 ng/mL vs. 3.7 ng/mL, p = 0.018), resistin (median 49.1 ng/mL vs. 

16.9 ng/mL, p <0.001) and visfatin (median 6.6ng/mL vs. 2.3ng/mL, p <0.001). The 

longitudinal adipokine response in septic and non-septic burns patients is summarised 

in Figure 5.5. 

5.3.7 Longitudinal Adipokine response and wound healing following severe thermal 

injury 

Systemic levels of adipokines significantly correlated with wound healing in patients 

following severe thermal injury. At D03-D07 post-burn injury, circulating leptin levels in 
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patients had significant positive correlation with duration taken to achieve 95% wound 

healing, rho 0.377 (p 0.008). Furthermore, lower levels of leptin and resistin in serum 

of burns patients at D14-D28 significantly correlated with longer wound healing times, 

rho 0.333 (p 0.006) and rho 0.321 (p 0.009) respectively.  Conversely, adiponectin 

levels in blood at D14-28 post-burn injury demonstrated a significant inverse 

relationship with duration of wound healing, rho -0.352 (p 0.006). Significant 

correlations between adipokines levels at various timepoints and duration of wound 

healing are summarised in Figure 5.6. 

5.3.8 Longitudinal Adipokine response and scarring following severe thermal injury 

5.3.8.1 Subjective Scar Measures 

Serum adipokine levels were significantly associated with scarring outcomes following 

burn injury as measured using mVSS and POSAS.  Serum pro-inflammatory adipokines, 

resistin and visfatin, at D14-D28 post-injury significantly correlated with higher mVSS 

and worse scarring, rho 0.566 (p = 0.001) and rho 0.619 (p <0.001) respectively. 

Similarly, elevated circulating levels of resistin and visfatin in burns patients were 

significantly associated with poor scarring as per clinician assessment using POSAS, rho 

0.391 (p = 0.027) at D14-D28 and rho 0.575 (p <0.001) at D03-D28 respectively. 

Furthermore, elevated visfatin levels in patients were significantly associated with 

higher OPSS at D14-D28 post-burn injury, rho 0.386 (p = 0.029). Ghrelin levels in serum 

of burn patients during the acute and late stages post-injury demonstrated a 

significant inverse correlation with scarring outcomes. Significant correlations between 

serum adipokines measured longitudinally and subjective scar scoring systems are 

summarised in Figure 5.7. 



209 
 

 
Figure 5.5. Septic burn patients exhibited significantly reduced levels of adiponectin 
with simultaneous elevated levels of leptin, resistin and visfatin compared to non-
septic burn patients. 
Serum adipokine levels in septic and non-septic burns patients were analysed across all 
timepoints.  a. Adiponectin; b. Leptin; c. Ghrelin; d. Resistin; e. Visfatin. Analyte levels 
at each timepoint was compared between both cohorts (Sepsis vs. No Sepsis) using 
Mann-Whitney Test; * p <0.05.  
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Figure 5.6. Reduced adiponectin levels were associated with longer wound healing 
times while leptin and resistin positively correlated with increased wound healing 
durations. 
Serum adipokine levels and days taken to achieve 95% wounds healed in burns 
patients were analysed across all timepoints. a. Leptin at D03-D07; b. Adiponectin at 
D14-D28; c. Leptin at D14-D28; d. Resistin at D14-D28. Correlations were performed 
between analyte levels at timepoints and time to 95% heal using Spearman’s rank 
correlation co-efficient; * p <0.05 
 

5.3.8.2 Objective Scar Measures 

Adipokine response following severe thermal injury was significantly associated with 

subsequent scarring outcomes as per objective measures via various devices. 

Circulating levels of resistin and visfatin were significantly associated with increased 
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scar thickness at D14-D28 post-thermal injury, rho 0.478 (p = 0.006) and rho 0.412 (p = 

0.019). 

At D03-D28, reduced leptin levels in serum of burns patients were significantly 

associated with increased scar thickness, rho -0.415 (p 0.002). Interestingly, elevated 

systemic levels of leptin significantly correlated with increased scar intensity at D03-

M12 post-burn injury, rho -0.386 (p <0.001). Significant correlations between 

adipokine response and ultrasound scar measures are summarised in Figure 5.8. 

Adipokine response following injury was significantly associated with subsequent scar 

pliability in burns patients. At D03-D28 post-injury, elevated adiponectin levels in 

serum were significantly associated with improved scar pliability, rho 0.393 (p = 0.003). 

Meanwhile, increased systemic levels of visfatin in burns patients at M02-M12 were 

significantly associated with poor scar pliability, rho -0.340 (p = 0.043). Interestingly, 

elevated ghrelin levels at D03-M12 post-thermal injury significantly correlated with 

increased scar firmness, rho 0.422 (p <0.001). Significant correlations between serum 

adipokine levels in burns patients and cutometer scar measures are summarised in 

Figure 5.9. 

Throughout the study period, serum adipokine levels in burns patients demonstrated 

significant associated with subsequent scar erythema and pigmentation. Significant 

correlations between circulating adipokine levels and colorimeter scar measures are 

summarised in Figures 5.10 and 5.11. 
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Figure 5.7. Adipokine response and correlations with subjective scar measures 
following severe thermal injury. 
Serum adipokine levels and scar scores as measured subjectively using mVSS and 
POSAS in burns patients were analysed across all timepoints. a. Ghrelin vs. mVSS at 
D14-D28; b. Resistin vs. mVSS at D14-D28; c. Visfatin vs. mVSS at D14-D28; d. Ghrelin 
vs. mVSS at M02-M12; e. Visfatin vs. OOSS at D03-D07; f. Ghrelin vs. OOSS at D14-D28; 
g. Resistin vs. OOSS at D14-D28; h. Visfatin vs. OOSS at D14-D28; i. Ghrelin vs. OOSS 
M02-M12; j. Visfatin vs. OPSS at D14-D28. Correlations were performed between 
analyte levels at timepoints and subjective scar scores using Spearman’s rank 
correlation co-efficient; * p <0.05. 
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Figure 5.8. Adipokine response and ultrasound scar measure correlations following 
severe thermal injury. 
Serum adipokine levels and scar thickness/intensity in burns patients as measured by 
ultrasound were analysed across all timepoints. a. Leptin vs. Scar Thickness at D03-
D07; b. Leptin vs. Scar Thickness at D14-28; c. Resistin vs. Scar Thickness at D14-D28; d. 
Visfatin vs. Scar Thickness at D14-D28; e. Leptin vs. Scar Intensity at D03-D07; f. Leptin 
vs. Scar Intensity at D14-D28; g. Leptin vs. Scar Intensity at M02-M12. Correlations 
were performed between analyte levels at timepoints and ultrasound scar measures 
using Spearman’s rank correlation co-efficient; * p <0.05. 
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Figure 5.9. Adipokine response and cutometer scar measure correlations following 
severe thermal injury. 
Serum adipokine levels and scar pliability (R2)/firmness (R0) in burns patients as 
measured by cutometer were analysed across all timepoints. a. Adiponectin vs. R2 at 
D03-D07; b. Adiponectin vs. R2 at D14-D28; c. Visfatin vs. R2 at M02-M12; d. Ghrelin 
vs. R0 at D03-D07; e. Ghrelin vs. R0 at D14-D28; f. Ghrelin vs. R0 at M02-M12. 
Correlations were performed between analyte levels at timepoints and cutometer scar 
measures using Spearman’s rank correlation co-efficient; * p <0.05. 
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Figure 5.10. Adipokine response and colorimeter scar measure correlations following 
severe thermal injury (Part 1).  
Serum levels of adipokines and scar erythema/pigmentation in burns patients as 
measured by colorimeter were analysed across all timepoints. a. Adiponectin vs. 
Erythema at D14-D28; b. Resistin vs. Erythema at D14-D28; c. Ghrelin vs. Erythema at 
M02-M12; d. Resistin vs. Erythema at M02-M12; e. Visfatin vs. Melanin at D01; f. 
Leptin vs. Melanin at D14-D28; g. Resistin vs. Melanin at D14-D28; h. Visfatin vs. 
Melanin at D14-D28; i. Leptin vs. Melanin at M02-M12; j. Resistin vs. Melanin at M02-
M12; k. Visfatin vs. L at D01; l. Resistin vs. L at D14-D28. Correlations were performed 
between analyte levels at timepoints and colorimeter scar measures using Spearman’s 
rank correlation co-efficient; * p <0.05. 
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Figure 5.11. Adipokine response and colorimeter scar measure correlations following 
severe thermal injury (Part 2). 
Continuation from Figure 5.10. a. Visfatin vs. L at D14-D28; b. Resistin vs. L at D14-D28; 
c. Adiponectin vs. a at D01; d. Adiponectin vs. a at D03-D07; e. Ghrelin vs. a at M02-
M12; f. Leptin vs. b at D14-D28; g. Resistin vs. b at D14-D28; h. Leptin vs. b at M02-
M12; i. Resistin vs. b at M02-M12. 
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5.3.9 Therapeutic potential of Adipokines following severe thermal injury 

