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GENERALIZED JACOBIANS AND EXPLICIT DESCENTS

BRENDAN CREUTZ

Abstract. We develop a cohomological description of explicit descents in terms of gener-
alized Jacobians, generalizing the known description for hyperelliptic curves. Specifically,
given an integer n dividing the degree of some reduced, effective and base point free divisor
m on a curve C, we show that multiplication by n on the generalized Jacobian Jm factors
through an isogeny ϕ : Am Ñ Jm whose kernel is dual to the Galois module of divisor classes
D such that nD is linearly equivalent to some multiple of m. By geometric class field theory,
this corresponds to an abelian covering of C

k
:“ C ˆSpeck Specpkq of exponent n unrami-

fied outside m. We show that the n-coverings of C parameterized by explicit descents are
the maximal unramified subcoverings of the k-forms of this ramified covering. We present
applications to the computation of Mordell-Weil ranks of nonhyperelliptic curves.

1. Introduction

Suppose fpx, yq is a binary form of degree d over a field k of characteristic not equal to 2.
Pencils of quadrics with discriminant form fpx, yq have been studied in [BSD63,Cas62,Cre01,
BG13,Wan18,BGW15,BGW17]. When d is even, the SLdpkq{µ2-orbits of pairs pA,Bq with
discriminant form fpx, yq correspond to a collection of 2-coverings of the hyperelliptic curve
C : z2 “ fpx, yq. When k “ Q these coverings are used in [Bha] and [BGW17] to compute
the average size of the 2-Selmer set of C, and of the torsor J1 parameterizing divisor classes
of degree 1, respectively, from which they deduce the fantastic result that most hyperelliptic
curves over Q have no rational points.

The same collection of coverings can also be described in terms of the k-algebra L :“
krxs{fpx, 1q. This description was used in [BS09] and [Cre13] to compute 2-Selmer sets
of C and J1, respectively, for individual hyperelliptic curves. A key step in both [Cre13]
and [BGW17] is to check that this collection of coverings is large enough to contain the
locally soluble 2-coverings (under suitable hypotheses on C). In [BGW17] this is achieved
by identifying these coverings as the unramified subcoverings of k-forms of the maximal
abelian covering of exponent 2 unramified outside the pair of points at infinity on the affine
model z2 “ fpx, yq, a characterization that is quite natural in light of the use of generalized
Jacobians in [PS97].

Meanwhile the theory of explicit descents has expanded to incorporate computable de-
scriptions of certain approximations to Selmer sets, called fake Selmer sets, for all curves.
This is developed for nonhyperelliptic curves of genus at least 2 in [BPS16] and for curves
of genus 1 in [Cre14]. In this paper we provide geometric and cohomological descriptions
of these descents in terms of generalized Jacobians, generalizing the description for hyper-
elliptic curves given in [PS97,BGW17]. Specifically, given an integer n dividing the degree
of some reduced effective and base point free divisor m on a curve C, we show that mul-
tiplication by n on the generalized Jacobian Jm factors through an isogeny of semiabelian
varieties ϕ : Am Ñ Jm whose kernel is naturally the dual of the Galois module of classes of
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divisors D on Ck :“ C ˆSpec k Specpkq such that nD is linearly equivalent to a multiple of m.
By geometric class field theory, this corresponds to an abelian covering of exponent n and
conductor m. We show that the fake descents mentioned above have a natural interpreta-
tion in terms of the k-forms of this ramified covering, which we call ϕ-coverings. The main
result in this direction is Theorem 4.4, from which we deduce Corollaries 4.6 and 4.7 giving
an interpretation of the descents on C and J1 in terms of those n-coverings which arise as
maximal unramified subcoverings of the k-forms of this ramified covering.

This description unifies the methods of explicit descent described in [MSS96,BS09,Cre13,
Cre14, BPS16] and allows a more natural interpretation of some of the objects that arise.
Moreover, it yields a number of applications to explicit descent and the arithmetic of curves
described in the following subsections.

1.0.1. Applications to explicit descent on J . The fake descent presented in [BPS16] proceeds
by substituting the connecting homomorphism d : Jpkq Ñ H1pk, Jrnsq in the Kummer
sequence with a more computationally amenable homomorphism f : Pic0pCq Ñ Lˆ{kˆLˆn,
for some étale k-algebra L. Here PicpCq denotes the group of k-rational divisors on C

modulo linear equivalence and Pic0pCq denotes the subgroup of classes of degree 0. In order
to obtain information about the Selmer group from this, they require some hypothesis (e.g.,
[BPS16, Hypothesis 10.1]) to ensure that Pic0pCq “ Jpkq globally and locally. In general
one has an injective map Pic0pCq Ñ Pic0pCqGal k “ Jpkq which need not be surjective. We
show how such hypotheses can be omitted in a number of relevant cases (cf. Theorem 5.6).
In Theorem 6.3 we use this to determine the Mordell-Weil rank of a Jacobian J of a plane
quartic curve C for which Pic0pCq ‰ Jpkq.
1.0.2. Application to explicit descent on C and J1. In [BPS16] a ‘fake Selmer set’ of a non-
hyperelliptic curve C over a global field is introduced. Using the machinery of [BPS16] we
introduce a fake Selmer set of the torsor J1 parameterizing divisor classes of degree 1 (see
Definition 5.1). It is easy to see that C and J1 cannot have any rational points if the cor-
responding fake Selmer set is empty. Our interpretation in terms of generalized Jacobians
allows us to verify that the obstruction coming from these fake descents is indeed a finite
abelian descent obstruction in the sense of [Sko01, Section 5.3] and, consequently, that such
counterexamples to the Hasse principle are explained by the Brauer-Manin obstruction (cf.
[Sko01, Theorem 6.1.2]). This is given in Theorem 5.2 and 5.3 below.

Particularly in the case of J1, this allows us to obtain deeper knowledge than would
otherwise be obtained from simply knowing that J1pkq is empty. Indeed, we are able to tap
into results in arithmetic duality which would otherwise only be possible conditionally on
deep conjectures concerning finiteness of the Tate-Shafarevich groupXpJq. In Section 6.1 we
give an example of a nonhyperelliptic genus 3 curve over Q with absolutely simple Jacobian
J for which the fake 2-Selmer set of J1 is empty. Theorem 5.3 is then used to prove that
XpJqr28s » Z{2Z ˆ Z{2Z, and consequently to determine that the Mordell-Weil rank is
1. Without making use of Theorem 5.3 we would only obtain the weaker conclusion that
1 ď rankpJpQqq ď 2 and 1 ď dimF2

XpJqr2s ď 2.

1.0.3. Applications to descent on genus 1 curves. The results of [Cre14] describe n-descents
on genus 1 curves of degree n when n is prime. The results just mentioned extend aspects
of this to general n. Namely, for such a curve we have a computable fake Selmer set whose
emptiness implies that the curve is not divisible by n in the Tate-Shafarevich group of its
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Jacobian. This is potentially practical in the case n “ 4, enabling 16-descent on elliptic
curves.

1.0.4. Application to Galois descent of unramified abelian coverings of exponent 2. The re-
sults of this paper are used in [Cre16] to prove that if C is an everywhere locally solvable
curve of genus g ě 2 over a global field of characteristic different from 2 and that the Galois
action on Jr2s is generic (i.e., GalpkpJr2sq{kq is isomorphic to S2g`2 or GSp2gpF2q corre-
spondingly as C is or is not hyperelliptic), then the maximal unramified abelian covering of
Ck of exponent 2 descends to k.

The obstruction to Galois descent for the ϕ-covering mentioned above and its maximal
unramified subcovering are elements of the Galois cohomology groups H2pk, Amrϕsq and
H2pk, Jr2sq, respectively. The proof proceeds by showing that, generically, the locally trivial
subgroup X

2pk, Amrϕsq is trivial, which implies that the ramified covering and, hence also,
its unramified subcovering descend to k. The use of ϕ-coverings here seems unavoidable
(and the result all the more surprising) given that the group X

2pk, Jr2sq can be nontrivial
even when the Galois action on Jr2s is generic. In fact, this occurs whenever C has no
rational theta characterstics and all of the decomposition groups of GalpkpJr2sq{kq are cyclic,
since in this case the torsor parameterizing theta characteristics gives a nontrivial element
of X1pk, Jr2sq (see [Ati71] and [PR11, Remark 3.18]) and X

2pk, Jr2sq » X
1pk, Jr2sq by

Tate’s duality theorem. Moreover, there are examples of locally solvable curves of genus ě 2
for which the maximal unramified abelian covering of exponent 2 does not descend to k (see
[CV15, Theorem 6.7]).

1.0.5. Potential application to average sizes of Selmer sets. We expect our interpretation
may also be of relevance to future efforts to compute these Selmer sets on average. Namely,
it should be possible to identify the collection Covn

m
pJ1q with the orbits in some coregular

representation (as is done in [BGW17] for the hyperelliptic case). The results in Theorems 3.8
and 7.1 would then have implications for the structure of the space of orbits. Thorne has
recently made progress understanding the situation for nonhyperelliptic genus 3 curves with
a marked rational point [Tho15,Tho]. It is our hope that the results of this paper may shed
light on the corresponding situation when there are no rational points.

1.1. Notation. Throughout this paper n is an integer and k is a field of characteristic
not divisible by n, with separable closure k and absolute Galois group Galk “ Galpk{kq.
We will use C to denote a nice curve over k, i.e. a smooth, projective and geometrically
integral k-variety of dimension 1. For a nonempty finite étale k-scheme ∆ “ SpecpLq we use
Res∆ “ ResL{k to denote the restriction of scalars functor taking L-schemes to k-schemes. For

a commutative étale k-group scheme G, we use HipGq to denote the Galois cohomolgy group
HipGalk, Gpkqq. For k a global field, equivalence classes of absolute values on k (whether
archimedean or not) will be referred to as primes.

Acknowledgements. I would like to thank: Michael Stoll and Bjorn Poonen for comments
and discussions concerning the material in this article and Nils Bruin for providing me
with Magma code for a number of the algorithms described in [BPS16]. In developing the
algorithms and examples in Section 6 I have made use of a list quartic curves of small
discriminant provided by Denis Simon as well as the database [Sut18] developed by Andrew
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Sutherland. Computations were performed using the Magma Computer Algebra System
described in [BCP97].

2. The modulus setup

Definition 2.1. Let C be a nice curve over k. A modulus setup for C is a pair pn,mq
consisting of a positive integer n not divisible by the characteristic of k, and a reduced,
effective and base point free divisor m P DivpCq of degree m, with n dividing m.

Given a modulus setup pn,mq we define ℓ :“ degpmq{n. We are primarily interested in the
following examples.

M.1 Suppose π : C Ñ P1 is a double cover which is not ramified over 8 P P1. Let n “ 2
and m “ π˚8.

M.2 Suppose C is a genus 1 curve of degree m in Pm´1. Take m to be any reduced
hyperplane section and take n “ m.

M.3 Suppose C is any nice nonhyperelliptic curve of genus at least 3, n “ 2 and m is a
canonical divisor. Then m “ 2g ´ 2 and ℓ “ g ´ 1.

2.1. The generalized Jacobian associated to a modulus setup. Let C be a nice curve
over k with a modulus setup pn,mq. We may view m as a finite étale subscheme m “
SpecM Ă C, or as a modulus in the sense of geometric class field theory (see [Ser88]). Let
Cm denote the singular curve associated to m as in [Ser88, IV.4]. Let PicC and PicCm

be the
commutative group schemes over k representing the Picard functors of C and Cm. There is
an exact sequence of commutative group schemes over k,

(2.1) 1 Ñ T Ñ PicCm
Ñ PicC Ñ 0 ,

where T is an algebraic torus. The restriction of (2.1) to the identity components is an exact
sequence of semiabelian varieties,

(2.2) 1 Ñ T Ñ Jm Ñ J Ñ 0 ,

where Jm is the generalized Jacobian of C associated to the modulus m and J is the usual
Jacobian of C.

