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ABSTRACT  

Although noise-assisted decomposition methods, ensemble empirical mode decomposition (EEMD) and 

complementary EEMD (CEEMD) can reduce the drawbacks of empirical mode decomposition (EMD), they 

cannot fully eliminate the presence of white noise. In this paper, a method named noise eliminated EEMD 

(NEEEMD) was proposed to reduce further the white noise in the intrinsic functions and keep the ensembles 

optimum. The NEEEMD algorithm also decomposes the ensemble of white noise signals using EMD and 

subtracts from the outputs of EEMD. A simulated signal was used to demonstrate the performance of 

NEEEMD using root-mean-square error (RRMSE) and time & envelope spectrum kurtosis (TESK). A 

sensitive mode (SM) selection method was proposed to select the most sensitive intrinsic mode functions 

(IMFs) from NEEEMD which takes multiplication of kurtosis in the time domain and energy-entropy in the 

frequency domain. Finally, to enhance the signal's fault-related impulses, an advanced filter called MOMEDA 

was applied to the most sensitive IMF. The significance of the proposed method was illustrated using the 

envelope spectrum from bearing signals containing different types of faults at various speeds and motor loads. 

The output of the proposed method, EEMD and CEEMD was compared using the envelope spectrum to 

identify fault characteristic impulses. Envelope spectrum analysis proved that our proposed method 

performed better in every case by providing more fault-related impulses. 
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I. INTRODUCTION 

Rotating machinery such as rolling bearings are one of the 

key components of the industries. Bearings and other 

rotating components suffer from continuous failure due to 

their prolonged period of operation. It is crucial to have a 

reliable fault diagnosis and health monitoring system to 

avoid any unwanted failure during operation. Tremendous 

research has been carried out over the past few decades, both 

from the industries and academia, to ensure safe operation 

[1].  

Signal processing has been the most prominent and 

successful method in fault diagnosis and condition 

monitoring research of bearing [2][3][4]. The most effective 

signal processing method is the time-frequency domain 

analysis which includes wavelet transform [5][6], variational 

mode decomposition (VMD) [7][8], local mean 

decomposition (LMD) [9] and EMD [10] that have been 

employed for bearing fault diagnosis. The EMD family has 

been proven to be superior since it acts as a filter by 

producing several IMFs [11]. 

EMD is a popular time-frequency adaptive decomposition 

method that is suitable for varying and nonstationary signal 

analysis. EMD has gotten massive popularity in fault 

diagnosis and condition monitoring [12][13][14]. EMD 

decomposes signals into several components known as IMFs 

and a monotonic signal called residue [15]. Xiong et al. [16] 
obtained acceleration time histories from the bearing box to 

process them with the EMD method mixed with kurtosis 

criterion and noise components with signal trend were 

filtered. The test data was used for the validation of the 

proposed method which demonstrated that the system can 

both diagnose fault at low speed and obtain high accuracy. 

Song et al. [17] proposed a novel multi-layer filtering method 

to remove the noise and obtain weak fault features from 

IMFs of different layers obtained using EMD. Simulated and 

experimental results showed that the method can 

successfully filter out unwanted noise to improve accuracy. 

However, one of the main limitations of EMD is the mode 

mixing problem described as mixing elements from different 

scales into one or separate IMFs. Because of this drawback, 
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the signal may contain some components and noise unrelated 

to the signal, decreasing the system accuracy. To subside the 

limitations of EMD, Wu and Huang [18] proposed EEMD, a 

noise-assisted version of EMD. EEMD adds white noise to 

the ensemble signals and the white noise populates the whole 

signal, thus drastically solves the mode mixing problem. Zou 

[19] applied a deep neural network to the processed signal of 

EEMD. The method can significantly improve fault 

diagnosis accuracy in case of a small sample size. Li [20] 

proposed a novel method to select the sensitive IMFs which 

was shared with advanced frequency band entropy for 

bearing fault diagnosis. The novel method has an advantage 

over other methods in terms of feature extraction. 

Nonetheless, to significantly reduce the presence of white 

noise, many ensembles are required, which increases the 

computational complexity. 

To alleviate the drawbacks of EEMD, Yeh et al. [21] came 

up with CEEMD method which adds positive and negative 

white noise in pairs with a less ensemble number to reduce 

the residual noise present in the reconstructed signal. Yang 

[22] used a combination of wavelet threshold and CEEMD 

to reduce the background noise of the vibration signal from 

the rolling bearing. IMFs were obtained using CEEMD and 

selected based on kurtosis index and correlation coefficients. 

The fault impulses were obtained using the envelope 

spectrum. Lu [23] used an optimized CEEMD assisted 

system combined with a rigid Gaussian distribution 

clustering unsupervised learning algorithm for bearing fault 

diagnosis. The proposed model has a self-learning ability. 

Anyhow, CEEMD can decrease white noise to a great extent, 

but it does not completely eliminate the limitation and needs 

further attention. This paper proposes a method called 

NEEEMD to overcome the drawbacks of EEMD by 

subtracting the ensemble IMFs of noise from the ensemble 

IMFs of the original signal. NEEEMD reduces the 

drawbacks of EEMD and CEEMD within the limited number 

of ensembles which is validated using RRMSE and TESK.  

Since the decomposition algorithms produce several IMFs 

and not all the IMFs have the same physical significance, it 

is important to identify which IMFs work further. Typically, 

the higher-ordered IMFs contain the most information about 

the signal[24]. So, it is crucial to have some method to select 

the most SM from the IMFs. Among many techniques 

proposed SM selection, He et al. [25] proposed the selection 

of SM by a variance regression approach. Yan and Gao [26] 

used both correlation measure and the energy amount to 

select the most SM. Lei and Zuo [27] proposed the 

measurement of correlation of the vibration signal and IMFs 

of the fault condition and correlation of the vibration signal 

and IMFs of the normal condition for SM selection. Wang et 

al. [27] proposed the selection of the IMF with the greatest 

value of the kurtosis index as the most SM. Nevertheless, all 

the proposed methods listed above are obtained from the 

time-domain analysis of the acquired IMFs, which overlooks 

the time-frequency domain characteristics of the SM. This 

study proposed a sensitive mode selection method that 

considers kurtosis in time-domain and energy-entropy in 

frequency-domain, thereby getting the most information out 

of the signal. 

