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Essays On Commodities 

General Introduction 

Agricultural Commodities are a large portion of the New Zealand Economy, and a 

better understanding of commodity markets is useful for New Zealand market 

participants, especially in the dairy sector. This thesis studies two of the main 

functions of commodity markets, price discovery and hedging. The first chapter 

reports the effectiveness of hedging as a function of spot market design. The second 

chapter illustrates the reduced explanatory power of the Theory of Storage in recent 

time as contrasted with the early 1960’s. The third chapter demonstrates that cutting-

edge machine learning techniques are promising alternatives for learning features of 

commodity markets. 

Hedging is one of the primary functions of commodity futures markets. In chapter 

one, the reasons for the success and failure of futures contracts are analyzed and the 

design of the spot settlement is examined in detail. The quality of the spot settlement 

index is characterized by several dimensions, and has a marked effect on the hedging 

effectiveness of the associated futures contract. The segmented dairy markets of the 

US and New Zealand are used to illustrate this conclusion. 
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The second paper is concerned with price discovery as a function of the inventory, the 

most important fundamental indicator in the majority of commodity markets1. The 

cocoa market is chosen as an illustration for three reasons. First, the cocoa market is 

one of the most idiosynchratic of commodity markets, with few links to other 

commodities other than coffee, which shares a similar geographic production region. 

Second, the cocoa market consists primarily of a single product, cocoa beans, rather 

than the multiple product streams of more complex commodity sectors like dairy 

products. It is easier to isolate the effect of inventory in the cocoa market than in 

markets like grain, oil, or dairy. Third, the Traditional Theory of Storage reached an 

apex in the work of Helmut Weymar (Weymar (1965), Weymar (1966) and Weymar 

(1968). After submitting his award-winning thesis2 , and with partial initial funding 

from Paul Samuelson, Weymar formed Commodities Corporation in 1969. 

Commodities Corporation was highly profitable, and was the training ground for 

several of the most successful hedge fund pioneers: Paul Tudor Jones, Louis Bacon, 

and  Bruce Kovner among others. To replicate Weymar’s results, significant time was 

spent in researching historical archives including transcribing by hand ten years of 

weekly futures prices from the microfiche archives of the New York Times3. The 

model is then extended and applied to the modern period from 2009-2019, in which 

the model has substantially reduced explanatory power. The reduced power is 

attributed to the changes in the commodity markets, including the presence of large 

groups of momentum, and index traders. This hypothesis is examined in Chapter 3. 

1	Electricity	is	a	notable	counter-example,	as	electricity	is	difficult	to	store	in	any	
form	other	than	reservoirs	for	hydro-power.	
2	Weymar’s	thesis	was	published	by	the	MIT	Press,	and	won	the	American	
Agricultural	Economic	Association’s	award	for	the	best	published	research	in	
1968	
3	The	New	York	Times	Machine	provides	access	to	150	years	of	papers	from	the	
famous	publisher.	https://timesmachine.nytimes.com/browser	
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Machine Learning is a new frontier for finance. Spectacular successes in speech and 

image recognition have encouraged enormous investment in applying similar models 

to understanding financial time series. The great breakthrough in machine learning 

occurred in 2014 in the ImageNet Large Scale Visual Recognition Challenge when 

AlexNet, a deep learning convolutional model created by Krishevsky, Sutskever, and 

Hinton (Krishevsky et al (2017)), achieved a top-five error rate of 15.1%, 10.8% 

better than the closest competitor. After AlexNet, a sequence of similar deep-learning 

architectures improved the performance to better than 95% in 2017, better than 

human-level performance. In 2017, IBM announced an error rate of 5.5% in speech 

recognition4, also on par with human performance. The most recent breakthrough in 

December 2020, is in protein folding5. Hypothesizing from the research in Chapter 2 

that the effects of momentum and index traders were having a large impact on the 

cocoa price, a Restricted Boltzmann Machine (RBM) is used in a recommender 

architecture to confirm the co-movement of groups of commodities from the 

commodity spectrum on the World Bank pink sheet. After verifying that co-

movement is present, a more advanced Recursive Neural Network Restricted 

Boltzmann Machine (RNN_RBM) is used to make one-day-ahead cocoa price 

predictions from cocoa fundamental data and associated commodity price series. The 

one-day-ahead price predictions fail to outperform baseline forecasts. Possible 

reasons include the daily granularity being too fine, the size of the search space with 

4	Saon	G,	(2017).	Reaching	new	records	in	speech	recognition	
https://www.ibm.com/blogs/watson/2017/03/reaching-new-records-in-
speech-recognition/	
5	Griffen	A.	(2020),	AI	solves	50-year-old	science	problem	in	‘stunning	advance’	
that	could	dramatically	change	how	we	fight	diseases,	researchers	say	
https://www.independent.co.uk/life-style/gadgets-and-tech/protein-folding-ai-
deepmind-google-cancer-covid-b1764008.html	
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continuous variable inputs, and the absence of detailed worldwide inventory-ratio 

measurements or other relevant information. The results may also reflect the 

efficiency of modern commodity markets. We conclude that the RNN_RBM 

architecture would lend itself better to explaining rather than predicting the joint term 

structure of commodities. The RBM results illustrate that commodities are indeed 

interlinked and should be considered as a group rather than in isolation from one 

another. 
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Chapter 1 

  

Does the Design of Spot Markets Matter for the Success of Futures Markets? Evidence 

from Dairy Futures  

  

 

Abstract 

 

This study provides evidence of the importance of a well-defined and functioning spot market 

for the success of the associated futures market. Our analysis of hedging effectiveness and 

hedge ratio persistence shows that none of the United States (US) spot market indices may be 

hedged effectively with the Chicago Mercantile Exchange nonfat dry milk futures at short 

hedging horizons, whereas the New Zealand (NZ) Stock Exchange whole milk powder 

futures contract is an effective hedge for the Global Dairy Trade spot pricing benchmark. 

Four important dimensions of spot market design are identified – timeliness, market-based 

measurement, forward-spot separation, and inclusiveness. 

 

Citation 

 

Białkowski, J., & Koeman, J. (2018). Does the design of spot markets matter for the success 

of futures markets? Evidence from dairy futures. Journal of Futures Markets, 38(3), 373-389. 
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1. Introduction 

 

 

A number of newly introduced futures contracts have failed to attract substantial interest from 

market participants and their trading is characterized by low volume (Carlton, 1984; Black, 

1986; Brorsen & Fofana, 2001). Several studies investigate the possible reasons behind the 

success or failure of exchange traded derivatives and in particular futures contracts (see 

Johnston and McConnell, 1989; Bialkowski & Jakubowski, 2012; Garcia et al., 2015; Till, 

2014; Webb, 2015). Although past studies point out several features of futures and related 

cash markets that increase the chance of success, the topic is the subject of debate, and 

Bhardwaj, Gorton and Rouwenhorst (2015) argue that more research into the success and 

failure of futures contracts is needed. In this paper, we provide evidence that a previously 

unstudied aspect of futures markets – the underlying spot market index design – is a strong 

determinant of the hedging effectiveness of futures contracts and hedge ratio persistence over 

short to long hedging horizons. 

 

Gray (1966) outlines three broad classes of reasons for the failure of futures contracts: poor 

design of the futures contract that favors either the buyer or the seller, the motivation to 

boycott a futures market because of the loss of pre-existing market power by either the buyer 

or seller, and the failure to attract speculation. In addition, Gray argues that the futures 
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markets must serve a hedging function for commercial traders. Till (2014) and Webb (2015)i 

reinforce these considerations.  

 

The majority of studies focus on the characteristics of the commodity, the salient features of 

the cash and futures market, and the aspects of the futures contract that are associated with 

success or failure. There is the implicit assumption that the cash market is structured to 

produce a single benchmark price to serve as the futures’ underlying. Only a few studies, 

primarily in the shipping and freight markets, examine the characteristics of the cash 

market’s underlying price index that promote success. In the case of these markets, the 

construction of price indices is necessary due to the wide range of product or service grades.  

 

The contribution of this paper is threefold. First, it highlights the importance of the proper 

institutional design of the spot market to produce a benchmark with the necessary features to 

serve as the underlying for a successful futures contract. Second, the paper illustrates the 

trade-off between the settlement of futures contracts to a historical average and settlement to 

the spot price of the underlying. Third, this paper aims to serve as a source of information on 

the United States (US) and New Zealand (NZ) dairy futures and spot markets, a commodity 

market that has not received significant academic attention despite its importance and size. 

The analysis of the US and NZ futures contracts and their underlying spot markets illustrates 

that the design of spot markets strongly impacts the functioning of futures markets. In 

particular, the design of the spot market affects the hedging efficiency and hedge ratio 

persistence from short to long hedging horizons.  

																																																								
i Professor Robert Webb’s keynote speech during the 2015 Derivatives Markets Conference in Auckland 
enumerated 10 characteristics that are related to the successful introduction of a futures contract: 1) price 
volatility in the cash market, 2) the need to hedge for commercial participants, 3) public order flow of genuine 
commercial (i.e. hedging) trades, 4) good contract design that does not favor the long or short side, 5) first 
mover advantage, 6) actively traded related futures that facilitate spread trading, 7) liquidity in comparison with 
existing cross-hedges, 8) low explicit trading costs (e.g. brokerage commissions), 9) speculator interest to take 
the long side of hedger trades, and 10) timing of the introduction of the contract. 
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The remainder of this paper is organized as follows. Section 2 enumerates the important 

dimensions of spot market design. Section 3 illustrates how the selection and design of the 

spot market influences the riskiness of arbitrage, hedging, and speculative activity. Section 4 

provides an overview of the US and NZ dairy spot market indices, and formulates our 

research hypotheses. Section 5 presents the data examined in this study. Section 6 reports our 

methodology. Section 7 reports results, and section 8 concludes.  

 

2. Spot Market Design Dimensions 

 

Little academic research focuses on spot market design as a factor affecting the performance 

of futures markets; all studies make an implicit assumption that the spot market is structured 

in a competitive manner so as to produce a single cash price.ii  This assumption is valid in the 

case of highly liquid underlyings with well-established mechanisms for single-price 

determination. The situation is different with less liquid assets traded in several locations 

with multiple price indices. Good examples of such assets are dairy products. In their case, 

the spot market was often designed shortly before a futures market was launched. In addition, 

government regulation has resulted in global market segmentation. 

 

A few studies in the shipping, trucking, fishing, and forestry markets examine the design of 

the underlying cash market. These markets exhibit a wide range of product grades and 

quality, requiring the explicit construction of a single-price index. Kavussanos and Visvikis 

(2006) examine the maritime shipping industry and enumerate 10 characteristics that a cash 

market price index should exhibit – accuracy, absence of bias, familiar units, broad coverage, 

																																																								
ii Appendix 1 contains a detailed review of the factors that have been related to the success and failure of futures 
contracts. 
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frequent publication, auditability, low access cost, and the participation of major market 

participants. Bignell (2013) adds the ability to break down the index into separate sub-indices 

and the ability to update the index structure as market conditions change.  

 

We identify four important dimensions of spot market design for producing a single-price 

index that can serve as an effective underlying for a futures contract: timeliness, market-

based measurement, inclusiveness, and forward-spot separation. Timeliness measures the 

extent to which the information is current for price formation. Timeliness will be lower for 

indices that incorporate a range of historical information into the spot price or for indices that 

induce a delay between the price measurement and publication date. Hedging effectiveness is 

ultimately determined by the correlation between unexpected spot and futures price changes. 

At a point in time, the correlation between a single futures price and a range of spot prices 

will be lower than that between two single prices. Indices that use more current information 

are superior. The market-based characteristic indicates the extent to which the measure is 

determined by markets rather than surveys among market participants. Prices generated by 

financial and commodity markets are more accurate than survey prices and mandatory 

surveys are more accurate than voluntary surveys. Forward-spot separation indicates the 

separation of spot and forward market sales. A price index that mixes forward and spot sales, 

or that only provides spot or forward sales, will be less effective than a structure that provides 

both spot and forward price information. In markets for perishable commodities, it is often 

advantageous to have forward rather than immediate delivery. Inclusiveness assures that a 

significant representative portion of trades are included in the spot market index. A price 

index that accurately reflects the breadth of trading activity is superior for price formation to 

a thinly traded index. A secondary advantage of an inclusive price index is resistance to price 

manipulation.  
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The corn spot markets provide an illustrative example of effective spot market design. At any 

particular moment in time, it is possible to ascertain the price of corn at the nearest country 

elevator. The website http://www.agweb.com/markets/cash-grain-bids/ allows the entry of a 

zip code to immediately see the cash bids and basis levels for the closest five elevators. In 

addition, the daily settlement price is available from several resources, including 

IndexMundi.iii Finally, at a moment in time, it is possible to see the geographic corn basis for 

the entire United States.iv The hedging effectiveness of the corn futures markets has been 

reported from 74% to 80% (Sanders et al.,  2003; Lien, 2008). 

 

In our study of the US and NZ dairy markets, we provide evidence that the spot market 

design matters for the functioning of the associated futures market. In particular, we report 

higher hedging effectiveness and superior hedge ratio persistence for futures contracts with 

spot market indices that incorporate the above dimensions. 

 

3. Implications of Settlement to the Average Spot Price 

 

The setup of a spot market and method in which futures contracts are settled make hedging, 

speculation, and arbitrage more risky and complicated. The introduction of averaging across 

time into the settlement mechanism introduces distortions for speculators or participants 

arbitraging physical versus financial through to settlement. In addition, settlement averaging 

makes hedging more risky due to uncertainty about the basis.  

																																																								
iii Index Mundi, Commodity price for Maize, http://www.indexmundi.com/commodities/?commodity=corn 
iv AG Manager, Corn basis map 6th of January 2016, 
http://www.agmanager.info/marketing/basis/maps/archives/2016/January/1/basismaps.asp?image=Basiscorn201
601.jpg 
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Both US and NZ dairy futures use an average price for settlement. The average price is 

chosen to increase the validity of the settlement price.v More data points provide a more 

representative price for commodities that are thinly traded.	A secondary possible reason for 

adopting an average price is an attempt to avoid manipulation of the spot price to gain from 

the futures settlement (Tashjian, 1995; Pirrong, 2001). 

The Chicago Mercantile Exchange (CME) futures nonfat dry milk contract settles to a 

weighted average of the United States Department of Agriculture (USDA) Agriculture 

Marketing Service (AMS) National Dairy Product Sales Report (NDPSR) weekly announced 

prices. This index is a historical moving average, with sales included from up to 60 days prior 

to settlement.vi In New Zealand, the settlement calculation is also to the average of two 

biweekly auctions within the settlement month, but the convergence problem is partly 

mitigated by the second auction being the day before settlement and the single source of price 

from the Global Dairy Trade (GDT) auction platform. 

 

Settling to a historical average increases the basis risk for hedgers, introduces risk into 

arbitrage trades, and requires speculators to consider the relative movement of both futures 

and spot prices during the hedge lifetime. First, we show that in the case of futures contracts 

settled to a historical average instead of the spot price at expiration, the basis is different than 

zero. Assume that a trade was initiated at time 0, the price of the underlying is S0, and the 

price of the underlying on the spot market at time 1 is S1. When settling to a historical 

average of the prices at time 0 and 1, the settlement price is equal to (S0 +S1)/2. In this case, 

the basis is not 0 but S1-(S0 +S1)/2= (S1 –S0)/2. In this model, the basis at settlement in the 

																																																								
v From a discussion with commercial traders. 
vi	Appendix	2	contains	a	list	of	dairy	market	acronyms	
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case of a futures contract with settlement to a historical average is equal to half the change in 

the spot price – a substantial difference from zero. 

 

In the Chicago Mercantile Exchange nonfat dry milk (NFDM) futures market, the settlement 

price is a volume-weighted average price, not a simple arithmetic average as in the above 

example. The average is calculated from four or five separate weekly numbers. As with the 

above example, one would expect a non-zero basis at expiration. Cohen and Gorham (1985) 

note that with the feeder cattle contract, the basis risk at settlement will be non-zero, as the 

cash settlement price is an average over time, space, and grade (also see Kenyon et al., 1991). 

The non-zero basis at maturity leads to greater uncertainty in basis changes, and lower 

hedging effectiveness. Perversi, Feuz, and Umberger (2002) identify an unpredictable basis 

as the major cause of failure of the cattle stocker contract. Paul et al. (1981) argue that the 

failure of the Maine potato contract was attributable to a lack of convergence of the potato 

spot and futures prices at contract maturity.  

 

A non-zero basis at the maturity of a contract directly affects arbitrageurs and speculators. In 

the case of arbitrage implied by the cost-of-carry formula, an investor is expected to make a 

profit equal to the absolute value of the difference between the futures price and the 

theoretical price if the position is kept open until maturity. Past studies show that such 

arbitrage is not risk free (see Kawaller, 1987; McMillan & Ülkü, 2009; Nam et al., 2010). 

Nevertheless, settlement to an average price increases the risk. The profit from arbitrage is 

equal to the difference between the futures price and the theoretical price plus the basis at 

contract expiration. From the perspective of a futures market speculator who bets on the 

direction of price movements between opening the position and the contract maturity, 

settlement to an average price makes the trade more complex. The potential profit or loss 
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depends not only on the ability to predict the price at contract maturity, as with settlement to 

a point-in-time spot price, but also on the ability to predict prices at points taken as input for 

the average. For example, in the case of a simple arithmetic average calculated from the price 

at time 0 and 1 and a speculative short position open at time 0, the profit from speculation is 

higher when the spot price at time 1 is less than the spot price at 0. The speculator needs to 

predict the price path of the commodity rather than only the prices at contract settlement. 

 

Hedging using futures with settlement to a historical average is more risky due to a higher 

basis risk. The cost of the asset or sale price for a hedged position is equal to the futures price 

at time 0, F0, plus the basis, where the basis is measured at the time of closing the hedging 

position. As a result of the non-zero basis at maturity for futures with settlement to the 

average of past prices, the basis will be higher if the hedging position is closed near 

expiration.  

 

To summarize, there are costs associated with settlement to the historical mean of past spot 

prices. Arbitrage is more risky, hedging is less certain, and speculation requires prediction of 

the price path rather than only the price at closing. In the US and NZ dairy markets, average 

value settlement results in less than optimal hedging, but due to the single source of price in 

the NZ spot market, the reduction in overall hedging effectiveness is expected to be 

substantially smaller. 

 

16



	

 

4. Dairy Markets in the United States and New Zealand 

 

In this section, we outline the structure of and highlight the differences between the dairy 

spot and futures markets in the United States and New Zealand. Dairy market futures are 

used to illustrate the importance of proper spot market design for the functioning of 

associated futures markets. In particular, we provide the detailed structure of each of the 

possible spot price indices in the context of the relevant dimensions of spot market design. 

 

 

 

4.1. The Global Production and Processing of Milk 

 

Over 735 billion liters of cow’s milk are produced annually worldwide. The global dairy 

sector is a $330 billion market and significantly larger than the $100 billion worldwide coffee 

market. Coffee is traditionally considered the second largest commodity after oil. The $30 

billion export market for dairy ingredientsvii is approximately the same size as the coffee 

export market. Dairy products made from cow’s milk are a dietary staple in advanced western 

economies, and consumption is rising quickly in China and other rapidly developing nations. 

The United States produces approximately 26% and New Zealand 6% of raw milk globally. 

NZ exports exceed 90% of milk in the form of dairy ingredients, while the US exports 

approximately 14%.viii 

 

																																																								
vii	The Global Dairy Industry, Fonterra, http://www2.fonterra.com/our-financials/the-global-dairy-industry 
viii US Dairy Export Council, US Export Data 2015, http://www.usdec.org/research-and-data/market-data/us-
export-data  
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Raw milk is produced by individual farmers, and then either marketed as beverage milk or 

processed into a variety of longer-shelf-life commodity dairy ingredients. The processing of 

raw milk into beverage milk or dairy commodities is accomplished by large farmer 

cooperatives or independent milk processors and handlers. The beverage milk and dairy 

ingredients are then purchased and marketed by large multinational companies or retail 

chains. The main dairy ingredients produced in the United States are nonfat dry milk, cheese, 

whey, and butter. In New Zealand, whole milk powder is also produced in significant 

quantities. Approximately 70% of US and 90% of NZ raw milk production is manufactured 

into dairy commodities.ix  

 

An important problem in dairy markets is the compensation of individual farmers for raw 

milk production by the processors and handlers of raw milk. This problem arises from the 

perishability of raw milk – large tanker trucks collect and process milk in an industrial scale 

process, and the farmers are paid from the sales of manufactured products. The United States 

and New Zealand have taken different approaches to the problem; in the former, there is 

substantial government involvement, while the latter favors a free market approach. 

 

																																																								
ix USDA, Fluid milk sales by product, 1975–2014 (millions of pounds), http://www.ers.usda.gov/data-
products/dairy-data.aspx 
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4.2. The New Zealand Market  

 

4.2.1. NZ Government Regulation 

 

In contrast to the United States, the NZ government does not intervene significantly in the 

dairy marketplace. The largest dairy cooperative – Fonterra – has approximately a 90% 

market share in purchasing milk from farmers, and uses reference prices from the Global 

Dairy Trade auction platform.x The NZ Commerce Commission conducts an annual review 

of the methodology utilized by Fonterra to calculate the farmgate milk price ultimately paid 

to farmer producers. Unlike in the United States, the NZ government is not involved in the 

publication of reference commodity prices. 

 

4.2.2. NZ Spot and Futures Markets 

 

Virtually all milk collected in New Zealand is processed for export into whole milk powder, 

skim milk powder, cheese, butter, whey, and a few other minor dairy ingredients. The bulk of 

forward ingredient sales is done in the over-the-counter market, directly with Fonterra and 

other cooperatives. However, approximately 30% of Fonterra’s output is auctioned biweekly 

on Global Dairy Trade,xi an auction platform explicitly designed for the forward selling of 

dairy ingredients to the worldwide marketplace.xii GDT also sells ingredients from several 

other large dairy processors, including DairyAmerica of the United States, and ARLA of 

																																																								
x Fonterra, Milk Price – The Facts, https://www2.fonterra.com/files/financial-docs/milk-price-
methodology/Milk+Price+Questions+and+Answers+1+Aug+2011.pdf 
xi Global Dairy Trade Profile, Fonterra, https://www.globaldairytrade.info/assets/Uploads/resources/GDT-
Profile-2016.pdf 
xii Fonterra, Submission on the Base Milk Price Calculation, https://www2.fonterra.com/files/financial-
docs/industry-regulations/commerce-commission/Fonterra+Submission+on+Key+Issues+-
+Review+of+Milk+Price+Calc+2012-13.pdf 
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Sweden. GDT was formed in 2010, and holds auctions every two weeks for six different 

forward contracts. Contract 1 is for delivery in the next calendar month, Contract 2 for 

delivery in the second calendar month, and so on. The most liquid of these contracts is the 

second forward delivery month (Contract 2). Contract 1 is often thinly traded. A sufficiently 

large volume of dairy ingredients is sold on GDT to make it the key source of benchmark 

prices for internationally traded dairy ingredients. Prices in a weekly survey by Agrifax of 

producers in New Zealand closely follow the GDT prices. 

 

The farmgate milk price paid to farmers by Fonterra is determined from the sales of dairy 

ingredients on GDT, less reasonable costs. Note that the calculation of the farmgate milk 

price is not connected in any way with the current spot pricing of dairy ingredients – it is 

calculated post sales.  

 

In contrast to the United States, the GDT spot market benchmark is a two-month forward-

looking price. The GDT prices are an accurate reflection of the price of dairy ingredients in 

the marketplace. It is important to note that only a marketplace can give current pricing 

information – collecting an average of forward sales induces a delay in the spot price 

determination process. 

 

The New Zealand Stock Exchange (NZX) launched whole milk powder (WMP), skim milk 

powder, and anhydrous milk fat futures in 2010. Open interest in whole milk powder has 

grown at a rate of approximately 50% per year from 2012 to 2017, the hallmark of a 

successful futures contract introduction. The NZX dairy futures started trading shortly after 

GDT became operational. The whole milk powder and skim milk powder futures settle to an 
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average of the last two GDT Contract 2 auctions, with the last futures trading day falling on 

the day before the second GDT auction. 

 

4.3. The US Market 

 

Before discussing the US dairy market in detail, we would like to highlight one of the 

important features of both dairy spot and futures markets. By convention, the underlying 

asset for a futures contract is a price series in the spot or cash market for immediate delivery 

of a commodity. However, in the case of the United States, the primary spot benchmark – the 

AMS National Dairy Product Sales Report of nonfat dry milk survey data – includes 

historical information from up to two months prior and is backwards looking. In contrast, the 

primary NZ spot benchmark – the Global Dairy Trade Whole Milk Powder Auction Contract 

2 – has elements of a forward contract.  

 

4.3.1. US Legislation 

 

The US milk pricing regulations are intricate in nature and arose from a perceived historical 

need to increase the production of beverage milk relative to manufactured milk products and 

to support dairy prices (Erba and Novakovic, 1995). The legislation accomplishes this 

objective by surveying the prices of four basic commodities – nonfat dry milk, cheese, butter, 

and whey on a weekly basis. The surveyed prices are then used to stipulate the ultimate 

payment to farmers for raw milk according to usage. There are several laws that regulate the 

dairy industry in the United States. The most important are the Federal Milk Marketing 
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Orders, the Dairy Product Price Support Program,xiii and the Dairy Import Tariff Rate 

Quotas.xiv  

 

The milk marketing ordersxv govern 10 separate geographic regions – Pacific Northwest, 

Arizona, Upper Midwest, Central, Southwest, Southeast, Mideast, Appalachian, Northeast, 

and Florida. The orders regulate dairy processors and handlers, and establish the price which 

farmers will be paid for raw milk. California has a similar system with northern and southern 

marketing areas.  

 

According to the USDA, the marketing orders have the following objectives: “(1) assure 

consumers of an adequate supply of wholesome (fluid) milk at a reasonable price; (2) 

promote greater producer price stability and orderly marketing; and (3) provide adequate 

producer prices to ensure an adequate current and future Grade A milk supply” (Jesse and 

Cropp, 2008).  

 

Each of the 10 marketing orders classifies milk into four different categories depending on 

utilization: Class I – beverage milk; Class II – milk used for soft manufactured products, 

including yogurt, cream, and cottage cheese; Class III – milk used for hard cheeses and cream 

cheese; and Class IV – milk used for dry milk products and butter. California has a similar 

system, but with five milk classes.xvii 

 

																																																								
xiii The DPPSP was repealed in the 2014 Farm Bill, and replaced with the Margin Protection Program (MPP), a 
voluntary participation program which offers insurance against low milk-feed margins. 
xiv Randy Schnepf, Dairy Provisions in the 2014 Farm Bill, https://www.hsdl.org/?view&did=752261 
xv USDA, Federal Milk Marketing Orders, https://www.ams.usda.gov/rules-regulations/moa/dairy  
xvii California Department of Food and Agriculture, Milk Pricing in California, 
https://www.cdfa.ca.gov/dairy/pdf/Milk_Pricing_in_CA.pdf 
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The prices for the four classes of milk are calculated from formulas based on the surveyed 

prices for four commodity products manufactured from milk: nonfat dry milk, cheese, whey, 

and butter. The class formulas establish minimum prices for the four classes of milkxviii based 

on the surveyed prices of the four commodities, and are weighted to increase the production 

of beverage milk. Milk handlers and processors must pay these minimum prices into a pool 

that is used to compensate farmers. Farmers within a marketing order region receive uniform 

raw milk component prices funded by the pool payments. 

 

Before being discontinued in 2014, the price support program set market floor prices for 

nonfat dry milk, butter, and cheese. The Commodity Credit Corporation bought and placed 

stock into inventory when prices fell before the floor levels. For example, before 2014, 

“through its support price program, the U.S. government agreed to buy dairy commodities at 

a minimum level (cwt basis) – $1.13 for block cheese, $1.10 for barrel cheese, $1.05 for 

butter, $.80 for non-fortified nonfat dry milk and $.81 for fortified nonfat dry milk.”xix The 

Dairy Import Tariffs made the import of competitive foreign milk powder products more 

difficult. One effect of these combined regulations before 1990 was to cause over-production 

and government storage of dairy products (Erba and Novakovic, 1995). Since 1990, the 

market price of commodities has, in general, been greater than the minimum prices.  

