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Abstract. The pipeline is used as a medium of transportation in global gas and oil industries, 

providing the most efficient, convenient and transportation method for natural gas and oil from 

downstream to upstream production of the economical mode of the power station, refineries, 

and domestic needs.  However, the pipeline leakages become a major concern as their failure 

may contribute to operational and economic loss as well as environmental pollution. This paper 

proposed a system to detect pipe fault at different locations. Empirical Mode Decomposition 

(EMD) was applied for feature extraction using energy and kurtosis. The one-against-one 

(OAO) and one-against-all (OAA) multiclass SVM with radial basis function (RBF), 

polynomial and sigmoid kernel functions were implemented in order to classify the multiple 

fault locations from the extracted features. RBF kernel function recorded the highest 

classification accuracy for both OAO and OAA approaches with 97.77% and 96.29%, 

respectively, followed by slightly reduced accuracy for sigmoid whereas significantly low 

accuracy for the polynomial kernel.  The outputs were further analysed to justify the 

performance of the classifiers. From all the cases, it was observed that OAO-SVM with RBF 

kernel performed the best for pipe fault diagnosis.   

Keywords: Fault Diagnosis; Condition Monitoring; Support Vector Machine.             

1. Introduction 

The use of pipelines for fluid transportation has been widely utilised across the world. However, over 

time, the pipelines are susceptible to leakage due to several factors such as corrosion, degradation of 

the material, poor quality of fittings and many more [1]. Leakage in pipelines will not only 

consequence in the operational loss but also to environmental pollution. Therefore, effective leak 

detection in the pipeline is essential. Over the years, leak detection using vibration analyses are the 

most widely reported.  

Karkulali et al. [2] reported on the use of a piezo thin-film sensor to capture the leak signals and 

Fast Fourier Transform (FFT) signal processing was used to analyse the leak. As a result, the FFT 

spectrum capable of distinguishing between no leak and leak conditions. However, the authors did not 

further report on the classification of the leak in terms of size and distance. Wijayanto et al. [3] utilised 

the same signal processing method to determine the size of the leak in a pipeline. However, the results 

showed that the FFT spectrum could not differentiate between no leak and small leak conditions. The 
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frequency-domain was only significant when the leak was massive. According to Bentoumi et al. [4], 

the used of FFT signal processing was also associated with drawbacks in terms of noise, fault 

geometry and fluid nature. However, for various limitation of frequency domain analysis for vibration 

signals, time-frequency adaptive signal processing can effectively mitigate the discrepancies. 

An unconventional, relatively new and a robust time-frequency analysis, EMD was first presented 

in 1998. Since then, EMD has been applied to stationery and nonstationary signals in numerous fault 

diagnosis research [5, 6]. The principle of EMD is based on the signal’s local characteristics in the 

time scale. The time scale is divided into a set of orthogonal components known as intrinsic mode 

function (IMF). IMFs are determined by the signal, not some kernel. Therefore, EMD is self-adaptive 

and can be applied efficiently to any signal. Since EMD is so well fit for any signal, it has been 

applied affluently in condition monitoring and fault diagnosis research. Jiang et al. [7, 8] used an 

improved EMD for rolling element bearing fault diagnosis where the results showed that the proposed 

method can not only diagnose known faults but also monitor unknown faults with strong, robust 

performance. Lei et al. [7, 8] used locomotive rolling element bearings to demonstrate the 

performance of EMD. In this paper, EMD is applied to the pipe fault signal for effective fault feature 

extraction. 

An effective fault diagnosis method would have the adaptability to accommodate to signal 

variations and different system. Machine learning algorithms meet these criteria and that makes them a 

helpful tool in fault diagnosis research. SVM is a powerful supervised learning algorithm which 

analyses data for regression analysis or non-probabilistic classification. SVM uses hyperplane to 

maximise the distance between the two classes. Gao et al. [9] applied wavelet packet transform (WPT) 

to extract features and used SVM for classification of the samples in reciprocating pumps fault 

diagnosis. Yuan and Chu [10] successfully applied SVM for fault diagnosis of the turbo-pump rotor. 

However, SVM has many kernel function and approach for multiclass classification where the 

hyperparameter tuning dominates the classification accuracy. So, it is important to investigate which 

multiclass SVM approach with the right kernel function performs the best with the feature extraction 

algorithm. In this paper, EMD was used for feature extraction, while SVM was used for classification. 