Let Gˆ denote the multiplicative group scheme.1

Lemma 2.2. T » Resm Gˆ{Gˆ is isomorphic to the quotient of ResmGˆ by the diagonal
embedding of Gˆ, and there is an exact sequence of finite group schemes

1 ÝÑ Res1m µn
µn

ÝÑ T rns ÝÑ µn ÝÑ 1 ,

where Res1
m
µn is the kernel of the norm map N : Resm µn Ñ µn.

Proof. The first statement, that T “ Resm Gˆ{Gˆ, follows from well known results on the
structure of generalized Jacobians (see [Ser88, §V Prop. 7]). Let Res1m Gˆ denote the kernel
of the norm map ResmGˆ Ñ Gˆ. The inclusion map Res1

m
Gˆ Ñ Resm Gˆ induces a

1In conjunction with our use of m for the modulus and m for its degree, the standard notation Gm for
the multiplicative group might lead to confusion.
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surjective map onto ResmGˆ{Gˆ with kernel µm. This gives the middle rows of the following
commutative and exact diagram.

µn //
� _

��

Res1m µn //
� _

��

// T rns
� _

��

1 // µm //

n

��

Res1
m
Gˆ //

n

��

Resm Gˆ

Gˆ

//

n

��

1

1 // µm //

m{n
����

Res1mGˆ //

��

Resm Gˆ

Gˆ

// 1

µn // 1

The exact sequence in the statement of the lemma follows by applying the snake lemma. �

2.2. The isogeny associated to a modulus setup.

Lemma 2.3. Given a modulus setup pn,mq there is a commutative group scheme A over k

and isogenies ψ : PicCm
Ñ A and ϕ : A Ñ PicCm

such that kerpψq “ Res1
m
µn

µn
Ă T rns and

ϕ ˝ ψ “ rns. Moreover, we have a commutative and exact diagram

1 // T 1 //

ϕ

��

A //

ϕ

��

PicC //

n

��

0

1 // T // PicCm

// PicC // 0 .

where T 1 is a torus and T 1rϕs » µn.

Proof. By Lemma 2.2, PicCm
contains a finite group scheme isomorphic to Res1m µn{µn. The

quotient of PicCm
by this subgroup scheme yields an isogeny ψ : PicCm

Ñ A. The existence
of ϕ follows from the fact that kerpψq is contained in the kernel of multiplication by n.
Since kerpψq Ă T , A is an extension of PicC . The assertion that T 1rϕs » µn follows from
Lemma 2.2. �

Remark 2.4. When n “ m “ degpmq “ 2, we have that T rns » µn. Hence ψ is the identity
map on A “ PicCm

and ϕ is multiplication by 2.

2.3. Description using divisor classes. A function f P kpCqˆ that is regular on m gives,
by restriction, an element f |m P M , where SpecpMq “ m. We use DivmpCq to denote the
divisors of C that have support disjoint from m.

Lemma 2.5. Let A be as defined in Lemma 2.3. Then

PicCpkq “ DivpCkq{tdivpfq : f P kpCkqˆu ,
PicCm

pkq “ DivmpCkq{tdivpfq : f P kpCkqˆ, f |m “ 1u ,
Apkq “ DivmpCkq{tdivpfq : f P kpCkqˆ, f |m P Res1

m
µnu .

Moreover, ϕ : A Ñ PicCm
is induced by multiplication by n on DivmpCkq.
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Proof. The first two statements are well known (see [Ser88]; note that f |m “ 1 if and only if
f ” 1 mod m, since m is reduced). The k-points of the subgroup T “ Resm Gˆ{Gˆ Ă PicCm

are represented by divisors of functions which do not vanish on m,

T pkq “ tdivpfq : f P kpCkqˆ, f |m P Mˆu
tdivpfq : f P kpCkqˆ, f |m “ 1u

.

The description of Apkq in the statement then follows from the fact that A is the quotient
of PicCm

by the image of Res1m µn in T . The final statement follows easily from the fact that
ϕ ˝ ψ is multiplication by n on PicCm

. �

2.4. Component groups. The component groups of PicCm
,PicC and A are all isomorphic

to Z, the isomorphism being given by the degree map on divisor classes. The degree 0
component of A is a semiabelian variety Am fitting into an exact sequence,

(2.3) 1 Ñ T 1 Ñ Am Ñ J Ñ 0 .

In particular, Am is geometrically connected. We label the components

(2.4) PicC “
ğ

iPZ
J i , PicCm

“
ğ

iPZ
J i
m
, A “

ğ

iPZ
Ai

m
,

so that the superscripts denote the image under the degree map. To ease notation we also
denote the degree 0 components by J “ J0, Jm “ J0

m
and Am “ A0

m
. For any i P Z, J i and

J im are torsors under J and Jm, respectively.
Let m1 P DivmpCq be an effective reduced k-rational divisor linearly equivalent to and

with disjoint support from m (which exists by Bertini’s theorem, provided k has sufficiently
many elements). Then m1 determines classes in PicC , PicCm

and A, which generate, in each,
a subgroup scheme isomorphic to the constant group scheme Z. Let J , Jm and Am denote
the corresponding quotient group schemes, which exist since the category of commutative
algebraic groups is abelian. We have,

(2.5) J :“ PicC
Zm1 “

m´1
ğ

i“0

J i , Jm :“ PicCm

Zm1 “
m´1
ğ

i“0

J i
m
, Am :“ A

Zm1 “
m´1
ğ

i“0

Ai
m
,

where we have abused notation slightly by writing m1 to also denote its class in PicC , PicCm

and A, respectively.

Remark 2.6. It is not generally true that all effective divisors linearly equivalent to and
disjoint from m give the same class in PicCm

, so the quotient maps PicCm
Ñ Jm and A Ñ Am

may depend on the choice for m
1. However, the map PicC Ñ J depends only on m.

The maps ψ and ϕ of Lemma 2.3 induce maps ψ : Jm Ñ Am and ϕ : Am Ñ Jm whose
composition is multiplication by n. The map ϕ induces a morphism of exact sequences of
group schemes,

(2.6) 0 // T 1 //

ϕ

��

Am

ϕ

��

// J //

n

��

0

0 // T // Jm
// J // 0 ,
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and in particular an isogeny of semiabelian varieties,

(2.7) ϕ : Am ÝÑ Jm .

Lemma 2.7. There is a commutative and exact diagram,

(2.8) µn� _

��

µn� _

��

Amrϕs � � //

����

Amrϕs
1

ℓ
deg

// //

����

Z{nZ

Jrns � � // J rns
1

ℓ
deg

// // Z{nZ .

Proof. The first and second columns are, respectively, the kernels of the morphism of exact
sequences appearing in Lemma 2.3 and Diagram (2.6). They are exact by the snake lemma,
since ϕ : T 1 Ñ T is an epimorphism. By Lemma 2.5, a divisor D P DivmpCkq represents
a class in Amrϕs if and only if nD “ am1 ` divpfq, for some a P Z and f P kpCkqˆ with
f |m P Res1

m
µn. In particular, n degpDq “ degpnDq “ degpam1q “ anℓ. So ℓ divides degpDq.

As every class in Am can be represented by a divisor of degree 1 ď d ď m this shows that the
maps in the first row are well defined. By definition, Amrϕs is the intersection of the kernels
of the maps ϕ and deg on Am. Surjectivity in the middle row follows from the fact that Am

is a divisible group. Namely, there exists n1 P DivpCq, necessarily of degree ℓ, such that the
class of nn1 is equal to that of m1 in Apkq. By Lemma 2.5, ϕprn1sq “ rnn1s “ rm1s “ 0 in Am.
Thus the middle row is exact. The same argument (applied to J in place of Am) shows the
same for the bottom row. �

2.5. Extended Weil pairings. We now define a bilinear pairing

e : Jmrns ˆ Jmrns Ñ µn .

Fix f P kpCqˆ such that divpfq “ m1 ´ m. Given D1,D2 P Jmrns, choose representative
divisors D1, D2 P DivmpCkq, and let di “ degpDiq{ℓ, where we remind the reader that
ℓ :“ m{n. There exist unique functions h1

i P kpCkqˆ such that nDi “ divph1
iq ` dim

1 and
h1
i|m “ 1. Set hi “ f dih1

i, so that nDi “ divphiq ` dim. Define:

(2.9) epD1,D2q “ p´1qd1d2
ź

PPCpkq

p´1qnpordP D1qpordP D2qh
ordP D1

2

hordP D2

1

pP q P kˆ
.

We note that when D1 and D2 have disjoint support, this can be written as

(2.10) epD1,D2q “ p´1qd1d2 h2pD1q
h1pD2q .

Proposition 2.8. The pairing e is Galois equivariant and induces, via the surjective map
ψ : Jmrns Ñ Amrϕs and the maps in (2.8), nondegenerate Galois equivariant pairings

e : Amrϕs ˆ Amrϕs Ñ µn ,

e : Amrϕs ˆ J rns Ñ µn ,

e : Jrns ˆ Jrns Ñ µn .

Moreover, the pairing on Jrns ˆ Jrns coincides with the Weil pairing.
7



Remark 2.9. The definition of e given above depends on the choice of m1 in (2.5) and the
function f with divpfq “ m1 ´m. However, as shown in the proof below, the induced pairings
on Amrϕs ˆ J rns and Jrns ˆ Jrns do not depend on these choices.

Proof. One can check that the pairing e : Jmrns ˆ Jmrns Ñ µn is Galois equivariant exactly
as is done in [PS97, Section 7] where the situation of Example M.1 is considered (one need
only replace the function x there with the function f in the definition above).

We will show that the orthogonal complements of Res1
m
µn{µn and T rns with respect to

e are Jmrns and Jmrns, respectively. This is enough to ensure that e induces the pairings
stated. The pairing induced on Jrns is evidently the Weil pairing (see [How96, Theorem 1]),
which is known to be nondegenerate. Nondegeneracy of the other pairings follows from the
exactness of (2.8). Alternatively, Lemma 3.5 below gives an alternative description of this
pairing using class field theory which is readily seen to be nondegenerate.

Let D1 P T rns. Then D1 is represented by D1 “ divpfq for some f P kpCkqˆ with
f |m P Resm µn. Since nD1 “ divpfnq and fn|m “ 1 we must use h1 “ fn in the definition
of the pairing. Suppose D2 P J rns and let D2, h2, d2 be as in the definition of the pairing.
Then we have

epD1,D2q “
ź

PPCpkq

p´1qnpordP fqpordP D2q h
ordP f
2

fn ordP D2

pP q

“
ź

PPCpkq

p´1qpordP fqpordP h2`d2 ordP mq h
ordP f
2

f ordP h2`d2 ordP m
pP q (since nD2 “ divph2q ` d2m.)

