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Abstract 

Mechanical ventilation is a life-support therapy for intensive care patients suffering from 

respiratory failure. To reduce the current rate of ventilator-induced lung injury requires 

ventilator settings that are patient-, time-, and disease-specific. A common lung protective 

strategy is to optimise the level of positive end-expiratory pressure (PEEP) through a 

recruitment manoeuvre to prevent alveolar collapse at the end of expiration and to improve 

gas exchange through recruitment of additional alveoli. However, this process can subject 

parts of the lung to excessively high pressures or volumes. This research significantly extends 

and more robustly validates a previously developed pulmonary mechanics model to predict 

lung mechanics throughout recruitment manoeuvres. In particular, the process of 

recruitment is more thoroughly investigated and the impact of the inclusion of expiratory 

data when estimating peak inspiratory pressure is assessed. Data from the McREM trial and 

CURE pilot trial were used to test model predictive capability and assumptions. For PEEP 

changes of up to and including 14 cmH2O, the parabolic model was shown to improve peak 

inspiratory pressure prediction resulting in less than 10% absolute error in the CURE cohort 

and 16% in the McREM cohort. The parabolic model also better captured expiratory 

mechanics than the exponential model for both cohorts.  
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1. Introduction 

Mechanical ventilation (MV) is a core therapy for intensive care unit (ICU) patients who are 

suffering from respiratory failure 43. However, ventilator settings that are optimal for one 

patient may cause ventilator induced lung injury (VILI) 2,9,28,44,57 in another patient who has 

different respiratory mechanics or dysfunction. Thus, inter-patient and intra-cohort 

heterogeneity in response to MV makes selecting ventilator settings that can optimise 

oxygenation and gas exchange - while minimising the potential for VILI - difficult in practice 

24.  

 

A range of lung protective strategies has been developed to optimise ventilation, including 

the use of low tidal volumes and moderating driving pressure 3,9. In general, most strategies 

set positive end-expiratory pressure (PEEP) at or above a threshold where injured alveoli do 

not collapse at the end of expiration, because repetitive opening and closing can cause 

considerable damage 10. Research has also indicated that PEEP should be set to the pressure 

that corresponds to the minimum respiratory elastance in response to the pressure or volume 

delivered 3,46,49. Finally, staircase recruitment manoeuvres (RM) incrementally increase PEEP 

with the goal of recruiting obstructed or collapsed alveoli at a given pressure 6. Each approach 

attempts to find a ‘best’ setting. 

 

In particular, RMs can be highly effective, resulting in additional end-expiratory lung volume 

that contributes to gas exchange function, or recruitment of dynamic functional residual 

capacity (Vfrc) at a given PEEP due to an increase in open alveoli 17,20,59. However, both healthy 

and injured alveoli are subjected to the same pressures and volumes. Hence, RMs also subject 

the patient to risk due to the higher pressures or volumes induced 7. Therefore ventilator 



settings and RM design need to be patient specific and vary with condition 35, however current 

protocols cannot offer this level of personalisation. 

 

A range of pulmonary elastance models have been developed to describe lung mechanics 

throughout ventilation. These have ranged from finite element models that provide detailed 

physiological information 14,33,50,52–55 to lumped parameter models 16,47,51 that can be used at 

the bedside to advise clinical decisions. However, these models all lack the capability of 

predicting the effect of a change in treatment prior to implementation. 

 

A predictive pulmonary elastance model 32 was developed to predict the impact of PEEP 

changes on lung mechanics throughout a staircase RM 37. This model uses physiologically 

relevant ‘basis function’ models for elastance and resistance changes over PEEP steps to 

estimate Vfrc and predict peak inspiratory pressure (PIP) over PEEP steps in RMs. The ability 

to predict lung response prior to changing ventilator settings would allow clinicians to better 

assess the trade-off between risk (high pressures and PIP) and reward (alveolar recruitment 

(increased Vfrc) and improved gas exchange).                                      

 

This work compares the exponential recruitment model of 37 against a parabolic recruitment 

model to determine how to best predict PIP during RMs. Prior research indicates that 

recruitment rate with increasing pressure follows an exponential decay 1,5,15,25,26,34,36,39–

41,48,58,60. This new model challenges the assumption that recruitment models must also be 

exponential since recruitment over pressure is a complex mechanical behaviour that is not 

driven solely by pressure and volume. Sensitivity analyses of the new model assesses the 

robustness of model parameter choices and assumptions. This new model also differs in its 



use of inspiration and expiration data, rather than just using inspiration data (as in 37). The 

addition of expiration data improves the ability of the model to capture derecruitment that 

occurs during expiration. 

 

Finally, model comparison and validation is performed over two added patient cohorts with 

significantly more data than in 37 to evaluate more robust conclusions.  