 

Shipments of the four basic commodities are surveyed weekly by the Agriculture Marketing 

Service, and the price average is published in the National Dairy Product Sales Report on the 

following Wednesday. The shipments include sales in the prior 30 days. Thus, the weekly 

announced price for nonfat dry milk is a backward-looking price for milk powder sold in the 

																																																								
xviii  International Dairy Foods Association, How Raw Milk Is Priced, http://www.idfa.org/news-views/media-
kits/milk/how-farm-milk-is-priced 
xix CME Group, An Introduction to Trading Dairy Futures and Options, 
http://www.hedgebroker.com/documents/education/CME_IntroTradingDairyFuturesAndOptions.pdf 
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previous month for delivery. The class prices are based on volume-weighted averages of the 

weekly commodity surveys. For example, the Class IV price for May 2016, published before 

the 5th of June 2016, is based on the volume-weighted weekly commodity averages for May.  

 

The purpose of the government survey and publication of weekly prices for the four basic 

dairy commodities is to construct class prices and ultimately determine the price that farmers 

will get paid for raw milk components. However, an unintended consequence of the 

government publication of reference settlement prices and the price support program may be 

to discourage the formation of suitable spot market price indices for nonfat dry milk, cheese, 

butter, and dry whey. Milk processors, in the absence of a timely, inclusive, and market-

based index for nonfat dry milk, used the weekly backward-looking surveys as the starting 

point for pricing current spot sales until 2016.xx In 2016, milk processors shifted to pricing 

spot sales from last week’s weekly CME average nonfat dry milk spot price. 

 

4.3.2. US Spot Market Price Indices 

 

Processors and handlers of milk can choose from several pricing indices for the four base 

products. Table 1 lists the four possible spot price indices for nonfat dry milk. 

 

[INSERT TABLE 1 ABOUT HERE] 

 

Spot sales priced as a differential to the weekly National Dairy Product Sales Report survey 

prices incorporate historical price movements from up to two months prior. Commercial sales 

based on last weeks average of CME spot sales are also backward looking, but to a lesser 

																																																								
xx California Dairy Information Bulletin November 2003 and MCT Dairies, Intricacies of NFDM Pricing, 
February 27, 2015 
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extent. The weekly average is used because the CME spot index is thinly traded, with less 

than 6% of market volume. The California index is similar in construction to the NDPSR 

survey.  

 

The Dairy Market News (DMN) Surveysxxi are a weekly average of voluntarily provided spot 

sales for three geographical regions:xxii East, Central, and West. Dairy Market News provides 

a range of prices for low-, medium-, and high-heat nonfat dry milk, as well as the “mostly” 

price range.xxiii The mostly price range includes “most” commercial transactions. These 

indices are more timely than the  NDPSR index, as the information is only one week old. 

However, the information is a week old, based on voluntary participation, from different 

geographical regions, and comes in a range with significant variance rather than a single 

price. Furthermore, the Dairy Market News weekly reports are descriptive in character rather 

than a market-based measurement of the prevailing nonfat dry milk price. By the mid-2000s, 

many sellers of nonfat dry milk discontinued using the midpoint of the “mostly” ranges for 

their pricing index in favor of the NASSxxiv price. Both buyers and sellers of nonfat dry milk 

appreciated the transparency in the NASS prices and associated volume.xxv The advantage of 

the NDPSR commodity price is the standardized reporting mechanism – all processors with 

production above 1 million pounds per year are required to report. However, this 

transparency comes with the cost of extensive historical price information being included in 

the definition of the nonfat dry milk price.  

																																																								
xxi	The	Dairy	Market	News	is	published	by	the	USDA	Agricultural	Marketing	Service.	
https://www.ams.usda.gov/market-news/dairy	
xxii USDA AMS, Dairy Market News, Agricultural Marketing Service, Dairy Market News Guidelines, 
https://www.ams.usda.gov/sites/default/files/media/DMN%20Working%20Guidelines.pdf 
xxiiiUSDA AMS, Dairy Market News, Nonfat Dry Milk – Central and East 
https://www.ams.usda.gov/mnreports/md_da650.txt 
xxiv  Until April 2012, weekly survey prices were published by the National Agricultural Statistics Service. Since 
April 2012, the weekly survey prices for NFDM milk have been published by the USDA Agricultural Marketing 
Service, Market Information Branch in the National Dairy Product Sales Report.  
xxv MCT Dairies, Intricacies of NFDM Pricing, http://www.mctdairies.com/Compass/2015/MCT-Dairies-
Compass-2015-02.pdf 
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The NDPSR and California weekly survey averages include forward sales up to 30 days 

prior, and the Dairy Market News surveys and CME prices are based on spot sales. The 

forward contracting order flow is opaque in the US market. In contrast, NZ-based GDT 

provides public timely order flow up to six months in advance.  

 

The following cash-settled futures contracts are traded on the CME in 2017: Class III Milk 

Futures, Class IV Milk Futures, Nonfat Dry Milk Futures, Dry Whey Futures, Butter Futures, 

and Cheese Futures. All of the CME futures contracts are settled to the monthly announced 

class or commodity prices published by the USDA Agricultural Marketing Service. 

 

Table 2 shows the extent to which timeliness, market-based measurement, inclusiveness, and 

forward-spot separation are present in the US and NZ spot indices for dairy products. From 

the table, it is clear that only GDT available on the NZ market has the required properties of a 

representative spot market. Given the nature of the spot market indices in the United States 

and New Zealand and considering the implication of average price settlement, we formulate 

the following research hypotheses. One, the hedging effectiveness of NZX dairy futures will 

be higher than CME nonfat dry milk futures. Two, spot market indices that are correctly 

designed across several dimensions will have higher hedging effectiveness and better hedge 

ratio persistence from short to long hedge horizons than indices with few correct dimensions. 

These hypotheses are examined in section 7.  

 

[INSERT TABLE 2 ABOUT HERE] 
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5. Data  

 

In this section, we present the sources of data for hedging efficiency. For the NZ market, we 

examine the hedging of three separate spot price indices with NZX whole milk powder 

futures: Agrifax whole milk powder survey prices, Global Dairy Trade biweekly auctions, 

and a modified GDT price series. Agrifax surveys large milk processors in New Zealand on a 

weekly basis. The reported survey prices are weekly averages of whole milk powder and 

skim milk powder contract sales for delivery in two months; the time period covers June 

2013 to May 2017. Global Dairy Trade auctions are biweekly auctions for six forward 

contracts. The time period covers June 2013 to May 2017. 

 

NZX dairy futures for whole milk powder and skim milk powder trade daily with 18 monthly 

expiration dates. We construct a near-month series changing contracts on the last contract 

trading day. The Agrifax survey and GDT auction prices are compared with the NZX futures 

prices on the same date. A synthetic GDT series – GDT-Modified – is also constructed. The 

GDT-Modified time series is modified by replacing each second monthly auction price with 

the mean of the two auction prices within the month. The GDT-Modified series tracks the 

average price of  whole milk powder to match the underlying implied in the settlement 

calculation in the futures contract. In addition, the GDT-Modified series starts in June 2013, 

when the NZX settlement calculation was changed to the average of the two within-month 

auctions. Prior to that date, the settlement average was constructed from the last auction of 

the settlement month and the first auction of the succeeding month.  

 

For the US market, we examine the hedging of four separate nonfat dry milk spot indices 

with CME nonfat dry milk futures: NDPSR survey prices, California survey prices, Dairy 
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Market News survey prices, and CME spot prices. CME nonfat dry milk futures trade daily 

for contract expirations up to 24 months. We use the near-month series from Bloomberg. 

CME Spot nonfat dry milk trades daily with delivery in six days. The CME spot series runs 

from April 2012 to May 2017.  

 

The NDPSR weekly survey prices are compiled by the Agricultural Marketing Service of the 

USDA, and include all nonfat dry milk sales shipped in the previous week. The NDPSR 

weekly prices are announced the following Wednesday. The data series starts in April 2012, 

when announcements were shifted to Wednesday from Friday,xxvi and ends in May 2017. 

California weekly survey prices are compiled by the California Department of Food and 

Agriculture. The California prices are announced the following Friday. The series runs from 

April 2012 to May 2017. The Dairy Market News survey prices are also gathered by the 

Agricultural Marketing Service, and include spot sales for the current week. The Dairy 

Market News prices are published on the Thursday of the relevant week. The series runs from 

April 2012 to May 2017. 

 

6. Methodology 

 

In order to test our hypothesis, we examine the efficiency of hedging using methodology 

applied by Adams and Gerner (2012) and developed by Herbst et al. (1989), Ghosh (1993), 

and Lien (2002). First, the futures and spot prices are tested both in levels and first 

differences for stationary behavior. If the levels are non-stationary, but the returns are 

stationary, then a regression is performed of log spot prices on log future prices, and the 

																																																								
xxvi In April 2012, the reporting organization was changed from the National Agricultural Statistics Service to the 
USDA Agricultural Marketing Service, Market Information Branch. 
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residuals are tested for stationary behavior using the augmented Dickey-Fuller test (Dickey 

and Fuller, 1986). If the residuals are stationary, an error correction model (ECM) (Ghosh, 

1993) can be estimated using OLS with the parameters from the first regression: 

 

€ 

Δ logSt = c+ βΔ logFt + γ kΔ logFt−k
k
∑ + δ lΔ logSt− l

l
∑ + λet−1+ε t, (1) 

 

 

where     

€ 

Δ log St ,Δ log Ft  are the change in log spot and futures prices;     

€ 

Δ log Ft−k  are the lagged 

log future price changes from the same contract;     

€ 

Δ log St−l  are the lagged spot price changes; 

    

€ 

γ k ,δl  are the short-term autocorrelation coefficients;     

€ 

λ, et−1  are the error correction coefficient 

and term; and   

€ 

εt  are the innovations. The error correction term is calculated as 

 

    

€ 

et = log St − a − blog Ft , , (2) 

 

where a and b are the coefficients from the original cointegration test regression between the 

log(  

€ 

St) and log(  

€ 

Ft) price-level series. The ECM also includes several lags of both the spot 

and future returns, thus allowing for short-term serial correlation in the future and spot return 

series. Hedging effectiveness is determined by the adjusted R2 of the statistical model. In 

addition, hedge ratios closer to unity indicate strong co-movement between spot and futures 

prices. 

 

7. Results 

 

In this section, we examine futures hedging efficiency in the NZ and US markets. In the NZ 

market, the Agrifax, GDT, and modified GDT whole milk powder indices are hedged with 
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NZX dairy futures contracts. In the US market, the NDPSR, California, Dairy Market News, 

and CME spot nonfat dry milk indices are hedged using CME nonfat dry milk futures 

contracts.  

 

As the hedging horizon lengthens, hedge effectiveness increases for both OLS and 

cointegration models (Juhl et al., 2012). However, there is substantial liquidity in the near-

month contract and a stack and roll implementation is exposed to shorter contracts at the 

beginning and end of the hedge. For example, a hedge implemented from March 15th to 

April 25th would be exposed to a short-term contract from March 15th to the rollover date, 

and from the rollover date to April 25th. This may result in price risk if the short-term 

hedge correlations are low. In addition, if the shorter horizon hedge ratio estimates are 

substantially different from the longer horizon hedge ratio estimates, the stack and roll 

strategy may be less than optimal. Finally, futures markets’ participants will utilize a 

variety of hedge intervals, and hedges should be effective both at short- and longer-term 

horizons. 

 

Table 3 reports the hedging effectiveness as a function of the hedge horizon using an OLS 

regression model All spot market indices show an increase in hedging effectiveness as the 

horizon increases. The Agrifax time series reports the best effectiveness for hedging up to 

three weeks, and the Global Dairy Trade Modified benchmark is the most effective for 

time scales from four to eight weeks. The superiority of the NZ indices is reduced as the 

time horizon is increased. 

 

[INSERT TABLE 3 ABOUT HERE] 
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Table 4 reports the hedging effectiveness as a function of the hedge horizon using the 

cointegration regression model. All spot market indices show an increase in hedging 

effectiveness as the horizon increases. The Agrifax time series reports the best 

effectiveness for hedging at a one-week horizon (70%). In the US market, the highest 

hedging effectiveness at a one-week horizon is 52% for NDPSR survey prices. Only hog 

(13%), cotton (32%), and silver (54%) futures have reported lower hedging effectiveness 

in the past (see Lien, 2008). CME futures offer an ineffective hedge for any of the price 

series at a one-week horizon, in contrast to the NZX futures which effectively hedge the 

Agrifax index. At two-week and longer horizon, the hedging effectiveness of the Agrifax, 

GDT-Modified, and NDPSR indices are similar (77–78%). However, the only index that 

provides both high hedging effectiveness and a stable estimate of the hedge ratio for both 

short and long horizons is the GDT-Modified benchmark.  

 

[INSERT TABLE 4 ABOUT HERE] 

 

The GDT-Modified time series incorporates all the relevant dimensions of spot market 

design, and tracks the underlying average price implied by the settlement calculation in the 

futures contract. The hedging effectiveness ranges from 77% at a two-week horizon to 98% 

at an eight-week horizon. The hedge ratios are close to 1.0 across all hedge horizons. 

However, short-term hedging performance would improve if the settlement calculation in the 

NZX futures contract were amended to settle to only the second GDT auction price. Settling 

to an average of the two prices distorts the incentives for both arbitrageurs and speculators. 

The short-term hedging effectiveness of the NZX whole milk powder futures compares 

favorably with that for corn (74% to 80%) (see Sanders et al., 2003; Lien, 2008).  
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The Agrifax hedge effectiveness ranges from 70% at a one-week horizon to 93% at an 

eight-week horizon, and the hedge ratio varies from .58 to .80. Although the Agrifax 

prices have a similar hedging effectiveness to the GDT benchmark at horizons of two-

weeks or greater, the hedge ratio is not stable as the hedge horizon changes. This results 

from the index being survey based, and incorporating week-old information. The hedging 

effectiveness is still relatively high because the GDT auctions provide an effective single-

source price indicator, and the Agrifax prices closely follow the GDT auctions. 

 

The NDPSR hedge effectiveness ranges from 51% at a one-week horizon to 96% at an eight-

week horizon, and the hedge ratio varies from .42 to .97. The NDPSR weekly surveys are not 

timely, as they incorporate historical information from up to two months prior. This results in 

a low hedging effectiveness at a one-week horizon and a significant change in the hedge ratio 

as the horizon lengthens.  In addition, the forward and spot sales are mixed, as the index is 

based on product shipping in the prior week, not on market sales. The higher effectiveness, 

relative to the other US price indices primarily benefits from alignment with the settlement 

calculation in the CME futures contract. In addition, the higher effectiveness is supported by 

inclusiveness – the NDPSR surveys contain all shipments from large nonfat dry milk 

processors. The California surveys are similar in nature, but less inclusive and are not directly 

related to the settlement calculation. Thus, the California survey hedging effectiveness range 

is slightly lower and ranges from 51% at one week to 95% at eight weeks, and the hedge ratio 

varies from .37 to .78. 

 

The Dairy Market News surveys are more timely than the NDPSR surveys, as historical 

information is only one week old. In addition, they provide some forward-spot separation in 

the form of only spot sales. However, they are not market-based or inclusive due to voluntary 
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reporting and have separate series for geographical regions and the type of nonfat dry milk. 

The representative series chosen was East and Central Low and Medium Heat. Thus, the 

hedging effectiveness ranges from 28% at one week to 77% at eight weeks. 

 

The lowest hedging effectiveness range of 10% at one week to 79% at eight weeks is 

reported for the CME spot market. This series is market based and timely. The problem stems 

from the lack of inclusiveness, the absence of forward pricing information, and non-

alignment with the settlement calculation in the CME NFDM futures contract. Less than 6% 

of spot market volume is sold on the CME. Since late 2016, a substantial number of milk 

processors have shifted to pricing sales from last week’s weekly CME NFDM average prices, 

but this unpublished commercial cash index is a backward looking average. It is worthwhile 

noting that the CME recognizes the defectiveness of their own spot market index in 

preferring the NDPSR historical average benchmark for the CME futures contract settlement 

calculation. A separate disadvantage of using the CME spot index may be the possibility of 

price manipulation.xxvii  

 

The analysis of hedging effectiveness reveals that the NZX dairy futures contract is a better 

tool to use than CME nonfat dry milk futures at shorter hedge horizons and provides 

persistent estimates of hedge ratios. We argue that the design of the spot market contributes 

to the success of futures contracts as a hedging tool. Our results show that in the case of a 

spot market missing one or more of the elements of timeliness, market-based measurement, 

inclusiveness, and forward-spot separation, one would expect underperformance of the 

																																																								
xxvii	Significant volume may be necessary to avoid price manipulation. Industry observers have raised a concern 
about the thin trading volume on the CME cheese spot market, in light of the CME cheese spot price being used 
as a reference price for cheese contracts in the industry at large. This concern was validated by a CFTC fine for 
the Dairy Farmers of America executives for manipulating the Class III milk futures price by trading cheese 
spot contracts (see US GAO, Spot Cheese Market: Market Oversight Has Increased, but Concerns Remain about 
Potential Manipulation, http://www.gao.gov/products/GAO-07-707). 
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futures market at shorter hedge horizons in terms of hedging effectiveness and a large 

variation between short- and long-horizon hedge ratios. 

 

8. Conclusion 

 

High hedging effectiveness is an indicator of the successful introduction of a futures contract. 

Prior studies on hedging effectiveness have focused on the design of the futures contract and 

other aspects of the futures and cash markets, but have neglected the underlying spot market 

benchmark design. This study illustrates that the design of the spot market to produce a 

timely, market-based, inclusive underlying with forward-spot separation is necessary for 

effective hedging. 

 

In the United States, the majority of the spot pricing of dairy ingredients is published on a 

historical basis, leading to a multitude of different spot pricing indicators. In addition, the US 

forward price curve information is not published. In New Zealand, the Global Dairy Trade 

auction system provides all of the correct dimensions of a spot price benchmark. 

 

Both the Chicago Mercantile Exchange and New Zealand Stock Exchange have chosen to 

settle dairy futures contracts to historical price averages. We illustrate that the settlement of a 

futures contract to a historical average introduces basis risk for hedgers and arbitrageurs, and 

requires speculators to predict the price path rather than only the price at maturity, making 

speculative trading more complex. Our results show that the New Zealand Stock Exchange 

dairy futures contract is a better tool for hedging at short hedge horizons, as the Global Dairy 

Trade spot market benchmark has all the required properties. In addition, the GDT 

benchmark provides persistent estimates hedge ratios from short- to long-term hedge 
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horizons. Furthermore, the relative hedging effectiveness of each spot index is strongly 

related to the extent to which the particular index reflects the correct spot market design 

dimensions. 

 

The above results permit us to formulate the following recommendations. First, we believe 

that the US nonfat dry milk spot market needs to be re-designed to provide a timely, market-

based, and inclusive spot and forward price indicator. A design similar to the US corn market 

or the NZ Global Dairy Trade may be considered. Once a single spot benchmark has been 

established for the US market, the Chicago Mercantile futures contract should be changed to 

use the new benchmark for settlement. Finally, our results show that there would be a benefit 

to adjusting the settlement calculation in New Zealand to reflect only the spot price at 

expiration. 
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Appendix 1 – Success and Failure Criteria for Futures Contracts 

 

This appendix presents a review of the academic literature on the determinants of the success 

or failure of futures contracts. The characteristics associated with the success or failure of 

futures can be broadly categorized into the properties of the underlying, the features of the 

cash market, the attributes of the futures contract, and the institutional setup of the futures 

market. Table A.1 offers a survey of relevant studies grouped by category. Criteria common 

to several studies are identified.  

 

[INSERT TABLE A.1 ABOUT HERE] 

 

Black (1986) reports that cash market size, the risk-reduction ability of the contract relative to 

other cross hedges, cash price volatility, and liquidity costs of a new contract in comparison 

with existing instruments are associated with the success or failure of futures contracts. 

Brorsen and Fofana (2001) consider product homogeneity (uniformity), vertical integration of 

the cash market, buyer concentration, and activeness of the cash market and report that an 

active cash market is the single characteristic that predicts whether a commodity may have a 

successful futures market. The study by Bekkerman and Tejeda (2013) examines the failure 

of the Distillers Dried Grains (DDG) contract on the Chicago Mercantile Exchange (CME). 

The authors identify the following factors which contribute to the success of new futures 

contracts:  

 

! Cash price variability: A volatile cash market with substantial price uncertainty is 

more likely to develop a futures market than a market with little variability. 
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! Size of the cash market: The size of the cash market is an indicator of the potential 

revenue loss due to price volatility. Larger markets are more likely to develop futures 

markets to manage price risk.  

! Activeness of the cash market: High activity and participation by different types of 

investors contribute to a potential higher demand for an organized futures market. In 

addition, a larger, more active cash market is more likely to have available and 

credible price information (Fortenberry and Zapata, 1997).  

! Product homogeneity: Individual futures contracts can only hedge a single grade or 

quality of a commodity. If the commodity is not homogenous and interchangeable or 

suffers from quality variation, the hedging effectiveness will be lower for each market 

segment. The lack of hedging effectiveness contributes to the failure of a futures 

contract.  

! Product storability: Bergfjord (2007) argues that ineffective storage may cause 

quality degradation and inhomogeneity. In addition, good storage infrastructure can 

facilitate the year-round trading of a commodity. 

! Degree of vertical integration in the market: Vertical integration measures the extent 

to which the system of entities responsible for moving the product or service from 

producer to consumer (the supply chain) is owned by a single company. In a market 

with a high degree of vertical integration, most price hedging will occur within firms’ 

structure. Consequently, activeness of the cash market and price volatility are likely to 

be lower.  

! Degree of market power concentration and number of market participants: In cash 

markets with a high degree of concentration with only a few participants, futures 

markets are not expected to be successful due to the ability of firms to control the 

price.  
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! Risk reduction through futures cross-hedging: When effective price risk cross-

hedging tools already exist, significant demand for another tool is unlikely (Black, 

1986).  

! Liquidity of cross-hedge futures contracts: Traders will compare the liquidity costs of 

an own-hedge futures contract to that of a competing cross-hedge product. The 

advantage in lower bid-ask spreads for a cross-hedge may outweigh a superior risk-

reduction own-hedge capability. For example, jet fuel is a classic example of a market 

which is cross-hedged by a variety of oil-derived products.  

 

Bekkerman and Tejeda (2013) conclude that the activeness of the cash market, underlying 

cash market volatility, product homogeneity, industry vertical integration and market power 

concentration, and the activeness of the futures market with which cross-hedging 

opportunities exist are important factors in predicting a futures market’s success. Their 

findings are in contrast to Brorsen and Fofana (2001), who report that homogeneity, vertical 

integration, and buyer concentration were not significantly correlated with success or failure. 

Furthermore, the study by Brorsen and Fofana (2001) finds that substantial hedging activity 

in closely related markets is a critical determinant of a futures contract’s success. For 

example, in the case of the DDG futures contract, low hedging activity in the related ethanol 

futures contract may have caused a failure of the DDG contract.  

 

Perversi, Feuz, and Umberger (2002) provide evidence that futures markets characterized by 

high basis variability are less attractive for hedgers. They examine basis variability in the 

cattle stocker versus the cattle feeder market and conclude that one of key reasons behind the 

stocker contract failure was high basis risk, which discouraged producers from using the 

contract to hedge calves.  
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Recently, Till (2014) and Webb (2015) have extended the list of necessary conditions for the 

successful introduction of a futures contract. Both scholars highlight the importance of a 

commercial need for hedging and sufficient speculator interest to take the long side of hedger 

trades. In addition, Webb (2015) points out that the time of introduction, cost of trading, and 

contract design contribute to the ultimate success/failure of a new contract. Finally, public 

policy should not be too adverse to futures trading (see Till, 2014), otherwise futures trading 

is negatively affected. For example, in 1979, the Commodity Futures and Trading 

Commission (CFTC) banned trading in the March wheat futures contract, and in 1980, the 

CFTC also considered suspension of trading in silver futures to avoid price manipulation 

(Till, 2014). 

 

 

 

Appendix 2 – Dairy Market Acronyms 

Acronym Description 
AMS Agriculture Marketing Service of the United 

States Department of Agriculture 
CME Chicago Mercantile Exchange 
DMN Dairy Market News 
GDT Global Dairy Trade 
NASS National Agricultural Statistics Survey 
NPDSR National Dairy Product Sales Report 
NFDM Nonfat Dry Milk 
USDA United States Department of Agriculture 
WMP Whole Milk Powder 
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Table 1: Nonfat dry milk spot market price indices for the US market  
 
Price Index Description Estimated percentage of 

sales volume included in 
index 

USDA Agricultural 
Marketing Service 
National Dairy Product 
Sales Report weekly 
surveys 

Published on Wednesday for sales 
shipped in the prior week. Sales occur 
up to 30 days before 

40% 

Chicago Mercantile 
Exchange spot market 

Current prices for nonfat dry milk to be 
shipped within six days 

6% 

California weekly 
surveys 

Published on Friday for sales shipped in 
the prior week. Sales occur up to 30 
days before 

40% 

Dairy Market News 
surveys 

Weekly average of spot sales 5% 

 
This table lists the four major dairy spot price indices for nonfat dry milk in the United States, and the estimated 
percentage of sales included in each index. California produces approximately 40% of the US nonfat dry milk. 
Further information can be found in MCT	Dairies,	Intricacies	of	NFDM	Pricing	and	California	Dairy	
Information	Bulletin,	November	2003. 
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Table 2: Characteristics of the nonfat dry milk spot market price indices for the US and 
NZ markets 
 
Index Timeliness Market-

Based 
Forward-Spot 
Separation 

Inclusiveness 

USDA Agricultural 
Marketing Service 
National Dairy Product 
Sales Report 

Includes 
historical 
trades up to 
two months 
old. 

No Forward and Spot are 
mixed 

Yes 

Dairy Market News 
weekly 

Includes 
historical 
trades from 
last week. 

No Only Spot Voluntary 
reporting 

Chicago Mercantile 
Exchange spot 

Current Yes Spot No – only 6% of 
market volume 

Agrifax weekly Includes 
historical 
trades from 
last week. 

