
 International Journal of 

Molecular Sciences

Article

The Kynurenic Acid Analog SZR72 Enhances Neuronal Activity
after Asphyxia but Is Not Neuroprotective in a Translational
Model of Neonatal Hypoxic Ischemic Encephalopathy
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Abstract: Hypoxic–ischemic encephalopathy (HIE) remains to be a major cause of long-term neu-
rodevelopmental deficits in term neonates. Hypothermia offers partial neuroprotection warrant-
ing research for additional therapies. Kynurenic acid (KYNA), an endogenous product of trypto-
phan metabolism, was previously shown to be beneficial in rat HIE models. We sought to deter-
mine if the KYNA analog SZR72 would afford neuroprotection in piglets. After severe asphyxia
(pHa = 6.83 ± 0.02, ∆BE = −17.6 ± 1.2 mmol/L, mean ± SEM), anesthetized piglets were assigned
to vehicle-treated (VEH), SZR72-treated (SZR72), or hypothermia-treated (HT) groups (n = 6, 6, 6;
Tcore = 38.5, 38.5, 33.5 ◦C, respectively). Compared to VEH, serum KYNA levels were elevated,
recovery of EEG was faster, and EEG power spectral density values were higher at 24 h in the
SZR72 group. However, instantaneous entropy indicating EEG signal complexity, depression of the
visual evoked potential (VEP), and the significant neuronal damage observed in the neocortex, the
putamen, and the CA1 hippocampal field were similar in these groups. In the caudate nucleus and
the CA3 hippocampal field, neuronal damage was even more severe in the SZR72 group. The HT
group showed the best preservation of EEG complexity, VEP, and neuronal integrity in all examined
brain regions. In summary, SZR72 appears to enhance neuronal activity after asphyxia but does not
ameliorate early neuronal damage in this HIE model.

Keywords: birth asphyxia; neonatal encephalopathy; newborn pig; therapeutic hypothermia;
kynurenine

1. Introduction

Hypoxic–ischemic encephalopathy (HIE) is a devastating condition of term neonates.
Its diagnosis relies on the detection of signs of birth asphyxia and the subsequent devel-
opment of encephalopathy marked by altered consciousness, abnormal/absent reflexes,
and alterations in brain electrical activity [1]. Severe HIE results in death or severe long-
term neurodevelopmental deficits in over a million neonates yearly all over the world
making a severe socioeconomic burden, in fact, HIE represents 2.4% of the total burden
of disease amounting to 50.2 million disability-adjusted life years worldwide [2,3]. Cur-
rently, mild whole-body hypothermia is being employed as the only clinically effective
neuroprotective therapy of HIE. However, the meta-analysis of 11 clinical trials found that
the number needed to treat to benefit was 7 (range 4–17); thus, seven HIE patients with

Int. J. Mol. Sci. 2021, 22, 4822. https://doi.org/10.3390/ijms22094822 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-7474-7148
https://orcid.org/0000-0002-3448-3835
https://orcid.org/0000-0002-0973-2473
https://orcid.org/0000-0002-9076-2177
https://orcid.org/0000-0002-5581-2167
https://doi.org/10.3390/ijms22094822
https://doi.org/10.3390/ijms22094822
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22094822
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22094822?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 4822 2 of 19

severe encephalopathy on average must be cooled to avoid one death or major disability
in the population [4]. Therefore, the development of adjunct neuroprotective therapies
complementing the effect of hypothermia is clearly warranted and requires continuing
research effort.

Kynurenic acid (KYNA), an endogenous molecule produced in the kynurenine path-
way of tryptophan metabolism, has been long known to exert neuroprotection in various
preclinical models of hypoxic–ischemic brain injury including stroke, for recent reviews
see [5,6]. Both post-insult administration of KYNA or combination of kynurenine with
probenecid to further elevate cerebral KYNA levels were reported to also reduce hypoxic–
ischemic damage in neonatal rats using the Rice–Vanucci model [7,8], but the possible
neuroprotective action of KYNA in a translational large animal (e.g., newborn pig) model
has not yet been tested. However, KYNA has been shown to antagonize NMDA-induced
pial arteriolar vasodilation in piglets [9]. NMDA elicits dilation of cerebrocortical arteri-
oles indirectly, through activation of neuronal NMDA receptors [10], which indicates that
KYNA would antagonize neuronal NMDA receptors in this species as well, and it may
exert an anti-excitotoxic effect during HIE development.

SZR72 (2-(2-N, N-dimethylaminoethylamine-1-carbonyl)-1H-quinolin-4-one hydrochlo-
ride) is a synthetic analog of KYNA developed to enhance the pharmacokinetic character-
istics of KYNA [11]. SZR72 has been found to exert neuroprotective effects in a number
of rat studies on nitroglycerine-induced migraine [12], neurogenic inflammation [13], and
global cerebral ischemia [14]. The major purpose of the present study was to test if the
post-insult administration of SZR72 would convey neuroprotection in the subacute phase
of HIE development in a translational large animal HIE model, the newborn pig. The effect
of SZR72-treated (SZR72 group) was compared to both vehicle-treated (VEH group) and
hypothermia-treated (HT group) serving as negative and positive controls, respectively.
The major study outcome measures were alterations in brain electrical activity (EEG), visual
evoked potential (VEP), and neuropathology assessment.

2. Results

The experimental protocol is outlined in Figure 1. Body temperature was kept rig-
orously in the normothermic range during asphyxia in all groups, then cooling com-
menced in the HT group, in which target body temperature was achieved within 40–50 min
(Figure 2A). Mean arterial blood pressure (MABP) was kept in the normal range in all
animals in the observation period (Figure 2B), and heart rate (HR) values were typically
lower in the HT group (Figure 2C). Experimental asphyxia resulted in severe hypoxia,
hypercapnia, and lactic acidosis that were similar in the experimental groups (Figure 3).
Alterations in blood gases were quickly reversed upon reventilation; however, lactate levels
were typically still elevated at 1 h after asphyxia and returned to baseline levels at 4 h.
Then, throughout the post-asphyxial observation period, blood chemistry data were not
significantly different among the treatment groups.