Reducing circulating levels of pro-inflammatory adipokines may improve survival of 

patients following severe burn injury. At D03-D07 post-burn injury, uni-analyte and 

multi-analyte regression models demonstrated that circulating levels of visfatin were 

significantly associated with and predictive of 28-day mortality, p = 0.026 and p = 0.034 

respectively. Reducing serum levels of visfatin in burns patients by 1 ng/mL may 

increase the odds of 28-day survival by 16-17%. A significant association between 

resistin levels at D03-D07 post-thermal injury and sepsis has been observed. The multi-

variate analysis and significant therapeutic potential of adipokines following severe 

thermal injury are summarised in Table 5.3. 

Multi-variate regression models of adipokines and wound healing in burns patients 

demonstrated no significant therapeutic value. Multi-variate regression analysis could 

not be performed using scarring data due to low patient numbers. 

5.3.10 Adipokine potential as Diagnostic/Prognostic biomarkers following severe 

thermal injury 

Serum visfatin levels in burns patients were significantly different between survivors 

and non-survivors at D01 post-injury (Figure 5.2 and Figure 5.3). The predictive power 

of visfatin, alone or in combination with clinical scores, did not exceed 80%. The 

AUC/ROC curve analysis for visfatin and survival outcomes are summarised in Figure 

5.12 and Figure 5.13. 
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Measure of Benefit 

(No Adverse Outcome) 

Timepoint Outcome Analyte Co-Variates p- value 
Odds 

Ratio 

Effect 

on OR 

for 1 

unit (%) 

Required 

units to 

increase 

OR by 1 

D03-D07 Sepsis Resistin 

Age, TBSA, 

Inhalation 

Injury, Gender, 

APACHE II 

0.034 1.002 0.2 500 

D03-D07 
28D 

Mortality 
Visfatin 0.026 0.84 -16 -6.25 

D14-D28 MOF Ghrelin 0.038 0.377 -97.5 -1.03 

D14-D28 MOF Resistin 0.005 0.973 -2.7 -37.1 

D03-D07 Sepsis Resistin 
Age, TBSA, 

Inhalation 

Injury, Gender, 

APACHE II, All 

Analytes 

0.006 1.004 0.4 250 

D03-D07 
28D 

Mortality 
Visfatin 0.034 0.83 -17 -5.88 

D14-D28 MOF Resistin 0.006 0.967 -3.3 -30.3 

Table 5.3. Potential Therapeutic Effects of Adipokines on Binary Outcomes 
following Severe Thermal Injury. 
Outcomes and Adipokines at all timepoints were assessed using uni-analyte and 
multi-analyte regression models. Multi-variate binary logistic regression was 
performed accounting for patient demographics, injury severity and/or physiological 
state on admission. Significant associations p <0.05. 
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Figure 5.12. Serum visfatin levels at D01 post-injury and 28-day mortality in burns 
patients. 
Predictive strength of serum levels of visfatin at D01 post-injury on 28-day mortality 
were assessed using AUC/ROC curve analysis. a. ROC curve analysis of levels of visfatin 
and clinical scores both alone and in-combination; b. AUC analysis of levels of visfatin 
and clinical scores both alone and in-combination. 
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Figure 5.13. Serum visfatin levels at D01 post-injury and in-hospital mortality in 
burns patients. 
Predictive strength of serum levels of visfatin at D01 post-injury on 28-day mortality 
were assessed using AUC/ROC curve analysis. a. ROC curve analysis of levels of visfatin 
and clinical scores both alone and in-combination; b. AUC analysis of levels of visfatin 
and clinical scores both alone and in-combination. 
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5.3.11 Longitudinal Adipokine and Immune-Endocrine response following severe 

thermal injury 

Acute severe burn injury induces major simultaneous immune-endocrine responses. 

Following injury, patients exhibited increased expression of both pro-inflammatory and 

anti-inflammatory adipokines and cytokines. In addition, increased expression of 

multiple immune functions was seen in burned patients.  

Systemic levels of adiponectin, ghrelin and leptin in burned patients were different 

compared to healthy volunteers. The changes in circulating adipokines occurred 

immediately following thermal injury and remained persistently high till, at least, M12 

post-injury. This suggests prolonged utilisation of these adipokines during the 

hypermetabolic response following severe thermal injury. Furthermore, low neutrophil 

phagocytosis expression at D01 post-thermal injury coincided with elevated and 

reduced circulating expressions of adiponectin and leptin. This suggests possible 

immune-modulatory role of adiponectin and leptin in these patients (570). In addition, 

elevated serum adiponectin coincided with increased IL-1RA and IL10 at D01 post-

thermal injury. While raised IL-6 in serum was present with reduced circulating levels 

of adiponectin at D03-D07 post-injury in burned patients. This relationship between IL-

6 and adiponectin levels inverses thereafter. This indicates possible immune-

inflammatory modulatory role of adiponectin following thermal injury(571, 572). 

Pro-inflammatory visfatin level in serum was elevated at D01 and D14-28 following 

severe thermal injury indicating a time-dependent bi-phasic response (573). 

Interestingly, IL-10, IL-12p70 and IL-17 exhibited a similar bi-phasic response. This is 
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mostly likely attributed to the effects of visfatin on immune cells (348, 574, 575). This 

suggests the influence of visfatin on the immune system and its contribution to 

systemic inflammatory response following severe thermal injury. 

Burn patients exhibited a prolonged differential immune-endocrine response when 

compared to healthy volunteers. The simultaneous anti-inflammatory and pro-

inflammatory responses between burned patients and healthy volunteers remained 

altered for, at least, one year following injury. The longitudinal adipokine and immune-

endocrine status and interactions in burned patients and healthy volunteers are 

summarized in Figure 5.14. 
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Figure 5.14. The longitudinal adipokine and immune-endocrine response following 
major burn injury. 
Circulating status of cytokines, immune function and adipokines was analysed across 
all timepoints accounting for the revised Baux score. Immune-endocrine status of 
healthy volunteers was performed to allow comparison. This heatmaps represent 
expressions of molecules in serum by colour with high expressions being red and low 
expressions being blue. Immune function tests include Monocyte and Neutrophil ROS 
generation (Phagoburst MFI), Neutrophil and monocyte Phagocytosis (Phagotest, % 
positive) and Nuclear cfDNA concentration (marker of NETs). Cytokines and other 
hormones analysed include IL-1Ra, GCSF, IL-6, IL-8, IL-10, IL-12p70, IL-17, MCP-1, TNF-
α, IGF-1, IL-β1 and TGF-β1. 
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5.3.12 Subgroup Analysis 

5.3.12.1 Gender Influence on Longitudinal Adipokine Response following Severe 

Thermal Injury 

Gender exerted significant effects on systemic levels of adipokines in major burns 

patients. Injury severity in both female and male burns patients was similar, p = 0.956. 

