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Abstract: Personalized treatment in glycemic control (GC) is a visibly promising research area that 
requires improved mechanisms providing patient-specific procedures to enable complicated 
decision support. Available per-patient data must be more than written records, and be fully 
integrated in this personalization process. This article presents a process for relating the intensive 
care unit patients’ demographic and admission data to their GC performance. With this objective, a 
probabilistic Bayesian network was chosen to provide more personalized decisions. As a case 
study, average daily blood glucose measurements were chosen as the interest target node in order to 
weigh GC that provides a reduced nursing workload. To test the idea, data from 482 patients, with 
nine variables from four Malaysian intensive care units with different controls were exploited. The 
identified steps crucial in building a dependable model are variable selection, continuous state 
discretization, and unsupervised structure learning. Using a multi-target node evaluation, a network 
with 80% mean overall classification precision was obtained with a normalized equal distance 
discretization algorithm and a maximum weight spanning tree technique. Meanwhile, the interest 
target node scored 90.39% precision. The results from this study, which are complemented with an 
evaluation of missing data, are proposed as a benchmark for using Bayesian networks in this type 
of application.     
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1. Introduction 

Since the birth of intensive care medicine, researchers 
have tended to study cause-and-effect results on patients 
with similar signs and symptoms [1-4]. As health 
informatics and awareness of improved intensive care 
medicine has progressed, an increasingly personalized 
medicinal approach is entering intensive care units (ICUs) 
[5-7]. The approach considers integrating individual 
characteristics to recommend optimized patient-specific 
treatment. For example, an increasing number of ICUs are 

starting to use validated and computerized algorithms with 
patient-specific physiological models, such as EndoTool, 
LOGIC-Insulin, stochastic targeted (STAR), and Gluco-
space [8-14]. These approaches are based on a closed-loop 
control system with continuous glucose monitoring and 
computer-assisted titration of insulin on glucose 
measurements to minimize hyperglycemia. 

The approaches improve clinical guidelines based on 
each patient’s metabolic profile, minimize hypoglycemia, 
and reduce nursing staff workload. However, none 
systematically considers per-patient demographic 
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background and admission conditions, such as age, height, 
weight, and comorbidities, and judgments are often left to 
expert opinion [15]. Furthermore, despite the growing 
amount of computerized patient-specific control, a 
majority of hospitals around the world, especially in less 
developed countries, still use manual sliding scales based 
on generalized rules to control glycemia, such as in 
Malaysian ICUs [16]. In any case, all these ICU data need 
to be exploited to make the best decisions for critically ill 
patients. Instead of regular measurement, some of these 
data are one-time information and do not have any patterns 
to signal patient variability; nevertheless, they may add 
value that can support and enhance clinical decision 
support, such as controls that optimize workload. 

The Bayesian network [17, 18], a probabilistic and 
graphical model often used to model uncertainty and 
causality, offers a potential solution with applications 
ranging from medical diagnosis [19], detection [20], and 
prediction [21] as well as decision-making systems [22]. 
Due to their directed graphical structure, Bayesian 
networks (BNs) are intuitively interpretable, thus assisting 
and expediting human decision support in ways 
generalized machine learning cannot. In essence, the BN 
structure helps “explain” its output. A BN provides an 
efficient factorization of the joint probability distribution 
over a set of random variables. Patient-specific data that 
often contain a combination of discrete and continuous 
variables, can be deployed in structured learning and 
inference to perform diagnosis, prognosis, or to simply 
find the causal relationship between variables. Bayesian 
networks offer efficient parameter learning with relatively 
few learning data, and offer an ideal framework to deal 
with missing values.   

The objective of this paper is to study the integration of 
demographic and admission data (one-off input values 
from multiple medical center ICUs) with glycemic control 
performance, and to try and interpret the possible 
relationships between the variables. As a case study, this 
paper works on one interest target node (set as the average 
number of daily blood glucose measurements) to explore 
the feasibility of choosing optimized nursing intervention 
based on patient background. From this viewpoint, the 
paper focuses on the choices of discretization techniques 
towards selected data (which are one-off but with 
continuous values), on structured learning steps, and on 
inference in cases of missing data. 

