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ABSTRACT
Brain Computer-Interface (BCI) technology plays a considerable role in the control
of rehabilitation or peripheral devices for stroke patients. This is particularly due
to their inability to control such devices from their inherent physical limitations
after such an attack. More often than not, the control of such devices exploits
electroencephalogram (EEG) signals. Nonetheless, it is worth noting that the
extraction of the features and the classification of the signals is non-trivial for a
successful BCI system. The use of Transfer Learning (TL) has been demonstrated to
be a powerful tool in the extraction of essential features. However, the employment
of such a method towards BCI applications, particularly in regard to EEG signals, are
somewhat limited. The present study aims to evaluate the effectiveness of different
TL models in extracting features for the classification of wink-based EEG signals.
The extracted features are classified by means of fine-tuned Random Forest (RF)
classifier. The raw EEG signals are transformed into a scalogram image via
Continuous Wavelet Transform (CWT) before it was fed into the TL models, namely
InceptionV3, Inception ResNetV2, Xception and MobileNet. The dataset was divided
into training, validation, and test datasets, respectively, via a stratified ratio of
60:20:20. The hyperparameters of the RF models were optimised through the grid
search approach, in which the five-fold cross-validation technique was adopted.
The optimised RF classifier performance was compared with the conventional
TL-based CNN classifier performance. It was demonstrated from the study that the
best TL model identified is the Inception ResNetV2 along with an optimised RF
pipeline, as it was able to yield a classification accuracy of 100% on both the training
and validation dataset. Therefore, it could be established from the study that a
comparable classification efficacy is attainable via the Inception ResNetV2 with an
optimised RF pipeline. It is envisaged that the implementation of the proposed
architecture to a BCI system would potentially facilitate post-stroke patients to lead a
better life quality.
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INTRODUCTION
Stroke is a type of neurological disease that is the third leading cause of death and one of
the top ten causes of mortality in Malaysia. The Global Burden of Disease estimated that
stroke could be the second leading cause of mortality in 2040 (Ganasegeran et al., 2019).
Patients suffering from stroke are often left with long term impairments (Murray &
Harrison, 2004). Almost all of the patients are the affected with various degree of
neurological disorder, that is not limited to the weakening of limbs or speech impairments
(Lawrence et al., 2001; Schweizer & MacDonald, 2014).

The consequences of the impairments of the limbs are the restriction of the ability to
perform rudimentary activities of daily living (ADL) (Norris, Allotey & Barrett, 2012).
However, rehabilitation plays a vital role in the recovery process, facilitating patients to
regain their ability to be independent. Hitherto, Brain-Computer Interface (BCI) has paved
its way as one of the leading technologies for rehabilitation. A BCI system essentially
provides communication between the human brain signal and external devices (Vaughan,
2003; Shih, Krusienski & Wolpaw, 2012; Lin & Hsieh, 2016). It is important to note
that a successful BCI primarily has two main requirements, viz. a set of suitable
electroencephalogram (EEG) features and an efficient machine-learning algorithm to
classify the extracted features.

Related works
Over the last decade, active research has been carried out on the various feature extraction
and classification techniques for EEG signals (Wang et al., 2015; Salgado Patrón & Barrera,
2016; Schwarz et al., 2018; Chronopoulou, Baziotis & Potamianos, 2019; Rodrigues,
Jutten & Congedo, 2019). A pre-trained convolution neural networks (CNN) (a variation of
the Transfer Learning model) was investigated to improve the BCI-system usability of a
driving system that utilises EEG signals (Shalash, 2019). Online datasets were used in
the research which was collected in a controlled lab environment through Neuro-scan
data acquisition equipment with 30 effective channels and two reference electrodes. The
collected EEG signals were converted into spectrogram images through the Short-Time
Fourier Transform (STFT) algorithm. The converted images were implemented into the
Alexnet TL model, which was trained via Adam optimiser with an initial rate of 0.0001.
The datasets were divided into two separate datasets, i.e., training and testing with a ratio
of 70:30. The results obtained showed that T3 and FP1 channels could yield reasonably
high classification accuracy (CA) of 91% and 90%, respectively. It is evident from the study
that TL facilitates the feature extraction process.