Male patients had a significantly reduced anti-inflammatory response at D03-M12 

compared to non-injured males, median adiponectin 29.5 µg/mL vs. 77.8 µg/mL, p = 

0.001. Furthermore, male patients demonstrated a significantly elevated pro-

inflammatory state with increased levels of resistin and visfatin at D01-D28 following 

severe thermal injury compared male healthy volunteers, median 47.8 ng/mL vs. 7.3 

ng/mL (p = 0.001) and 5.0 ng/mL vs. 1.0 ng/mL (p = 0.002) respectively. 

Leptin levels in males and female burns patients were similar to their correspondent 

healthy controls at all timepoints following injury. Interestingly, female patients had 

significantly increased levels of leptin at D03-M12 following thermal injury compared 

male patients, median 8.2 ng/mL vs. 4.1 ng/mL (p <0.001). Circulating adipokine levels 

in male and female burns patients are summarised longitudinally in Figure 5.15. 

5.3.12.2 Age influence on Longitudinal Adipokine response following severe thermal 

injury 

Young and older burns patients exhibited significant differences in the adipokine 

response following injury. Injury severity was similar between both cohorts, p = 0.082 

and p= 0.50 respectively. At D01-D07 post-thermal injury, elderly patients exhibited 

significantly increased serum adiponectin levels compared to younger patients, median 
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45.1 µg/mL vs. 25.9 µg/mL (p <0.001). Interestingly, older burns patients had 

significantly reduced levels of systemic ghrelin at M02-M12 post-injury compared to 

younger burns patients, median 0.4 ng/mL vs. 0.8 ng/mL (p = 0.009). Serum adipokine 

levels in young and old burns patients are summarised longitudinally in Figure 5.16. 

 



226 
 

 

Figure 5.15. Longitudinal adipokine response in females and males following burn 
injury. 
Serum adipokine levels in female and male burns patients were analysed across all 
timepoints. a. Adiponectin; b. Leptin; c. Ghrelin; d. Resistin; e. Visfatin. Analyte levels 
at each timepoint was compared between both cohorts (Female vs. Male) using Mann-
Whitney Test; * p <0.05. Analyte levels of female and male burns patients were 
compared to female and male healthy controls (HC) using Kruskal-Wallis test with 
Dunn’s multiple corrections; + Female vs. HC Female, p <0.05; # Male vs. HC Male, p 
<0.05. 
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Figure 5.16. Longitudinal adipokine response in young and old patients following 
burn injury. 
Serum adipokine levels in young and old burns patients were analysed across all 
timepoints. a. Adiponectin; b. Leptin; c. Ghrelin; d. Resistin; e. Visfatin. Analyte levels 
at each timepoint was compared between both cohorts (Young vs. Old) using Mann-
Whitney Test; * p <0.05. Analyte levels of young and old burns patients were 
compared to young and old healthy controls (HC) using Kruskal-Wallis test with Dunn’s 
multiple corrections; + Young vs. HC Young, p <0.05; # Old vs. HC Old, p <0.05. 
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5.4 Discussion 

This study was carried out to profile the adipokine response from day 1 till month 12 

following severe burn injury using ELISA/Multiplex Technology. This study also 

investigated the associations of post-burn adipokine status with outcomes throughout 

the first year following injury. Furthermore, this study explored the diagnostic and 

therapeutic potential of adipokines. This is the first report exploring these areas 

simultaneously. 

Major thermal injury has been reported to alter various properties of adipose tissue 

(135) and significant alterations in levels of serum adipokines were observed in burned 

patients (131, 576). Wade et al reported reductions in plasma concentrations of 

adiponectin, ghrelin and leptin while plasma levels of resistin were elevated following 

thermal injury (131). The Wade et al study had two major limitations. Firstly, the 

authors intended to collect samples three times per day for 7 days. Despite this, they 

presented direct statistical analysis between healthy volunteers and burned patients 

without profiling the response. Secondly, the authors only investigated the 

associations between adipokines and metabolic parameters. Another study profiled 

the response of adiponectin, ghrelin and leptin in burned children (576). The authors 

reported that adiponectin, ghrelin and leptin demonstrated similar trajectories 

following burn injury starting off low at week 1 with levels increasing thereafter 

mimicking the metabolic responses during the recovery process (576). Additionally, 

circulating resistin levels were elevated in burns population (396). In this study, 

adiponectin and leptin levels in serum were significantly reduced following sever 

thermal injury. Circulating levels of leptin in burned patients returned to healthy 
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volunteer levels by D03-D07 post-injury while systemic levels of adiponectin never 

recovered throughout the first-year post-injury. No difference in circulating levels of 

ghrelin between burned patients and healthy volunteers was observed in this study. In 

addition, serum levels of resistin and visfatin were significantly elevated immediately 

following thermal injury till day 28. Thereafter, circulating levels of resistin and visfatin 

in burned patient return to healthy volunteer levels. Similar observations were made in 

critically ill populations in terms systemic levels of most adipokines following 

pathologies such as sepsis and pancreatitis (371, 387, 394, 402). Interestingly, blood 

levels of leptin in acute critical illness were reported to be either increased or similar 

compared to reference range (371, 387) while burn patients exhibited significantly 

lower systemic leptin levels compared to un-injured individuals as illustrated in this 

study and others (131, 576). This indicates a potential unique response induced by 

major burn injury. Furthermore, this is the first study to characterise the adipokine 

response for 12 months following major thermal injury and in the context of critical 

illness. Interestingly, burned patients exhibited significant altered systemic adipokine 

concentrations and expressions compared to healthy volunteers throughout the study 

period. 

Furthermore, age and gender had significant effects on adipokine response following 

severe thermal injury in this study. This may partly explain the differential outcomes 

between gender and age groups in burned patients (406, 440, 442). These are novel 

findings as no literature could be identified exploring longitudinal gender and age 

differential adipokine responses following burn injury or critical illness.  The ageing 

process and sex hormones have been reported to influence adipose tissue affecting 
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adipokine levels outside the context of critical illness. These effects are discussed in 

detail in these reviews (577, 578). 

Circulating levels of visfatin were significantly elevated among non-survivors 

immediately following severe thermal injury. Additionally, visfatin levels during the 

first week of burn injury were independently associated with predictions of 28-day 

mortality. However, the discriminatory power of this observation in burned patient 

was poor (AUROC <0.8). Furthermore, significantly increased levels of ghrelin and 

resistin at later timepoints were observed among non-survivors post-burn injury. 

Although no other reports describing similar observations in burned patients were 

identified, significant positive associations between resistin and visfatin with mortality 

were reported in critically ill populations (399, 579, 580). Interestingly, higher serum 

ghrelin concentration was reported as a positive predictor of survival in critically ill 

septic patients (581). However, observations of ghrelin response and mortality in this 

study should be interpreted with caution for the following reasons. This study was 

conducted in medical intensive care settings only and therefore limiting interpretation 

to this cohort only and therefore does not relate directly to critically ill surgical or 

trauma patients. Secondly, the median age of patients in this study was >60 years old 

while post-burn and trauma patients are usually younger. Further studies in the burns 

and trauma population are encouraged to validate this finding and scientific 

investigations are needed to explore potential mechanisms behind this observation. 