SZR72 treatment resulted in the expected large increase in serum SZR72 levels, the
continuous SZR72 infusion maintained serum SZR72 concentrations in the ~50–100 µmol/L
range (Figure 4A). SZR72 treatment did not affect serum kynurenine but significantly
increased serum KYNA levels (Figure 4B,C).

Asphyxia resulted in an isoelectric EEG that recovered gradually over the observation
period. The return of a continuous high-amplitude EEG was markedly present in all SZR72
animals, and it was completed in 4 h after asphyxia, unlike in the other groups (Figure 5).
Furthermore, at 24 h after asphyxia, EEG power spectral density (PSD) analysis revealed
that PSD-s virtually in all leads and in all frequency ranges were significantly higher in
the SZR72 group, compared to either the VEH or the HT groups (Figure 6). However,
instantaneous spectral entropy (InstSpEnt) values reflecting EEG signal complexity showed
that, unlike the higher PSD values, the InstSpEnt values in the SZR72 group were quite
similar to the VEH group and lower than in the HT group (Figure 7). Concerning VEP,
the latency of the P100 component was unaffected by asphyxia, but its amplitude was
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significantly reduced in the SZR72 and VEH groups but not in the HT group, suggesting a
lack of SZR72-induced neuroprotection (Figure 8).

Neuropathology assessment found marked neuronal injury in the neocortex, the
hippocampus, the basal ganglia of the VEH groups; however, neuronal damage in the
thalamus was less conspicuous (Figures 9 and 10). The degree and the pattern of damage
were very similar in the SZR72 group in all assessed regions; however, in two regions, the
hippocampal CA3 subfield and the caudate nucleus the percentage of damaged neurons
were slightly but statistically significantly higher in the SZR72 group (Figure 10). Neuronal
injury was significantly smaller in all regions vulnerable to asphyxia in the HT group,
indicating the potent neuroprotective effect of HT.
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Figure 1. Graphic representation of the experimental protocol. Anesthetized, instrumented piglets were assigned to either
the vehicle-treated (VEH), SZR72-treated (SZR72), or the hypothermia-treated (HT) groups. After obtaining baseline (BL)
blood gases, serum samples, and visual evoked potential (VEP) recordings, the animals were exposed to asphyxia induced
by ventilation with a hypoxic/hypercapnic gas mixture for 20 min. SZR72 or vehicle administration started 5 min upon
completion of asphyxia, whereas in the HT group cooling started simultaneously with reoxygenation, rectal temperature
(Trect) reached 33.5 ◦C in 40–50 min. Blood gases, serum samples, and VEP recordings were obtained at the indicated time
points. At the end of the observation period, the brains were processed for neuropathology examination.
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Figure 2. Physiological parameters. (A): In the normothermic vehicle-treated (VEH) and SZR72-treated (SZR72) groups,
rectal temperature was maintained at 38.5 ◦C throughout the experiments. The hypothermia-treated (HT) group was also
normothermic at baseline (BL) and during the asphyxia (ASPH); however, the rectal temperature reached therapeutic levels
at 33.5 ◦C by 1 h after asphyxia and was maintained at that level for the rest of the observation period. (B): mean arterial
blood pressure (MABP) was within the normal range for all groups, although it was significantly lower in the HT group
at the end of the asphyxia. There was no significant difference between the VEH and the SZR72 groups over the whole
observation period, but it tended to be lower in the HT group that reached statistical significance first at 14 h. (C): heart
rate was elevated by asphyxia from baseline levels, and it remained elevated in the normothermic groups throughout the
observation period. There was a tendency for a somewhat smaller heart rate in the SZR72 group; however, there was no
significant difference between the groups except at 13 h after asphyxia. As expected, hypothermia significantly reduced the
heart rate that was significantly different from the corresponding values of the VEH group at most time points. * p < 0.05,
significantly different from the corresponding value of the VEH group for all time points in the brackets and also for
individual time points. Significant differences from the respective baselines within the groups are not indicated for clarity.
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Figure 3. Blood chemistry data. Compared to baseline (BL) levels, asphyxia (ASPH) resulted in marked hypoxia (A),
hypercapnia (B), and acidosis (C), the latter showing a robust metabolic component, indicated both by negative base excess
(D) and lactacidosis (E). Blood glucose level elevations during asphyxia were not statistically significant (F). Blood gases,
pH, and base excess were restored by 1 h after asphyxia. Lactic acid levels were still significantly elevated at 1 h then
returned to baseline levels by 4 h. There was no difference among the experimental groups in the asphyxia-induced changes
in blood gas parameters; only the increase in lactate levels during asphyxia was somewhat lower in the HT group, although
this difference was not detected in base deficit, and lactate levels were virtually identical at 1 h after asphyxia in the three
groups. In a similar fashion, the post-asphyxia blood gas parameters were very similar in all three experimental groups
throughout the observation period, with a tendency for slightly higher blood sugar levels in the HT group. * p < 0.05,
significantly different from the corresponding value of the VEH group. Significant differences from the respective baselines
within the groups are not indicated for clarity.
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Figure 5. Regeneration of the brain electrical activity shown with the amplitude-based EEG scoring system. (A–C): The 
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asphyxia, the EEG was flat in all animals (score 7); afterward, it gradually restored to a continuous electrical activity. Quick 

restoration of EEG activity was conspicuous in the SZR72 group. (D): the box plot shows the sum of the EEG scores deter-

mined in each hour of the post-insult observation period. The black line is the median, the box shows the interquartile 

range, the whiskers show the 10th–90th percentiles, and the bullets are the raw data points. The SZR72 group had signif-

icantly lower values, in agreement with the quicker and more complete restoration of EEG activity. * p < 0.05 significantly 

different from the VEH group. 

