
Introduction

The introduction of penicillin G, the first β-lactam anti-
biotic in the 1940s has been a hallmark in the history of 
medicine, as this drug (and the subsequent iterations of 
β-lactam antibiotics that later followed) allowed for the 
treatment of life-threatening infections, that were previ-
ously considered lethal (Lobanovska and Pilla 2017; Erdem 
et al. 2011). In addition, antibiotics have indirectly pawed 
the way for the development of many modern medical 
disciplines, including complex surgery, transplantation 
medicine, cancer chemotherapy, neonatology, and the 
treatment of sepsis (Gajdács 2019; van Duin and Pater-
son 2016). β-lactams are bactericidal drugs that include 

penicillin-derivatives, cephalosporins, carbapenems and 
monobactams; β-lactams are often preferred as first-choice 
agents in many clinical situations, due to their safety, 
tolerability, and overall clinical efficacy (Papp-Wallace et 
al. 2011; El-Gamal et al. 2017). Out of this antimicrobial 
group, carbapenems (namely imipenem, meropenem, 
ertapenem and doripenem) have some of the broadest 
spectrum of activity, being effective in the therapy of 
infections caused by a plethora of aerobic and anaerobic 
pathogens (Gajdács et al. 2020). The increasing emergence 
of antimicrobial resistance (AMR) in bacteria has become 
one of the most critical public health issues of the 21st cen-
tury (Medina and Pieper 2016); many trans-national public 
health organizations have expressed their concerns over 
the worsening situation, including the European Centers 
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for Disease Prevention and Control (ECDC), estimating 
that drug-resistant bacteria are responsible for over 400 
000 infections and 25 000 excess deaths annually in the 
EU alone (ECDC 2009). In a similar report the US Cen-
ters for Disease Control (CDC) has projected over two 
million multidrug-resistant (MDR) infections and 23 000 
excess deaths per year (CDC 2020). The phenomenon of 
AMR may be characterized by two important hallmarks: 
a) disinterest of pharmaceutical companies towards the 
development of antimicrobial drugs (due to the lack of 
returning investments and difficulties in attaining mar-
keting authorization) (Cannas et al. 2015; Chaves-López 
et al. 2018; Gajdács and Spengler 2019; Usai et al. 2019), 
and b) the inappropriate use of existing antimicrobials, 
including their prescription in inappropriate indications, 
their non-prescription sales (especially from informal 
healthcare-providers) and their use in self-medication by 
patients to relieve symptoms (Aslam et al. 2020; Gajdács 
et al. 2018; Grigoryan et al. 2019). The latter issue is espe-
cially critical, as the consumption of antibiotics have been 
directly linked to the emergence of increasing resistance 
rates ( Johnson 2005; Olesen et al. 2018).

Non-fermenting Gram-negative bacteria (NFGNB) 
are a heterogenous group of aerobic microorganisms 
within the Proteobacteria phylum, characterized by the 
incapacity to ferment sugars (e.g., glucose, maltose) to 
generate energy for their vital cellular functions (Enoch 
et al. 2007). From a clinical perspective, the most rel-
evant pathogens among NFGNB include species from 
the Acinetobacter baumannii-calcoaceticus (ABC) complex 
(consisting of A. baumannii, A. calcoaceticus, A. nosocomilalis, 
and A. pitti), Pseudomonas aeruginosa, Burkholderia cepacia 
complex (BCC) and Stenotrophomonas maltophilia (Enoch et 
al. 2007; Gajdács et al. 2019). Due to their adaptability to 
various ecological niches, NFGNB are often isolated from 
natural sources, such as aquatic environments, the soil 
and as plant pathogens (Chawla et al. 2013). A. baumannii 
is one of the most important nosocomial pathogens – 
possessing the ability to withstand harsh environmental 
conditions and to persist in healthcare facilities for months 
in a protective biofilm (often leading to inter- and intra-
hospital outbreaks) – which may be a causative agent in 
a wide-range of pathologies, including respiratory tract 
infections, bacteraemia/sepsis, meningitis, surgical site 
and wound infections and urinary tract infections (Sarshar 
et al. 2021). In addition to being intrinsically resistant to 
several antibiotics, A. baumannii also has the propensity 
to acquire resistance-determinants against a wide range 
of antibiotic classes (Bonomo and Szabó 2006). The de-
velopment of extensively drug resistant (XDR) or even 
pandrug-resistant (PDR) strains of A. baumannii severely 
limits the therapeutic options of clinicians, often forcing 
them to turn to antimicrobials with pronounced toxicity 

(Rangel et al. 2020); these infections are often character-
ized by high mortality rates (a recent meta-analysis has 
reported that 79.9% of A. baumannii causing hospital-
associated pneumonia (HAP) or ventilation-associated 
pneumonia (VAP) was MDR, with an overall mortality 
rate of 42.6% (95% CI, 37.2-48.1%)) (Lim et al. 2019). 