 

2. Methods 

2.1 Glycemic Control Data 
The study was conducted on data from 482 critically ill 

Malaysian ICUs patients from the Hospital Tengku 
Ampuan Afzan (HTAA), the Universiti Malaya Medical 
Centre (UMMC), the Hospital Universiti Sains Malaysia 
(HUSM), and the International Islamic University 
Malaysia Medical Centre (IIUMMC). Patients were treated 
under four different controls: three sliding-scale insulin 
infusion approaches (324 patients), and one computerized 
STAR protocol (158 patients). 

(1) HTAA, UMMC, and HUSM Sliding Scale 
Approaches: In this protocol, the medical staff performs 
treatment based on rules [16] to maintain glycemic levels 
within a chosen target range. Specific insulin infusion 
values are proposed solely based on associated BG-level 
measurements. In these ICUs, the BG target range is 5.1-
8.0, 6.0-9.0 or 6.0-10.0 mmol/L. BG monitoring and 
treatment are performed hourly after administering insulin 
has started. When there is no requirement for an insulin 
rate change for two consecutive hours, BG is then 
measured every two to four hours. Monitoring frequency is 
reduced once the patient is considered stable.  

(2) IIUMMC STAR control: STAR is an automated 
glycemic control protocol that characterizes and forecasts 
changes in per-patient metabolic state. It is more 
personalized in the sense that insulin infusion values 
depend on each and every patient’s insulin sensitivity 
variations, but it does not capture the patient’s background 
(age, gender, diabetes history, etc.). It is designed to be 
used in real-time bedside care with a computer tablet. Its 
predictions are based on a stochastic model over the one to 
three hours subsequent to potential variations in patient-
specific insulin sensitivity [23-25]. STAR is a solution to 
the personalized approach and has shown promising results. 
It is the default treatment in Christchurch, New Zealand, 
and Gyula, Hungary, hospital ICUs [26]. Since December 
2016, it has been implemented in the IIUMMC ICU in 
Malaysia as part of a Malaysian pilot trial [27, 28]. The 
flexibility of STAR includes BG-level target range, 
measurement frequency, patient safety within a predefined 
desired hypoglycemia risk, and local nutrition practices 
[13, 29]. The data from this ICU came from the 6.0-10.0 
mmol/L target range. STAR, however, does not include 
demographic data in the control feedback.  

 
Table 1 summarizes the demographics of patient data 

Table 1. Summary of Data.

 HTAA UMMC HUSM IIUMMC 

Type of control Rule-based sliding scale approach Computerized and patient-specific 
approach 

Target range [in mmol/L] 5.1 - 8.0 6.0 - 9.0 6.0 - 10.0 6.0 - 10.0 
Total number of patients 90 15 
Number of patients with 

complete data 
210 

10 7 
158 

Age [IQR, years] 56.5 [45.0 - 64.0] 62.0 [55.3 - 63.8] 55.5 [50.0 - 60.25] 56.0 [62.0 - 68.0] 
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and their control approach. 

2.2 Bayesian Network 
A Bayesian network models a variable as a node, and 

the potential causal relationship between two variables as a 
directed arc. These create the BN structure, and to 
complete it, a conditional probability table (CPT) is 
assembled for each node to represent the probabilities of 
each value of a node, given the conditions of its parents. 
The structure, along with the CPT, can be built from 
human knowledge, machine-learned from training datasets, 
or from a combination of both. This study proposes that 
both be used in order to learn from data and testing over 
random data sampling.  

While BNs can be trained from continuous variables 
directly, it is common to discretize the variables into states 
to prepare a dataset that enables the Bayesian network 
structure’s learning. The purpose is to minimize 
computation speed by avoiding having to consider 
variable-interaction complexities. In discrete-state cases 
(and provided the probability of an event, B, is not zero), 
Bayes theorem is used to relate the conditional and 
marginal probabilities of two events, A and B, (Eq. (1)): 

 

 
( )

( )
P(B | A) . P A

P(A | B)
P B

=           (1) 

 

·P(A|B) is the conditional probability of A, given B. It 
is also called the posterior probability. 

·P(B|A) is the conditional probability of B, given A. It 
is also called the likelihood. 

·P(B) is the prior or marginal probability of B, and acts 
as a normalizing constant 

The choice of discretization technique has a striking 
impact on the network’s classification and prediction 
precision and computation speed, and on the 
interpretability of the resulting network. For the purpose of 
this study, discretization for each continuous variable was 
limited to between three states only.  

