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Chemical-genetic profiling reveals limited
cross-resistance between antimicrobial
peptides with different modes of action
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Balázs Papp 1,5*

Antimicrobial peptides (AMPs) are key effectors of the innate immune system and promising

therapeutic agents. Yet, knowledge on how to design AMPs with minimal cross-resistance to

human host-defense peptides remains limited. Here, we systematically assess the resistance

determinants of Escherichia coli against 15 different AMPs using chemical-genetics and

compare to the cross-resistance spectra of laboratory-evolved AMP-resistant strains.

Although generalizations about AMP resistance are common in the literature, we find that

AMPs with different physicochemical properties and cellular targets vary considerably in their

resistance determinants. As a consequence, cross-resistance is prevalent only between

AMPs with similar modes of action. Finally, our screen reveals several genes that shape

susceptibility to membrane- and intracellular-targeting AMPs in an antagonistic manner. We

anticipate that chemical-genetic approaches could inform future efforts to minimize cross-

resistance between therapeutic and human host AMPs.
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Antimicrobial peptides (AMPs) play a crucial role in gen-
eral defense mechanisms against microbial pathogens in
all classes of life. Although there is a considerable diversity

in their amino acid content, length and structure, AMPs are
typically positively charged and amphipathic molecules1,2. These
properties allow them to adsorb onto the bacterial cell surface and
penetrate through the membrane to exert their diverse anti-
bacterial actions3. As AMPs have a broad spectrum of activity,
considerable efforts have been allocated to the research and
development of novel anti-infective compounds originating from
AMPs4,5. However, the clinical development of AMP therapies,
has also raised concerns that these approaches may drive bacterial
evolution of resistance to human host-defense peptides6,7. As
well, therapeutic AMPs are required to be active against patho-
genic bacteria, many of which have already evolved resistance
against human host AMPs8. Therefore, ideally, resistance
mechanisms against therapeutic and host AMPs should not
overlap.

Accumulating evidence suggests that AMPs differ considerably
in their modes of action, which may influence the specific
microbial resistance mechanisms against them1,9. First, there are
substantial differences in the electrostatic interactions and
transport processes that lead to the cellular uptake of AMPs3.
Second, the cellular targets of AMPs are also diverse in nature.
For instance, apart from their membrane-disruptive activities,
AMPs inhibit intracellular processes such as bacterial DNA and
RNA synthesis, translation, cell wall synthesis, and diverse
metabolic pathways1. However, the extent to which the genetic
determinants of resistance differ across AMPs remains unclear,
because most of our knowledge comes from case studies char-
acterizing only a limited number of membrane-targeting AMPs9

(for a list of previously reported resistance genes, see Supple-
mentary Data 1). Therefore, there is an urgent need to compre-
hensively map the relationships between the modes of action of
AMPs and the genetic determinants influencing bacterial sus-
ceptibility to them. Understanding these complex relationships
would help to rationally choose AMPs for clinical development,
which are dissimilar to human host peptides in terms of the
underlying resistance mechanisms.

Chemical-genetic profiling is a reverse genetic approach that
quantifies the susceptibility of a genome-wide collection of

mutant libraries to a set of chemical compounds10. By modulating
gene dosage (i.e., either by depletion or overexpression), several
studies demonstrated the effectiveness of this tool to map cellular
targets and genetic determinants of resistance for antibiotics11–16.
Moreover, antibiotics with similar chemical-genetic interaction
profiles, i.e., those with a large overlap between the gene sets
influencing resistance to them, are likely to share cellular targets
and mechanisms of action14. Consistent with this notion,
chemical-genetic interaction profiles have been shown to carry
information on cross-resistance, i.e., whether resistance evolution
to an antibiotic would lead to decreased sensitivity to another
antibiotic17.

Here, we employ a genome-wide chemical-genetic approach to
explore the diversity of resistance determinants across AMPs in
the model bacterium Escherichia coli (E. coli). First, we generate a
comprehensive chemical-genetic map by measuring how over-
expressing each of the ~4400 E. coli genes influences the bac-
terium’s susceptibility against 15 AMPs. The set of 15 AMPs are
structurally and chemically diverse and include AMPs with well-
characterized modes of action, clinical relevance, or crucial role in
the human immune defense (Table 1). The resulting chemical-
genetic interaction profiles cluster the AMPs according to their
modes of action and reveal distinct and often antagonistic resis-
tance determinants against membrane-targeting and
intracellular-targeting AMPs. We confirm these results with a
complementary chemical-genetic approach by testing the growth
effect of a smaller set of 4 selected AMPs against an array of 279
partially depleted essential genes (i.e., hypomorphs)18,19. Finally,
we analyze the cross-resistance patterns of E. coli lines that
evolved resistance to AMPs in a recent laboratory evolution
study20. This analysis confirms that intracellular-targeting AMPs
are less likely to induce cross-resistance to membrane-targeting
human AMPs than those that share the same broad modes of
action.

Results
Chemical-genetics reveals AMP resistance-modulating gene
sets. We generated chemical-genetic interaction profiles for a
diverse set of AMPs (Table 1) by screening them against a
comprehensive library of gene overexpressions in E. coli21.

Table 1 List and characteristics of AMPs used in this study. Their abbreviation, described mode of action, and clinical relevance
(for details see Supplementary Data 7).

Name of AMP Abbreviation Mode of action Clinical relevance

Apidaecin IB AP Inhibits protein biosynthesis by targeting ribosomes; Interacts with DnaK, GroEL/
GroES, FtsH

Yes

Bactenecin 5 BAC5 Inhibits protein and RNA synthesis n.a.
CAP18 CAP18 Disrupts cell membrane Yes
Cecropin P1 CP1 Disrupts cell membrane n.a.
Human beta-defensin-3 HBD-3 Disrupts cell membrane; Inhibits lipid II in peptidoglycan biosynthesis n.a.
Indolicidin IND Inhibits DNA and protein synthesis; Disrupts cell membrane; Inhibits septum

formation
Yes

LL-37 human cathelicidin LL37 Disrupts cell membrane; Induces ROS formation Yes
Peptide glycine-leucine amide PGLA Disrupts cell membrane n.a.
Pexiganan PEX Disrupts cell membrane Yes
Pleurocidin PLEU Disrupts cell membrane; Induces ROS formation; Inhibits protein and DNA

synthesis
n.a.