2. Methods 

2.1. Patient Data 

Pressure and flow data from N=21 invasively ventilated patients diagnosed with Acute 

Respiratory Distress Syndrome (ARDS) from intensive care units (ICUs) in Germany (N=17) and 

New Zealand (N=4) 16,45 is analysed. The four patients from New Zealand were part of the 

CURE pilot trial conducted at Christchurch Hospital ICU in August 2016. Pressure-flow data for 

this cohort was sampled at 50 Hz 51. The German data spans eight ICUs, and was collected 

from September 2000 until February 2002 as part of the McREM trial 45. It was sampled at 

125 Hz. All patients were fully sedated and received invasive volume-controlled ventilation 

via an endotracheal tube (ETT). 

 

2.1.1. CURE Data 

Pilot trial patients were treated as part of the CURE trial [(ANZTR Number: ACTRN126130 010 

06730)] 16. The New Zealand Southern Regional Ethics Committee granted ethics approval for 

this pilot trial. Inclusion criteria included invasively ventilated patients with (PaO2/FiO2) PF < 

300 mmHg (maximum studied: PF = 209 mmHg) and patients were excluded if their APACHE 

III diagnostic codes were associated with prior pulmonary disease admission (asthma, COPD), 

neurological diseases or injuries, spinal injury, or head trauma. Patients were ventilated with 

a Puritan Bennett 840 ventilator (Covidien, Boulder, CO, USA). Demographics are shown in 

Table 1. Tidal volume was set to 6-8ml/kg of initial body weight. Respiratory rate was 

increased to 30 breaths per minute if there was no significant auto-PEEP detected. 

  



 
Table 1. Patient demographics for CURE trial data (N=4). 

Patient # Sex 
Age 

(years) 

LoMV 

(Days) 
Clinical Diagnostic 

P/F 

Ratio 

1 M 33 23  Peritonitis 177 

2 M 77 24  Legionella pneumonia 209 

3 M 61 23  
Staphylococcus Aureus 

pneumonia 
109 

4 F 73 2  Streptococcus pneumonia 155 

 
 

Each patient underwent a staircase RM with two incremental and two decremental changes 

in PEEP in a manner shown in Figure 1a. By design, PEEP was set to be increased in increments 

of 4 cmH2O, giving a maximum PEEP change of 12 cmH2O over the entire manoeuvre. 

However, sometimes PEEP targets were not met internally by the ventilator. This failure does 

not affect this analysis, where the current PEEP is taken as the nearest whole number of the 

pressure at the onset of inspiration. Resultant PEEP changes of less than 2 cmH2O were 

ignored (N=6). Only the two increasing arms of the recruitment manoeuvres were studied, 

providing manoeuvres for the four patients. PEEP levels including less than eight breaths (N= 

34) were excluded as the settling time at a new PEEP level can exceed this number of breaths 

or dominates the breath sample 21. Figure 1a shows a typical RM carried out in this study. 

  



 
CURE Trial McREM Trial 

  
Figure 1. Example of RMs used in CURE and McREM trials. The number of breaths spent at 

each PEEP level are not representative of those found in the data.  

 
 
2.1.2. McREM Data 

The McREM trial examined whether or not lung mechanical observations differed between 

measurements taken under static conditions and those taken dynamically. The study had 

ethics approval under the local ethics committee of each of the eight German ICUs 

participating in the trial 45. All patients were ventilated with a Draeger Evita 4 (Draeger 

Medical, Lübeck, Germany) ventilator. Exclusion criteria included patients with obstructive 

lung disease, presence of a bronchopleural fistula or known air leakage, haemodynamic 

instability, or being considered ready to wean off ventilation by the attending physician. The 

maximum PF = 298 mmHg (PF < 300 mmHg), which matches the inclusion criteria for CURE. 

The tidal volume was targeted at 8 ± 2 mL/kg initial body weight. Before the measurements, 

respiratory rate was adjusted to keep the PaCO2 at around 55 mmHg. Inspiratory time and 



flow rate were set to obtain an end-inspiratory hold of 0.2 secs. 45 During the protocol, 

ventilator settings remained unchanged. Patient demographics are shown in Table 2. 

 
Table 2. Patient Demographics for McREM trial 45 

Patient # Sex Age 
LoMV 

(Days) 
Clinical Diagnostic 

P/F 

Ratio 

1 M 37 10 Pneumonia 163 

2 M 39 2 Traumatic aortic dissection, lung contusion 170 

3 F 50 8 Pancreatitis, pneumonia 202 

4 F 49 3 Pneumonia 289 

5 M 34 10 Traumatic open brain injury 192 

6 M 67 4 Post-resuscitation 234 

7 M 39 10 Perf. sigma, peritonitis 188 

8 M 42 9 Pneumonia, pancreatitis 235 

9 M 51 5 Traumatic brain injury, pneumonia 230 

10 M 77 6 Pneumonia 225 

11 M 74 10 Subarachnoid and subdural haemorrhage 298 

12 M 41 16 Peritonitis 178 

13 M 62 2 Subarachnoid haemorrhage 288 

14 M 39 7 Traumatic brain injury, pneumonia 143 

15 M 74 9 
S/P coronary artery, bypass grafting, 

pneumonia 
271 

16 M 59 19 ARDS 75 

17 M 45 8 Blunt abdominal trauma, pneumonia 173 

 
 

Each patient underwent a staircase recruitment manoeuvre where PEEP was increased in 

steps of 2 cmH2O up to 13 times from ZEEP or to a limit of 26 cmH2O. The McREM study 



included 28 patients, of which only 17 received RMs that could be used in this study. These 

latter patients were used in this analysis. 