No Only Forward Based on survey 
responses 

Global Dairy Trade 
auctions 

Current Yes Spot and up to six 
months delivery 
visible 

Yes 

 
This table illustrates the characteristics of the existing milk powder spot market price index characteristics 
in the United States and New Zealand. Timeliness measures the extent to which the information is current. 
Market-based indicates the extent to which the measure is based on markets rather than surveys. Market-
based pricing indexes allow for arbitrage in the spot market. Forward-spot separation measures the 
separation of the spot and forward market sales. Inclusiveness assures that a significant representative 
fraction of trades are included in the index.. 
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Table 3: Hedge effectiveness as a function of horizon – OLS regression 
Model Specifications 

Spot market (St)  
WMP 

(Agrifax) 
GDT 

Contract 2 
GDT 

modified 
NDPSR 
NFDM 

CME 
NFDM DMN NFDM Cal NFDM 

 
Futures market(Ft)  

WMP 
(NZX) WMP(NZX) 

WMP(NZX
) 

CME 
NFDM 

CME 
NFDM CME NFDM CME NFDM 

Period   
Jun 2013- 
 May 2017 

Jun 2013- 
May 2017 

Jun 2013- 
May 2017 

Apr 2012- 
May 2017 

Apr 2012- 
May 2017 

Apr 2012- 
May 2017 

Apr 2012- 
May 2017 

  (1) (2) (3) (4) (5) (6) (7) 
Horizon 	 	 	 	 	 	 	 	
1 week β 0.621**   0.338** 0.281** 0.155** 0.350** 
  (15.38)   (7.37) (4.04) (3.04) (5.16) 
 Adj R2 0.542   0.173 0.059 0.034 0.091 
2 weeks β 0.648** 0.496** 0.627** 0.512** 0.403** 0.421** 0.506** 
  (18.78) (6.40) (9.57) (12.23) (5.66) (8.44) (9.38) 
 Adj R2 0.639 0.310 0.502 0.366 0.110 0.216 0.251 
3 weeks β 0.686**   0.711** 0.604** 0.672** 0.685** 
  (21.23)   (18.88) (8.48) (15.13) (15.02) 
 Adj R2 0.695   0.580 0.218 0.470 0.463 
4 weeks β 0.730** 0.807** 0.855** 0.851** 0.719** 0.802** 0.821** 
  (23.66) (15.53) (23.66) (25.78) (10.06) (20.17) (20.41) 
 Adj R2 0.740 0.728 0.862 0.721 0.283 0.613 0.615 
5 weeks β 0.749**   0.901** 0.762** 0.862** 0.852** 
  (26.88)   (30.10) (10.94) (24.08) (23.87) 
 Adj R2 0.787   0.780 0.319 0.694 0.687 
6 weeks β 0.766** 0.841** 0.866** 0.926** 0.792** 0.865** 0.853** 
  (28.77) (16.98) (22.79) (32.43) (11.87) (25.36) (24.80) 
 Adj R2 0.809 0.764 0.854 0.805 0.356 0.716 0.704 
7 weeks β 0.781**   0.944** 0.817** 0.886** 0.858** 
  (30.50)   (36.71) (13.00) (28.56) (26.74) 
 Adj R2 0.827   0.841 0.399 0.763 0.735 
8 weeks β 0.801** 0.884** 0.918** 0.974** 0.848** 0.902** 0.879** 
	  (32.12) (22.29) (34.03) (42.72) (14.05) (30.26) (28.58) 
	 Adj R2 0.842 0.850 0.929 0.878 0.438 0.783 0.761 

This table reports Ordinary Least Squares (OLS) regression results as a function of hedging horizon. Columns (1) to (3) are the Agrifax whole 
milk powder (WMP), and Global Dairy Trade (GDT) whole milk powder Auctions with New Zealand Stock Exchange whole milk powder 
Futures. The GDT modified series replaces the second auction with settlement calculation of monthly auction average. Columns (4) to (8) are 
the USDA AMS National Dairy Product Sales Report (NDPSR) Survey, Chicago Mercantile Exchange (CME), Dairy Market News (DMN), 
and California Survey prices with CME nonfat dry milk (NFDM) futures. The specifications (1)–(8) are using model 

    

€ 

Δ log St = c + βΔ log Ft + εt 	

**, * denote statistical significance at the 5% and 10% level, respectively.  
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Table 4: Hedge effectiveness as a function of horizon – cointegration model 
Model	Specifications	

Spot market (St)  
WMP 

(Agrifax) 
GDT 

Contract 2 
GDT 

modified 
NDPSR 
NFDM 

CME 
NFDM DMN NFDM Cal NFDM 

 
Futures market(Ft)  

WMP 
(NZX) WMP(NZX) 

WMP(NZX
) 

CME 
NFDM 

CME 
NFDM CME NFDM CME NFDM 

Period   
Jun 2013- 
 May 2017 

Jun 2013- 
May 2017 

Jun 2013- 
May 2017 

Apr 2012- 
May 2017 

Apr 2012- 
May 2017 

Apr 2012- 
May 2017 

Apr 2012- 
May 2017 

  (1) (2) (3) (4) (5) (6) (7) 
Horizon         
1 week β 0.582**   0.424** 0.219** 0.167** 0.365** 
  (16.14)   (10.66) (2.54) (3.06) (6.94) 
 Adj R2 0.697   0.516 0.105 0.282 0.515 
2 weeks β 0.573** 1.159** 1.021** 0.584** 0.482** 0.445** 0.361** 
  (12.10) (8.85) (14.61) (13.69) (3.57) (5.53) (5.86) 
 Adj R2 0.776 0.610 0.773 0.769 0.296 0.450 0.651 
3 weeks β 0.616**   0.767** 0.782** 0.764** 0.470** 
  (14.03)   (15.66) (4.20) (9.84) (7.60) 
 Adj R2 0.841   0.842 0.348 0.648 0.748 
4 weeks β 0.722** 1.062** 1.062** 0.746** 1.353** 0.793** 0.691** 
  (12.64) (15.18) (15.18) (16.53) (7.83) (7.34) (10.16) 
 Adj R2 0.896 0.906 0.906 0.908 0.623 0.609 0.844 
5 weeks β 0.811**   0.818** 1.472** 0.962** 0.809** 
  (12.90)   (11.96) (9.69) (11.37) (13.84) 
 Adj R2 0.906   0.866 0.762 0.853 0.924 
6 weeks β 0.744** 1.058** 1.019** 0.933** 1.387** 1.101** 0.552** 
  (9.44) (15.67) (22.81) (24.85) (5.46) (9.31) (7.72) 
 Adj R2 0.888 0.941 0.967 0.962 0.571 0.765 0.864 
7 weeks β 0.744**   0.996** 1.579** 0.994** 0.681** 
  (13.08)   (10.92) (7.40) (8.97) (12.18) 
 Adj R2 0.959   0.939 0.754 0.838 0.924 
8 weeks β 0.796** 1.112** 1.112** 0.973** 1.500** 1.106** 0.767** 
  (8.30) (20.83) (20.83) (12.65) (7.55) (7.50) (13.17) 
	 Adj R2 0.934 0.983 0.983 0.961 0.786 0.765 0.945 

This table reports cointegration regression results as a function of hedging horizon. Columns (1) to (3) are the Agrifax whole milk powder 
(WMP), and Global Dairy Trade (GDT) whole milk powder Auctions with New Zealand Stock Exchange whole milk powder Futures. The 
GDT modified series replaces the second auction with settlement calculation of monthly auction average. Columns (4) to (8) are the National 
Dairy Product Sales Report (NDPSR) Survey, Chicago Mercantile Exchange (CME), Dairy Market News (DMN), and California Survey 
prices with CME nonfat dry milk (NFDM) futures. The specifications (1)–(8) are using model 

	
    

€ 

Δ log St = c + βΔ log Ft + γ kΔ log Ft−k
k
∑ + δlΔ log St−l

l
∑ + λet−1 + εt 	

**, * denote statistical significance at the 5% and 10% level, respectively.  
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Table A.1: Characteristics of futures markets and futures contracts associated with the success and 
failure of futures contracts 
Category Characteristic Studies 
Futures Market Hedging need for commercial market 

participants. 
Black (1986) 
Gray (1978) 
Webb (2015) 

Futures Market The attraction of speculative interest to the 
futures market. 

Gray (1978) 
Till (2014) 
Webb (2015) 

Futures Market Favorable disposition towards the futures 
contract introduction by existing market 
power holders 

Gray (1978) 

Futures Market Favorable public policy towards the 
contract (for example not prohibiting 
trading in a particular contract) 

Till (2014) 

Futures Contract Good contract design that does not favor 
the buyer or seller. 

Gray (1978) 
Webb (2015) 
Garcia, Irwin and Smith (2015) 

Futures Contract The risk reduction ability of the contract in 
comparison to existing futures cross-
hedging contracts. 

Black (1986) 

Cash Market  Size and activeness of the cash market Black (1986)  
Brorsen and Fofana 2001 
Bekkerman and Tejeda 2013  
Fortenberry and Zapata (2002) 

Cash Market Volatility of the cash price Black 1985  
Bekkerman and Tejeda 2013  
Webb (2015) 

Commodity  Homogeneity or uniformity of the 
commodity. 

Bekkerman and Tejeda 2013 

Cash Market The extent of existing vertical market 
integration 

Bekkerman and Tejeda 2013 

Cash Market Buyer concentration within the cash 
market. 

Bekkerman and Tejeda 2013 

Commodity The storability of the commodity. Bekkerman and Tejeda 2013 
Futures Market Superior liquidity of existing cross-hedges 

discourages a new own-hedge contract. 
Black 1986 
Brorsen and Fofana (2001) 
Bekkerman and Tejeda 2013 
Webb (2015) 

Futures Market Significant hedger activity in closely related 
markets. 

Bekkerman and Tejeda 2013 

Futures Market Basis Risk impedes a futures contract. Perversi, Feuz, and Umberger 
(2002) 

Futures Market Public genuine commercial order flow Webb (2015) 
Futures Market First mover advantage in the introduction of 

the contract. 
Webb (2015) 

Futures Market Low explicit trading costs, for example 
broker commissions 

Webb (2015) 

Futures Market Timing of the introduction of the contract Webb (2015) 
 
This table reports the characteristics identified in the literature that are associated with the success or failure of futures 
contracts. The Category column indicates the general area of the market the attribute refers to – the commodity, the cash 
market, the futures market, or the futures contract. The Characteristic column lists the particular characteristic of the 
market, contract, or commodity. The Studies column lists the studies in which the relevant characteristic was found to 
have a significant statistical relationship. 
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Chapter 2 

 

The reduced explanatory power of the Traditional Theory of Storage: A comparison 

of the historical 1952-1963 and modern 2009-2019 cocoa spot and futures markets. 

  

 

Abstract 

 

The theory of storage explains expected commodity price movements as a function of 

current and expected inventory stocks-to-use levels. We report a high degree of accuracy 

in explaining  cocoa spot price and futures market term structure movements in the 

historical 1952-1962 time period. Price movements in the modern 2009-2019 time period 

are only partially explainable by a fundamental inventory based model. The lack of 

accuracy is conjectured to result from several factors present in the modern but not the 

historical market - the presence of a large component of non-fundamental-based traders 

in the modern market, overt market manipulation by both producers and traders, and the 

modern but not historically observable intrinsic uncertainty of cocoa production. 
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2.1. Introduction 

 

2.1.1 The Cocoa Market 

 

The structure of the modern cocoa market is much the same as the cocoa market seventy 

years ago. Cocoa beans are grown, fermented, and dried by small scale farmers in Africa, 

South America, and other equatorial regions. Despite the increase in the number of global 

supply locations including Ecuador, Indonesia, and the Caribbean, the lions share of 

production still comes from the Ivory Coast and Ghana. On the consumption side, the 

dried beans are purchased and then ground by large multinational confectionary 

companies to produce ingredients for chocolate and cocoa based products. A large 

amount of  grinding capacity formerly in consuming nations is now available on location 

in producing nations, but the grinding factories are still owned by large multinationals 

like commodity trader Cargill and confectionary giant Barry Callebut. Futures and spot 

trading has taken place from the 1930’s in both New York and London1. 

 

The cocoa market is a useful market scenario in which to study the supply of storage 

theory for four reasons. First, the production of cocoa has a long life cycle with trees not 

nearing productive capacity until 6 to 8 years of age. This means the relationship between 

price and inventory is not affected by annual production decisions. Second, the 

																																																								
1	Weymar(1965)	provides	general	background	on	the	historical	cocoa	market.	The	
International	Cocoa	Organization,	www.icco.org,	also	provides	background	
information.	
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consumption of cocoa, which is mostly made into chocolate, is empirically observed to 

depend on lagged rather than current price. Chocolate manufacturers typically hold 

inventory from three to nine months and retailers only periodically change the price of a 

product. The dependence on lagged price lessens the activity of short-term competitive 

profit-seeking storers. Third, the relative perishability of cocoa beans, which are at best 

quality for six months to a year2, is an additional discouragement to profit-seeking 

stockholding. Finally, there are no close substitutes for cocoa – chocolate can only be 

made from cocoa beans. These four reasons taken together tend to isolate the behaviour 

of the cocoa price in regard to the level of inventory, so that the inventory levels at which 

convenience yield and backwardation occur are clearly visible, as is the relationship 

between price and inventory. 

 

The cocoa market is not unique in these respects. Several other commodity markets 

including cocoa, coffee, orange juice, wool, lumber, rubber, whole milk powder, and 

skim milk powder share the characteristics of difficulty in modifying production and 

short-term perishability. The conclusions from the cocoa market will likely apply also to 

these markets.  

																																																								
2	Wong-Shing	K.,	“Here's	the	Deal	on	Raw	Cacao,	AKA	the	Healthy	Version	of	
Chocolate”,	https://www.leaf.tv/articles/storage-shelf-life-of-raw-cacao-beans/	
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2.1.2 The Rational Expectations Competitive Storage Model 

 

The modern “rational expectations competitive storage model” of Gustafson (1958), 

Gardner (1980), Williams and Wright (1991), Deaton & Laroque (1992), Cafiero (2011), 

and Gouel & Legrand (2017) optimizes the profit over several years (time periods) from 

selecting the optimal annual carryover with identical inverse demand and cost functions 

applying in each year(time period). Enhanced versions of the model allow a variable 

future production response to current inventory levels (Williams and Wright (1991)).  

The model is principally concerned with the optimal annual carryover of storable grains. 

The model is less applicable to the cocoa market where the commodity is relatively 

perishable, production decisions take several years to have effect, consumption is 

dependent on lagged rather than current price, and stock withholding from the market is 

unusual.  

 

The relative simplicity of the cocoa market when compared with long-term-storable, 

flexible-production grains like corn allows the use of the simpler “Supply of Storage” 

model. We use a model based on the traditional theory of storage of Keynes (1936), 

Kaldor (1939), Working (1949), Brennan (1958), and Weymar (1965) to compare time 

periods from 1952-1963 and 2009-2019 using spot and futures data from the cocoa 

market. The Supply of Storage model is essentially a special case of the general “Rational 

Expectations Competitive Storage Model”, where there is limited competitive speculative 

stockholding and the supply response is inelastic. Appendix A provides a history of the 
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modern rational expectations storage model, and illustrates the consistency of the simpler 

Supply of Storage model when the general model is subject to the constraints of the 

cocoa market. One critical distinction is the omission of “working stocks” from the 

general model. 

 

In addition, we study monthly data in the cocoa market as opposed to the overwhelming 

majority of agricultural studies that examine annual data. Peterson and Tomek (2005) 

provide the only monthly analysis of agricultural commodities (corn) with the related 

Rational Expectations Competitive Storage Model, but have difficulty reproducing the 

empirical annual autocorrelation visible in the market. The advantage of monthly data is 

that the behaviour of price as related to inventory can be studied in finer detail without  

being obscured by annual averaging. 

 

 

2.1.3 The Traditional Theory of Storage 

 

Keynes (1930) provides the first documented connection between supply shortages and 

backwardation in his observation that  “If there is a shortage of supply capable of being 

remedied in six months but not at once, then the spot price can rise above the forward 

price to an extent which is only limited only by the unwillingness of the buyer to pay the 

higher spot price rather than postpone the date of his purchase3."  

																																																								
3	Keynes(1930)	also	theorizes	that	in	times	of	surplus,	the	forward	price	will	rise	
above	the	current	spot	price,	but	less	than	the	expected	spot	price,	the	concept	of	
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Working (1932, 1933, 1948, 1949) collects detailed empirical data on wheat spot and 

futures prices and observes a close relationship between the degree of backwardation and 

the current stocks of wheat as reported in Figure 1. Backwardation, in contrast to Keynes, 

is redefined by Working as the now commonly accepted  negative futures-spot spread 

rather than the forward-“expected spot” spread postulated by Keynes.  

 

[INSERT FIGURE 1 ABOUT HERE] 

 

Working formalizes the concept that the expected price change of a commodity was 

dependent on inventory levels into the traditional “Theory of Storage”.  

 

Kaldor (1939) independently develops the theory and theorizes  that “stocks of all goods 

possess a yield measured in terms of themselves, the “convenience yield”. Brennan 

(1958) derives supply and demand curves for storage. Weymar (1965, 1968) illustrates 

theoretically that the “the spread between the spot price and the price expected at some 

future time is a function of expected inventory behaviour over the intervening interval. 

Weymar also provides a new theory of short term commodity price behaviour and 

enhances the model with a trend-following component. Instead of academia, Weymar 

went on to successfully trade cocoa for Nabisco and later founded the Commodities 

Corporation. Commodities Corporation, in addition to commercial success in the 

																																																								
“normal	backwardation”.	“Contango”	and	“Backwardation”	were	terms	in	use	by	
traders	in	Liverpool	in	the	1850’s.	
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commodities markets, was a pioneer in trend-following strategies and the training ground 

for several prominent hedge fund managers4. 

 

2.1.4 Possible Reasons for Reduced Explanatory Power 

 

The Traditional Supply of Storage model exhibits greatly reduced accuracy in the modern 

time period of 2009-2019 when compared with 1952-1963. Some of the possible reasons 

are the presence of a large component of computerized trend-following or other non-

fundamental based traders in the modern markets, an increase in market manipulation, the 

availability of options, and the availability and ambiguity of inventory information.  

 

Trend following in the commodities markets gained major traction in the 1960s and 70s, 

with the publication of detailed techniques by Richard Donchian5, the “Godfather” of 

modern day trend following, and the spectacular success of the “Turtle Traders”, a group 

of non-specialist investors trained in 1983 to follow a trend following system by Richard 

Dennis (Covel (2007)). Trend following traders have the effect of accelerating 

convergence towards fundamental value when the trend is “correct”, but also cause 

extensive overshoot when the fundamentals for the market change. Commodity index 

fund trading also gained interest in the 1990’s leading to the Financialization of 

																																																								
4	Tully	S.	and	Carson	L.,	Princeton’s	Rich	Commodity	Scholars,	Time	Inc.,	1981,		see	
https://www.turtletrader.com/comm-corp/	
5	Donchian	R.,	Trend	Following	Methods	in	Commodity	Price	Analysis,	Commodity	
Yearbook	1957	
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Commodities theme6. This type of trading has little correlation to trading based on cocoa 

market inventory fundamentals. In addition, several other strategies including machine 

learning and momentum are used in the commodity markets. We approximate a measure 

of this presence by the difference in the variance explainable by fundamental versus trend 

following components in our model. 

 

Several incidences of overt market manipulation are visible in the 2010-2019 time period, 

including a market squeeze by Armajaro in 2010, bean smuggling and withholding by 

Ghana and Ivory Coast producers in 2015, and pressure by large market traders on 

forecast providers to provide accommodating figures. These types of manipulation appear 

to be present to a lesser extent in the 1950s, with only a single incident identified, a 

withholding from the market by Brazil in 1954.  

 

Options began trading in the 1970s after the seminal Black-Scholes paper, and increased 

speculative activity in the market. This change to the markets does not impact our 

conclusions, but is mentioned for completeness. 

 

The intrinsic uncertainty of production is recently observable in the conflict between 

multiple sources of estimates for expected production, consumption and inventory stocks 

from different market information services. The intrinsic uncertainty of production arises 

from the difficulty in knowing the production of an individual tree, which can vary from 

																																																								
6ETF.com,	“A	Brief	History	of	Commodities	Indexes”,	
https://www.etf.com/publications/journalofindexes/joi-articles/7451-a-brief-
history-of-commodities-indexes.html?nopaging=1	
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a few to a hundred pods from season to season. This uncertainty has not changed, but the 

limited information available in the 1950s may have served to provide a more “certain” 

information environment for trading. Despite the prediction for expected coverage levels 

being intrinsically inaccurate, there was only one prediction. The intrinsic uncertainty can 

be approximated by the divergence in analyst predictions. 

 

The remainder of the paper is structured as follows. Section 2 reviews the Traditional 

Supply of Storage Theory. Section 3 describes the data sources for the 1952-1963 and 

2009-2019 periods. Section 4 presents the results. In Section 4.1, the spot cocoa market 

analysis of Weymar (1965) is replicated (Welch, 2019). Then, in section 4.2, the 

historical analysis is extended to the futures market in 1952-1963. Lastly, in section 4.3, 

the extended spot market model is estimated on both current 2009-2019 spot and futures 

market data. Section 5 discusses the differences between the model accuracy in the two 

time periods and possible sources for the lack of accuracy in the modern period. Section 6 

concludes the paper.  

 

2.2. Supply of Storage Theory 

 

2.2.1 The Empirical Phenomenon 

 

The traditional theory of storage is not so much a theory as a consistent empirical pattern 

observed in the agricultural commodity markets, with sound reasoning as to its existence. 

Working (1932, 1933) was the first to carefully document the phenomenon from 
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observations of the futures-spot price spread in grains. Figure 2 illustrates the regular 

pattern. Working (1948, 1949) formulates the empirical observation into the traditional 

“Theory of Storage”: The expected price change of a commodity over a time interval is 

related to the inventory level at the beginning of the interval. 

 

[INSERT FIGURE 2 ABOUT HERE] 

 

This empirical phenomenon has been confirmed by numerous other authours including  

Kaldor (1939), Meinken (1955), Weymar (1965), Geman (2013), and Irwin and Garcia 

(2015). 

 

Four reasons have been put forward for the existence of this stylistic feature of 

commodity markets. First, when inventories are low there is the risk of a stockout for 

manufacturers where production lines can be disrupted, and lost sales can result. This risk 

dominates the lower section of the curve, where the expected price change can be 

negative but positive inventories are still held. In this situation, the instant profit from 

selling immediately and simultaneously locking in future inventory at a lower price is 

offset by the much higher costs of lost sales and production. Note that with raw 

commodities, the selling price of a finished good is often several times the raw material 

component cost7. 

 

																																																								
7	baked	goods,	steel	and	cars,	etc.	
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Second, manufacturers of finished goods want to keep their pricing roughly in line with 

other competitors in the industry and therefore carry enough inventory to maintain 

flexibility. This reinforces the negative price change holding behaviour at low inventory 

levels, and results in a roughly linear relationship at normal inventory levels. At high 

inventory levels, the effect reverses as the raw commodity may reduce in price leaving 

the high inventory holder with surplus inventory that has to be processed at the previous 

higher cost. 

 

Third, speculators will hold inventory as long as the expected price gain is greater than 

the cost of holding the inventory. Speculators will be active at all inventory levels. Even 

if there is a harvest surplus, speculators may buy and hold inventory in anticipation of a 

lowering of production in the following years.  

 

Fourth, when storage facilities are taxed, stockholders will require a significant premium 

to continue storing the commodity. This particular regime has not received much focus as 

it occurs rarely in practice.  

 

Working (1948) indicates that  “The results from all lines of investigation concur in 

indicating that prices quoted at one time in a futures market, for two dates of delivery, 

stand in a relation which in general does not reflect expectations regarding events that 

may occur between the two delivery dates.” Weymar (1965) points out the logical 

contradiction in this statement. If the price change between two points in time is 

dependant on the level of inventory at the beginning of the interval, then the inventory 
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during the interval must not change. Otherwise, the changes over the two subintervals 

must add to the change over the entire interval. This will only be true if the price change 

is linear in inventory. Weymar generalizes the theory of storage to account for expected 

changes of inventory during the interval – “the spread between the spot price and the 

price expected at some future time is a function of expected inventory behaviour over the 

intervening interval.” 

 

As the time interval is shortened, the theory of storage provides an estimate for the 

instantaneous expected price rate of change as a differentiable function of the current 

inventory level. If this function is integrable, then the behaviour of price can be expressed 

as a function of the two endpoints. In other words, the expected price change over an 

interval is the integral of the differential supply of storage curve over that interval.  
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2.2.2 The Cocoa Market Spot Price 

 

Weymar (1965) posits the following market model for cocoa. 

 

Cocoa Market Economic Model  

    

€ 

Ct = fc(Pt
L) + ec 

(1) 

    

€ 

Ht = fh (Pt
L) + eh  (2) 

    

€ 

Pt
* − Pt = fP(It) + eP  (3) 

    

€ 

It = It−1 + Ht −Ct (4) 

where   

€ 

Ct is current consumption,   

€ 

Pt
L   is the lagged price   

€ 

Pt  is the current price,     

€ 

Pt
* is the 

expected price,   

€ 

Ht  is current production,   

€ 

fc  ,   

€ 

fh  ,   

€ 

fP are the functional forms of the 

relationships, and  

€ 

It is the inventory level  

 

In the cocoa market, consumption of cocoa beans is a function of lagged price due to the 

inventory storage behaviour of chocolate makers, typically four to nine months8. The 

production of cocoa beans is a function of lagged price as a result of the long gestation 

time before cocoa trees become productive. The spread between the expected price and 

the current price is a function of the current inventory level – the traditional theory of 

storage. The last equation is an identity where the current inventory is the previous 

inventory plus current production and minus current consumption.  
																																																								
8	For	instance,	Barry	Callebut,	one	of	the	largest	chocolate	makers,	maintains	a	four	
month	inventory	(calculated	from	2018	financial	statements)	
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Speculative storing is not common in cocoa market due to the logistics of the dependency 

of production on weather combined with the relative perishability of the commodity. The 

motivation for speculative storing is that future conditions are more favorable for selling. 

Since the likelihood of a poor crop in the future is equivalent to the chance of a good 

crop, and the annual supply will not adjust, chances are that speculatively stored cocoa 

beans will face the same market conditions as today as well as incurring the cost of carry. 

The situation is different in other markets like corn, where an oversupply will 

immediately cause a drop in future production due to producers adjusting their future 

output downwards.  

 

2.2.3 Change of variables to Rate of Change of Price and Inventory Coverage Ratio 

 

The original theory of Working is stated in terms of price changes and inventory levels. 

Weymar generalizes the theory to use percentage price changes and inventory-to-

consumption ratios.  

 

Instead of:  

 

    

€ 

Pt
* − Pt

h
= fh

* (It)  
(5) 

where   

€ 

Pt  is the current price,     

€ 

Pt
* is the expected price, h is the time interval,     

€ 

fh
* is the 

functional form of the relationship, and  

€ 

It is the inventory level  
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the equation should be: 

 

    

€ 

(Pt
* − Pt)/Pt

h
= fh

* ( It

Ct∑
) = fh

* (Yt)  (6) 

 

where   

€ 

Ct∑  is the consumption over the last 12 months. 

 

Keeping in mind that the original theory of Working is a stylistic observation rather than 

a derived conclusion from a structural model, Weymar offers the following arguments for 

why the change of variable is a superior representation.  

 

For the percentage change in price formulation, there are three reasons. First, speculators 

are interested in the return on capital rather than the price change, and the required return 

is a function of the amount of invested capital. Second, for hedging by dealers, a large 

part of the carrying costs – i.e. insurance and interest – vary with price. Third, with the 

assumption that finished product yields vary in accordance with raw material costs, the 

convenience yield will also vary with price. 

 

For stating the Inventory as a coverage ratio there are two reasons. First, the convenience 

yield to processors will vary directly with the time coverage that a particular level of 

inventory affords. If, for example, there was a spike in consumption, the marginal 

convenience yield of inventory would also rise. Second, the amount of hedging and 
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speculative activity will tend to be a function of inventory coverage rather than inventory 

level alone. 

 

Finally, a significant advantage of using ratios is that dimensionless quantities are less 

subject to overall changes in the levels of the respective variables. An inventory coverage 

ratio of 50% measures the same market situation whether the price levels are USD 1500 

or USD 3000. 

 

Weymar provides empirical support for this change of variables by the high quality fit of 

the resultant model applied to the cocoa market. It is a question for further research 

whether the change of variables representation is a superior tool to the original 

formulation of Working. In this paper, we will follow Weymar’s lead and use the 

formulation with percentage price changes and inventory coverage ratios. 

 

2.2.4 Review of the Derivation of  the Estimable Model for the Cocoa Price  

 

The price change from the present until equilibrium can be decomposed into the price 

change from the present to a horizon time and the price change from the horizon time to 

equilibrium. The horizon time is chosen to be the end of the current crop year.  

 

The traditional theory of storage does not specify the functional form of the empirical 

relationship, but indicates that at low inventory levels the slope is positive with a negative 

first derivative. We do not consider the behaviour for extreme oversupply when storage 
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facilities become taxed as this is not relevant to the cocoa market9. A reasonable 

approximation for the price change over a small interval is the log function with the 

Weymar change of variables i.e. 

 

    

€ 

d
dh

(ln Pt
*h ) = f * (Yt

*h ) = a +blnYt
*h

 
(7) 

where 

€ 

Pt
*hand 

€ 

Yt
*h  are the expected price and expected inventory ratio.

 
In discrete form, this is: 

    

€ 

ln(Pt
*h +1

Pt
*h ) = a +blnYt

*h
 (8) 

 

where 

€ 

Pt
*hand 

€ 

Yt
*h  are the expected price and expected inventory ratio at the beginning of 

interval h. 

 

Taking the intervals as monthly, the price change from the present to the horizon time can 

be expressed as a sum of the changes in each of the months: 

 

    

€ 

ln(Pt
*ht

Pt
) = aht +b lnYt

*h
h= 0

ht −1
∑  (9) 

 

																																																								
9	The	cocoa	market	is	sufficiently	disorganized	that	extreme	excess	produce	tends	to	
be	left	to	deteriorate,	rather	than	forcing	a	price	crash.	
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If the inventory behaviour throughout the year follows the same basic seasonal path each 

year (as is observed in the cocoa market), then the inventory ratio at each of the 

intervening months can be estimated as a function of the two endpoints. Given that the 

endpoints are typically either known (the current inventory ratio) or published (the 

expected inventory ratio before harvest at the end of the year) the price change from the 

present to the horizon time can be modeled. The following regression model can be used 

to estimate the coefficients. 