Polymyxin B PXB Disrupts cell membrane; Induces ROS formation Yes
PR-39 PR39 Inhibits protein and DNA synthesis n.a.
Protamine PROA Affects cellular respiration and glycolysis; Disrupts cell envelop n.a.
R8 R8 n.a. n.a.
Tachyplesin II TPII Disrupts cell membrane n.a.

n.a. no data available

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13618-z

2 NATURE COMMUNICATIONS |         (2019) 10:5731 | https://doi.org/10.1038/s41467-019-13618-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Increasing gene dosage is a widely applied approach to reveal
the targets of small-molecule antibiotics22,23. It also informs on
the ‘latent resistome’, that is, the collection of genes where a
change from native expression level enhances resistance to a
particular drug24. We applied a sensitive competition assay by
monitoring growth of a pooled plasmid library, overexpressing all
the E. coli ORFs (Fig. 1a), as we reported earlier25. Specifically,
E. coli cells carrying the pooled plasmid collection were grown in
the presence or absence of one of the 15 AMPs tested, at a sub-
inhibitory concentration that increased the doubling time of the
whole population by 2-fold. Following 12 generations of growth,
the plasmid pool was isolated from each selection and the relative
abundance of each plasmid was determined by a deep sequencing
readout (see Methods). By comparing plasmid abundances in the
presence and absence of each AMP, we calculated a chemical-
genetic interaction score (fold-change value) for each gene and
identified genes that significantly increase sensitivity (sensitivity-
enhancing genes) or decrease sensitivity (resistance-enhancing
genes) upon overexpression (Fig. 1a, Supplementary Data 2, see
Methods).

To validate our workflow, we took three distinct approaches.
First, we tested the reproducibility of the chemical-genetic
interaction profiles by correlating the chemical-genetic interac-
tion scores between replicate measurements. The overall correla-
tion was comparable to what has been achieved with arrayed
mutants on high-density agar plates14,26 (r= 0.63 from Pearson’s
correlation, Fig. 1b). This indicates that we measured the growth
effects with sufficiently high confidence. Second, we picked 19
overexpression plasmids that showed diverse chemical-genetic
interaction scores with multiple AMPs in our screen but did not
influence the growth rate of E. coli in the absence of AMPs (see

Methods) and performed minimum inhibitory concentration
(MIC) measurements on them. Although mutations that affect
growth at sub-inhibitory drug dosage do not necessarily alter
MIC, we detected a change in MIC in the expected direction for
83% of the tested chemical-genetic interactions (Supplementary
Fig. 1). On average, the change in MIC was ~1.6-fold and ~0.7-
fold for resistance-enhancing and sensitivity-enhancing gene
overexpressions, respectively. Third, we collected examples from
the literature where overexpression of an E. coli gene has been
shown to influence sensitivity to a specific AMP. Despite
differences in the used strains and protocols, 69% (9 out of 13)
of the literature-curated interactions were captured by our screen
(Supplementary Table 1). Taken together, these analyses indicate
that our workflow is suitable to measure chemical-genetic
interactions between AMPs and gene overexpressions.

Chemical-genetics groups AMPs with similar features. We next
explored how similarity in the chemical-genetic interaction pro-
files can inform on the functional and physicochemical simila-
rities of AMPs. To do so, we compiled literature data on known
modes of action (Table 1) and computed physicochemical
properties for each AMP (see Methods and Supplementary
Data 3). Next, we grouped AMPs with similar chemical-genetic
interaction profiles using a robust clustering method (see Meth-
ods). This procedure resulted in four main clusters, referred to as
C1–C4 (Figs. 1c and 2a).

We found that clusters C1 and C2 contain mostly AMPs that
target primarily the bacterial membranes, whereas most AMPs in
clusters C3 and C4 have intracellular targets (Fig. 2a and Table 1).
Membrane-targeting AMPs (C1 and C2) have unique
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Fig. 1 Chemical-genetic profiling of AMPs. a Schematic representation of the chemical-genetic pipeline. The chemical-genetic interactions of ~4400 single
gene-overexpressions and 15 different AMPs were measured using a pooled fitness assay with a deep sequencing readout (see Methods). b A density
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respectively. Groups C1–C4 refer to clusters defined in Fig. 2. Source data are provided as Supplementary Data 2.
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physicochemical properties (Supplementary Fig. 2). Specifically,
they have a lower isoelectric point and proline content, and are
substantially more hydrophobic with higher propensity to form
secondary structures than C3 and C4 peptides (Fig. 2b). These
properties facilitate efficient integration of AMPs into the
bacterial membrane where they create pores27,28. Notably,
although peptides in both C1 and C2 are pore-formers, they
indeed show subtle differences in their physicochemical features
when multiple properties are considered jointly (Supplementary
Fig. 3).

The two clusters of intracellular-targeting AMPs (C3 and C4)
have distinct physicochemical properties. In particular, AMPs in

cluster C4 have an especially high proline content, leading to
elevated propensity to intrinsic structural disorder (Fig. 2c), which
is a common feature in a novel class of intracellular-targeting
AMPs29. Indeed, the two AMPs in cluster C4 - Bactenecin 5
(BAC5) and cathelicidin PR-39 – are known to have intracellular
targets only as they do not lyse the membrane (Table 1). By
contrast, AMPs in cluster C3 show features of both membrane-
and intracellular-targeting ones (Fig. 2). Reassuringly, Indolicidin
(IND) and Protamine (PROA), which are in cluster C3, have been
described to have both membrane disruptive and intracellular-
targeting activities (Table 1). Finally, while CAP18 is generally
considered as membrane-targeting, our data indicate that it could
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Fig. 2 Chemical-genetic profiling discriminates membrane-targeting and intracellular-targeting AMPs. a Heatmap showing the ensemble clustering of
the AMPs based on their chemical-genetic profiles (see Methods). For each AMP pair, the color code represents the frequency of being closest neighbors
across the ensemble of clusters (n= 75,000 clustering). The four major clusters are labeled as C1, C2, C3, and C4. Membrane-targeting and intracellular-
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broad mode of action has not been described or not tested (see Table 1). References describing these activities are provided in Supplementary Data 7.
b Most important physicochemical properties that differentiated AMPs in cluster C1, C2 from AMPs in cluster C3, C4. Significant differences: **P= 0.0026
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also have intracellular targets as it clusters with PROA in the
chemical-genetic map (Fig. 2a). Additional work should elucidate
the exact mode of action of this peptide.

Taken together, AMPs with similar chemical-genetic interac-
tion profiles share physicochemical features and previously
described broad mechanisms of action, indicating that
chemical-genetics can capture certain differences in the bacter-
icidal effects across AMPs.

Functionally diverse genes influence AMP susceptibility.
Functional gene classification revealed that our chemical-genetic
hits are involved in diverse biological processes (Supplementary
Fig. 4). Importantly, whereas genes annotated with cell envelope
function were overrepresented among AMP susceptibility-
modulating genes (Supplementary Data 4), the majority of our
hits did not have obvious functional connection with known AMP
uptake mechanisms or modes of action (Supplementary Fig. 4).