The study was conducted using a tool known as 
BayesiaLab (version 7.0) to generate the Bayesian 
networks. BayesiaLab is a complete tool for the creation 
and use of Bayesian networks. It provides nine 
discretization techniques. For our study, comparisons were 
made only between K-means, density approximation, 
equal distance, normalized equal distance, and equal 
frequency. The structure-learning step follows, and was 
performed using unsupervised leaning algorithms paired 
with score-based learning algorithms to discover all the 
probabilistic relations in the data. The available 
unsupervised learning algorithms were maximum weight 
spanning tree (MWST), Taboo, Taboo Order, Equivalent 
Class (EQ) and SopLEQ. As opposed to the constraint-
based algorithms that use independence tests to add or 
remove arcs between nodes, the minimum description 
length score [30] or Pearson correlation score were 
deployed to measure the quality of network candidates 
corresponding to the available datasets. 

2.3 Multi-target Node Evaluation 
The resulting networks’ performance evaluations were 

done using a multi-node target analysis system. The basis 
is to consider each node in the network as a target node, 
and final performance is based on overall performance. For 
each node as a target, the quantitative performance of all 
candidates was evaluated using the test dataset with the 
following three metrics: (i) overall precision, (ii) root mean 
square error (RMSE), and (iii) overall calibration index. 
Overall precision characterizes the power of classification; 
the calibration index estimates the posterior probability 
distribution of the target node; and RMSE forecasts a 
numerical value using a posterior probability distribution 
to compute the weighted average of the target node’s value.  

2.4 Missing-data Completion 
Out of the 482 sets of data, 97 were missing the 

patient’s height owing to the complication of measuring a 
critically-ill patient’s height upon admission to the ICU. 
This seems to be common, and the 97 sets came from 
HUSM and UMMC. Data from HTAA were only from 
patients with complete datasets, and the STAR protocol 
obliges users to enter both height and weight upon the start 
of the control. These patients’ data will be injected in the 
resulting Bayesian network to see the prediction 
performance.   

3. Results and Discussion 

By using Bayesian networks as the framework and 
BayesiaLab as the tool, the process began with the 
identification of variables to be used in the modelling. 
Common variables that were available from the four ICUs 
provided data, using four different glycemic controls (GC). 
Ten variables were extracted: type of control, age, gender, 
height, weight, diabetes mellitus and hypertension status 
upon admission to the ICU, initial BG level, total hours 
under GC treatment, and number of measurements 
involved. The last two variables were then merged and 
converted into a single variable (average daily 
measurement) to measure the nursing workload as the 
main prediction interest. 

These variables can be classified into two categories; i) 
patient background and ii) glycemic control information. 
Amongst these variables, type of control, gender, and 
diabetes mellitus and hypertension status are discrete and 
binary. All the others need to be discretized before being 
used in the model. The summary of variables is presented 
in Table 2.  

Due to the nature of ICUs, patient height upon 
admission is sometimes difficult to measure. Some patient 
data from HUSM and UMMC that were without the 
patient’s height were considered missing data cases. Two 
datasets were then created with the nine variables, one 
with 385 complete sets of data, and another including the 
97 patients with missing heights. Generated results are 
presented and discussed based on the final networks with 
best prediction score first, and then the discretization 
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algorithms that produced them. The comparative 
performance between networks using different 
discretization techniques can be seen in Table 3. Minimum 
mean precision was 69.90%. Based on the results, BNs 
built from the normalized equal distance displays the best 
compromise of classification performance: 80% mean 
precision with 7.98% standard deviation. Its maximum 
precision was designated to the interest target node 
(average daily measurement at 90.39% precision). Other 
techniques followed with type of control and height nodes 
with maximum precision. 

The equal distance and normalized equal distance 
techniques performed slightly differently. Equal distance 
directly discretizes equal distances based on the range of 
the variable, whereas normalized equal distance first uses a 
smoothing algorithm to clean the outliers, and then 
computes the equal distances. The higher standard 
deviation and maximum overall precision from the equal 
distance technique indicates there were outliers in the data. 
Comparisons of discretization intervals between the two 
datasets indicate that only height had different sets of 
intervals, and indicate that outliers come from this variable. 
The differences between the two intervals can be seen in 
Table 4. Fig. 1 displays the normal probability distribution 
of each node of the network and its values, allowing us to 
see the discretization intervals with the associated initial 
distribution. With the prevalence of data coming from 
HTAA and IIUMMC, 53.25% of the patients had diabetes, 
and 56.10% had a history of hypertension. What could not 
be captured in the distribution is the fact that 34.29% of 
patients had both morbidities. 