Alterations of systemic adipokine concentrations were observed in burned patients 

who developed sepsis and/or multiorgan failure. Adiponectin levels in serum were 
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significantly reduced in septic patients post-thermal injury. While leptin, resistin and 

visfatin were significantly elevated in burned patients who subsequently developed 

MOF and/or sepsis. No other studies investigating the influence of adipokine status on 

short-term outcomes in burned patients have been published. However, similar 

observations were reported in critically ill patients who were admitted to intensive 

care with sepsis, septic shock and/or organ dysfunction (371, 402, 579, 582, 583). The 

mechanisms responsible for these observations in burns and critically illness remain to 

be fully elucidated. Further studies investigating the status of adipokines in critically ill 

populations at local tissue and systemic level are required to address this knowledge 

gap. Furthermore, quantification of associations and correlations between systemic 

adipokine levels and immune/inflammatory response using multi-variate statistical 

analysis may improve understanding of mechanisms of actions of adipokines in critical 

care contexts accounting for con-founding variables such as patient characteristics and 

health status, injury/illness severity and treatments. 

Following severe thermal injury, low levels of anti-inflammatory adiponectin and/or 

high concentrations of pro-inflammatory leptin, resistin and visfatin significantly 

correlated with longer wound healing times and worse scarring outcomes. These 

associations remained significant at multiple timepoints. This suggests that adipokines 

may influence the process of wound healing and scarring. Interestingly, it was reported 

that adipokine concentrations may explain the wound healing and scar enhancing 

effects of fat grafting (584). Fat grafting is a surgical technique used to improve scar 

characteristics and forms an invaluable management option in the burns, plastic and 

reconstructive surgeons’ repertoire. Despite being a validated surgical method, the 
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mechanisms of action associated with scar improvement outcomes remains to be 

established. Adipokines may offer a potential explanation due to their effects on 

procollagen synthesis, dermal matrix degradation, fibrosis, inflammation and 

vasculogenesis (585-587). In addition, involvement of adiponectin and leptin in scar 

pathogenesis and process has recently been reported(344, 588). Further studies 

Investigating the adipokine contents in the harvested fat graft and supernatant would 

prove useful. In addition, examining the adipokine and immune-inflammatory 

response using skin biopsies of treated and untreated scar longitudinally may prove 

invaluable in improving current understanding of mechanisms behind fat grafting and 

scarring outcomes measured objectively and subjectively. 

A limitation in this study is the high intra-plate variability for Adiponectin ELISA. Hence, 

the quantification process was repeated twice. Despite this, the adiponectin intra-plate 

variability remained high. Further investigations quantifying adiponectin in burn 

patients are required to validate the observations reported in this study. 

5.5 Conclusions 

Major thermal injury significantly influences systemic adipokine concentrations in 

patients for a minimum of 12 months post-injury. Adipokines status post-burn injury 

had significant associations with prognosis of patients. Data suggest that adipokines 

may have potential therapeutic value in burn management. Furthermore, it potentially 

could explain the enhancing effects of current treatments utilising adipose tissue. 

Further studies are required to validate these observations, as well as improve 

understanding of mechanisms responsible for such observations. 
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6.1 Overview of the Thesis 

The primary objective of this thesis was to determine the endocrine response to 

severe thermal injury using an -omics based approach.  Omics-based studies involve 

the characterization and quantification of various biological molecules, including 

genomics, transcriptomics, proteomics and metabolomics. Such studies produce 

results that are holistic and highlight the dynamics and functionality of molecules in a 

targeted population. In this case, burned patients. This is referred to as a systems 

biology approach. Studies using systems biology frequently examine samples in a non-

targeted, longitudinal and non-biased manner when the hypothesis remains unknown. 

Therefore, data acquired from such studies can then be used to define potential 

hypotheses for investigation (589). Such strategies are potentially useful in medicine.  

Omics-based studies allow greater understanding of physiological and pathological 

processes following critical illness, burns and trauma. Furthermore, they allow clinical 

interpretation and identification of potential applications in screening, diagnosis and 

prognosis prediction. Furthermore, this approach may aide in the development of 

predictive, preventative and personalized patient care in hospitals and other clinical 

settings (590). Omics-based studies thus have potential clinical and scientific value in 

the health-care field. Such studies enable “precision medicine”, a concept where 

medical treatments account for individual variability to provide personalized 

management. Severe thermal injury can elicit major and prolonged pathological 

immune-metabolic responses that are associated with poor short and long-term 

outcomes (37, 71, 160, 591). Such severe post-burn responses can be, partly, explained 

by endocrine disturbances following injury (71, 127). Current knowledge relating to 
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burn care and pathology have been largely driven by traditional hypothesis-driven 

studies. Such strategies have led to significant advancements in the management of 

burned patients and subsequent clinical outcomes (405). Despite this, there is 

potential to improve overall prognosis of burned patients including scarring and re-

integration to society by a systems biology and omics analysis approach (592). 

This thesis has focused on the endocrine responses in a cohort of these patients 

following severe thermal injuries (TBSA ≥20%). These endocrine responses were 

quantified using state of the art LC-MS/MS and multiplex techniques. Characterization 

of the systemic endocrine response demonstrated the severe and persistence of 

hormonal alterations in burned patients. The data indicate that severe thermal injury 

may induce non-classical endocrine responses to maintain homeostasis. Furthermore, 

observations were made significant and independently associating circulating levels of 

various hormones to outcomes of severely burned patients. Additionally, and most 

importantly, immediate and long-term supplementation of hormones (such as 25D3, 

DHEA, DHEAS and testosterone) are suggested by these data in order to improve 

outcomes in all patients following thermal injury. Moreover, a sub-group analysis was 

performed to investigate the influence of current treatments, specifically oxandrolone 

and corticosteroids, demonstrating the overall effects of such treatments and 

potentially influencing their future use in burn care. The reports in this thesis are part 

of the comprehensive SIFTI study. 

SIFTI was an ambitious observational study set up by the Scar Free Foundation 

Birmingham Burns Research Center and University of Birmingham in the UK. The 
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objective of SIFTI was to simultaneously characterize the immune, inflammatory, 

endocrine and metabolic responses in burned patients from admission to one year 

post injury in a tertiary burn center. A particular feature of SIFTI was the profiling of 

these responses over time, with frequent blood sampling in the first month after injury 

and then monthly out to one year. Furthermore, SIFTI enabled the exploration and 

identification of clinically valuable relationships of these responses simultaneously 

with outcomes of burned patients including survival, sepsis, MOF, wound healing and 

scarring.  

6.2 Longitudinal Endocrine Response in Severely Burned Patients: An Omics-based 

Approach  

Major thermal injury exerted significant effects on the endocrine system. Immediately 

following injury burned patients exhibited profound systemic disturbances of various 

hormones affecting anti-inflammatory, pro-inflammatory and stress hormones. 

Furthermore, significant differential endocrine responses were observed between age 

groups (young vs. elderly) and gender (female vs. male). 

Severely burned patients demonstrated significant elevations in circulating levels of 

11-deoxycortisol and cortisol, with simultaneous increases and decreases in systemic 

levels of anti-inflammatory corticosterone and cortisone respectively. The increase in 

cortisol with a decrease in cortisone is reflective of an increase in 11βHSD1 activity, the 

enzyme that converts cortisone to cortisol (462, 476, 477). Importantly this enzyme is 

activated by inflammatory cytokines such as TNFα (462), suggesting the inflammatory 

and endocrine responses are intimately linked both at local and systemic levels, in an 
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attempt to control the inflammatory response.  Moreover, other circulating hormonal 

profiles post-thermal injury indicated significant reductions in anti-inflammatory 

hormones including vitamin D and adiponectin. Interestingly, profound changes in 

systemic pro-inflammatory hormones were observed simultaneously following major 

burn injury, including leptin, resistin and visfatin. Collectively, severe thermal injury 

induced a profound and prolonged pathophysiological systemic endocrine response 

characterized by simultaneous release of stress, pro-inflammatory and anti-

inflammatory hormones. These observations support the paradigm, from a systemic 

endocrine response, of simultaneous SIRS/CARS responses following thermal injury as 

proposed Xiao et al (83). Collectively, the findings of the studies in the thesis are novel 

as no critical care reports including burns and trauma describe the systemic endocrine 

response in relation to the simultaneous SIRS/CARS response following injury/illness 

were identified.  