The noise-assisted decomposition methods can split the 

signal into separate modes, where the most sensitive mode 

contains the highest information. However, the characteristic 

fault impulses can be pretty low because the noise populates 

the entire frequency bandwidth and the white noise is present 

in each mode. Therefore it is required to enhance the fault 

impulses of the fault frequency in rotating machinery fault 

diagnosis. Minimum Entropy Deconvolution (MED) [28] 

has been used effectively by many researchers for rotating 

machinery fault diagnosis; however, this method has its own 

limitations. MED takes many iterations for the solution and, 

most of all, is suitable for a single impulse, whereas our 

signals have multiple impulses. McDonald and Zhao 

proposed [29] a powerful method called multipoint optimal 

minimum entropy deconvolution adjusted (MOMEDA) 

which does not require any iteration to reach the filtering 

solution. MOMEDA is able to extract the regular fault 

impact using the multipoint kurtosis in the range of the 

period. It has a strong versatility since it does not have to 

determine the fault period in advance. Zhu et al. [30] used 

MOMEDA to extract the bearing signal's effective 

components and then applied Teager energy operator (TEO) 

to obtain the fault features. Wang et al. [31] applied 

MOMEDA on simulated signal and gearbox vibration signal 

and effectively separated the various impact elements. In this 

paper, MOMEDA is applied to the most sensitive mode 

obtained from the IMFs after the NEEEMD decomposition. 

The filter's length is varied in a range to obtain the best output 

with maximum fault impulses from the envelope spectrum. 

Different bearing fault conditions at various speeds and 

motor loads were considered to generalize the adaptability of 

the proposed method. The comparison of fault impulses from 

the envelope spectrum demonstrates the superiority of the 

proposed system to individual EEMD and CEEMD. 

The rest of the paper is organized as follows; Section II 

provides the theoretical background for all the previous 

methods. The proposed method was discussed in section III 

where the NEEEMD algorithm was validated numerically in 

section III.1.1. In section III.4, the summary of the proposed 

method was discussed. The proposed method was validated 

with the experimental dataset in section IV which is followed 

by a conclusion in the end. 

II. REVIEW of EMD, EEMD, CEEMD 

A. EMD 

The time-frequency domain analysis EMD simply 

decomposes a vibration signal into several IMFs. The IMF 

function needs to fulfill two criteria: 

1) The number of extrema and zero crossings in the whole 

vibration series must be the same or differ at most by one. 

2) The mean of upper and lower envelopes must be zero at 

any given point. 
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When the above two criteria are satisfied, an IMF is 

reported by 𝑐1. The first residue 𝑟1is obtained from the 

difference between the signal and the first IMF and is 

used to decompose the next IMF. The decomposition 

process has to be repeated to find the 𝑛th IMF until a 

monotonic residue is reported. The method of 

decomposition is repeated 𝑛 times until the residue 

becomes monotonic to obtain the 𝑛𝑡ℎ IMF. The original 

signal can be reassembled by summing the 𝑛 IMFs and 

the 𝑛th residue presented as follows: 

𝑋(𝑡) = ∑ 𝑐𝑖 + 𝑟𝑛

𝑛

𝑖=1

 (1) 

where 𝑋(𝑡) is the original signal, 𝑐i is the 𝑖th IMF, and 𝑟n 

is the 𝑛th residue. 

B. EEMD 

EEMD is an improvement of EMD which was suggested to 

solve the mode fusing problem of EMD. The white noise of 

a finite amplitude is added with the ensembles of EMD to 

generate the IMFs. The added noise dissolves in the whole 

time-frequency plane uniformly, thus solving the mode 

mixing problem. For an original signal 𝑋(𝑡), the EEMD 

algorithm follows the following steps: 

1) Add a bunch of white noise to the original signal with a 

mean of 0 and the standard deviation of 1 to obtain a 

series of ensembles. 

𝑋𝑖(𝑡) = 𝑋(𝑡) + 𝑤𝑖(𝑡) (2) 

Where 𝑤𝑖(𝑡) is the white noise signal of the same length 

as 𝑥(𝑡) and 𝑖 = 1,2, … , 𝑀, M is the number of ensembles. 

2) Decompose the ensembles using EMD to obtain the 

IMFs. 

𝑋𝑖(𝑡) = ∑ 𝑐𝑖𝑗(𝑡) + 𝑟𝑖(𝑡)

𝑁

𝑗=1

 
(3) 

Where 𝑗 = 1,2, … , 𝑁, N is the number of IMFs and 𝑐𝑖𝑗(𝑡) 

is the IMFs (𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑁). 𝑟𝑖(𝑡) denotes the residue of 

the 𝑖𝑡ℎ trail. 

3) In the end, determine the ensemble means of the 

consequent IMFs. 

𝑐𝑗(𝑡) =
1

𝑀
∑ 𝑐𝑖𝑗(𝑡)

𝑀

𝑖=1

 (4) 

C. CEEMD 

CEEMD was proposed to overcome the drawbacks and 

increase the performance of EEMD. In CEEMD, white noise 

is added in pairs (both positive and negative) to reduce the 

presence of noise. The paired white noises can decrease the 

white noise in the final residue successfully. The CEEMD 

algorithm for a signal 𝑋(𝑡) has the following steps: 

1) Add a pair of white noise to 𝑥(𝑡) the same way as EEMD. 

𝑋1(𝑡) = 𝑋(𝑡) + 𝑤𝑖(𝑡) (5) 

𝑋2(𝑡) = 𝑋(𝑡) − 𝑤𝑖(𝑡) (6) 

2) Decompose 𝑋1(𝑡) and 𝑋2(𝑡) using EMD to obtain the 

IMFs. 