The resulting BN from the normalized equal distance 
discretization technique is presented in Fig. 2. Nodes are 
colored according to their mutual relationship strength. 
The network was generated using the unsupervised MWST 
approach that uses Pearson correlation coefficients for 
every pair of nodes. These coefficients are then used as 
weights to build a network maximizing the total sum of 
their squared values. MWST using Pearson correlation, 
and not using minimum description length (MDL) score as 
an objective function, is the only technique consistently 
providing a final network with all nodes connected to each 
other. This result is explained by the fact that MDL scores 
consider the correlation plus the structural complexity of 
the network, thus establishing automatic significance 
thresholds. However, the Pearson correlation is only based 
on correlation, without any significance threshold. Thus, it 
always returns networks in which all the nodes are 
connected, even in the case of very weak relationships, 
which may not be accurate or desired. Other techniques 
(Taboo, Taboo Order, Equivalent Class [EQ] and SopEQ) 
paired with either MDL or the Pearson score provided 

Table 2. Summary of Variables.

No. Category Variables Type 
1 Glycemic control info Type of control  Discrete: HTAA, IIUM, HUSM, UMMC 
2 Patient background Age  Continuous: (years) 
3 Patient background Gender Binary: m/f 
4 Patient background Height Continuous: (cm) 
5 Patient background Weight Continuous: (kg) 
6 Patient background Diabetes mellitus Binary: 0/1 
7 Patient background Hypertension Binary: 0/1 
8 Glycemic Control info Initial BG level Continuous: (mmol/L) 
9 Glycemic Control info Average daily measurement Continuous: (n) 

 
Table 3. Summary of Performance in Terms of Overall Precision for Target Nodes using Different Discretization 
Techniques. 

Overall precision K-means Density 
approximation 

Normalized equal 
distance 

Equal 
distance 

Equal 
frequency 

Mean (%) 74.08 69.90 80.00 79.80 65.71 
Standard deviation (%) 11.24 14.18 7.98 11.18 15.89 

Minimum (%) 55.06% 
(age) 

43.90% 
(age) 

60.52% 
(age) 

60.52% 
(age) 

43.38% 
(initial BG) 

Maximum (%) / associated target 
node 

90.65 /  
(type of 
control) 

89.10 / 
(type of control) 

90.39 / 
(interest target node*) 

93.51 / 
(Height) 

85.45 / 
(Type of 
control) 

On interest target node* (%) 85.45 80.26 90.39 90.39 67.01 

 *Interest node: The average daily blood glucose measurement 

 
Table 4. Discretization Interval between the Equal 
Distance and Normalized Equal Distance Techniques. 

Node Equal distance Normalized equal 
distance 

<= 60 - 102 cm <= 60 - 130 cm 
< 102 - 144 cm < 130 - 158 cm Height 

< 144 - 186 < 158 - 186 
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networks with only two nodes connected. 
Qualitatively, the network reveals type of control as the 

central node directly correlated to age, average daily 
measurement, and height. In terms of patient background, 
height, weight and gender are clustered together on one 
side of the type of control. Diabetes mellitus and 
hypertension are clustered with age on the other side. The 
initial BG is the most distanced node in the network. The 
proximity of hypertension status to average daily 
measurement, if compared to diabetes mellitus status, 
signals prioritizing investigation and potential 
incorporation of hypertension status or parameters in 
modelling the overall approach for optimized or efficient 
glucose control. Second, the arrows in the generated BN 
with the MWST structure learning based on the Pearson 
correlation only signifies the strength of the correlation 
between two nodes, and not necessarily the causal 
relationship between them. Even if the arcs change 
orientation, the prediction results stay the same. This 
network enables the prediction of average daily 

measurement given information from any of the other 
nodes. For example, if a patient is known to be male, age 
70, with both diabetes and hypertension, the resulting 
inference for average daily measurement is  <16.327 times 
if using an HTAA control, but falls to between 16.327 and 
28.163 times if using STAR. 