 

Each PEEP step was maintained for 10 breaths 45.  Figure 1 shows a typical RM carried out in 

this study. 

 
2.2. Model Definition 

The model used in this study is significantly extended from a previously developed predictive 

pulmonary elastance model 37. It was initially developed from a well-validated single-

compartment model 4,13. 

 

where P(t) is the airway pressure delivered by the ventilator (cmH2O), PEEP is the positive 

end-expiratory pressure (cmH2O), Q(t) is the flow of air delivered by the ventilator (L/s), and 

V(t) is the volume of air delivered to the lungs (L). V(t) is the integral of Q(t), starting at t=0 

for each breath. Pulmonary elastance (cmH2O/L) and pulmonary resistance (cmH2O*s/L) are 

defined by E and R, respectively, and identified from measured data 12.  

 

The general elastance and resistance basis function shapes used in the new model are shown 

in Figure 2 and are defined over the pressure range 0-60 cmH2O and volume range 0-1 L for 

the elastance basis functions, and a flow range -2 to 2 L/s for the resistance basis functions. 

These ranges more than cover typical mechanical ventilation ranges. 

 

𝑃(𝑡) = 𝐸𝑉(𝑡) + 𝑅𝑄(𝑡) + 𝑃𝐸𝐸𝑃 

 

(1) 

 



Basis Function for 
Elastance (Recruitment) 

Basis Function for 
Elastance (Distension) 

Basis Functions for 
Resistance 

Φ1= (𝑉 − 𝑉𝑚)
2 𝛷2 =

𝑃(𝑡)

60
 θ1=1, θ2 = |Q(t) |  

   

Figure 2. Depiction of basis functions for elastance and resistance. The shapes above 

assume coefficient values of 1. All basis functions are dimensionless. 

Pulmonary elastance is defined as a function of both volume and pressure, in two separate 

basis functions, shown in Figure 2. This split allows more specific physiological behaviours of 

the lungs to be captured, compared with the single, lumped parameter in Equation 1.  

 

The recruitment elastance, captures the decreasing rate of recruitment of alveoli with an 

increase in volume delivered. This recruitment function is piecewise parabolic with respect to 

lung volume above lung volume at ZEEP (ventilator set zero end-expiratory pressure) and 

defined as zero when V > Vm. Vm = 1L throughout the study as this represents a sensible upper 

limit on gained recruited volume at the PEEP changes studied, based on clinical observation. 

As this parameter cannot be easily uniquely identified for each individual patient, its value is 

set constant. In contrast, Morton et al. 37 used an exponential function rather than a parabolic, 

which can be seen in Eq. 3. Henceforth, this original model shown in 37 will be referred to as 

the ‘exponential model’ while the adapted parabolic model will be called the ‘parabolic 

model’. 



 

The distension function captures the increasing elastance with pressure due to distension 

effects and is modelled as a linear function: where the value of 60 is the maximum MV 

pressure considered. This is well above peak limits that are observed or considered safe 8, and 

is the same as in 37.  

 

Resistance is a function of flow. Resistance was also defined as in 37 by the Rohrer equation 

for flow resistance 22,42. These terms capture linear and non-linear components of flow 

resistance, and R1 and R2 are constants to be identified. This equation is also similar to those 

used to model endotracheal tube resistance 22,29 which is a major form of resistance 

encountered in MV. 

 

Combining both the elastance and resistance basis functions into the model of Equation 1 

yields Eq. 2 for the parabolic model. The original, exponential recruitment model can be seen 

in Eq. 3. 

 

𝑃(𝑡) =

(

 
 
𝐸1(𝑉 − 𝑉𝑚)

2⏟        
𝑟𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡
𝑒𝑙𝑎𝑠𝑡𝑎𝑛𝑐𝑒

+ 𝐸2
𝑃(𝑡)

60⏟    
𝑑𝑖𝑠𝑡𝑒𝑛𝑠𝑖𝑜𝑛
𝑒𝑙𝑎𝑠𝑡𝑎𝑛𝑐𝑒)

 
 
𝑉(𝑡) + ( 𝑅1 + 𝑅2|𝑄(𝑡)|⏟        

𝑅𝑜ℎ𝑟𝑒𝑟 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

)𝑄(𝑡) + 𝑃𝐸𝐸𝑃  , (2) 

𝑃(𝑡) =

(

 
 
𝐸1𝑒

−𝑏𝑉(𝑡)⏟      
𝑟𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡
𝑒𝑙𝑎𝑠𝑡𝑎𝑛𝑐𝑒

+ 𝐸2
𝑃(𝑡)

60⏟    
𝑑𝑖𝑠𝑡𝑒𝑛𝑠𝑖𝑜𝑛
𝑒𝑙𝑎𝑠𝑡𝑎𝑛𝑐𝑒)

 
 
𝑉(𝑡) + ( 𝑅1 + 𝑅2|𝑄(𝑡)|⏟        

𝑅𝑜ℎ𝑟𝑒𝑟 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

)𝑄(𝑡) + 𝑃𝐸𝐸𝑃  , (3) 

 

where E1, E2, R1, and R2 are to be identified and the other variables are known. 