The detection of eye blinking from EEG signals was investigated byDomrös et al. (2013).
The intentional eye-blink EEG signals were collected through a bio-radio device in the
Biomedical Department Laboratory at Holy Spirit University. In the research,
time-domain features, i.e., maximum amplitude, minimum amplitude and kurtosis, were
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extracted. The extracted features were then fed into the Gaussian Radial Basis Function
(GRBF) model to classify the eye blink-EEG based signals accordingly. This pipeline
was compared with other models, namely, the Multilayer Perceptron (MLP), Feed Forward
Back Propagation, MLP-Cascade Forward Back Propagation (CFBP) and RBF Binary
Classifier. The result showed that the GRBF classifier performed well based on the
extracted time-domain features.

Rashid et al. (2020) investigated the classification of wink-based EEG signals.
The features of the EEG signals were extracted through the Fast Fourier Transform (FFT)
and sample range methods (Rashid et al., 2020). The FFT algorithm was utilised to
transform the EEG signals into frequency domain features. The extracted features were
implemented into several different classical machine learning classifiers, namely Linear
Discriminant Analysis (LDA), Support Vector Machine (SVM), and k-Nearest Neighbor
(kNN). The results showed that LDA performed better than the other two classifiers
with a CA of 83.3% and 80% for the train and test dataset, respectively, through the FFT
features. Conversely, based on the sample range features, identical CA was obtained
through both SVM and kNN. models, i.e., 98.9% and 96.7% for the test and train dataset,
accordingly. The LDA recorded a lower CA than the aforesaid classifiers based on the
sample range features; nonetheless, the CA was significantly higher than the FFT feature
extraction technique.

A driver fatigue classification system through the use of TL models and single-channel
EEG signals was investigated by Shalash (2019). The proposed pipeline was evaluated on
the online dataset obtained from Min, Wang & Hu (2017) that was downsampled from
1,000 to 500 samples. The downsampled signals were converted into spectrogram images
through Short Time Fourier Transform (STFT). A total number of 3,440 spectrogram
images were generated from each channel. The features of the images were extracted
via the AlexNet Transfer Learning (TL) model. The AlexNet model was set to an initial
rate value of 0.0001 with a batch size of 32 and the decaying gradient factor of 0.7.
The highest classification was obtained through signals obtained through channels T3 and
FP1, with a CA of 91% and 90%, respectively, suggesting the efficacy of spectrogram
transformed signals and the TL pipeline towards driver fatigue classification.

Kant et al. (2020) utilised a Continuous Wavelet Transform (CWT) algorithm for the
classification process of Motor Imagery (MI) EEG signals. Different TL models with
tuned fully connected layers were evaluated in classifying the EEG signals. The dataset
utilised was the Dataset III of BCI competition 2003, which consists of MI signal of
left-hand and right-hand movements. The signals were pre-processed via a bandpass filter
between the frequency range of 8 Hz and 30 Hz. The filtered signals were converted into
CWT scalogram images. The scalogram images then were fed into TL models such as
VGG19, AlexNet, VGG16, SqueezeNet, ResNet50, GoogleNet, DenseNet201, ResNet18,
and ResNet101. It was shown from the study that the proposed pipeline obtained a CA of
95.71% and was demonstrated to be the highest CA achieved compared to other reported
studies that utilise the same dataset with different classification approaches.

Wang et al. (2020) investigated emotion recognition through the use of Electrode
Frequency Distribution Maps (EFDM) via Short-Time Fourier Transform (STFT).
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The authors utilised SJTU Emotion EEG Dataset (SEED) to study the proposed pipeline.
The SEED consists of emotion actions which are positive, negative and neutral feelings.
Whereas, Dataset for Emotion Analysis through Physiological (DEAP) was used to carry
out cross dataset classification. The digital signals from both the dataset were converted
into spectrogram images, and the classification was carried out through a pre-trained
CNN classifier. The Principle Component Analysis was executed to reduce the dimension
of the features vectors that were generated through the STFT algorithm. The cross
emotional dataset classification obtained CA less than 40% without the implementation of
the TL model. Conversely, the use of the TL model managed to obtain a CA of 96.60%,
further suggesting the superiority of the TL-based model in classifying emotion-based
EEG signals.

