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Abstract—Transcription Factors (TFs) are one of the most 

important agents acting on gene expression regulation, 

fundamentally determining the organized functional operation 

of cellular machinery. At a molecular level, this effect is 

achieved by the sequence specific physical binding of TF 

proteins to particular parts of the DNA. Transcription Factors 

regulate gene expression in complex ways and the detection of 

their binding sites is an important part of many experiments. 

Predicting Transcription Factor Binding Sites (TFBS) from 

DNA sequence data has been a challenging task in the field of 

bioinformatics. The abundance of available DNA sequences 

strongly encourages the use of machine learning for this 

problem. Until now most of these efforts were primarily based 

on the traditional nucleotide-based representation of DNA. To 

elaborate a more detailed description of this macromolecule, we 

have worked out a new Physico-Chemical Descriptor (PCD) 

based DNA representation and used it as input for training 

neural networks to predict TFBSs. We show that the PCD 

representation is a viable format for deep learning models, and 

our feature selection investigation highlights the importance of 

proper PCD subset choices. The distinct prediction efficiencies 

detected upon the usage of arbitrarily selected feature subsets 

indicates that the different DNA features affect the DNA binding 

process of TFs to various extent. 

Keywords—convolutional neural networks, transcription 

factor binding site, physico-chemical and conformational 

descriptors 

I. INTRODUCTION 

Transcription Factors play an important role in biology as 
they regulate gene expression, which is one of the most 
fundamental cell physiological processes. TFs can bind to 
DNA strands to control the rate of transcription. Determining 
if a sequence of DNA contains a Transcription Factor Binding 
Site (TFBS) is a challenging task. Statistical pattern 
recognition methods and artificial neural networks have been 
applied with different success rates to this classification 
problem. Most of these works [1, 2, 3, 4, 5, 6] use a nucleotide-
based data representation, describing the linear chemical 
structure of the DNA as a string of characters reflecting the 
order of the nucleotide monomers in the DNA fragments. 
However, the DNA-protein interactions are seriously 
influenced by DNA features not directly represented in the 
classical nucleotide-based sequence models. Our motivation 
was to establish a new DNA representation comprising a set 
of Physico-chemical and Conformational DNA Descriptors 
(PCDs), which are metrics describing different molecular 

characteristics of DNA. This new DNA representation 
provides an opportunity to establish novel TFBS prediction 
algorithms and might open a unique way in understanding the 
molecular events behind the gene expression regulation 
processes. Here we introduce deep learning models trained on 
the PCD DNA representation resulting in competitive 
prediction accuracy compared to the traditional training 
strategies. In addition to establishing new deep learning based 
TFBS prediction algorithms, we have also applied feature 
selection strategies to investigate the roles of different DNA 
properties during the TF-DNA docking procedure. 

II. RELATED WORK 

Since the introduction of convolutional networks to the 
problem of TFBS classification in 2015 by Alipanahi et al. [1], 
many approaches tried to improve upon the model. Zeng et al. 
trained networks to determine the optimal architecture for this 
task [4]. DeeperBind extended the CNN with a recurrent 
neural network (RNN) by using Long Short-Term Memory 
(LSTM) cells [2]. DeepSEA used more convolutional layers 
to classify the sequences [5]. FactorNet also applied a 
CNN+RNN architecture and incorporated reverse-
complement sequences [3]. Park et al. further improved the 
performance of deep learning models by using an attention 
mechanism [6]. Other approaches used DNA shape features 
and physical properties to enhance the prediction accuracy of 
SVMs [7, 8]. To the best of our knowledge, this work is the 
first to use deep neural networks with more than 50 PCD 
features. Other papers using DNA shape features [9] have a 
different machine learning approach or dataset, therefore a 
comparison regarding performance is difficult. 

III. NETWORK STRUCTURE 

Similarly to previous studies in the field (Alipanahi et al. 
[1] and Zeng et al.  [4]), our approach also uses convolutional 
neural networks. One key difference is the size and format of 
the input space. The number of channels, which would be 4 in 
case of a DNA sequence, were the number of PCD input types 
in our method. As we will see, this significantly increases the 
input size and also the parameter count of our models. As for 
the number of layers and neurons, after concluding a sparse 
grid search, two convolutional layers were found to be best 
with 256 and 64 neurons and ReLU activations. The strides 
were set to 1 and the size of the convolutional windows was 
24. After automatic feature extraction, a max pooling layer 
followed and finally two fully connected layers were attached 
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to complete the classification with 1000 and 300 units. We 
introduced dropout with a probability of 0.5 after the first 
dense layer to prevent overfitting. 