Next, to assess the diversity of resistance determinants across
AMPs, we calculated the extent to which the resistance-enhancing
genes and the sensitivity-enhancing genes are shared between

pairs of AMPs, respectively. To avoid underestimating the overlap
between gene sets across AMPs, we employed an index of overlap
that takes into account measurement noise (see Methods).
Typically, ~63% of the sensitivity-enhancing genes and ~31% of
the resistance-enhancing genes overlapped between pairs of
AMPs (Supplementary Fig. 5). The latter figure indicates
substantial variation in the latent resistome across AMPs.
Remarkably, the sets of resistance-enhancing genes varied greatly
even between AMPs in the same chemical-genetic cluster, in
particular between AMPs in cluster C3 (Fig. 3a). This pattern
could reflect subtle differences in the modes of action across the
intracellular-targeting AMPs within cluster C3 as these peptides
differ in their specific targets (Table 1). Indeed, on a broader scale,
membrane-targeting AMP pairs (C1–C2) and intracellular-
targeting AMP pairs (C3–C4) shared more resistance-enhancing
genes than AMP pairs with different broad mechanisms of action
(Fig. 3b). We note that the same conclusions were reached when
similarities between AMPs were calculated by correlating their
chemical-genetic profiles (see Supplementary Fig. 6a, b).

Finally, we tested whether the above results could be distorted
by potential non-specific chemical–genetic interactions induced
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by the fitness defect of overexpression30. To this end, we divided
E. coli genes into two groups based on the presence or absence of
overexpression growth defect31 and repeated the above analyses
on both groups separately (see Methods). Reassuringly, the extent
of overlap of chemical-genetic interactions remained highly
similar in both groups (Supplementary Fig. 7a-d), indicating that
our results are not confounded by overexpression growth defects.
In sum, these findings reveal a vast diversity of resistance
determinants across peptides that reflects differences in their
modes of action and specific targets.

Depletion of essential genes reveals intrinsic AMP resistance.
Chemical-genetic profiling based on gene depletion captures a
different aspect of resistance determinants than gene over-
expression32. While resistance upon increased gene dosage
informs on the latent resistome, hypersensitivity upon gene
depletion reveals genes that contribute to resistance at their native
expression levels, collectively called as the intrinsic resistome24. To
investigate the intrinsic AMP resistome, we initiated a chemical-
genetic screen with a set of 279 partially depleted essential genes
(hypomorphic alleles; see Methods) of E. coli. We selected four
AMPs with well-characterized modes of action, including two
exclusively membrane-targeting (Pexiganan (PEX) and LL37 from
C2) and two exclusively intracellular-targeting AMPs (BAC5 and
PR39 from C4). Then, using a well-established high-density agar
plate assay19,33, we determined their chemical-genetic interaction
profiles across the hypomorphic alleles (Supplementary Data 5).
Additionally, we also profiled four small-molecule antibiotics with
distinct modes of action in order to rule out that the chemical-
genetic profiles are dominated by non-specific chemical-genetic
interactions arising from general effects associated with gene
depletion (Supplementary Data 5).

In total, we found that 75% of the 279 partially depleted
essential genes influenced susceptibility to at least one of the
AMPs studied and 60% of these interactions caused hypersensi-
tivity, indicating that essential genes often contribute to the
intrinsic AMP resistome (Supplementary Data 5). We found
substantial overlaps in the intrinsic resistomes between AMPs
with similar modes of action. As high as 87% of the 279
hypomorphic alleles overlapped between PEX and LL37, and a
similar figure emerged from the comparison of the gene set
between BAC5 and PR39 (Fig. 3c). In contrast, we observed a
significantly lower, on average, 59% overlap in intrinsic
resistomes between functionally dissimilar AMPs (Fig. 3c,
Supplementary Fig. 8). Importantly, the chemical-genetic inter-
actions profiles of AMPs differed markedly from those of
antibiotics (Supplementary Fig. 9), indicating that the obtained
chemical-genetic interaction profiles are specific to AMPs and not
due to general effects associated with the depletion of
essential genes.

Genes that simultaneously enhance drug resistance when
overexpressed and sensitivity when depleted are of special interest
as such genes are likely to directly protect bacteria against drug
stress or encode drug targets34. Comparison of our overexpres-
sion and hypomorphic screens revealed multiple essential genes
that showed both properties (Fig. 3d). Remarkably, folA
(dihydrofolate reductase), a known intracellular target of
PR3935, was among the set of 6 genes that simultaneously
conferred resistance when overexpressed and sensitivity when
depleted in the presence of PR39. Together, these results indicate
that both the intrinsic and the latent AMP resistomes are shaped
by the AMP’s mode of action.

Collateral sensitivity between functionally dissimilar AMPs.
The limited overlap in resistance determinants across AMPs

prompted us to hypothesize that some of the gene over-
expressions might even have antagonistic effects against distinct
AMPs. Specifically, we sought to identify resistance-enhancing
genes that induce collateral sensitivity, i.e., increase resistance to
one AMP while simultaneously sensitize to another one36,37. We
found numerous such cases (Supplementary Data 6). For exam-
ple, out of the 4,400 genes, we retrieved 436 that conferred
resistance to 2 or more AMPs while increasing sensitivity to at
least 2 other AMPs upon overexpression.

For each pair of AMP, we then calculated the overrepresenta-
tion of collateral sensitivity-inducing genes over random
expectation (see Methods). Intriguingly, pairs of AMPs within
the same chemical-genetic cluster were typically depleted in such
genes (Fig. 4a). In contrast, the relative overrepresentation of
collateral sensitivity-inducing genes was pronounced between the
clusters of membrane-targeting and intracellular-targeting AMPs
(Fig. 4b). Finally, we observed a similar pattern in the
hypomorphic allele screen. Specifically, collateral sensitivity
interactions were prevalent between functionally dissimilar AMPs
(Supplementary Fig. 10).

Perturbed phospholipid trafficking induces collateral sensitiv-
ity. We next focused on genes that showed reduced susceptibility
to at least four membrane-targeting AMPs (i.e., AMPs from C1
and C2 clusters) while at the same time showed elevated sus-
ceptibilities towards at least four intracellular-targeting AMPs
(i.e., AMPs from C3 and C4 clusters) upon overexpression. These
genes were enriched in functions related to phospholipid and
lipopolysaccharide (LPS) composition of the bacterial membrane
(Supplementary Fig. 11). This trend is exemplified by MlaD and
MlaE proteins (Supplementary Fig. 11a), both being part of a
protein complex that carries out retrograde phospholipid trans-
port from the outer membrane to the inner membrane in Gram-
negative bacteria38. Importantly, several studies have reported a
role of the Mla (maintenance of lipid asymmetry) pathway in
bacterial pathogenesis, virulence and antibiotic resistance39,40.