To further elaborate on the result from the network, 
Table 4 presents the RMSE and overall calibration index. 
RMSE is smaller for nodes with minimum classification 
precision, and 41% larger for the maximum. This means, 
while the interest target node has a higher classification 
power, the forecasting of its continuous values posterior 
probability distribution is low. Results are also compared 
with prediction using the missing-data datasets from 
UMMC and HUSM on the resulting network to evaluate 
the ability of the Bayesian network as a classifier under the 
circumstances. The results complemented Table 4. 
Interestingly, the mean loss of overall prediction only 
amounts to 2.5%. Despite a bigger standard deviation, the 
maximum precision with the target node is higher, at 

Fig. 1. Resulting Bayesian network probability distribution. 
 

 

Fig. 2. Bayesian network using normalized equal distance discretization and maximum weight spanning tree 
structure learning. 
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92.05%. However, the overall calibration index is lower, at 
81.57%, and this is attributed to the missing values, which 
impacted the computation of the posterior probability of 
the cohort’s network. Even in this case, the results show 
that this network can provide reliable classification, even 
with missing heights, and serves as the objective to help 
doctors decide on the control based on per-patient 
background and predicted average daily measurement. 

4. Conclusion 

The Bayesian network, even in its simplest form, has 
three major advantages. It explicitly provides the 
conditional probability distributions of the values of a class 
attribute, given the values of the other input attributes; it 
has the ability to deal with missing values, and finally, the 
graphical network model is easy to understand. For these 
reasons, the awareness to apply and use the Bayesian 
network causality property in the medical context is 
increasing. This paper presented results from linking data 
coming from personalized patient backgrounds and their 
glycemic control treatment in the ICU using a Bayesian 
network. It focused on the structural machine-learned 
process that potentially gains some relevance for future 
research and practical applications for BNs in ICUs. The 
performance of the BN was compared within its building 
algorithms, such as discretization and the unsupervised 
structure learning process. The study is complemented 
with an assessment of the resulting BN network prediction 
with a dataset missing some of the data. 

The study revealed that many discretization techniques 
support the learning of a Bayesian network from these 
types of data, and classification statistical validity provides 
excellent prediction. The resulting network can also be 
used in cases with a missing height, which occur regularly 
in critical care units. However, with the current study 
design, only the maximum weight spanning tree approach 
that uses Pearson correlation coefficients consistently 

gives the best overall performance when this type of 
network cannot indicate causality per our initial interest. A 
larger-scale study with different combinations of datasets 
needs to be done to achieve all the above, but with a 
learning technique that considers causality as an end 
network.     

Acknowledgement 

The authors thankfully acknowledge Hospital Tengku 
Ampuan Afzan (HTAA), Universiti Malaya Medical 
Centre (UMMC), Hospital Universiti Sains Malaysia 
(HUSM) and International Islamic University Malaysia 
Medical Centre (IIUMMC) ICUs’ clinical teams for their 
support and provision of data for this study. The authors 
also acknowledge the FRGS Grant from the Malaysian 
Ministry of Higher Education (MOHE), the BOLD grant, 
and UNITEN for their roles in the ongoing research.  

 
References 

 
[1] T-K. Nfor et al., “The impact of organ failures and 

their relationship with outcome in intensive care: 
analysis of a prospective multicentre database of 
adult admissions,” Anaesthesia, 61(8), pp. 731-738, 
2006. Article (CrossRef Link)  

[2] P. Dennen et al., “Acute kidney injury in the 
intensive care unit: an update and primer for the 
intensivist,” Critical care medicine, 38(1), pp. 261-
275, 2010. Article (CrossRef Link) 

[3] J. Clain et al., “Glucose control in critical care,” 
World journal of diabetes, 6(9), pp. 1082, 2015. 
Article (CrossRef Link)2 

[4] R-S-Y.Wong et al., “An application of Bayesian 
approach in modeling risk of death in an intensive 
care unit,” PloS one, 11(3), pp. e0151949, 2016. 
Article (CrossRef Link) 

[5] M-M. Ghassemi et al., “A data-driven approach to 
optimized medication dosing: a focus on heparin,” 
Intensive care medicine, 40(9), pp. 1332-1339, 2014. 
Article (CrossRef Link) 