“
ź

PPCpkq

p´1qd2pordP fqpordP mqf´d2 ordP mpP q (by Weil reciprocity)

“
ź

PPCpkq

f´d2 ordP mpP q (since f |m is invertible)

“ Npf |mq´d2 ,

whereN denotes the induced norm Resm Gˆ Ñ Gˆ. From this one easily sees that Res1
m
µn{µn

lies in the kernel of the pairing and that T rns pairs trivially with the degree 0 subgroup,
Jmrns Ă Jmrns. �

Taking Galois cohomology of (2.8) yields a commutative and exact diagram

(2.11) kˆ{kˆn

��

kˆ{kˆn

��

Z{nZ B1

// H1pAmrϕsq //

��

H1pAmrϕsq
1

ℓ
deg

//

��

H1pZ{nZq

Z{nZ B
// H1pJrnsq //

Υ

��

H1pJ rnsq
1

ℓ
deg

//

Υ1

��

H1pZ{nZq

Brpkqrns Brpkqrns
8



Lemma 2.10. The images of Bp1q and B1p1q in H1pJq and H1pAmq are the classes of J ℓ and
Aℓm, respectively. The maps Υ and Υ1 are given by

Υpξq “ ξ Ye Bp1q , and
Υ1pξq “ ξ Ye B1p1q ,

where Ye denotes the cup product pairings

Ye : H
1pJrnsq ˆ H1pJrnsq Ñ H2pµnq “ Brpkqrns , and

Ye : H
1pJ rnsq ˆ H1pAmrϕsq Ñ H2pµnq “ Brpkqrns

determined by the e-pairings of Proposition 2.8 (cf. [NSW08, page 38]).

Proof. At the level of cocycles, Bp1q is represented by Galk Q σ ÞÑ rσpDq ´Ds P Jrns, where
D P DivpCq is such that nD is linearly equivalent to m

1 and the square parentheses denote
the class of a divisor in PicpCq. The divisor D necessarily has degree m{n “ ℓ, so the image
of this cocycle in H1pJq represents J ℓ. The claim that B1p1q represents Aℓm is established
similarly.

The e-pairings of Proposition 2.8 give commutative diagrams of pairings

(2.12)

µn ˆ Z{nZ Ñ µn µn ˆ Z{nZ Ñ µn

Ð
â

։ “ Ð
â

։ “

Amrϕs ˆ J rns Ñ µn Amrϕs ˆ Amrϕs Ñ µn

և ãÑ “ և ãÑ “

Jrns ˆ Jrns Ñ µn J rns ˆ Amrϕs Ñ µn .

Since the maps Υ and Υ1 are coboundary maps from the first columns and the maps B and
B1 are coboundary maps from the second columns we may apply [NSW08, Corollary 1.4.5]
once to each of the diagrams in (2.12) to deduce that Υpξq “ ξYeBp1q and Υ1pξq “ ξYe B1p1q.

�

2.6. Brauer class of a k-rational divisor class. Given a nice curve C, there is a well
known exact sequence

(2.13) 0 Ñ PicpCq ÝÑ PicCpkq ΘCÝÑ Brpkq
(see [Lic69]). The map ΘC gives the obstruction to a k-rational divisor class being represented
by a k-rational divisor.

Lemma 2.11. Let d : Jpkq Ñ H1pJrnsq denote the connecting homomorphism in the Kum-
mer sequence. For any x P Jpkq we have Υ ˝ dpxq “ ℓ ¨ ΘCpxq.
Proof. The image of d is isotropic with respect to the Weil-pairing cup product Ye. This
gives a commutative diagram of pairings

Ye : H1pJrnsq ˆ H1pJrnsq Ñ Brpkq
d Ñ Ð “

x , y : Jpkq ˆ H1pJq Ñ Brpkq
By a result of Lichtenbaum (see the proof of [Lic69, Corollary 1]) we have that xx, rJ1sy “
ΘCpxq. By the previous lemma we have

Υ ˝ dpxq “ dpxq Ye Bp1q “ xx, rJ ℓsy “ ℓ ¨ xx, rJ1sy “ ℓ ¨ ΘCpxq .
9
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Let Jpkq‚ denote the kernel of the composition Υ ˝ d : Jpkq Ñ H1pJrnsq Ñ Brpkq.
Then Pic0pCq Ă Jpkq‚ Ă Jpkq and, in general, any of these containments can be proper.
Lemma 2.11 shows that Pic0pCq “ Jpkq‚ when ℓ “ 1 (e.g., for the modulus setups of
Example M.1 and Example M.2) while the following corollary shows that Jpkq‚ “ Jpkq
when k is a local or global field and C has a modulus setup as in Example M.3.

Corollary 2.12. If

(1) the period of C divides ℓ, or
(2) k is a local or global field and gcdpm, g ´ 1q divides ℓ,

then Υ ˝ d “ 0.

Proof. The image of ΘC : Jpkq Ñ Brpkq is isomorphic to the cokernel of Pic0pCq Ñ Jpkq,
which is annihilated by the period of C ([PS97, Prop. 3.2]). Over a local field, the period of
C divides g ´ 1 ([PS97, Prop. 3.4]). Since the period also divides m “ degpmq, (2) implies
that ℓ is divisible by the period locally. Hence Υ ˝ d “ 0 locally. This must also be true
globally by the local-global principle for Brpkq. �

We recall that the situation for PicCm
is different.

Lemma 2.13. The natural map DivmpCq Ñ PicCm
pkq is surjective. In particular, for any

i ě 1, DivipCq ‰ H if and only if J i
m

pkq ‰ H.

Proof. The first statement follows from [PS97, Lemma 3.5]. The second follows from the
first by the moving lemma. �

3. n-coverings, ϕ-coverings and the descent setup

3.1. n-coverings and ϕ-coverings.

Definition 3.1. Suppose φ : A Ñ B is an isogeny of semiabelian varieties over k and V
is a B-torsor. We say π : V 1 Ñ V is a φ-covering of V if there exist isomorphisms a, b of
k-varieties such that a is compatible with the torsor structure of V , fitting into a commutative
diagram

V 1
k

b
//

π

��

Ak

φ

��

Vk
a

// Bk .

Let CovφpV q denote the set of isomorphism classes of φ-covering of V , considered as objects
in the category of V -schemes.

To say that a is compatible with the torsor structure means that apx ` yq “ apxq ` y.
Note that the isomorphism b endows V 1 with the structure of a torsor under A by the rule
x ` y “ b´1pbpxq ` yq. The classes of these torsors satisfy φ˚rV 1s “ rV s P H1pBq. When
nonempty, CovφpV q is a principal homogeneous space for the group H1pkerpφqq acting by
twisting. The isogenies ϕ : Am Ñ Jm and n : J Ñ J give distinguished points in CovϕpJmq
and CovnpJq, endowing these sets with the structure of an abelian group and isomorphisms
to H1pAmrϕsq and H1pJrnsq, respectively.
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Suppose pn,mq is a modulus setup for a nice curve C over k. The isogenies ϕ : Am Ñ Jm
and n : J Ñ J give rise to the notions of ϕ-coverings of J i

m
and n-coverings of J i for each

i ě 0. The pullback of a ϕ-covering V Ñ J1
m
along the canonical map pC ´mq Ñ J1

m
sending

a geometric point x to the class of the divisor x in J1
mpkq Ă PicCm

pkq yields an unramified
covering of pC ´ mq. Corresponding to this is a unique (up to isomorphism) morphism
π : Y Ñ C of smooth projective curves over k which is unramifed outside m.

Definition 3.2. Suppose pn,mq is a modulus setup for a nice curve C over k. A morphism
π : Y Ñ C of nice curves is a ϕ-covering of C if it is the unique extension of the pullback
of a ϕ-covering of J1

m along the canonical map pC ´ mq Ñ J1
m. A morphism π : X Ñ C

is an n-covering of C if it is the pullback of an n-covering of J1 along the canonical map
C Ñ J1. Let CovnpCq and CovϕpCq denote, respectively, the sets of isomorphism classes of
n-coverings and ϕ-coverings of C (considered as objects in the category of C-schemes).

Proposition 3.3. An n-covering of C is a k-form of the maximal unramified abelian covering
of C of exponent n. A ϕ-covering of C is an abelian covering of exponent n and conductor
m whose maximal unramified subcovering is an n-covering.

Proof. Any unramified abelian extension of kpCq of exponent n is obtained by adjoining n-th
roots of functions f P kpCq with divpfq “ nD P nDivpCq. For any such function, the class
of the divisor D lies in Jrns. For the (unique up to isomorphism) n-covering π : C 1 Ñ C

we have Jrnspkq “ kerpπ˚ : Pic0pCq Ñ Pic0pC 1qq. Thus kpC 1q contains n-th roots of all
functions f as above. This proves the first statement.

Similarly, the field extension of kpCkq corresponding to a ϕ-covering is the compositum
of the extensions corresponding to the index n subgroups of Amrϕs, or equivalently, to the
points of order n in the Cartier dual J rns (the duality is given by Proposition 2.8). If
D P DivpCkq represents a point of order n in J rns, then there exists a function hD P kpCkqˆ

such that divphDq “ nD ´ dm for some d P Z. The corresponding extension of kpCkq is
obtained by adjoining an n-th root of hD. Such extensions are of conductor m. The maximal
unramified subextension is obtained by adjoining n-th roots only of those hD for which
divphDq ´nD “ dm with d ” 0 mod n. These correspond to points in Jrns showing that the
maximal unramified subcover of a ϕ-covering is an n-covering.

�

When nonempty, the sets CovnpCq and CovϕpCq are principal homogeneous spaces for
H1pJrnsq and H1pAmrnsq, respectively, acting by twisting. By geometric class field theory
the canonical pullback maps p : CovnpJ1q Ñ CovnpCq and pm : CovϕpJ1

m
q Ñ CovϕpCq are

bijections that are equivariant for the actions by H1pJrnsq and H1pAmrnsq. By Proposition 3.3
there is a canonical map u : CovϕpCq Ñ CovnpCq, which associates to a ϕ-covering of C the
maximal unramified intermediate covering of C. Let CovnmpCq denote the image of u.

Given a ϕ-covering π : Fm Ñ J im, the torsor structures restrict to actions of the tori T
1 Ă Am

and T Ă Jm on Fm and J i
m
, respectively. The quotients F “ Fm{T 1 and J i “ J i

m
{T are torsors

under J “ Am{T 1 “ Jm{T . The existence of these quotients in the category of varieties follows
from [Gro95, Theoreme 7.2], while the induced torsor structure can be established as in the
proof of [Bor96, Lemma 3.1]. Since the actions of T 1 and T are equivariant with respect to
π, there is an induced map π1 : F Ñ J i which is a torsor under Amrϕs{T 1rϕs “ Jrns. This
induces a map q : CovϕpJ i

m
q Ñ CovnpJ iq. Let Covn

m
pJ iq denote the image of q. We record

the following.
11



Lemma 3.4.

(1) The isomorphism CovnpJq » H1pJrnsq restricts to CovnmpJq » kerpΥq.
(2) The maps defined above fit into a commutative diagram,

CovϕpJ1
m

q pm
//

q

��

CovϕpCq
u

��

CovnpJ1q p
// CovnpCq .

In particular, p restricts to give a bijection p : Covn
m

pJq Ñ Covn
m

pCq.
Proof. The first statement follows from exactness in (2.11). The second follows from the
universal property of the fibered product. �

Using ϕ-coverings we can give an alternative description of the e-pairing on Amrϕs ˆJ rns
given in Proposition 2.8. Let pY, πq be a ϕ-covering of Ck. Let M “ kpY q and K “ kpCkq,
which we identify with the subfield π˚pKq Ă M . There are canonical isomorphisms r :
Amrϕs » GalpM{π˚Kq and s : J rns » pKˆ X Mˆnq{Kˆn. The latter sends the class of a
divisor D to the class of a function h P K such that divphq “ nD ´ dm, for some integer d.
Kummer theory gives a bilinear pairing κ : GalpM{Kq ˆ pKˆ X Mˆnq{Kˆn Ñ µn.