 

Figure 2 shows each basis function component. Note that as pressure rises with volume 

during inspiration, the two basis functions create an overall parabolic shape in combination. 

This cannot be directly plotted as they are functions of pressure and volume whose 

relationship differ for each patient and with MV settings. However, Figure 3 shows the 

contrast between this model and the model used in 37 in terms of the parabolic vs exponential 

recruitment basis functions. 

 

 

Figure 3. Difference in shape between the exponential recruitment function used in 37 and 

the new parabolic recruitment function. 

  



2.3. Model Identification 

2.3.1 Identification and Fitting 

Data from the entire breath was used to identify model parameters to identify E1, E2, R1, and 

R2 using Equation 2, rather than just inspiration data as in 37. In an additional change from the 

work in 37, the first data points of each breath were used in identification to capture the 

viscoelastic behaviour present in this section of ventilation. 

 

An identified model can be subsequently used to predict outcomes for different settings or 

pressure and volume, as the basis functions are identified over an entire reasonable range of 

these variables. A median breath was taken from all but the first breath at a PEEP level. Model 

parameters, E1, E2, R1, R2 were then identified for this median breath using the linear least 

squares lsqnonneg function to constrain all parameters to physiologically possible positive 

values in MATLAB and clinical data in a problem defined as 

[
min
 
( 0, 𝑉(𝑡𝑖) − 𝑉𝑚)

2⨀ 𝑉(𝑡𝑖) 𝑉(𝑡𝑖)⨀
𝑃(𝑡𝑖)

60
𝑄(𝑡𝑖) |𝑄(𝑡𝑖)|𝑄(𝑡𝑖)

⋮ ⋮ ⋮ ⋮
] [

𝐸1
𝐸2
𝑅1
𝑅2

] = [
𝑃(𝑡𝑖) − 𝑃𝐸𝐸𝑃

⋮
]  , (4) 

where ʘ indicates pointwise multiplication. 

 

This parameter fit was done independently for every PEEP level in a patient data set. Once a 

PEEP level was fit, forward prediction to other PEEP levels was achieved using the parameters 

from the current PEEP level only 

2.3.2. Prediction 

Forward simulation of P(t) using V(t) and Q(t) given by the volume controlled ventilation mode 

at different PEEP levels as inputs can be used to assess prediction, and thus the potential 



clinical utility of the model and overall approach. Prediction across PEEP levels requires 

calculation of the change in Vfrc or the volume recruited by a PEEP step change relative to the 

current PEEP 20,31. It is assumed that the change in Vfrc is positive or zero when PEEP is 

increased, and negative or zero when PEEP is decreased. 

 

Equation 5 was used to determine the change in Vfrc across a particular PEEP step (n to n+1). 

The minimum value for V – Vm was set to zero through use of the min function in Matlab 56. 

 

 

𝑉𝑓𝑟𝑐
𝑛 =

(𝑃𝐸𝐸𝑃𝑛+1−𝑃𝐸𝐸𝑃𝑛)

𝐸1(𝑉−𝑉𝑚)2+𝐸2𝑃𝐸𝐸𝑃𝑛+1 60⁄
  . 

 

(5) 

Incorporating 𝑉𝑓𝑟𝑐
𝑛

 from Equation 5 yields a model to predict P(t) using Equation 2 and the 

known volume controlled flow inputs at a new PEEP level (PEEPn+1), where the resulting 

equation is 

𝑃(𝑡) = (𝐸1 ((𝑉 + 𝑉𝑓𝑟𝑐) − 𝑉𝑚)
2

+ 𝐸2
𝑃(𝑡)

60
)𝑉(𝑡)  + (𝑅1 + 𝑅2|𝑄(𝑡)|)𝑄(𝑡) +

𝑃𝐸𝐸𝑃𝑛+1  . 

(6) 

 

 

2.4. Model Validation 

2.4.1. Error Analysis 

The same error metrics are used to describe the identified model fit to data, and the accuracy 

of the identified model prediction for a higher PEEP level. Root mean square (RMS) indicates 



the average sum-squared error residuals throughout the breath. To ensure that this value is 

normalised across all PEEP levels and between data sets with different numbers of data points 

per breaths, the percentage RMS error is also calculated. 

 

PIP is a key clinical indicator of the risk of VILI due to barotrauma in volume controlled 

ventilation 19,23. To assess the clinical relevance and safety of the model, both the absolute 

error in PIP and its percentage error are calculated for identified model fit and prediction. 

Finally, predictions are made for 1 – 8 PEEP steps forward for all PEEP levels where there was 

data. To assess the accuracy of the model across the entire PEEP range, model fit and 

prediction error are compared across the entire range and for different prediction step sizes. 