2. Theoretical background 

2.1. EMD 

EMD is a new time-frequency adaptive method which uses the shifting process to decompose the 

signal into IMFs. The shifting process is conducted by connecting the local maxima and minima to 

form the upper and lower envelopes. The sifting process is repeated until the following two conditions 

satisfy: 

(a) The number of extrema in the whole time series must differ with the zero-crossing value by at most 

one. 

(b) The mean value of the upper and lower envelopes at any given location is zero. 

An IMF, 𝑐1, is produced when the above-mentioned conditions are satisfied. The residue is 

obtained by subtracting the IMF1 from the main signal which is denoted by 𝑟1 and is used to obtain the 

next IMFs. The decomposition is performed n times until the residue gets monotonic. By adding the 

IMFs and the remaining residue, the original signal can be obtained as follows: 

 

𝑋(𝑡) = ∑ 𝑐𝑖 + 𝑟𝑛

𝑛

𝑖=1

 (1) 

 

where X(t) is the original signal, 𝑐i is the 𝑖th IMF, and 𝑟n is the 𝑛th residue. 
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2.2. SVM 

SVM uses hyperplane to maximise the distance between the two classes. An optimal hyperplane is 

obtained that represents the margin of the vectors known as support vectors. This type of SVM uses a 

linear decision boundary and is called linear SVM and expressed as follows: 

 

𝑤. 𝑥 + 𝑏 = 0 (2) 

 

which indicates 

 

𝑦𝑖(𝑤. 𝑥 + 𝑏 = 0) ≥ 1, 𝑖 = 1, ⋯ , 𝑁 (3) 

 

The goal of SVM is to obtain the highest separating hyperplane by minimizing ‖𝑤‖ using the 

conditions. Here ‖𝑤‖ the Euclidean norm of w, and 2/‖𝑤‖ denotes the distance between the 

hyperplane and the nearest data points of each class. By introducing Lagrange multipliers 𝛼𝑖, the SVM 

is trained to solve a convex quadratic problem (QP). A unique globally optimized result is the solution, 

which contains the following properties: 

 

𝑤 = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖

 (4) 

 

Only if corresponding 𝛼𝑖  > 0, these 𝑥𝑖 are called support vectors. 

The decision function of the trained SVM can be expressed as: 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖(𝑥 ∙ 𝑥𝑖) + 𝑏

𝑁

𝑖=1

) (5) 

 

When the observations are non-linearly separable, SVM performs a nonlinear mapping of the input 

vector x from the input space RN into a higher dimensional Hilbert space, where the mapping is 

determined by the kernel function. Different types of kernels are suitable for different classification 

problems to reach the optimal classification error. 

3. Experimental procedures and results 

The test rig setup for the collection of the vibration signal from the pipe is shown in figure 1. An air 

storage tank with the length and diameter of 120 cm and 11.43 cm was used to replicate the leaks in a 

pipeline. A total of 5 plug fittings with a hole diameter of 1 mm were welded along the length of the 

pipe. The distance between each plug was fixed at 20 cm. A ball valve was fitted to the plug to control 

the leak. The storage tank was pressurised by using centralised compressed air system. The pressure 

inside the tank was monitored by using a pressure gauge. An accelerometer with the sensitivity of 100 

mV/g was used to capture the leak signals. The accelerometer was attached at the distance of 15 cm 

away from leak 1. The leak signals were acquired by using National Instruments data acquisition 

model NI 9234. The signals were captured at a sampling rate of 25.6 kHz. Initially, the storage tank 

was pressurised with a pressure of 0.2 MPa and the signal was recorded for 1 minute which is labelled 

as no leak condition. Next, the ball valve at 15 cm was opened to induce the leak and the signals were 

recorded for 1 minute. The same procedures were repeated for leaks at 35 cm, 55 cm, 75 cm and 95 

cm away from the accelerometer.  The total leak type considered in this study is illustrated in table 1. 
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Figure 1. Experimental setup of pipe fault test rig. 

Table 1. Pipe leak at different locations from the sensor. 