Lemma 3.5. For D1 P Amrϕs and D2 P J rns we have epD1,D2q “ κprpD1q, spD2qq.
Proof. The analogous statement for the induced pairing on Jrns ˆ Jrns is the main result
of [How96]. As described in Section 4 of op. cit. it suffices to prove the statement when k
is a finite field. Let D1 P Amrϕspkq and D2 P J rnspkq. By possibly enlarging k if necessary
we can arrange that the Di are represented by k-rational divisors Di and, moreover, that
Jmrnspkq “ Jmrnspkq. Take g P kpCqˆ such that divpgq “ nD2 ´ dm. Then, as seen in the
proof of Proposition 3.3, g P Mˆn. Let F : Jm Ñ Jm be the k-Frobenius. Then Jmrnspkq Ă
kerpF ´1q, so F ´1 factors through multiplication by n, and hence through ϕ. Moreover, the
extension M{K extends to a Galois extension N{K with GalpN{Kq » JmrF ´ 1s » Jmpkq.

All of this fits into a commutative diagram

Jmpkq »
//

pF´1q{ϕ

&& &&▼
▼

▼

▼

▼

▼

▼

▼

▼

▼

pF´1q{n
����

GalpN{Kq

��

Jmpkqrns ψ
// // Amrϕspkq

κprp¨q,spD2qq
��

»
r

// GalpM{Kq

��

µnpkq GalpKpg1{nq{Kq .»
oo

The map from the top left to the bottom right is given by the Artin map of class field theory
and, hence, the composition I0pkq Ñ Jmpkq Ñ µnpkq from the k-idèles of K to µnpkq can be
computed with Hilbert norm residue symbols (see [Ser88, §6.30, p. 150]). Take a P I0pkq
to be an idèle whose divisor class is equal to the class of D1 in Jmpkq and b P I0pkq such
that pF ´ 1q{nrbs “ ras in Jmpkq. To prove the lemma amounts to checking that epD1,D2q
is equal to the product of the Hilbert norm residue symbols,

ś

PPCpkqpg, bqP . This can be

verified exactly as in the calculation of [How96, Section 3]. �
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3.2. Soluble coverings. For an isogeny φ : A Ñ B of semiabelian varieties and V a torsor
under B, let CovφsolpV q denote the set of isomorphism classes of φ-coverings U Ñ V with

Upkq ‰ H. When k is a global field, let SelφpV q denote the set of isomorphism classes of
φ-coverings of V that are soluble everywhere locally. Define similarly CovnsolpCq, CovϕsolpCq,
SelnpCq and SelϕpCq.

Recall that for a nice curve C over k with modulus setup pn,mq, Jpkq‚ denotes the kernel
of the composition Υ ˝ d : Jpkq Ñ H1pJrnsq Ñ Brpkq.

Lemma 3.6. Covn
m

pJq X CovnsolpJq “ dpJpkq‚q.

Proof. CovnsolpJq “ dpJpkqq and Covn
m

pJq “ kerpΥq by Lemma 3.4. �

The reciproicty law in the Brauer group yields the following.

Corollary 3.7. If k is a global field and Jpkvq‚ “ Jpkvq for all but at most one prime v,
then SelnpJq Ă Covn

m
pJq.

This corollary shows that the subgroup Covn
m

pJq Ă CovnpJq is large enough to be useful
for arithmetic applications. We will derive analogous results for CovnmpCq and CovnmpJ iq as
corollaries to the following theorem.

Theorem 3.8. The group H1pJrnsq acts on the sets CovnpJ iq by twisting. This gives rise
to simply transitive actions of:

(1) H1pJrnsq on CovnpJ iq, when rJ is is divisible by n in H1pJq;
(2) H1pJrnsq on CovnpCq, when rJ is is divisible by n in H1pJq;
(3) kerpΥq on CovnmpJ iq, when rJ ims P ϕ˚pH1pAmqq Ă H1pJmq;
(4) kerpΥq on Covn

m
pCq, when rJ1

m
s P ϕ˚pH1pAmqq Ă H1pJmq;

(5) Jpkq{nJpkq on CovnsolpJ iq, when J ipkq ‰ H;
(6) dpJpkq‚q on CovnsolpJ iq X CovnmpJ iq, when J impkq ‰ H;

and, assuming k is a global field, of

(7) SelnpJq on SelnpJ iq, when rJ is P nXpJq;
(8) SelnpJq on SelnpJ iqXCovnmpJ iq, when rJ is P nXpJq and for all but at most one prime

v of k we have Jpkvq‚ “ Jpkvq and J i
m

pkvq ‰ H.

Proof.

(1) First note that n-coverings are Jrns-torsors. As in [Sko01, Section 2.2], the low degree
terms of the Hochschild-Serre spectral sequence give an exact sequence

0 Ñ H1pGalk, Jrnsq Ñ H1
étpJ i, Jrnsq Ñ H0pGalk,H

1
étpJ ik, Jrnsqq BÑ H2pGalk, Jrnsq .

There exists an n-covering of J i
k
and the image of its class under B is the obstruction to

the existence of an n-covering of J i. This obstruction coincides with the coboundary
of rJ is arising from the exact sequence 0 Ñ Jrns Ñ J Ñ J Ñ 0 (see [Sko01, Lemma
2.4.5]). In particular, if rJ is is divisible by n, then CovnpJ iq ‰ H. In this case
H1pJrnsq acts simply transitively on CovnpJ iq by exactness of the sequence above.

(2) It follows from geometric class field theory that the map CovnpJ1q Ñ CovnpCq given
by pullback is a bijection which respects the action of H1pJrnsq, so (1) ñ (2).
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(3) As in the proof of (1), the condition rJ ims P ϕ˚pH1pAmqq Ă H1pJmq ensures that
CovϕpJ i

m
q is nonempty, and hence is a principal homogeneous space for H1pAmrϕsq.

The map q : CovϕpJ imq Ñ CovnpJ iq is a map of principal homogeneous spaces, com-
patible with the homomorphism s : H1pAmrϕsq Ñ H1pJrnsq coming from the coho-
mology of the exact sequence 1 Ñ T 1rϕs Ñ Amrϕs Ñ Jrns Ñ 0. The image of q is
Covn

m
pJ iq, while the image of s is kerpΥq.

(4) This follows from (3) by pullback.
(5) If J ipkq ‰ H, then CovnsolpJ iq ‰ H (since in this case rJ is “ 0 in H1pJq is divisible by

n). The difference of any two soluble n-coverings has trivial image in H1pJq, hence
must lie in the image of the Kummer map d : Jpkq{nJpkq ãÑ H1pJrnsq.

(6) By assumption J impkq ‰ H, so CovϕsolpJ imq ‰ H. Then qpCovϕsolpJ imqq Ă CovnmpJ iq X
CovnsolpJq is nonempty. The result now follows from (3) and (5) since dpJpkq‚q “
dpJpkq{nJpkqq X kerpΥq.

(7) Since rJ is P nXpJq, we have that SelnpJ iq ‰ H. One then argues as in (5) (every-
where locally) to see that the difference of two locally soluble n-coverings of J i gives
an element of SelnpJq.

(8) First we claim that CovϕpJ i
m

q and, hence, Covn
m

pJ iq are nonempty. As in the proof
of (1), there exists a ϕ-covering of pJ i

m
qk and the obstruction to Galois descent is

an element o P H2pAmrϕsq. There is an exact sequence Brpkqrns “ H2pT 1rϕsq Ñ
H2pAmrϕsq Ñ H2pJrnsq and the image of o in H2pJrnsq is the obstruction to the
existence of an n-covering of J i. We have assumed rJ is P nXpJq, so o is the image
of an element from Brpkq. However, o must vanish everywhere locally since we have
assumed J i

m
is locally soluble. So o is trivial by the local-global principle for the

Brauer group.
Now suppose pF, πq P SelnpJ iq. By (1) there exists some ξ P H1pJrnsq such that

the twist ξ ¨ pF, πq lies in Covn
m

pJ iq. We will show that ξ P kerpΥq which, in light of
(3), shows that pF, πq P Covn

m
pJ iq. Thus, SelnpJ iq Ă Covn

m
pJ iq and the conclusion of

(8) follows from (7).
Let v be a prime such that Jpkvq‚ “ Jpkvq. Together (5) and (6) show that

CovnsolpJ ikvq Ă CovmpJ ikvq. Since resvpF, πq P CovnsolpJ ikvq, (3) implies that resvpξq P
kerpΥq. Since Jpkvq‚ “ Jpkvq for all but at most one prime, the reciprocity law in
the Brauer group gives that ξ P kerpΥq.

�

Corollary 3.9. CovnsolpCq Ă Covn
m

pCq and if k is a global field, then SelnpCq Ă Covn
m

pCq.

Proof. For the first statement we may assume CovnsolpCq ‰ H. Then Cpkq ‰ H and, hence,
J1
m

pkq, J1pkq ‰ H and Jpkq‚ “ Jpkq. So (5) and (6) show that CovnsolpJ1q Ă Covn
m

pJ1q. Then
CovnsolpCq Ă ppCovnsolpJ1qq Ă ppCovn

m
pJ1qq “ Covn

m
pCq. To prove the second statement we

may assume SelnpCq is nonempty. Then the hypothesis of Theorem 3.8(8) in case i “ 1
is satisfied, so this together with Theorem (3.8)(7) shows that SelnpJ1q Ă Covn

m
pJ1q. The

result now follows by applying the pullback map as in the proof of the first statement. �

Corollary 3.10. If Jpkq‚ “ Jpkq and DivipCq ‰ H, then CovnsolpJ iq Ă Covn
m

pJ iq. If k is a
global field and for all but at most one prime v of k, DivipCkvq ‰ H and Jpkvq‚ “ Jpkvq.
Then SelnpJ iq Ă Covn

m
pJ iq.
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Proof. If SelnpJ iq “ H there is nothing to prove. Otherwise, the hypotheses of (8) is satisfied
since our assumption DivipCkvq ‰ H implies J i

m
pkvq ‰ H by Lemma 2.13. Together (7) and

(8) give the result. �

4. The descent setup

We recall the following definition from [BPS16] (where the defined object is referred to as
a fake descent setup).

Definition 4.1. Let C be a nice curve over k. A descent setup for C is a triple pn,∆, βq
consisting of a positive integer n not divisible by the characteristic of k, a nonempty finite
étale k-scheme ∆ “ SpecL, and a divisor β P DivpC ˆ ∆q such that nβ “ m ˆ ∆ ` divpfmq
for some m P DivpCq and fm P kpC ˆ ∆qˆ.

If the divisor m appearing in the definition is effective, reduced and base point free, then
pn,mq is a modulus setup, which we say is associated to pn,∆, βq. For each δ P ∆pkq,
βδ P DivpCkq is a divisor such that nβδ ´m is principal. So the class of βδ in J lies in J rns.
This gives rise to a map Res∆ Z{nZ Ñ J rns sending ř

δP∆pkq cδ to the class of
ř

cδβδ. There

is trace map Tr : Res∆ Z{nZ Ñ Z{nZ whose kernel we denote by Res0∆ Z{nZ. This fits into
a commutative and exact diagram,

(4.1) 0 // Res0∆ Z{nZ

��

// Res∆ Z{nZ

��

Tr
// Z{nZ // 0

0 // Jrns // J rns
1

ℓ
deg

// Z{nZ // 0

Definition 4.2. We say that pn,∆, βq is an n-descent setup if the vertical maps in (4.1) are
surjective and the divisors βδ P DivpCkq are effective and have no common support.

We note that if pn,∆, βq is an n-descent setup, then the divisor m appearing in the
definition is base point free, as it is linearly equivalent to each of the nβδ, which by assumption
have no common support. Thus pn,mq is a modulus setup.