 

    

€ 

ln(Yt
*h ) = ch + dh lnYt + eh lnYt

*ht  (10) 

 

These coefficients give the inventory ratio in the intervening months between the current 

time and the September horizon time. When combined with the ratios at the beginning 

and the end of the interval, the coefficient sums capture the behaviour of inventory 

throughout the interval.  

 

Substituting into the previous equation, 

 

    

€ 

ln(Pt
*ht

Pt
) = b1ht +b2 chh= 0

ht −1
∑ + ( dh )lnYth= 0

ht −1
∑ + ( eh )lnYt

*ht

h= 0

ht −1
∑⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥  

(11) 
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The coefficients     

€ 

ch ,dh , eh  can be estimated by running regressions on the yearly 

inventory data – see Table 1 for coefficients for the period 1952-1963. The  mean R2 

from the individual source regressions is .95 with a standard deviation of .029. The cocoa 

year runs from October 1st to September 30th, so the September values, for example, give 

the price change from the end of September to the end of the following September. The 

October values from October 31st to September 30th, and so on. 

 

[INSERT TABLE 1 ABOUT HERE] 

 

This price change to the horizon time as a function of the inventory ratio end-points will 

apply in each year. Thus the behaviour of the price from the end of the year until 

equilibrium can be derived.  

 

The September version of equation (11), referencing Table 1, is 

 

    

€ 

ln(Pt
*12

Pt
) =b112 + b2 (1.2 + 5.479lnYt + 4.879lnYt

12 )  (12) 

 

which specifies the yearly changes in price. This equation gives the expected price 

change from the current end of September to the next end of September.  

 

Since the same situation will apply in the following September,  
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€ 

ln(Pt
*(sn+1 )

Pt
*(sn ) ) =b112 + b2 (1.2 + 5.479lnYt

*sn + 4.879lnYt
*(sn+1 ) )  (13) 

 

Where sn indicates the price or inventory ratio at the end of the nth September. 

 

We assume that the inventory ratio in September will approach an equilibrium value over 

several years in the following manner: 

 

    

€ 

Yt
*sn =

Yt
*s0

Y *s

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

g n

Y *s
 

(14) 

where sn is an index for the September horizon and g is the annual rate at which the 

September inventory level will approach the equilibrium level     

€ 

Y *s . If g =0.3, for 

example, the equilibrium ratio would be reached in approximately 5 years. 

 

Taking logarithms,  

 

    

€ 

ln(Yt
*sn ) = gnYt

*s0 + (1− gn )Y *s
 (15) 

 

Substituting into equation 13 and simplifying (see Weymar (1965) pg. 183),  
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€ 

ln(Pt
*(sn +1)

Pt
*(sn ) ) =b2 gn (5.479 + 4.879g)(lnYt

*s0 − lnY *s )  (16) 

 

The annual September to September price changes accumulated over n1 years, starting 

with the first horizon September S0 are: 

 

    

€ 

ln(Pt
*(sn )

Pt
*(s0 ) ) = ln(Pt

*(sn+1 )

Pt
*(sn ) )

0

n1−1

∑  
(17) 

 

Substituting 16 into 17, and simplifying (with the identity ht , the September horizon, 

equal to s0 ), 

 

    

€ 

ln( P 
Pt

*ht
) = b2 ( 5.479 + 4.879g

1− g
)(lnYt

*ht − lnY
*s

)  (18) 

 

 

Combining with equation (11) gives the final statistically estimable equation (19)  

 

 

    

€ 

ln( P 
Pt

) = a +b1ht + b2Zt + b3 lnY *ht + et  (19) 
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where  

 

    

€ 

a = −b3 lnY *s
 (20) 

    

€ 

b3 = b2 ( 5.479 +4.879g
1− g

)  

(21) 

    

€ 

Zt = chh= 0

ht −1
∑ + dh lnYth= 0

ht −1
∑ + ehlh= 0

ht −1
∑ nY *ht

 
(22) 

 

and 

 

€ 

P  is the average real spot price of cocoa – an estimate for the  constant equilibrium price 

of cocoa 

 

P = the monthly average real spot price of cocoa 

 

h is the horizon interval in months 

 

    

€ 

Y *h
is the expected inventory ratio at horizon time (i.e. inventory/last years 

consumption) 

 

    

€ 

Y *s
 is the expected September equilibrium inventory ratio. 
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g = parameter indicating the speed that Y approaches equilibrium 

 

e = error term. 

 

This equation states that the price spread from the current spot price to the equilibrium 

price is a function of the month in the year, the current inventory ratio, and the expected 

inventory ratio at the end of the year.  The coefficient sums that make up the Z coefficient 

result from inventory regressions that characterize the seasonal behaviour of inventory 

throughout the year. The coefficient b3 

is only related to the rate of approach towards equilibrium, and does not incorporate the  

inventory ratio estimates before the crop year end.  
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2.2.7 Supply of Storage with a Futures Market  

 

The second and third terms of equation (19) give the expected spot price at each month 

throughout the year as a function of the current inventory ratio and the year-end inventory 

ratio estimate.  

 

The price at the end of each month from the current time until the end of the crop year can 

be estimated in the following manner from the model of equation 19. 

 

Equation 11 was derived for the spread from the current price to the end of the crop year, 

but is valid for all of the intervening months as well. Solving for the monthly price gives: 

 

    

€ 

ln(Pt
*ht ) = ln(Pt ) + b1ht +b2 chh= 0

ht −1
∑ + ( dh )lnYth= 0

ht −1
∑ + ( eh )lnYt

*ht

h= 0

ht −1
∑⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥  

(23) 

 

The monthly coefficients can be estimated from the same monthly inventory regressions 

for each time period (September – September, October – September, …, August – 

September), but summed in a different manner. Instead of the inventory behaviour to the 

September horizon time, we are interested in the inventory levels at the intervening 

months. Panel 1 of Table 2 illustrates the monthly inventory regression coefficient sums 

that allow the calculation of the intervening inventory levels based on the endpoints for 

the current crop year (See Weymar (1966) Chapter 4, Appendix B for the individual 

regressions). 
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Making the assumption that the estimated spot price will be the best predictor of the 

futures price, Equation (23) can be used to estimate futures contract prices. As it turns out, 

there appears to be a roughly constant premium between the spot price and the futures 

price at closing in the cocoa market in 1952-1963. 

 

 

The model also allows for the estimation of the futures contracts after the crop year end. 

The inventory ratio is anticipated to approach an equilibrium value  as in equation (14), 

repeated here as equation 24.  

 

    

€ 

Yt
*sn =

Yt
*s0

Y *s

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

g n

Y *s
 

(24) 

 

 

Using the current estimated end of year inventory ratio, and letting n=1 in equation (24), 

the following year ending inventory can be estimated as: 

 

    

€ 

Yt
*2 =

Yt
*1

Y *s

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

g

Y *s
 

(25) 

 

Where     

€ 

Y *s  is calculated from equation 20:  
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€ 

Y *s = exp(− a
b3

)  (26) 

 

And g is calculated from equation 21: 

 

    

€ 

g =
b3 − 5.479b2

b3 + 4.879b2
 (27) 

 

 

Then, using the same procedure as with the current year but replacing the starting and 

ending inventory ratios with the new values and the current price with the estimated 

September price, we can calculate the crop futures prices from September onwards. Panel 

2 of Table 2 illustrates the inventory coefficient sums for the future crop year for the 

historical 1952-1963 dataset. The sums for the future crop year do not change as the 

contracts are all estimated relative to the September of the previous crop year. 

 

The traditional supply of storage theory as depicted in Figure 2, indicates there is a level 

of inventory below which stocks will be held at a loss. In other words, the term structure 

will shift into backwardation smoothly as inventory drops below this level. As inventory 

rises above this level, the carrying costs will become constant and equal to storage plus 

interest costs except at the high end of the curve where storage facilities are taxed.  
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The calculated futures prices can be compared with the actual spread between the futures 

contracts and the spot price. Five interesting questions can be asked regarding  the 

historical and  modern time periods: 

 

1. How well does the model fit the spot price in the modern time period? Note that 

Weymar reported the spot price fit for the historical time period. 

2. How well does the model fit the observed term structure in both periods? 

3. Does the term structure smoothly move into backwardation or contango as a 

function only of expected inventory levels. 

4. What are the expected inventory levels at which the term structure shifts into 

contango or backwardation. 

5. What appears to have changed in the cocoa market between 1952-1963 and 2009-

2019? 

 

[INSERT TABLE 2 ABOUT HERE] 

 

2.3. The Data 

 

With the goal of allowing reproduction of the results in this paper, detailed sources for all 

of the data are enumerated. Matlab code and individual data files are available from the 

authour on request (jan.koeman@pg.canterbury.ac.nz). Data that would need to be 

purchased directly from the source is indicated. 
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2.3.1 1952-1963 Time Period 

 

The price series for Accra beans in New York is originally sourced from the Foreign 

Agriculture Circulars from the United States Foreign Agriculture Service available at the 

Internet Archive: https://archive.org/search.php?query=cocoa%20statistics. The 

documents are scanned, so the price series must be transcribed by hand. An alternative 

paid source is the 2010 Commodity Research Bureau Yearbook with accompanying 

CDROM. 

 

The deflator for the price series is the United States Bureau of Labor Statistics Wholesale 

Price Index (1957-59 = 100) available from the St. Louis Fed: 

https://fred.stlouisfed.org/series/M0448CUSM350NNBR . The base is the average price 

between 1957 and 1959. 

 

The price series is deflated to factor out general movements in commodity prices from the 

cocoa price. 

 

The inventory and expected inventory coverage ratios are transcribed from Weymar 

(1966). Figure 3 shows the Price Change, Current and Year-End estimated inventory 

ratios from September 1952-August 1963. Weymar (1966) provides a detailed appendix 

on the construction of his current and expected inventory ratios.  

 

[INSERT FIGURE 3 ABOUT HERE] 
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Futures prices from 1952-1963 were manually transcribed from the New York Times 

archive, available by subscription at https://timesmachine.nytimes.com/browser. Four 

individual dates in the month were used to construct a monthly average for each contract. 

 

2.3.2 2009-2019 Time Period 

 

Monthly current inventory ratios are calculated from starting estimates of yearly 

inventory, production, and consumption (grindings) data. 

 

Though the starting year worldwide inventory is in principle knowable (unlike the 

production capability of cocoa trees), the market still has a difficult time in settling on 

estimates. We use inventory estimates from CRA Services Ltd. (CRA Services)10 and the 

International Cocoa Organization (ICCO). One curious side effect of this inefficiency that 

can result in some confusion is in the quotation of yearly estimates for stocks, production, 

and consumption. The differences in year-ending stocks are not equal to production minus 

consumption for the past year, but instead are quoted separately. 

 

The cocoa year runs from October 1st to Sep 30th in the following year. Arrivals of cocoa 

beans at Ivorian and Ghanese ports are tracked on approximately a bi-weekly basis, 

though often numbers are not published. In addition, there is a fair amount of smuggling 

and withholding from either Ghana to the Ivory Coast or in the opposite direction 

																																																								
10	Knowledge	Charts,	https://www.knowledgecharts.com/,	is	a	website	published	by	
CRA	Services	Ltd.	dedicated	to	information	on	the	cocoa	market.	It	is	by	far	the	best	
information	resource	available	on	the	cocoa	market.		
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depending on the farmgate price differential. The other significant producing nations are 

Brazil, Ecuador, Nigeria, Cameroon, and Indonesia. Detailed production data is available 

on a monthly or finer basis from CRA Service Ltd11. Only the total yearly production 

figures are available for several smaller producers. The monthly production pattern for 

Nigeria and other African countries is estimated based on the monthly production sum of 

Ivory Coast, Ghana, and Cameroon which have similar weather conditions. The monthly 

production for other South American countries is based on Brazil and Ecuador. The Asian 

monthly production is derived from the Indonesia patterns.  

 

Grindings data is available regionally on a quarterly basis for the Americas, Europe, The 

Ivory Coast and Ghana, and Asia from CRA Services. Monthly values are estimated as 

one third of quarterly values.  Other grindings for each region are assumed to follow the 

same quarterly pattern as the reported numbers. 

 

The current inventory level is calculated by starting with the estimate of stocks at the 

beginning of the year, and adding production and grindings to get each monthly figure. 

The current inventory stocks-to-use ratio is calculated as the monthly inventory level 

divided by the grindings summed over the previous year. In addition to the current 

inventory level and current inventory ratio level, relative inventory levels and relative 

inventory ratio levels are calculated for the sample. The levels are relative to the level or 

ratio in the particular month for the entire sample from 2009-2019. 

																																																								
11	Less	accurate	arrival	data	for	the	Ivory	Coast	and	Ghana	can	be	transcribed	
fromten	years	of	monthly	ICCO	market	commentary,	as	was	initially	done	by	this	
authour	before	being	aware	of	CRA	Services	Ltd.	
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Expected cocoa production, consumption and stocks are available on a quarterly basis 

from the Economist Intelligence Unit and the ICCO Quarterly Bulletins. The Economist 

issues World Commodity Forecasts Feedstuffs and Beverages monthly by subscription. 

The ICCO publishes the forecast excerpt on their website (www.icco.org). From these 

sources both the levels and stocks-to-use ratios can be manually transcribed. The ICCO 

quarterly forecasts are linearly interpolated to get monthly results. Technically, the ICCO 

only issues three forecasts – in January, May, and September. The November report is a 

report of estimates for the previous crop year. Figure 4 reports the inventory ratios and 

deflated spot prices from 2009-2019. 

 

[INSERT FIGURE 4 ABOUT HERE] 

 

Seasonal Inventory ratios are compiled from monthly regressions of the cocoa inventory 

ratio levels and give the intermediate ratios as a function of the current and estimated year-

end values (see Weymar (1966) pgs  171-176). These individual regressions are then 

summed to get a single figure that captures the inventory behaviour between the current 

point in time and the end of crop year horizon time (see constructZ.m in Appendix C for 

Matlab code). 
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Spot prices are sourced from CRA Services and from BarChart12. The spot price series 

most representative of the world is the Ivory Coast series. Series are also available for 

Ghana, and the cash price in New York. 

 

Prices are deflated by the Federal Reserve Bank of St. Louis Global Price Index of All 

Commodities. (https://fred.stlouisfed.org/series/PALLFNFINDEXM). Robustness checks 

are done using the Producer Price Index for all Commodities 

(https://fred.stlouisfed.org/series/PPIACO), and the Consumer Price Index 

(https://fred.stlouisfed.org/series/CPIAUCSL).  

 

 

2.4. Results 

 

First, the model estimates obtained by Weymar for 1952-1963 are replicated and the 

model is extended with trend following and generalized least squares estimation. Second, 

the futures prices for 1952-1963 are estimated, illustrating a 93% prediction accuracy of 

the shift between contango and backwardation. Third, the spot price from 2009-2019 is 

analyzed, reporting a significant drop in model accuracy. Fourth, the 2009-2019 term 

structure is estimated, yielding only a 32% correlation between the model slope and the 

actual slope shifts. Finally, the reasons for this drop in accuracy are discussed. 

 

2.4.1 Replication of Weymar’s Results 

																																																								
12	Barchart	information	services,	www.barchart.com	provides	download	of	an	
extensive	array	of	financial	information	by	subscription.	
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2.4.1.1 Basic Model Results 

 

Table 3 illustrates the result of replicating Weymar’s results using model (19) and data 

derived from Weymar (1965): 

 

[INSERT TABLE 3 ABOUT HERE] 

 

The coefficient estimates are a very close match with the original estimation done by 

Weymar, indicating that the model has been correctly replicated.  

 

2.4.1.2 Changing Equilibrium Price Expectations  

 

The main problem with the basic model is the low Durbin Watson coefficient of .34, 

indicating serial correlation in the residuals and misspecification. The most likely source 

of this error is the final equilibrium price level. For the basic model, this was set equal to 

the average price over the interval 1952-1963. It is reasonable to assume that there are 

changing expectations for this equilibrium price level over time and that the equilibrium 

price level is influenced by the past long term trend in cocoa prices.  

 

If we define the expected equilibrium price as a variable multiplied by the average price 

over the time period studied, 
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€ 

Pt
∞ = MtP  (28) 

 

then, taking logarithms and substituting into equation (19) we obtain: 

 

    

€ 

ln( P 
Pt

) = a +b1ht + b2Zt + b3 lnY *ht − ln Mt + et  (29) 

 

  

€ 

P  has been redefined here to be the average sample post-war cocoa price rather than the 

equilibrium price. The variable expected multiplier can be modeled as a function of the 

long term cocoa price trend. An alternative would be to assume that the multiplier was a 

function of past price levels, but Weymar did not find better estimates using this 

assumption. We follow Weymar and estimate the long-term cocoa price trend as a 

exponential function of a vector of twenty elements, each containing the average price 

change over four months. 

 

    

€ 

Mt = exp(b4 ai
ΔP
P

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ii= 0

19

∑ ) + et  
(30) 

Where  
    

€ 

ΔP
P

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i

=
1
4

Pt−k − Pt−k−1

Pt−k−1k= 4i+1

k= 4i+4

∑
.
 

 

Substituting into equation 29,  
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€ 

ln( P 
Pt

) = a +b1ht + b2Zt + b3 lnY *ht + b4 ai
ΔP
P

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ii= 0

19

∑ + et  
(31) 

 

 

where ai are the individual coefficients, and b4 is a scaling factor to allow the sum of the ai 

to equal unity. The entire trend following component covers a period of 80 months, or 

somewhat less than seven years. 

 

Table 4 illustrates the result of replicating the model (31) results on data derived from 

Weymar (1965): 

 

[INSERT TABLE 4 ABOUT HERE]  

 

The differences in the trend following variant model are due to minor manual smoothing 

of the coefficients done by Weymar, and the use of 18 rather than 20 intervals. The ai 

coefficients are reported in Appendix C. In the values obtained by Weymar, all but the last 

three are significant at 5%. In the reproduction, which uses 18 intervals instead of 20 due 

to lack of earlier price data, the last 4 coefficients are not significant. 

 

2.4.1.3 Generalized Least Squares Regression Estimates 

 

The R2 increases significantly to .945 and the Durbin-Watson coefficient is significantly 

better at .95, but still indicates serial correlation and possible misspecification. However, 
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the coefficient of determination is high and and the remaining misspecification is 

relatively minor. To remove the serial correlation in the residuals, we estimate the model 

using generalized least squares. An approximate value for the GLS estimates is obtained 

by transforming all variables using a first order autoregressive model for the residuals (see 

Weymar (1965) pg 213). For example, the price is transformed as: 

 

    

€ 

Pt
T = Pt − ρPt−1  (32) 

 

Where 

€ 

ρ  is the first-order autocorrelation coefficient of the residuals.  

 

Table 5 illustrates the result of incorporating the GLS transformations into model 18.1 

 

[INSERT TABLE 5 ABOUT HERE]  

 

With both trend-following and generalized least square transformations the Durbin 

Watson coefficient is 1.79 (Reproduced)/2.19 (Original) indicating that the residuals do 

not display serial correlation.  

 

2.4.2 Futures Price and Estimates 1952-1963 
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The actual term structure for the period September 1952 to December 1962 is depicted in 

Figure 613.  The spread between the actual 1st and 5th New York cocoa contracts and the 

estimated values from the basic model are reported in Figure 7.  The basic model 

reproduces the term structure with an R2 of  84%. The correlation between the first minus 

fifth spread is .93. There is a tendency of the model to overestimate the spread, which is 

due to a persistent spot price premium over the first contract that is on average 3 cents 

over the period 1952-1963. This premium would be bundled into the regression constant 

and not accounted for in the constructed estimate of futures prices. Attributing part of the 

constant estimate to a spot price premium over the first contract would have the beneficial 

effect of raising the estimated equilibrium price ratio, which is relatively low. 

 

[INSERT FIGURE 6 ABOUT HERE] 

 

[INSERT FIGURE 7 ABOUT HERE] 

 

There is an empirical spread in the current month/spot prices illustrated in Figure 8, with 

the average spot price generally being several cents higher than the near month contract 

even at expiration of the contract. An example of this is in September  1958. On the 10th, 

the spot price was 43.25 cents/lb and the September futures was 39.25 cents/lb. On the 

23rd,  the spot price of Accra beans was 42.35, and the contract expiring September 24th 

was 38.42 cents. On the following day, the spot price changed to 37.80 and the contract 

																																																								
13	This	futures	data	was	obtained	by	manual	transcription	from	the	New	York	Times	
business	section	on	microfiche.	The	entire	collection	from	1851-2002	of	New	York	
Times	daily	editions	is	available	for	subscription	at	
https://timesmachine.nytimes.com/browser.	
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traded between 36.75 and 38.05. There is a large premium to holding the spot beans over 

the futures contract. The premium does not appear to vary whether the term structure is in 

contango or backwardation. 

 

[INSERT FIGURE 8 ABOUT HERE] 

 

Figure 7 illustrates that there are four periods of contango and backwardation in the 

historical period, and that there is a smooth switch between the two regimes that occurs 

when the expected inventory ratio is approximately .42 (see Figure 3).  

 

The estimate for contracts in the new crop year are based only on approach to equilibrium 

reasoning, and leaves out the additional information that may be available to the market. 

In particular, the mid-year crop harvested in May and June, though only 10 to 15% 

typically of the total crop, may be indicative of the coming full year crop that starts in 

December. It may be possible to improve the model with a second inflection point starting 

around the mid-year.  

 

Nonetheless, the estimated model provides an excellent account of the behaviour of both 

spot and futures prices in the 1952-1962 time period.  

 

2.4.3 Actual and Estimated Spot Price 2009-2019 

 

Figure 9 displays the normalized Ivory Coast spot price and the expected inventory ratios 

from 2009-2019. The relative current inventory ratio is calculated as the relative value of 
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the current inventory ratio for a particular month in the time period. For example, the May 

2015 relative inventory ratio is the current inventory ratio for May 2015 divided by the 

mean of the current inventory ratio for every month of May in the sample. The relative 

current inventory ratio is intended to capture whether inventory is higher or lower at a 

particular point in time. This is difficult to discern with the seasonal oscillation of the 

values. 

 

[INSERT FIGURE 9 ABOUT HERE] 

 

The inventory behaviour is similar in predictability to the 1952-1963 time period, and the 

coefficient sums are reported in Table 6. The mean R2 from the individual regressions is 

.97 with a standard deviation of .02. The pattern of the coefficients has changed however, 

with the ch coefficients close to zero for all months.  

 

[INSERT TABLE 6 ABOUT HERE] 

 

Table 7 reports the values from estimating the models of equation 19 and 31 on 2009-

2019 spot price data. 

 

[INSERT TABLE 7 ABOUT HERE] 

 

The goodness-of-fit of the model is drastically reduced in the 2009-2019 time period. The 

highest R2 is obtained by a combination of EIU and ICCO estimates, with significant 
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values for the monthly changes (b1 and b2). However, the significance disappears as trend 

following is incorporated, and the variables are transformed for Generalized Least Square 

estimates. The model R2, however, substantially increases with the incorporated 

equilibrium price trend multiplier. The coefficients of the equilibrium price trend 

multiplier display a different pattern to the 1952-1963 time period. Recent coefficients 

(see Appendix D) are negative for approximately three years and then turn positive. Using  

CPI and PPI deflators instead of the Global Price Index of All Commodities further 

decreases the R2 of the model. 

 

Futures market estimates, which rely on the significance of the structural coefficients, are 

poor. Only the basic model is applicable, and estimates a 32% correlation between the 

actual market backwardation and the estimated market backwardation.  

 

2.5. Possible Explanations for Reduced Explanatory Power 

 

The structure of the cocoa physical market is much the same in the time period 2009 to 

2019 but the following appear to have changed: the quantity and ambiguity of inventory 

ratio estimates, the number of non-fundamental traders in the market, the availability of 

options trading, the movement of grinding capacity to production locations, the presence 

of market manipulation, and the general expansion of production worldwide. We examine 

each of these factors to identify which are likely of consequence. 

 

2.5.1 Options Trading and Expansion in Production 

 

89



	 	

First, the availability of options trading is unlikely to have a material impact except to 

increase the amount of speculation. Second, the expansion in production is unlikely to 

effect the model accuracy as the primary producers remain the same – the Ivory Coast, 

Ghana, and Brazil. Other additional production has tended to follow the same pattern as 

the primary producers. In addition, the production methods have not evolved. Cocoa is 

still harvested by individual small farmers with virtually no mechanization. 

 

2.5.2 Forecast Accuracy and Information Availability 

 

For 1952-1963, 83% of the variance in spot prices is explained by the estimate of the end-

of-crop year inventory ratio whereas only 35% is explainable by either the ICCO or EIU 

estimates. However, the standard deviation of the modern estimates (ICCO -.025 ; EIU, 

.014) is substantially better than the standard deviation of the historical estimates (.046). 

This discrepancy might be explained by the limited information available in the earlier 

time period. In the 1952-1963, the primary source of information was Gill and Duffus, the 

leading British cocoa dealer and broker. In 2009-2019, there are several forecast providers 

including the EIU and the ICCO. The single-source nature of the earlier end-of-crop year 

estimates may have increased the prediction value to market participants.  An alternative 

explanation may be the decrease in emphasis on fundamental values due to non-

fundamental based trading.  
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2.5.3 Market Manipulation 

 

Fourth, the market in the 2009-2019 period is rife with market manipulations, both by 

producers and traders as opposed to the 1952-1963 time period, although Weymar 

documents an instance of withholding by Brazil in 1954. It is possible that the market has 

better information in the modern period than in the historical period, but also possible that 

manipulations are easier to execute in a computerized environment.  

 

 In 2010, Armajaro executed a successful squeeze on the London Liffe Futures Market. In 

2015, and likely at other crop harvests, Ghanese bean smugglers managed to withhold a 

substantial portion of the harvest that became available in the Ivory Coast in the new crop 

year. Lastly, in the bull run of 2015/2016 trade sources indicate strong pressure by long 

trading firms on information forecast providers to increase the bearishness of their 

estimates.  

 

In July 2010, sixteen European cocoa trading organizations wrote to the London 

International Financial Futures Exchange (LIFFE) expressing their concerns about market 

manipulation. Armajaro had bought 250,000 tons worth of cocoa futures contracts, 

pushing their price to a 30-year record of £2,590 per tonne. The purchase was a very 

successful short squeeze on the market and resulted in LIFFE publishing a Commitment 

of Traders (COT) positions report for the London market. The COT had formerly only 

been available in the United States. The effect of this squeeze on the data is that the 

market was placed into heavy backwardation that was completely unrelated to underlying 
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fundamental inventory factors. “A major concern on the London market has been the 

inverted futures price structure (“backwardation”), and in particular, the very large 

premium of the July 2010 contract (and to a lesser extent, the September contract) over the 

December contract. “(ICCO Monthly Review (June, 2010)).  

 

Dummying out the 2009/2010 year and using the ICCO estimates results in an increase in 

the R2 to .50, indicating that this event is affecting the model performance. Using the EIU 

estimates does not result in any change. 

 

Another confusion generating factor is the behaviour of the cocoa bean producers in the 

Ivory Coast and Ghana. For example, in the September 2015 Monthly Review of the 

Cocoa Market, the ICCO notes:  

 

“Conversely, Ghana, the world’ s second largest cocoa producing country, surprised most 

cocoa analysts by experiencing a sharp fall in its cocoa production, from 896,917 tonnes 

in the 2013/2014 season, to 735,000 tonnes following a very poor main crop, according to 

data released by officials in the country. The farm-gate price was increased by 22% to 

6,720 cedis per tonne (US$1,759 per tonne) for the 2015/2016 season, from 5,600 cedis 

per tonne (US$1,465) paid in the just-ended 2014/2015 season.” 