What could be the mechanism behind the antagonistic action
of this pathway on membrane- versus intracellular-targeting
AMPs? Since MlaD is part of a protein complex, it may lead to a
loss-of-function effect upon overexpression41,42. To test this, we
asked whether overexpression and deletion of mlaD cause similar
changes in susceptibility to a representative set of membrane- and
intracellular-targeting AMPs. Both mutations caused a decreased
susceptibility to membrane-targeting AMPs and an increased
susceptibility to intracellular-targeting ones (Fig. 5a, for MIC
curves, see Supplementary Figs. 12, 13), demonstrating that
overexpression perturbs mlaD function similar to a loss-of-
function mutation.

It has been observed that mlaD deletion alters the membrane
composition by leading to the accumulation of phospholipids in
the outer leaflet of the bacterial outer membrane38. A change in
membrane composition can alter the net negative surface charge
of the cell3, which in turn strongly influences AMP susceptibility1.
Thus, we hypothesized that depletion of functional MlaD
decreases susceptibility to membrane-targeting AMPs by decreas-
ing the net negative surface charge of the cell. On the other hand,
membrane properties can also have an effect on membrane
potential43. As the uptake of certain intracellular-targeting AMPs,
for example, PROA and IND, are driven by membrane
potential44,45, we posited that such an effect could underlie
the observed collateral sensitivity interactions. To test this,
we measured the net negative surface charge and the membrane
potential of the mlaD overexpression and deletion strains (see
Methods). Reassuringly, both overexpressing and deleting mlaD
resulted in a significantly decreased negative surface charge
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(Fig. 5b) and an increased membrane potential (Fig. 5c and
Supplementary Fig. 16).

Finally, we tested whether such correlated changes in surface
charge and membrane potential could generally explain antag-
onistic mutational effects against membrane-targeting and
intracellular-targeting AMPs. We therefore investigated three
additional randomly selected overexpression strains showing a
reduced susceptibility to membrane-targeting AMPs and an
elevated sensitivity towards intracellular-targeting AMPs (Sup-
plementary Fig. 14b-d). Consistent with our results on MlaD, all
three strains showed a decreased net negative surface charge and
an increased membrane potential (Supplementary Fig. 14e, f). As
these overexpressed genes represent various biological functions
unrelated to phospholipid transfer, these results suggest that
perturbed membrane potential and surface charge might be
causally involved in the observed collateral sensitivity
interactions.

Limited cross-resistance between functionally dissimilar AMPs.
It has recently been shown that similarities in modes of action
and chemical-genetic interaction profiles between antibiotics
correlate with the emergence of cross-resistance during laboratory
evolution10,17. Here we extend this notion to AMPs and hypo-
thesize that AMP pairs with distinct modes of action and
chemical-genetic clusters show limited cross-resistance following
evolution.

To test this hypothesis, we took advantage of a recent study
that (i) generated 38 E. coli lines that acquired resistance to one of
8 AMPs through adaptive laboratory evolution (representing both
membrane-targeting and intracellular-targeting AMPs from C2 to
C4) and (ii) measured susceptibility of these evolved lines relative
to that of the parental strain (i.e., relative MIC changes) against a
set of 7 AMPs from clusters C1, C2 and C320. Here, we extended
this dataset by measuring susceptibility changes of the same
evolved lines to four additional AMPs using identical protocols to
represent AMPs from all four clusters (Supplementary Fig. 15a,
see also Methods). Overall, the resulting dataset of susceptibility

profiles provides a comprehensive map of cross-resistance and
collateral sensitivity between AMPs representing various modes
of action.

Consistent with the hypothesis, no cross-resistance interaction
above a 2-fold MIC increase was observed between exclusively
membrane-targeting and exclusively intracellular-targeting
AMPs, while cross-resistance was prevalent (~30%) and sig-
nificantly enriched within both groups (Fig. 6a and Supplemen-
tary Fig. 15a). As a further support, collateral sensitivity
interactions (i.e., defined as ≥ 20% decrease in MIC) were ~6-
fold overrepresented between the groups of membrane-targeting
and intracellular-targeting AMPs (Fig. 6b). Importantly, the
chemical-genetic clustering provided additional insights into the
cross-resistance patterns that could not have been predicted based
on the broad mode of action of AMPs. Specifically, while lines
adapted to membrane-targeting AMPs from cluster C2 showed
widespread cross-resistance to other AMPs from the same cluster,
they rarely had such evolutionary interactions with membrane-
targeting AMPs from cluster C1 (Supplementary Fig. 15c).
Similarly, lines adapted to intracellular-targeting AMPs from
cluster C4 showed cross-resistance disproportionally more
frequently to C4 AMPs than to intracellularly-targeting AMPs
from cluster C3 (Supplementary Fig. 15b). Overall, these findings
indicate that chemical-genetic interaction profiles capture genu-
ine differences in resistance mechanisms between AMPs with the
same broad mode of action. Finally, we note that AMPs in cluster
C3 did not show cross-resistance to each other, confirming their
diverse nature (i.e., both intracellular- and membrane-targeting).

Discussion
This work systematically mapped the genetic determinants of
AMP resistance by chemical-genetic profiling in a laboratory
strain of E. coli (Fig. 1). We report that AMP resistance is
influenced, albeit mildly, by a large set of functionally diverse
genes, and yet these genes overlap only to a limited extent
between AMPs. Specifically, clustering of the chemical-genetic
interaction profiles revealed that the modes of action of the AMPs
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largely define the gene sets that influence bacterial susceptibility
against them (Figs. 2 and 3). Additionally, antagonistic muta-
tional effects are frequent between AMPs that disrupt the bac-
terial membrane versus those that act on intracellular targets
(Figs. 4 and 5). Finally, by capitalizing on a comprehensive set of
laboratory-evolved AMP-resistant E. coli lineages, we show that
cross-resistance rarely occurs between AMPs that belong to dis-
tinct modes of action or distinct chemical-genetic clusters (Fig. 6).

The results presented in this study may have important
implications for the development of AMP-based therapies. Pre-
vious works reported several instances of cross-resistance inter-
actions between membrane-targeting peptides (Supplementary
Data 1), however, the potential for cross-resistance across AMPs
with different modes of action has remained poorly understood.
Specifically, while cross-resistance between host and therapeutic

AMPs is certainly a realistic danger, not all AMPs are equally
prone to cross-resistance. Given the immense diversity of AMPs
with major differences in physicochemical properties and resis-
tance mechanisms, we propose that carefully chosen therapeutic
candidates could mitigate the risk of cross-resistance with specific
human host-defense peptides. From our screen, proline-rich
AMPs are the best candidates in this respect, supporting the
considerable effort that has already been taken into the clinical
development of proline-rich AMP-based therapeutic applica-
tions46,47. Additionally, a distinct group of membrane-targeting
AMPs (R8, TPII, and CP1) appear to be less prone to cross-
resistance to the investigated human host-defense AMPs.
Remarkably, these three AMPs from cluster C1 (Fig. 2a) were the
only AMPs in a previous laboratory evolution experiment that
did not result in any significant resistant lines20, further
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corroborating their distinct resistance behavior. Clearly, this work
made the first step in this direction and future studies should
explore these possibilities. Specifically, cross-resistance patterns of
proline-rich AMPs in human saliva and synthetic AMPs should
also be considered48. Despite these potential therapeutic impli-
cations, an important open issue is whether the cross-resistance
patterns reported here can be recapitulated in species other than a
laboratory E. coli strain.