The following examples show that all of the modulus setups considered in Section 2 are
associated to an n-descent setup. Details for Example D.1 and Example D.3 may be found
in [BPS16, Examples 6.9], while Example D.2 is considered in [Cre14].

D.1 Suppose C is a double cover of P1 which is not ramified over 8. Let ∆pkq be the set
of ramification points and take β to be the diagonal embedding of ∆ in C ˆ∆. Then
p2,∆, βq is a 2-descent setup. Taking m be the pullback of 8 P DivpP1q we recover
the modulus setup in Example M.1.

D.2 Suppose C is a genus 1 curve of degree n in Pn´1 (or equivalently, a genus 1 curve
together with the linear equivalence class of a k-rational divisor of degree n). We
obtain an n-descent setup by taking ∆ to be the set of n2 flex points (i.e. points
x P Cpkq such that n.x is a hyperplance section) and β to be the diagonal embedding
of ∆ in C ˆ ∆. Taking m to be a generic hyperplane section recovers the modulus
setup in Example M.2.

D.3 Suppose C is a nonhyperelliptic curve of genus ě 2. We obtain a 2-descent setup for
C by taking ∆ to be the Galk-set of odd theta characteristics. A theta characteristic
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is a line bundle θ on C whose square is the canonical bundle. By definition θ is odd
if h0pX, θq ” 1 mod 2, which implies in particular that θ may be represented by an
effective divisor. By [BPS16, Proposition 5.8] there is some effective β P DivpC ˆ∆q
such that rβδs “ δ for δ P ∆pkq. We can take m to be an effective canonical divisor
and thus recover the modulus setup in Example M.3.

4.1. Descent maps. Let C be a nice curve over k with an n-descent setup pn,∆, βq and
associated modulus setup pn,mq. Let L denote the étale algebra corresponding to ∆, i.e.,
∆ “ SpecL. Call a divisor on C good if its support is disjoint from m and all βδ.

Lemma 4.3. Let fm P kpC ˆ ∆qˆ be as in Definition 4.1. Evaluation of fm at good divisors
induces homomorphisms

fm : PicCm
pkq Ñ Lˆ{Lˆn , and fm : PicpCq ÝÑ Lˆ{kˆLˆn .

Proof. By Lemma 2.13 and the moving lemma, all elements of PicCm
pkq can be represented

by a good k-rational divisor and PicpCq is the image of PicCm
pkq. Suppose D is a good

k-rational divisor and D “ divpgq for some g P kpCqˆ. By Weil reciprocity fmpDq “
gpdivpfmqq “ gpnβ ´ m ˆ ∆q “ Npg|mq´1gpβqn P kˆLˆn. This shows that the second map is
well defined. If the class of D is trivial in PicCm

pkq, then there is such a g with g|m “ 1 (cf.
Lemma 2.5), so that fmpDq P Lˆn. �

Dualizing (4.1) and taking Galois cohomology yields a commutative and exact diagram,

(4.2) H1pT 1rϕsq // H1pAmrϕsq //

αm

��

H1pJrnsq
α

��

Υ
// H2pT 1rϕsq

kˆ{kˆn // Lˆ{Lˆn // H1
´

Res∆ µn
µn

¯

// Brpkqrns

This is related to the maps in Lemma 4.3 and ϕ-coverings as follows.

Theorem 4.4. For i P t0, 1u there is an αm-equivariant map αi
m
: CovϕpJ i

m
q Ñ Lˆ{Lˆn,

functorial in k and such that for any pFm, πq P CovϕpJ imq and P P πpFmpkqq we have
αmpFm, πq “ fmpP q.

We prove the cases i “ 0 and i “ 1 separately below, after making some remarks and
stating two corollaries that will be used in the following section. Proofs of the corollaries
follow the proof of the theorem.

Remark 4.5. The set of rational points on J im may be partitioned as

J impkq “
ž

pFm,πqPCovϕpJi
m

q

πpFmpkqq .

The theorem says that the map fm : PiciCm

pkq “ J i
m

pkq Ñ Lˆ{Lˆn is constant on each of
the sets appearing in this partition and that the value on each is equal to the image of the
corresponding covering under αim.

Corollary 4.6. For i P t0, 1u there is an α-equivariant map αi : Covn
m

pJ iq Ñ Lˆ{kˆLˆn,
functorial in k and such that for any pF, πq P Covn

m
pJ iq and P P πpF pkqq X PicipCq we have

αipF, πq “ fmpP q.
16



Corollary 4.7. There is an α-equivariant map α1 : Covn
m

pCq Ñ Lˆ{kˆLˆn, functorial in k
and such that for any pX, πq P Covn

m
pCq and P P πpXpkqq we have α1pX, πq “ fmpP q.

Remark 4.8. There are partitions of the sets of rational points

Cpkq “
ž

pX,πqPCovnpCq
πpXpkqq and J ipkq “

ž

pF,πqPCovnpCq
πpF pkqq

By Corollary 3.9, CovnsolpCq Ă Covn
m

pCq, so Corollary 4.7 says that the map fm : Cpkq Ñ
Lˆ{kˆLˆn is constant on each of the sets appearing in this partition and that the value on
each is equal to the image of the corresponding covering under the descent map. A similar
statement holds for J i, provided PicipCq “ J ipkq, in which case CovnsolpJ iq Ă Covn

m
pJ iq by

Lemma 3.6 and Corollary 3.10.

Remark 4.9. The subgroup Jpkq‚ “ kerpΥ ˝ dq Ă Jpkq is the largest subgroup of Jpkq on
which one can define a homomorphism f : Jpkq‚ Ñ Lˆ{kˆLˆ2 such that f agrees with fm
on Pic0pCq and f ˝ d agrees with α0 ˝ d as in Corollary 4.6. This follows from a diagram
chase in (4.2). Corollary 2.12 shows that Jpkq‚ “ Jpkq when C is a nonhyperelliptic curve
defined over a local or global field and has 2-descent setup as in Example D.3. This is
rather surprising given that it is not generally true that Jpkq “ Pic0pCq and, moreover,
that Jpkq‚ “ Pic0pCq for a hyperelliptic curve with 2-descent setup as in Example D.1 (see
[PS97, Corollary 10.6]). It would be very interesting to determine how this extended map f
could be computed explicity over, say, a local field.

Proof of Theorem 4.4 in the case i “ 0. Let dm : Jmpkq Ñ H1pAmrϕsq denote the connecting
homomorphism from the exact sequence 0 Ñ Amrϕs Ñ Am Ñ Jm Ñ 0. Under the identifi-
cation H1pAmrϕsq “ CovϕpJmq, the coboundary map dm sends P P Jmpkq to the class of the
ϕ-covering Am Ñ Jm given by Q ÞÑ ϕpQq ` P . So the following lemma proves Theorem 4.4
in the case i “ 0. �

Lemma 4.10. The composition Jmpkq dmÝÑ H1pAmrϕsq αÝÑ Lˆ{Lˆn is equal to fm.

Proof. LetD P DivmpCq be a good divisor representing P P Jmpkq. Choose a good divisor E P
DivmpCkq such that nE´D “ divpgq for some g P kpCkqˆ with g|m “ 1. This is possible since
Jmpkq is a divisible group. Then dmpP q is represented by the 1-cocycle ξσ “ rσE´Es P Amrϕs.
Note that divpσg{gq “ npσE ´ Eq. The image of ξ under α : H1pAmrϕsq Ñ H1pRes∆ µnq is
represented by epξσ, βq, where e is the pairing defined in Proposition 2.8. From the definition
of the e pairing we have

epξσ, βq “ fmpσE ´ Eq{pσg{gqpβq “ σb{b ,
where b “ fmpEq{gpβq. Thus, the image of αpξq under H1pRes∆ µnq » Lˆ{Lˆn is represented
by bn “ fmpnEq{gpnβq “ fmpD ` divpgqq{gpm ˆ ∆ ` divpfmqq “ fmpDq{gpm ˆ ∆q “ fmpDq,
where the last two equalities follow from Weil reciprocity and the fact that g|m “ 1, respec-
tively. �

Proof of Theorem 4.4 in the case i “ 1. Given pFm, ρq P CovϕpJ1
m

q, let pY, πq P CovϕpCq be
its image under the pullback map. As in the proof of Proposition 3.3 the extension kpYkq
contains n-th roots gδ of fm,δ for each δ P ∆pkq. Evidently divpσpgδqq “ divpgσpδqq for
any σ P Galk, so by Hilbert’s Theorem 90 there is a function h P kpY ˆ ∆qˆ such that
divpgδq “ divphδq. Then π˚fm{hn P kpY ˆ ∆qˆ has trivial divisor, so must equal some

17



constant function c P Lˆ “ kp∆qˆ. The class of c in Lˆ{Lˆn is independent of the choice for
h. Thus we have a well defined map α1 : CovϕpJ1

m
q Ñ Lˆ{Lˆn sending pFm, ρq to the class

of c.
Now suppose D P Div1pCq is a good divisor. For each P P Cpkq in the support of D choose

some P 1 P Y pkq such that πpP 1q “ P and set D1 “ ř

P ordP pDqP 1 P DivpY q. Let σ P Galk.
Since D is k-rational we can write σpD1q “ ř

P ordP pDqP 1
σ with πpP 1

σq “ P . The restriction
of π to the open subscheme Y0 “ Y ´π´1pmq is an Amrϕs-torsor over C0 “ C ´m. Thus, for
each P P SupppDq and σ P Galk there is a unique γP,σ P Amrϕspkq such that γP,σ ¨ P 1 “ P 1

σ.
Set γσ “ ř

P ordP pDqγP,σ, which we interpret as a 1-cocycle taking values in Amrϕs. Since
πpD1q “ D, γσ represents the class in H1pAmrϕsq of the torsor ρ´1prDsq Ă Fm.

From the relation defining c we have fmpDq{c “ fm ˝ πpD1q{c “ hpD1qn. This represents a
class in H1pRes∆ µnq given by the 1-cocyle

ησ “ σphpD1qq{hpD1q “ hpσD1q{hpD1q “
ź

P

rhpγP,σ ¨ P 1q{hpP 1qsordP pDq .

By Lemma 3.5 this can be expressed in terms of the extended Weil pairing of Proposition 2.8
as

ησ “
ź

P

epγP,σ, βqordP pDq “ e pγσ, βq .

This also represents the image of γσ under the map α : H1pAmrϕsq Ñ H1pRes∆ µnq. Thus,
fmpDq{c “ fmpDq{α1pFm, ρq is equal to αpρ´1prDsqq. In particular, fmpDq “ α1pFm, ρq
whenever the fiber ρ´1prDsq contains a k-point. This is the property stated in the theorem.