Figure 4. Serum levels of SZR72, kynurenine, and kynurenic acid (KYNA). (A): SZR72 levels were highest at 1 h af-
ter asphyxia reflecting the effect of bolus drug administration, then they were gradually decreased and stabilized in
50–100 µmol/L range. (B): Kynurenine levels were similar among the different groups at baseline (BL), and they were
largely unaffected by asphyxia, except there was a statistically significant elevation in the VEH group at 24 h. (C): KYNA
levels were similar among the different groups at BL, and they were unchanged in the VEH and HT groups after asphyxia,
but they were increased 10-fold in the SZR72 group (note the log scale of C). *, †, ‡ p < 0.05, significantly different from the
corresponding value of the VEH group, from the respective baseline value of the group, or from the respective 1 h value of
the group, respectively.
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Figure 5. Regeneration of the brain electrical activity shown with the amplitude-based EEG scoring system. (A–C): The black
lines show the medians, whereas the colors indicate the interquartile ranges. At the onset of reoxygenation after asphyxia,
the EEG was flat in all animals (score 7); afterward, it gradually restored to a continuous electrical activity. Quick restoration
of EEG activity was conspicuous in the SZR72 group. (D): the box plot shows the sum of the EEG scores determined in each
hour of the post-insult observation period. The black line is the median, the box shows the interquartile range, the whiskers
show the 10th–90th percentiles, and the bullets are the raw data points. The SZR72 group had significantly lower values,
in agreement with the quicker and more complete restoration of EEG activity. * p < 0.05 significantly different from the
VEH group.
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smallest representing the least signal complexity, followed by the values in the SZR72 group. In all leads, the HT group 

unequivocally produced the signal with the highest entropy. (B): The bar graph shows the InstSpENt averages of all leads, 

indicating similar entropy values in the VEH and SZR72 group EEG signal, which are significantly smaller than the values 

obtained in the HT group. * p < 0.05, significantly different from the corresponding value of the VEH group. 

Figure 6. Power spectral density (PSD) analysis of the EEG signal at 24 h after asphyxia. Data are expressed as % of the
VEH group (mean ± SD) in the frontal (F), central (C), temporal (T), occipital (O) leads in the respective frequency ranges
(Panels A–D). In all leads and in all frequency ranges, PSDs were consistently much higher in the SZR72 group than in the
VEH group. PSDs were also higher in the HT group, compared to VEH, but they were usually lower than in the SZR72
group. Pairwise comparisons are shown in the tables for each frequency range, and leads * p < 0.05, n.s. not significant.
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Figure 7. Instantaneous spectral entropy (InstSpEnt) of the EEG signal at 24 h after asphyxia. (A): In the spider chart, the
average values obtained in the respective EEG leads are shown. In most leads, InstSpEnt values of the VEH group are the
smallest representing the least signal complexity, followed by the values in the SZR72 group. In all leads, the HT group
unequivocally produced the signal with the highest entropy. (B): The bar graph shows the InstSpENt averages of all leads,
indicating similar entropy values in the VEH and SZR72 group EEG signal, which are significantly smaller than the values
obtained in the HT group. * p < 0.05, significantly different from the corresponding value of the VEH group.
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Figure 8. Visual evoked potentials (VEP) evoked at 24 h after asphyxia. (A): The heat map shows the responses to the
100 individual light stimuli, constituting the VEP waveform displaying a marked P100 component in a representative record.
(B): There was no difference among the groups among P100 latency that were unaffected by asphyxia. (C): P100 amplitudes
in the VEH and SZR72 groups were similar, both decreased from pre-asphyxia baselines. The HT group displayed the
highest P100 amplitudes, indicating the best preservation of function. The black line is the median, the box shows the
interquartile range, the whiskers show the 10th–90th percentiles, and the bullets are the raw data points. Baseline P100
amplitudes were 8.7 ± 1.7, 8.1 ± 0.6, and 12.0 ± 1.8 µV (mean ± SEM) for VEH, SZR72, and HT groups, respectively.
* p < 0.05, significantly different from the corresponding value of the VEH group.
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Figure 9. Representative photomicrographs of H&E stained sections from the hippocampal CA1/CA3 subfields, the caudate
nucleus, the putamen, and the thalamus. Asphyxia elicited severe neuronal injury that is evident by the large percentage of
damaged red neurons in the VEH and the SZR72 group, whereas neuronal damage was markedly less in the HT group. The
images were obtained from individuals representing the group median values. Scale bar: 100 µm.
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Figure 10. Neuropathology. (A): Sum of neuropathological scores determined in the frontal, parietal,
occipital, and temporal neocortical areas. The boxes represent the interquartile range, the line within
the box represents the median value, and the bullets are the raw data points. Asphyxia induced
very similar neocortical damage in the VEH and SZR72 groups; however, neuronal damage was
significantly reduced in the HT group. (B,C): Asphyxia elicited marked neuronal injury in the
CA1/CA3 hippocampal subfields in the VEH group that appeared to be even more severe in the
SZR72 group: the ratio of damaged neurons was indeed significantly larger in the CA3 in the
SZR72, compared to the VEH group. Hypothermia, however, yielded significant neuroprotection in
both areas. (D,E): Similar to the CA3 hippocampal subfield, SZR72 treatment resulted in a slightly
but significantly larger neuronal damage, compared to VEH in the caudate nucleus but not in the
putamen. HT was significantly neuroprotective in both assessed regions of the basal ganglia. (F): In
this model, the asphyxia-induced neuronal injury was moderate in the thalamus, and there were
no significant differences among the groups. * p < 0.05 significantly different from the VEH group.
Significant differences between the SZR72 and the HT groups are not shown for clarity.