Carbapenems have been considered a safe and effec-
tive alternative in the therapy of A. baumannii infections; 
however, the rising incidence of carbapenem-resistant 
A. baumannii (CRAB) is a critical concern, which has 
been facilitated by the sharp increase in the use of car-
bapenem antibiotics (brought on by the high prevalence 
of extended-spectrum β-lactamase-producing (ESBL) 
Enterobacteriaceae) and the successful spread of several 
international clones (Codjoe and Donkor 2018; Frakking 
et al. 2013; Makharita et al. 2020; Matsui et al. 2018). As 
CRAB-associated infections often lead to therapeutic 
failure, clinical microbiology laboratories have pivotal 
roles in the detection of these isolates, both from a clinical 
and an infection control perspective (to limit their spread); 
although molecular techniques (polymerase chain reac-
tion, whole-genome sequencing) are the gold standard in 
the characterization of suspected CRAB isolates, these 
techniques are expensive and not always readily attain-
able by routine laboratories (Bua et al. 2018). 

The aim of our present laboratory-based study was to 
characterize a selection of carbapenem non-susceptible 
A. baumannii isolates using various phenotypic methods 
– which are available in most routine clinical micro-
biology laboratories – and to provide insights into the 
epidemiological features of these pathogens.  

Materials and methods

Bacterial strains
A total of sixty-two (n = 62) A. baumannii isolates were 
included in this study, which were kindly provided by 
various Hungarian and Italian hospitals, originating from 
different clinical materials. Inclusion of these strains was 
based on the non-susceptibility criteria to meropenem 
(MER) used in routine clinical microbiology, defined by 
EUCAST (European Committee on Antimicrobial Sus-
ceptibility Testing) guidelines v.9.0 (MER disk diameter 
23-21 mm: intermediate, <21 mm: resistant) (https://
www.eucast.org/clinical_breakpoints/). Identification of 
the isolates was carried out based on classical phenotypic 
and biochemical panel-based methods (Leber 2016). All 
isolates included in the study were re-identified as A. 
baumannii before further assays. For shorter time periods 
(<1 month), the bacterial strains were maintained on blood 
agar with continuous passage. For longer periods, the 
strains were kept in a -80 °C freezer, in a 1:4 mixture of 
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85% glycerol and liquid Luria-Bertani medium. During 
our experiments A. baumannii ATCC 19606 was used as 
a control strain.

Minimum inhibitory concentrations (MICs) of merope-
nem and ancillary antibiotics

MICs of MER, gentamicin (GEN), levofloxacin (LEV), 
sulfamethoxazole/trimethoprim (SXT) and tigecycline 
(TIG) were determined by E-tests (Liofilchem, Roseto 
degli Abruzzi, Italy) on Mueller-Hinton agar plates (Oxoid, 
Basingstoke, UK). MIC determination for colistin (COL) 
was carried out using the broth microdilution method 
in cation-adjusted Mueller-Hinton broth (MERLIN Di-
agnostika, Berlin, Germany). The interpretation of the 
results was based on the European Committee on Anti-
microbial Susceptibility Testing (EUCAST) breakpoints 
v.9.0 (https://www.eucast.org/clinical_breakpoints/). In 
case of TIG, epidemiological cut-off values were used for 
interpretation (MIC≤0.5 mg/L as susceptible, MIC>0.5 
mg/L as resistant) (Gajdács et al. 2020).

Phenotypic detection of carbapenemase and metallo-β-
lactamase production

To establish carbapenemase-production in the isolates 
included in the study, the isolates were subjected to the 
modified Hodge test (MHT) and the modified carbape-
nem-inactivation method (mCIM), optimized for A. bau-
mannii, as previously described (Chou et al. 2020; Pitout 
et al. 2008; Rao et al. 2019). In both assays, MER disks (10 
µg; Oxoid, Basingstoke, UK) were utilized and Escherichia 
coli ATCC 25922 was used as an indicator organism.