3) Obtain two ensemble IMFs sets by repeating the steps M 

times. 

𝐼𝑀𝐹1 =
1

𝑀
∑ 𝐼𝑀𝐹1𝑖

𝑀

𝑖=1

 (7) 

𝐼𝑀𝐹2 =
1

𝑀
∑ 𝐼𝑀𝐹2𝑖

𝑀

𝑖=1

 (8) 

4) The final IMFs are obtained from the mean of positive 

and negative ensembles. 

𝐼𝑀𝐹 =  (𝐼𝑀𝐹1 + 𝐼𝑀𝐹2)/2 (9) 

5) The final result is obtained as, 

𝑋(𝑡) = ∑ 𝐼𝑀𝐹𝑖(𝑡) + 𝑟𝑀(𝑡)

𝑀

𝑖=1

 
(10) 

III. PROPOSED METHOD 

A. NEEEMD 

The NEEMD takes a different approach than CEEMD to 

eliminate the white noise in the final stage. Instead of adding 

a negative white noise at the primary stage, it subtracts the 

IMFs of the same white noise from the final IMFs. The steps 

of NEEEMD are followings and also illustrated in Fig. 1. 

1) Add ensemble of white noise 𝑤𝑖(𝑡) (whose length is the 

same as the original signal with a mean of 0 and the 

standard deviation of 1) to the original signal 𝑋(𝑡) and 

obtain 𝑋𝑖(𝑡).  

2) Follow the steps from equation (2) to (4) to obtain the 

ensemble means of the IMFs, 𝑐𝑗(𝑡). 

3) Take out the input ensemble white noise 𝑤𝑖(𝑡) and apply 

EMD to it. 

𝑊𝑖 = ∑ 𝑤𝑐𝑖𝑗(𝑡) + 𝑤𝑟𝑖(𝑡)

𝑁

𝑗=1

 (11) 

Where 𝑗 = 1,2, … , 𝑁, N is the number of IMFs and 

𝑤𝑐𝑖𝑗(𝑡) is the IMFs of noise (𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑁). 𝑤𝑟𝑖(𝑡) 

denotes the residue of the 𝑖𝑡ℎ trail. 

4) Compute the ensemble means of the IMFs for the white 

noise. 

𝑤𝑐𝑗(𝑡) =
1

𝑀
∑ 𝑤𝑐𝑖𝑗(𝑡)

𝑀

𝑖=1

 (12) 

5) Subtract the IMFs of noise from the IMFs obtained from 

EEMD for the reduction of white noise. 

𝐼𝑀𝐹𝑗 = 𝑐𝑗(𝑡) −  𝑤𝑐𝑗(𝑡) (13) 

6) The original signal can be obtained such that, 

𝑋(𝑡) = ∑ 𝐼𝑀𝐹𝑖𝑗(𝑡) + 𝑟𝑀𝑗(𝑡)

𝑀

𝑖=1

− 𝑤𝑟𝑀𝑗(𝑡) (14) 

Where 𝑤𝑟𝑀(𝑡) is the residue of the white noise. 

1) Numerical Validation 

The NEEEMD method is validated by comparing with 

EEMD and CEEMD using a simulated signal. The simulated 
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signal 𝑋(𝑛) consists of three components which are a 

continuous absolute tone plus a gapped one, namely, 𝑋1(𝑛), 

𝑋2(𝑛) and 𝑋3(𝑛), where they have a greater frequency, 

cosine signal, and a quadratic trend, respectively. 

𝑋(𝑛) = 𝑋1(𝑛) + 𝑋2(𝑛) + 𝑋3(𝑛) (15) 

𝑋1(𝑛) = {

0,

sin(2𝜋 × 0.3(𝑛 − 501)) ,

0,

 

  𝑖𝑓 1 ≤ 𝑛 ≤ 500 
  𝑖𝑓 501 ≤ 𝑛 ≤ 750 

  𝑖𝑓 751 ≤ 𝑛 ≤ 1000 

(16) 

𝑋2(𝑛) = cos(2𝜋 × 0.05(𝑛 − 1)) (17) 

𝑋3(𝑛) =
𝑛

1000
+ (

𝑛

1000
)

2

 (18) 

The simulated signal equation is adopted from [32] where 

the first two signals represent the classical mode-mixing 

problem and the last one is the frequently used quadratic 

trend in the signal model. The three-component signals and 

the combination of them in the time-domain waveforms are 

plotted in Fig. 2. 

 

FIGURE 1. Flow chart of NEEEMD steps. 

 

First, EMD is applied to the simulated signal to observe the 

effect since all the undertaken methods use EMD for 

processing. The EMD algorithm stops for a maximum of 4 

iterations and obtains 4 IMFs and 1 residual. Since it is well 

established that the higher-order IMFs possess more 

information, the first four IMFs would be sufficient for 

consideration for all the methods, i.e. EEMD, CEEMD and 

NEEEMD. For the selection of white noise parameters for a 

well-established method was provided by Wu and Huang 

[33] to manage added white noise effect: 

𝜀𝑚 =
𝜀

√𝑀
 (19) 

Where, 𝜀 is the white noise amplitude, 𝑀 is the number of 

ensembles and 𝜀𝑚 is the standard deviation of the error 

characterised as the difference between the input data and the 

consequent IMFs. Unfortunately, no solid support has been 

provided in the previous studies so far to select the best 

amplitude of the added white noise. However, some earlier 

works took the number of ensembles as a few hundred and 

the combined white noise with an amplitude of 0.2 times the 

standard deviation of the main signal which led to 

satisfactory result [34]. The number of ensembles in this 

research is 100 and the standard deviation of the white noise 

is 1 and the mean of it is 0.  