Therefore, the present study focuses on the implementation of a number of pre-trained
CNN models (herein known as a variation of “Transfer Learning” models) to extract
the features of the wink-based EEG signals. A conventional machine learning model,
namely Random Forest, is implemented along with the Transfer Learning models to
classify the extracted features. It is worth noting that such a pipeline has yet been
investigated with regards to wink-based EEG signals. It is worth noting that this is the first
study to investigate such a machine learning pipeline with regards to wink-based EEG
signals. The performance of the different Transfer Learning models in feature extraction
that will be classified through an optimised RF classifier as well as tuned fully connected
layers (herein known as conventional CNN) shall be appraised. It is anticipated that
the suggested pipeline could be implemented into a BCI assistive-technology and promote
a better quality of life for post-stroke patients.

METHODOLOGY
The classification of the EEG signals consists of four main steps, viz. signal collection,
pre-processing, feature extraction and classification, respectively. A five-channel Emotiv
Insight EEG device was used to collect the wink-based EEG signals (Heunis, 2016).
The position of the channels is placed according to the International 10–20 system, and the
channels are placed at node AF3, AF4, T7, T8 and Pz.

The wink-based EEG signals were collected from five healthy subjects aged between
22 and 29 years old. The five subjects consist of three males and two females. The subjects
that were chosen was ascertained not to have any medical problem and have normal vision.
Moreover, it is worth noting that the subjects did not have any history of neurological
diseases. A written informed consent form was received from the subjects who participated
in the present study. The subjects were told to relax and sit on an ergonomic chair
in a circumscribed room which is located at the Faculty of Electrical and Electronics
Engineering Technology, University Malaysia Pahang. These steps were taken to avoid
external signals to be recorded. The ethical approval for this study was obtained through an
institutional research ethics committee provided by Universiti Kebangsaan Malaysia
(FF-2013-327).

The subjects were instructed through a slide show displayed on LCD. The experiment
paradigm shown in Fig. 1 were used to collect the required signals. The collection starts
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with the first five seconds of a resting-state, followed by winking action for the next
five second. This step is continued to obtain six samples of winking signals. Left and Right
winking action were run separately, and both of them were recorded for 60 s (1 min).

Continuous wavelet transform
Continuous Wavelet Transform (CWT) is the representation of the time-frequency
domain of a set of signals collected. CWT is one of the most effective methods used in
medical fields, which consists of non-stationary signals such as EEG, electromyography
(EMG) or electrocardiogram (ECG), amongst others. The resolution represented through
the CWT algorithm has been reported to advantageous due to the utilisation of the small
scale of high frequencies and large scale of low frequencies (Türk & Özerdem, 2019).
Moreover, it has also been reported to provide a better representation of the arrangement
of the frequency domain features as compared to Fourier Transforms. The mother wavelet
that was utilised in this research is the Morlet Wavelet. Morlet wavelet is the multiplication
of the complex exponential and Gaussian window. It is worth noting that the Morlet
wavelet method is widely used in the medical field, which consists of non-stationary signals
(Qassim et al., 2012). The Morlet algorithm gives an intuitive association between
frequency and time domain to distinguish the signals acquired via Fourier Transform.

Feature extraction: transfer learning
In the present investigation, a variation of Transfer Learning (TL) models that are
governed by pre-trained Convolutional Neural Network (CNN) models is employed.
Figure 2 depicts the architecture of the CNN pipeline and Pre-Trained CNN with
Machine Learning (ML) pipeline ( also known as the TL- Classical Classifier pipeline).
A Convolutional Neural Network (CNN) model is made up of four layers, which are
convolutional layers, activation layer, pooling layers and fully connected layers. The input
images will be fed into the convolutional layer, which consists of a filter that could slide
over the input images and perform dot product operation, creating an activation map
typically known as the feature map. The next layer will be the activation which consists of
the ReLU function that performs a non-linear operation. Conversely, the pooling layer
decreases the dimension of the activation map into a smaller dimension but preserves the
significant features.