3. Discussion

The major findings of the present study are the following: (1) we demonstrated that
the applied SZR72 treatment successfully elevated blood levels of the KYNA analog drug
and KYNA levels themselves; (2) SZR72 administration did not affect significantly the
monitored physiological parameters but resulted in robust increases in the post-insult
power spectra of virtually all EEG frequency ranges and leads, compared to its vehicle,
suggesting a direct neuronal effect of SZR72; and (3) despite its marked electrophysiological
effects, SZR72 did not prevent selective neuronal damage in the subacute phase of our
HIE model.

The present study was performed using newborn (postnatal day 1; PD1) piglets that
are currently one of the best preclinical translational large animal models to study HIE. The
gross anatomical features of its gyrencephalic brain, the percent size of the brain compared
to its final size at birth, and cerebral metabolic rates of glucose are all very similar in piglets,
compared to term human infants [15,16]. Furthermore, there is an important neurodevel-
opmental analogy: in both species, the so-called neuronal growth spurt occurs at the time
of birth unlike in rodents having a postnatal or in macaques having a prenatal-skewed
growth spurt [17]. Accordingly, birth asphyxia results in a similar physiological response
and in a similar pattern of selective neuronal injury in piglets and humans [16,18,19]. In



Int. J. Mol. Sci. 2021, 22, 4822 10 of 19

the piglet model, asphyxia-induced neuronal injury affects predominantly the striatum
of the basal ganglia and the cerebral cortex. In these areas, the mechanism of neuronal
injury is mainly necrosis that is essentially completed in the striatum [20] and also becomes
apparent in the cerebral cortex [21] at 24 h after asphyxia. In accordance with these previ-
ous observations, we could also detect the asphyxia-induced severe neuronal injury in all
these brain areas in the present study. Although the inflicted hypoxic–ischemic stress was
severe, it was not too severe to study experimental neuroprotection. A rather significant
portion of neurons was proven yet salvageable shown by the efficacy of hypothermia
treatment to mitigate neuronal injury in the “positive control” group of our study in all
affected regions, even in the most vulnerable region, the putamen. This neuroprotective
effect is in perfect agreement with previous reports on the robust neuroprotective effect of
hypothermia in piglets [22,23]. Therefore, the experimental conditions were right to assess
the acute neuroprotective efficacy of SZR72 in the present study.

Asphyxia-induced neuronal injury is continuously evolving during HIE development,
although it is established to recognize distinct phases mostly based on brain energetics
(levels of high energy phosphates and lactate) assessed with magnetic resonance spec-
troscopy [24]. These include the primary energy failure during asphyxia, followed by
energy recovery in the first hour upon reoxygenation/reventilation, followed by the so-
called latent phase characterized by near-normal energy levels. The term secondary energy
failure describes the onset of a second progressive deterioration of brain energetics per-
sisting for many days [25] caused by neuronal mitochondrial injury accumulated in the
preceding phases [24]. The start of a slow gradual restoration of brain energy levels marks
the onset of the tertiary phase. The 24 h observation period used in our present study
allowed us to follow up HIE development into the secondary energy failure phase. The
duration of the latent phase is variable (6–24 h) since it is inversely related to both the
severity of hypoxic–ischemic stress and body temperature [26]. Based on the severity of
neuronal injury detected in [26] and the present study, the secondary energy failure likely
started between 10 and 20 h after asphyxia in the normothermic animals of our study.
Indeed, widespread irreversible ultrastructural mitochondrial damage was found at 12 h
(but not at 6 h) after asphyxia in a piglet study using very similar asphyxia stress yielding
similar levels of neuronal injury, compared to our present study [20]. Therefore, the applied
SZR72 treatment over the first 24 h of HIE development in the present study likely spanned
the whole latent phase that is widely accepted to be the primary therapeutic window for
neuroprotective interventions.

KYNA was found to be an endogenous inhibitor of NMDA receptors [27], triggering
intense research that identified KYNA as a competitive NMDA receptor antagonist acting
at the strychnine-sensitive glycine binding site of the NMDA receptor in the concentration
range of 10–30 µM, whereas in much higher concentrations, it could antagonize the NMDA
binding site as well [28,29]. Furthermore, KYNA is supposed to be also a potent inhibitor
of the α7 nicotinic acetyl–choline receptors that can also modulate glutamate release from
presynaptic terminals [30], although more recently, this effect of KYNA has been ques-
tioned [31]. Excessive glutamate release and excitotoxic activation of NMDA receptors
are important mechanisms of neuronal injury during the primary energy failure and the
reoxygenation/reperfusion phase during HIE development, and pretreatment with the
NMDA receptor antagonist MK-801 offered full, while post-hypoxic treatment yielded
partial neuroprotection in a rat pup HIE model [32]. However, MK-801 was only partially
effective even using a pretreatment protocol in a piglet HIE model [33], and MK-801 did
have not only protection but also toxicity in the rat pups as well [34]. Therefore, the use of
alternative, endogenous anti-excitotoxic agents are of interest, and systemic administration
of KYNA starting before hypoxic–ischemic stress and continuing in the 24 h observation
period reduced brain edema [35], and even only post-insult KYNA administration was
shown to exert long lasting (assessed at 2 weeks after hypoxic–ischemic stress) neuro-
protection [7]. In addition to the anti-excitotoxic mechanism of neuroprotection, other
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protective mechanisms of KYNA have been proposed, such as a direct antioxidant [36] or
an anti-inflammatory effect [37] that are indeed involved in HIE pathophysiology [16,24].