Metallo-β-lactamase (MBL) production was tested 
using the imipenem/EDTA combined disk test (CDT), as 
described previously (Makharita et al. 2020). In prepara-
tion to this assay, imipenem/EDTA disks were prepared 
by adding 750 μg of a sterile 0.5 M EDTA solution to a 
10 μg imipenem disk, then disks were dried in a 37 оC 
incubator. The assay was considered positive if the inhi-
bition zone diameter (≥17 mm) of the imipenem/EDTA 
disk increased compared to the imipenem disk alone 
(Makharita et al. 2020).

Phenotypic detection of efflux pump overexpression

The effect of phenylalanine-arginine β-naphthylamide 
(PAβN; a compound with well-known efflux pump inhibi-
tory activity) on the MICs of MER was detected using 
the agar dilution method described previously (Khalili 
et al. 2019). During the experiments, the concentration 
of PAβN was 40 µg/mL in the agar base. A two-fold de-
crease in MER MICs in the presence of PAβN, compared 
to the MIC values without the inhibitor, was considered 
as positivity for efflux pump overexpression (Khalili et 
al. 2019; Gajdács 2020).

Detection of biofilm-production by the tube-adherence 
method

Assessment of biofilm-formation was carried out in the 
tube-adherence method described previously (Dumaru 
et al. 2019; Behzadi et al. 2020). In short, glass tubes con-
taining 1 mL of sterile trypticase soy broth (bioMérieux, 
Marcy-l’Étoile, France) were inoculated with 1 µL of the 
overnight culture of a respective bacterial strains. Respec-
tive tubes were then incubated statically for 24 h at 37 °C. 
Verification of planktonic growth was observed visually. 
After the incubation period, the supernatant was then 
discarded, the adhered cells were rinsed three times with 
phosphate buffer saline (PBS; Sigma-Aldrich; Budapest, 
Hungary) and the tubes were patted dry on a paper towel. 
The contents of the tubes were treated with a 1 mL solu-
tion of 0.1% crystal violet (CV; Sigma-Aldrich, Budapest, 
Hungary) to stain the adhered biomass; the tubes were 
incubated for 3 h at room temperature with the staining 
solution. The CV solution was then discarded, the tubes 
were again rinsed three times with PBS and finally, they 
were patted dry on a paper towel. Biofilm-formation was 
observed visually; based on the appearance of visible bio-
film lining at the bottom and on wall of the glass tubes, 
the strains were classified as non-biofilm producers (-), 
weak biofilm producers (-/+) and strong biofilm producers 
(+) (Dumaru et al. 2019). All experiments were evaluated 
by two independent researchers.

Statistical analysis
Descriptive statistical analysis (including means and 

Resistant strains (n, %) MIC range (mg/L) MIC50 (mg/L) MIC90 (mg/L)

Meropenem (MER) 40 (64.5%) 0.5-64 8 32

Levofloxacin (LEV) 42 (67.7%) 0.125-16 2 4

Sulfamethoxazole/trimethoprim (SXT) 33 (53.2%) 0.064-16 2 4

Gentamicin (GEN) 28 (45.2%) 0.5-64 2 16

Tigecycline (TIG) 28 (45.2%) 0.125-8 0.5 2

Colistin (COL) 0 (0%) 0.128-2 0.5 1

Table 1. MIC values of meropenem and ancillary antibiotics on the tested bacterial strains.
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percentages to characterize data) was performed using 
Microsoft Excel 2013 (Microsoft, Redmond, WA, USA).

Ethical considerations
The study was conducted in accordance with the Decla-
ration of Helsinki and national and institutional ethical 
standards. Ethical approval for the study protocol was 
obtained from the Human Institutional and Regional 
Biomedical Research Ethics Committee, University of 
Szeged (registration number: 140/2021-SZTE [5019]).

Results 

MICs of the tested antibiotics
The MICs of the tested antibiotics, including MIC50, 
MIC90 values, MIC ranges and the percentage of resis-
tant isolates are presented in Table 1. Among the tested 
ancillary antibiotics, the highest levels of resistance 
were observed for LEV (n = 42, 67.7%) and SXT (n = 33, 
53.2%). All tested isolates were susceptible to COL, with 
MIC values ranging between 0.128 and 2 mg/L. Based on 
EUCAST breakpoints, n = 40 (64.5%) of isolates showed 
MICs above the resistance breakpoint for MER (8 mg/L), 
with MICs ranging between 0.5 and 64 mg/L.