Let us show that α1
m is αm-equivariant. Suppose pYξ, πξq is the twist of pY, πq by ξ P

H1pk, Amrϕsq. By definition there is an isomorphism ψ : pYξqk Ñ Yk such that π ˝ ψ “ πξ
and σψpxq “ ξσ ¨ ψpxq for any σ P Galk, where ξσ P Amrϕs » AutpYk{Ckq. Let h, c and
hξ, cξ be as in the definition of α1

m. We must show that cξ{c and αpξq give the same class
in Lˆ{Lˆn » H1pRes∆ µnq. We have cξh

n
ξ “ π˚

ξ fm “ pπ ˝ ψq˚fm “ cph ˝ ψqn . Thus, cξ{c “
phpψpQqq{hξpQqqn, for any Q P Yξpkq where this expression is defined and nonzero. So the
class of cξ{c in Lˆ{Lˆn » H1pRes∆ µnq is represented by the 1-cocycle

νσ “ σ

ˆ

hpψpQqq
hξpQq

˙ˆ

hξpQq
hpψpQqq

˙

“
ˆ

hpξσ ¨ ψpσQqq
hpψpQqq

˙ˆ

hξpQq
hξpσQq

˙

“
ˆ

hpξσ ¨ ψpσQqq
hpψpσQqq

˙ˆ

hpψpσQqq
hξpσQq

˙

looooooomooooooon

cξ{c

ˆ

hξpQq
hpψpQqq

˙

loooooomoooooon

c{cξ

“
ˆ

hpξσ ¨ ψpσQqq
hpψpσQqq

˙

“ epξσ, βq “ αpξσq ,

where the final line follows from Lemma 3.5 as above. �

Proof of Corollary 4.6. If two elements of CovϕpJ i
m

q have the same image in Covn
m

pJ iq, then
their images under αi

m
differ by an element in kˆ{pLˆn X kˆq. This follows from the ex-

actness of (4.2) and αm-equivariance of αi
m
. Thus there is a unique map αi fitting into the
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commutative diagram

J i
m

pkq dm
//

s

��

CovϕpJ i
m

q αi
m

//

q

��

Lˆ{Lˆn

��

PicipCq d
// Covn

m
pJ iq αi

// Lˆ{kˆLˆn

Here the maps dm and d are defined by dmpP q “ rAm Q Q ÞÑ ϕpQq ` P P J is and dpP q “
rJ Q Q ÞÑ nQ ` P P J is. Note that in the case i “ 0 these agree with the usual connecting
homomorphisms. The map s is induced by the canonical map PicCm

pkq Ñ PicCpkq, and is
surjective by Lemma 2.13. Theorem 4.4 shows that the composition along the top row is the
map fm of Lemma 4.3. Hence, the same is true of the bottom row. Thus αi has all of the
required properties. �

Proof of Corollary 4.7. The pullback map p : CovnmpJ1q Ñ CovnmpCq is a bijection by Lemma
3.4. Define α1pX, πq “ α1pF, πq where pX, πq is the pullback of pF, πq. The required proper-
ties follow immediately from Corollary 4.6. �

5. Fake Selmer sets

When k is a global field with completions kv the map fm induces a commutative diagram,

(5.1) PicpCq fm
//

��

Lˆ

kˆLˆn

ś

resv
��

ś

v PicpCkvq
ś

fm,v
//
ś pLbkvqˆ

kˆ

v pLbkvqˆn

Definition 5.1. Suppose k is a global field. For any integer i, the fake Selmer set of J i is
the set

SelfmfakepJ iq :“
 

l P Lˆ{kˆLˆn : resvplq P fm,vpPicipCkvqq, for all v
(

.

The fake Selmer set of C is the set

SelfmfakepCq :“
 

l P Lˆ{kˆLˆn : resvplq P fm,vpCpkvqq, for all v
(

.

Theorem 5.2. Suppose C is defined over a global field. If SelfmfakepCq “ H, then SelnpCq “ H.

Proof. By Corollary 3.9, CovnsolpCkvq Ă Covn
m

pCkvq for each v and SelnpCq Ă Covn
m

pCq. By

Corollary 4.7 we have fmpCpkvqq “ α1pCovnsolpCkvqq. Thus α1pSelnpCqq Ă SelfmfakepCq. �

Theorem 5.3. Suppose C is defined over a global field and Div1pCkvq ‰ H for all primes v

of k. If SelfmfakepJ1q “ H, then SelnpJ1q “ H.

Proof. As noted in the proof of Lemma 2.11 we have ΘCpxq “ xx, rJ1sy. So the assumption on
Div1pCkvq implies that Pic0pCkvq “ Jpkvq‚ “ Jpkvq. Thus the hypothesis of Corollary 3.10 is
satisfied and so SelnpJ1q Ă CovnmpJ1q. The property of α1 given in Theorem 4.4 together with
Corollary 3.10 gives that fm,vpPic1pCkvqq “ α1pCovnsolpJ1

kv
qq. It follows that α1pSelnpJqq Ă

SelfmfakepJ1q, which gives the result. �
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Remark 5.4. The conclusion of the theorem implies that J1 represents a nontrivial element
in XpJq{nXpJq, not just in XpJq. Together with well known properties of the Cassels-
Tate pairing this allows one to deduce better lower bounds for XpJq and hence better upper
bounds for the rank of Jpkq. This is illustrated in the example in Section 6.1.

Remark 5.5. When C has a descent setup as in Example D.1 and Example D.2 a proof of
Theorem 5.3 can be found in [Cre13, Prop. 5.4] and [Cre14, Theorem 5.2], respectively.

5.1. Descent on J. The results of [BPS16, Section 10] show that from knowledge of

SelfmfakepJq one can often determine SelnpJq. For this to work one must at least have that
αpSelnpJqq is contained in the image of Lˆ{kˆLˆn (cf. (4.2)) or, equivalently, SelnpJq Ă
kerpΥq “ Covn

m
pJq. This can be ensured by imposing hypotheses on C such as [BPS16, Hy-

pothesis 10.1] that the map Pic0pCq Ñ Jpkq{nJpkq is surjective both globally and locally.
The results of Section 2 allow us to extract information concerning SelnpJq in a number of
cases where [BPS16, Hypothesis 10.1] does not hold.

Theorem 5.6. Suppose C is defined over a global field k and J2pkq ‰ H. Let N be the
number of primes v such that cokerpPic0pCkvq Ñ Jpkvq{2Jpkvqq ‰ 0. Suppose that either of
the following holds

(1) C is a nonhyperelliptic curve with a 2-descent setup as in Example D.3, or
(2) C is a hyperelliptic curve with a 2-descent setup as in Example D.1 and N ď 1.

Then
dimF2

pαpSel2pJqqq ď dimF2
SelfmfakepJq ` maxt0, N ´ 1u .

Remark 5.7. The kernel of α : H1pJr2sq Ñ H1pRes∆ µ2{µ2q can be computed from the
Galois action on ∆, thus allowing us to extract upper bounds for dimF2

pSel2pJqq as well.

Proof. For each prime v, let Mv :“ cokerpPic0pCkvq Ñ Jpkvq{2Jpkvqq and let T be the
(finite) set of primes where Mv is nontrivial. In the nonhyperelliptic case we have ℓ “ g ´ 1
by Corollary 2.12, so Jpkvq‚ “ Jpkvq for all primes v. In the hyperelliptic case the assumption
N ď 1 implies Jpkvq‚ “ Jpkvq fails for at most one prime v. In both cases SelnpJq Ă CovnmpJq
by Corollary 3.7.

For v R T we have Pic0pCkvq “ Jpkvq‚ “ Jpkvq and fmpPic0pCkvqq “ α0pCovnsolpJkvqq by

Lemma 3.6 and Theorem 4.6. So if T “ H, then we have αpSelnpJqq Ă SelfmfakepJq and the
result holds.

Let use assume N “ #T ą 0. Let Kv :“ αpdpJpkvqqq, Λv :“ fmpPic0pCkvqq. Identifying
Jpkvq{2Jpkvq with its image under d and using Lemma 4.10 we obtain a commutative diagram
of F2-linear maps

Sel2pJq //

α

��

À

vPT Jpkvq{2Jpkvq //

α

��

À

vPT Mv

α

��

αpSel2pJqq //
À

vPT Kv
//
À

vPT Kv{Λv
The maps ΘCkv

of (2.13) induce an isomorphism ‘Mv Ñ ‘Brpkvqr2s » FN2 . Since J
2pkq ‰

H, rJ1s P H1pJqr2s. Therefore, there is a lift η of rJ1s to H1pJr2sq. Given ξ P Sel2pJq let
b “ ξ Ye η P Brpkq and for v P T let xv P Jpkvq be such that dpxvq “ resvpξq. Compatibility
of the Tate pairing with the Weil pairing cup product (as noted in the proof of Lemma 2.11)
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gives resvpbq “ xdpxvq, rpJ1qkvsy “ ΘCkv
pxvq. Therefore global reciprocity in Brpkq implies

that the image of Sel2pJq in
À

Mv » FN2 is contained in a hyperplane. Since the vertical
map on the right is surjective, this shows that the rank of the composition along the bottom
row of the diagram is at most N ´ 1. On the other hand, the kernel is SelfmfakepJq. �

Here is an instance where we can prove that Jpkvq ‰ Pic0pCkvq.
Lemma 5.8. Suppose that C is a curve of genus g and either

(1) k is a local field such that J1pkq “ H, or
(2) C is defined over a global field K and k “ Kv is the unique completion of K such

that Pic1pCkq “ H. Assume further that Divg´1pCKv
q ‰ H for all primes v.

Then cokerpPic0pCkq Ñ Jpkq{2Jpkqq ‰ 0.

Proof. The map ΘC is related to the Tate pairing by the rule ΘCpxq “ xx, rJ1sy. The
assumption in p1q is that rJ1s is nontrivial in H1pJq, so the result follows from nondegeneracy
of the Tate pairing. In case (2), the second assumption implies that the Cassels-Tate pairing
is alternating by [PS99, Corollary 11]. If J1pkq ‰ H, then J1 P XpJq and [PS99, Theorem
11] shows that J1 pairs nontrivially with itself, a contradiction. Hence the hypothesis of (1)
is satisfied. �

6. Examples

Computations in this section were performed with the Magma Computer Algebra System
described in [BCP97].

6.1. Example of explicit descent on J1.

Theorem 6.1. Let C denote the genus 3 curve in P2
Q given by the vanishing of

x4 ` 5x3y ` 9x3z ` 9x2y2 ` 9x2yz ` xy3 ´ 8xy2z ´ 8xz3 ´ 6y4 ´ 3y3z ´ 8y2z2 ´ 2yz3 ´ 3z4

and let J be the Jacobian of C. Then, assuming the generalized Riemann hypothesis, JpQq »
Z and XpJqr28s » Z{2Z ˆ Z{2Z. Furthermore, the curve C has points everywhere locally,
but has no Q-rational divisors of odd degree.

Remark 6.2. There are examples of smooth plane quartics having points everywhere locally,
but no rational divisors of odd degree given in [Bre86]. These examples exploit the fact that
the plane quartic in question admits a finite morphism to a genus 1 curve. As the Jacobian
of the curve in Theorem 6.1 is absolutely simple, such techniques do not apply.

Proof of Theorem 6.1. C has real points and the polynomial defining C has good reduction
at all primes other than q “ 760567. The point p0 : 1948 : 1q P CpFqq is smooth, and for all
other primes p, CpFpq ‰ H (for p ą 37 this follows from the Weil bounds). So by Hensel’s
lemma C and, hence, J1 have points everywhere locally. This implies that PicdpCq “ JdpQq
and PicdpCQp

q “ JdpQpq for all primes p and d ě 0.
Using Magma we compute that |JpF2q| “ 25 and |JpF3q| “ 57. Since these orders are

relatively prime, we have JpQqtors “ 0. A search for points of small height on C over Qp
?
2q

yields

D1 “ p
?
2 ´ 2 : ´

?
2 ` 1 : 1q and D2 “ p´1 :

?
2{2 : 1q
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Then D “ TrQp
?
2q{QpD1 ´ D2q is a Q-rational divisor of degree 0 on C representing a point

P P JpQq. The image of P under the reduction map JpQq Ñ JpF7q is nontrivial. So P has
infinite order and, hence, JpQq has rank at least 1.