IV. TRANSCRIPTION FACTOR BINDING SITE CLASSIFICATION 

USING A PHYSICO-CHEMICAL DESCRIPTOR SET 

The DNA sequence can be represented by data formats 
different from a nucleotide-based one . The native, and almost 
exclusively used representation of DNA is based on the string-
like concatenation of letters (A, C, G, T) reflecting the order 
of the chemical units (nucleotides) of the DNA sequence. 
However, other DNA representations can also be used for 
bioinformatics and deep learning investigations.  For this 
paper, we decided to use  physico-chemical descriptors (PCD) 
as an input for machine learning models. A more detailed 
description of the PCD DNA representation can be found in 
our recently released DNA visualisation web portal DRV 
(DNA Readout Viewer) [10]. The DNA strands physical and 
chemical properties are not uniform, they inherently form 
specific patterns contributing to the recognition and detection 
of TFBSs. The numerical values of PCDs used for deep 
learning are either derived from physico-chemical 
measurements or from molecular simulations of all the 
possible nucleotide dimer and trimer structures. These PCD 
values  correspond to numerous physical and shape properties 
of the DNA strands, such as the thermodynamic attributes, and 
the width or depth of the minor or major groove of the double 
helix. 

V. TRAINING MODELS ON ALL 55 PCD FEATURES   

First, we have developed a deep learning system for TF 
binding site predictions using a collection of 55 PCDs. To test 
our algorithm, we used the benchmark data for the task of 
TFBS classification from the Encyclopedia of DNA Elements, 
ENCODE-DREAM in vivo Transcription Factor Binding Site 
Prediction Challenge1. We obtained the pre-processed 
nucleotide sequences from the work of Zeng et al. [1] and 
website of Convolutional Neural Network Architectures for 
Predicting DNA-Protein Binding [http://cnn.csail.mit.edu/]. 
Our networks were trained in a way where the positive 
sequences contained a TFBS and the negative entities were 
dinucleotide shuffled versions of them.  The DNA sequences 
were converted to PCD representations by self-developed 
scripts. First we measured if the PCD DNA representation is 
suitable for deep learning based TFBS prediction, and whether 
its efficiency is comparable to the traditional nucleotide based 
approaches. We selected six TFs (Sp1, Mafk, Cjun, Cmyc, 
Max and Mxi1) for examination regarding classification 
accuracy. All investigations were done by using three parallel 
trainings. The test accuracies of the individual runs were 
averaged. The overview of our pipeline is shown in Fig. 1. The 
results of the learned models on PCD and on nucleotide data 
are in Table I. The observed performance values on both data 
formats are close to each other. 

TABLE I.  TFBS ACCURACIES OF 55 PCDS AND NUC. RUNS 

 

Fig. 1. The main steps of our workflow. We convert the DREAM5 
benchmark nucleotide sequences to PCDs then preprocess them for the 

convolutional neural network. After the convolutions and a maximum 

pooling operation, two dense layers are used to classify the entities. 

VI. CORRELATION OF PCD VALUES 

 Our PCD library collected by thorough literature mining 
contains many PCDs, which correlate with each other in 
various degree. The reason of this phenomena is that there are 
several PCDs defined and determined by different concurrent 
labs TFBS accuracies of 55 PCDs and nuc. runs targeting the 
same or very similar molecular features. To alleviate this 
redundancy in our data representation we conducted a 
correlation analysis. All against all PCD correlation matrix of 
dimer and trimer PCDs was calculated by the ‘pearson’ 
method of the ‘corrgram’ R package (Fig. 2.).  

A. Creating feature subsets for the learner 

Our approach of feature selection for reducing the number 
of input PCDs was based on thresholding by their correlation 
values. The main steps are shown in Algorithm 1. We created 
3 subsets with different ρ values, after measuring the Pearson-
correlation of the 46 Physico-Chemical Parameters (pcp-2) 
from dimers and the 11 physico-chemical features (pcp-3) 
from trinucleotides. These subsets are shown in Table VI. For 
the ρ = 0.5 threshold we further defined two smaller groups,  

 
Fig. 2. Pearson correlogram, determining the Pearson-correlation of dimer 

PCD features. The shades of blue and red colours and the embedded pie 

charts indicate the strength of the correlation. 