A clear disadvantage of exogenous administration of KYNA is its poor blood–brain
barrier permeability [38]. Both studies [7,35] showing KYNA-induced neuroprotection
used the Rice–Vannucci HIE model that employs unilateral carotid artery occlusion com-
bined with hypoxia in P7 rat pups, resulting in a focal lesion in which blood–brain barrier
integrity is compromised in the early reoxygenation phase [39,40]. In contrast, bona fide
asphyxia induced by ventilation with a hypoxic–hypercapnic gas mixture did not deterio-
rate the blood–brain barrier in P6/P11 rat pups [41]. In our previous piglet study [42], we
also observed maintained blood–brain barrier integrity using the same asphyxia model as
in [41] and in the current study. We believe that the poor blood–brain barrier permeability
of KYNA largely explains the paucity of studies assessing its neuroprotective action in any
large animal HIE models. When applied directly onto the cortical surface, thus circum-
venting the blood–brain barrier, KYNA could antagonize NMDA actions, suggesting its
efficacy in the piglet as well [9]. The bioavailability of exogenous kynurenine is better than
that of KYNA; however, kynurenine can be metabolized to KYNA and to the neurotoxic
quinolinic acid; indeed, exogenous kynurenine was found to worsen neurological outcome
in an adult rat stroke model [43].

SZR72 has been developed to produce a KYNA analog with increased bioavailability
to explore its neuroprotective potential in various neurological diseases [11]. Indeed, SZR72
was shown to exert antinociceptive effects in preclinical headache models [13,44,45], in a
transgenic mouse model of Huntington’s disease [46], and importantly in a four-vessel
occlusion rat global cerebral ischemia model [14], in which even a single post-insult SZR72
administration was effective, although a combined pretreatment and repeated post-insult
application protocol was clearly superior to that. Importantly, the neuroprotective dose
(300 mg/kg) used did not deteriorate cognitive functions assessed with behavioral tests in
intact rats or mice [47]. In our present study, we employed only a translationally relevant
post-insult SZR72 treatment protocol that resulted in robust elevations in serum SZR72
levels. Serum KYNA levels were also elevated subsequent to SZR72 administration sug-
gesting some minor conversion of SZR72 to KYNA in situ. We cannot know the brain
SZR72 levels, but a clear indication of SZR72 passing through the blood–brain barrier in
significant amounts is the observed enhancement of neuronal activity shown both by the
more rapid restoration of the EEG after asphyxia and the increases in PSD values virtually
in all frequency ranges in the SZR72, compared to the VEH group. These differences cannot
be explained by any differences in the monitored physiological parameters (MABP, SpO2,
lactate levels, etc) but only by the direct neuronal action of SZR72. Enhancement of neu-
ronal activity by an anti-glutamatergic agent may be unexpected but not unprecedented:
SZR72 was found previously to facilitate CA1 hippocampal long-term potentiation in vivo
in rats [48], perhaps through the reported concentration-dependent, KYNA-induced fa-
cilitation of α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)-sensitive
glutamate receptors [49]. This effect is in concert with a similar, concentration-dependent
Janus-faced action of KYNA itself since it was shown to enhance field excitatory postsy-
naptic potentials in the nanomolar range while dose-dependently inhibiting them in the
micromolar concentrations [50]. Despite the marked neuronal effect of SZR72 in the present
study, it failed to prevent neuronal damage in any of the assessed regions. Moreover, in the
CA3 hippocampal subfield and the caudate nucleus, the neuronal injury was slightly but
statistically significantly even more severe. The cause of this negative result is unknown,
but several factors may have contributed to this result. First, the observed enhancement
of neuronal activity could have increased the energy demands of neurons resulting in
critical energy depletion in more neurons. Indeed, in contrast to PSDs, electrophysiological
indicators of functional neuronal integrity such as VEP P100 amplitude, or InstSpEnt
values did not indicate a better outcome in the SZR72-treated animals. Second, SZR72 in
its neuroprotective dose was found to induce hypothermia in freely moving rats by up
to 2 ◦C that could contribute to its neuroprotective effect [51] unless body temperature
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was rigorously maintained throughout the drug treatment as in our present study. Third,
NMDA-receptor-mediated neuronal injury can be enhanced by over-activation of other ion
channels such as the acid-sensing ion channel 1a (ASIC1a), indeed, an ASIC1a inhibitor
showed an additive neuroprotective effect with MK-801 in a piglet HIE model [33]. Since
in our HIE model, severe brain acidosis develops, suggesting strong activation of ASIC
channels lasting in the first hour of reventilation after asphyxia [42], perhaps SZR72 could
not provide sufficient NMDA-receptor blocking in this time period that might have been
critical in determining the neuronal outcome. Recently, new KYNA analogs stemming from
SZR72 have been synthesized and proven superior penetration in an in vitro blood–brain
barrier model, compared to SZR72 retaining their advantageous biological activity [52].
Thus, despite the negative overall outcome of the present study, it lays the foundation of
further studies designed to evaluate the neuroprotective effects of these new analogs to
combat HIE.

4. Materials and Methods
4.1. Animals

The experimental procedures were reviewed and approved by the Hungarian National
Scientific Ethical Committee on Animal Experimentation (ÁTET), and then the necessary
permit to obtain the animals was issued by the National Food Chain Safety and Animal
Health Directorate of Csongrád county, Hungary (permit nr: XIV./1414/2015). The proce-
dures were performed according to the guidelines of the Scientific Committee of Animal
Experimentation of the Hungarian Academy of Sciences (updated Law and Regulations
on Animal Protection: 40/2013. (II. 14.) Gov. of Hungary), following the EU Directive
2010/63/EU on the protection of animals used for scientific purposes and reported in
compliance with the ARRIVE guidelines.