Furthermore, severely burned patients exhibited a mixed endocrine response 

characterized by simultaneous significant and prolonged elevation and reduction of 

both anti-inflammatory and pro-inflammatory hormones. These findings indicate that 

the overwhelming pro-inflammatory and stress endocrine response following thermal 

injury is addressed by a simultaneous homeostatic anti-inflammatory response. Similar 

observations have been reported for circulating levels of pro and anti-inflammatory 

free fatty acids immediately following burn injury (61). This suggests the human 

response following burn injury potentially behaves similarly to inflammatory responses 

with counter-regulatory mechanisms described in sepsis (89). These findings highlight 
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the complex and severe nature of pathophysiological responses associated with burn 

injury.  

Age had a significant influence on the hormonal response following thermal injury. 

Older burned patients exhibited significantly increased circulating levels of 11-

deoxycortisol and cortisol compared to younger patients with similar injuries. The anti- 

and pro-inflammatory endocrine responses between young and older patients were 

also diverse post-burn injury. Older burned patients demonstrated lower systemic 

levels DHEA, DHEAS, leptin, resistin and visfatin, as well as most vitamin D metabolites, 

while exhibiting higher levels of adiponectin. The low level of DHEA and DHEAS likely 

reflect the age-related decline in these hormones, termed adrenopause (593, 594). 

The lower leptin is more surprising as the levels of this adipokine have been reported 

to increase with age (595, 596). This effect of ageing on leptin levels has been 

associated with changes in circulating sex steroid hormones, for example inverse 

relationship between testosterone and leptin, that is  reported to be independent of 

body fat (596). However, other studies have demonstrated that adiposity and BMI are 

major determinants of systemic leptin levels with age and gender being  secondary 

regulators (595, 597). Therefore, low serum leptin observed in this study could reflect 

a normal or lower BMI of our older patients. However, the lack of accurate BMI for our 

patients means this remains a hypothesis. Moreover, elderly patients demonstrated a 

more profound response at later time-points with significant elevation and reduction 

of circulating levels of testosterone and ghrelin at M02-M12 following thermal injury 

compared to younger patients.  
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These data in total highlight the extended dysregulation of the hormonal response 

exhibited by older patients following thermal injury which may, in part, explain the 

impaired immune response, delayed hypermetabolic responses and exhaustion 

phenotype reported in elderly burn patients predisposing them to poorer outcomes 

(598, 599). Elderly burns patients are reported to have higher mortality rates 

compared to younger adults (405, 406, 599). Interestingly, Jeschke et al observed no 

significant increased incidence of sepsis, bacteraemia, pneumonia, burn wound 

infection, renal failure, acute coronary syndrome, acute respiratory distress syndrome, 

pulmonary embolism and deep vein thrombosis in elderly compared to younger adult 

burns patients despite having increases APACHE II and Denver 2 scores (599). This 

could be secondary to the two-phase response exhibited by elderly burns patients. This 

two phase response is characterized by an early hypo-inflammatory and immune-

senescent response followed by a late augmented reaction (598, 599). This could 

explain the substantial long-term mortality observed among elderly burn survivors 

(600).  

Elderly burns patients had significantly elevated levels of circulating testosterone while 

exhibiting significantly lower systemic levels of ghrelin at M02-M12 post-injury 

compared to younger adults. Testosterone is known to exert anti-inflammatory and 

immune-suppressive effects. These are discussed in detail in the following studies and 

reviews (601-603). Furthermore, testosterone modulates glycolysis, glycogen synthesis 

and lipid and cholesterol metabolism at a molecular level and is discussed in detail in 

the following review (604).  Therefore, elevated testosterone levels in elderly burns 
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patients at later timepoints, in this study, may be an attempt to dampen the 

augmented immune-inflammatory response discussed earlier.  

Ghrelin is an appetite stimulating orexigenic hormone with multiple roles. Firstly, 

ghrelin enhances appetite and increases food intake in healthy individuals (605). 

Secondly, ghrelin plays important roles in energy homeostasis and metabolism 

affecting various tissues and organs with important consequences such as preventing 

muscle atrophy (606, 607). Additionally, Ghrelin exerts anti-inflammatory and immune-

modulatory effects via multiple pathways and is comprehensively described in the 

following reviews (608, 609).  Low levels of systemic ghrelin among elderly burns 

patients observed in this study exacerbates the late augmented immune-inflammatory 

response discussed earlier. Moreover, low ghrelin levels may lead to poor oral intake 

potentiating the consequences of the prolonged hypermetabolic response following 

thermal injury.  

The findings of this thesis highlight the complexity of the multi-systemic endocrine 

responses observed in elderly burned patients in this study. The observations made in 

this thesis relating to the endocrine responses in elderly patients following severe 

thermal injury should be hypothesis-generating owing to low number of recruited 

patients over 65 years of age. This emphasizes the need for more studies to investigate 

immune-inflammatory, metabolic and endocrine responses in older patients following 

thermal injury. By understanding these responses, new age-specific treatments can be 

made to improve outcomes in this vulnerable population. 
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Gender also had significant effects on the endocrine response following thermal injury. 

Female burn patients demonstrated profound and prolonged stress and pro-

inflammatory hormonal responses for the first-year post-injury compared to male 

burns patients. This response is characterized by increased levels of cortisol, leptin 

with simultaneous reduction in DHEAS and multiple vitamin D metabolites. These 

findings may potentially, in part, explain the poorer outcomes reported in female burn 

patients (439, 442).  

Cortisol is a stress hormone known for its immune suppressive and anti-inflammatory 

effects(610). Therefore, increased levels of cortisol can lead to poor outcomes such as 

septic shock and mortality(611). DHEA/DHEAS antagonizes glucocorticoid effects on 

the immune systemic and enhances neutrophil functions while Vitamin D has 

influences on the immune system and exerts various immune-tolerogenic effects.  The 

effects of DHEAS and Vitamin D on the immune-inflammatory responses are discussed 

in detail in the following reviews (533, 612, 613). Significantly reductions in serum 

DHEAS has been previously reported in septic shock and trauma (614). Additionally, 

high cortisol to DHEA ratios has been associated with mortality in critical illness (614). 

Furthermore, vitamin D deficiency is prevalent in critically ill populations predisposing 

them to poor outcomes including sepsis, organ failure and mortality (134). 

Leptin is a complex molecule with multiple roles that appears to be condition-related. 

Leptin exerts protective anti-inflammatory effects during acute inflammation while 

being pro-inflammatory in various pathologies such as autoimmune disease (615, 616). 

The various effects of leptin on the immune system in the context of various disease 
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states, including systemic lupus erythematosus and arthritis, has been previously 

described (617). Leptin appears to positively correlate with pro-inflammatory status 

and illness/injury severity scores (135). In this study, significantly elevated serum levels 

of leptin were observed in septic patients and burn patients with delayed wound 

healing. These associations became non-significant during multi-variate analysis. 

Hence no conclusive statements can be made regarding the influence of leptin on 

outcomes following major burn injury. Furthermore, the function and effects of leptin 

following burn, critical illness and/or trauma remain poorly understood.  