TFs Sp1 Mafk Cjun Cmyc Max Mxi1 

PCD 0.6957 0.9258 0.8320 0.7265 0.7387 0.6946 

Nuc. 0.7289 0.9238 0.8462 0.7593 0.7662 0.7290 

1[https://www.synapse.org/#!Synapse:syn6131484/wiki/] 



 
pcd_3v2 and pcd_3v3 containing [Base stacking, B-DNA 
twist, Shift, Slide, Major groove depth, Major groove size, 
Bendability (DNAse), DNAse I] and [Base stacking, B-DNA 
twist, Shift, Slide, Major groove depth, Major groove size], 
respectively. To train models without any pcp-3 feature, we 
dropped the ‘Bendability (DNAse)’ and ‘DNAse I’ features to 
get the ρ < 0.5v3 group. 

B. Results of the models trained using the thresholded 

subsets 

To examine the effect of removing features based on their 
correlation, we trained CNNs using the thresholded PCD 
feature groups as the input. Given that some of these values 
could be considered redundant and the PCD input space is 
relatively large (compared to nucleotide sequences for 
example), it is feasible to try and minimize the required 
features from the input while maintaining high accuracy 
scores. Our results are shown in Table II. In the case of Sp1, 
the decrease of accuracy was less than 0.01% when comparing 
the 0.9 and 0.7 subsets. The largest gap was 4% between the 
0.9 and the 0.5v3 feature groups, as was expected. Still, the 
0.5v3 subset has 26 less parameters than the parameters of the 
0.9 group, so the decrease in the input space size is significant 
while the obtained prediction accuracy was only slightly 
decreased. 

VII. INCLUDING INDIVIDUAL PCDS IN A SET ORDER 

We ran model trainings to measure classification 
performance when the feature set only contains one PCD, and 
then we started adding PCDs from the ρ <0.5v3 group until 
we had the same features as in the experiment described in 
section VII/B. To determine the order of inclusion for the PCD 
parameters we selected the Sp1 TF and trained models on a 
reduced ρ <0.5v3 group, where we systematically removed a 
different PCD from the group until all possible subgroups 
containing 5 features were used for model input. The ρ <0.5v3 
group contains the following elements: [Base stacking (BS), 
B-DNA twist (BDT), Shift (SH), Slide (SL), Major groove 
depth (MGD), Major groove size (MGS)]. The results of the 
Sp1 reductions are in Table III. Test accuracies were averaged 
from 5 runs. We then increased the size of the feature set from 

TABLE II.  AVERAGED TEST ACCURACIES OF THE PCD SUBSETS 

Group Sp1 Mafk Cjun Myc Max Mxi1 

p < 0.9 0.6998 0.9238 0.8326 0.7345 0.7484 0.6995 

p < 0.7 0.6991 0.9240 0.8362 0.7270 0.7437 0.6795 

p < 0.5 0.6878 0.9202 0.8404 0.7029 0.7190 0.6335 

p < 
0.5v2 

0.6665 0.9162 0.8275 0.6920 0.7177 0.5931 

p < 

0.5v3 
0.6585 0.9094 0.8293 0.6999 0.7206 0.6407 

 

TABLE III.  REMOVING ONE PCD FROM THE Ρ <0.5V3 GROUP 

PCD MGD MGS BS BDT SL SH 

ACC 0.6598 0.6536 0.6535 0.6513 0.6442 0.6394 

 

 

one up to six incrementally and measured the classification 
performance for six different TFs (Table IV. and Fig. 3.). The 
distinct PCDs have a different impact on the ρ < 0.5v3 PCD 
feature groups’ final model performance. Furthermore, the 
individual effect of the solo PCDs addition on classification 
accuracy differ from TF to TF. We averaged the PCD 
inclusion run results for the selected 6 TFs and observe a 
steady increase in performance (Fig. 4.). 

VIII. SOLO PCD TRAINING FROM THE 0.5V3 GROUP 

To directly test if there is substantial difference between 
the prediction capacity of different PCDs we have conducted 
solo feature learnings. Even one PCD is enough to start 
training, therefore neural networks were trained only using 
one feature from the ρ < 0.5v3 group for the six TFs used 
above. The corresponding accuracy averages are in Table V. 
for the 6 solo PCDs. In the case of Mxi1, only MGD and BDT 
resulted in more than 5% accuracy improvement over the 
baseline 50%. For Mafk, MGD was the most efficient feature 
from this group. The usage of standalone PCDs for training on 
a given TF data set results in different prediction performance. 
For a given PCD the classification accuracy can vary based on 
the current TF.  