 

2.5. Model Error Sensitivity Analyses 

Several analyses were done to quantify the impact of the difference in recruitment elastance 

basis function shape (𝛷1) and the impact of modelling decisions on the accuracy of model 

identification and PIP prediction.  Specifically: 

  

1. Impact of basis function shape: 

The parabolic recruitment function of Equation 2 is compared to a previous model 37 shown 

in Equation 3. Equations 2 and 3, while broadly describing elastance as decreasing to a 

minimum of zero, differ in the shape of that decrease, as shown in Figure 3 where the 

exponential of Equation 3 has a much steeper initial drop from its maximum value. This 

comparison can indicate which definition is better across all the data in this study, noting that 

an exponential shape has been very commonly used in previous studies 15,36,39,48,58.  



 

2. Impact of the inclusion of expiratory data in model fit and prediction 

The model was identified and used for prediction for three cases to test the minimum amount 

of data required for prediction, and whether the expiratory section of the breath contains 

different dynamics. Expiration is defined as the point at which ventilator flow first becomes 

negative after PIP is reached. In the McREM protocol this point is reached after an end-

inspiratory pause. The first breath at each PEEP level was discounted, as often this breath 

contains unusual dynamics that are not seen in later breaths due to ventilator PEEP regulation 

and the time dependence of alveolar recruitment 5,27. In addition, the first five data points of 

each breath were excluded, as these points are more reflective of ventilator PUMP (PEEP 

adjustment and Monitoring Procedure (PUMP)) dynamics than the pressure response of the 

lung.  

The following cases are analysed and compared: 

1. The full breath 

2. Only the inspiratory section of the breath. 

3. Only the inspiratory section with prediction across the entire breath.  

 

The first two cases both identify the model and predict over the specified portions of the 

breathing cycle. The last case assesses whether expiration contains unique dynamics, and 

thus identifies the model over only a portion of the breath, while assessing its performance 

across the entire breath. Unless otherwise stated (as in Section 3.4, Figure 9 and Table 5), all 

results in this paper fit and predict across both inspiration and expiration.  



3. Results 

3.1. Model Fit 

Using the parabolic model as presented, the identified model fit errors were low for both the 

CURE and the McREM cohorts as shown in Table 3. 

 

Table 3. Summarised fitting error (median [IQR]), along with averaged cohort parameters. 

(1 cmH2O = 98.07 Pa) 

 CURE Cohort McREM Cohort 

E1 - recruitment 4.8 [0.7 - 12.9] 14.0 [10.1 - 19.2] 

E2 - distension 55.2 [48.4 - 70.6] 47.0 [41.1 - 58.6] 

R1 6.5 [5.9 - 7.0] 8.5 [7.5 - 11.0] 

R2 0.0 [0.0 - 0.0] 0.0 [0.0 - 0.0] 

# of PEEP Levels Studied 49 89 

RMS Error (cmH2O) 1.0 [0.9 - 1.1] 0.6 [0.5 - 0.9] 

RMS Error (%) 2.2 [1.7 - 2.6] 2.3 [1.6 - 3.5] 

PIP Error (cmH2O) 0.8 [0.5 - 1.0] 1.0 [0.8 - 1.2] 

PIP Error (%) 0.0 [0.0 - 0.0] 0.0 [0.0 - 0.0] 

 

The R2 value was 0 cmH2O*s/L in most cases as it is constrained from being non-physically 

negative. The Rohrer equation’s second term using (|Q|Q) is for high energy flows, where the 

laminar flows and geometry in mechanical ventilation often do not reach these levels. 

However, in some cases it is needed for a more accurate fit. 



3.2. Model Prediction 

The fitted elastance curves for each PEEP level are shown for two cases in Figure 4. When 

curve was offset with the estimated ΔVfrc change from the starting PEEP level, they overlapped 

into a parabolic shape in most cases studied. As expected, the recruitment elastance was 

often steeper earlier in the recruitment manoeuvre than at higher PEEP levels such as 20 or 

22 cmH2O where distension is expected to be the primary dynamic. 

 
Patient 2, McREM Data Set Patient 5, McREM Data Set 
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Figure 4. Recruitment and distension elastance curves across PEEP steps, including the 
associated volume gain offsets relative to the lowest PEEP data.   



 

Model predictions for the parabolic model have low RMS and PIP prediction errors across all 

PEEP changes studied, as shown in Table 4. While there is some increase in error with 

increases in the PEEP prediction intervals of 2 – 12 cmH2O (1 – 6 PEEP steps) these errors are 

similar to the fitting errors in Table 3. The cumulative distribution functions (CDFs) in Figure 5 

show that prediction errors are similar for all initial PEEP levels, whether the PEEP step 

increases are 2 cmH2O or 6 cmH2O. There is thus no noticeable sensitivity to PEEP level or 

PEEP interval in prediction error.  