[6] A-E. Johnson et al., “Machine learning and decision 
support in critical care,” Proceedings of the IEEE, 
Institute of Electrical and Electronics Engineers, 
104(2), pp. 444, 2016. Article (CrossRef Link) 

[7] J-G. Chase et al., “Next-generation, personalised, 
model-based critical care medicine: a state-of-the art 
review of in silico virtual patient models, methods, 
and cohorts, and how to validation them,” Biomedical 
engineering online, 17(1), pp. 24, 2018. Article 
(CrossRef Link) 

[8] S. Cochran et al., “ENDOTOOL Software for Tight 
Glucose Control for Critically Il Patients 260,” 
Critical Care Medicine, 34(12), pp. A68, 2006. 

[9] N-M. Saur et al., “Software-Guided Insulin Dosing: 
Tight Glycemic Control and Decreased Glycemic 
Derangements in Critically Ill Patients,” in Mayo 
Clinic Proceedings, Vol. 88, No. 9, pp. 920-929, 
Elsevier, 2013. Article (CrossRef Link) 

Table 4. Multi-Target Discretization from Three 
Normalized Equal Distance Discretization Techniques.

Metrics Overall 
precision RMSE Overall calibration 

index 
With the original dataset (385 patients) 

Mean 80.00% 5.49 80.04% 
Standard deviation 7.98% 5.96 8.36% 

Minimum  
(node: age) 60.52% 0.38 67.71% 

Maximum (node: 
average workload) 90.39% 17.67 93.89% 

With missing-data dataset (482 patients) 
Mean 77.50% 5.69 74.08% 

Standard deviation 8.50% 6.08 4.56% 
Minimum  

(node: age) 59.00% 0.40 
 66.86% 

Maximum (node: 
average workload) 92.05% 17.67 81.75% 

https://doi.org/10.1111/j.1365-2044.2006.04707.x
https://dx.doi.org/ 10.1097/CCM.0b013e3181bfb0b5
https://dx.doi.org/ 10.4239/wjd.v6.i9.1082
https://doi.org/10.1371/journal.pone.0151949
https://dx.doi.org/10.1007/s00134-014-3406-5
https://dx.doi.org/10.1109/JPROC.2015.2501978
https://doi.org/10.1186/s12938-018-0455-y
https://doi.org/10.1186/s12938-018-0455-y
https://doi.org/10.1016/j.mayocp.2013.07.003


Abu-Samah et al.: Towards Personalized Intensive Care Decision Support Using a Bayesian Network: A Multicenter Glycemic ...  

 

208

[10] T. Van Herpe et al., “LOGIC-Insulin Algorithm 
Guided versus Nurse-Directed Blood Glucose 
Control during Critical Illness: the LOGIC-1 Single-
Center, Randomized, Controlled Clinical Trial,” 
Diabetes Care, 36(2), pp. 188-194, 2013. Article 
(CrossRef Link) 

[11] A. Evans et al., “Pilot Proof of Concept Clinical 
Trials of Stochastic Targeted (STAR) Glycemic 
Control,” Annals of Intensive Care, 1(1), pp. 38, 2011. 
Article (CrossRef Link) 

[12] A. Evans et al., “Stochastic Targeted (STAR) 
Glycemic Control: Design, Safety, and Performance,” 
Journal of Diabetes Science and Technology, 6(1), pp. 
102-115, 2012. Article (CrossRef Link) 

[13] J. Blaha et al., “Space GlucoseControl system for 
blood glucose control in intensive care patients-a 
European multicentre observational study”. BMC 
anesthesiology, 16(1), pp. 8. 2015. Article (CrossRef 
Link) 

[14] B. Xu et al., “Comparison of Space Glucose Control 
and Routine Glucose Management Protocol for 
Glycemic Control in Critically Ill Patients: A 
Prospective, Randomized Clinical Study,” Chinese 
medical journal, 130(17), 2041. Article (CrossRef 
Link) 

[15] J-G. Chase et al., “Impact of Human Factors on 
Clinical Protocol Performance: a Proposed 
Assessment Framework and Case Examples,” 
Journal of Diabetes Science and Technology, 2(3), pp. 
409-416, May. 2008. Article (CrossRef Link) 

[16] Kementerian Kesihatan Malaysia, Malaysian Society 
of Intensive Care, and Malaysia Society of Intensive 
Care, “Management Protocols In ICU Malaysia,” 186, 
September 2012”. Article (CrossRef Link) 

[17] J. Pearl, “Probabilistic Reasoning in Intelligent 
Systems: Networks of Plausible Inference,” Elsevier, 
28, June. 2014. 