 
FIGURE 2. Time-domain waveform signals of: (a) 𝑋1(𝑛); 

(b) 𝑋2(𝑛); (c) 𝑋3(𝑛); (d) 𝑋(𝑛). 

 

The EEMD and CEEMD algorithms deal with the ensemble 

white noise and have been well established to perform better 

than the original EMD. Since this study tries to overcome the 

limitations of EEMD and CEEMD, any further analysis on 

EMD is not conducted. So, the decomposition results from 

EEMD, CEEMD and NEEEMD are presented in Fig. 3. 

Although the EEMD and CEEMD algorithms solve the 

mode mixing problem greatly, from Fig. 3, it is observed that 

the problem is present in the later IMFs, such as in IMF3 and 

IMF4. This means that the mode mixing phenomenon was 

avoided in the earlier stages but became apparent in the later 
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stages. In IMF3 of EEMD and CEEMD at the sample region 

around 500 to 750, it is clearly affected by the mode from 

IMF1. On the other hand, the mode is much less present in 

the IMF3 of NEEEMD. Moreover, the IMF4 of EEMD is 

affected by mode mixing problem from the beginning to up 

until around 450 of the sample points. However, this problem 

was not present in the IMF4 of CEEMD and NEEEMD.  

To emphasise the effect of the proposed method further, a 

frequently used evaluation parameter, RRMSE, is 

implemented to calculate the restoration error. The ratio 

between the root-mean-square of the main and reference 

signal, (𝑎 − 𝑏) and the root-mean-square of the reference 

signal, b is defined as RRMSE [35] and presented as follows: 

𝑅𝑅𝑀𝑆𝐸 =
‖𝑎 − 𝑏‖

𝑏
 (20) 

Here, the rebuilt signal means the sum of all the IMFs and 

residual. The value of RRMSE for all the methods is listed 

in Table 1. The result shows that the RRMSE value for the 

proposed method in this study is considerably better than the 

previous methods; 0.1126 for EEMD, slightly reduced for 

CEEMD, 0.1099, and significantly reduced for NEEEMD, 

0.0143. This indicates that the NEEEMD algorithm contains 

the least error in the reconstructed signal than the EEMD and 

CEEMD methods. 

The kurtosis value is an excellent parameter for measuring 

the signal strength and calculating how much information the 

signal carries. Wang et al. [13] used the multiplication of the 

kurtosis in the time and the envelope spectrum domain which 

can be applied to determine the strength of the signal. The 

method is called TESK and is defined as: 

𝑡𝑘 = 𝑘𝑐 . 𝑘𝑒𝑠 (21) 

Where, 

𝑘𝑐 =
𝐸(𝑥(𝑡) − 𝜇𝑐)4

𝜎𝑐
4

 
(22) 

𝑘𝑒𝑠 =
𝐸(𝑒𝑠(𝑓) − 𝜇𝑒𝑠)4

𝜎𝑒𝑠
4

 
(23) 

with 𝑥(𝑡) as the IMF to be analysed, 𝜎𝑐 as the standard 

deviation of 𝑥(𝑡), 𝜇𝑐 as the mean of 𝑥(𝑡), 𝑒𝑠(𝑓) as the 

envelope power spectrum of 𝑥(𝑡), 𝜇𝑒𝑠 as the mean of 𝑒𝑠(𝑓), 

𝜇𝑒𝑠 as the standard deviation of 𝑒𝑠(𝑓) and 𝐸(. ) as the 

expectation operator. 

The higher the 𝑡𝑘 value, the more information the signal 

contains. So, the total value of 𝑡𝑘 from different signals can 

be compared to determine the performance of the algorithms. 

For comparing the effectiveness of different methods, the 𝑡𝑘 

values from the original signal, noise-assisted methods and 

the proposed method were presented in Fig. 4. The 𝑡𝑘 values 

for the EEMD, CEEMD and NEEEMD are 771.62, 839.39 

and 905.97, respectively. It is noticed that the proposed 

method has the highest 𝑡𝑘 value and thus verifies the efficacy 

of the recommended method.  

2) Selection of the SM 

Another important criterion of the decomposition method is 

the selection of the SM. The fault information primarily 

happens mostly in the most sensitive IMF. Moreover, if the 

positions of the most SM can be selected, further 

decomposition can be stopped immediately to reduce the 

computational burden. Thus, it is necessary to locate the SM 

for further study automatically. This paper focuses on 

identifying the most SM from each trail that contains the 

highest fault information. Therefore, the selection procedure 

is conducted after obtaining the IMFs to locate the most 

representative SM. 

In most of the previously conducted studies, the selection of 

the SM with the combination of the time-frequency domain 

has been ignored. Only a first few IMFs generally contain the 

fault-related information of the vibration signals. For the fault 

in different components of rolling elements, the frequency 

pattern of the vibration signals also changes along with the 

energy of the fault signals  [36]. The baseline condition's 

energy distribution is commonly even and stable and thus 

varies from the fault signal. Hence, the energy-entropy pattern 

can be analyzed to specify whether the component has faults. 

Kurtosis has been widely used to choose the IMFs, including 

the highest information, as it is susceptible to the effects of 

faults. A high impulse signal has a larger kurtosis value, 

whereas a flat signal with little variation has a lower kurtosis 

value. This paper fuses kurtosis in the time-domain and 

energy-entropy in the frequency-domain to consider both 

time-domain and frequency-domain for SM selection. 

The equation for the kurtosis of the sub-band is provided 

below: 

𝐾𝑗
𝑚 =

∑{[𝑥𝑗
𝑚(𝑡) − 𝑥𝑗

𝑚
(𝑡)]4}

𝜎𝑥𝑖
𝑚(𝑡)

4  (24) 

The following stages give the process of calculation for the 

energy-entropy of IMFs: 

1) Compute the 𝑖th IMF energy 

𝐸𝑖 = ∑ |𝑐𝑖𝑗|2

𝑚

𝑗=1

 (25) 

where 𝑚 is the length of an IMF. 