The observations made in this thesis in relation to gender differential endocrine-

responses following thermal injury should be interpreted with caution owing to 

generally low number of male and female burn patients recruited in this study. Only 

one study investigating gender responses in critical illness was identified. Critically ill 

septic female and male demonstrated similar systemic responses and outcome rates 

(618). No literature exploring gender differential systemic responses following burns or 

trauma could be identified. Further studies are encouraged to investigate the 

hormonal mechanisms behind gender disparities and outcomes following injury to 

address this knowledge gap. 

6.3 Potential Value of Endocrine Response as Clinical Biomarkers 

Studies presented in this thesis demonstrated potential clinical utility of various 

hormones as outcome-predictive biomarkers. Immediately following severe thermal 

injury, 11-Deoxycortisol and vitamin D metabolites have demonstrated good 

discriminatory power for predicting subsequent poor outcomes. 11-Deoxycortisol is a 
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precursor to the stress glucocorticoid hormone cortisol and indicates a higher flux 

through the cortisol generating pathway, possibly influencing immune function and 

predisposing to infections and sepsis. Elevated circulating levels of 11-Deoxycortisol at 

day 1 post-burn injury were predictive for 28-day and in-hospital mortality. 

Meanwhile, increased systemic levels of 25D3, 23,25D3 and 24,25D3 following severe 

thermal injury were predictive of survival and being sepsis-free. This could be 

associated the immune-inflammatory modulation associated with vitamin D axis and 

its alternative metabolic pathways.  The role of these alternative metabolic pathways 

of vitamin D remains to be understood. These are novel findings that highlight the 

urgent need to explore these ‘non-classical’ vitamin D responses as these alternative 

metabolic pathways were associated improved outcomes in patients following severe 

thermal injury. 

Quantification of serum levels 11-deoxycortisol and vitamin D metabolites in patients 

during the first 24 hours of thermal injury may aid in patient management. This is very 

important for the following reasons. Injury severity in burns patients is assessed using 

various clinical scoring systems to determine probability of mortality and futility of 

treatment (465, 619, 620). Actively treated burns patients are at-risk of developing 

complications increasing their morbidity and mortality. This could be attributed to 

multiple reasons. Burns patients exhibit simultaneous overwhelming global 

inflammatory responses and an impaired multi-systemic response (61, 112, 417, 598). 

Subsequently, diagnosing subsequent adverse events, such as sepsis, can be 

challenging and may delay life-saving treatments. This can significantly affect their 

survival (467). Therefore, identification of high-risk burns patients through biomarkers 



244 
 

can help focus and guide necessary medical care minimizing the development of 

adverse events following severe thermal injuries. 

6.4 Potential Value of the Endocrine Response as Therapeutics 

The endocrine responses reported in this thesis demonstrate potential role of various 

hormones in the treatment of severe burn patients. During first 24 hours of injury, 

supplementation of testosterone, DHEAS and vitamin D (25D3) may reduce the risk of 

sepsis development and delayed wound healing in burns patients. Furthermore, 

administering testosterone, DHEA/DHEAS and vitamin D during the acute stage of 

admission may exert or maintain the same effects and improve survival rates following 

thermal injury. This indicates that regular daily supplementation of the above 

molecules may be more clinically valuable than a one off or once weekly dosing 

regimen. Furthermore, endocrine responses and expression remain significantly 

different in burns patients at later timepoints including months 2 till 12 post-injury. 

Moreover, significant associations were observed between various endocrine 

metabolites and scarring outcomes. This suggests that prolonged supplementation 

may be required to address longer-term outcomes.  

Few medications that modulate endocrine systems are currently used in burn care. In 

this thesis, two medications used on burn patients were assessed which are part of 

treatment protocols for critically ill and/or burn patients, namely corticosteroids and 

oxandrolone. We found that administration of corticosteroids in burn patients was 

associated with poor outcomes including MOF, sepsis and mortality. While, treating 

burn patients with oxandrolone significantly reduced subsequent sepsis and improved 
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survival rates. The effects observed for corticosteroids and oxandrolone following 

thermal injury were independent of injury severity and relevant-organ status. Thus, the 

results could be interpreted for all flame and scald burn patients in general.  

The use of corticosteroid therapy was reported to be beneficial in critical illness (505, 

506), and is currently endorsed by international guidelines (504). The observations in 

this thesis have shown that corticosteroid use in burned patients can lead to adverse 

events despite amelioration of vasoplegia as indicated by cardiac SOFA scores. This 

highlights the severe nature of the injury and unique systemic responses associated 

with major burns.  Therefore, treatments cannot be generalized to critically ill patients 

admitted to intensive care. Special care and consideration to the pharmacological 

effects of corticosteroids in relation to the biological consequences of burn injury 

compared to other critical illnesses. This is due to unique systemic responses observed 

in burned patients (557). 

Oxandrolone is a testosterone analogue that accentuated the hypermetabolic 

response following severe thermal injury (621). Oxandrolone use demonstrated 

various beneficial effects in both the acute and recovery phases post-burn injury (201, 

507). Furthermore, long-term oxandrolone supplementation resulted in greater 

improvements in lean body mass, bone mineral content/density and growth in children 

following severe burns (203, 622). Most of these reported beneficial effects relate to 

metabolic parameters and survival following thermal injury. Adding to current 

literature, oxandrolone use following major burn injury was significantly associated 

improved 28-day and in-hospital mortality, as well as lower sepsis rates. These 
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observations were independent of initial injury severity and daily liver function. This 

indicates that effects of oxandrolone may not be limited to metabolic response and 

can influence other body systems as per (Figure 3.30- Chapter 3). Jeschke et al 

investigated the endocrine and inflammatory responses in acutely burned children 

who received and did not receive oxandrolone reported no significant differences 

(412). However, oxandrolone use following discharge was associated with increased 

IGF-1, tri-iododothyronine uptake and free thyroxine index in the pediatric population 

following major burn injury (623, 624). This highlights the need to investigate the 

systemic responses of burned patients who received and did receive oxandrolone to 

identify, using robust analysis, potential mechanisms responsible for the observed 

improved outcomes. 

Testosterone, as reported earlier and in chapter 3, demonstrated beneficial effects at 

day 1 following thermal injury. While, oxandrolone was given at median day 5 post-

injury to burn patients in this study. This suggests that oxandrolone administration 

immediately post-burn injury may further improve outcomes. 

6.5 Strengths of the Thesis 

This research has multiple strengths. The e-SIFTI study was a prospective trial that 

combined extensive short and long-term clinical and outcome data collection at 10 

different timepoints to investigate the endocrine response in the burn sub-

populations. Furthermore, e-SIFTI contains the largest burns cohort to be examined in 

this manner. This sub-study forms a pillar of the larger SIFTI study. Furthermore, SIFTI 

was a pragmatic observational study that enables simultaneous bio-fluid analysis 
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immediately following severe thermal injury till month 12. Data and samples of burn 

patients were studied without affecting or influencing medical treatment given in a 

tertiary burn care center in the UK. This means the findings reported in this thesis are 

true representations of pathophysiological responses in burn patients treated using 

up-to-date gold standard burn care. Responses examined in SIFTI study include 

immune, inflammatory, endocrine and metabolic processes which were characterized 

and profiled in a parallel fashion. This ambitious project consisted of multiple large 

research groups and has not been conducted in UK or Europe previously.  

e-SIFTI utilized optimal techniques to quantify endocrine responses following severe 

thermal injury. This was performed to allow accurate, reliable and reproducible data. 

Quantification of hormones post-burn injury was performed using an -omics based 

approach allowing for hypothesis generation and stimulation for further research, as 

well as enable the discovery of potential clinically relevant biomarkers and 

therapeutics. Statistical analysis performed allowed for generalizability and ease of 

clinical interpretation. Such techniques may potentially ease translation of the study 

findings to medical practice. 