[18] D. Koller, and N. Friedman, “Probabilistic Graphical 
Models: Principles and Techniques,” MIT Press, 
2009. 

[19] J-L. Lustgarten et al., “Application of an Efficient 
Bayesian Discretization Method to Biomedical Data,” 
BMC Bioinformatics, 12(1), pp. 309, 2011. Article 
(CrossRef Link) 

[20] S-K. Nachimuthu, and P-J. Haug, “Early Detection of 
Sepsis in the Emergency Department using Dynamic 
Bayesian Networks,” In AMIA Annual Symposium 
Proceedings, American Medical Informatics 
Association, 2012. Article (CrossRef Link) 

[21] D. Chung et al., “General Bayesian Network 
Approach to Health Informatics Prediction: Emphasis 
on Performance Comparison,” Procedia-Social and 
Behavioral Sciences, 28(81), pp. 465-468, June, 2013. 
Article (CrossRef Link) 

[22] B. Thanathornwong, “Bayesian-Based Decision 
Support System for Assessing the Needs for 
Orthodontic Treatment,” Healthcare Informatics 
Research, 24(1), pp. 22-28, January. 2018. Article 
(CrossRef Link) 

[23] J. Lin et al., “Stochastic Modelling of Insulin 
Sensitivity and Adaptive Glycemic Control for 

Critical Care,” Computer Methods and Programs in 
Biomedicine, 89(2), pp. 141-152, 2008. Article 
(CrossRef Link) 

[24] J. Lin et al., “A physiological Intensive Control 
Insulin-Nutrition-Glucose (ICING) Model Validated 
in Critically Ill Patients,” Computer Methods and 
Programs in Biomedicine, 102(2), pp. 192-205, 2011. 
Article (CrossRef Link)  

[25] A-J. Le Compte et al., “Blood Glucose Prediction 
using Stochastic Modeling in Neonatal Intensive 
Care,” IEEE Transactions on Biomedical 
Engineering, 57(3), pp. 509-518, 2010. Article 
(CrossRef Link) 

[26] K-W. Stewart et al., “Safety, Efficacy and Clinical 
Generalization of the STAR Protocol: a Retrospective 
Analysis,” Annals of Intensive Care, 6(1), pp.24, 
2016. Article (CrossRef Link)  

[27] A. Abu-Samah et al., “Model-Based Insulin-Nutrition 
Administration for Glycemic Control in Malaysian 
Critical Care: First Pilot Trial,” in International 
Conference for Innovation in Biomedical 
Engineering and Life Sciences, Springer, Singapore, 
December. 2017. Article (CrossRef Link) 

[28] A. Abu-Samah et al., “Model-based glycemic control 
in a Malaysian intensive care unit: performance and 
safety study,” Medical Devices: Evidence and 
Research, 12, pp. 216-226, 2019. Article (CrossRef 
Link) 

[29] L-M. Fisk et al., “STAR Development and Protocol 
Comparison,” IEEE Transactions on Biomedical 
Engineering, 59(12), pp. 3357-3364, 2012. Article 
(CrossRef Link) 

[30] W. Lam, and F. Bacchus, “Learning Bayesian Belief 
Networks: An Approach based on the MDL 
Principle,” Computational Intelligence, 10(3), pp. 
269-293, 1994. Article (CrossRef Link) 

 
 

 
Asma Abu-Samah is a post-doctoral 
researcher of Automated Control 
applied to Bio-Medical Engineering at 
the National Energy University 
(UNITEN), Malaysia. She received her 
B.Eng. and M.Eng. in Control Systems 
of Electrical Energy from Université 
de Joseph Fourier, France, in 2008 and 

2010, respectively, and her PhD in Automated Control and 
Production Systems from the Université Grenoble Alpes in 
2016. Dr. Asma served, or currently serves, as a reviewer 
for many Journals, Conferences, Symposiums, and Bio-
Medical Workshops as well as in the Prognostics and 
Health Management area. Her research interests include 
data-based failure prediction and diagnosis in industrial 
equipment as well as the human physiological system. 