 

The ICCO also notes for the Ivory Coast “For the 2015/2016 season, the Government has 

set a farm-gate price of 1,000 CFA francs (US$ 1.67) per kilogramme, representing an 

18% increase, compared with 850 CF A francs per kilogramme set for the 2014/2015 crop 

season.” 
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In the following monthly review, the ICCO notes: 

 

“The 2015/2016 cocoa harvest started very strongly in West Africa, in contrast to the 

views of some analysts who had anticipated a large supply deficit for the current crop 

year. Indeed, news agency data estimated that total cocoa arrivals at Ivorian ports as at 1 

November had reached approximately 280,000 tonnes since the start of the current cocoa 

season, being approximately 64,000 tonnes higher compared with the corresponding 

period for the previous year. In Ghana, cocoa purchases recorded by the Ghana Cocoa 

Board totalled 192,128 tonnes as at 22 October. This represented a 118% increase 

compared with the same period for the previous year. “ 

 

Clearly, what is happening is the Ghana bean smugglers are withholding inventory from 

the market in order to get a better price either in the New Year, in the Ivory Coast, or both. 

The effect of this behaviour is to make the seasonal inventory regressions less reliable as 

inventory that should be allocated to September of the current crop year is instead 

allocated to October in the following crop year. The amount of the beans withheld or 

smuggled is in the hundreds of thousands of tonnes, more than adequate to move the 

market. 

 

Dummying out the 2014/2015 or the 2015/206 crop years with either the  ICCO or EU 

estimates results in a similar or decreased R2 for the model. 
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These types of market manipulations are no doubt ongoing, and may serve to confound 

the values of fundamental variables on which predictions are made. 

 

2.5.4 Non-Fundamental Based Trading 

 

Finally, and probably most importantly, the 2009-2019 market appears to have a 

significant component of non-fundamental based trading. These traders include trend 

followers like the Turtle Traders, momentum traders, Commodity Index Funds, and 

several other types. 

 

An approximate measure of this trading is the variance explainable by our fundamental 

based model versus our model incorporating equilibrium price trend following.  The 

model with trend following is designed to incorporate the changes in equilibrium price 

estimations based on past price trends, but will also capture other types of trading that are 

using historical price changes as input. The difference in R2 values for the models 

incorporating trend following versus the basic models are 11% in the 1952-1963 time 

period, but 58% for the 2009-2019 time period. 

 

Anecdotal evidence supports the prevalence of technical trading in the cocoa market. After 

receiving his doctorate, Weymar went on to trade cocoa successfully at Nabisco using his 

fundamental-based model.  Subsequently, Weymar raised five million in equity capital 

(including 150,000 from Paul Samuelson) and formed Commodities Corporation. To his 

surprise, Weymar discovered that  after two years of trading, the fundamental model was 

not making economically valuable price predictions. The firm then designed and applied a 
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hybrid trend-following system designed by Paul Vannerson which is still in use today at 

Goldman Sachs. From subsequent historical results, it appears that Commodities 

Corporation performed the strongest when trend following and fundamental models 

suggested the same trading strategy. 

 

In addition, Burghardt (2010) compares the performance of a subset of trend following 

Commodity Trading Advisors with the overall performance of the Newedge CTA Index, 

and found a correlation of .97 over the period 2000-2009. This result indicates that 

virtually all CTA based trading, a significant component of general commodity trading, 

utilized trend following rather than fundamental analysis.  

 

2.6. Conclusion 

 

We have compared the performance of a Supply of Storage based commodity price and 

inventory model in the cocoa markets of 1952-1963 and 2009-2019. The performance of 

the model is exceptional in the earlier period, but poor in the more recent time frame.  

 

Several possible sources of the model error are investigated including market 

manipulation, information forecast quality, and the relative degree of non-fundamental 

based trading. There is some evidence that manipulation is making prices unrelated to 

fundamentals, but the most likely source of the discrepancy appears to be extensive 

trading based on technical rather than fundamental factors. Market commentary points to 

significant difficulty for hedge funds operating in the commodity space, with two-thirds of 
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funds closing their doors in the period 2012-201814 which may be related with the plethora 

of technical trading strategies. 

 

The comparison of the modern and historical periods raises an interesting question about 

the effectiveness of the cocoa market in pricing cocoa beans. The price in the modern 

period is efficient in the sense of being less predictable, but at the same time the market 

price is less related to the fundamental inventory ratio and inventory ratio estimates. Are 

the technical traders assisting or confounding price discovery in the cocoa marketplace? 

 

																																																								
14	Schaefer	K.,	2018,	Why	Commodity	Hedge	Fund	Managers	Are	Disappearing	
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Appendix A – The modern rational expectations competitive storage (MRECS) 

model 

 

A.1 Model History 

 

Williams (1936) provides the first analysis of the optimal annual carryover in agricultural 

commodities and illustrates a pre-computer, graphical method of finding the optimal 

amount of grain to store from harvest to harvest given a surplus, and an estimate of future 

production. 

 

Gustafson (1952) revisits the problem and illustrates how the carryover problem for 

grains, formulated as a Bellman Equation, can be solved using dynamic programming. 

The solution consistes of optimal storage rules that determine the current year carryover 

as a function of the carry-in from the previous year and current production. Gustafson 

illustrates that there was a single optimal solution that involved the same rule being 

applied each year.  

 

Gardner (1979) improves on  Gustafson by allowing for a flexible supply response to 

price. Gustafson justifies the omission of this condition by the historical observation that 

variability in yield per acre amounted for the vast majority of the variation in yearly 

output.  Williams and Wright (1991) provide a detailed review of Gardner, and source 

code routines that implement the dynamic programming problem. In addition Williams 
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and Wright examine the implications of public interventions including floor price and 

public storage schemes. 

 

Deaton and Laroque (1992, 1995, 1996), noting the lack of empirical testing of the 

theory, provide a detailed test with 13 different commodities. Their conclusion is that the 

theory is not capable of explaining all of the empirical evidence, in particular the high 

annual autocorrelation visible empirically in commodity prices. 

 

Miranda and Rui (1999, unpublished) illustrate that combining the modern rational 

expectations competitive storage model with a traditional supply of storage formulation 

can explain the observed autocorellation of  commodity prices. The conclusions are 

drawn from using price data alone, as high quality inventory data was not obtainable. 

They suggest that more research into the microstructure foundation of the behaviour of 

inventory at low levels is needed. 

 

Peterson and Tomek (2005) create a monthly simulation of the US corn market based on 

Deaton and Laroque, and find that despite including an explicit convenience yield, the 

high levels of autocorellation in the corn market were not reproducible. This is an 

interesting finding in light of the Miranda (1999) result and possibly results from 

estimating the model using inventory rather than price data. 

 

Cafiero (2011) re-estimates the D&L  model with a finer grid and some minor 

adjustments to the slopes of the inverse demand function. The re-estimation accurately 
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reproduces the autocorellation of the empirical commodity prices. However, Gouel and 

Legrand (2017) report that the Cafiero modifications result in the model always 

remaining in the non-stock–out state, questioning the usefulness of a two-state model in 

which one state is never realized. Gouel and Legrand instead estimate the model after 

detrending the commodity price series and find autocorellations in line with empirical 

measurements.  

 

A.2 The MRECS Model under the constraints of the Cocoa Market. 

 

 

Since production decisions take several years to implement in the cocoa market, the 

MRECS model can be represented  without an elastic supply response as (Gardner(1979) 

pp 15): 

 

    

€ 

* (X1 + I0) =∏ maxE [Pt * (Xt + It−1 − It) −G(It)]
t=1

T

∑ (
1

(1+ r)t )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (A.1) 

 

where   

€ 

*∏ is the optimal profit,   

€ 

Xt  is the random production in year t,     

€ 

It−1  are beginning 

stocks (carry-in),   

€ 

It are carryover stocks at the end of the year,   

€ 

Pt  is the market clearing 

price for the year,   

€ 

G is the cost function for storage, and r is the discount rate. 

 

The optimization problem can be stated as follows: given a starting carry-in inventory I0, 

and production X1 in year 1, what is the optimal carryover each year from the current 

107



	 	

year to the horizon year T that maximizes profit. Gardner states the model in more 

general terms, with a value function instead of revenue and a welfare function for profit, 

but otherwise the specification above is the same. 

 

This model excludes “working stocks” from the definition of inventory. Inventory is only 

composed of speculative or discretionary stocks. Thus, a “stockout” in this model is not 

really a complete stockout, as plant and machinery can still be kept running with working 

stocks. This creates some ambiguity as to the size of non-speculative stocks, as it assumes 

that manufacturers have control of inventory when inventory is run down to the working 

stock level. If that were not the case, and speculators instead had cornered the market, 

then manufacturers would be obliged to obtain the stock necessary to keep machinery 

running on the open market. This would have the effect of increasing the portion of 

inventory that behaved in a different manner to purely speculative stocks. In addition, 

stocks at lower aggregate inventory levels function in certain market situations to provide 

“cost coverage”, making their behaviour non-speculative. There is strong empirical 

support for the non-speculative behaviour of inventory at low levels as there has never 

been a stockout of corn in recorded history in the United States (though the stocks were 

very small in 1934 and 1936)15. If stocks at low levels were purely speculative, then all 

stock would be consumed, and the industry would start over the next year with zero 

stocks.  

 

																																																								
15	From	Peterson	and	Tomek	(2005)	
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The Supply of Storage model in the cocoa market states that the expected price change 

over a small interval where inventory does not change is a function of the inventory level 

at the start of the interval. A reasonable approximation is: 

 

    

€ 

ln(Pt
*h +1

Pt
*h ) = a +bln It

*h
 (A.2) 

 

where 

€ 

Pt
*hand     

€ 

It
*h  are the expected price and expected inventory at the beginning of 

interval h. 

 

The SOS model avoids the artificial distinction between “working” and “speculative” 

stocks, and is designed to allow stockholding at a loss – the “convenience” yield, which 

arises both from insurance against plant shutdown and insurance against cost coverage 

(see Weymar (1965) pp, 105-110). 

 

The MRECS model was designed to apply to annual carryover, but the time interval can 

be changed to monthly intervals. Using monthly time intervals, the MRECS model will 

maximize, over several time periods, the discounted revenue minus the total storage cost. 

This implies that more inventory will be stored when the discounted expected price in the 

next period is greater than the current price. In other words, the expected price change in 

the following period must be greater if the starting level of inventory is greater. The latter 

statement is consistent with the SOS model when expected price change is positive and 

speculative storing is minimal as in the cocoa market. When the expected price change is 
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negative, all speculative stocks are consumed and we are in the regime of “working 

stocks”, which is not covered by the MRECS model. In the cocoa market, which is often 

in backwardation, there is an advantage to using the SOS model which allows for both 

regimes.  

 

The general SOS model implies an increase in storage costs when storage capacity is 

taxed. Oversupply in the grains market can result in lack of convergence between cash 

and futures prices in the wheat market (Seamon (2010)). The MRECS model can 

accommodate oversupply costs with an appropriate storage cost function G. In the cocoa 

market, overproduction has less of an impact as the storage industry is not sufficiently 

organized to register the marginal effects of taxed storage capacity. For example, in 2017, 

when an unexpectedly large crop materialized, the excess beans sat in trucks and became 

rotten16. In the functional form chosen in A.2, there is no provision for increased costs 

when storage capacity is taxed. 

 

 

 

																																																								
16	Gro	Intelligence	(2017),”	Cocoa	Prices	Turn	Bitter	in	Ivory	Coast”,	
https://www.gro-intelligence.com/insights/articles/ivory-coast-cocoa-prices	
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Appendix B. How to Estimate the Traditional Model from Futures Prices Only 

(Optional Appendix) 

 

An alternative model can estimate the same coefficients in the spot price model but using 

only the futures data. This assumes that the futures price is a good estimate of the spot 

price or differs by a roughly constant premium from the expected spot price. 

 

Equation 19 can be estimated directly for contracts up to the September horizon: 

 

    

€ 

ln(Pt
*ht

Pt
) = a + b1ht +b2 chh= 0

ht −1
∑ + ( dh )lnYth= 0

ht −1
∑ + ( eh )lnYt

*ht

h= 0

ht −1
∑⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

+ et  (24) 

 

 

For the contracts after the horizon month, we can use the return to equilibrium argument 

with a single year. 

 

Taking logs of equation 21,  

 

    

€ 

ln(Yt
*2 ) = g lnYt

*1 + (1− g)lnY *s
 (25) 

 

Substituting into equation 24 we obtain: 
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€ 

ln(Pt
*ht

Pt
) = b2 (1− g)Y *s + b1ht +b2 chh= 0

ht −1
∑ + ( dh )Yt

1*
h= 0

ht −1
∑⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 

+b2 g ( eh )lnYt
1*

h= 0

ht −1
∑⎡ ⎣ ⎢ 

⎤ 
⎦ ⎥ 

+ et  (26) 

 

These equations can be estimated with the futures data from 1952-1963 to get an alternate 

estimate of the coefficients b1, b2, g, and     

€ 

Y *s . Embedded in the constant term would be 

any risk premium (which is observed in the spot to current month spread).  
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Appendix C. Equilibrium Price Change Multiplier coefficient estimates 1953-1962. 

 

[INSERT TABLE C1 ABOUT HERE] 
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Appendix D. Equilibrium Price Change Multiplier coefficient estimates 2009-2019. 

 

[INSERT TABLE C2 ABOUT HERE] 
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Figure	1	–	Supply	of	Storage	Curve	(Working,1933)	

	

This	 figure	 depicts	 the	 relationship	 between	 the	 July-September	 spread	 and	

wheat	stocks	on	July	1st	in	the	1930’s.	
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Figure	2	–	Supply	of	Storage	(Weymar,1966)	

	
The	figure	reproduced	above	is	from	Weymar	(1966).	
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Figure	3	–	Price	Change,	Current	and	Year-End	estim
ated	inventory	ratios	from

	Septem
ber	1952-August	1963	

	
The	figure	is	reproduced	from

	data	in	W
eym

ar	(1966).	The	change	from
	the	equilibrium

	price	is	depicted	along	w
ith	the	current	inventory	ratio	and	the	expected	horizon	

inventory	ratio.	There	is	a	strong	inverse	correlation	betw
een	the	inventory	ratios	and	the	price	change.	
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Figure	4	–	Price	Change,	Current	and	Year-End	estim
ated	inventory	ratios	from

	October	2009-Septem
ber	2019	

	
This	figure	reports	the	deflated	Ivory	Coast	spot	price	from

	2009	to	2019	along	w
ith	the	inventory	coverage	ratios	estim

ated	by	the	Econom
ist	Intelligence	Unit	and	the	

International	Cocoa	Organization.	The	current	inventory	ratio	is	calculated	from
	data	sources	from

	CRA	Services	Ltd.	There	is	an	inverse	correlation	betw
een	the	inventory	

ratios	and	the	price	change,	but	significant	disagreem
ent	in	the	estim

ated	inventory	ratios.	
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Figure	5	–	Cocoa	Real	Spot	Price	and	Model	Estimates	September	1959	to	October	1963	

	

This	figure	illustrates	the	cocoa	real	deflated	price,	the	basic	model	calibration	estimate	and	the	trend	following	estimate	from	September		1952	to	
October	1963.	
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Figure	6	–	Futures	Term	Structure	September	1959	to	September	1962	

	
This	figure	illustrates	the	actual	cocoa	term	structure	on	a	monthly	basis	from	September		1952	to	September	1962.	
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Figure	7	–	Futures	Term	Structure	Spread	September	1952	to	December	1962	

	
This	figure	reports		the	spread	between	the	first	and	fifth	New	York	cocoa	futures	contracts	on		a	monthly	basis	from	September		1952	to	September	
1959.	
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Figure	8	–	Spot	and	Futures	Closing	Price	September		1952	to	December	1962	

	
This	figure	illustrates	the	spot	accra	deflated	price	and	the	deflated	futures	closing	price	from	September		1952	to	December	1962.		
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Figure	9	–	Ivory	Coast	Spot	P
rice	(norm

alized)	and	Inventory	R
atios	2009-2019	

	
T
his	figure	illustrates	norm

alized	Ivory	Coast	spot	price,	the	E
conom

ist	Intelligence	U
nit	expected	inventory	ratio,	the	International	Cocoa	

O
rganization	expected	inventory	ratio,	and	the	relative	current	inventory	ratio	over	the	period	2009

-2019.	
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Table 1 – Seasonal Sums of Inventory Ratio Coefficients from the 
month in question until the September horizon 1952-1963. 
 ∑ch ∑dh ∑eh 
September 1.2 5.479 4.879 
October 0.783 4.189 5.951 
November 0.595 3.583 5.797 
December 0.578 3.368 5.228 
January 0.305 3.352 4.515 
February 0.16 2.616 4.231 
March -0.223 3.706 2.336 
April -0.174 2.914 2.052 
May -0.038 2.194 1.91 
June -0.025 2.416 0.709 
July 0 1.603 0.397 
August 0 1 0 
This table shows the seasonal regression coefficients generated by 
regressing the monthly inventory on the beginning and estimated 
ending values for each month: 

    

€ 

ln(Y *h ) = ch + dh lnYt + eh lnYt
*ht + et  

The sums, when combined with the current inventory ratio and the 
inventory ratio at the end of the horizon interval, capture the inventory 
behaviour over the full interval. The mean R2 from the individual 
regressions is .95 with a standard deviation of .029. 
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Table 2 – Seasonal R
egression C

oefficient Sum
s 1952-1963 
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10.00 

1.25 
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5.91 
This table depicts the sum

 of the inventory regression coefficients that allow
 the estim

ation of the inventory in the intervening m
onths for the period 1952-1963. The values in Panel 2 are constant, as 

the starting point is alw
ays the end of the current crop year. 
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Table 3 – Simple Model Replication Results 
 a     

€ 

b1      

€ 

b2      

€ 

b3      

€ 

R2  F DW 
Weymar’s Values 
(Original) 

.761** .016** .0368** .866** .843 229 .3459 

With Correction 
(Reproduction) 

.7482** .0188** .0391** .8548** .8467 236 .34 

These are the results from estimating the following model: 

    

€ 

ln( P 
Pt

) = a +b1ht + b2Zt + b3 lnY *ht + et
 

The reproduced results are in close agreement with the original values obtained by Weymar.  Differences 
are attributed to minor errors in transcribing the data from the thesis. 
**indicates significance at the 5% level
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Table 4 – Trend Following Model Replication Results 
 a     

€ 

b1      

€ 

b2      

€ 

b3      

€ 

R2  F DW 
With trend following 
(Original) 

.440** .0175** .0289** .455** .948 86 1.05 

With trend following 
(Reproduction) 

.4844** 0.0181*
* 

0.0305** 0.5043** .945 91.6 .95 

These are the results from estimating the following model with an equilibrium price multiplier based on 
the long term cocoa price trend: 

    

€ 

ln( P 
Pt

) = a +b1ht + b2Zt + b3 lnY *ht + b4 ai
ΔP
P

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ii= 0

19

∑ + et
  

See Appendix C for the ai estimates. 
**indicates significance at the 5% level
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Table 5 – Full Model Replication Results 
 a     

€ 

b1      

€ 

b2      

€ 

b3      

€ 

R2  F DW 
With Generalized 
Least Squares and 
trend (Original) 

.265** .0092** .0209** .524** .85 183 2.19 

With Generalized 
Least Squares and 
trend (Reproduction) 

.52** .0114** .0232** .5462** .87 34.5 1.79 

These are the results from estimating the following model with all variables transformed by a first order 
autoregressive model for the residuals (see eqn 32): 
: 

    

€ 

ln( P 
Pt

) = a +b1ht + b2Zt + b3 lnY *ht + b4 ai
ΔP
P

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ii= 0

19

∑ + et
  

**indicates significance at the 5% level
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Table 6 – Seasonal Sums of Inventory Ratio Coefficients from the 
month in question until the September horizon 2009-2019. 
 ∑ch ∑dh ∑eh 
September -0.011 2.350 5.895 
October 0.014 3.417 4.371 
November 0.011 3.869 3.808 
December 0.021 5.429 2.980 
January -0.032 4.981 2.913 
February -0.044 4.393 2.521 
March -0.040 3.667 2.139 
April -0.011 3.383 1.547 
May -0.005 2.696 1.279 
June -0.005 2.420 0.669 
July -0.002 1.762 0.296 
August 0.000 1.000 0.000 
This table shows the seasonal regression coefficients generated by 
regressing the monthly inventory on the beginning and estimated 
ending values for each month: 

    

€ 

ln(Y *h ) = ch + dh lnYt + eh lnYt
*ht + et  

The sums, when combined with the current inventory ratio and the 
inventory ratio at the end of the horizon interval, capture the inventory 
behaviour over the full interval. The mean R2 from the individual 
regressions is .97 with a standard deviation of .02 
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Table 7 – Model Calibration Results 
 a     

€ 

b1      

€ 

b2      

€ 

b3      

€ 

R2  F DW 
ICCO values -3.88 ** 0.0135 0.0297 1.0406 ** .348 20.64 .1229 
EIU values -6.677 ** -0.0426  . -0.0712  1.8053 ** .37 22.7 .0954 
ICCO and EU -3.8268 

** 
0.0433 
** 

0.0814 ** 1.0326 ** . 3727 22.97 .14 

With trend following  .7869** 0.004 0. 0044  -0.2456 
** 

.94 78.8 1.2 

With Generalized 
Least Squares and 
trend  

.1696 .0003 .0001 -0.0771  .88 34 1.67 

These are the results from estimating the following model on 2009-2019 deflated Ivory Coast cocoa spot 
price data: 

    

€ 

ln( P 
Pt

) = a +b1ht + b2Zt + b3 lnY *ht + b4 ai
ΔP
P

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ii= 0

19

∑ + et
 

The values with trend following incorporate the b4 term. The values with Generalized Least Squares are 
obtained by transforming the variables using the first order autoregressive coefficient on the residuals. 
Estimates from the International Cocoa Organization (ICCO) and the Economist Intelligence Unit (EIU) 
are contrasted. See Appendix D for the ai estimates. 
**indicates significance at the 5% level
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Table C1 – Coefficients of price changes 
Period Original  Reproduced 
1 0.056** 0.046** 
2 0.068** 0.062** 
3 0.072** 0.088** 
4 0.076** 0.085** 
5 0.078** 0.085** 
6 0.058** 0.070** 
7 0.065** 0.071** 
8 0.076** 0.078** 
9 0.07** 0.067** 
10 0.052** 0.046** 
11 0.068** 0.069** 
12 0.062** 0.076** 
13 0.053** 0.053** 
14 0.041** 0.043** 
15 0.03** 0.023 
16 0.031** 0.023 
17 0.019** 0.004 
18 0.011 0.011 
19 0.008  
20 0.004  
This table reports the coefficients of the price changes over 20 four month 
time periods in the original model, and 18 in the reproduced model. The 
coefficients are normalized to sum to unity using a scaling factor. 
 
** indicates significance at the 5% level 
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Table C2 – Coefficients of price changes 
Period Value 
1 -0.138** 
2 -0.092** 
3 -0.058** 
4 -0.069** 
5 -0.073** 
6 -0.049** 
7 -0.057** 
8 -0.051** 
9 0.007** 
10 0.088** 
11 0.153** 
12 0.226** 
13 0.277** 
14 0.255** 
15 0.222** 
16 0.172** 
17 0.103** 
18 0.084** 
This table reports the coefficients of the price changes over 18 
four month time periods. The coefficients are normalized to sum 
to unity using a scaling factor. 
 
** indicates significance at the 5% level 
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Chapter 3 

 

The performance of machine learning in modeling commodity price co-

movement and predicting cocoa prices. 

 

 

 

Abstract 

 

In Chapter 2 of this thesis, we report that cocoa price movements in the recent time 

period 2009-2019 are no longer explainable by a fundamental, inventory-ratio based 

model that worked extremely well in calculating commodity prices during the period 

1952-1962.  This reduced explanatory power is conjectured to result from the trading 

activity of large groups of momentum and index traders, whose presence is indicated 

in the modern time period by the Commitments of Traders report of the Commodity 

Futures Trading Commission. These groups trade multiple commodities 

simultaneously, the momentum traders going long and short different groups of 

commodities, and the index traders rebalancing their portfolios to maintain target 

percentages of each commodity. The effect of these multi-commodity trades is 

hypothesized to contribute to the reduced explanatory power of the Weymar model of 

Chapter 2, by making prices less dependent on fundamental measurements like 

inventory ratios and resulting in complex multi-commodity price change behaviour.  

Machine learning was chosen to investigate this hypothesis because of its ability to 

build multivariate, non-linear probability distributions, and also for machine 

learning’s spectacular success in other fields including recommender systems, speech 
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recognition, and image recognition. In particular the Recursive Boltzmann Machine 

(RBM) architecture has been used to create recommender systems that won the 

Netflix prize for the largest improvement over the internal Netflix recommender 

system. The RBM architecture is used in this paper to illustrate the co-movement of 

commodity prices, supporting the assertion that momentum and index traders are 

affecting price movements. A more advanced architecture, the Recurrent Neural 

Network Recursive Boltzmann Machine (RNN_RBM) is used to attempt a very 

difficult problem in finance, predicting tomorrow’s price. This attempt is not 

successful for several possible reasons including the daily granularity being too fine, 

the large size of the search space with continuous variable inputs, and the absence of 

detailed worldwide inventory-ratio measurements or other relevant information. The 

results may also reflect the efficiency of modern commodity markets. Future work 

with the RNN_RBM might focus on the less difficult problem of modeling financial 

structures with a natural, contemporaneous sequence such as the sequential contracts 

in the term structures of commodity prices. Finally, we provide an illustration of 

fractional differencing, a new machine learning technique from Lopez de Prado with 

extensive potential applications in Finance. Due to the difficulty in implementing 

neural network systems, full source code is provided as is common in the machine 

learning literature. 

 

3.1. Introduction 

 

In my second paper for this thesis, I illustrate that a model based on inventory ratios 

for the cocoa market has substantially reduced explanatory power in the period 2009-

2019, when compared with the period 1952-1963. One major difference is that it is 
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unlikely that the earlier historical period had index traders or complex multi-

commodity momentum strategies due to the computational difficulty.  

 

Recent studies have illustrated that a large flow of index funds has entered into 

commodity markets since 2000 (Henderson (2015), Tang and Xiong (2012) , Main et 

al (2018)). In addition, the returns of a large component of traders, Commodity 

Trading Advisors, are closely related to the returns from momentum strategies 

(Bhardwaj et al (2014), Bollen et al (2019)).  These heterogeneous traders have been 

accused of drawing prices away from fundamental measurements like inventory and 

causing price bubbles (Shu (2009)). However, there is substantial debate (Irwin and 

Sanders (2011)) 

 

Traders in the commodity markets can now be categorized into three groups: 

commercial (dealers and processors), non-commercial (speculators, including 

momentum traders), and index traders. The Supplemental Commitment of Traders 

report published since 2006 provides a breakdown into these groups for US 

Commodity open interest. In 2020, the open interest totals of each group are of the 

same magnitude (i.e. (1:2:1 for Non-Commercial:Commercial:Index)), indicating that 

each group has a large impact on price expectations and changes. In other words, 25% 

of trading is Non-Commercial Momentum Trading, 50% is industry trading, and 25% 

is index trading. There are subtle interactions between the groups. Kang et al (2019) 

report that commercial traders provide liquidity for impatient speculative traders.  

 

Fundamental traders will tend to base their trading on fundamental quantities like 

inventory ratios. However, as illustrated by Adhikari et al (2018) there is a statistical 
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relationship between the inventories of closely related products and the price changes 

of a given commodity. For instance, soybean traders pay attention to the inventories 

of corn and wheat, as the same land can be used to produce the three grains. 

 

Momentum traders are heterogeneous in regard to time frame (ranging from HFT to 

annual), but typically will short a selection of poorly performing commodities and go 

long a selection of strongly performing commodities. This means that the trading 

decisions are made over information on several commodities instead of a single 

commodity.  

 

Index traders will rebalance their funds to maintain a particular allocation of market 

value to each component. In addition, the flow of capital into or out of the funds will 

cause a trading decision across a large number of commodities simultaneously. Index 

traders in 2006 tended to be substantially net long, but in 2020, the ratio of long to 

short positions is close to 2:1 (CFTC 2020 Commitment of Traders Supplemental 

Report). 

 

Thus, the information universe that traders are using is not limited to data on a single 

commodity. Fundamental traders will use inventory of closely related commodities. 

Momentum traders will use returns on perhaps up to 10 commodities over varying 

time frames. Index traders may use price changes on the entire universe of 

approximately 40 trading commodities. To analyze this situation, it is necessary to 

model a multivariate probability distribution for commodity prices, with possible non-

linear interactions between groups of commodity prices. This is possible with 
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Machine Learning, in particular Recursive Boltzmann Machine architectures, but 

difficult with traditional linear regression techniques. 