Phenotypic detection of carbapenemase, MBL produc-
tion and efflux pump overexpression

Phenotypic detection of carbapenemases was carried 
out via the use of the modified Hodge test (MHT) and 
the modified carbapenem-inactivation (mCIM) method. 
Overall, n = 49 (79.0%) and n = 42 (67.7%) of tested isolates 
were positive for phenotypic detection of carbapenemases 
in the MHT and mCIM assays, respectively. If we consider 
the results of the antibiotic susceptibility testing (MER 
MIC > 8 mg/L) as a reference in our study, the agreement 
between the results of the MIC determination and the 
results of the MHT and mCIM tests were 81.6% and 95.2%. 
MBL-production was observed in n = 18 (29.0%) using 
the imipenem/EDTA combined disk test (CDT). Efflux 
pump-overexpression (based on the PAβN screening 
agar) was detected in n = 8 (12.9%) of isolates. In the case 
of n = 3 isolates, efflux pump-overexpression and MHT/
mCIM-positivity were detected simultaneously, which 
was associated with high MICs for MER. Interestingly, 
for n=3 isolates, high MER MICs were seen with no efflux 
pump overexpression and negative results in the MHT 
and mCIM tests.

Biofilm-production in the tested isolates
Out of the sixty-two (n = 62) isolates included in this 
study, over half (n = 34, 54.8%) was found to be a strong 
biofilm-producer (+); on the other hand, weak biofilm-

producers (-/+) (n = 16; 25.1%) and non-biofilm-positive 
isolates (-) (n = 12; 20.1%) were seen in similar numbers.

Discussion

AMR is global public health concern, which warrants 
intersectoral attention, including the public, healthcare-
professionals, and government leaders; worsening re-
sistance rates threaten the administration of effective 
therapy in both humans and animals, in addition to 
hindering the attainment of Sustainable Development 
Goals (SDGs) (Gajdács et al. 2021; United Nations 2020). 
Carbapenems are broad-spectrum agents that are usually 
considered the last safe and effective choice of drugs for 
the treatment of MDR Gram-negative infections in many 
patient populations, especially for the empirical therapy 
of patients in severe conditions, e.g., in the intensive care 
unit (cf. fluoroquinolones and aminoglycosides may be 
contraindicated for many individuals) (Doi 2019). A. 
baumannii can rapidly colonize patients in nosocomial 
settings, which may be a source of future infections, 
especially in immunocompromised individuals (Mirzaei 
et al. 2020). Increased levels of carbapenem-consumption 
– both locally and globally – has led to the increased 
prevalence of CRAB (Behzadi and Behzadi 2011; Mózes 
et al. 2014); based on the data of the ECDC Surveillance 
Atlas of Infectious Diseases (https://atlas.ecdc.europa.
eu/public/index.aspx), the ratio of CRAB isolates in 2014 
Hungary and Italy were 64.5% and 89.9%, respectively; 
this ratio has decreased over a 5-year period (2019), be-
ing 51.0% and 79.2% in the same countries. However, 
the rates of combined resistance (i.e. resistance against 
fluoroquinolones, aminoglycosides and carbapenems) has 
increased substantially in Hungary between the 5-year 
period (2014: Hungary: 38.4%, Italy: 86.3%; 2019: Hungary: 
45.6%, Italy: 76.5%). The significance of this was under-
lined when the World Organization published a list of 
priority pathogens consisting of MDR bacteria, in which 
CRAB was categorized as a critical pathogen with high-
est urgency for the development of novel antimicrobials 
and alternative antimicrobial treatment strategies (e.g., 
antimicrobial peptides, photodynamic therapy, phages) 
(Liu et al. 2020; Stájer et al. 2020; WHO 2017).  