 

Table 4. Aggregated prediction errors for each PEEP change across both cohorts of 

patients studied. (1 cmH2O = 98.07 Pa) 

 
# of Predictions 

 Studied 

RMS Error 

(cmH2O) 

PIP Error 

 (cmH2O) 

2 cmH2O PEEP Increase 77 1.2 [0.9 - 1.4] 1.3 [-0.6 - 2.2] 

4 cmH2O PEEP Increase 75 1.1 [1.0 - 1.1] 1.3 [0.8 - 1.7] 

6 cmH2O PEEP Increase 47 1.7 [1.2 - 2.0] 0.7 [-1.7 - 2.2] 

8 cmH2O PEEP Increase 41 1.1 [1.0 - 1.3] 1.3 [1.2 - 2.2] 

10 cmH2O PEEP Increase 23 1.7 [1.1 - 1.9] 1.2 [0.2 - 3.6] 

12 cmH2O PEEP Increase 16 1.3 [1.2 - 1.5] 2.2 [1.2 - 3.1] 

14 cmH2O PEEP Increase 8 1.8 [1.4 - 1.9] 1.8 [0.6 - 3.8] 

16 cmH2O PEEP Increase 6 1.6 [1.4 - 1.7] 3.3 [1.3 - 3.9] 

 

  



Increase of 2 cmH2O Increase of 6 cmH2O 

  

Figure 5.  Cumulative distribution functions (CDFs) showing consistent prediction errors 

across all PEEP levels for step increases of 2 and 6 cmH20. The PEEP shown in the legend is 

the initial PEEP level from which a prediction is made. 

 

Examples of best and worst case parabolic model predictions are shown in Figure 6. Prediction 

error was fairly consistent across the entire CURE cohort, as can be seen in  

Figure 7 and Figure 8. The McREM cohort examples show that the model struggles to capture 

the non-linear behaviour in the end-inspiratory pause. However, the model was not designed 

to specifically capture this behaviour, which has a relatively low clinical risk in volume 

controlled ventilation as the plateau pressure is lower than the PIP 4. This error can result in 

over- or under-prediction of PIP and significant negative spikes near the beginning of 

expiration. Nevertheless, the RMS and PIP prediction errors in Table 4 remain generally better 

for the McREM cohort than for the CURE cohort.  
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Figure 6. Typical examples of model predictions for CURE and McREM cohorts. 

 

3.3. Comparison between exponential and parabolic prediction model 

 



Figure 7 shows that PIP prediction error is lowest across the entire PEEP range studied in both 

cohorts when using the parabolic model. The difference in error also includes much lower 

outliers so the 95th percentile errors in  

Figure 7 are 30-40% lower (relative) for both cohorts. Prediction fit error (RMS) was also lower 

in both cohorts. More specific results can be seen in the boxplots in Figure 8, which presents 

these results by ΔPEEP prediction interval, again showing little sensitivity to this value for the 

new model. 

 

PIP Error (%) RMS Error (%) 

  
 

Figure 7. CDF comparison of PIP prediction and prediction results between exponential and 
parabolic model for elastance as a function of recruitment. Errors are shown for both the 

CURE and McREM cohorts. 
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Figure 8. Boxplot comparisons of PIP prediction results between exponential and parabolic 

model for elastance as a function of recruitment. Errors are shown for both the CURE and 

McREM cohorts, and box plots reflect the CDFs in Figure 5.  

 

3.4. Inclusion of Expiratory Data 

The impact of using different sections of the breath data to fit elastance and resistance was 

explored for both the parabolic (Equation 2) and exponential (Equation 3) models. Results are 

shown in Table 5, and cover cases 1 and 2 as defined in Section 2.5.2. 



The parabolic model has lower RMS errors for all cases tested except for inspiration data from 

the CURE trial. These results clearly indicate that the parabolic model generally captures and 

predicts observed lung dynamics better than the exponential model.  

 

The parabolic model also predicted PIP better in all cases, except for inspiration in the CURE 

trial. However, the exponential model produced very erroneous predictions for the McREM 

data set. A third case of only fitting the model to inspiration data while predicting across the 

entire breath had comparable results to including inspiration data only in PIP prediction, as 

shown in the CDFs in Figure 9. The inclusion of expiratory data did not improve prediction for 

smaller PEEP changes for the McREM data. However, comparable results between the three 

cases studied were seen for larger changes of PEEP. Using all available data improved the 

prediction fit error in both cohorts, as seen in Figure 9, and is clearly the best case. 

