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Abstract

There are several mathematical models and measurements to determine the efficiency of

the digestibility of different feedstuffs. However, there is lack of information regarding the

direct methods or measurement techniques used to analyse the physical response of the

different parts of the gastrointestinal tract (GIT) of growing pigs to different diets. Smooth

muscle electromyography (SMEMG) is a non-invasive method for the measurement of gas-

trointestinal myoelectrical activity. In the present study, SMEMG methodology has been

adapted from laboratory rats to pigs, and the effects of feedstuffs with control (CTR) or

experimentally increased (EXP) amounts of fibre were investigated on gastrointestinal tract

motility. Nine barrow pigs ((Danish Landrace × Danish Yorkshire) × Danish Duroc) were

used (30 ± 3 kg), and their CTR and EXP feedstuffs contained 29 and 49 g/kg crude fibre

(CF), respectively. Myoelectric activities of the stomach, ileum and caecum were detected

in the awake pigs by a pair of electrodes. The recorded myoelectric signals were analysed

with fast Fourier transformation (FFT), and the spectra were expressed in GIT section-spe-

cific cycles per minutes (cpm) values and the maximum power spectrum density (PsDmax).

A significant increase (P < 0.001) was observed in the value of the PsDmax of the small intes-

tine (20–25 cpm) as a consequence of the EXP diet. The PsDmax values of the stomach

(3–5 cpm) and large intestine (1–3 cpm) did not show any significant change in pigs fed the

EXP diet. As a direct and non-invasive method, SMEMG is suitable for the rapid evaluation

of the effects of diets with different fibre contents on the GIT of non-anaesthetised, free-mov-

ing pigs.
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Introduction

Digestion is affected by many factors, such as the physical and chemical characteristics of feed

[1], feed processing [2], different animal factors and nutritional levels [3]. Dietary fibre regu-

lates motility and digestive transit time through the gastrointestinal tract (GIT) [4].

There are several models to predict the digestibility of different feedstuffs. These models

can integrate theories and observations to obtain a comprehensive view of complex biological

systems [5]. Ileal or total tract digestion models have been developed for pigs [6–8], in which

digestibility is predicted by separately quantifying transit time, endogenous secretions, degra-

dation, absorption and microbial fermentation. These predictions are required because of the

limited quantitative information concerning the digestion and transit kinetics in the different

segments of the GIT of pigs. Moreover, the gastric emptying process is represented by different

masses of feedstuff or segments of the digestive tract [6–8].

Only a few methods are available to analyse the physical reaction of the different parts of

the GIT to the consumed feed. Electrogastrography (EGG) is a non-invasive method for the

measurement of gastric myoelectrical activity [9]. The GIT smooth muscle has pacemaker

cells, called the interstitial cells of Cajal (ICCs), that play a key role in the generation and prop-

agation of the electric signal in GIT contractility, which is measurable. The newly developed

smooth muscle electromyography (SMEMG) method examines the different organs of the

GIT (the stomach, small and large intestine), rather than examining only gastric myoelectrical

activity as in the case of EGG. Pigs can be used in various preclinical experiments [10–15] as

an omnivorous representative due to their relatively similar gastrointestinal functions to those

of humans [16, 17].

In human (especially awake) patients and large model animals such as pigs, there are few

possibilities to record myoelectric signals directly from the colon or small intestine other than

using electrodes placed on the body surface, as the placement of various internal sensors is

considerably difficult. However, in a rat experiment [18] electrodes were implanted on the

outer surface of the digestive tract, and the slow-wave frequency parameters of the gastric,

small intestine and large intestine segments of the GIT were identified using smooth muscle

electromyography. The changes in the myoelectric activity of the GIT were followed with

SMEMG in parallel with the mechanical contractions in anaesthetised rats using a strain gauge

tool. Another SMEMG experiment was carried out in awake rats, measuring GIT activity

under normal and stressed conditions [19].

Based on these earlier findings, our study primarily aims to develop the non-invasive

SMEMG measurement applied for pigs, and to identify and analyse myoelectric signals of the

different GIT segments in growing and awake pigs. The secondary objective is to investigate

the effect of fibre-rich nutrition on the GIT activity of pigs, using the applied SMEMG

method.