 

Recently, an intense interest has been placed on using Machine Learning in Finance, 

due to the spectacular success of ML in other fields. In particular, RBM architectures 

won the Netflix prize, and are used throughout the industry by large on-line 

marketplaces such as Amazon or Ebay. The phenomenal jump in speech recognition 

accuracy, demonstrated by products such as Amazon’s Alexa, are driven by advanced 

Recurrent Neural Networks. Alpha-Go, a reinforcement-based learning neural 

network, recently defeated 18-time world champion Lee Sedol. The most recent 

success is in protein folding by AlphaFold, a network from Deep Mind, the inventors 

of Alpha Go1. See Appendix A for a discussion of the advantages and disadvantages 

of Machine Learning in comparison with traditional econometric tools. 

 

In single time series forecasting, after comparing the post-sample accuracy of popular 

ML methods including multi-layer perceptrons and recurrent neural networks with 

eight traditional statistical ones including ARIMA and Comb methods, Makridikakis 

et al (2018) finds that the former are dominated by the latter across both accuracy 

measures used and for all forecasting horizons examined. However, Makridikakis 

only examines the single time series case. 

 

In a multi-factor environment, Li (2019) reports that when both text features and 

financial features are utilized, more accurate crude oil price forecasts are possible. 

																																																								
1	AlphaFold,	using	AI	for	scientific	discovery,	
https://www.deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-
discovery	
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Sirignano (2019) using a Deep Learning system indicates “The universal model --- 

trained on data from all stocks --- outperforms, in terms of out-of-sample prediction 

accuracy, asset-specific linear and nonlinear models trained on time series of any 

given stock”. Zhao et al (2017) uses a deep network model, stacked denoising 

encoders, to model the nonlinear and complex relationships of oil price with its 

factors. Using 198 exogenous variables, Zhao et al report more accurate crude oil 

price forecasts. Ghodussi et al. (2019) provide a review of machine learning in 

finance and determine that support vector machines, artificial neural networks, and 

genetic algorithms are among the most popular techniques used in energy economics 

papers. Shah et al (2019) in a review also indicate that  “Application of machine 

learning techniques and other algorithms for stock price analysis and forecasting is an 

area that shows great promise” From the literature, Machine learning appears to 

particularly effective when the non-linear relationships between numerous time series 

are taken into account. 

 

In this paper, we choose the Restricted Boltzmann Machine (RBM) architecture to 

analyze commodity prices and the Recurrent Neural Network Restricted Boltzmann 

Machine (RNN_RBM) to forecast the cocoa price. The RBM and RNN_RBM models 

are selected because of the evidence in the literature that ML approaches are capable 

of forecasting security prices, the effectiveness and widespread use of the RBM 

architecture in recommender systems, the usage of the RBM as a feature extractor in 

classification systems and because of the relative simplicity and transparency of the 

RBM.  
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Several studies have incorporated the RBM as part of a larger classification system. 

Assis et al (2018), using a RBM as a feature extractor and a support vector machine 

(SVM) as a classifier, illustrate that results in identifying stock market trends are 

better with the combined architecture than with a SVM alone. Liang (2017) et al also 

find improved performance using the features extracted by the RBM in conjunction 

with SVM, random-forest, or logistic regression classifiers. 

 

A recommender architecture is useful because the system can be trained, for instance, 

by showing movie ratings from a large number of users. From the ratings, the network 

builds a set of hidden feature detectors. Then, when a new user is presented to the 

system with an incomplete set of  ratings, the system will fill in the missing ratings  

thus making recommendations. In a similar manner, an RBM architecture can be 

trained on price changes from a large selection of the commodity universe and then 

queried to find out whether commodities tend to change in price at the same time. 

 

In this paper, an RBM is utilized to analyze a binary matrix encoding the co-

movement of changes in monthly commodity prices. Each absolute commodity price 

change greater than a certain percentage amount is encoded as a 1, and the lesser price 

changes as zero. Cross-validation of the RBM results indicate that the groups of 

commodity prices tend to change together. 

 

The RNN_RBM combines a Recurrent Neural Network with a RBM to allow 

sequencing of multivariate time series, and one-step-ahead predictions. In essence, the 

RBM recognizes features in multiple time series, and the RNN learns the probability 

of each feature following or preceding another feature. This architecture has been 
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successfully used in areas diverse as polyphonic music transcription (Boulanger-

Lewandowski (2012), forecasting cellular data traffic (Bäärnhielm, A. (2017)), and 

predicting human motion (Taylor et al (2007)). The RNN_RBM has also been used to 

predict predict the trend of stock prices by focusing on news events with long-term 

effects (Yoshihara et al (2014). Zhang (2015) reports that the RNN_RBM effectively 

incorporates 10-K report information into trend predictions but does not investigate 

the transaction cost, slippage, and borrowing costs needed to implement a real world 

trading strategy. 

 

We use a RNN_RBM to estimate the continuous multivariate distribution of cocoa 

prices, cocoa inventory, coffee prices, coffee inventory, and series representative of 

the information set of momentum and index traders. The multivariate distribution is 

then used to make one-day-ahead predictions for cocoa prices. This is a very difficult 

problem and the results are not superior to a baseline prediction of tomorrow’s price 

as today’s price, which may simply be a reflection of the efficiency of modern 

commodity markets. A number of potential issues with the model are highlighted but 

we suggest that the RNN_RBM would be better utilized in studying the term structure 

of multiple commodities, a problem that has a natural sequence in the order of the 

futures contracts, and does not require predicting the future. 

 

 

3.2. Neural Network Theory 

 

3.2.1 The Intuition behind Neural Networks 
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One of the simplest useful forms of a neural network is a two neuron perceptron that 

transforms input X into output Y with the following equation: 

 

    

€ 

y =σ(b2 + w2σ (b1 + w1x))  (1) 

 

The input x is multiplied by a weight w1 and added to a bias b1. This amount is fed 

through a non-linear activation function 

€ 

σ , multiplied by weight w2 ,added to bias b2 

and fed through the same activation function. With a set of training examples 

consisting of a loss function, a set of inputs, and a set of correct outputs, the network 

can be iteratively trained by adjusting the weights for each separate input. The 

adjustments to the weights are controlled by a small learning rate. A typical loss 

function is the squared error of the correct value minus the output. First, the partial 

derivatives of the loss function to each of the weights and biases are determined. In 

simple networks these can be calculated in closed form and in more complicated 

networks the partial derivatives can be approximated numerically. Then, for each 

input in the training set, each of the weights and biases are adjusted by a small amount 

to reduce the squared error. This structure allows the system to arbitrarily partition the 

input space. Yadav(2016) provides a detailed example of partitioning two concentric 

circles of data points, a task impossible with linear classification systems.  

 

A Recursive Boltzmann Machine (Hinton (2010) utilizes neurons in a two layer 

structure. The hidden layer is composed of feature detectors, and each hidden neuron 

is associated with the probability that a particular input matches a particular feature. 

In the context of movie recommendations, a RBM recommender system is trained by 

feeding the network a large number of movie ratings from a large number of users. 
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The hidden nodes or neurons serve as feature extractors, in a similar manner to how 

Principal Components Analysis selects a smaller number of components to 

approximate a vector space (see Bu et al (2015)). These hidden nodes are effectively 

trained to represent abstract categories like Science Fiction, Adventure, or Crime 

Drama. After the system is trained, a partial new set of ratings from a new user are 

input into the system, and the RBM reconstructs an estimated complete set of ratings 

from its internal probability distribution. The new ratings for the previously unrated 

movies are sorted and become the recommendations for the user.  

 

The Recurrent Neural Network Recursive Boltzmann Machine (RNN_RBM) 

(Boulanger-Lewandowski (2012)) combines a RBM with another recurrent network 

structure that allows sequencing of inputs and features over time. In the context of 

movie recommendations, the RNN_RBM would be able learn the changes in user 

preferences over time. For instance, the RNN_RBM might deduce that a teenager that 

liked Adventure movies would prefer Crime drama as an adult. The RNN_RBM adds 

an additional group of hidden units to the RBM that allows for the learning of 

sequential information. 

 

Training of the RBM is done by establishing training and holdout sets, and testing is 

done by cross-validation. In this paper, the training set for the RBM is randomly 

generated as 90% of the data with the holdout set comprising the remaining 10%. For 

each split of the data into training and test sets, the network is fed batches of elements 

of the training set for a number of epochs, and the psuedo-likelihood of the holdout 

set is compared with the training set. This procedure is done ten times and the 

likelihood values are averaged to get a final result. 
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For the RNN_RBM, the sequential nature of the data must be maintained and the data 

is split into ten approximately equal sized batches. The RNN_RBM is trained on the 

first nine batches and the remaining batch is used to compare the accuracy of 

predictions. Prediction accuracy is calculated as the sum of the squared errors 

between the actual and predicted values over the test set. 

 

 

3.2.2 A Simple Feedforward Network 

 

The simplest neural network is a two layer feedforward network that is trained by 

backpropagation of errors  calculated by gradient descent, depicted in Figure 1.  

 

[INSERT FIGURE 1 ABOUT HERE] 

 

The hidden layer is fully connected to the input layer, and the output node is fully 

connected to the hidden layer. Input nodes receive data directly. Hidden nodes weight 

and sum each input, add in a bias, and adjust the total by a non-linear, differentiable 

activation function such as the sigmoid function. A non-linear activation function is 

necessary or the network is only capable of simple linear discrimination. The cost of a 

set of inputs to the network is a monotonic differentiable function of the  difference 

between the actual output and the desired output. The network is trained by 

calculating the gradient of the output with respect to each weight in the network, and 

then adjusting the weight in the direction that reduces the cost function(Hecht-Nielsen 
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(1992), Rumelhart et al. (1995)). This relatively straightforward system has been 

shown capable of universal function approximation (Hornick (1991),  Kidger (2020)).  

 

3.2.3 The Restricted Boltzmann Machine (RBM) 

 

The Restricted Boltzmann Machine (RBM) is a two layer energy based network that 

learns in an unsupervised manner (see Figure 2) (Smolensky (1986), Hinton (2002)). 

 

[INSERT FIGURE 2 ABOUT HERE] 

 

Each visible and hidden unit has a bias, and the visible and hidden layers are 

completely connected. However, there are no intra-layer connections between hidden 

or visible unit. The network will converge to an energy minimum by Gibbs sampling. 

First the visible units are set with a particular configuration (the input), the hidden 

unit probabilities are calculated and the hidden units are sampled from the 

probabilities. Then the reverse process of setting the visible units from the units is 

done. This process is repeated until equilibrium, and the output is the converged value 

of the reconstructed visible units (although the hidden units can also be used as 

outputs for subsequent layers).  Explicitly, for a binary RBM, the hidden probabilities 

are calculated as  

 

 

(2) 
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where sigma is the sigmoid distribution, hj are the hidden units, vi are the visible 

units, ai are the hidden biases, bj are the hidden biases, and wij are the symmetric 

weights. 

 

Then, the hidden states are sampled from this probability distribution. The reverse is 

done to calculate the visible probabilities: 

 

 

(3) 

 

In the case of continuous inputs, the input time series are normalized to zero mean 

and unit variance, and the visible probabilities are used in place of sampling. In other 

word, the hidden binary units are still sampled, but the sampling step is omitted for 

the visible units (Hinton (2010)). 

 

Hopfield (1982), who uses the terminology Harmonium to describe an RBM, 

specifies the energy of a joint distribution of hidden and visible states as: 

 

 

(4) 

where vi are the visible unit values, hj are the hidden unit values, ai are the visible 

biases, bj are the hidden biases, and wij are the symmetric weights between the visible 

and hidden units. 
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The Boltzmann distribution from statistical mechanics states that the probability of a 

particular state is related to the energy of that state by the following: 

 

 

(5) 

where pi is the probability of being in a particular state, ei is the energy of that state, k 

is the Boltzmann constant, and T is the temperature. 

 

Reasoning by analogy, the probability of a given joint distribution of a Hopfield 

Harmonium is : 

 

 

(6) 

 

where v is the visible vector, h is the hidden vector, E is the energy function, and Z  is 

the partition function or the normalization constant.  

 

The normalization constant is intractable to estimate as it requires the calculation of 

the energy in every possible configuration.  The marginal probability of a 

visible(hidden) vector is derived by summing over the hidden (visible) states. 

 

The derivative of the log probability of a visible vector can be derived as (Hinton 

(2002), Hinton (2010): 
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(7) 

 

leading to a training rule of: 

 

 

(8) 

where epsilon is a learning rate, and the expectations <> are taken with regard to the 

data and then the model. 

 

The problem with this learning rule is that to determine the expectation of the joint 

distribution under the model, Gibbs sampling has to be run for numerous steps, 

making the process computationally intractable. Hinton (2002) in one of the most 

important contributions to the field of Neural Networks, discovered that a far simpler 

procedure, Contrastive Divergence (CD), would be an adequate approximation of the 

precise learning rule. Contrastive Divergence substitutes only a single Gibbs sampling 

step for the normally lengthy equilibrium calculation. It is not completely clear what 

gradient CD is following (Sutskever and Hinton (2010)). In Hinton’s words (Hinton 

(2010), ”Nevertheless, it works well enough to achieve success in many important 

applications”. Indeed, RBM architectures were among the top performing entrants in 

the Netflix prize competition2. 

 

																																																								
2	The	Netflix	prize	competition	awarded	one	million	dollars	to	an	algorithm	that	
exceeded	the	Netflix	internal	recommendation	engine	in	accuracy	by	10%	
.https://en.wikipedia.org/wiki/Netflix_Prize	
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With binary units, the RBM learns the distribution of binary patterns in the data. With 

continuous units, the RBM learns the joint distribution of the visible units. In this 

paper, we are interested in approximating the joint distribution of scaled, continuous 

commodity financial time series. 

 

A reference implementation of a Bernoulli RBM is in the sklearn Python library, 

sklearn.neural_network.BernoulliRBM. 

 

The RBM has achieved notable success in recommender systems. In this architecture, 

the RBM is trained on a set of binary inputs such as movie ratings by users. The 

trained RBM is then fed a new user without ratings for several movies and run 

through a 1-step Gibbs sampling chain. The probability distribution learned by the 

RBM will then “recommend” ratings for the new movies not yet seen by the user. 

This type of architecture will be used in this paper to study the coincidence of changes 

to commodity prices. 

 

3.2.4 The Recurrent Neural Network (RNN) 

 

The standard feedforward networks and RBMs cannot model changes over time. 

Rumelhart (1986) lays the groundwork conceptually for unfolding a single 

feedforward network into multiple layers in order to process sequences. Werbos 

(1990) devised the Backpropagation Through Time (BPTT) algorithm that is used to 

train Recurrent Neural Networks (RNNs). A typical RNN is illustrated in Figure 3. 

 

[INSERT FIGURE 3 ABOUT HERE] 
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It is not necessary that a sequence be related to time, the sequence only needs to have 

an order. The RNN consists of a simple feedforward network replicated for each step 

of the sequence. In other words, there are input nodes, hidden nodes, and output nodes 

for each sequential step. The critical innovation in a RNN is the transfer of the hidden 

state to the next node group. The hidden state at each step is calculated as a 

combination of the input and the hidden state from the previous step. The initial 

“hidden” input to the first time step can be learned as a parameter of the network. 

Each node group shares the same matrices (W and U in the figure) 

 

The BPTT algorithm calculates the gradient of the cost function with respect to the 

output for the last step in the sequence, and then backpropagates the gradients through 

each time step in reverse. Detailed algorithms in Python for implementing RNNs can 

be found in Behane (2018) and Weidman (2019) 

 

RNNs underly many of the recent spectacular successes of neural networks, including 

the speech recognition performance of products like Alexa from Amazon or Siri from 

Apple. 

 

3.2.5 The Recurrent Neural Network Restricted Boltzmann Machine 

(RNN_RBM) 

 

The Recurrent Neural Network Restricted Boltzmann machine (Boulanger-

Lewandowski et al. (2012)) combines the RBM and RNN into a single network as 

detailed in Figure 4. 
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[INSERT FIGURE 4 ABOUT HERE] 

 

The u(i) , Wuu, and Wvu are the hidden nodes and weight matrices of the RNN 

component of the RNN_RBM. The initial RNN unit u(0) is a parameter to the network 

and can be learned.  

 

A sequence of input v(t) is presented to the network, one element at a time. The RNN 

hidden units are calculated as  

 

 
(9) 

where bu are the hidden unit biases. 

 

The same weight matrix is used for the RBMs at each time step, but biases for the 

RBMs at each time step are calculated from the visible inputs: 

 

 

(10) 

 

Each RBM runs a separate Gibbs chain of 15 to 25 cycles to determine the 

reconstructed output for that time step. The changes to W and the initial biases (bh and 

bv) of each RBM are calculated and summed using Contrastive Divergence. The other 

parameters, Wvu, Wuv, Wuh, Wuu, bu are adjusted by BPTT. Explicit formulas for the 

changes are provided by Boulanger-Lewandowski et al. (2012). In the source code for 
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the RNN_RBM (see Appendix A), the weight adjustments are automatically 

calculated by Theano3. 

 

The RNN_RBM, after being trained, can generate one-step ahead predictions by 

initializing the biases of each conditional RBM with the previous days observations, 

and running a 25-step Gibbs chain until convergence. The visible units are initially set 

to zero. 

 

In theory, the conditional RBMs at each time step learn the multivariate distribution 

of the inputs, and in the simplest case, the RNN component learns the transition 

probabilities between the different time samples of the learned multivariate 

distribution. However, the RNN is capable of learning longer term dependencies 

between the elements in the input sequence. 

 

Complete source code for the RNN_RBM utilized in this paper is provided in 

Appendix A. The RNN_RBM is implemented in Python and uses the Theano deep 

learning library. Theano provides automatic differentiation capability to calculate and 

adjust the weights and biases of the network. In addition, Theano allows for execution 

of the compiled network on a graphical processing unit like the Nvidia GTX 1080, 

which is can dramatically speed up training time for systems with hundreds of hidden 

units.    

																																																								
3	The	Theano	machine	learning	library	was	developed	by	the	MILA	lab	at	the	
University	of	Toronto	under	Yoshua	Bengio.	It	is	available	at	deeplearning.net,	
and	also	on	github.	
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3.2.6 Basic Validation of the RBM and RNN_RBM 

 

A critical step in using the RBM or RNN_RBM is deriving simpler test sets with 

known outputs to validate that the network is functioning properly. It is not possible 

simply to monitor the weights or the outputs from complex inputs. These test datasets 

are not normally included in published papers, but due to their importance in 

establishing baseline functionality are included here. (Surprisingly, some 

implementations of the RNN_RBM found on github and the web fail to pass these 

basic tests) 

 

For the RBM,  the simplest training and test set is a sequence of binary input vectors 

with only a single unit on. For example, with six visible units, the set of inputs would 

be: 

 

100000 

010000 

001000 

000010 

000001. 

 

This sequence would be repeated several hundred times, and fed into the RBM. The 

correct output for the RBM is then simply the input. If 100000 is fed into the network, 

then one cycle of Gibbs sampling must produce the same output. 
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For the RNN_RBM, which detects the transition probabilities over time, the test 

sequence is similar: 

 

110000 

011000 

001100 

000110 

000011 

 

In a similar manner, the RNN_RBM is trained on this sequence repeated numerous 

times. Then, in the generation phase, the RNN_RBM must produce the 

identical output. 

 

For continuous time series normalized to zero mean and unit variance, an appropriate 

test dataset is a sequence of sine waves with different periods.  

 

 

3.2.7 Fractional Differentiation of Time Series 

 

It is well known that financial time series are typically not stationary, hetero-

skedastic, and drawn from a non-normal distribution. The non-stationary aspect can 

lead to spurious regression results and incorrect inference. The standard method of 

dealing with unit roots is either to look for co-integration or to integer differentiate the 

time series. Lopez de Prado (2018) suggests a third, intriguing approach, fractional 

differentiation. This approach was first applied by Hosking (1981) to ARIMA series, 
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but has not received much focus to date. Using a binomial series expansion of the 

backshift operation,  Lopez De Prado illustrates that it is possible to differentiate a 

series by only partially subtracting previous values. In other words, the fractional 

constant can range from 0 to 1, with 1 being full integer differentiation. The 

advantage of this method is that some of the long-term memory of the series is 

preserved with fractional differentiation whereas with integer differentiation all 

memory beyond one step is lost. Lopez de Prado speculates that this may be why the 

efficient market hypothesis has gained such stature in finance. It is possible to use the 

Augmented Dickey-Fuller (ADF test) on an iteratively fractionally differentiated time 

series to find the amount of differentiation necessary to remove a unit root. In this 

paper, we use the FracDiff library or https://github.com/simaki/fracdiff, inspired by 

Lopez de Prado (2018). Data preparation source code is provided in Appendix B.  

 

 

3.3. Data 

 

Commodity Futures prices and open interest for cocoa, coffee, and sugar are kindly 

made publically available (on acceptance of license terms) by the Intercontinental 

Exchange (ICE) at  

https://www.theice.com/FuturesUSReportCenter.shtml 

This data spans the first five contracts with daily frequency from January 2000 to the 

present. 

 

Monthly pricing data from the 1960s to the present, the “commodity pink sheet”, is 

obtainable from the World Bank at 
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 https://www.worldbank.org/en/research/commodity-markets. 

 

End of Month warehouse stocks for both cocoa and coffee at licensed US warehouses 

are also downloadable from ICE. 

 

 

3.4. Results 

 

3.4.2 Change Analysis of Monthly Commodity Prices 

 

First, a Restricted Boltzmann Machine (RBM) was used to analyze the binary-

encoded monthly changes in commodity prices for co-movement. Monthly price 

changes for forty-seven commodities from the World Bank Pink Sheet were analyzed. 

Only a single commodity was included from each commodity group. For instance, 

Tea Columbo was selected from the Tea Group which also includes Tea Mombasa, 

and Tea Kolkata. The intention is to detect co-movement of changes in disparate 

commodities. 

 

The commodity price change was encoded in the following manner. If the absolute 

value of the price change since the previous month was greater than 4%, then the 

commodity was assigned a one, otherwise a zero. A sample of the input data from 

2010 to 2013 is depicted in Figure 5. The entire dataset runs from January 1960 to 

June 2020. A RBM was trained ten times for 100 epochs with a random withholding 

of ten percent of the data as a training set. The psuedo-likelihood of a data sample is 

an approximation of the likelihood function which measures the goodness of fit of the 
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RBM to a statistical sample. The average pseudo-likelihood of the test data set (mean 

-26.57) was consistently closer to zero than the pseudo-likelihood of the RBM before 

training on the training data(mean -30.32), indicating that the fitted RBM learned co-

movement of groups of commodity prices in the training data and extrapolated to the 

test data set. Source code for this system is included in Appendix C. 

 

[INSERT FIGURE 5 ABOUT HERE] 

 

3.4.2 Cocoa One-Step-Ahead Price Prediction 

 

With the RBM results indicate that there is co-movement in commodity prices, we 

now attempt the (significantly) more difficult problem of predicting the one-day 

ahead cocoa price with the RNN_RBM. 

 

Six data series are selected from the futures data and two derivative series  are created 

from the commodity pink sheet. The selected series are Nearby Cocoa Close, Total 

Cocoa Open Interest, Cocoa End of Month Warehouse Stocks, Nearby Coffee Close, 

Coffee Total Open Interest, Coffee End of Month Warehouse Stocks. The End of 

Month stocks are linearly interpolated to get daily values. 

 

Coffee is chosen because of the overlap of coffee and cocoa production regions 

around the globe. The weather in the tropical band where cocoa and coffee are grown 

will affect both crops, and there is substitution between the crops dependent on which 

crop is more profitable to farm in a particular year. The Total Open Interest was 

identified by Weymar (1968) as an important component of a fundamental based 
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model. The End of Month Warehouse stocks were chosen as representative of the 

current inventory of cocoa or coffee. These series are not exhaustive, but are 

indicative of the information used by fundamental cocoa traders. 

 

The first derivative series is the previous month return of cocoa relative to the return 

on the following commodities: Sugar World; Crude oil, Brent; Coal, Australian; 

Natural gas, US; Coffee, Arabica; Tea, Colombo; Palm oil; Soybeans; Maize; Rice, 

Thai 5% ; Wheat, US SRW; Orange; Beef; Cotton, A Index; Rubber, SGP/MYS; 

Aluminum; Copper; Lead; Tin; Nickel; Zinc; Gold; Platinum;  and Silver. These are 

commodities with liquid futures contracts representative of the information universe 

of momentum and index traders. The relative return of cocoa to the mean return 

would indicate the amount of rebalancing to be done by index traders. 

 

The second derivative series is the index position of last month’s cocoa return relative 

to the last month returns of the commodities listed above. This index is related to the 

long/short mix chosen by momentum traders who will typically go long the group of 

top performing commodities and short the group of  worst performing commodities. 

 

All the series are scaled to a zero mean and unit variance. The data is split into two 

sets for training and one-step-ahead prediction. 

 

Table 1 illustrates the fractional differencing results. The Cocoa Nearby Close, Cocoa 

Stocks are stationary in levels, and the Cocoa Relative Return and Cocoa Position are 

stationary by construction. The Cocoa Totals Open Interest and the Coffee Nearby 

Close require only seven-tenths differentiation. The Coffee Totals Open Interest 
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requires eight tenths, and the Coffee Stocks require full integer differentiation. The 

advantage of using fractionally differentiated series is that the RNN_RBM does not 

need to learn long term non-stationary trends in the input series. 

 

[INSERT TABLE 1 ABOUT HERE] 

 

Figure 6 reports heatmaps of the correlations between the level series and the 

fractionally differentiated series. The fractionally differentiated series appear to 

maintain long run price information. For example, the level correlation of the Coffee 

Nearby Close and the Cocoa Nearby Close is 0.596, and the fractional correlation 

with the 0.7 differentiated Cocoa Nearby Close is .46. The correlation between the 

Cocoa Nearby Close and the fully differentiated Coffee Stocks changes by a much 

larger percentage amount from -0.51 to -0.19. The heatmaps also confirm significant 

correlations between the time series, including a 0.6 correlation between Coffee Open 

Interest and Cocoa Open Interest, and support the choice of time series for analysis. 

 

[INSERT FIGURE 6 ABOUT HERE] 

 

 

The RNN_RBM is trained for 200 epochs with a batch size of 100, 50 hidden units 

and a learning rate of .01. The results from one–step-ahead prediction for both level 

and fractionally differenced data are depicted in Table 2. The residual sum of squares 

(RSS) is calculated as the sum of the squared difference between the actual value and 

the prediction. The RSS for the model is compared with the RSS for the baseline 

prediction of using today’s price as tomorrow’s prediction. Kolmogorov-Smirnov 
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(KS) two-sample p-values are reported for the predictions and the actual values. The 

KS test fails to reject the null hypothesis that the predictions and the actual values are 

drawn from the same distribution for both the level and fractionally differenced data. 

Figure 7 is a graphical representation of the input and predicted time series. The 

predicted series incorporates a large amount of noise relative to the actual values. 

 

[INSERT TABLE 2 ABOUT HERE] 

 

These results indicate that the RNN_RBM is not particularly effective in this 

particular application of predicting one-day ahead cocoa prices and is unable to use 

the observed correlations to improve on a baseline prediction of tomorrow’s price as 

today’s price. Despite the co-movement of commodity prices detected by the RBM, 

the RNN_RBM was not able to learn the time-dependency of the hidden features. 

There are four likely reasons for this lack of success. 

 

First, the co-movement in commodity prices is on monthly rather than daily data. A 

further analysis would use monthly measurements as input to the RNN_RBM, though 

this would be complicated by the shortness of the monthly data series over 

approximately ten years. One hundred and twenty data-points would be considered a 

small amount of data to train a machine learning system. If the time horizon were 

increased from one day, then the impact from such factors as the market’s liquidity 

and transactions costs should also be considered. 

 

Second, the RNN_RBM is using continuous rather than binary data which is known 

to complicate the learning process (Hinton ( 2010)). The input space is significantly 
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larger with continuous than binary variables. One possibility would be to encode the 

changes in commodity prices in a similar manner to the RBM data, and attempt to 

sequence the changes with the RNN_RBM. 