The large diversity of genes that influence AMP resistance
upon overexpression indicates that bacterial susceptibility to
AMPs is coupled to the general physiology of the bacterial cell,
and in particular to alterations in membrane composition. This
idea also provides an explanation to a recent finding that anti-
biotic resistance mutations in membrane proteins frequently
induce collateral sensitivity to AMPs through pleiotropic side
effects that alter membrane composition25. Indeed, the over-
representation of collateral sensitivity interactions among AMP
resistance determinants implies that evolving AMP resistance
requires the optimization of many traits simultaneously. As a
consequence, bacterial cells potentially harbor a large mutational
target to alter AMP resistance, however, such mutations often
have negative trade-offs with other cellular traits.

Collateral sensitivity between AMPs is best exemplified by the
Mla pathway. Several studies have reported the importance of
Mla pathway in bacterial pathogenesis and virulence39,40. For
example, loss-of-function mutations in Mla pathway in Haemo-
philus influenzae increased the accumulation of phospholipids in
the outer membrane, which mediated sensitivity to human
serum39. Here, we demonstrated that depletion of mlaD decreases
the net negative surface charge of the bacterial membrane and,

eventually, causes a somewhat increased resistance to human
membrane-targeting AMPs (Fig. 5a, b), and an elevated sus-
ceptibility to intracellular-targeting AMPs (Fig. 5a). Together, our
work indicates that a trade-off between membrane surface charge
and membrane potential underlie collateral sensitivity interac-
tions between membrane-targeting and intracellular-targeting
AMPs upon perturbing the Mla pathway. We speculate that this
trade-off could contribute to the observed variation in the
expression level of Mla pathway proteins among clinical isolates
of H. influenzae39.

Whereas the mutations identified in the chemical-genetic
screen generally provided relatively small increases or decreases
in AMP susceptibilities, these small changes may have clinical
implications for several reasons. First, mutations causing low
levels of antibiotic resistance may ensure bacterial survival in
antibiotic-treated hosts, as it was shown in Pseudomonas aeru-
ginosa isolates from cystic fibrosis patients49. Second, multiple
small-effect resistance mutations, which typically emerge at low
antimicrobial concentrations, may combine to confer clinically
relevant high-level of resistance50. Third, weak collateral sensi-
tivity effects of antibiotic resistance mutations substantially
increased the killing efficacy of AMPs against multidrug-resistant
bacteria25.

Our results also have implications for an important but
unresolved issue: why have natural AMPs that are part of the
human innate immune system remained effective for millions of
years without detectable resistance in several bacterial species?
One possibility, supported by our work, is that bacteria may have
difficulty to evolve resistance to the combination of multiple
defense peptides deployed by the immune system due to negative
trade-offs between them. We do not claim, however, that AMPs
in clinical use would generally be resistance-free. Rather, these
properties of the AMPs could be beneficial for the development of
combination therapies involving AMPs in combination with
antibiotics and human host peptides.

Methods
Media, bacterial strains and antimicrobial peptides. Experiments with AMPs
were conducted in minimal salts (MS) medium supplemented with MgSO4 (0.1
mM), FeCl3 (0.54 μg per ml), thiamin (1 μg per ml), casamino acids (0.2%) and
glucose (0.2%). Luria-Bertani (LB) medium contained tryptone (0.1%), yeast
extract (0.05%), and NaCl (0.05%). All components were purchased from Sigma-
Aldrich. To increase the dosage of each Escherichia coli gene for the chemical-
genetic screen, we used the E. coli K-12 Open Reading Frame Archive library
(ASKA)21 in Escherichia coli K12 BW25113 cells. AMPs were custom synthesized
by ProteoGenix, except for Protamine and Polymyxin B, which were purchased
from Sigma-Aldrich. AMP solutions were prepared in sterile water and stored
at −80 °C until further use.

Plasmid DNA preparation and purification. Bacterial cells harboring the ASKA
plasmids were grown overnight in LB medium supplemented with chlor-
amphenicol (20 µg per ml). Cells were harvested by centrifugation. Plasmid DNA
isolation was performed using innuPREP plasmid mini Kit (Analytik Jena AG)
according to the manufacturer’s instructions. To remove the genomic DNA con-
tamination, the isolated plasmid DNA samples were digested overnight with
Lambda exonuclease and exonuclease I (Fermentas) at 37 °C. The digested plasmid
DNA samples were purified with DNA Clean & ConcentratorTM (Zymo) kit
according to the manufacturer’s instructions.

Chemical-genetic profiling. We carried out chemical-genetic profiling to deter-
mine the impact of the overexpression of each E. coli ORF on bacterial suscept-
ibility to each of the 15 different AMPs. To this end, we used the complete set of E.
coli K-12 Open Reading Frame Archive (ASKA) plasmid library (GFP minus)
where each E. coli ORF is cloned into a high copy number expression plasmid
(pCA24N-ORFGFP(-)). Prior to screening, the ASKA library was grown in the
original host strain E. coli K-12 AG1 in 96-well plates (growth conditions: 37 °C,
280 rpm, LB medium). An equal aliquot of each member of the ASKA library
(each well of the 96-well plates) was pooled together and the plasmid DNA
(pCA24N-ORF-GFP(-)) was isolated and transformed into E. coli K12
BW25113 strain51. To obtain a negative control strain not having any over-
expressed gene, the plasmid without a cloned ORF (pCA24N-noORF) was also
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Fig. 6 Mode of action informs on cross-resistance spectra of AMP-
evolved lines. a Cross-resistance interactions (i.e., defined as 2-fold
increase in MIC) are significantly overrepresented between AMP pairs
either from the group of exclusively membrane-targeting AMPs (TPII, CP1,
PGLA, LL37, PEX) or from the group of exclusively intracellular-targeting
AMPs (PR39 and BAC5) as compared to pairs of AMPs between the two
mode of action groups (MOA). Significant difference: ***P= 1.333 × 10−10