Materials and methods

Housing and handling of the animals

The animals were treated following the European Communities Council Directives (2010/63/

EU) and the Hungarian Act for the Protection of Animals in Research (Article 32 of Act

XXVIII). All experiments involving animal subjects were carried out with the approval of the

Hungarian Ethical Committee for Animal Research (registration number: VIII-I-001/01854-

0005/2014).

Nine barrow pigs ((Danish Landrace × Danish Yorkshire) × Danish Duroc) were used at

age 72 ± 3 days. Average body weight (BW) was 30 ± 3 kg. The animals were housed
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individually (1 pig/pen, 1 m2/pig) without litter, and water was offered ad libitum. Fig 1 sum-

marises the full random crossover trial design, in which the two diets (control and experimen-

tal) were administered in an alternating manner in four iterative cycles, each comprising an

adaptation period (five days) and measuring day.

Diet and chemical analysis

The control diet (CTR) contained a low level of crude fibre (CF; 29 g/kg as in feed) and was

prepared from wheat, maize, barley and soybean meal without a specific fibre source. The

experimental diet (EXP) corresponded to the control diet, except that it had an increased CF

content (49 g/kg as in feed) due to the addition of a concentrated fibre source (Opticell C5,

Agromed Austria GmbH, Kremsmünster, Austria). Ingredients and analysed or calculated

chemical characteristics of the diets are given in Table 1.

Dry matter (DM), crude protein (CP), crude fibre (CF), neutral detergent fibre (NDF), acid

detergent fibre (ADF), acid detergent lignin (ADL), ether extract (EE), ash (A) of CTR and

EXP diets were determined. The chemical analysis of the diets was performed following the

AOAC protocol [20] and the standard laboratory procedures.

Outside the experimental period, pigs received the CTR diet. The control and experimental

diets were fed for five days before the SMEMG measurements were taken. The animals

received the daily amount of feed in two equal portions, covering 2.8 times their maintenance

energy requirement (450 kJ MEs/kg0.75/day). The daily amount of feed was calculated based on

the body weight (BW) of the animals (the growing pigs were weighed every week, and the fed

diet was adjusted to their BW). The pigs were fed at 7.00 a.m. and 12.00 a.m.

Detection of gastrointestinal myoelectric activity

SMEMG measurements were performed on the “measuring days” (Fig 1), starting at the time

of feeding (7.00 a.m. or 12.00 a.m.), and lasted for 4 hours per animal. Before the measure-

ment, the epigastric area was cleaned, and the skin was gently shaved. The electrodes (Elec-

trode PE Foam Solidgel, Bio Lead-Lok B Sp. Zo.o, Józefów, Poland) were fixed onto the

surface of the skin with adhesive plaster (Leukoplast 5 cm, BSN medical GmbH, Hamburg,

Germany), without surgery. Ten20 EEG conductive gel (Bio-Medical Instruments, USA) was

used on the skin surface to provide proper conductivity of the electrodes. The standard elec-

trode pairs (2 electrodes) were fixed to the right and left sides of the abdominal wall, 10 cm lat-

eral from the spine, while the neutral electrode was placed on the right thigh at a distance of 5

cm from the tail. A custom belt was designed to fix and protect the electrodes and hold the hal-

ter device (MDE GmbH, Walldorf, Germany), which recorded and stored the myoelectric sig-

nals (Fig 2).

The slow-wave frequency parameters of the gastric, small intestine and large intestine seg-

ments of the GIT in rats identified by Szűcs et al. [18] were used in this study. The electric sig-

nals were recorded and analysed with an on-line computer and amplifier of the S.P.E.L.

Fig 1. The experimental design for measuring the gastrointestinal myoelectric activity (n = 9 pigs). The diet of measuring days was identical to that of the preceding

5 days of adaptation. CTR: low level of crude fibre (29 g/kg as in feed), soybean- and maize-based feed; EXP: moderate level of crude fibre (49 g/kg as in feed), soybean-

and maize-based feed + 4% Opticell (Agromed Austria GmbH, Kremsmünster, Austria).

https://doi.org/10.1371/journal.pone.0257311.g001
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Table 1. Ingredients and the analysed or calculated nutrient and energy content of the control and experimental

diets.