2) Compute the total energy of these 𝑛 obtained IMFs 

𝐸 = ∑ 𝐸𝑖

𝑛

𝑖=1

 (26) 

3) Obtain the total energy-entropy of these IMFs 

𝐻𝑒𝑛 = − ∑ 𝑝𝑖log (𝑝𝑖)

𝑛

𝑗=1

 (27) 

where 𝐻𝑒𝑛 is the energy-entropy computed from the 

whole original signal and 𝑝𝑖 = 𝐸𝑖/𝐸, is the ratio of the 

energy of the 𝑖𝑡ℎ IMF relative to the whole energy-

entropy. 

Finally, the most sensitive IMF is obtained by 

multiplying kurtosis and energy-entropy value. 

𝑆𝑀 = 𝐾𝑗
𝑚. 𝐻𝑒𝑛 (28) 
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FIGURE 3. Decomposition result of the simulated signal using EEMD, CEEMD and NEEEMD, respectively. 

 

TABLE 1. The RRMSE value of EEMD, CEEMD and 

NEEEMD. 

 EEMD CEEMD NEEEMD 

RRMSE 0.1126 0.1099 0.0143 

 

FIGURE 4. 𝑡𝑘 value obtained from the undertaken 

decomposition methods. 

2.1) Comparison with Others SM Selection 

Our proposed SM selection method using kurtosis and 

energy-entropy value is compared with other methods in the 

bearing fault diagnosis field to show superiority. As 

explained in the literature, we considered the previous 

methods that use correlation [26], kurtosis [27], and variance 

[25] with our proposed one. Since the goal is to select only 

one IMF, we tried to establish how low the other IMFs are 

from the selected IMF in value. A random sample from a 

random fault condition was obtained for this experiment. All 

the SM values are normalized between 0 to 1 for a fair 

comparison on a similar scale. The results (Fig. 5) show that 

our proposed method has the highest difference between the 

selected IMF and the next most sensitive IMF. So, it can be 

concluded that the proposed SM method performs better than 

the previous methods. 

 
 

FIGURE 5. Obtained SM values from the IMFs using different 

mode selection methods. 

3) MOMEDA 

The main advantage of MOMEDA [29] over the previous 

methods is it can obtain multiple fault-related impulses from 

the vibration signal using no iteration. It proposes a 

straightforward solution to the optimal filter using a 

deconvolution method with an indefinite impulse train. A 
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target vector in MOMEDA represents the weightings and 

location of the impulses for deconvolution. Thus, it allows 

the regular impulse to train target goals of deconvolution that 

are well-fitted to the fault types of rotating machines of a 

single impulse-like vibration source of each rotation. 

MOMEDA does not require any iteration for the filter 

selection as it has an optimal solution with no iteration which 

is direct for the filter. The target vector sets can be solved 

simultaneously, which allows the spectrums of faulty versus 

period analyzed to plot accordingly. Thus, MOMEDA can 

further increase the fault-related periodic impulses further 

from the input signal and obtain a more precise filtered 

output. 

In the resonant frequency spectrum, the impact of fault is 

modulated and widely distributed. This fault characteristic 

can be found as a regular peak distributed in the resonance 

spectrum band. MOMEDA designs the optimal filter for 

obtaining the fault-related frequency and takes the kurtosis 

measurement as the index to diagnose the fault 

characteristics of the rotating machinery. The acquired signal 

can be presented as: 

𝑦(𝑛) = ℎ(𝑛)𝑥(𝑛) + 𝑒(𝑛) (29) 

where ℎ(𝑛) is the transfer function, and 𝑒(𝑛) is the noise 

signal and 𝑥(𝑛) is the shock signal. 

MOMEDA tries to construct a filter to obtain the fault 

impulses from the original signal. 

The steps of the MOMEDA process is listed as follows:

 

IMF1,
IMF2,

.

.
IMFn

Rolling element 
bearing with sensors

Signal to decompose 
with NEEEMD

Selected IMF 
based on SP

Impulse enhancement 
using MOMEDA

Fault detection using 
envelope analysis

FIGURE 6. Complete steps for fault diagnosis using the proposed method. 

Table 2. Characteristics of fault frequency for different fault conditions at various speed. 

Fault 

Case 
Fault type Fault diameter Load 

Rotating 

frequency 

Characteristics 

frequency 

Fault 

frequency 

Case 1 Inner race fault, fi 0.007” 0 hp 29.95 Hz 5.415 162.179 Hz 

Case 2 Ball Fault, fb 0.014” 1 hp 29.53 Hz 4.714 139.204 Hz 

Case 3 Outer race fault, fo 0.021” 3 hp 28.83 Hz 3.585 103.368 Hz 

Step 1: First, the MOMEDA equation 

Multi D – Norm = 𝑀𝐷𝑁(𝑦, 𝑡) =
1

‖𝑡‖

𝑡𝑇𝑦

‖𝑦‖
 (30) 

ma
𝑓

𝑥𝑀𝐷𝑁(𝑦, 𝑡) = ma
𝑓

𝑥
𝑡𝑇𝑦

‖𝑦‖
 (31) 

where 𝑡 is a deconvoluted pulse constant vector which 

defines the weight and position of the target.  