6.6 Limitation of the Thesis 

The main limitations of the SIFTI study include healthy volunteer cohort, absence of 

important confounding factors relating to endocrine responses, statistical analyses 

utilised and the use of non-validated scar measurements. 

The numbers of healthy controls studied in e-SIFTI are small. In order to address this, 

studies investigating the same hormones on healthy individuals utilizing the same 
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quantification techniques were incorporated into the e-SIFTI studies to increase 

numbers and obtain a more representative endocrine reference range of the local 

population for comparison. A major limitation is that these healthy volunteers were 

clinically healthy and, in the case of the HAS study, had stringent inclusion criteria. 

These individuals are probably at low risk of sustaining burn injury. Hence, the 

hormone status of the healthy controls may not be a true of representation of pre-

injury endocrine status of burn patients when accounting to co-morbidities. The past 

medical history of enrolled burn patients is summarised in Supplementary Table 4 and 

Supplementary Table 5. 

 Another limitation in the studies presented in this thesis is the absence of confounding 

factors associated with endocrine status. These include nutrition, diet and exercise. 

Furthermore, burn patient weight was estimated and therefore, the measurements 

recorded were not reliable enough. This is probably due to the critical state of patients 

following thermal injury when controlling patient hemodynamic status is prioritized 

over accurate weight recording. The decision was made to exclude weight and BMI 

measurements from statistical analyses. 

e-SIFTI studies in this thesis presents robust statistical analyses to demonstrate 

potential clinical utility of hormones as biomarkers and treatments. These treatment 

and biomarker effects of the quantified endocrine analytes are purely based on 

statistical modeling. Hence, the observations made hypothesis-generating and cannot 

be used to change medical burn management yet. Hence, pilot studies examining the 

effects of supplementation of hormones, such as DHEA, testosterone and vitamin D, in 
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burn patients are highly encouraged. These pilot studies are invaluable step to enable 

RCTs and subsequent medical practice change. Another statistical limitation is the 

difference of hormone levels between age groups and gender of healthy controls and 

burn patients. No validated statistical technique could be found to account the healthy 

control levels when analyzing age and gender endocrine responses following major 

injury. The statistical analysis in this thesis were overviewed by supporting statisticians, 

Dr. Animesh Acharjee. 

e-SIFTI study correlated the endocrine response post-burn injury with various objective 

scar measure. Although the use of these objective measures in burn scar assessments 

were previously published in the literature, their use for scar evaluation remains to be 

clinically validated. Therefore, the observations made in this thesis are investigative 

and definitive conclusions cannot be made currently. 

6.7 Conclusions 

The observations reported in this thesis are novel with, hopefully, important clinical 

implications and may improve the outcomes of adult burned patients. However, the 

pathophysiological responses in the following severe thermal injury is indeed very 

complex. These responses include the endocrine, genomic, immune-inflammatory and 

metabolic reactions that occur in patients following major burns. Furthermore, 

exploring these responses at both systemic and local tissue levels in a longitudinal 

fashion holistically is key to further improve the short-term and long-term outcomes 

and debilitating consequences of severe thermal injury. To achieve this, burn research 

units must collaborate together and with research units of various specialties.  
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This thesis is the product of the efforts of clinical and scientific staff working in 

different clinical and research units within the University of Birmingham and University 

Hospitals Birmingham. These include: Burn center and Intensive Care in QEHB, 

Institute of Inflammation and Ageing (Trauma and Ageing Division and Neuroscience, 

Ophthalmology and Clinical Experimentation Division), Institute of Metabolism and 

Systems Research and Surgical Reconstruction and Microbiology Research Center. Only 

through collaboration and combined efforts and knowledge, advances in medical care 

can be made and patient outcomes improved. 

6.8 Future Work and Directions 

• Correlating endocrine responses following severe thermal injury with immune, 

inflammatory and metabolomic indices. 

• Investigation of other endocrine process including growth hormone, insulin-like 

growth factors and associated binding proteins post-burn injury. 

• Exploring systemic and local response of the extracellular matrix molecules 

including characterization of decorin, matrix metalloproteinases, tissue 

inhibitors of metalloproteinases and transforming growth beta in burn patients. 

• Integrate and map the endocrine, immune, inflammatory responses following 

severe thermal injury. 

• Identification of potential clinical biomarkers and therapeutics from above 

studies. 

• Setting up clinical trials and pilot studies to assess the effects of DHEA, DHEAS 

and vitamin D supplementation following severe thermal injury 
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• Studying the effects of pre-injury statins and vitamin D supplementation on 

outcomes of burn patients via retrospective data collection and propensity 

matching statistical analyses 
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Supplementary Table 1. Master table demonstrating demographics, injury severity, 
medications and outcomes of e-SIFTI participants. 

 
Healthy Controls n Burn Cohort n 

Age (Admission) 38 (31-70) 14 41 (33-55) 52 

Gender (M/F) 8/6 14 33/19 52 

TBSA (%) 
  

42 (25-53.3) 52 

Inhalation Injury (Y/N) 
  

31/21 52 

Revised BAUX Score 
  

98 (74.975-113.26) 52 

APACHE II Score 
  

28 (17-31) 51 

ITU Admission (Y/N) 
  

40/12 52 

Corticosteroid Given (Y/N) 
  

22/30 52 

Oxandrolone Given (Y/N) 
  

34/18 52 

Sepsis (ABA Criteria) (Y/N) 
  

34/18 52 

Multiorgan Failure (Y/N) 
  

18/34 52 

28D Patient Mortality (Y/N) 
  

10/42 52 

In-hospital Patient Mortality (Y/N) 
  

18/34 52 

Time Taken to Heal (Days) 
  

33 (18-57) 28 

mVSS Total Score 
  

6.67 (6-7) 11 

POSAS Overall Score (Clinician) 
  

4.67 (4-6) 11 

POSAS Overall Score (Patient) 
  

8 (3-10) 11 

Ultrasound Scar Thickness 
  

1.7 (1.35-2.48) 11 

Ultrasound Scar Intensity 
  

0.45 (0.24-0.54) 11 

Cutometer Scar Pliability R2 
  

0.97 (0.93-1.17) 11 

Cutometer Scar Pliability R0 
  

0.56 (0.4-0.69) 11 

DSM Colorimeter - Erythema Scale 
  

1.27 (1.07-1.77) 11 

DSM Colorimeter - Melanin Scale 
  

1.21 (1.04-1.32) 11 

DSM Colorimeter - L Scale 
  

0.81 (0.72-0.86) 11 

DSM Colorimeter - a Scale 
  

1.18 (1.02-1.43) 11 

DSM Colorimeter - b Scale 
  

0.79 (0.48-0.97) 11 
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Supplementary Figure 1. Consort diagram of process of sample and data collection 
with subsequent data pooling of e-SIFTI cohort for statistical analysis. 
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Supplementary Figure 2. Statistical clustering of timepoints and hormones 
accounting for age and gender. 

a. Principal component analysis demonstrating the structure and variance of data as per 
timepoints; b. Hierarchical clustering analysis with dendrograms of variables and timepoints. 
The dendrograms represent similarity between variables and timepoints. Timepoint legend: 0-
HC; 1-D01; 2-D03; 3-D07; 4-D14; 5-D21; 6-D28; 7-M02; 8-M03; 9-M06; 10-M12. 
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Supplementary Figure 3. Consort diagram of process of sample and data collection 
with subsequent data pooling of e-SIFTI participants analyzed in CHAPTER 3:
 STEROID STATUS AND ITS INFLUENCE ON OUTCOMES FOLLOWING SEVERE 
BURN INJURY. 
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* Outcomes collected are the same. 
 