To proceed further we compute SelfmfakepJ0q and SelfmfakepJ1q for the descent setup and mod-
ulus setup as in Example D.3 and Example M.3, taking ∆ to be the set of bitangents to C
and β to be the diagonal embedding of ∆ into DivpCq ˆ ∆. The algebra L has degree 28
and, moreover, its Galois group is isomorphic to GSp6pF2q, showing that the representation
GalQ Ñ GSppJr2sq is surjective. A Magma computation (assuming GRH) gives that OL

has trivial class group. The function fm can be written as a ratio of linear forms fm “ l{l0,
with l P Lrx, y, zs and l0 P Qrx, y, zs. Since OL has trivial class group, we can scale l by an
element of Lˆ such that the coefficients of ℓ are integral and generate the unit ideal in OL.

By [BPS16, Theorem 10.9], SelfmfakepJq is contained in LpS, 2q, the unramified outside S

subgroup of Lˆ{QˆLˆ2 for S “ t2, 760567,8u. Since L has class number 1, we can determine
representatives in Lˆ for LpS, 2q from the S-unit group of L (cf. [BPS16, Proposition 7.3]).
The order of JpQpq{2JpQpq can be computed from the splitting of p in L. This gives an
upper bound for the size of the image of JpQpq under fm. For both nonarchimedean primes
p P S, the differences of images of points in CpQpq already generate a subgroup whose order
meets the upper bound, hence must be the image of JpQpq. The subgroup of LpS, 2q mapping

into the images of JpQpq for p P S has F2-dimension 3 and contains SelfmfakepJq. Since the
representation GalQ Ñ GSppJr2sq is surjective, [BPS16, Theorem 10.14] gives the inequality
dimF2

Sel2pJq ď dimF2
SelfakepJq ď 3.

The local image fmpCpQpqq is unramified for p outside S by [BPS16, Lemma 12.13]. Since
fm is a homomorphism, the local image fmpJ1pQpqq is the coset of fmpJpQpqq containing

fmpCpQpqq. It follows that SelfmfakepJ1q Ă LpS, 2q. Moreover, fmpJ1pQpqq for p P S are easily
obtained by translating the fmpJpQpqq already computed. It turns out that the image of

LpS, 2q in pLb Q2qˆ{Qˆ
2 pLb Q2qˆ2 does not intersect fmpJ1pQ2qq. Hence, SelfmfakepJ1q “ H.

By Theorem 5.3 we have Sel2pJ1q “ H. In particular, the computation shows that there are
no 2-coverings of J1 with Q2-points and Qp-points for all p outside S.

Since C has points everywhere locally, the Cassels-Tate pairing on XpJq is alternating
by [PS99, Corollary 12]. It induces a nondegenerate alternating pairing on the finite group
XpJqr2s
2XpJqr4s

, which consequently has square order (see, for example, [Cre13, Corollary 4.6]).

The Qp
?
2q-points on C above show that J2pQq ‰ H. Since 2rJ1s “ rJ2s in XpJq, we

conclude that rJ1s P XpJqr2s. The fact that Sel2pJ1q “ H implies, moreover, that rJ1s
gives a nontrivial element of XpJqr2s

2XpJqr4s
(cf. Theorem 3.8(7)). We conclude that XpJqr28s

admits a direct summand isomorphic to Z{2Z ˆ Z{2Z. From the exact sequence

0 Ñ JpQq{2JpQq Ñ Sel2pJq Ñ XpJqr2s Ñ 0

we therefore obtain that JpQq » Z and XpJqr28s » Z{2Z ˆ Z{2Z. �

6.2. Descent on J. The following theorem gives an example where we compute Sel2pJq,
despite the fact that [BPS16, Hypothesis 10.1] does not hold.

Theorem 6.3. The genus 3 curve C Ă P2
Q defined by the vanishing of

x4`2x3y`2x3z`4x2y2`2x2yz`4x2z2`3xy3`2xy2z`4xyz2`3xz3`2y4`5y2z2`yz3`2z4
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has the following properties.

(1) CpQpq ‰ H for all p ‰ 3,8.
(2) PicoddpCQ3

q “ H.
(3) PicoddpCRq “ H.
(4) J “ JacpCq has rankpJpQqq “ 1.

Proof. The verification of (1) is straightforward. To show PicoddpCQp
q “ H for p “ 3,8

it suffices to check that C has no points over Qp or any extension of Qp of degree 3. For
this we simply list the finitely many extensions and check locally solubility over each. We
use the descent setup and modulus setup as in Example D.3 and Example M.3, taking ∆ to
be the set of bitangents to C and β to be the diagonal embedding of ∆ into DivpCq ˆ ∆.
The algebra L has degree 28 and splits as a product of 2 quadratic fields (both isomorphic
to Qp

?
´15q) and 3 octic fields. Let R_ “ cokerpJr2s Ñ Res∆ µ2{µ2q. As described in

[BPS16, 12.6.6] we compute the Galois action on the bitangents, from which we find that
dimF2

Jr2spQq “ dimF2
R_pQq “ 2 and dimF2

pRes∆ µ2{µ2qpQq “ 4. From the exact sequence

0 Ñ Jr2spQq Ñ pRes∆ µ2{µ2qpQq Ñ R_pQq Ñ H1pQ, Jr2sq αÑ H1pQ,Res∆ µ2{µ2q
we conclude that α is injective over Q.

There are points P1 “ pη : 1 : 0q, P2 “ pη : 0 : 1q P CpQpηqq, where η is a primitive
cube root of unity. The torsion subgroup of JpQq is 2-primary, as can be seen by computing
#JpFpq for small primes of good reduction. The divisor D :“ TrQpηq{QpP1 ´ P2q represents
a point rDs P JpQq which maps to an element of order 18 in JpF7q, showing that rDs has
infinite order. Thus we have a lower bound 3 ď dimF2

Sel2pJq. Moreover, the points Pi show
that Div2pCq ‰ H and so the conditions of Theorem 5.6 are satisfied.

The curve C has good reduction outside S1 :“ t3, 5, 1613u so by [BPS16, Theorem 10.9],

SelfmfakepJq is contained in LpS, 2q, the unramified outside S subgroup of Lˆ{kˆLˆ2 for S “
t2, 3, 5, 1613,8u. We compute LpS, 2q as described in [BPS16, Proposition 7.3]. Since the
largest discriminant of a factor of L is of order 1028, this can be done without assuming GRH.
For p P T “ t2, 5, 1613u we compute the local images fmpPic0pCQp

qq “ fmpJpQpqq following
the strategy of [BPS16, Remark 11.6] (i.e., compute the images of random points until the
dimension of the subgroup they generate meets an upper bound determined in advance from
the action of the decomposition group on the bitangents). The subgroup ST Ă LpS, 2q
satisfying these local conditions at all primes in T has dimension 5.

From the action of the decomposition group at p “ 3 on the bitangents we determine
that JpQ3q{2JpQ3q and its image under α ˝ d have dimension 3. However, computing the
images of differences of random elements of Pic2pCQ3

q under fm we are only able to generate
a subgroup H3 of dimension 2. The subgroup ST ,H3

of ST restricting to H3 has dimension 2.
We now consider two cases. If the map Pic0pCQ3

q Ñ JpQ3q{2JpQ3q is surjective, then

H3 has codimension 1 in fmpPic0pCQ3
qq, so dimF2

SelfmfakepJq ď dimF2
ST ,H3

` 1 “ 3 and The-

orem 5.6 applies with N ď 1 to give dimF2
Sel2pJq ď dimF2

SelfmfakepJq ď 3. If the map

Pic0pCQ3
q Ñ JpQ3q{2JpQ3q is not surjective, then H3 “ fmpPic0pCQ3

qq, so dimF2
SelfmfakepJq ď

dimF2
ST ,H3

“ 2 and Theorem 5.6 applies withN ď 2 to give the upper bound dimF2
Sel2pJq ď

dimF2
SelfmfakepJq ` 1 ď 3.

In either case we have the upper bound dimF2
Sel2pJq ď 3 which coincides with the lower

bound obtained from the point search. Thus rankpJpQqq “ 1. �
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Remark 6.4. The computation outlined in the proof above shows that the maps Pic0pCQp
q Ñ

JpQpq{2JpQpq are either surjective for all p, or fail to be surjective for both p “ 3 and p “ 8.
In fact the latter is the case. To prove this one one can compute fmpPic0pCQp

qq algorithmically
as described in [BPS16, Section 11.1] for either p “ 3 or p “ 8. This shows that the set

ST ,H3
» Z{2Z ˆ Z{2Z computed is equal to SelfmfakepJq. Since JpQq{2JpQq has dimension 3

and injects into Sel2pJq we conclude that JpQq ‰ Pic0pCq.

7. The set Covn
m

pCq for genus 1 and hyperelliptic curves

Suppose C is a nice curve over k with a modulus setup pn,mq associated to an n-descent
setup. In this section we show how the sets CovnmpCq and CovnmpJ1q generalize known con-
structions in the situations of Example D.1 and Example D.2. For genus 1 curves this allows
us to relate the existence of ϕ-coverings to the period-index problem.

7.1. Existence of ϕ-coverings. The following theorem gives, for a modulus setup asso-
ciated to an n-descent setup, several conditions that are equivalent to the existence of an
element in Covn

m
pCq.

Theorem 7.1. Suppose pn,mq is a modulus setup for C associated to an n-descent setup
pn,∆, βq and let ϕ : Am Ñ Jm be the isogeny in (2.7). The following are equivalent.

(1) The class of J1
m in H1pJmq is divisible by ϕ.

(2) There exists a ϕ-covering of J1
m
.

(3) There exists a ϕ-covering of C.
(4) CovϕpCq ‰ H.
(5) CovnmpCq ‰ H.
(6) CovnmpJ1q ‰ H.
(7) There exists an n-covering π : X Ñ C with the property that π˚βδ is linearly equiva-

lent to a k-rational divisor, for some δ P ∆pkq.
(8) The maximal unramified abelian covering of Ck of exponent n descends to k and the

image of the k-rational divisor class π˚βδ in Brpkq under the map ΘX of (2.13) lies
in the image of the map Υ of (2.11), for every maximal unramified abelian covering
π : X Ñ C of exponent n and every δ P ∆pkq.

Before giving the proof we state and prove two lemmas.

Lemma 7.2. Suppose pn,mq is a modulus setup associated to an n-descent setup pn,∆, βq
and that π : X Ñ C is an n-covering. The class of pX, πq in CovnpCq lies in CovnmpCq if
and only if π˚βδ is linearly equivalent to a k-rational divisor, for some δ P ∆pkq.
Proof. Suppose π : X Ñ C lifts to a ϕ-covering Y Ñ C. The subfield kpXq Ă kpY q
corresponds to the subgroup µn “ T 1rϕs Ă Amrϕs. The extension kpXq Ă kpY q is therefore
obtained by adjoining to kpXq an n-th root of a function f such that divpfq “ nD ´ π˚dm,
for some d P Z and f P kpXqˆ. Furthermore, we can arrange that d “ 1. Indeed, we must
have gcdpn, dq “ 1, otherwise there would be a proper unramified intermediate extension of
kpXq Ă kpY q. Hence π˚m “ nD ` divpfq for some D P DivpXq and f P kpXqˆ. Recall
that nβ ´ m ˆ ∆ “ divpfmq. So, for any δ P ∆pkq, the function h :“ f{π˚pfm,δq P kpXkqˆ

has divisor npD ´ π˚βδq. Since adjoining an nth root of h to kpXkq gives an unramified
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intermediate field of kpXkq Ă kpYkq, we must have h P kpXkqˆn. This shows that D ´ π˚βδ
is principal.