Step 2: Obtain the highest value from the formula above to 

get the optimal filter 𝑓 for the pulse 𝑡; 

𝑑

𝑑𝑓
(

𝑡𝑦

‖𝑦‖
) =

𝑑

𝑑𝑓

𝑡1𝑦1

‖𝑦‖
+

𝑑

𝑑𝑓

𝑡2𝑦2

‖𝑦‖
+ ⋯

+
𝑑

𝑑𝑓

𝑡𝑁−𝐿𝑦𝑁−𝐿

‖𝑦‖
 

(32) 

𝑀𝑘 = |

𝑥𝑘+𝐿−1

𝑥𝑘+𝐿−2

⋮
𝑥𝑘

| (33) 

Then the formula can be written as 

𝑑

𝑑𝑓
(

𝑡𝑘𝑦𝑘

‖𝑦‖
) = ‖𝑦‖−1(𝑡1𝑀1 + 𝑡2𝑀2 + ⋯

+ 𝑡𝑁−𝐿𝑀𝑁−𝐿) 

−‖𝑦‖−3𝑡𝑦𝑋0𝑦 

(34) 

Simplify the above formula 

𝑡1𝑀1 + 𝑡2𝑀2 + ⋯ + 𝑡𝑁−𝐿𝑀𝑁−𝐿 = 𝑋0𝑡 (35) 

Solve the highest value of the above formula 

‖𝑦‖−1𝑋0𝑡 − ‖𝑦‖−3𝑡𝑦𝑋0𝑦 = 0 (36) 
𝑡𝑦

‖𝑦‖2
𝑋0𝑦 = 𝑋0𝑡 (37) 

𝑡𝑦

‖𝑦‖2
𝑓 = (𝑋0𝑋0

𝑇)−1𝑋0𝑡 (38) 

The multiple of 𝑓can be expressed as follows which is the 

solution of the given formula too: 

𝑓 = (𝑋0𝑋0
𝑇)−1𝑋0𝑡 (39) 

Where, 
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𝑋0 = |
|

𝑥𝐿 𝑥𝐿+1
𝑥𝐿+2 ⋯ 𝑥𝑁

𝑥𝐿−1 𝑥𝐿
𝑥𝐿+1 ⋯ 𝑥𝑁−1

𝑥𝐿−2

⋮
𝑥1

𝑥𝐿−1

⋮
𝑥2

𝑥𝐿

⋮
𝑥3

⋯
⋱
⋯

𝑥𝑁−2

⋮
𝑥𝑁−𝐿+1

|
| (40) 

Step 3: Obtain the reconstructed signal's kurtosis value 

corresponding to each t in the range by setting the search 

interval range R.  

Step 4: Based on the kurtosis spectrum, obtain the pulse 

constant t related to the maximum kurtosis value. 

3.1) Selection of MOMEDA Parameters 

MOMEDA has several deconvoluted parameters, including 

the filter length 𝐿, window function 𝑤, and fault period range 

[𝑇𝑖 , 𝑇𝑓]. Appropriate tuning of the input parameters is 

important for improved MOMEDA performance.  

1) To develop the target vector, a window function 𝑤 is 

applied. Thus, the spectral clarity increases and the 

accuracy of extracted fault characteristic impulses is 

increased [37]. Considering the filtering effect and 

computing efficiency, a rectangular window of length 3 

is adopted in this study. 

2) The extraction result of the fault impulse sequence is 

directly affected by the filter length, 𝐿. 𝐿 needs to be 

satisfied to ensure that the obtained impulse signal can 

comprise the whole frequency range of the fault signal 

[38]. 

𝐿 > 2𝑓𝑠/𝑓𝑐 (41) 

Where 𝑓𝑠 denotes the sampling frequency of the primary 

signal, and 𝑓𝑠 represents the characteristic fault 

frequency. However, as the filter length increase, the 

sequence of fault impulse output is also reduced to (𝑁 −
𝐿 + 1), which leads to the fault information loss after 

deconvolution. On the other hand, it also takes a longer 

computing time. Therefore, a grid search strategy was 

applied within a range of filter length 10 to 50 [37] in this 

paper. 

The search range of fault period [𝑇𝑖 , 𝑇𝑓], where, 𝑇𝑖 and 𝑇𝑓 

are the initial and final values of the search range of fault 

period, respectively. With respect to the rotational speed 

and the computation equations of fault frequency, the 

fault impulses of the respective components can be 

obtained. In the real world, the operating speed of the 

rotating machine will vary in a specific limit. So, the real 

fault frequency may differ from the theoretical value. 

Considering that, during the extraction of different fault 

impact components, the periodic initial value 𝑇𝑖 is 

selected as 5. Reference [39] has verified that the 

extraction result of the fault impact signal will not be 

affected by the periodic final value 𝑇𝑓. In this study, the 

periodic final value 𝑇𝑓 = 300 is espoused for all fault 

cases as motivated from [39]. 

4) Summary of the Proposed Method 

When defects occur on rotating machinery, the information 

of fault in the signal is represented as a sequence of regular 

impulses. As the machinery is generally surrounded by 

intense noise and various external interference from the 

nearby machines, the reference signal is accompanied by 

fault impulses, random impulse components from the 
environment and other discrete harmonic signals from 

various components. Thus, the fault impulses emerge with 

obscurity in the raw vibration signal which makes it difficult 

for identification. For an effective fault diagnosis system, the 

fault impulses must be extracted from the raw signal. The 

numerical validation of NEEEMD already demonstrated that 

it is more effective than EEMD and CEEMD in terms of 

white noise and reduced reconstruction error. Therefore, 

NEEEMD can effectively separate the modes from the signal 

components. However, only the higher-order IMFs contain 

the most information on the fault condition. So the selection 

of the most SM can be conducted with the proposed SM 

method. Moreover, since the white noise combined with the 

raw data populates the entire frequency bandwidth, each 

mode inescapably holds some sort of noise. This white noise 

condition makes it hard to extrapolate the fault-related 

information. So, the fault impulses in the modes need to be 

enhanced for successive analysis. 

 

FIGURE 7. Experimental setup of the bearing fault test 

rig. 

 

FIGURE 8. Three fault conditions: (a) inner race, (b) ball 

and (c) outer race fault. 

Considering the above criteria, we proposed a system that 

combines the NEEEMD algorithm, an SM method to select 
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the highest mode of NEEEMD and MOMEDA. In this study, 

we applied NEEEMD to get multiple IMFs and used the SM 

value to choose the SM having the highest fault information. 