Leak type No leak Leak 1 Leak 2 Leak 3 Leak 4 Leak 5 

Fault class C1 C2 C3 C4 C5 C6 

3.1. Classification modelling 

For feature extraction, 6250 data points were taken per sample. For each condition, 75 samples were 

obtained and for all six different conditions, the total number of samples is 450. EMD was applied to 

decompose the vibration signals into several IMFs. It is to be noted that the lower order IMFs carry the 

most information and for higher order, the information decreases. So, taking all the IMFs into 

consideration would increase the computational burden and decrease the accuracy. In this paper, only 

the first five IMFs are considered [11]. 

In this paper, two statistical parameters, energy and kurtosis are used to obtain the feature vector. 

The summation of the energy can obtain the total energy of a signal in each sub-band and energy 

feature in each band. Kurtosis is a dimensionless statistical measure that characterises the flatness of a 

signal’s probability density function defined as the fourth-order moment of signal data and kurtosis of 

the sub-band coefficient [10.1007/s00500-013-1055-1]. From each condition, out of five IMFs, ten 

features were extracted which consist of energy and kurtosis for each IMF. Table 2 represents one 

feature vector row from each fault class chosen randomly for visualization of the features. The final 

size of the feature vector is 450x10 for the entire feature set. This feature vector was normalised 

between 0 to 1 and fed into the SVM for classification. OAO SVM and OAA SVM were implemented 

to classify the faults at different locations. In SVM, kernel function is crucial to get desired 

classification accuracy. In this study, the radial basis function (RBF), polynomial and sigmoid kernel 

functions are used. To evaluate the performance of the classifier, 70% of the data was used to train the 

classifier and the rest 30% to test the accuracy. So, the number of samples obtained for training and 

testing were 315 and 135, respectively. The data was partitioned randomly which results in uneven 

distribution of the number of samples in different fault class. 

4. Results and discussion 

All three combinations of the kernel were applied to OAO and OAA approach of SVM. From table 3, 

it is observed that the RBF kernel obtained the highest classification accuracy for both approaches, 

whereas the polynomial kernel obtained the lowest. The testing accuracy with RBF in OAO was 

slightly higher than OAA. In both cases of sigmoid, the testing accuracy was slightly lower than RBF, 

which is 94.81% and 94.07% for OAO and OAA approach, respectively. Since the accuracy of the 

polynomial kernel in both OAO and OAA was significantly low, no further analysis was conducted 

with it. The confusion matrix with precision, recall and F1 score for RBF and Sigmoid from both 

OAO and OAA approach are provided in table 4 and table 5. 

 

15 cm 20 cm 20 cm 20 cm 20 cm 

Air in Accelerometer 

Leak 1  

gauge 

Pressure gauge 

Leak 2  

gauge 

Leak 3  

gauge 

Leak 4  

gauge 

Leak 5  
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Table 2. Representation of the feature vector for different class. 

Fault 

Class 

IMF1 IMF2 IMF3 IMF4 IMF5 

Energy Kurtosis Energy Kurtosis Energy Kurtosis Energy Kurtosis Energy Kurtosis 

No 

leak 
0.001228 0.000434 0.000214 0.000176 0.000148 2.3732 3.0511 3.2202 2.8091 4.0188 

Leak 

1 
2.9025 0.48943 0.10441 0.030102 0.009964 2.3998 3.1116 3.8018 3.2697 2.7446 

Leak 

2 
4.7834 0.66713 0.14955 0.039948 0.019658 2.3546 3.1181 3.7326 3.4483 2.381 

Leak 

3 
2.1343 0.88299 0.069758 0.019215 0.008126 2.2583 3.0966 3.5044 3.7247 3.9072 

Leak 

4 
2.3039 0.42037 0.050061 0.012056 0.006248 2.3876 3.0483 3.7251 2.9731 4.3754 

Leak 

5 
2.6432 1.7895 0.11299 0.033748 0.010545 2.9254 3.033 5.2849 3.9484 4.6836 

 

In all results of table 4 and 5, although the number of samples varies for individual class because of 

the random partition of feature set, the total observation is 135. Among all four cases, since OAO-

SVM with RBF kernel obtained the highest accuracy, its precision, recall and F1 score were also the 

highest with 0.98, 0.97 and 0.98. respectively. In case of OAO-SVM, the no fault condition could 

obtain the perfect accuracy for both RBF and sigmoid kernel which is 1 for precision, recall and F-1 

score. Only class C2 and C6 in OAO-SVM with RBF kernel could obtain the perfect accuracy too. As 

expected, the precision, recall and F1 score for the OAA-SVM with RBF kernel was the second 

highest which were 0.96 for all of them. The performance of sigmoid was lower for both SVM 

approach where OAO-SVM with sigmoid kernel was slightly more accurate than OAA-SVM with 

Sigmoid kernel. From table 5(a), it is observed that the first three classes obtained the perfect accuracy 

whereas in table 5(b) C3 and C6 could obtain it. These differences show why the classifier with RBF 

kernel was better. In all cases, OAO-SVM performed better than OAA-SVM for the same kernel 

whereas OAO-SVM with RBF kernel was found to be the best performing classifier in this study. 