Newborn (PD1) male Landrace piglets (n = 18, weighing between: 1.5 and 2.5 kg)
were obtained from a local company (Pigmark Ltd., Co., Szeged, Hungary) and delivered
to the laboratory on the morning of the experiments. The animals were anesthetized with
an intraperitoneal injection of sodium thiopental (45 mg/kg; Sandoz, Kundl, Austria), then
were placed on a servo-controlled heating pad (Blanketrol III, Cincinnati SUB-zero, Cincin-
nati, OH, USA) to keep their rectal temperature in the physiological range (38.5 ± 0.5 ◦C).
The skin was disinfected, and the animals were intubated through a tracheotomy, then
mechanically ventilated by a pressure-controlled small animal respirator with warmed,
humidified medical air (21% O2, balance N2) at a frequency of 30–35 breaths/min, applying
peak inspiratory pressure = 120–135 mmH2O to keep blood gases and oxygen saturation
within the physiological range. The right carotid artery and femoral vein were cannulated
with catheters under aseptic conditions to monitor MABP to take arterial blood samples
and administer drugs and fluids, respectively. The wounds were then closed. To maintain
anesthesia/analgesia, the animals were given iv. a bolus injection of morphine (100 µg/kg;
Teva, Petach Tikva, Israel) and midazolam (250 µg/kg; Torrex Pharma, Vienna, Austria), fol-
lowed by continuous infusion (morphine 10 µg/kg/h, midazolam 250 µg/kg/h) and were
supplemented with fluids (5% glucose, 0.45% NaCl 3–5 mL/kg/h). Prophylactic antibiotics
were given intravenously (penicillin: 50 mg/kg, Teva, Petah Tikva, Israel, and gentam-
icin: 2.5 mg/kg, Sanofi, Paris, France) every 12 h. Dopamine (5–20 µg/kg/min; Admeda
Arzneimittel GmbH, Nienwohld, Germany) infusion was given to maintain MABP above
40 mmHg in some animals (n = 3, 1, 3 in the VEH, SZR72, HT groups, respectively). The
average total dopamine use was 2.1 ± 0.7, 6.5, and 4.6 ± 2.6 mg/kg in the respective
groups. The instrumented animals were placed in a prone position into a neonatal incu-
bator (SPC 78-1; Narco Air-Shields, Inc., Hatboro, PA, USA). Oxygen saturation (SpO2),
MABP, HR, and electrocardiogram (ECG) were continuously monitored by using EDAN
Im8 Vet Monitor (Edan Instruments Inc., Shekou, Nanshan, Shenzhen, China) and recorded
online. Arterial blood samples (~300 µL) were analyzed for pH, pCO2, pO2, along with
blood sugar and lactate levels with an epoc® Blood Analysis System (Epocal Inc., Ottawa,
ON, Canada) at baseline, at the end of asphyxia and then at selected intervals up to 24 h



Int. J. Mol. Sci. 2021, 22, 4822 13 of 19

(Figure 1) to keep blood gas values in the physiological range during the survival period.
The urinary bladder was tapped by a suprapubic puncture at 12 h after asphyxia. At the
end of the 24 h observation period, both carotid arteries of the anesthetized animals were
catheterized in the distal direction, the animals were euthanized with pentobarbital sodium
(300 mg, Release®; Wirtschaftsgenossenschaft Deutscher Tierärzte eG, Garbsen, Germany),
and then the brains were perfused with cold (4 ◦C) physiological saline. The brains were
gently removed from the skull and the intact right hemispheres were immersion-fixed in
4 ◦C, 4% paraformaldehyde solution and further processed for histology.

4.2. Experimental Protocol

The experimental protocol is shown in Figure 1. Baseline physiological parameters
were obtained following a ~1 h stabilization period after surgery. Animals were assigned
to one of the following three groups: (1) VEH (n = 6), (2) SZR72 (n = 6), and (3) HT
(n = 6). In each group, experimental asphyxia was induced by ventilation with a hypoxic–
hypercapnic gas mixture containing 6% O2 and 20% CO2 for 20 min while the respiratory
rate was reduced from 30 to 15 breaths/min, and intravenous glucose administration was
suspended. Reventilation commenced with medical air (room air) throughout the 24 h
observation period (respiration rate; RR: 30 1/min). In the VEH and the SZR72 groups,
vehicle/drug treatment started 5 min after the completion of asphyxia (see details at 4.3).
In the HT group, body cooling started simultaneously with reventilation using the servo-
controlled heating pad. The rectal temperature reached 33.5 ◦C in 40–50 min and was
maintained throughout the experiment.

4.3. SZR72 Treatment

SZR72 was synthesized in the Institute of Pharmaceutical Chemistry, University of
Szeged [11]. Most previous in vivo rodent studies assessing CNS function used SZR72
in a 300 mg/kg (~1 mmol/kg; ip) bolus dose that was repeated typically 2 times every
24 h [12–14]. Equivalent dose calculation for newborn piglets based on [53] and [54]
resulted in a 170 mg/kg bolus dose that was used in the present study. SZR72 was
dissolved in physiological saline to obtain a 40 mg/mL solution, and then the pH of the
solution was adjusted to 7.4 using 1 M NaOH. SZR72 administration started 5 min after
the completion of asphyxia; 170 mg/kg was given as a fast iv infusion in 5 min. The bolus
was followed by a continuous infusion of SZR72 (170 mg/kg/12 h) throughout the 24 h
observation period. The vehicle group received a physiological saline infusion.