from two-sided Fisher’s exact test, n= 119 and 93 for within and between
mode of action groups, respectively. b Collateral-sensitivity interactions
(i.e., defined as≥ 20% decrease in MIC) are overrepresented between the
groups of membrane-targeting and intracellular-targeting AMPs (i.e.,
between MOA). Significant difference: ***P= 4.83 × 10−5 from two-sided
Fisher’s exact test, n= 200 and 194 for within MOA and between MOA,
respectively. Source data are provided as a Source Data file.
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transformed into the same E. coli strain. Then, on the pooled collection, we
applied a previously reported competitive growth assay25. Specifically, the pooled
overexpression library and the control strain were grown in parallel in MS
medium supplemented with 20 µg per ml chloramphenicol and the overexpression
was induced by 100 µM isopropyl-ß-D-thiogalactopyranoside (IPTG). After 1 h
induction, ~5 × 105 bacterial cells from the library were inoculated into each well
of a 96-well microtiter plate containing a concentration gradient of an AMP in the
MS medium supplemented with 20 µg per ml chloramphenicol and 100 µM IPTG.
At the same time, both the library and the control strain with the empty plasmid
were grown in the absence of any AMPs. We took special care to grow both of
these samples in the exact same conditions as the samples in the presence of
AMPs. Bacterial growth was monitored in a microplate reader (Biotek Synergy 2)
for 24 h. At the end of the exponential growth phase, we selected those wells in
which the doubling time of the cell population was increased by 2-fold. Then,
from these wells, cells were split into four equal proportion and each was trans-
ferred into 20 mL of MS medium supplemented with the corresponding AMP in
four different concentrations in the range that slowed down growth by two-fold in
the microtitre plate. Then, following exponential growth, out of the four 20 mL
cultures those that showed again a two-fold increase in doubling time were
selected for further analysis. The rationale for this 2-step process was to maintain
competition in exponential phase for 12 generations of growth, efficiently control
the growth rate in a reproducible manner and obtain the plasmid pool with
standard DNA isolation protocol (innuPREP plasmid mini Kit, Analytik Jena AG)
in a yield that is enough for the downstream analysis. The cultures were vigorously
shaken along the entire protocol to make sure that the cultures are completely
homogeneous and therefore biasing interactions between clones (such as trans-
resistance) was minimized. Each of the selected plasmid samples was digested
overnight with a mixture of lambda exonuclease and exonuclease I (Fermentas) at
37 °C to remove the genomic DNA background. The digested plasmid DNA
samples were purified with DNA Clean & ConcentratorTM (Zymo) kit
according to the manufacturer’s instructions. This protocol was carried out in two
biological replicates for each AMP treatment. In the case of the untreated sample
(in the absence of AMP), we had five replicates. E. coli BW25113 strain carrying
the empty vector was used as a negative control to measure read counts origi-
nating from genomic DNA contamination during plasmid preparation
(background).

Deep sequencing of plasmid pool. The cleaned plasmid samples were sequenced
with the SOLiD next-generation sequencing system (Life Technologies) and the
relative abundance of each plasmid was determined, as described previously25,51.
Briefly, the isolated plasmid pool samples were fragmented and subjected to library
preparation. Library preparation and sequencing was performed using the dedi-
cated kits and the SOLiD4 sequencer (Life Technologies), respectively. For each
sample, 20–25 million of 50 nucleotide long reads were generated. Primary data
analysis was carried out with software provided by the supplier (base-calling). The
50 nucleotide long reads were analyzed, quality values for each nucleotide were
determined using the CLC Bio Genomics Workbench 4.6 program.

Data analysis of chemical-genetic screen. Raw sequence data processing and
mapping onto E. coli ORFs were carried out as described previously25. Raw
sequence data were also mapped to the plasmid backbone. In order to make the
mapped read counts comparable between the different samples, we carried out the
following data processing workflow based on established protocols52,53, using a
custom-made R script. The extra read counts deriving from genomic DNA con-
tamination (background) were estimated by assuming that the reads mapping to
the unit length of the plasmid and the ORFs should have a ratio of 1:1. The total
extra read count estimated thereof was partitioned among the ORFs based on their
background frequency (that is, their relative frequency obtained from the
experiment involving the empty plasmid). Next, these ORF-specific backgrounds
were subtracted from the read counts. Then, a loglinear transformation was car-
ried out on the background-corrected relative read counts. Compared to the
canonical logarithmic transformation, this transformation has the advantage of
avoiding the inflation of data variance for ORFs with very low read counts54. The
transformed relative read counts showed bimodal distributions (Supplementary
Fig. 17). The lower mode of the distribution corresponds to ORFs that were not
present in the sample. The upper mode represents those ORFs whose growth was
unaffected by overexpression (i.e., no fitness effect). To make different samples
comparable, the two modes of the distribution of each sample were set to two
predefined values. These values were chosen such that the original scale of the data
was retained. In order to align the modes between samples, we introduced two
normalization steps: one before and one after loglinear transformation. The first
normalization step identified the lower mode corresponding to the absent strains
and added a constant to shift the lower mode to zero. Next, we performed the
loglinear transformation step described above. The second normalization step was
a linear transformation moving the upper mode to a higher predefined value.
Following these normalization steps, genes that were close to the lower mode in
the untreated samples were discarded from the analysis as these represent strains
that displayed poor growth even in the absence of drug treatment (that is, AMP
sensitivity could not be reliably detected). A differential growth score (i.e., fold-
change) was calculated for each gene as the ratio of the normalized relative read

counts in treated and non-treated samples at the end of the competition. Fold-
change values of biological replicate experiments were averaged. To determine
fold-changes that are statistically significant, we estimated the variance of biolo-
gical replicate measurements as follows. Due to small sample sizes (n= 2 for AMP
treatments and n= 5 for untreated competitions), gene-specific variance estimates
are unreliable. Therefore, we shared information across multiple genes and AMP
treatments by calculating the standard deviation as a function of normalized read
counts using lowess smoothing (i.e., local regression). This procedure is based on
the observation that the variance depends on the mean. Note that similar stra-
tegies are commonly used in the gene expression literature55. Using this estima-
tion of standard deviation, we applied z-tests to determine whether the treated and
the non-treated samples differ significantly. Genes that showed at least 2-fold
lower and higher relative abundance with a p-value < 0.05 at the end of the
competition upon AMP treatment were considered as sensitizing and resistance-
enhancing genes, respectively.

Cluster analysis of chemical-genetic interaction profiles. To group AMPs with
similar chemical-genetic interaction profiles, we employed an ensemble clustering
algorithm that combines multiple clustering results to obtain a robust clustering56.
A combination of diverse clustering results based on perturbing the input data and
clustering parameters is known to yield a more robust grouping of data points than
that obtained from a single clustering result.