Ingredient (kg) Control (CTR) Experimental (EXP)

Wheat 307.70 295.40

Maize 256.50 247.00

Barley 200.00 192.00

Extracted soybean meal (46% CP) 188.00 181.00

Pig vitamin and mineral premix1 12.50 12.50

Plant oil2 12.00 11.20

Limestone 10.50 10.05

MCP 6.50 6.20

L-lysine-HCl (78%) 4.80 4.60

DL-methionine (99%) 0.64 0.62

L-threonine (99%) 0.64 0.62

L-tryptophan (98.5%) 0.22 0.21

Fibre source3 - 38.60

Chemical composition (as in feed, %)

DM4 88.90 89.10

CP4 17.20 16.70

EE4 3.30 3.30

CF4 2.90 4.90

NDF4 11.86 14.70

ADF4 4.89 7.50

ADL4 0.73 0.70

A4 4.20 4.30

Ca5 0.66 0.64

P5 0.55 0.48

Na5 0.20 0.20

SID Lys5 1.05 1.01

SID Met+Cys5 0.66 0.64

SID Thr5 0.70 0.68

SID Trp5 0.21 0.20

DEs
5 (MJ/kg as in feed) 14.17 13.67

MEs
5 (MJ/kg as in feed) 13.60 13.12

1Supplied per kilogram of diet: vitamin A: 16,000 IU; vitamin D: 2500 IU; vitamin E: 80.0 mg; vitamin K: 2.0 mg;

thiamine: 2.0 mg; riboflavin: 6.0 mg; niacin: 30.0 mg; pantothenic acid: 14.0 mg; pyridoxine: 4.0 mg; folic acid: 1.0

mg; vitamin B12: 0.03 mg; I: 0.7 mg (calcium iodate); Se: 0.4 mg (sodium selenite); Zn: 120.0 mg (metal

polysaccharide complexes of zinc sulphate); Fe: 90.0 mg (iron(II)-carbonate); Mn: 50.0 mg (manganese sulphate); Cu:

95.0 mg (copper sulphate).
2Bonafarm-Bábolna Ltd., Nagyigmánd, Hungary.
3Opticell C5 concentrated fibre source: crude fibre: 660 g/kg DM, NDF: 854 g/kg DM, ADF: 725 g/kg DM, ADL: 82

g/kg DM (Agromed Austria GmbH, Kremsmünster, Austria).
4analysed (DM—dry matter; CP—crude protein; EE—ether extract; CF—crude fibre; NDF—neutral detergent fibre;

ADF—acid detergent fibre; ADL—acid detergent lignin; A = ash).
5calculated (Ca—calcium; P—total phosphorous; Na—sodium; SID Lys—standardised ileal digestible lysine; SID Met

+ Cys—standardised ileal digestible methionine + cysteine, SID Thr—standardised ileal digestible threonine; SID Trp

—standardised ileal digestible tryptophan; DEs—digestible energy for swine; MEs—metabolisable energy for swine).

https://doi.org/10.1371/journal.pone.0257311.t001
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Fig 2. The positioning of the smooth muscle electromyography equipment on the right (A) and left (B) side of a

standing animal, and a photo of the left side (C). 1: belt; 2: halter part; 3: cable for the electrode(s); 4: standard

electrode; 5: neutral electrode.

https://doi.org/10.1371/journal.pone.0257311.g002
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Advanced ISOSYS Data Acquisition System (MDE GmbH, Walldorf, Germany). SMEMG sig-

nals were amplified using a custom-made amplifier (MDE GmbH, Walldorf, Germany). A

double-filter system was used to reduce the artefacts. All analogue signals were pre-filtered

with a first-order Bessel-type low-pass filter and were converted to digital signals at a sample

rate of 2 Hz with a slope of 80 dB/decade. The prefiltered myoelectric signals were then filtered

further by Bessel-type bandpass filters with a frequency of 0–30 cycles per minute with a slope

of 140 dB/decade. Each filter was a digital infinite impulse response (IIR) filter. The recorded

signals were analysed with fast Fourier transformation (FFT). The frequency of the electric

activity was expressed in cycles per minutes (cpm), and the magnitude of the activity was

described as the maximum power spectrum density (PsDmax). Based on Szűcs et al. [18], the

electromyographic signals during FFT analysis were filtered for the following cpms: 1–3 for

the large intestine, 3–5 for the stomach and 20–25 for the small intestine.

Statistical analysis

The maximum power spectrum density (PsDmax) values were determined and compared sta-

tistically (t-test) using the computer program Prism 5.0. (GraphPad Software, USA). In all pro-

cedures, the significance level was P� 0.05.