  



Table 5. Impact of the inclusion of expiratory data in prediction accuracy for PEEP 

increases of up to 16 cmH2O, indicated by PIP % error (median [IQR]). (1 cmH2O = 98.07 Pa) 

 CURE Data  McREM Data  

 
RMS Error 

(cmH2O) 

PIP Error (%) RMS Error  

(cmH2O) 

PIP Error 

(%) 

Entire Breath (Exponential 

Model) 

2.1  

[1.7 - 2.9] 

6.1  

[2.7 - 14.1] 

1.7  

[1.1 - 2.3] 

4.9  

[3.1 - 7.9] 

Inspiration Only (Exponential 

Model) 

2.3  

[1.6 - 3.2] 

3.7  

[1.8 - 7.3] 

1.9  

[1.4 - 2.6] 

9.3 

 [5.6 - 13.4] 

Fitted to Inspiration, RMS 

assessed across Entire Breath 

2.5 

 [1.9 - 3.1] 
N/A 

2.1  

[1.7 - 3.0] 
N/A 

     

Entire Breath (Parabolic Model) 
1.2 

 [1.0 - 1.5] 

3.8  

[2.5 - 5.4] 

0.9  

[0.6 - 1.1] 

3.9 

 [2.4 - 5.3] 

Inspiration Only (Parabolic 

Model) 

2.2  

[1.3 - 3.5] 

5.5  

[3.8 - 8.7] 

1.0  

[0.7 - 1.5] 

1.5 

 [0.5 - 3.6] 

Fitted to Inspiration, RMS 

assessed across Entire Breath 

2.6  

[2.0 - 3.0] 
N/A 

1.0 

 [0.8 - 1.4] 
N/A 
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Figure 9. Impact of the inclusion of expiration data on prediction of parabolic model. PIP 

(%) error and RMS (cmH2O) error are presented. The effect of fitting to inspiration only 

while predicting across the entire breath is also included for model fit. (1 cmH2O = 98.07 

Pa) 

  



4. Discussion 

Prediction of patient-specific lung mechanics throughout recruitment manoeuvres has 

previously been examined using an exponential basis function model for recruitment 

elastance 37. The choice of an exponential model was consistent with a large number of prior 

clinical observations 15,36,39,48,58. The current study uses a much larger data set than in 37 to 

test this assumption versus a new parabolic recruitment model. It also examines all major 

assumptions in the methods and model parameter choices to assess robustness. 

The choice of basis functions in Figures 2 and 3 and as defined in Equations 2 and 3 is based 

on fundamental mechanical principles applied to the lung mechanics situation. Thus, 

elastance is based on the competing mechanics of recruitment opening new volume (E1) and 

distension at higher pressures (E2). These two terms are based on direct clinical observations 

of elastance and distension across a breath 13, where the hyperbolic shape chosen was a good 

match for the results of 13. Equally, the resistance basis functions are based on the well-known 

Rohrer Equation 42 capturing the linear and quadratic elements of flow resistance. 

 

It is always possible that the generic hyperbolic and linear elastance basis functions and/or 

the Rohrer Equation based resistance basis functions are not the exact or optimal form. Prior 

work 37 has used exponential recruitment basis functions and other similar shapes may better 

suit some patients or disease states. However, given the breath to breath variability in typical 

patients and any noise on the data, differentiating between several similar shaped functions 

would be difficult. Equally, prior works examining more complex basis functions found no 

improvement and greater identifiability problems, where identifiability limits the complexity 

of possible basis function shapes given the limited data 11,18.  



 

Table 4 and Figure 4 show that prediction error is reasonably consistent across variable PEEP 

levels used to generate prediction and consistent prediction ranges. However, the prediction 

error changes noticeably when there are consistent PEEP levels used for prediction and 

variable prediction ranges. The errors are still clinically acceptable and relatively small 

compared to inter- and intra- patient variability, but do grow as the model is “stretched” to 

predict over larger intervals. The success at prediction in the results thus validates the choice 

of basis function shapes, as well as their potential to accurately capture mechanics outside 

the range of breath data used to identify their parameters. 

 

Previous work 37 was only validated over eight RMs from four patients who were treated in 

the same care unit. In addition, while the patients exhibited a range of lung mechanics and 

varying degrees of ARDS, three of these patients were diagnosed with pneumonia which may 

have limited the diversity of results. In the current study, the McREM data includes patients 

from eight different ICUs 45, on a different continent and clinical practice culture from the 

original CURE study. The use of this additional data set and an improved model in this study 

further validates the overall model and prediction approach as generalizable to other ICU 

contexts. It also indicates that the model can accurately predict underlying lung mechanics 

across a wider range of lung conditions.  

 

The use of a data set using PEEP steps of 2 cmH2O as opposed to 4 cmH2O in 37, further 

demonstrates the versatility of the model. As the prediction aspect of the model is based on 

estimation of additional lung volume (Vfrc) at each step, the accumulation of error is expected 



to be greater when there is a higher number of PEEP changes across a small PEEP prediction 

interval. However, prediction error for changes of up to 12 cmH2O (6 x 2 cmH2O in McREM; 3 

x 4 cmH2O in CURE) remained below 15% for the McREM cohort and 10% for the CURE cohort. 

Errors within this range were thus within bounds of reasonable clinical safety.  

 

Overall, fit and prediction error were low for the parabolic form of the model for all data sets 

studied. All error metrics were comparable for fit for both the CURE and the McREM data. 

Prediction error (median [IQR]) for all patients increased as expected with increasing PEEP 

changes over the range studied (2 cmH2O - 16 cmH2O). PIP prediction error was 1.0 [0.6 - 1.7] 

cmH2O (median [IQR]) and 2.9 [2.0 - 4.5] % PIP error for PEEP changes up to 16 cmH2O; a 

prediction error that is likely clinically insignificant.   