IX. DISCUSSION 

Training deep learning models for Transcription Factor 
Binding Site classification with PCD DNA representation is 
feasible and comparable to nucleotide-based approaches. The 
selection of features from the PCD set is of key importance to 
achieve accuracy close to optimal while decreasing 
computation costs. The different PCD features influence 
classification performance in distinct measures. For example 
the Shift PCD was responsible for an accuracy of 54.8% and 
67.8% when trained on Sp1 and Mafk, respectively. We 
theorize that the PCDs’ effects are TF specific. Apart from the 
implementation of a PCD representation based convolutional 
neural network predictor, the analysis of PCD feature 
selection experiments could provide new insight about the 
properties of the examined biological systems. This analysis 
might highlight connections which could help to identify 
which physico-chemical and conformational properties of 

 

 

Fig. 3. Adding 1 feature incrementally from the ρ < 0.5 v3 group. Y axis 

shows the accuracy on the test set. 
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TABLE IV.   INCREASING PCD COUNT FROM THE Ρ <0.5V3 GROUP 

 

 

Fig. 4. Averaging classification performance for the 6 TFs while increasing 

the learnable PCDs. Vertical axis: accuracy measured on test set. 

TABLE V.  SOLO PCD TRAINING RESULTS 

PCD Sp1 Mafk Cjun Cmyc Max Mxi1 

MGD 0.5687 0.7521 0.5888 0.5926 0.5936 0.5806 

MGS 0.5489 0.6346 0.6798 0.5442 0.5527 0.4956 

BS 0.5704 0.6362 0.6099 0.5992 0.6010 0.5264 

BDT 0.5961 0.6088 0.6404 0.5867 0.6019 0.5688 

SL 0.5768 0.6952 0.5511 0.5787 0.6075 0.4917 

SH 0.5480 0.6781 0.6430 0.5363 0.5529 0.5022 

 

DNA play important roles that are influencing the TF-DNA 

binding events. This could further help to better understand 

the binding mechanisms of distinct TFs or TF families. 

X. CONCLUSIONS 

In this paper we presented neural networks trained on 
physico-chemical descriptors for the task of Transcription 
Factor Binding Site classification. While our goal was not to 
surpass the achievable accuracy of nucleotide sequence-based 
methods, we show that PCD models are on pair with them and 
the ability to use PCD features or subsets of features to train 
models with relatively competitive accuracy could provide 
insight into the importance of PCDs for different DNA-protein 
binding events. Future work includes the examination of more 
advanced architectural choices for the neural networks, such 
as LSTMs and attention modules. Furthermore, after 
establishing the effectiveness of solo input features, we will 
be able to rationally design efficient PCD subsets and use 
them in bulk TFBS prediction tasks. 
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Addition of PCDs Sp1 Mafk Cjun Cmyc Max Mxi1 

MGD 0.5804 0.6957 0.5455 0.5841 0.6055 0.4917 

MGD+MGS 0.5796 0.8377 0.7540 0.5711 0.6195 0.5088 

MGD+MGS+BS 0.5974 0.8798 0.7353 0.6218 0.6644 0.5874 

MGD+MGS+BS+BDT 0.6007 0.8968 0.7712 0.6426 0.6743 0.5898 

MGD+MGS+BS+BDT+SL 0.6367 0.9048 0.8241 0.6890 0.7071 0.6291 

MGD+MGS+BS+BDT+SL+SH 0.6588 0.9075 0.8271 0.7022 0.7225 0.6475 



 

XIII. SUPPLEMENTARY MATERIAL 

 

TABLE VI.  55 PCDS (44 DIMER [PCD_2] AND 11 TRIMER [PCD_3]) 

GROUPED BASED ON THEIR CORRELATION 

 

 

 

pcd_2 <0.5: pcd_2 <0.7: pcd_2 <0.9: 

Base stacking Base stacking Base stacking 

B-DNA twist   B-DNA twist   B-DNA twist   

Shift Shift Shift 

Slide Slide Slide 

Major groove depth Major groove depth Major groove depth 

Major groove size Major groove size Major groove size 

 Aida BA transition Aida BA transition 

 A-philicity A-philicity 

 Dinucleotide GC content Dinucleotide GC content 

 Rise Rise 

 Roll Roll 

 SantaLucia dH SantaLucia dH 

 Minor groove size Minor groove size 

  Breslauer dG 

  Breslauer dH 

  DNA denaturation 

  Propeller twist 

  Protein DNA twist 

  Protein induced deformability 

  Sarai flexibility 

  Stability 

  Sugimoto dH 

  Tilt 

  Twist 

  Major groove width 

  Minor groove depth 

  Minor groove distance 

   

pcd_3 <0.5: pcd_3 <0.7: pcd_3 <0.9: 

Bendability (DNAse) Bendability (DNAse) Bendability (DNAse) 

DNAse I DNAse I DNAse I 

Trinucleotide GC content Trinucleotide GC content Trinucleotide GC content 

  Consensus rigid 

  Nucleosome rigid 