In our present study, a collection of A. baumannii iso-
lates – suspected of being CRAB – were included and their 
characterization was carried out using various phenotypic 
assays. Among the isolates, 64.5% of the strains showed 
MER MICs in the resistant range, while apart from COL 
(which retained its susceptibility), resistance rates were 
similarly high to the other tested antibiotics. Phenotypic 
carbapenemase detection methods were positive in 79.0% 
(MHT) and 67.7% (mCIM) of cases, respectively, while the 
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presence of an MBL was suggested for 29.0% of isolates. 
Efflux-pump overexpression seemed to be less relevant 
in the CRAB phenotype, with 12.9% being positive in the 
plate-based in vitro assay. Lastly, over half (54.8%) of the 
isolates were characterized as strong biofilm-producers. 

Carbapenem resistance in A. baumannii may be medi-
ated by mutations affecting the penicillin-binding pro-
teins (PBPs), mutations in the porin channels (reducing 
the transport of antibiotics into the periplasmic space) 
and over-expression of efflux pumps (e.g., AdeABC) 
(Makharita et al. 2020; Miljovic et al. 2016); however, 
the most well-characterized mechanism of resistance 
in these pathogens is the production of β-lactamase en-
zymes (carbapenemases), capable of hydrolyzing these 
last-resort drugs (Bonomo and Szabó 2006; Butler et 
al. 2019; Makharita et al. 2020). When it comes to A. 
baumannii, Ambler Class D (OXA-type) carbapenemases 
are the most relevant (Bonomo and Szabó 2006; Butler 
et al. 2019; Halat and Mourbareck 2020; Makharita et al. 
2020); nevertheless, there have been increasing number 
of reports of resistance mediated by some Class A (KPC) 
and Class B (VIM, NDM) carbapenemases as well (Halat 
and Mourbareck 2020; Rodríguez et al. 2018). Most 
clinical A. baumannii isolates harbor a chromosomal 
blaOXA-51-like carbapenemase; however, presence of this 
enzyme will only lead to phenotypic carbapenem resis-
tance in conjunction with other resistance determinants 
(Bonomo and Szabó 2006; Butler et al. 2019; Halat and 
Mourbareck 2020; Makharita et al. 2020). The carriage 
of plasmid-borne blaOXA-23-like and blaOXA-58-like 
carbapenemases is more relevant both for phenotypic 
resistance and for the potential dissemination in a given 
healthcare setting/region (Bonomo and Szabó 2006; Halat 
and Mourbareck 2020; Makharita et al. 2020). In many 
clinical isolates, the combination of the above-mentioned 
resistance mechanisms – in addition to the pharmaco-
kinetic barrier provided by the protective biofilm in vivo 
– may result in high MIC values for carbapenems (Cunda 
et al. 2019; Halat and Mourbareck 2020). Microbiology 
laboratories have an important role in differentiating the 
distinct mechanisms by which these pathogens develop 
the CRAB phenotype, because – as opposed to isolates 
with chromosomal mutations – isolates carrying plas-
mid-borne carbapenemases have significance from the 
standpoint of public health microbiology (Makharita et 
al. 2020). While there have been renewed interest in the 
use of tetracycline-type drugs (i.e. tigecycline, eravacy-
cline, omadacycline), in case of carbapenem-resistance, 
COL is often the only remaining therapeutic option 
(Butler et al. 2019; Qureshi et al. 2015); this drug is a 
polycationic peptide, which is given intravenously, lead-
ing to the disruption of the outer cell membrane in the 
relevant pathogens (i.e. displacing bivalent cations), and 

subsequent bacterial cell death. Nevertheless, COL has 
severe adverse events (nephrotoxicity, neurotoxicity) and 
disadvantageous pharmacokinetic properties, which may 
limit its usefulness in critically ill patients (Gajdács et al. 
2020). In addition, the number reports on COL-resistance 
are increasingly common around the globe, both regard-
ing the members of the Enterobacteriaceae family and for 
NFGNBs (Butler et al. 2019; Qureshi et al. 2015); for 
example, in the EuSCAPE Survey (European survey of 
carbapenemase-producing Enterobacteriaceae), COL resis-
tance in carbapenem-resistant E. coli and Klebsiella spp. 
was 28.3% (Grundmann et al. 2016). On the other hand, 
surveillance studies in the US have shown that prevalence 
of CRAB strains ranged between 33%-58%, which has 
corresponded to a ~5% resistance to COL (Hidron et al. 
2008; Queenan et al. 2012). The present epidemiological 
situation highlights the important role of antimicrobial 
resistance surveillance (both on a national and an inter-
national level) and stewardship interventions to preserve 
the efficacy of carbapenem antibiotics for future use. 
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