4.4. Electroencephalography (EEG) and Visual Evoked Potential (VEP)

All EEG/VEP processes were performed according to the American Clinical Neuro-
physiology Society’s guidelines [55,56]. EEG recordings were taken via subcutaneously
inserted silver scalp electrodes using a previously published eight-lead (fronto–parieto–
centro–occipital) montage and a 256 Hz sampling rate [57]. The electrode impedance was
regularly checked to stay below 5 kΩ. The EEG signals were amplified, recorded, and
visualized with the Nicolet EEG (Natus Neurology, Middleton, WI, USA) and software [58].
The recorded EEG was scored based on background EEG amplitudes using a previously
published scoring system [57,59] based on [60]. Briefly, continuous high-amplitude (>25 µV)
activity is scored 1, while an isoelectric trace is scored 7. VEP was evoked with stroboscope-
generated 1 Hz flashes (10 trains of 10 stimuli each with 10 s intervals between the trains).
VEP waveforms were determined by averaging the 100 trials. The amplitude and latency
of the P100 component were determined, and their grand mean averages were calculated.

4.5. EEG Spectral Analysis

All electrophysiology data were analyzed in a MATLAB environment with custom-
written scripts, built-in functions, and the EEGlab toolbox [61]. The broadband EEG
signals were band-pass filtered (1–30 Hz) and decomposed into the four main physiological
frequency ranges (delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz)). We
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used fast Fourier transform-based (FFT) calculations for determining the PSDs, applying a
Gaussian window on the signals. The averaged and summed PSDs were normalized to the
baseline [62]. The InstSpEnt was calculated as published previously [57].

4.6. Serum Sample Processing for Determination of Kynurenine, KYNA, and SZR72 Levels

Arterial blood samples (1 mL) at selected time intervals (Figure 1) were collected and
allowed to clot, followed by centrifugation (4 ◦C; 10 min; 13,000 rpm) to obtain serum
samples that were kept at −80 ◦C until analysis. For targeted analytical measurements, LC–
MS grade solvents were used in all cases. The method for the preparation of serum samples
prior to the analysis of endogenous kynurenine and KYNA was the following. First, 50 µL
serum was spiked with 7 µL internal standard (IS) solution containing SZR73 (0.5 µM) in
water/methanol (50/50 v/v) [52], and 5 µL water/methanol (50/50 v/v) solution, then
600 µL ice-cold acetone was added in a 1.7 mL microcentrifuge tube (Corning-Costar 3620,
Corning Inc., Corning, NY, USA). The sample was vortex mixed for 15 s, after shaking
for 10 min at room temperature the sample was centrifuged at 15,000 rpm for 15 min
at 4 ◦C degrees (Hettich 320R, Hettich Gmbh, Tuttlingen, Germany). The 600 µL of the
upper layer was transferred to a microcentrifuge tube and evaporated to dryness under
nitrogen at ambient temperature (MD 200, Allsheng Instruments Ltd., Hangzhou, China).
For analysis, the dried extracts were dissolved in 50 µL of H2O/MeOH/NH3 (90/10/0.1
v/v/v%), vortex mixed for 15 s, centrifuged at 15,000 rpm for 15 min at 22 ◦C degrees, and
the upper layer transferred to a 250 µL conical insert. For calibration samples, 50 µL pulled
control serum sample was spiked with 7 µL IS, then 5 µL given calibration mix containing
kynurenine and KYNA in water/methanol (50/50 v/v) solution, then 5 µL IS, and then
600 µL ice-cold acetone was added in a microcentrifuge tube. Then, the above-described
sample preparation protocol was applied. The calibration points were the followings: 0,
2.79, 2.89, 2.99, 3.29, 4.79, and 6.79 µM for kynurenine, and 0, 23.98, 24.98, 25.98, 28.98,
33.98, 43.98, 63.98, 123.98, and 523.98 nM for KYNA.

For the analysis of SZR72, the applied sample preparation procedure was slightly
modified. In brief, 10 µL serum was spiked with 7 µL IS solution containing SZR73 (10 µM)
in water/methanol (50/50 v/v) and 10 µL water/methanol (50/50 v/v) solution, then
600 µL ice-cold acetone was added in a 1.7 mL microcentrifuge tube (Corning-Costar 3620,
USA). The parameters of vortex mixing, shaking, centrifugation, collection of upper phase,
and evaporation were the same as used for kynurenine/KYNA analysis. The dried extracts
were dissolved in 500 µL of H2O/MeOH/NH3 (90/10/0.1 v/v/v%), vortex mixed for 15 s,
centrifuged at 15,000 rpm for 15 min at 22 ◦C degrees, and the upper layer transferred to a
250 µL conical insert. In the case of calibration samples, calibration points were set to 0, 5,
10, 50, 100, and 200 µM for SZR72.

4.7. Ultrahigh Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry
(UHPLC–MS/MS) Parameters for Quantitative Analysis of Kynurenine, KYNA, and SZR72

The targeted UHPLC–MS/MS analysis was performed on a UHPLC (Nexera, Shi-
madzu, Kyoto, Japan) coupled to a triple quadrupole mass spectrometer (TSQ Fortis,
ThermoFisher Scientific, Waltham, MA, USA) with an OptaMax NG heated electrospray
ionization source (ThermoFisher). The UHPLC was controlled using the manufacturer’s
software [63], and data were acquired and evaluated in accordance with [64].

The developed targeted UHPLC–MS/MS method was as follows: ACQUITY UPLC
HSS C18 column (100 × 2.1 mm, 1.8 µm, 100 Å, Waters, Milford, MA, USA). The UHPLC
mobile phase A consisted of 0.1% formic acid solution, and mobile phase B was composed
of methanol with 0.1% v/v formic acid. The gradient program started with 0.4 mL/min
flow rate and 10% B, ramped to 100% B in 3 min and hold for 0.2 min, then flow rate
ramped to 0.5 mL/min within 0.1 min, 100% B held for another 1.7 min, returned to 10%
B within 0.1 min, held for 4 min, returned to 0.4 mL/min flow rate within 0.1 min, and
the initial condition held for 0.9 min. The column temperature was maintained at 50 ◦C,
the autosampler temperature was 15 ◦C, and 10 µL samples were used for analysis. The
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injector needle was washed with 2-propanol/MeOH/H2O/FA (70/25/5/0.1, v/v/v/v%)
solution after each injection.