Table 3. SVM accuracy using different kernel functions. 

Approach Kernel Test accuracy (%) 

OAO 

RBF 97.77 

Polynomial 74.81 

Sigmoid 94.81 

OAA 

RBF 96.29 

Polynomial 75.55 

Sigmoid 94.07 

 

Table 4(a). Confusion matrix with precision, recall and F1 score for OAO-SVM with RBF kernel. 

Class C1 C2 C3 C4 C5 C6 Total Precision Recall F1 

C1 27 0 0 0 0 0 27 1 1 1 

C2 0 20 0 0 0 0 20 1 1 1 

C3 0 0 21 0 1 0 22 1 0.95 0.98 

C4 0 0 0 17 1 0 18 0.94 0.94 0.94 

C5 0 0 0 1 20 0 21 0.91 0.95 0.93 

C6 0 0 0 0 0 27 27 1 1 1 

Total       135 0.98 0.97 0.98 
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Table 4(b). Confusion matrix with precision, recall and F1 score for OAO-SVM with Sigmoid kernel. 

Class C1 C2 C3 C4 C5 C6 Total Precision Recall F1 

C1 27 0 0 0 0 0 27 1 1 1 

C2 0 20 0 0 0 0 20 0.91 1 0.95 

C3 0 1 21 0 0 0 22 0.91 0.95 0.93 

C4 0 0 0 16 2 0 18 0.94 0.89 0.91 

C5 0 1 0 1 19 0 21 0.90 0.90 0.90 

C6 0 0 2 0 0 25 27 1 0.93 0.96 

Total       135 0.94 0.95 0.94 

Table 5(a). Confusion matrix with precision, recall and F1 score for OAA-SVM with RBF kernel. 

Class C1 C2 C3 C4 C5 C6 Total Precision Recall F1 

C1 24 0 0 0 0 0 24 1 1 1 

C2 0 21 0 0 0 0 21 1 1 1 

C3 0 0 19 0 0 0 19 1 1 1 

C4 0 0 0 20 2 0 22 0.91 0.91 0.91 

C5 0 0 0 2 17 1 20 0.89 0.85 0.87 

C6 0 0 0 0 0 29 29 0.97 1 0.98 

Total       135 0.96 0.96 0.96 

Table 5(b). Confusion matrix with precision, recall and F1 score for OAA-SVM with Sigmoid kernel. 

Class C1 C2 C3 C4 C5 C6 Total Precision Recall F1 

C1 18 0 0 0 0 1 19 1 0.95 0.97 

C2 0 24 0 1 0 0 25 1 0.96 0.98 

C3 0 0 29 0 0 1 29 1 1 1 

C4 0 0 0 14 4 0 18 0.82 0.78 0.80 

C5 0 0 0 2 17 0 19 0.77 0.89 0.83 

C6 0 0 0 0 0 25 25 1 1 1 

Total       135 0.93 0.93 0.93 

 

5. Conclusion  

Throughout this study, EMD and SVM were successfully developed for early detection and 

localisation of small leaks occurred along the pipeline. The OAO and OAA SVM approaches were 

implemented to classify the multiple fault location with applying the kernel function of RBF, 

polynomial and sigmoid functions. Compared to others, RBF kernel function recorded the highest 

classification accuracy in both OAO and OAA approaches with a percentage of 97.77% and 96.29% 

respectively followed by a slightly lower performance of sigmoid, 94.81% and 94.07%, respectively. 

On the other hand, the performance of polynomial kernel was significantly poor in both SVM 

approach. The classification results with RBF and sigmoid were further analysed using confusion 

matrix, precision, recall and F1 score. It was observed that OAO-SVM with RBF kernel is the best 

combination since it can obtain the highest accuracy with the best precision, recall and F1 score. 
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