Results and discussion

The activities of the different GI segments were detected by FFT spectrum analysis of the

SMEMG records (S1 File, Fig 3A). The peaks of 1–3, 3–5 and 20–25 cpms refer to the contrac-

tile responses of the large intestine, stomach and small intestine, respectively (Fig 3B). The

absolute values of PsDmax (mV2) varied in the different segments of the GIT (the stomach,

small intestine and large intestine) and the different feeds (CTR and EXP), indicating changes

in the intensity of the GIT smooth muscle contractions. Table 2 shows the results of mean val-

ues of the maximum of power spectrum density (PsDmax, mV2) changes for each individual

animal (pig 1–9). The means and standard deviations of the PsDmax values of the control and

experimental animals (n = 9) examined in the test are shown in Fig 4.

The PsDmax measured when feeding the EXP diet differed from that measured when feed-

ing the CTR diet by the individual animals. These changes were neither consistent nor signifi-

cant in the stomach or large intestine. The PsDmax (mV2) when feeding the CTR feed varied

between 101.3 (animal 6) and 350.3 (animal 1) for the stomach, between 20.4 (animal 5) and

67.2 (animal 4) for the small intestine, and between 44.0 (animal 7) and 362.9 (animal 4) for

the large intestine. As a result of the EXP feed, the PsDmax (mV2) varied between 102.8 (animal

4) and 355.6 (animal 9) for the stomach, between 26.4 (animal 4) and 174.2 (animal 7) for the

small intestine, and between 64.8 (animal 4) and 385.8 (animal 5) for the large intestine. A sig-

nificant increase (CTR vs. EXP) in the PsDmax values were found only for the small intestine in

the case of all individuals (n = 9) (P� 0.001) (Fig 4).

Earlier experiments demonstrated that SMEMG is reliable and feasible for use in anaesthe-

tised pigs, especially for examination of the stomach (EGG) [10, 21, 22]. Although animal

SMEMG methods are promising, it cannot be guaranteed that the recorded signals originate

solely from the GI tracts. The signals contain slow and fast waves of the GIT along with

“noises”, such as respiratory and motion artefacts [23]. Many studies have highlighted that the

frequencies outside the normal frequency are defined as a type of arrhythmia [24]. The possi-

bility of slow-wave myoelectric signal interference, or even masking with fast-wave signals

from the brain, cardiac muscle or skeletal muscle, is very high, but there is an opportunity to

reduce this through the special design of the sensors [25]. There are no unequivocal data con-

cerning the frequency parameters of specific myoelectric signals of the main segments of the
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Fig 3. The primary myoelectric signal of the gastrointestinal tract in a non-anaesthetised, free-moving pig (A), and the specific spectra (B)

gained by fast Fourier transformation (FFT) showing three dominant peaks particularly notable between 1–3, 3–5 and 20–25 cpms for the

large intestine, stomach and small intestine, respectively. The heights of the peaks are the PsDmax values that were compared to characterise

the changes in the intensities of the given GIT segments caused by the different fibre contents of the feeds.

https://doi.org/10.1371/journal.pone.0257311.g003
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GIT (the stomach, small and large intestine) for pigs; however, Tacheci et al. [22] defined the

normal range for gastric myoelectric activity in anesthetised experimental pigs at 2.3–3.5 cpm.

Varayil et al. [21] also worked with anesthetised pigs but in fasting conditions and measured nor-

mal dominant frequencies for the empty stomach at 3.3 ± 0.5 cpm. The identified dominant

cpms of each experiment were inside the cpm value range of the stomach obtained in our experi-

ment (3.00–5.00 cpm). These values were in accordance with earlier findings in humans [26–28].

In our recent study, the same recording and analysis software as those used by Szűcs et al.

[18] in rats were adopted together with digital filters to separate the slow waves of smooth

Table 2. The effect of the control and experimental diets on the absolute value of the maximum of power spectrum density (PsDmax, mV2) in the different seg-

ments of the gastrointestinal tract (n = 9 pigs).