The mass spectrometer was operating in positive scheduled multiple reaction monitor-
ing modes using a heated electrospray ionization source (H-ESI). The instrument settings
were as follows: capillary temperature 300 ◦C, vaporizer temperature 350 ◦C, spray voltage
3.9 kV, sheath gas flow 20, sweep gas flow 1, and auxiliary gas flow 5 arbitrary unit. The
data acquisition was performed in the selected reaction monitoring mode with both Q1 and
Q3 resolution FWHM at 0.7. The proper quantifier and qualifier ions of given protonated
precursor ions of each analyte with the related collision energies, tube lens voltages were
determined by the flow injection method. In order to decrease the contamination of the
mass spectrometer, the eluate was passed into the H-ESI source only in the time range of
1.0–3.2 min. In the remaining time, the source was rinsed with acetonitrile/water solution
(90/10, v/v) at a flow rate of 0.2 mL/min by an Agilent 1100 isocratic pump (Agilent Tech-
nologies Inc., Waldbronn, Frankfurt, Germany). The main UHPLC–MS/MS parameters are
summarized in Table 1.

Table 1. Main UHPLC–MS/MS parameters of MRM transitions of each analyte.

Compound Retention
Time (min)

Retention Time
Window (min)

Precursor
Ion (m/z)

Type of
Product Ion

Product Ion
(m/z)

Collision
Energy (eV)

RF Lens
(V)

Kynurenine 1.45 1.0 209.2 quantifier 192.1 10 52

Kynurenine 1.45 1.0 209.2 qualifier 146.0 19 52

SZR72 2.43 0.4 260.1 quantifier 215.0 18 75

SZR72 2.43 0.4 260.1 qualifier 144.0 32 75

SZR73 (IS) 2.57 0.4 274.2 quantifier 144.0 37 65

SZR73 (IS) 2.57 0.4 274.2 qualifier 229.0 17 65

KYNA 2.84 0.45 190.1 quantifier 144.0 19 55

KYNA 2.84 0.45 190.1 qualifier 172.0 13 55

The standard addition method with calibration points was used for the quantifica-
tion of the endogenous kynurenine and KYNA, while a six-point curve of the external
calibration was applied for the quantitative evaluation of exogenous SZR72. In all cases,
the evaluation was based on quantifier ion of analyte/quantifier ion of SZR73 peak area
ratios vs. concentration.

4.8. Histology

Tissue samples were dissected from the frontal, temporal, parietal, occipital lobes
as well as the hippocampus CA1/CA3, thalamus, putamen, and nucleus caudatus areas,
paraffin-embedded and 4-µm sections were produced using a microtome (Leica Microsys-
tems, Wetzlar, Germany) and mounted on silanized slides. Hematoxylin–eosin staining
was performed to evaluate the extent of neuronal damage in the subcortical fields, which
was assessed with manual cell counting by two independent observers in nonoverlapping
areas using ImageJ [65]. Damaged neurons were identified using the major hallmarks of
dark eosinophilic cytosol, as well as pyknotic or disrupted nuclei by a researcher blinded
to the experimental groups. In the hippocampus and subcortical brain regions, neuronal
injury was expressed as the percentage of damaged neurons. In the cerebral cortex, neu-
ropathology scores were determined (0–9), as described previously [57,59]. Briefly, the
pattern of neuronal injury (none < scattered < grouped/laminar < panlaminar) was evalu-
ated in 40 nonoverlapping fields of vision under 20× magnification with light microscopy
(Leica Microsystems, Wetzlar, Germany) in each cortical region. Then, neuropathology
scores (0–9) were given to each cortical region based on the abundance of the most severe
injury pattern. Thus, higher scores represent increasingly severe neuronal damage.
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4.9. Statistical Analysis

Statistics were conducted using the software packages [66–68]. Parametric data are
presented as mean ± SEM, while nonparametric data as the median and the interquartile
range unless stated otherwise. p values < 0.05 were considered statistically significant. Dif-
ferences in core temperature, MABP, HR, pO2, pCO2, pH, base excess, lactate, and glucose
were compared among the three groups at each time point by two-way repeated-measures
ANOVA. Pairwise comparisons were then performed using the Student–Newman–Keuls
(SNK) post hoc test. Serum levels of SZR72 at different time points were analyzed using
one-way repeated-measures ANOVA, followed by the SNK post hoc test. Serum kynure-
nine and KYNA levels were analyzed among the three groups at respective time points by
two-way repeated-measures ANOVA followed by the SNK post hoc test. Neuropathology
data were analyzed using one-way ANOVA or Kruskal–Wallis analysis of ranks, followed
by the SNK post hoc test for pairwise comparisons. The electrophysiological data (In-
stSpEnt, PSD, VEP) are presented as mean ± SD. InstSpEnt data were compared with
one-way repeated-measures ANOVA, whereas PSD and VEP data were compared with
two-way repeated-measures ANOVA. Pairwise comparisons in each case were performed
using Tukey’s post hoc test.

5. Conclusions

In a preclinical large animal HIE model, experimental asphyxia elicited severe neu-
ronal injury that could be significantly ameliorated by therapeutic hypothermia. The KYNA
analog SZR72, administered using a translationally relevant post-insult protocol unequivo-
cally enhanced background EEG activity clearly indicating blood–brain barrier penetration
and direct neuronal effects of the drug. However, SZR72 failed to improve functional
measures of neuronal activity and to mitigate neuronal damage, unlike hypothermia. Our
results suggest that the use of exogenous KYNA analogs with higher neuroprotective/less
atypical neuronal actions may be feasible in the management of HIE, warranting further
preclinical research.
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HT hypothermia-treated group
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PSD power spectral density
RR respiration rate
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SZR72 SZR72-treated group
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