Figure 1 The experiment paradigm for EEG signal acquisition.
Full-size DOI: 10.7717/peerj.11182/fig-1
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It could be seen from Fig. 2 that the convolutional layer is frozen as it is solely
used to extract the features from the transformed signal. Such TL models are widely used
in computer vision amongst other fields, primarily owing to its ease in the CNN
model development, especially omitting the notion of building the model from scratch
(as pre-trained models are used) and hence reduces the model development time
(Amanpour & Erfanian, 2013; Chronopoulou, Baziotis & Potamianos, 2019). This
approach is also rather advantageous in bioinformatic related domains as data is often
scarce, and it has been demonstrated in the literature such an approach is able to work
with limited dataset. Table 1 illustrates the TL models and the parameters that were
implemented in the present study. It is worth mentioning that the TL models used in
the study are used only for feature extraction where only the convolutional layers are
exploited. In contrast to a full pre-trained CNN model, the fully connected layers (dense
layers) are replaced with a traditional machine learning classifier in the study, which in this
case, the Random Forest classifier is employed.

Classifiers: random forest
Random Forest (RF), also known as Random Decision Forests, is a supervised machine
learning algorithm that evolved through the ensemble of multiple Decision Tree classifiers.
It is also known as one of the many bagging-type ensemble classifiers. The combination
of a few decision trees to mitigates the notion between the variance and bias, which in
turn reduces the possibility of overfitting. It is worth noting that the RF classifier has been
widely used in many different medical oriented types of research (Cherrat, Alaoui &
Bouzahir, 2020; Tabares-Soto et al., 2020). The RF hyperparameters evaluated in this study

Figure 2 The architecture of CNN pipeline and TL-classical classifier pipeline.
Full-size DOI: 10.7717/peerj.11182/fig-2
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are the number of trees (n_estimators), depth of the trees (max_depth), and the
measurement of the splitting quality (criterion). The hyperparameters of the RF models
were tuned via the grid search algorithm through the five-fold cross-validation technique.
Table 2 lists the hyperparameter values of RF classifiers appraised. A total of 98 RF models
were investigated in this research for four different TL models (conclusively, a total of
392 TL pipelines were evaluated) towards its efficacy in classifying the wink-based EEG
signals. Figure 3 depicts the complete pipeline developed in this study. The developed
pipelines (different TL models with their associated optimised RF models) was analysed
and evaluated using a Python IDE, specifically Spyder 3.7.

The optimised classical RF classifier with TL pipeline performance was compared
against the TL with fully connected layers (herein referred to CNN for brevity) to provide a
baseline comparison between the pipelines. The features were extracted as per the
aforesaid TL models. The fully connected layers consist of two hidden layers. The first
hidden layer consists of 50 hidden neurones with a ReLU activation function. Conversely,
the final hidden layer consists of three neurones with a Softmax activation function
which corresponds to the classes that we intend to investigate in the present study,
i.e., left-wink, right-wink and no-wink. The Adam algorithm has been implemented as the

Table 1 List of TL models and its respective parameters implemented in this research.

No. Transfer learning models Flatten size Input image size

1 Inception V3 8 × 8 × 2048 299 × 299

2 Inception ResNetV2 8 × 8 × 1536 299 × 299

3 Xception 10 × 10 × 2048 299 × 299

4 MobileNet 7 × 7 × 1024 224 × 224

Figure 3 The complete TL pipeline. Full-size DOI: 10.7717/peerj.11182/fig-3

Table 2 Hyperparameter of the RF models evaluated.

No. Hyperparameters Hyperparameter values

1 n_estimator 10, 20, 30, 40, 50, 60, 70

2 Max_depth 10, 20, 30, 40, 50, 60, 70

3 Criterion Gini and Entropy
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optimiser to reduce the loss function. The proposed CNN architecture includes a dropout
value of 0.5 with a batch normalisation size of 10, which plays a significant role in
enhancing the classification accuracy. Dropout works as the “temporarily discarding”
some neurone nodes with a certain probability during the training of a deep network. This
process decreases the risk of overfitting and improves the generalisation ability of the
model. The epoch value was set to 50 in this study.