 

https://doi.org/10.2337/dc12-0584
https://doi.org/10.2337/dc12-0584
https://dx.doi.org/ 10.1186/2110-5820-1-38
https://doi.org/10.1177/193229681200600113
https://doi.org/10.1186/s12871-016-0175-4
https://doi.org/10.1186/s12871-016-0175-4
https://dx.doi.org/ 10.4103/0366-6999.213422
https://dx.doi.org/ 10.4103/0366-6999.213422
https://doi.org/10.1177/193229680800200310
https://doi.org/10.1186/1471-2105-12-309
https://doi.org/10.1186/1471-2105-12-309
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540576/
https://doi.org/10.1016/j.sbspro.2013.06.461
https://doi.org/10.4258/hir.2018.24.1.22
https://doi.org/10.4258/hir.2018.24.1.22
https://doi.org/10.1016/j.cmpb.2007.04.006
https://doi.org/10.1016/j.cmpb.2007.04.006
https://doi.org/10.1016/j.cmpb.2010.12.008
https://dx.doi;org/10.1109/TBME.2009.2035517
https://dx.doi;org/10.1109/TBME.2009.2035517
https://doi.org/10.1186/s13613-016-0125-9
https://doi.org/10.1007/978-981-10-7554-4_33
https://doi.org/10.2147/MDER.S187840
https://doi.org/10.2147/MDER.S187840
https://dx.doi.org/ 10.1109/TBME.2012.2214384
https://dx.doi.org/ 10.1109/TBME.2012.2214384
https://doi.org/10.1111/j.1467-8640.1994.tb00166.x


IEIE Transactions on Smart Processing and Computing, vol. 8, no. 3, June 2019 

 

209

 
Normy Norfiza Abdul Razak is a 
senior lecturer with the Department of 
Electronics & Communication Engi-
neering, National Energy University 
(UNITEN), Malaysia. She received her 
B.Eng. in Electrical Electronics from 
UNITEN, and an MSc in Electrical 
Engineering-Control and Automation 

from the University of Nottingham, in 2003 and 2014, 
respectively. She completed her PhD in Bio-Engineering- 
Computational Modeling and Physiological Control from 
the University of Canterbury in 2011. She is currently the 
director of the UNITEN Research Management Centre. 

 
 

 
Fatanah Mohamad Suhaimi is a 
senior lecturer at the Advanced 
Medical and Dental Institute (AMDI) 
of Universiti Sains Malaysia (USM). 
She received a B.Eng. in Mechatronics 
Engineering (Honors) from the 
International Islamic University 
Malaysia. In 2012, she was awarded a 

PhD in Mechanical Engineering from the University of 
Canterbury, New Zealand. Her research areas include 
computational modelling of a glucose-insulin system, and 
study and design in the bioengineering field, specifically in 
medical instrumentation, control, prediction analysis, and 
rehabilitation engineering. 

 
 

 
Ummu Kulthum Jamaludin is a 
senior lecturer with the Faculty of 
Engineering, Universiti Malaysia 
Pahang, Malaysia. She received her 
B.Eng. with Honours in Mechanical 
Engineering from the University of 
Canterbury in 2008. This was followed 
by a PhD from the same university in 

2013. Her areas of expertise include system modeling and 
dynamics, instrumentation for biomedical engineering and 
physiological modelling. 

 

 
James Geoffrey Chase is a distin-
guished Professor of UC Mechanical 
Engineering, who specializes in 
dynamic systems modelling and 
control applied to medicine and 
structures. His pioneering work has 
real-world impact that ranges from 
intensive care medicine for babies to 

earthquake engineering. He received his BSc from Case 
Western Reserve University, Ohio, in 1986, and his MSc 
and PhD from Stanford in 1991 and 1996. He spent six 
years working for General Motors and a further five years 
consulting in Silicon Valley, including positions at Xerox 
PARC, GN ReSound, Hughes Space and Communications, 
and Infineon Technologies AG before joining the 
University of Canterbury. His research interests include 
automatic control, physiological systems dynamics, 
structural dynamics and vibrations, and dynamic and 
systems modeling. He was awarded a 2018 University of 
Auckland Research Excellence Medal, and a 2017 
University of Canterbury Research Medal.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyrights © 2019 The Institute of Electronics and Information Engineers