 Total (n: 52) Control (n:30) Corticosteroids (n:22) P value 

Age 41 (33-55) 40 (29-55) 41 (35-63) 0.541 

Gender (M/F) 33/19 19/11 14/8 0.982 

% TBSA 42 (25-53.3) 30.5 (25-50) 48.5 (29-55) 0.078 

Inhalation Injury (Y/N) 31/21 13/17 18/4 0.005 

Revised Baux Score* 98 (75.0-113.3) 83.6 (69.0-99.6) 105.5 (101.18-116) 0.006 

28D Survivor (Y/N) 10/42 5/25 5/17 0.585 

Survivor (Y/N) 18/34 7/23 11/11 0.046 

MOF (Y/N) 18/34 6/24 12/10 0.010 

Sepsis (Y/N) 34/18 15/15 19/3 0.006 

Supplementary Table 2. Demographics and outcomes of e-SIFTI participants treated 
and not treated with corticosteroids prior to PSM analysis. 
Continuous variables are shown as median values with inter-quartile range. Controls and Corticosteroids 
cohorts were compared using Mann-Whitney test for continuous variables and Chi-squared test for 
categorical variables. Significant relationships are highlighted in bold. *Control and Corticosteroid 
cohorts were compared using independent t test as data distribution was normal. 
 

 Total (n: 52) Control (n:18) Oxandrolone (n:34) P value 

Age 41 (33-55) 52 (36-66) 39 (26-48) 0.011 

Gender (M/F) 33/19 11/7 22/12 0.798 

% TBSA 42 (25-53.3) 27.3 (23-50) 45 (30-55) 0.027 

Inhalation Injury (Y/N) 31/21 10/8 21/13 0.664 

Revised Baux Score* 98 (75.0-113.3) 99.7 (83.46-116) 97.2 (72.7-110.1) 0.759 

28D Survivor (Y/N) 10/42 6/12 4/30 0.06 

Survivor (Y/N) 18/34 8/10 10/24 0.278 

MOF (Y/N) 18/34 5/13 13/21 0.451 

Sepsis (Y/N) 34/18 11/7 23/11 0.637 

Supplementary Table 3. Demographics and outcomes of e-SIFTI participants treated 
and not treated with oxandrolone prior to PSM analysis. 

Continuous variables are shown as median values with inter-quartile range. Controls and Corticosteroids 
cohorts were compared using Mann-Whitney test for continuous variables and Chi-squared test for 
categorical variables. Significant relationships are highlighted in bold. *Control and Corticosteroid 
cohorts were compared using independent t test as data distribution was normal. 
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Supplementary Figure 4. Standard Curves of the VDBP ELISA quantification. 

a. Standard curves of all plates used for quantification; b. Mean standard curve for all 
plates quantified. 
 

 
 

Supplementary Figure 5. Free 25D3 and Bioavailable 25D3 formulae. 

§ Albumin Binding Co-efficient - 6x105; ¥ VDBP Binding Co-efficient - 7x108 
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Supplementary Figure 6. Consort diagram of process of sample and data collection 
with subsequent data pooling of e-SIFTI participants analyzed in CHAPTER 4:
 VITAMIN D STATUS AND ITS INFLUENCE ON OUTCOMES FOLLOWING SEVERE 
BURN INJURY. 
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Supplementary Figure 7. Standard Curves of the Adiponectin ELISA quantification. 

a. Standard curves of all plates used for quantification; b. Mean standard curve for all 
plates quantified. 
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Supplementary Figure 8. Consort diagram of process of sample and data collection 
with subsequent data pooling of e-SIFTI participants analyzed in CHAPTER 5:
 ADIPOKINE STATUS AND ITS INFLUENCE ON OUTCOMES FOLLOWING SEVERE 
BURN INJURY. 
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e-SIFTI ID. Past Medical History 

SIFT1-001 None 

SIFT1-002 None 

SIFT1-003 Congenital Hiatus Hernia 

SIFT1-004 Bardet-Biedl Syndrome, Insulin Dependent Diabetes Mellitus, Hypertension, Chronic 

Kidney Disease 3 – Diabetic Nephropathy, Blindness, Hypogonadism, Obesity, Retinitis 

Pigmentosa, Situs Inversus 

SIFT1-005 Excess Alcohol Intake 

SIFT1-006 Hypertension; Rheumatoid Arthritis, Falls, Humerus Fracture 

SIFT1-009 Mixed Anxiety/Depressive Disorder, Migraine, Chronic Fatigue Syndrome, 

Hypothyroidism, Previous Deliberate Self Harm 

SIFT1-011 Depression 

SIFT1-012 Hiatus Hernia, Hypertension 

SIFT1-014 None 

SIFT1-016 None 

SIFT1-017 Depression 

SIFT1-024 None 

SIFT1-026 Asthma, Epilepsy 

SIFT1-028 None 

SIFT1-029 None 

SIFT1-030 Schizophrenia, Chronic Obstructive Pulmonary Disease 

SIFT1-031 None 

SIFT1-032 Schizophrenia 

SIFT1-035 None 

SIFT1-039 None 

SIFT1-040 Huntington’s Disease 

SIFT1-044 None 

SIFT1-047 Schizophrenia, Cerebral Palsy 

SIFT1-051 Huntington’s Disease 

SIFT1-052 Hypertension, Insulin Independent Diabetes Mellitus, Psychosis, Orbital Floor Fracture 

Supplementary Table 4. Past medical history of patients with severe burn injury 
recruited in e-SIFTI (Part I). 
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e-SIFTI ID. Past Medical History 

SIFT1-054 Cerebellar Infarct, Depression with Psychosis, Previous Deliberate Self Harm, 

Epilepsy, Previous Excess Alcohol Intake 

SIFT1-057 Hypertension, Obesity 

SIFT1-058 Post-Traumatic Stress Disorder 

SIFT1-059 Bipolar Affective Disorder 

SIFT1-060 None 

SIFT1-065 Depression, Excess of Alcohol Intake, Post-Traumatic Stress Disorder, Recreational 

Drug Use, Zygomatic Fracture 

SIFT1-067 Cerebrovascular Accident-Bedbound, Chronic Obstructive Pulmonary Disorder, 

Osteoarthritis, Paroxysmal Atrial Fibrillation 

SIFT1-068 None 

SIFT1-070 None 

SIFT1-071 None 

SIFT1-072 Mixed Anxiety/Depressive Disorder, Caesarean Section 

SIFT1-078 Excess Alcohol Intake 

SIFT1-079 Colorectal Adenocarcinoma – Resected, Depression 

SIFT1-080 None 

SIFT1-081 Depression 

SIFT1-083 Metastatic Prostate Cancer 

SIFT1-085 Mood Affective Disorder 

SIFT1-089 Cerebrovascular Accident, Chronic Obstructive Pulmonary Disease, Diabetes 

Mellitus, Excess Alcohol Intake, Gout, Hypertension 

SIFT1-092 Excess Alcohol Intake 

SIFT1-099 Alcoholic Cirrhosis of The Liver, Bipolar Affective Disorder, Excess Alcohol Intake  

SIFT1-100 Hypertension, Cerebrovascular Disease, Depression, Excess Alcohol Intake 

SIFT1-102 Head Injury 

SIFT1-104 Obesity 

SIFT1-105 Hyperlipidaemia, Hypothyroidism, Non-Insulin Dependent Diabetes Mellitus, 

Polyarthrosis, Schizophrenia 

SIFT1-106 Cholecystectomy 

SIFT1-114 Bipolar Affective Disorder 

SIFT1-116 None 

Supplementary Table 5. Past medical history of patients with severe burn injury 
recruited in e-SIFTI (Part II). 
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