For the other direction, suppose D P DivpXq is a k-rational divisor linearly equivalent to
π˚βδ. Then divpπ˚fm,δq “ nπ˚βδ ´ π˚m “ nD ´ π˚m ` divpfq, for some f P kpXkqˆ. Thus,
the divisor nD ´ π˚m P DivpXq is principal and k-rational. By Hilbert’s Theorem 90 it is
the divisor of some k-rational function g P kpXqˆ. Let Y Ñ X be the covering obtained by
adjoining an n-th root of g to kpXq. Over k we see that kpY q is the compositum of kpXkq
and kpCkqp n

a

fm,δq, so Y Ñ C is a ϕ-covering of C. �

Lemma 7.3. Suppose π : X Ñ C is an n-covering and πz : Xz Ñ C is the twist by the
cocycle z P Z1pJrnsq. Let ΘX and ΘXz

denote the maps from (2.13) and let Υ denote the
map in (2.11). For any δ P ∆pkq,

Υprzsq “ ΘXz
pπ˚

zβδq ´ ΘXpπ˚βδq.

Proof. There is an isomorphism of coverings ρ : Xz Ñ X with the property that σρ ˝ ρ´1 “
Tzσ P AutpX{Ckq is translation by zσ P Jrns, for every σ P Galk. Let W “ π˚

zβδ and
W 1 :“ ρ˚pW q “ π˚βδ. These represent Galois invariant divisor classes, hence, for any
σ P Galk there are functions fσ P kpXzqˆ and gσ P kpXqˆ with divpfσq “ σW ´ W and
divpgσq “ σW 1 ´ W 1. The classes in Brpkq of W and W 1 are given by the 2-cocycles

apσ,τq “
σfτ ¨ fσ
fστ

and a1
pσ,τq “

σgτ ¨ gσ
gστ

,

both of which take values in k
ˆ
. Since fσ{ρ˚gσ P kˆ

, the computation

apσ,τq

a1
pσ,τq

“ apσ,τq

ρ˚pa1
pσ,τqq

“ σ

ˆ

fτ

ρ˚gτ

˙

¨ fσ

ρ˚gσ
¨ ρ

˚gστ
fστ

loooooooooooooomoooooooooooooon

coboundary

¨
σpρ˚gτ q
ρ˚pσgτ q

shows that ΘXz
pW q ´ ΘXpW 1q is represented by the 2-cocycle η P Z2pGalk, k

ˆq defined by

ηpσ,τq “
σpρ˚gτ q
ρ˚pσgτ q “

σgτ ˝ σρ
σgτ ˝ ρ .

Using that pρ´1q˚ is the identity on k Ă kpY q and that σρ˝ρ´1 “ Tzσ we have ηpσ,τq “ σgτ˝Tzσ
σgτ

.

We recognize this as the Weil pairing ηpσ,τq “ enpσPτ , zσq, where Pτ P Jrns is the class
represented by the divisor τβδ ´ βδ (see Lemma 3.5). The cocycle Pτ P Z1pGalk, Jrnsq
represents Bp1q where B is the coboundary map in (2.11). So ηpσ,τq represents the e-pairing
cup product Bp1q Ye rzs “ rzs Ye Bp1q “ Υprzsq by Lemma 2.10. �

Proof of Theorem 7.1. There exists a ϕ-covering of pJ1
m

qk. The Galois descent obstruction
to defining this over k is the image in H2pk, Amrϕsq of the class of this covering under the
map

H0
`

Galk,H
1
`

pJ1
m

qk, Amrϕs
˘˘

Ñ H2pGalk, Amrϕsq
from the Hochschild-Serre spectral sequence (cf. [Sko01, Section 2.2]). This class coincides
with the image of rJ1

m
s under the coboundary map arising from the exact sequence

0 Ñ Amrϕs Ñ Am Ñ Jm Ñ 0
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(see [Sko01, Lemma 2.4.5]). This proves the equivalence of (1) and (2), while the equivalence
of (2) and (3) follows from geometric class field theory. The equivalences (3) ô (4) ô (5)
ô (6) follow immediately from the definitions, and (3) ô (7) is given by Lemma 7.2.

It remains to prove (7) ô (8). An n-covering π : X Ñ C is a k-form of the maximal
unramified abelian covering of exponent n, which we may assume exists. Then, for any
δ, δ1 P ∆pkq the divisors π˚βδ and π

˚βδ1 are linearly equivalent. Indeed βδ ´ βδ1 represents a
class in Jrns. It follows that the class of π˚βδ in PicpXkq is fixed by Galk. The image of this
class in Brpkq is trivial if and only if the class can be represented by a k-rational divisor.
Since the set of all isomorphism classes of n-coverings of C is a principal homogeneous
space for H1pJrnsq under the action of twisting, the equivalence of (7) and (8) follows from
Lemma 7.3. �

7.2. Hyperelliptic curves. Suppose p2,mq is a modulus setup for C : z2 “ fpx, yq, a
double cover of P1 as in Example D.1.

(1) Given a pair of symmetric bilinear forms pA,Bq such that discpAx´Byq “ fpx, yq the
Fano variety of maximal linear subspaces contained in the base locus of the pencil
of quadrics generated by pA,Bq may be given the structure of a 2-covering of J1.
Theorem 22 and the discussion of Section 5 in [BGW17] shows that the isomorphism
classes of 2-coverings of J1 that arise in this way are precisely those in Cov2mpJ1q.

(2) Section 3 of [BS09] gives an explicit construction of a collection of 2-coverings of C
from the set Hk (notation as in [BS09]). Comparing Lemma 7.2 with the proof of
[BS09, Theorem 3.4] shows that the collection of coverings they produce is precisely
Cov2

m
pCq.

(3) In [Cre13, Section 6] a set CovgoodpJ1{kq is defined; from that definition and point (2)
above it follows that this set coincides with Cov2

m
pJ1q. See also [Cre18, Lemma 2.3]

for a direct proof that CovgoodpJ1{kq coincides with the set described in (1) above.

7.3. Genus 1 curves. For a genus 1 curve C there is a natural identification C “ J1, and C
can be endowed with the structure of a torsor under its Jacobian J . We define the index of C
to be the least positive degree of a k-rational divisor on C and the period of C to be the order
of the class rCs in H1pEq. The index I and period P of C are known to satisfy P | I | P 2,
and over number fields all pairs of integers pP, Iq satisfying these relations are known to
occur [CS10]. The following result gives an interpretation of the equivalent conditions of
Theorem 7.1 in terms of period and index of the n-coverings of C.

The proof of the following theorem is given at the end of this section.

Theorem 7.4. Let rCs be a torsor under an elliptic curve E with underlying curve C. The
following are equivalent.

(1) There exists a torsor rC 1s P H1pEq of index dividing n2 such that nrC 1s “ rCs.
(2) The curve C admits a modulus setup pn,mq with n “ degpmq such that rJ1

ms is divisible
by ϕ in H1pJmq.

Remark 7.5. In [Cre16] it is shown that condition (2) is satisfied when C is a locally soluble
curve over a global field k and the action of Galk on Jrns is sufficiently generic. In particular,
when k “ Q, it holds when n “ pr is any prime power with p ą 7.

From the proof one extracts the following, which shows that the set Covn
m

pCq of this paper
coincides with the set Covn0 pCq defined in [Cre14, Definition 3.3].
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Corollary 7.6. Let C be a genus 1 curve with a modulus setup pn,mq with n “ degpmq.
The set Covn

m
pCq consists of those n-coverings D Ñ C such that the index of D divides n2.

Our proof of Theorem 7.4 will make use of the following interpretation of the elements of
H1pErnsq taken from [CFO`08].

Definition 7.7. A torsor divisor class pair pT, Zq consists of a E-torsor T and a k-rational
divisor class Z P PicT pkq. Two torsor divisor class pairs pT, Zq and pT 1, Z 1q are isomorphic
if there is an isomorphism of torsors s : T Ñ T 1 such that s˚Z 1 “ Z.

The automorphism group of the pair pE, n.0Eq can be identified with Erns, and every pair
pT, Zq with degpZq “ n can be viewed as a twist of pE, n.0Eq ([CFO`08, Lemmas 1.7 and
1.8]). It follows that the torsor divisor class pairs of degree n, viewed as twists of pE, n.0Eq,
are parameterized by the group H1pErnsq.
Lemma 7.8. Suppose pT 1, Z 1q is a torsor divisor class pair representing a lift of the class
of pT, Zq under the map n˚ : H1pErn2sq Ñ H1pErnsq. The Brauer classes associated to
the k-rational divisor classes Z 1 and Z satisfy nrZ 1s “ rZs in Brpkq. In particular, Z is
represented by a k-rational divisor if Z 1 is.

Proof. Suppose the class of pT 1, Z 1q is represented by a 1-cocycle ξσ P Z1pErn2sq. Let fσ, gσ P
kpEqˆ be functions such that divpfσq “ τ˚

ξσ
rns˚0E ´ rns˚0E and divpgσq “ τ˚

nξσ
n.0E ´ n.0E .

Comparing divisors we see that we may scale by a constant to arrange that fnσ “ gσ ˝ rns.
Moreover, using that ξσ is a cocycle, we see that the coboundaries of the 1-cochains pσ ÞÑ fσq
and pσ ÞÑ gσq give 2-cocycles F,G P Z2pkˆq satisfying F n “ G.

To prove the lemma one shows that F and G represent the Brauer classes corresponding to
Z 1 and Z, respectively. By [CFO`08, Prop. 1.32], the pair pgσ, nξσq denotes a lift of nξσ to the
theta group corresponding to the torsor divisor class pair pE, n.0Eq. Then [CFO`08, Prop.
2.2] shows that rGs “ rZs. In the same way we see that pfσ, ξσq gives a lift of ξσ to the theta
group corresponding to pE, rns˚0Eq » pE, n2.0Eq and so rF s “ rZ 1s. �

Proof of Theorem 7.4. We may assume n ą 1.

(1) ñ (2). Suppose (1) holds and let Z 1 P Picn
2pC 1q. Consider the torsor divisor class pair

prC 1s, Z 1q. The image of this class under n˚ : H1pErn2sq Ñ H1pErnsq is represented by a pair
prCs, Zq. By Lemma 7.8, Z P PicnpCq. By Riemann-Roch Z determines a map C Ñ Pn´1

(which is an embedding for n ą 2 and a double cover for n “ 2). By Bertini the divisor class
Z contains a reduced and effective and base point free divisor m of degree n. Then pn,mq
is a modulus setup for C with n “ degpmq. Let ∆ :“ tx P Cpkq : n.x „ mu and take β to
be the diagonal embedding of ∆ in C ˆ ∆. Then pn,mq is associated to the n-descent setup
pn,∆, βq, which agrees with that described in Example D.2.

The pair pC 1, Z 1q corresponds to an n2-covering of E, which we may assume factors through
the n-covering of E determined by pC,Zq. In particular, there is a commutative diagram

C 1 π1

//

s1

��

C
π

//

s
��

E

E
n

// E
n

// E

where s and s1 are isomorphisms defined over k which determine the E-torsor structures on
C and C 1. Now rms “ Z “ rs˚n.0Es, so we must have s˚0E “ βδ for some δ P ∆pkq. On
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the other hand, Z 1 is the class of s1˚n2.0E “ s1˚rns˚0E “ π1˚s˚0E “ π1˚βδ. As this class is
represented by a k-rational divisor, Theorem 7.1 shows that rJ1

m
s is divisible by ϕ.

(2) ñ (1). Then m is ample and base point free and, hence, determines a model of C
as a degree n curve in Pn´1. Let pn,∆, βq be the n-descent setup as in Example D.2. By
Theorem 7.1 there is an n-covering π : C 1 Ñ C such that π˚βδ is linearly equivalent to a
k-rational divisor for some δ P ∆pkq. The genus 1 curve C 1 is endowed with a torsor structure
so that nrC 1s “ rCs in H1pEq. Moreover, the index of rC 1s divides degpπ˚βδq “ n2. �
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