 

Third, there is a great deal of information that is not input to the model, and might 

produce superior results if utilized. For instance, the inventory ratio calculated in 

Chapter 2 of this thesis uses substantially more raw information than the warehouse 

stocks and the total open interest.  

 

Finally, predicting future prices is one of the most difficult problems in finance due to 

the efficiency of modern markets and it is not surprising that the RNN_RBM is 

unable to easily accomplish this task. 

 

A more fruitful application of the RNN_RBM for future research would be to analyze 

the multi commodity term structure. Each commodity has several contracts with a 

natural sequential order, and the RNN_RBM could be used to predict the value of the 

final contract for a particular commodity like cocoa based on the structures of other 

related commodities. This system would then be useful in explaining the convenience 

yield of a single commodity in terms of the convenience yields of related 

commodities. 

 

[INSERT FIGURE 7 ABOUT HERE] 

 

3.5. Conclusions and Further Work 
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The reduced explanatory power of the fundamental inventory-ratio based model of 

Chapter 2 was hypothesized to result from the presence of index and momentum 

traders in the cocoa markets. Using machine learning, this paper investigates two 

aspects of this hypothesis, the co-movement of commodity prices and the prediction 

of future cocoa prices using fundamental information and information from related 

commodities.  

 

The Restricted Boltzmann machine detects the co-movement of commodity prices 

from the World Bank Pink Sheet. This architecture indicates that commodity prices 

move together in groups on a monthly basis, supporting the hypothesis that cocoa 

price movements are partially explainable by the movements in prices of other 

commodities. 

 

One-day-ahead price prediction of the cocoa price using a Recurrent Neural Network 

Restricted Boltzmann machine is not successful for four identifiable reasons. One, the 

time frame is too short and monthly price changes would be better utilized. Second, 

continuous input data representations may make the search space too large, and binary 

representations might be used instead. Third, additional information including 

inventory to consumption ratios might be necessary as input to the model. Finally, 

price prediction is one of the most difficult problems in finance and the difficulty of 

prediction attests to the general efficiency of markets.  

 

We recommend that further research with the RNN_RBM on commodity prices focus 

on two areas, sequencing binary encoded price changes, and exploring the joint 

commodity term structure. Binary encoded price changes would significantly restrict 
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the search space for the RNN_RBM, and the joint commodity term structure has a 

natural sequence from the near-month to the final contract. 

 

Finally, we report the use of a new technique from Lopez de Prado, fractional 

differencing, on producing stationary time series without removing all long term price 

movement information. Several of the commodity time series analyzed require only 

partial differentiation including the Cocoa Totals Open Interest and Coffee Nearby 

Close. 
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#Appendix A1
2
# Jan Koeman3
# Gaussian RNN_RBM with one-step ahead prediction4
# University of Canterbury, Christchurch, New Zealand5
# Department of Economics and Finance6
# jan.koeman@pg.canterbury.ac.nz7

8
# Based on a tutorial provided by9
# Nicolas Boulanger-Lewandowski10
# University of Montreal (2012)11
# RNN-RBM deep learning tutorial12
# More information at http:!"deeplearning.net/tutorial/rnnrbm.html13

14
# Note that Theano will not run under the latest Nvidia GPUs like the RTX-208015
# A recommended configuration is Ubuntu 16 with the GTX-108016
# such as the Dell 5810 Precision Workstation.17
# Follow the ananconda installation of Theano, and install the CUDA 8.018
# libraries from the Nvidia website. Make sure the Theano path variable19
# for the CUDA library is set correctly.20
# A GPU is not important unless the number of hidden units is in the hundreds21

22
23
24

from "#future"# import print_function25
26

import glob27
import os28
import sys29
import pickle30
import midi_manipulation231
import matplotlib.pyplot as plt32
from theano.printing import Print33
import pandas as pd34
from scipy.stats import ks_2samp35

36
import numpy37
try:38
    import pylab39
except ImportError:40
    print ("pylab isn't available. If you use its functionality, it will crash.")41
    print("It can be installed with 'pip install -q Pillow'")42

43
# from midi.utils import midiread44
# from midi.utils import midiwrite45
import theano46
import theano.tensor as T47
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams48

49
#Don't use a python long as this don't work on 32 bits computers.50
numpy.random.seed(0xbeef)51
rng = RandomStreams(seed=numpy.random.randint(1 "$ 30))52
theano.config.warn.subtensor_merge_bug = False53

54
55

def build_rbm_gaussian(v, W, bv, bh, k):56
    '''Construct a k-step Gibbs chain starting at v for an RBM.57

58
    v : Theano vector or matrix59
        If a matrix, multiple chains will be run in parallel (batch).60
    W : Theano matrix61
        Weight matrix of the RBM.62
    bv : Theano vector63
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        Visible bias vector of the RBM.64
    bh : Theano vector65
        Hidden bias vector of the RBM.66
    k : scalar or Theano scalar67
        Length of the Gibbs chain.68

69
    Return a (v_sample, cost, monitor, updates) tuple:70

71
    v_sample : Theano vector or matrix with the same shape as `v`72
        Corresponds to the generated sample(s).73
    cost : Theano scalar74
        Expression whose gradient with respect to W, bv, bh is the CD-k75
        approximation to the log-likelihood of `v` (training example) under the76
        RBM. The cost is averaged in the batch case.77
    monitor: Theano scalar78
        Pseudo log-likelihood (also averaged in the batch case).79
    updates: dictionary of Theano variable !# Theano variable80
        The `updates` object returned by scan.'''81

82
    def gibbs_step_gaussian(v):83
        mean_h = T.nnet.sigmoid(T.dot(v, W) + bh)84
        h = rng.binomial(size=mean_h.shape, n=1, p=mean_h,85
                         dtype=theano.config.floatX)86
        val = T.dot(h, W.T) + bv87
        mean_v = val88
        # mean_v = rng.normal(size=v.shape, avg=(T.dot(h, W.T) + bv), std=1.0, dtype
=theano.config.floatX)

89

        # v = rng.binomial(size=mean_v.shape, n=1, p=mean_v, dtype=theano.config.
floatX)

90

        v = mean_v91
        return mean_v, v92

93
94
95

    chain, updates = theano.scan(lambda v: gibbs_step_gaussian(v)[1], outputs_info=[
v],

96

                                 n_steps=k)97
    v_sample = chain[-1]98

99
    mean_v = gibbs_step_gaussian(v_sample)[0]100
    # print("v, meanv", v, mean_v)101
    monitor = T.xlogx.xlogy0(v, mean_v) + T.xlogx.xlogy0(1 - v, 1 - mean_v)102
    monitor = monitor.sum() / v.shape[0]103

104
    def free_energy(v):105
         return -(v * bv).sum() - T.log(1 + T.exp(T.dot(v, W) + bh)).sum()106

107
    def free_energy_bak(x, W, bv, bh):108
        # The function computes the free energy of a visible vector.109
        hidden_term = T.sum(T.log(1. + T.exp(T.dot(x / 1, W) + bh)), axis=1)110
        vbias_term = T.sum(T.square(T.sub(x, bv)), axis=1) / ((1 ** 2) * 2)111
        return -hidden_term + vbias_term112

113
114

    cost = (free_energy(v) - free_energy(v_sample)) / v.shape[0]115
116

    return v_sample, cost, cost, updates117
118

def build_rbm(v, W, bv, bh, k):119
    '''Construct a k-step Gibbs chain starting at v for an RBM.120

121
    v : Theano vector or matrix122
        If a matrix, multiple chains will be run in parallel (batch).123
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    W : Theano matrix124
        Weight matrix of the RBM.125
    bv : Theano vector126
        Visible bias vector of the RBM.127
    bh : Theano vector128
        Hidden bias vector of the RBM.129
    k : scalar or Theano scalar130
        Length of the Gibbs chain.131

132
    Return a (v_sample, cost, monitor, updates) tuple:133

134
    v_sample : Theano vector or matrix with the same shape as `v`135
        Corresponds to the generated sample(s).136
    cost : Theano scalar137
        Expression whose gradient with respect to W, bv, bh is the CD-k138
        approximation to the log-likelihood of `v` (training example) under the139
        RBM. The cost is averaged in the batch case.140
    monitor: Theano scalar141
        Pseudo log-likelihood (also averaged in the batch case).142
    updates: dictionary of Theano variable !# Theano variable143
        The `updates` object returned by scan.'''144

145
    # print_op = theano.printing.Print('V')146
    # printed_v = print_op(v)147
    # f = theano.function([v], printed_v)148
    # r = f(v)149

150
    def gibbs_step(v):151
        mean_h = T.nnet.sigmoid(T.dot(v, W) + bh)152
        h = rng.binomial(size=mean_h.shape, n=1, p=mean_h,153
                         dtype=theano.config.floatX)154
        mean_v = T.nnet.sigmoid(T.dot(h, W.T) + bv)155
        v = rng.binomial(size=mean_v.shape, n=1, p=mean_v,156
                         dtype=theano.config.floatX)157
        return mean_v, v158

159
    chain, updates = theano.scan(lambda v: gibbs_step(v)[1], outputs_info=[v],160
                                 n_steps=k)161
    v_sample = chain[-1]162

163
    mean_v = gibbs_step(v_sample)[0]164
    monitor = T.xlogx.xlogy0(v, mean_v) + T.xlogx.xlogy0(1 - v, 1 - mean_v)165
    monitor = monitor.sum() / v.shape[0]166

167
    def free_energy(v):168
        return -(v * bv).sum() - T.log(1 + T.exp(T.dot(v, W) + bh)).sum()169
    cost = (free_energy(v) - free_energy(v_sample)) / v.shape[0]170

171
    return v_sample, cost, monitor, updates172

173
174
175

def shared_normal(num_rows, num_cols, scale=1):176
    '''Initialize a matrix shared variable with normally distributed177
    elements.'''178
    return theano.shared(numpy.random.normal(179
        scale=scale, size=(num_rows, num_cols)).astype(theano.config.floatX))180

181
182

def shared_zeros(*shape):183
    '''Initialize a vector shared variable with zero elements.'''184
    return theano.shared(numpy.zeros(shape, dtype=theano.config.floatX))185

186
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187
def build_rnnrbm(n_visible, n_hidden, n_hidden_recurrent, gaussian=False):188
    '''Construct a symbolic RNN-RBM and initialize parameters.189

190
    n_visible : integer191
        Number of visible units.192
    n_hidden : integer193
        Number of hidden units of the conditional RBMs.194
    n_hidden_recurrent : integer195
        Number of hidden units of the RNN.196

197
    Return a (v, v_sample, cost, monitor, params, updates_train, v_t,198
    updates_generate) tuple:199

200
    v : Theano matrix201
        Symbolic variable holding an input sequence (used during training)202
    v_sample : Theano matrix203
        Symbolic variable holding the negative particles for CD log-likelihood204
        gradient estimation (used during training)205
    cost : Theano scalar206
        Expression whose gradient (considering v_sample constant) corresponds207
        to the LL gradient of the RNN-RBM (used during training)208
    monitor : Theano scalar209
        Frame-level pseudo-likelihood (useful for monitoring during training)210
    params : tuple of Theano shared variables211
        The parameters of the model to be optimized during training.212
    updates_train : dictionary of Theano variable !# Theano variable213
        Update object that should be passed to theano.function when compiling214
        the training function.215
    v_t : Theano matrix216
        Symbolic variable holding a generated sequence (used during sampling)217
    updates_generate : dictionary of Theano variable !# Theano variable218
        Update object that should be passed to theano.function when compiling219
        the generation function.'''220

221
    W = shared_normal(n_visible, n_hidden, 0.01)222
    bv = shared_zeros(n_visible)223
    bh = shared_zeros(n_hidden)224
    Wuh = shared_normal(n_hidden_recurrent, n_hidden, 0.0001)225
    Wuv = shared_normal(n_hidden_recurrent, n_visible, 0.0001)226
    Wvu = shared_normal(n_visible, n_hidden_recurrent, 0.0001)227
    Wuu = shared_normal(n_hidden_recurrent, n_hidden_recurrent, 0.0001)228
    bu = shared_zeros(n_hidden_recurrent)229
    # v_test = shared_zeros(n_visible)230
    # predict_flag = shared_zeros(1)231

232
    params = W, bv, bh, Wuh, Wuv, Wvu, Wuu, bu  # learned parameters as shared233
                                                # variables234

235
    v = T.matrix()  # a training sequence236
    u0 = T.zeros((n_hidden_recurrent,))  # initial value for the RNN hidden237
                                         # units238

239
    # If `v_t` is given, deterministic recurrence to compute the variable240
    # biases bv_t, bh_t at each time step. If `v_t` is None, same recurrence241
    # but with a separate Gibbs chain at each time step to sample (generate)242
    # from the RNN-RBM. The resulting sample v_t is returned in order to be243
    # passed down to the sequence history.244
    def recurrence(v_t, u_tm1):245
        bv_t = bv + T.dot(u_tm1, Wuv)246
        bh_t = bh + T.dot(u_tm1, Wuh)247
        generate = v_t is None248

249
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        if generate:250
            if gaussian:251
                v_t, _, _, updates = build_rbm_gaussian(T.zeros((n_visible,)), W, 
bv_t, bh_t, k=25)

252

            else:253
                v_t, _, _, updates = build_rbm(T.zeros((n_visible,)), W, bv_t, bh_t
, k=25)

254

255
        u_t = T.tanh(bu + T.dot(v_t, Wvu) + T.dot(u_tm1, Wuu))256
        return ([v_t, u_t], updates) if generate else [u_t, bv_t, bh_t]257

258
    def recurrence_predict(v_t, u_tm1):259
        bv_t = bv + T.dot(u_tm1, Wuv)260
        bh_t = bh + T.dot(u_tm1, Wuh)261

262
        # u_tm1 = theano.printing.Print('u_tm1')(u_tm1)263
        # v_t = theano.printing.Print('v_t')(v_t)264

265
        if gaussian:266
                vp_t, _, _, updates = build_rbm_gaussian(T.zeros((n_visible,)), W, 
bv_t, bh_t, k=25)

267

        else:268
                vp_t, _, _, updates = build_rbm(T.zeros((n_visible,)), W, bv_t, bh_t
, k=25)

269

        # vp_t = theano.printing.Print('v_t prediction')(vp_t)270
271

        u_t = T.tanh(bu + T.dot(v_t, Wvu) + T.dot(u_tm1, Wuu))272
        # u_t = theano.printing.Print('u_t')(u_t)273
        return ([vp_t, u_t], updates)274

275
    # For training, the deterministic recurrence is used to compute all the276
    # {bv_t, bh_t, 1 !$ t !$ T} given v. Conditional RBMs can then be trained277
    # in batches using those parameters.278

279
    (u_t, bv_t, bh_t), updates_train = theano.scan(280
        lambda v_t, u_tm1, *_: recurrence(v_t, u_tm1),281
        sequences=v, outputs_info=[u0, None, None], non_sequences=params)282

283
    if gaussian:284
        v_sample, cost, monitor, updates_rbm = build_rbm_gaussian(v, W, bv_t[:], 
bh_t[:],

285

                                                        k=15)286
    else:287
        v_sample, cost, monitor, updates_rbm = build_rbm(v, W, bv_t[:], bh_t[:],288
                                                         k=15)289
    updates_train.update(updates_rbm)290

291
292

    # DO NOT ENABLE BOTH GENERATION AND PREDICTION FUNCTIONS OR THEANO WILL NOT 
COMPILE!

293

    # USE ONE OR THE OTHER.294
295

    # symbolic loop for sequence generation296
    # (v_t, u_t), updates_generate = theano.scan(297
    #     lambda u_tm1, *_: recurrence(None, u_tm1),298
    #     outputs_info=[None, u0], non_sequences=params, n_steps=600)299

300
301

    (v_t, u_t), updates_predict = theano.scan(302
        lambda v_t1, u_tm1, *_: recurrence_predict(v_t1, u_tm1), sequences=v[:,:],  
#full sequence used

303

        outputs_info=[None, u0], non_sequences=params)304
305

173



File - /Users/jankoeman/dlFromScratch/rnnrbmpredict.py

Page 6 of 10

    updates_generate = None306
307
308

    return (v, v_sample, cost, monitor, params, updates_train, v_t,309
            updates_generate, updates_predict)310

311
312

class RnnRbm:313
    '''Simple class to train an RNN-RBM from MIDI files and to generate sample314
    sequences.'''315

316
    def "#init"#(317
        self,318
        n_visible=6,319
        n_hidden=30,320
        n_hidden_recurrent=20,321
        lr=0.01,322
        r=(24, 102),323
        dt=0.3,324
        gaussian=False325
    ):326
        '''Constructs and compiles Theano functions for training and sequence327
        generation.328

329
        n_hidden : integer330
            Number of hidden units of the conditional RBMs.331
        n_hidden_recurrent : integer332
            Number of hidden units of the RNN.333
        lr : float334
            Learning rate335
        r : (integer, integer) tuple336
            Specifies the pitch range of the piano-roll in MIDI note numbers,337
            including r[0] but not r[1], such that r[1]-r[0] is the number of338
            visible units of the RBM at a given time step. The default (21,339
            109) corresponds to the full range of piano (88 notes).340
        dt : float341
            Sampling period when converting the MIDI files into piano-rolls, or342
            equivalently the time difference between consecutive time steps.'''343

344
        self.r = r345
        self.dt = dt346
        # (v, v_sample, cost, monitor, params, updates_train, v_t,347
        #     updates_generate) = build_rnnrbm(348
        #         r[1] - r[0],349
        #         n_hidden,350
        #         n_hidden_recurrent351
        #     )352

353
        (v, v_sample, cost, monitor, params, updates_train, v_t,354
            updates_generate, updates_predict) = build_rnnrbm(355
                n_visible,356
                n_hidden,357
                n_hidden_recurrent,358
                gaussian359
            )360

361
        gradient = T.grad(cost, params, consider_constant=[v_sample])362
        updates_train.update(363
            ((p, p - lr * g) for p, g in zip(params, gradient))364
        )365
        self.train_function = theano.function(366
            [v],367
            monitor,368
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            updates=updates_train369
        )370
        # self.generate_function = theano.function(371
        #     [],372
        #     v_t,373
        #     updates=updates_generate374
        # )375
        self.predict_function = theano.function(376
            [v],377
            v_t,378
            updates=updates_predict379
        )380

381
382
383

    def train(self, files, batch_size=100, num_epochs=200):384
        '''Train the RNN-RBM via stochastic gradient descent (SGD) using MIDI385
        files converted to piano-rolls.386

387
        files : list of strings388
            List of MIDI files that will be loaded as piano-rolls for training.389
        batch_size : integer390
            Training sequences will be split into subsequences of at most this391
            size before applying the SGD updates.392
        num_epochs : integer393
            Number of epochs (pass over the training set) performed. The user394
            can safely interrupt training with Ctrl+C at any time.'''395

396
        # assert len(files) > 0, 'Training set is empty!' \397
        #                        ' (did you download the data files?)'398
        # dataset = [midiread(f, self.r,399
        #                     self.dt).piano_roll.astype(theano.config.floatX)400
        #            for f in files]401
        # dataset = [midi_manipulation2.r(f, self.r,402
        #           self.dt).piano_roll.astype(theano.config.floatX)403
        #  for f in files]404
        # strPickledData = "/Users/jankoeman/dlFromScratch/Data/PickledFraction.pkl"405
        strPickledData = "/Users/jankoeman/dlFromScratch/Data/PickledSeries.pkl"406
        # strPickledData = "/Users/jankoeman/dlFromScratch/Data/PickledCount.pkl"407
        try:408
            f = open(strPickledData, 'rb')409
            dataset = pickle.load(f)410
            f.close()411
        except OSError as error:412
            print("Could not open/read file:", strPickledData)413
            print(error)414
            sys.exit()415

416
417
418

        dataset_size = len(dataset)419
        test_dataset = dataset[:dataset_size-1]420
        train_dataset = dataset[dataset_size-1]421

422
        try:423
            for epoch in range(num_epochs):424
                numpy.random.shuffle(test_dataset)425
                costs = []426
                # print("Training", epoch)427
                for s, sequence in enumerate(dataset):428
                    sequence = sequence.astype(numpy.float)429
                    for i in range(0, len(sequence), batch_size):430
                        cost = self.train_function(sequence[i:i + batch_size])431
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                        # if not(numpy.isnan(cost)):432
                        mincost = cost.min()433
                        if not(numpy.isnan(mincost)):434
                            costs.append(mincost)435

436
                print('Epoch %i/%i' % (epoch + 1, num_epochs))437
                print(numpy.mean(costs))438
                sys.stdout.flush()439

440
        except KeyboardInterrupt:441
            print('Interrupted by user.')442

443
        td = train_dataset.astype(numpy.float)444
        self.predict(td)445

446
447

    def generate(self, filename, show=True):448
        '''Generate a sample sequence, plot the resulting piano-roll and save449
        it as a MIDI file.450

451
        # filename : string452
        #     A MIDI file will be created at this location.453
        # show : boolean454
        #     If True, a piano-roll of the generated sequence will be shown.'''455
        #456
        pass457

458
        # piano_roll = self.generate_function()459
        # # midi_manipulation2.write_song(filename,piano_roll)460
        # # midiwrite(filename, piano_roll, self.r, self.dt)461
        # print("Piano Roll", piano_roll)462
        # if show:463
        #464
        #     lstColumns = ['COCOA NEARBY CLOSE','COCOA TOTALS OPEN INTEREST','Cocoa
 Stocks',

465

        #                   'Coffee Stocks','Sugar Stocks','SUGAR 11 NEARBY CLOSE','
SUGAR 11 TOTALS OPEN INTEREST',

466

        #                   'COFFEE NEARBY CLOSE', 'COFFEE TOTALS OPEN INTEREST', '
Crude oil', 'Brent Coal, Australian']

467

        #     dfPianoRoll = pd.DataFrame(piano_roll[:,0:8])468
        #     dfPianoRoll.columns = lstColumns[0:8]469
        #     dfPianoRoll.plot(subplots=True)470

471
    def predict(self, test_dataset, filename=None, show=True):472
        '''Generate a sample sequence, plot the resulting piano-roll and save473
        it as a MIDI file.474

475
        filename : string476
            A MIDI file will be created at this location.477
        show : boolean478
            If True, a piano-roll of the generated sequence will be shown.'''479

480
        predictions = self.predict_function(test_dataset)481
        # midi_manipulation2.write_song(filename,piano_roll)482
        # midiwrite(filename, piano_roll, self.r, self.dt)483
        # print("Piano Roll", predictions)484
        if show:485
            # extent = (0, self.dt * len(piano_roll)) + self.r486
            # pylab.figure()487
            # pylab.imshow(piano_roll.T, origin='lower', aspect='auto',488
            #              interpolation='nearest', cmap=pylab.cm.gray_r,489
            #              extent=extent)490
            # pylab.xlabel('time (s)')491
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            # pylab.ylabel('MIDI note number')492
            # pylab.title('generated piano-roll')493
            # lstColumns = ['COCOA NEARBY CLOSE','COCOA TOTALS OPEN INTEREST','Cocoa
 Stocks',

494

            #               'Coffee Stocks','Sugar Stocks','SUGAR 11 NEARBY CLOSE','
SUGAR 11 TOTALS OPEN INTEREST',

495

            #               'COFFEE NEARBY CLOSE', 'COFFEE TOTALS OPEN INTEREST', '
Crude oil', 'Brent Coal, Australian']

496

            nColumns = 8497
            strMainCol = 'COCOA NEARBY CLOSE'498
            # strMainCol = 'Sine Wave 1'499
            lstColumns = [strMainCol,'COCOA TOTALS OPEN INTEREST','Cocoa Stocks',500
                          'Coffee Stocks',501
                          'COFFEE NEARBY CLOSE', 'COFFEE TOTALS OPEN INTEREST', '
Relative Return', 'Position']

502

            # lstColumns = [strMainCol,'Sine Wave 2','Sine Wave 1C',503
            #               'Sine Wave 1C',504
            #               'Sine Wave 1C', 'Sine Wave 1C', 'Sine Wave 1C', 'Sine 
Wave 1C']

505

            dfPianoRoll = pd.DataFrame(predictions[:,0:nColumns])506
            dfPianoRoll.columns = lstColumns[0:nColumns]507
            dfPianoRoll.plot(subplots=True)508
            print("predictions size", dfPianoRoll.shape)509

510
            # lstColumns = ['COCOA NEARBY CLOSE','COCOA TOTALS OPEN INTEREST','Cocoa
 Stocks',

511

            #               'Coffee Stocks',512
            #               'COFFEE NEARBY CLOSE', 'COFFEE TOTALS OPEN INTEREST', '
Relative Return', 'Position']

513

            dfInputs = pd.DataFrame(test_dataset[:,0:nColumns])514
            dfInputs.columns = lstColumns[0:nColumns]515
            dfInputs.plot(subplots=True)516
            print("Data:")517
            print(dfInputs.head(5))518
            print("Data shape", dfInputs.shape)519

520
            differenceSeries = dfPianoRoll[strMainCol]521
            inputSeries1 = dfInputs[strMainCol].to_numpy()522
            predSeries = dfPianoRoll[strMainCol].to_numpy()523
            sizeSeries1 = inputSeries1.shape[0]524
            differenceSeries2 = predSeries[0:sizeSeries1-1] - inputSeries1[1:
sizeSeries1]

525

            print ("Sum of squares predictions:", sum(differenceSeries2**2))526
            print('Kolmogorov-Smirnoff values')527
            print(ks_2samp(predSeries, inputSeries1))528

529
530

            dfCocoaInputSeries = dfInputs[strMainCol]531
            sizeSeries = dfCocoaInputSeries.shape[0]532
            dfPrevValues = dfCocoaInputSeries[0:sizeSeries-1].to_numpy()533
            dfPredictions = dfCocoaInputSeries[1:sizeSeries].to_numpy()534
            differenceNaive = dfPredictions-dfPrevValues535
            print("baseline sum of squares:", sum(differenceNaive**2))536

537
538
539
540

def test_rnnrbm(batch_size=100, num_epochs=200):541
    model = RnnRbm(8,50,50,.01,gaussian=True)542
    cwd = os.path.dirname(os.path.abspath("#file"#))543
    re = os.path.join(os.path.split(cwd)[0],544
                      'data', 'Nottingham', 'train', '*.mid')545
    model.train(glob.glob(re),546
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                batch_size=batch_size, num_epochs=num_epochs)547
    return model548

549
if "#name"# "% '"#main"#':550
    kPrecision = 5551
    numpy.set_printoptions(precision=kPrecision)552
    pd.set_option("display.precision", kPrecision)553
    theano.config.openmp = False554
    model = test_rnnrbm()555
    # model.generate('sample1.mid')556
    #model.predict('testpredict')557
    # model.generate('sample2.mid')558
    pylab.show()559

560
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# Appendix B1
2
3
# Jan Koeman4
# Data Preparation code for analysis with5
# Gaussian RNN_RBM with one-step ahead prediction6
# University of Canterbury, Christchurch, New Zealand7
# Department of Economics and Finance8
# jan.koeman@pg.canterbury.ac.nz9

10
# The raw data series are publicly available on the web as described in11
# my thesis Essays on Commodities, Chapter 3.12

13
14
15
16

from pandas import read_csv17
from datetime import datetime18
from matplotlib import pyplot19
import pandas as pd20
import pickle21
import sys22
import numpy as np23
from fracdiff import fdiff24
from statsmodels.tsa.stattools import adfuller25
import os26
import seaborn as sns27

28
29

def parser(x):30
    return pd.to_datetime(x)31

32
33

strFileName = "/Users/jankoeman/Documents/Main/_PHD2/_NeuralNetwork Data/Sugar Ending
 Stocks 3.csv"

34

dfSugarStocks = read_csv(strFileName, header=0, parse_dates=[0], index_col=0, squeeze
=True, date_parser=parser, delimiter=";")

35

print("Sugar")36
#print(dfSugarStocks.head())37
#df['Date'] = pd.to_datetime(df['Date'])38
#print(dfSugarStocks.head())39
upSugarStocks = dfSugarStocks.resample('D').interpolate()40
print(upSugarStocks.head(10))41

42
strFileName = "/Users/jankoeman/Documents/Main/_PHD2/_NeuralNetwork Data/Cocoa Stocks
 2.csv"