 

In addition, prediction accuracy appears to be independent of the starting PEEP level, 

suggesting the model captures lung dynamics across the entire pressure range well, and thus 

it can be used with similar levels of accuracy throughout an entire recruitment manoeuvre. 

However, more data from more patients and a wider number of ICU contexts should be used 

to confirm these findings. 

 

Recruitment has been widely assumed to follow an exponential decay with increasing 

pressure15,36,39,48,58. However, when used in concert with distension for the purposes of lung 

mechanics prediction, it may not provide the most accurate depiction of dynamics. The 

parabolic recruitment basis function model considerably improved prediction accuracy in 

both cohorts compared to the previous exponential model of 37. There was a considerable 

increase in accuracy with the parabolic definition seen in the CURE cohort, with no predictions 



having more than 10% error in PIP prediction for PEEP increases of up to 14 cmH2O. While 

still demonstrating improvements, the McREM data exhibited lower prediction error than the 

CURE cohort. 

 

Traditionally, recruitment is typically related to pressure, where threshold pressures govern 

alveolar opening and closing. However, in this case the elastance basis function used here is 

a function of volume. This exponential or parabolic elastance basis function describes the 

apparent decrease in elastance, given a constant tissue stiffness, as volume increases 30. This 

function implicitly assumes the pressure-dependant opening of alveoli, without being an 

explicit function of pressure. 

 

Using the full breath data set improved prediction in the CURE cohort. However, it introduced 

some interesting features into the pressure predictions for the McREM cohort. In particular, 

it did not capture the inspiratory pause (shown in Figure 6b and Figure 6d) in the McREM data 

well, and introduced a deeper pressure drop at the start of expiration. It is likely that this 

difference is due to the model attempting to account for relaxation and redistribution of gas 

in the parenchyma during the end-inspiratory pause without specific consideration of this 

affect during model design. However, prediction fit error (RMS) improved with the use of the 

additional expiration data in both cohorts, indicating the model fit the overall dynamics 

better, despite these anomalies.  

 

In addition, the length of expiration and inspiration are equal in the McREM data: a 1:1 

inspiratory to expiratory (I:E) ratio. However, expiration is twice as long as inspiration in the 

CURE cohort due to different ventilator settings on the I:E ratio at 1:2. It was found (not shown 



here) that weighting or using equal amounts of inspiration and expiration data for the CURE 

data cohort had model-prediction errors similar to fitting across the entire breath however 

did not offer an improvement. Thus, the CURE data results presented here are not unfairly 

biased towards expiration. 

 

4.1. Limitations  

Due to the low number of patients in the CURE cohort, conclusions cannot be drawn as to 

whether or not fitting basis functions to an entire breath with unequal lengths of inspiration 

and expiration is necessarily beneficial. In addition to this, the model would need to be re-fit 

if major changes were made to ventilation such as a new tidal volume. Future work should 

consider other volume controlled data sets that do not include an end-inspiratory pause, and 

differing inspiration and expiration durations to assess any impact. However, the results are 

encouraging. 

 

The proposed basis functions used in this study mimic the basic shapes of major modes of 

changes in elastance. The fact that they result in excellent predictions for their relative degree 

of simplicity leads us to believe that they broadly capture key dynamics. Further validation of 

the basis functions is not possible given the current data set given the lack of imaging or other 

independent data against which to make a validation comparison. 

 

This paper is thus limited to proof of concept over a modestly diverse, and larger cohort of 

patients. The association of parameter values and evolution with disease state and/or clinical 

outcomes is best served by a larger study and a separate paper from which decisive 

conclusions might arise.  



 

Previous work 38 has shown promising results for the exponential model being able to predict 

lower PEEP levels throughout the downwards section of a recruitment manoeuvre arm. While 

this study did not aim to validate this capability for the parabolic form of the model, there is 

less of a clinical need for this as reducing pressure is lowering risk.  

 

While the field is increasingly moving towards the use of pressure controlled ventilation, at 

this stage the model has only been tested on volume controlled ventilation. However, the 

model and methods are generalisable enough to predict lung mechanics depending on the 

controlled variable (pressure or volume). While such data was not available to the authors in 

this study, testing the model on pressure controlled ventilation data would further validate 

the model, method and outcomes presented.  

 

4.2. Summary 

This work compared the exponential recruitment model of 37 against a parabolic model to 

determine which method provides the better prediction of lung mechanics throughout 

recruitment manoeuvres. The parabolic model significantly improved model fit and prediction 

in this cohort, suggesting this shape better captures the recruitment process of alveoli as PEEP 

and pressure change, in contrast to common modelling assumptions. A larger data set 

enabled robustness analysis of individual modelling decisions, finding use of the entire set of 

breath data improved accuracy, and the choice of fixed model parameters was robust. The 

overall model provides a significant improvement in predictive, and thus clinical, utility. 
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