As a first step, we removed genes that did not show AMP-specific phenotypes
across treatments since these genes would be uninformative for clustering. To this
end, we retained only those genes that showed significant differences in their fold-
change values between AMPs compared to their variances across replicate
measurements within AMPs as assessed by F-tests (p < 0.01). This resulted in a set
of 2146 genes kept for clustering. Next, we employed a distance metric, normalized
variation of information, to measure distances between AMP chemical-genetic
interaction profiles. The normalized variation of information is closely related to
mutual information but has the advantage of being a true distance metric.
Importantly, normalized variation of information gives more weight to rare
overlaps of resistance/sensitivity phenotypes between AMPs, unlike the commonly
used Euclidean distance. Normalized variation of information (NVI) between AMP
pairs was calculated as follows: NVI= (H−I) / H where H is the entropy and I is
the mutual information.

Based on this distance measure, we then generated 75,000 clusters of AMPs by
perturbing both the AMP profile data and the clustering parameters. The AMP
profile data was perturbed by resampling the gene set with replacement and by
randomly selecting a single chemical-genetic interaction profile among the multiple
biological replicates available for each AMP. We used hierarchical clustering and
varied both the algorithms (Ward, single-linkage, complete-linkage and average-
linkage) and the number of clusters defined (k= 2…6). Results of the 75,000
clusters were summarized in a consensus, which contains, for each pair of AMP,
the number of times that two AMPs cluster together across all of the clustering
results. Finally, we clustered this consensus matrix using hierarchical clustering and
complete linkage and plotted the result as a heatmap.

Construction of hypomorphic alleles for chemical-genetic screening. A total of
279 essential gene hypomorphs (with reduced protein expression) were constructed
essentially, as previously described18,19. Briefly, as with the mRNA perturbation by
DAmP (decreased abundance by mRNA perturbation) alleles in yeast57, we created
an essential gene hypomorphic mutation by introducing a kanamycin (KanR)
marked C-terminal sequential peptide affinity fusion tag, engineered by homo-
logous recombination into each essential gene58. The tag perturbs the 3′ end of the
expressed mRNA of the essential proteins, when combined with environmental/
chemical stressors, or other mutations by destabilizing the transcript abundance. A
subset of these hypomorphic alleles that we used19,59 or shared with others14 have
revealed functionally informative gene-gene, and gene-environment or drug–gene
interactions.

Analogous to our E. coli synthetic genetic array approach59, our chemical-
genetics screening strategy involves robotic pinning of each KanR marked single
essential gene hypomorph arrayed in 384 colony format on Luria Broth (LB)
medium, in quadruplicate, onto the minimal medium containing AMPs under a
selected concentration, in two replicates, generating eight replicates in total for each
essential gene hypomorph. The sub-inhibitory concentration was chosen based on
50% growth inhibition of wild-type cells using a serial dilution. In parallel, we also
prepared two replicates of control plates containing arrayed essential gene
hypomorphic strains pinned onto minimal media without AMPs. After incubation
at 32 °C for 20 h, the plates (with and without AMPs) were digitally imaged and
colony sizes were extracted from the imaged plates using an adapted version of the
gitter toolbox60. The resulting raw colony size (proxy for cell growth) from each
screen, with and without AMP, was normalized using SGAtools suite61, with
default parameters. The normalized colony sizes from the AMP plate was
subtracted from their corresponding colony screened without AMP to estimate the
final hypomorphic-strain fitness score (sensitive or resistant), which is as an
average of all eight replicate measurements recorded for each hypomorphic allele.
A z-score distribution based p-value was calculated for all interactions and those
with p ≤ 0.05 were deemed as significant interactions. To group the chemical-

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13618-z

10 NATURE COMMUNICATIONS |         (2019) 10:5731 | https://doi.org/10.1038/s41467-019-13618-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


genetic interaction profiles of AMPs and antibiotics, we employed hierarchical
clustering on Euclidean distances with Ward’s method.

Physicochemical properties of AMPs. Protein amino acid frequencies were
counted with an in-house perl script. Isoelectric point, hydrophobicity, hydro-
phobic moment, net charge and membrane surface was calculated with the pep-
tides R package, version 2.462. The ExPasy Prot Param tool was used for calculating
molecular weight and peptide length63.

Differentiation between AMP clusters based on physicochemical parameters.
Logistic regression framework was used with two parameters to infer differences
between C1 and C2 clusters in the peptides physicochemical properties. Area under
the receiver operating characteristic curve (ROC) was used to establish model
accuracies and rank parameter pairs using the caret (v6.0–80) and e1071 (v1.7–0) R
packages. For a global analysis of cluster properties, principal component analysis
was applied to all the peptide physicochemical properties with centering and
scaling the data using the princomp R package. All calculations were done in R
version 3.5.0 in Rstudio version 1.1.44764,65.

Calculating the overlap in resistance-enhancing and sensitivity-enhancing
gene sets between AMPs. To calculate the extent to which the resistance and
sensitivity-enhancing genes are shared between pairs of AMPs, we used a modified
version of the Jaccard index that takes into account measurement noise. Specifi-
cally, for each pair of AMP, we calculated the Jaccard index of overlap between
their sets of resistance-enhancing genes and performed a correction by dividing
this value by the average Jaccard index of overlap between replicate screens of the
same AMPs. Thus, a corrected Jaccard index value of 1 between two AMPs indi-
cates that the set of resistance-enhancing genes overlap as much as that of two
replicate screens. Protein overexpressions associated with a fitness cost were
identified using a previously published dataset31. In this dataset, those over-
expression strains were deemed as having a fitness cost where the doubling time
was at least two-fold higher than the doubling time of the strain harboring the no-
insert control of the pCA24N vector.

Enrichment of collateral sensitivity interactions between AMP pairs. We
calculated the overrepresentation of collateral sensitivity-inducing genes for each
AMP pair over random expectation using data from our overexpression screen.
Random expectation was calculated using the number of resistance-enhancing and
sensitivity-enhancing genes for each AMP. Enrichment ratio (r) of collateral
sensitivity-inducing genes for each AMP pair was calculated as follows:

r ¼ x=e ð1Þ
where:x - actual frequency of the genes showing collateral sensitivity

interactions between AMP paire - expected frequency (based on marginal
probability) of the genes showing collateral sensitivity interactions between AMP
pair. Expected frequency (e) was calculated as follows:

e ¼ Ramp1 � Samp2 ð2Þ
where:Ramp1= relative frequency of genes showing resistance to AMP1 out of

all ~4400 genes screenedSamp2= relative frequency of genes showing sensitivity to
AMP2 out of all the ~4400 genes screened.