43

dfCocoaStocks = read_csv(strFileName, header=0, parse_dates=[0], index_col=0, squeeze
=True, date_parser=parser, delimiter=";")

44

print("Cocoa")45
#print(dfCocoaStocks.head())46
#df['Date'] = pd.to_datetime(df['Date'])47
#print(dfCocoaStocks.head())48
upCocoaStocks = dfCocoaStocks.resample('D').interpolate()49
print(upCocoaStocks.head(10))50

51
dfSugar = pd.DataFrame(upSugarStocks)52
dfCocoa = pd.DataFrame(upCocoaStocks)53
dfBoth = dfSugar.join(dfCocoa, how="inner")54
print("Joined")55
print(dfBoth.head(10))56
print("Shape:", dfBoth.shape)57

58
strFileName = "/Users/jankoeman/Documents/Main/_PHD2/_NeuralNetwork Data/Coffee 59
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Stocks 2.csv"59
dfCoffeeStocks = read_csv(strFileName, header=0, parse_dates=[0], index_col=0, 
squeeze=True, date_parser=parser, delimiter=";")

60

print("Coffee")61
#print(dfCocoaStocks.head())62
#df['Date'] = pd.to_datetime(df['Date'])63
#print(dfCocoaStocks.head())64
upCoffeeStocks = dfCoffeeStocks.resample('D').interpolate()65
print(upCoffeeStocks.head(10))66
dfCoffee = pd.DataFrame(upCoffeeStocks)67

68
dfCocoaCoffeeSugar = dfBoth.join(dfCoffee, how="inner")69
print(dfCocoaCoffeeSugar.tail(10))70
print("Shape:", dfCocoaCoffeeSugar.shape)71

72
strFileName = "/Users/jankoeman/Documents/Main/_PHD2/_NeuralNetwork Data/World Bank 
10.csv"

73

dfWorldBankPrices = read_csv(strFileName, header=0, parse_dates=[0], index_col=0, 
squeeze=True, date_parser=parser, delimiter=";")

74

print("World Bank")75
print(dfWorldBankPrices.head())76
#df['Date'] = pd.to_datetime(df['Date'])77
#print(dfCocoaStocks.head())78

79
print(dfWorldBankPrices[dfWorldBankPrices.index.duplicated()])80
#exit(0)81

82
# upWorldBank = dfWorldBankPrices.resample('D').interpolate()83
# print(upWorldBank.head(10))84
# dfWorld = pd.DataFrame(upWorldBank)85

86
dfWorldReturns = dfWorldBankPrices.pct_change()87
print(dfWorldReturns.head(10))88
dropWorldBankReturns = dfWorldReturns.drop([parser('2000-01-15')])89
print(dropWorldBankReturns.head(10))90

91
92

upWorldBankReturns = dropWorldBankReturns.resample('D').fillna("ffill")93
94

print(upWorldBankReturns.head(10))95
dfWorld = pd.DataFrame(upWorldBankReturns)96
dfJustMean = pd.DataFrame(dfWorld.mean(axis=1))97
print("Just mean")98
print(dfJustMean.head(3))99
dfMeanIndex= pd.DataFrame(dfWorld['Cocoa']/dfWorld.mean(axis=1))100
dfMeanIndex.columns = [ 'Relative Return']101
print(dfMeanIndex.head())102

103
positionArray = np.zeros((upWorldBankReturns.shape[0],1))104
matrixReturns = upWorldBankReturns.to_numpy()105
for i in range(matrixReturns.shape[0]):106
    sortArray = matrixReturns[i]107
    cocoaValue = sortArray[0]108
    sortArray = np.sort(sortArray)109
    positionCocoa = np.where(sortArray"#cocoaValue)110
    if len(positionCocoa[0]) > 1:111
        pass112
        # print("i, value, positions, len", i, cocoaValue, positionCocoa, len(
positionCocoa[0]))

113

        # print(sortArray)114
    positionArray[i] = positionCocoa[0][0]115

116
# print(positionArray[:200])117
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118
dfMeanIndex['Cocoa Index'] = positionArray119

120
print(dfMeanIndex.head(10))121

122
123
124
125

#cocoa term structure126
strFileName = "/Users/jankoeman/Documents/Main/_PHD2/_NeuralNetwork Data/Cocoa 
Futures 4.csv"

127

dfCocoaFut = read_csv(strFileName, header=0, parse_dates=[0], index_col=0, squeeze=
True, date_parser=parser, delimiter=";")

128

print("Cocoa Futures")129
print(dfCocoaFut.head())130
#df['Date'] = pd.to_datetime(df['Date'])131
#print(dfCocoaStocks.head())132

133
#coffee term structure134
strFileName = "/Users/jankoeman/Documents/Main/_PHD2/_NeuralNetwork Data/Coffee 
Futures 3.csv"

135

dfCoffeeFut = read_csv(strFileName, header=0, parse_dates=[0], index_col=0, squeeze=
True, date_parser=parser, delimiter=";")

136

print("Coffee Futures")137
print(dfCoffeeFut.head())138
#df['Date'] = pd.to_datetime(df['Date'])139
#print(dfCocoaStocks.head())140

141
#sugar term structure142
strFileName = "/Users/jankoeman/Documents/Main/_PHD2/_NeuralNetwork Data/Sugar 11 2.
csv"

143

dfSugarFut = read_csv(strFileName, header=0, parse_dates=[0], index_col=0, squeeze=
True, date_parser=parser, delimiter=";")

144

print("Sugar Futures")145
print(dfSugarFut.head())146
#df['Date'] = pd.to_datetime(df['Date'])147
#print(dfCocoaStocks.head())148

149
dfSugarJ = pd.DataFrame(upSugarStocks)150
dfCocoaJ = pd.DataFrame(upCocoaStocks)151
dfCoffeeJ = pd.DataFrame(upCoffeeStocks)152
dfWorldJ = pd.DataFrame(upWorldBankReturns)153
# dfSugarFutJ = dfSugarFut[[ 'SUGAR 11 NEARBY CLOSE', 'SUGAR 11 NEARBY OPEN INTEREST
','SUGAR 11 2ND CLOSE',

154

#                           'SUGAR 11 2ND OPEN INTEREST','SUGAR 11 3RD CLOSE','SUGAR
 11 3RD OPEN INTEREST',

155

#                           'SUGAR 11 4TH CLOSE', 'SUGAR 11 4TH OPEN INTEREST', '
SUGAR 11 5TH CLOSE', 'SUGAR 11 5TH OPEN INTEREST' ]]

156

dfSugarFutJ = dfSugarFut[[ 'SUGAR 11 NEARBY CLOSE', 'SUGAR 11 TOTALS OPEN INTEREST'
]]

157

158
print(dfSugarFutJ.head())159

160
# dfCoffeeFutJ = dfCoffeeFut[[ 'COFFEE NEARBY CLOSE', 'COFFEE NEARBY OPEN INTEREST
','COFFEE 2ND CLOSE',

161

#                           'COFFEE 2ND OPEN INTEREST','COFFEE 3RD CLOSE','COFFEE 
3RD OPEN INTEREST',

162

#                           'COFFEE 4TH CLOSE', 'COFFEE 4TH OPEN INTEREST', 'COFFEE 
5TH CLOSE', 'COFFEE 5TH OPEN INTEREST' ]]

163

dfCoffeeFutJ = dfCoffeeFut[[ 'COFFEE NEARBY CLOSE', 'COFFEE TOTALS OPEN INTEREST']]164
165

# dfCocoaFutJ = dfCocoaFut[[ 'COCOA NEARBY CLOSE', 'COCOA NEARBY OPEN INTEREST','
COCOA 2ND CLOSE',

166
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#                           'COCOA 2ND OPEN INTEREST','COCOA 3RD CLOSE','COCOA 3RD 
OPEN INTEREST',

167

#                           'COCOA 4TH CLOSE', 'COCOA 4TH OPEN INTEREST', 'COCOA 5TH
 CLOSE', 'COCOA 5TH OPEN INTEREST' ]]

168

169
dfCocoaFutJ = dfCocoaFut[[ 'COCOA NEARBY CLOSE', 'COCOA TOTALS OPEN INTEREST' ]]170

171
print("All Data Series Joined")172
# dfAll = dfCocoaFutJ.join([dfCocoaJ, dfCoffeeJ, dfSugarJ, dfSugarFutJ, dfCoffeeFutJ
, dfWorldJ],how="inner")

173

dfAll = dfCocoaFutJ.join([dfCocoaJ, dfCoffeeJ, dfCoffeeFutJ, dfMeanIndex],how="inner
")

174

print(dfAll.head())175
176

strOutputPath = "/Users/jankoeman/Documents/Main/_PHD2/_NeuralNetwork Data/All 
Series.csv"

177

dfAll.to_csv(strOutputPath, sep=";")178
179

#add the mean of all the data series180
181
182
183

from sklearn.compose import ColumnTransformer184
from sklearn.preprocessing import StandardScaler185

186
dfReplaced = dfAll.replace(to_replace = ',', value ='')187
dfAllFloat = dfReplaced.astype(float)188
matAll = dfAllFloat.to_numpy()189
scaler = StandardScaler()190
scaledData = scaler.fit_transform(matAll)191
print("scaled data")192
print(scaledData.shape)193
print(scaledData)194

195
lstColumnNames = list(dfAll.columns.values)196

197
dfScaled = pd.DataFrame(scaledData)198
dfScaled.columns = lstColumnNames199
print(dfScaled.head())200
strOutputPath = "/Users/jankoeman/Documents/Main/_PHD2/_NeuralNetwork Data/All 
Series Scaled.csv"

201

dfScaled.to_csv(strOutputPath, sep=";")202
203

lstColumns = ['COCOA NEARBY CLOSE','COCOA TOTALS OPEN INTEREST','Cocoa Stocks',204
                          'Coffee Stocks',205
                          'COFFEE NEARBY CLOSE', 'COFFEE TOTALS OPEN INTEREST', '
Cocoa Relative Return', 'Cocoa Position']

206

lstFractions = []207
matDifferenced = np.zeros(matAll.shape)208
for i in range(matAll.shape[1]):209
    for j in range(0,11):210
        if j "# 0:211
            colDiff = matAll[:,i]212
        else:213
            diff = j/10214
            col = matAll[:,i]215
            colDiff = fdiff(col, diff, axis=0)216
        dftest = adfuller(colDiff, autolag='AIC')217
        if dftest[1] < 0.05:218
            # print("Column Number", i)219
            diff = j/10220
            # print("Fraction", diff)221
            # print("Test statistic = {:.3f}".format(dftest[0]))222
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            # print("P-value = {:.3f}".format(dftest[1]))223
            if diff "# 1.0:224
                matDifferenced[1:,i] = colDiff #one item lost225
            else:226
                matDifferenced[:,i] = colDiff227
            lstFractions.append([lstColumns[i],j/10,dftest[0], dftest[1]])228
            break229

230
pd.set_option("display.precision", 3)231
dfFractions = pd.DataFrame((lstFractions))232
dfFractions.columns = ['Series', 'Fraction','ADF Test Stat', 'p-value']233
print(dfFractions.head(10))234
strOutputPath = "/Users/jankoeman/Documents/Main/_PHD2/_NeuralNetwork Data/Fraction 
Diff.csv"

235

dfFractions.to_csv(strOutputPath, sep=";")236
237

scaledFracData = scaler.fit_transform(matDifferenced)238
#save in pickledFraction.pkl239

240
241

# pyplot.figure()242
dfPlot = dfScaled.iloc[:600, 0:11]243
dfPlot.plot(subplots=True, legend=True)244
# pyplot.plot(scaledData[:,:9])245
pyplot.show()246

247
strPickledData = "/Users/jankoeman/dlFromScratch/Data/PickledSeries.pkl"248
lstSections = []249
for i in range(0, scaledData.shape[0], 463):250
    matSequence = scaledData[i:i + 463,0:9]251
    lstSections.append(matSequence)252

253
#print("Training Data", lstSections)254
try:255
    f = open(strPickledData, 'wb')256
    pickle.dump(lstSections, f)257
    f.close()258
except OSError as error:259
    print("Could not open/read file:", strPickledData)260
    print(error)261
    sys.exit()262

263
strPickledData = "/Users/jankoeman/dlFromScratch/Data/PickledFraction.pkl"264
lstSections = []265
for i in range(0, scaledFracData.shape[0], 463):266
    matSequence = scaledFracData[i:i + 463, 0:9]267
    lstSections.append(matSequence)268

269
# print("Training Data", lstSections)270
try:271
    f = open(strPickledData, 'wb')272
    pickle.dump(lstSections, f)273
    f.close()274
except OSError as error:275
    print("Could not open/read file:", strPickledData)276
    print(error)277
    sys.exit()278

279
dfLevel = pd.DataFrame(scaledData)280
lstCols = ['Cocoa Nearby Close', 'Cocoa Open Interest', 'Cocoa Stocks', 'Coffee 
Stocks', 'Coffee Nearby Close', 'Coffee Open Interest', 'Relative Return', 'Relative
 Position']

281

dfLevel.columns = lstCols282
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print("Level Correllations")283
print(dfLevel.corr())284

285
fig = pyplot.figure()286
ax1 = fig.add_subplot(211)287
ax2 = fig.add_subplot(212)288

289
dfCorrLevel = pd.DataFrame(dfLevel.corr())290
dfCorrLevel.columns = lstCols291
dfCorrLevel.index = lstCols292
sns.heatmap(dfCorrLevel,cmap='RdGy_r',linewidths=.1,xticklabels=1, yticklabels=1,
linecolor='black', ax=ax1)

293

# pyplot.show()294
ax1.set(xticklabels=[])295
ax1.tick_params(bottom=False)296
ax1.set_title('Level Correlations')297

298
dfFraction = pd.DataFrame(scaledFracData)299
print("Fractional Correllations")300
print(dfFraction.corr())301
dfCorrFrac = pd.DataFrame(dfFraction.corr())302
dfCorrFrac.columns = lstCols303
dfCorrFrac.index = lstCols304
sns.heatmap(dfCorrFrac,cmap='RdGy_r',linewidths=.1,xticklabels=1, yticklabels=1,
linecolor='black', ax=ax2)

305

ax2.set_title('Fractional Correlations')306
pyplot.show()307

308
309
310
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# Appendix C1
2
3
# Jan Koeman4
# Data Preparation code for analysis with5
# Standalone sci-kit-learn RBM6
# University of Canterbury, Christchurch, New Zealand7
# Department of Economics and Finance8
# jan.koeman@pg.canterbury.ac.nz9

10
# The raw data series are publicly available on the web as described in11
# my thesis Essays on Commodities, Chapter 3.12

13
14
15

from pandas import read_csv16
from datetime import datetime17
from matplotlib import pyplot18
import pandas as pd19
import pickle20
import sys21
import numpy as np22
from fracdiff import fdiff23
from statsmodels.tsa.stattools import adfuller24
import os25
import csv26
import sys27
import midi_manipulation228
from tqdm import tqdm29
import pickle30
import jkRnnRBM as jk31

32
import rbmdlfs as dlfs33

34
import matplotlib.pyplot as plt35

36
from scipy.ndimage import convolve37
from sklearn import linear_model, datasets, metrics38
from sklearn.model_selection import train_test_split39
from sklearn.neural_network import BernoulliRBM40
from sklearn.pipeline import Pipeline41
from sklearn.base import clone42

43
import seaborn as sns44

45
def parser(x):46
    return pd.to_datetime(x)47

48
49
50
51

strFileName = "/Users/jankoeman/Documents/Main/_PHD2/_NeuralNetwork Data/World Bank 
Binary 06.csv"

52

# dfWorldBinary = read_csv(strFileName, header=0, parse_dates=[0], index_col=0, 
squeeze=True, date_parser=parser, delimiter=";")

53

dfWorldBinary = read_csv(strFileName, header=0, index_col=0, squeeze=True, delimiter=
";")

54

print("World in Binary")55
print(dfWorldBinary.head())56
print(dfWorldBinary.tail())57
print("Shape:", dfWorldBinary.shape)58
#df['Date'] = pd.to_datetime(df['Date'])59
#print(dfCocoaStocks.head())60
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# upCoffeeStocks = dfCoffeeStocks.resample('D').interpolate()61
# print(upCoffeeStocks.head(10))62
# dfCoffee = pd.DataFrame(upCoffeeStocks)63
print("Percent Change")64
dfWorldReturns = dfWorldBinary.pct_change()65
print(dfWorldReturns.head(10))66
# dropWorldBankReturns = dfWorldReturns.drop([parser('2000-01-15')])67

68
dfDropped = dfWorldReturns.drop(index='1960M01')69
print("1st row dropped")70
print(dfDropped.head(10))71
print(dfDropped.tail(10))72

73
strOutputPath = "/Users/jankoeman/Documents/Main/_PHD2/_NeuralNetwork Data/_World 
Binary Source.csv"

74

dfDropped.to_csv(strOutputPath, sep=";")75
76
77

dfBinary = dfDropped.apply(lambda x: [0 if np.abs(y) "# 0.03 else 1 for y in x])78
print("In Binary")79
print(dfBinary.head(10))80
print(dfBinary.tail(10))81
binaryColumns = dfBinary.columns82

83
X = dfBinary.to_numpy()84

85
x_train, x_test = train_test_split(X,test_size=100)86
model = BernoulliRBM(n_components=30, n_iter=100, verbose=True)87
# print("pseudoLL before training", np.mean(model.score_samples(x_test)))88
model.fit(x_train)89
# print("SklearnW.shape", model.components_.T.shape)90
# print("SklearnW\n", model.components_.T)91
# print(model.intercept_hidden_)92

93
print("pseudoLL trained", np.mean(model.score_samples(x_test)))94

95
# lstFractions = []96
# lstColumns = dfBinary.columns97
# matDifferenced = np.zeros(X.shape)98
# for i in range(X.shape[1]):99
#     for j in range(0,11):100
#         if j !" 0:101
#             colDiff = X[:,i]102
#         else:103
#             diff = j/10104
#             col = X[:,i]105
#             colDiff = fdiff(col, diff, axis=0)106
#         dftest = adfuller(colDiff, autolag='AIC')107
#         if dftest[1] < 0.05:108
#             # print("Column Number", i)109
#             diff = j/10110
#             # print("Fraction", diff)111
#             # print("Test statistic = {:.3f}".format(dftest[0]))112
#             # print("P-value = {:.3f}".format(dftest[1]))113
#             if diff !" 1.0:114
#                 matDifferenced[1:,i] = colDiff #one item lost115
#             else:116
#                 matDifferenced[:,i] = colDiff117
#             lstFractions.append([lstColumns[i],j/10,dftest[0], dftest[1]])118
#             break119

120
# Y = matDifferenced121
# model = BernoulliRBM(n_components=40, n_iter=100, verbose=True)122
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# model.fit(Y[0:600,:])123
# print("pseudoLL Y", np.mean(model.score_samples(Y[601:,:])))124

125
126
127

sample = np.zeros(47)128
sample[38:44] = 1129
# sample[39]= 0130
# sample[40] = 0131
# sample[3] = 0132
reconstructed = model.gibbs(sample)133
print("Sample", sample)134
print("Reconstructed", reconstructed*1)135

136
# reconstructed2 = model.gibbs(reconstructed)137
# # print("Sample", sample)138
# print("Reconstructed2", reconstructed2*1)139
recon = reconstructed*1140
# for i in range(0,47):141
#     print(binaryColumns[i], int(sample[i]),recon[i])142
# for i in range(0,47):143
#     print(binaryColumns[i], recon[i])144

145
146

reconstructions = np.zeros((47,47))147
for i in range(0,47):148
    sample = np.zeros(47)149
    sample[i] = 1150
    reconstructed = model.gibbs(sample)151
    # print("Sample", sample)152
    # print("Reconstructed", reconstructed*1)153
    reconstructions[i] = reconstructed*1154

155
print("results shape", reconstructions.shape)156
print("results", reconstructions)157
dfRecon = pd.DataFrame(reconstructions)158
dfRecon.columns = binaryColumns159

160
strOutputPath = "/Users/jankoeman/Documents/Main/_PHD2/_NeuralNetwork Data/_World 
Binary.csv"

161

dfRecon.to_csv(strOutputPath, sep=";")162
163

dfRecon.insert(1, 'Commodity', binaryColumns, True)164
dfHeatmap = dfRecon.set_index('Commodity')165
print("heatmap df")166
print(dfHeatmap.head())167

168
# sns.heatmap(dfHeatmap, cmap="YlGnBu",linewidths=.1,xticklabels=1, yticklabels=1,
linecolor='black')

169

dfGraph = dfBinary.iloc[600:647, :]170
# sns.heatmap(dfGraph, cmap="YlGnBu",linewidths=.1,xticklabels=1, yticklabels=1,
linecolor='black')

171

# pyplot.show()172
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Appendix D: The advantages and disadvantages of Machine Learning in 

comparison with traditional econometric tools 

 

Machine Learning methods, in comparison with more traditional econometric models, 

are quite often considered to be black box tools. Following is a short summary of the 

advantages and disadvantages of ML as opposed to traditional econometric tools. For 

more information, consult Castelvecchi (2016), Loyola-Gonzalez (2019), or 

Holzinger et al. (2019). 

 

DISADVANTAGES 

 

1. A significant amount of data is required.  

2. ML systems are very sensitive to changes in input parameters. There is an art 

to training ML systems and the training skills can take time to acquire. 

3. Expert level programming expertise is required to modify or debug basic 

system structures. 

4. Since the system is a black box, it is difficult to understand how it works by 

examining the interior weights. This makes it necessary to devise a system of 

training inputs where the output of the system is known, which may take a 

significant amount of time. 

 

ADVANTAGES 

 

1. ML models can accept non-stationary series as input and can learn non-linear 

associations to generate output.  
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2. A Restricted Boltzmann Machine has similar capabilities to Principal 

Components Analysis (PCA). A Restricted Neural Network RBM can 

simultaneously learn input associations and sequence the associations through 

time. This is not possible with PCA or econometric tools. 

3. The RNN_RBM and RBM learn the joint probability distribution of several 

variables instead of the single distribution of one variable as a function of the 

others. In addition, the RNN_RBM is capable of learning the evolution of the 

joint probability distribution over time. 

4. The RNN_RBM is a generative model. In other words, once trained a 

RNN_RBM can generate output that is drawn from the probability distribution 

learned from the input. 

5. The RBM architecture is unsupervised, where it is not necessary to know the 

correct output for each set of inputs. The system learns the patterns in the data 

simply by being shown the possible range of inputs. 
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Table 1 – Fractional Differentiation Results on Commodity Time 
Series. 

Series Fraction ADF Stat p-value 

Cocoa Nearby Close 0 -2.98 0.04 
Cocoa Totals Open Interest 0.7 -3.69 0.00 
Cocoa Stocks 0 -4.61 0.00 
Coffee Stocks 1 -4.94 0.00 
Coffee Nearby Close 0.7 -3.35 0.01 
Coffee Totals Open Interest 0.8 -4.20 0.00 
Cocoa Relative Return 0 -9.07 0.00 
Cocoa Position 0 -8.26 0.00 
This table depicts the results from iteratively fractionally differencing 
the listed commodity time series using the method of Lopez de Prado 
(2018) 
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Table 2 – RNN-RBM prediction results. 

Description RSS 
Baseline 
RSS 

Kolmogorov-
Smirnov 
p-value 

Level Data 3.66 .65 .89 
Fractional Differenced Data 2.98 .65 .96 
This table illustrates the results from one-step-ahead predictions on 
hold out date after training the RNN_RBM for 100 epochs. The 
baseline prediction uses today’s price as tomorrow’s estimate. 

 

191



Figure	1	–	Simple	Feedforward	Network	

	

This	 figure	depicts	 the	simplest	 type	of	 feedforward	neural	network	where	 the	
inputs	xi	are	fed	through	the	hidden	nodes	to	the	output	node.	
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Figure	2	–	Restricted	Boltzmann	Machine	(RBM)	

	

This	figure	depicts	a	Restricted	Boltzmann	Machine	(RBM).	
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Figure	3	–	Recurrent	Neural	Network	(RNN)	

	

This	 figure	depicts	a	Recurrent	Neural	Network	 (RNN).	Xt	 is	a	 sequence	 that	 is	
fed	to	each	timestep	in	turn.	There	are	as	many	(xt,	ht,	ot)	node	groups	as	there	
are	steps	in	the	sequence.	
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Figure	 4	 –	 The	 Recurrent	 Neural	 Network	 Restricted	 Boltzmann	 machine	
(RNN_RBM)	

	

This	 figure	depicts	a	Recurrent	Neural	Network	Restricted	Boltzmann	machine	
(RNN_RBM).	 At	 each	 time	 step,	 the	 biases	 for	 a	 separate	 conditional	 RBM	 are	
initialized	from	the	RNN.		(Boulanger-Lewandowski	et	al.	(2012))	
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Figure	5	–	Monthly	Commodity	Changes	Sample	Data	

	

This	 figure	 reports	 a	 sample	 of	 monthly	 commodity	 price	 changes	 from	 the	
World	Bank	pink	sheet	 from	the	period	February	2010	to	December	2013.	The	
commodities	 are	 listed	 along	 the	 x-axis.	 If	 the	 absolute	 monthly	 percentage	
change	is	greater	than	.04,	then	the	matrix	value	is	set	to	1	and	appears	as	black,	
otherwise	it	is	set	to	zero	and	appears	as	yellow.	The	complete		
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Figure	6	–Heatmaps	of	cocoa	related	time	series.	

	

This	 figure	 illustrates	 heatmaps	 of	 the	 level	 correllations	 and	 the	 fractionally	
differenced	 correlations	 of	 the	 cocoa	 and	 related	 time	 series	 input	 to	 the	
RNN_RBM.	 The	 fractional	 correlations	 indicate	 that	 some	 long	 term	 price	
information	is	retained.	
	

197



Figure	 7	 –	 RNN_RBM	 cocoa	 and	 related	 time	 series	 actual	 values	 versus	
predictions	

	

	

This	 figure	 illustrates	 the	 fractionally	differenced	commodity	 time	series	actual	
values	in	the	top	panel,	and	the	predictions	made	by	the	RNN_RBM	in	the	bottom	
panel.	 The	 RNN_RBM	was	 trained	 for	 200	 epochs	with	 50	 hidden	 units	 and	 a	
learning	rate	of	.01.		Ideally,	the	bottom	panel	would	be	a	close	match	to	the	top	
panel	but	he	predictions	are	only	a	noisy	estimate	of	the	actual	values.	
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General Conclusions 

 

Government regulation of commodities markets can be a double-edged sword. Whilst 

regulation in the United States may protect (and enrich) dairy farmers from price 

fluctuations, the effect on the proper hedging role of futures markets can be dramatic. 

Chapter one of this thesis illustrates that the correct design of the  Global Dairy Trade 

spot market index in New Zealand results in substantially better hedging effectiveness 

that the corresponding indices constructed in the US. 

 

Modern commodities markets are substantially more complicated than commodity 

markets from the last century. The advent of high-speed data collection and analysis 

has lead to the presence of completely new trader categories including momentum 

and index traders. Chapter two illustrates that a carefully crafted inventory and 

consumption-based fundamental model , of the cocoa market, the apex of the 

Traditional Theory of Storage, no longer can adequately explain price movements in 

modern markets.  

 

Machine learning systems that have achieved spectacular success in speech and image 

pattern recognition tasks are starting to find application in finance, despite a high 

degree of technical complexity. Paper three of this thesis applies two state-of-the-art 

neural network models to continuous and binary financial time series. A Restricted 

Boltzmann Machine (RBM) is utilized to characterize the contemporaneous changes 

in commodity prices across the commodity universe and a Recursive Neural Network 

Restricted Boltzmann Machine (RNN_RBM) is used to analyze fundamental, 
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momentum, and index time series inputs related to the cocoa market. Imperfections in 

time series including non-stationarity are dealt with by fractional differencing, a new 

technique invented by Lopez de Prado. The RNN_RBM predictions do not better 

simple baseline predictions but the RBM analysis indicates that prices of groups of 

commodities do move together. The automatic construction of time-dependent 

multivariate probability distributions appears to hold great promise for automatic 

feature detection and modelling in finance. Several other machine learning 

applications, using either the RNN_RBM or RBM could be explored as extensions to 

our research. In particular, the RNN_RBM could be used to explore the co-movement 

of commodity convenience yields, and to explain the multi-commodity term structure. 
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