Absolute value for PsDmax (mV2)

Stomach (3–5 cpm) Small intestine (20–25 cpm) Large intestine (1–3 cpm)

Animal No. CTR EXP CTR EXP CTR EXP

1 350.3 349.0 66.2b 153.7a 211.5 249.5

2 191.3 174.4 43.2b 163.6a 86.6 140.7

3 269.8 223.3 22.6b 133.0a 178.2 126.5

4 306.6 102.8 67.2a 26.4b 362.9 64.8

5 208.3 169.2 20.4b 168.8a 56.6 385.8

6 101.3 182.3 22.3b 121.3a 137.4 120.6

7 116.5 106.4 20.5b 174.2a 44.0 89.9

8 225.2 196.0 65.9b 92.6a 179.9 123.6

9 250.2 355.6 66.5b 82.9a 84.0 178.2

Values with different superscripts differ at P� 0.001.

CTR: low level of crude fibre (29 g/kg as in feed), soybean- and maize-based feed.

EXP: moderate level of crude fibre (49 g/kg as in feed), soybean- and maize-based feed + 4% Opticell (Agromed Austria GmbH, Kremsmünster, Austria).

https://doi.org/10.1371/journal.pone.0257311.t002

Fig 4. The differences of the absolute values of the maximum of power spectrum density (PsDmax, mV2) for the

stomach, small intestine and large intestine caused by being fed CTR or EXP diets (n = 9 pigs). ns: non-significant

difference between the PsDmax values of the CTR and EXP feeding periods; ���: significant (P< 0.001) difference

between the PsDmax values of the CTR and EXP feeding periods; CTR: low level of crude fibre (29 g/kg as in feed),

soybean- and maize-based feed; EXP: moderate level of crude fibre (49 g/kg as in feed), soybean- and maize-based feed

+ 4% Opticell (Agromed Austria GmbH, Kremsmünster, Austria).

https://doi.org/10.1371/journal.pone.0257311.g004
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muscle signals from the cardiac, brain and skeletal muscle. This method allows the separation

and characterisation of signals from the various sections of the GIT, as well as the detection of

changes in smooth muscle activity.

To the best of our knowledge, there is no previous publication on SMEMG measurements

performed in free-moving, awake pigs. The applicability and performance of the applied tech-

nology were tested during feeding diets with different concentrations of crude fibre. While

fibre-induced motility and transit time changes have been widely studied, the effect of the fibre

content of a diet on the transit time in the small intestine is not clear. Wenk et al. [29] sug-

gested that fibre stimulates peristaltic action, and that it also reduces the transit time in the

small intestine. Similarly, as a result of being fed a high-fibre diet, the presence of bulk exerted

a direct physical action in the small and large intestine, which increased the peristaltic action

and stimulated propulsive colonic motility, as reported by Laplace [30] using cannulated ani-

mals fed a diet with markers. Jorgensen et al. [31] reported a five- to six-fold increase in the

digestive flow through the terminal ileum of pigs fed a high-fibre diet. On the other hand, van

Leeuwen et al. [32] did not observe any effect of fibre on GIT activity or on the results of transit

time in the small intestine.

In our study, the rat SMEMG measurement parameters were translated to pigs, and PsDmax

values for different parts of GIT were collected. The change in the maximum power spectrum

density (PsDmax) of the stomach and small and large intestine was measured, which represents

the change in the myoelectrical activity of the different segments of the GIT. A significant

increase (P< 0.001) was observed in the absolute value of the PsDmax of the small intestine as

a consequence of the elevated dietary CF level. Based on the PsDmax values, the contractions of

the small intestine smooth muscle were more intense when the EXP diet was fed than when

the CTR diet was fed. Such a change in the motility may have an impact on the transit time;

thus, the results are in accordance with previous findings on the effect of increased fibre con-

tent in pig diets [30, 31].

Conclusions

A durable SMEMG device was successfully tested as a portable tool for the non-invasive moni-

toring of gastrointestinal myoelectrical activity in awake, free-moving, growing pigs. The

method is proven to be useful for the in vivo measurement of the altered myoelectric activity

of the stomach and small and large intestine as a result of feeding diets with different fibre con-

tents. The increased fibre content of the feed induced an increase in the PsDmax, indicating

stronger GIT motility, especially in the small intestine. The applied method is useful to detect

the influence of different feedstuffs on the GIT functions of pigs without anaesthesia.

Supporting information

S1 File. Smooth muscle electromyography records of the stomach, small intestine and

large intestine of the investigated pigs (n = 9) acquired during the whole experiment (Fig

1). CTR: control, EXP: experimental, T1: beginning of analysed time interval, T2: end of ana-

lysed time interval, CPM: cycle per minute, PS: power spectrum.

(XLSX)
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