Gene ontology (GO) enrichment analysis. To determine which Gene ontology
(GO) terms are significantly enriched in the resistance-enhancing and sensitivity-
enhancing genes, we employed the Biological Networks Gene Ontology tool
(BiNGO)66. The selection of GO reference set was based on the EcoGene data-
base67. The Benjamini-Hochberg FDR (FDR cutoff= 0.05) was used for multiple-
testing correction68. GO categories showing FDR-corrected P-values < 0.05 were
considered statistically significant. Detailed information about the significantly
enriched GO categories is provided in Supplementary Data 4.

We calculated the enrichment of phospholipid and lipopolysaccharide
transport/binding functions among the genes that showed collateral sensitivity.
Genes related to phospholipid and lipopolysaccharide transport/binding function
were selected from a previous study25.

Determination of minimum inhibitory concentration (MIC). Minimum inhibi-
tory concentrations (MIC) were determined with a standard serial broth dilution
technique with a minor modification69. Specifically, instead of a two-fold dilution
series, smaller AMP concentration steps were used (typically 1.2-fold) for two
reasons. First, AMPs have steeper dose-response curves than standard antibiotics,
and therefore two-fold dilutions were not enough to capture 90% growth inhibi-
tions (i.e., MIC). Second, gene overexpressions caused typically only small changes
in the MICs of AMPs and therefore higher resolution was required. The protocol
was as follows. From a stock solution of an AMP, 12-steps serial dilution was
prepared in fresh MS medium in 96-well microtiter plates. Each AMP was
represented in 11 different concentrations (3 wells per AMP concentration per
strain). Three wells contained only medium to check the growth in the absence of
AMP. After overnight growth in MS medium supplemented with chloramphenicol,

bacterial strains were diluted 20-fold into fresh MS medium and grown until the
cell density reached OD600 ~1. Cells were induced by 100 µM of IPTG and incu-
bated for 1 h at 30 °C with continuous shaking at 300 rpm. Following incubation,
approximately half-million cells were inoculated into the wells of the 96-well
microtiter plate with a 96‐pin replicator. We used three independent replicates for
each strain and the corresponding control. Two rows in the 96-well plate contained
only MS medium in order to obtain the background OD value of the medium.
Plates were incubated at 30 °C with continuous shaking at 300 rpm. After 20–24 h
of incubation, OD600 values were measured in a microplate reader (Biotek Synergy
2). After background subtraction, MIC was determined as the lowest concentration
of AMP where the OD600 values were less than 0.05.

Membrane surface charge measurement. To evaluate bacterial surface charge, we
performed a fluorescein isothiocyanate-labeled poly-L-lysine (FITC-PLL) (Sigma)
binding assay. In brief, FITC-PLL is a polycationic molecule that binds to anionic lipid
membrane in a charge-dependent manner and is used to investigate the interaction
between cationic peptides and charged lipid bilayer membranes70. The assay was
performed as previously described25,71. Briefly, bacterial cells were grown overnight in
MS medium, centrifuged and washed twice with 1X PBS buffer (pH 7.4). The washed
bacterial cells were re-suspended in 1× PBS buffer to a final OD600 of 0.1. A freshly
prepared FITC-PLL solution was added to the bacterial suspension at a final con-
centration of 6.5 µg/ml. The suspension was incubated at room temperature for 10
min, and pelleted by centrifugation. The remaining amount of FITC-PLL in the
supernatant was determined fluorometrically (excitation at 500 nm and emission at
530 nm) with or without bacterial exposure. The quantity of bound molecules was
calculated from the difference between these values. A lower binding of FITC-PLL
indicates a less net negative surface charge of the outer bacterial membrane.

Membrane potential measurement. A previously described protocol36 was used
to determine the change in transmembrane potential for mlaD overexpression and
mlaD knockout strains in comparison to their control strain. Transmembrane
potential (Δψ) was measured using the BacLight™ Bacterial Membrane Potential Kit
(Invitrogen). In this assay, a fluorescent membrane potential indicator dye emits
green fluorescence in all bacterial cells and the emission shifts to red in the cells
that maintain a high membrane potential. In this way, the ratio of red/green
fluorescence provides a measure of membrane potential. Prior to the measurement
bacterial cells were grown overnight in MS medium at 30 °C. The overnight cul-
tures were diluted into fresh MS medium and grown until cell density reached
OD600 0.5–0.6. The grown cultures were diluted to 106 cells/mL in filtered PBS
buffer. Then, 5 µl of 3 mM DiOC2(3) was added to each sample tube containing
500 µl of bacterial suspension and incubated for 20 min at room temperature.
Following incubation, red to green fluorescence values of the samples were mea-
sured using Fluorescence Activated Cell Sorter (BD Facscalibur) according to the
instructions of the kit’s manufacturer. Fluorescence values were calculated relative
to the control strain. Control populations treated with cyanide-m-
chlorophenylhydrazone (CCCP, a chemical inhibitor of proton motive force) were
used as an experimental control.

MlaD knockout construction. A mlaD knockout strain of E. coli BW25113 car-
rying a kanamycin resistance cassette in the position of the gene was selected from
the KEIO collection72. The resistance marker was removed using plasmid-borne
(pFT-A) expression of FLP recombinase leading to excision of the kanamycin
resistance cassette73. Cassette excision was verified by a polymerase chain reaction
using the primers mlaD_del_ver_Fw (5′- TCACGGTGACGTGGATTTC) and
mlaD_del_ver_Rev (5′- GCCTCGTCCATCAGCTTATAC).

Cross-resistance interactions of AMP-resistant lineages. To characterize the
cross-resistance of the 38 E. coli lineages we obtained relative MIC changes that are,
the MIC values of the evolved lines compared to these of the parental strain, from
two data sources. First, we used already measured relative MIC changes from Spohn
et al. Supplementary data 420. This data covers the cross-resistance to seven AMPs
from cluster C1 (TPII, CP1 and R8), C2 (LL37, PLEU, PGLA) and C3 (IND). Second,
we extended this dataset by measuring the relative MIC changes of the same evolved
lines to four additional AMPs using identical protocol20. The later data set covered
cross-resistance to AMPs from cluster C2 (PEX), C3 (PROA) and C4 (PR-39 and
BAC5). In this way, AMPs from each cluster were represented in the dataset.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are present in this article and its
Supplementary Information files. For each figure, the availability of the analyzed data is
indicated in the figure legend. The source data underlying Figs. 3a, b, 4a, b, 5a-c and 6
and Supplementary Figs 1, 5, 6, 7, 12, 13, 14e, f and 15 are provided as a Source Data file.
The SOLiD sequencing data for the chemical-genetic screen is available in the NCBI
Sequence Read Archive, with SRA accession number PRJNA576179. Any additional data
can be requested from the corresponding author.
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Code availability
All scripts and other files needed to reproduce the chemical-genetic interaction score
calculations and data analyses are available at https://github.com/pappb/Kintses-et-al-
AMP-Chemogenomics-NatComm.
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