Performance evaluation
The confusion matrix is one of the most straightforward and simplest measures
used to determine model consistency and correctness (Sokolova & Lapalme, 2009; Flach,
2019). The classification models employed in this study are assessed by means of
classification accuracy (CA), precision, recall, F1-score, specificity and Receiver Operating
Characteristics (ROC) curve. The accuracy is simply the ratio between the number of
accurately predicted observations and the total number of observations. The precision
measures the percentage of correct positive forecasts over the cumulative number of
positive forecasts. The recall (often known as sensitivity) is the number of true positive
predictions divided by the sum of true positives as well as the false negatives (Vijay Anand &
Shantha Selvakumari, 2019). The F1-score discloses the balance between the recall and
the precision values. In contrast, specificity is the proportion of actual negative values,
which is predicted as the true negative. The ROC curve is the measure of separability
between the classes in a dataset.

EXPERIMENTAL RESULTS AND DISCUSSION
The wink-based EEG signals were extracted through the single-channel Emotiv device at
the sampling rate of 128Hz. The digital signals were then converted into scalogram via
CWT. The images were divided into three groups of datasets: training, validation, and test
datasets, through a stratified ratio of 60:20:20. The stratification ensures that the datasets
are equally divided amongst the evaluated classes. The images were then fed into the
TL models and classified through CNN and optimised RF models. Figs. 4 and 5 depicts the
raw and scalogram transformed images of the wink classes.

The performance of the pipelines was evaluated through stratified divided datasets,
which are training, validation and test datasets, respectively. Figure 6 depicts the CA
obtained through the training and test datasets of the TL-CNN pipeline. Through the bar
chart, it could be observed that a train CA of 100% was obtained via Inception ResNetV2
and MobileNet pipelines. Nonetheless, as for the test CA, the Inception ResNetV2 and
MobileNet obtained 94% and 78%, respectively. Therefore, it is apparent that the Inception
ResNetV2 TL works well with the tuned fully connected layer of the CNN model.
The performance measures obtained through the test dataset for all the four pipelines
evaluated are listed in Table 3.

Figure 7 illustrates the CA obtained from training and test datasets by means of the
TL- optimised Random Forest (RF) classifier. It is evident from the figure that all the
evaluated TL-optimised RF classifier pipeline could attain a CA of 100% on the training
dataset. Nevertheless, upon further evaluation of the test dataset, it is obvious that the
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Figure 4 Plot of raw EEG signal (A) left-wink (B) right-wink and (C) no-wink.
Full-size DOI: 10.7717/peerj.11182/fig-4

Figure 5 Scalogram of (A) left wink (B) right wink (C) no wink.
Full-size DOI: 10.7717/peerj.11182/fig-5
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Inception ResNetV2 and Xception pipelines performed well in the classification of the
investigated wink-based EEG signals.

Both pipelines, i.e., TL-CNN and TL-optimised RF, were evaluated on validation dataset
as a form of robustness evaluation. The CA obtained through the validation dataset by
both the models are illustrated in Fig. 8. It could be seen that the pipeline, which is made up
of CWT-Inception ResNetV2-Optimised RF, performed exceptionally well in the
classification of wink-based EEG signals as no misclassification transpired. The optimised

Figure 6 Classification accuracy of TL-CNN pipelines. Full-size DOI: 10.7717/peerj.11182/fig-6

Table 3 Performance measures of test datasets obtained via TL-CNN pipelines.

Class Precision Recall F1-score Specificity CA

Performance measures obtained through inceptionV3 pipeline

Left winking 0 1.00 1.00 1.00 1.00 1.00

Right winking 1 1.00 1.00 1.00 1.00

No winking 2 1.00 1.00 1.00 1.00

Performance measures obtained through inception ResNetV2 pipeline

Left winking 0 0.86 1.00 0.92 0.14 0.94

Right winking 1 1.00 1.00 1.00 0.00

No winking 2 1.00 0.83 0.91 0.17

Performance measures obtained through Xception pipeline

Left winking 0 0.50 1.00 0.67 0.50 0.67

Right winking 1 1.00 1.00 1.00 0.00

No winking 2 0.00 0.00 0.00 1.00

Performance measures obtained through MobileNet pipeline

Left winking 0 1.00 0.33 0.50 0.77 0.78

Right winking 1 1.00 1.00 1.00 0.00

No winking 2 0.60 1.00 0.75 0.40
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RF model’s hyperparameters that yielded such a result are ten (10) trees, twenty (20) tree
depth and the Gini criterion.