Following the MOMEDA filter is used to increase the 

characteristic fault impulses in the chosen SM. The 

combination of the proposed method is applied to rolling-

element bearings. The fault diagnosis system is summarized 

below and demonstrated in Fig. 6. 

Step 1: Decompose the raw vibration signal into a series of 

IMFs using NEEEMD.  

Step 2: Apply the SM method to the IMFs and obtain the 

most sensitive IMF based on the greatest SM value.  

Step 3: Apply MOMEDA to improve the characteristic fault 

impulses in the chosen IMF.   

Step 4: Use the envelope spectrum to detect the characteristic 

fault impulses. 

 
Figure 9. Raw vibration signal obtained from (a) inner 

race, (b) ball and (c) outer race fault conditions. 

IV. Experimental Validation 

To validate our proposed NEEEMD method's improved 

performance in the practical fields of fault diagnosis of 

rolling elements, the experimental data were obtained from 

the online dataset of the Case Western Reserve University 

Bearing Data Center [40] and the experimental setup is 

showed in Fig. 7. Acceleration data was measured from a 2 

hp reliance electric motor bearings. Drive end data is taken 

from bearing model SKF 6205-2RS JEM. Accelerometers 

were placed at the 12 o’clock position on the drive end of the 

motor housing. The sampling frequency is 12 KHz. The rotor 

shaft's rotating speed is considered, i.e., 1797, 1772 and 1730 

rpm and the motor loads are 0 hp, 1 hp and 3 hp, respectively. 

Speed and horsepower data were collected using the torque 

transducer/encoder and were recorded by hand. Collected 

vibration signals include the following operating conditions: 

(1) inner race fault, (2) ball fault, and (3) outer race fault. 

Each fault condition includes three different fault sizes, 

0.007, 0.014, and 0.021 inches, respectively. The purpose of 

using different load conditions and rotating speed is to show 

that the proposed model can obtain the desired output for 

varying loads and speeds. A visual representation of the fault 

occurrence in the specific region is illustrated in Fig. 8.  The 

raw vibration signal of 6000 data points from each fault 

condition is plotted in Fig. 9. 

Fig. 9(a) shows that the noise signal is invasive throughout 

the signal for the inner race condition. It is hard to identify 

the fault-induced impulses among the heavy noise signal. In 

Fig. 9(b) ball fault vibration signal was presented. Here the 

signal has some heavy impulses, making it hard to 

distinguish between noise and characteristics fault 

frequency. Fig. 9(c) shows that the noise is not ubiquitous 

with high amplitude; however, some noise with high 

amplitude can be seen along with the fault characteristic 

pulses. This makes it a challenge to differentiate the distinct 

fault impulses from the noise amplitude. So, the raw signals 

should be analyzed further with the decomposition methods 

and some frequency domain plotting is necessary to detect 

the fault frequency impulses. 

 

 
FIGURE 10. SM selection using the proposed method for 

inner race fault from (a) EEMD, (b) CEEMD, (c) 

NEEEMD. 

The characteristics frequency for each fault condition is 

obtained from Table 2 [41]. The fault frequency is obtained 

by multiplying the fault characteristics frequency with the 

rotor shaft speed. The inner race, ball fault and outer race 

fault are labelled as case 1, case 2 and case 3, respectively. 
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The rotating frequency for the cases are 29.95 Hz, 29.53 Hz 

and 28.83 Hz, whereas the Characteristics frequency are 

5.415, 4.714, 3.585, respectively. Multiplying these values, 

the fault frequency is obtained as 162.179 Hz, 139.204 Hz 

and 103.368 Hz, respectively. 

A. Case 1 

The proposed method is used to analyze the vibration signal 

emanating from the inner race fault in this section. The rotor 

shaft speed is 1797 rpm and motor load is 0 hp, the diameter 

of the fault is 0.007" and the characteristics ball pass 

frequency of the inner race (BPFI) is 162.179 Hz. The first 

step is to identify the most sensitive mode from different 

decomposition methods applied to the raw signal. The output 

of the proposed SP selection method is presented in Fig. 10. 

From all three methods, it is observed that IMF1 has the 

highest SM value which is way higher than the following 

IMFs. So, for EEMD, CEEMD and NEEEMD, IMF1 is 

selected as the most sensitive case. In Fig. 11, the first IMF 

obtained from the decomposition methods is plotted. In 

IMF1 of EEMD and CEEMD, the signal contains huge noise 

and side-band frequency. On the other hand, the filtered IMF 

using MOMEDA of NEEEMD can significantly eliminate 

noise and side-band frequency. Here, the length of filter 

MOMEDA was 20. The signals are yet to be analyzed to 

visualize the fault-related impulses distinctively. 

 
FIGURE 11. Most sensitive mode (IMF1) from (a) EEMD, 

(b) CEEMD, (c) NEEEMD+MOMEDA, for inner race 

fault. 

Now the selected modes are used to plot the envelope 

spectrum to analyze the fault characteristics frequency. Fig. 

12 shows that the envelope spectrum of EEMD and CEEMD 

exhibit almost similar characteristics. In both figures, the 

rotor shaft frequency is evident till the third-order then the 

fault characteristics till the second order. For NEEEMD the 

shaft frequency is evident till the third order; however, the 

fault characteristics till the fifth-order can be identified. So, 

it can be concluded that the proposed method performed 

more excellently than the EEMD and CEEMD methods for 

BPFI identification. 

 

FIGURE 12. Inner race fault diagnosis by envelope signal 

analysis using (a) EEMD, (b) CEEMD, (c) 

NEEEMD+MOMEDA. 

B. Case 2 

In case 2, ball bearing fault was considered where the rotor 

shaft speed is 1772 rpm and motor load is 1 hp, diameter of 

the fault is 0.014" and the characteristics ball spin frequency 

(BSF) is 139.204 Hz. As usual first the most sensitive mode 

selection was applied to identify the SM from different 

decomposition methods. Fig. 13 of SM selection shows that 

in EEMD, CEEMD and NEEEMD, the first IMF is the most 

sensitive one. Fig. 14 shows the first IMF obtained from the 

decomposition methods is plotted along with the filtered 

signal from NEEEMD. Here, the filter length of MOMEDA 

was set as 20. From the plot, it is observed that there is hardly 

any visible difference between EEMD and CEEMD. 