Table 4 tabulates the performance measure of the test dataset based on the Inception
ResNetV2-RF pipeline. Figure 9 represents the ROC curve obtained for the validation
dataset through the Inception ResNetV2 pipeline. Figure 10 illustrates the confusion
matrix of the validation dataset in which 0, 1 and 2 represent the left, right and no wink
classes. Through the confusion matrix, it can observed that there is no misclassification
that transpired in the classification of the validation dataset.

Figure 7 Classification accuracy of optimised TL-RF pipeline.
Full-size DOI: 10.7717/peerj.11182/fig-7

Figure 8 The classification accuracy obtained through validation dataset of the pipelines used in this
research. Full-size DOI: 10.7717/peerj.11182/fig-8
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The efficacy of pre-trained CNN models have been demonstrated in the literature; for
instance, Kant et al. (2020) implemented a CWT algorithm to classify motor imagery
signals by means of transfer learning models. The digital EEG signals were converted into
two-dimensional scalogram images that were fed into different pre-trained CNN models
such as AlexNet, VGG16 and VGG19 to recognise the motor imagery signals of the

Table 4 Performance measures obtained through test dataset via TL-RF pipelines.

Class Precision Recall F1-score Specificity CA

Performance measures obtained through inception V3 pipeline

Left winking 0 0.86 1.00 0.92 0.14 0.94

Right winking 1 1.00 1.00 1.00 0.00

No winking 2 1.00 0.83 0.91 0.17

Performance measures obtained through inception ResNetV2 pipeline

Left winking 0 1.00 1.00 1.00 1.00 1.00

Right winking 1 1.00 1.00 1.00 1.00

No winking 2 1.00 1.00 1.00 1.00

Performance measures obtained through Xception pipeline

Left winking 0 1.00 1.00 1.00 1.00 1.00

Right winking 1 1.00 1.00 1.00 1.00

No winking 2 1.00 1.00 1.00 1.00

Performance measures obtained through MobileNet pipeline

Left winking 0 0.86 1.00 0.92 0.14 0.94

Right winking 1 1.00 1.00 1.00 0.00

No winking 2 1.00 0.83 0.91 0.17

Figure 9 ROC curve of validation dataset through inception ResNetV2.
Full-size DOI: 10.7717/peerj.11182/fig-9
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Left- and Right-hand movements. It was shown from the study that the employment of
such a technique could achieve a CA of 97.06%. In a different study, CWT transformation
has been utilised along with a pre-trained CNN model, SqueezeNet, to classify sleep
stage based on EEG signals (Jadhav et al., 2020). It was demonstrated that the pipeline
could yield exceptional CA. It is apparent that the conversion of signals via CWT could
provide meaningful features to be extracted through the transfer learning approach,
which was also demonstrated through the present study. It is also worth noting that with
regards to the classification of wink-based EEG signals, the present study has shown
that exceptional classification was achieved via the proposed approach and was shown to
be better than that of results reported by Rashid et al. (2020).

CONCLUSION
It could be shown from the present investigation that the employment of Transfer
Learning is a rather promising approach in improving the performance of EEG
classification for BCI applications. Different stages of winking were converted into a
spectrogram image through CWT. It has been demonstrated through the study that the
Inception ResNetV2-Optimised RF could provide a reasonable classification of the
wink-based EEG signals as compared to the other TL models evaluated. In addition, it is
also worth noting that the role of hyperparameter tuning could not be simply overlooked
as it could further improve the performance of the evaluated classifier, herein, the RF
for the present investigation. Future works shall evaluate the performance of other forms of
classical classifiers, for instance, Support Vector Machine and k-Nearest Neighbours,
amongst others and its combination with the evaluated TL models on such classification.

Figure 10 Confusion matrix of validation dataset via inception ResNetV2.
Full-size DOI: 10.7717/peerj.11182/fig-10
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