However, for NEEEMD, although the signal seems to 

contain more noise, some fault impulses with increases 

amplitude are present. The reason of having more noise 
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impulses is that the MOMEDA algorithm tries to amplify the 

fault impulses. Since its an adaptive method, in the process, 

it also amplifies some of the noise side-bands. However, 

since we apply envelope spectrum analysis for fault impulses 

detection, the difference between fault impulses and noise 

impulses becomes more visible in there. 

 

Figure 13. SM selection using the proposed method for 

ball fault from (a) EEMD, (b) CEEMD, (c) NEEEMD. 

Now the selected modes are used to plot the envelope 

spectrum to analyze the fault characteristics frequency. From 

Fig. 15, it is observed that the envelope spectrum of EEMD 

and CEEMD exhibit almost similar characteristics. In all 

three figures, the rotor shaft frequency is lost amongst the 

side-bands. Only the first BSF is evident in the envelope 

spectrum of EEMD and CEEMD. However, although the 

second and third-order BSF is lost among the noise in the 

envelope spectrum of NEEEMD, the fourth and fifth-order 

can be identified. This indicates the superiority of our 

proposed method. 

C. Case 3 

In case 3, the outer race bearing fault was considered where 

the rotor shaft speed is 1730 rpm and motor load is 3 hp, the 

diameter of the fault is 0.021" and the characteristics ball 

pass frequency of the outer race (BPFO) is 103.368 Hz. 

Following the trend, the most sensitive mode selection was 

first applied to identify the SP from different decomposition 

methods. Fig. 16 of SM selection shows that in EEMD, 

CEEMD and NEEEMD, the first IMF is the most sensitive 

one. After choosing the IMF1 as the SP, the IMF1 obtained 

from NEEEMD is filtered through MOMEDA where a filter 

length of 15 provided the best output. The IMF1 from EEMD 

and CEEMD with the filtered signal of NEEEMD is plotted 

in Fig. 17. It can be seen that the modes of EEMD and 

CEEMD contain a lot of other impulses with the fault 

characteristics impulses. However, the filtered signal using 

NEEEMD and MOMEDA successfully eliminated some of 

the side-bands and noise impulses and depicted the fault 

frequencies lucidly. 

 

Figure 14. Most sensitive mode (IMF1) from (a) EEMD, 

(b) CEEMD, (c) NEEEMD+MOMEDA, for ball fault. 

Now the selected modes are used to plot the envelope 

spectrum to analyze the fault characteristics frequency. From 

Fig. 18, it is observed that, likewise other cases, the envelope 

spectrum of EEMD and CEEMD exhibit almost similar 

characteristics. In all three figures, the first order of rotor 

shaft frequency is evident but later ones are subsided by 

noise impulses. Envelope spectrum of EEMD and CEEMD 

can obtain the BPFO till the second-order whereas 

NEEEMD can conspicuously obtain the 3fo. Moreover, in 

the envelope spectrum of NEEEMD, the presence of 9fo can 

be observed. 
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Figure 15. Ball fault diagnosis by envelope signal analysis 

using (a) EEMD, (b) CEEMD, (c) 

NEEEMD+MOMEDA. 

 

Figure 16. SM selection using the proposed method for 

outer race fault from (a) EEMD, (b) CEEMD, (c) 

NEEEMD. 

V. CONCLUSION 

In this study, a time-frequency adaptive method NEEEMD 

was proposed to reduce the existing white noise from EEMD. 

The proposed method was compared with other existing 

methods, EEMD and CEEMD, on the basis of RRMSE and 

TESK. In all cases, the proposed method performed better 

than the other methods which prove that, for the result of 

RRMSE, our method contains less white noise and for the 

result of TESK, our method has the most useful information. 

Later, an SM method was proposed, multiplying energy-

entropy in the frequency domain and kurtosis in the time 

domain to get the SM by considering both time and 

frequency domain. Further, to enhance the impulse response 

of fault frequency, the SM is pass through a filter known as 

MOMEDA. For experimental validation, the proposed 

method was applied to the bearing dataset. The envelope 

spectrum of the most SM from EEMD, CEEMD and 

NEEEMD+MOMEDA were plotted to visualize the fault 

impulses. Our proposed method (NEEEMD+MOMEDA) 

had more visual characteristic fault impulses in all the cases 

and thereby outperformed the existing methods. From the 

works in this study, we can conclude that: 

 

Figure 17. Most sensitive mode (IMF1) from (a) EEMD, 

(b) CEEMD, (c) NEEEMD+MOMEDA, for outer race 

fault. 



 

13 

1) Compared to EEMD and its improvement of CEEMD, 

NEEEMD is more efficient to reduce the presence of 

white noise. 

2) The proposed SM selection method is superior to most 

other methods used by previous researchers because it 

considers both time and frequency domain. 

3) The MOMEDA filter used with the most sensitive IMF of 

NEEEMD can effectively obtain more fault-related 

impulses. 

Only the most sensitive mode from all the IMFs was 

considered to detect the fault impulses in this work. This 

totally makes sense because the remaining IMFs has less 

information and may contain useless modes. However, the 

earlier IMFs still contain some useful fault-related 

information. In the future stage, the authors aim to select 

multiple IMFs as required based on the presence of 

information in their signals. The proposed method will also 

be compared with other families of the time-frequency 

adaptive methods to determine universal superiority. 

Moreover, to generalize the proposed method, other rotating 

machinery such as gears will be considered. 

 

Figure 18. Outer race fault diagnosis by envelope signal 

analysis using (a) EEMD, (b) CEEMD, (c) 

NEEEMD+MOMEDA. 
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