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Abstract: Paleoenvironmental reconstructions on a (supra-)regional scale have gained attention
in Quaternary sciences during the last decades. In terrestrial realms, loess deposits
and especially intercalations of loess and buried soils, so called loess-paleosol
sequences (LPS) are important archives in order to unravel the terrestrial response to
e.g. climatic fluctuations and reconstruct paleoenvironments during the Pleistocene.
The analysis of LPS requires the knowledge of several key factors, such as the
distribution of the aeolian sediments, their location relative to (potential) source areas,
the climate conditions that led to their emplacement and the topography of the sink
area. These factors strongly influence the sedimentological and paleoenvironmental
characteristics of LPS and show broad variations throughout Europe, leading to a
distinct distribution pattern throughout the continent.
In our study, we present a new map of the distribution of aeolian sediments (mainly
loess) and major potential source areas for Europe. The map was compiled combining
geodata of different mapping approaches. Most of the used geodata stems from
national maps of 27 different countries, which are highly accurate. Problematic aspects
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such as different nomenclatures across administrative borders were carefully
investigated and revised. The result is a seamless map, which comprises pedological,
geological, and geomorphological data and can be used for paleoenvironmental and
archeological studies and other applications.
We use the map and geomorphological cross-sections to discuss the various
influences of geomorphology and paleoenvironment on the deposition and
preservation of loess throughout Europe. We divided the loess areas into 6 main loess
domains and 17 subdomains, in order to understand and explain the factors controlling
their distribution. For the subdivision we used the following criteria: (1) influence of silt
production areas, (2) affiliation to subcatchments, as rivers are very important regional
silt transport agents, (3) occurrence of past periglacial activity with characteristic
overprinting of the deposits. Additionally, the sediment distribution is combined with
elevation data, to investigate the loess distribution statistically as well as visually.
Throughout Europe, the variations and differences of the loess domains are the results
of a complex interplay of changing paleoenvironmental conditions and related
geomorphologic processes, controlling dust sources, transport, accumulation,
preservation, pedogenesis, and simultaneous erosional and reworking events.
Climatic, paleoclimatic, and pedoclimatic gradients are on the continental scale an
additional important factor, since there are e.g. latitudinal differences of permafrost and
periglacial processes, an increase in continentality from west to east and in aridity from
northwest to southeast and south, strongly affecting sedimentary and geomorphic
dynamics.
We propose three main depositional regimes for loess formation in Europe: (1.)
periglacial and tundra loess formation with periglacial processes and permafrost in the
high latitude and mountainous regions; (2.) steppe and desert margin loess formation
in the (semi-)arid regions; and (3.) loess and soil formation in temperate and
subtropical regions. Loess deposits of (1.) and (2.) show coarser, sandier particle
distributions toward the glacial and desert regions. In the humid areas (3.), forest
vegetation limited dust production and accumulation, therefore, there is an increase in
finer grain sizes due to the increase in weathering.
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Dear editors,  

We would like to submit the following review and research paper for the ESR: 

Loess landscapes of Europe – mapping, geomorphology and zonal differentiation 

Our submission presents first a new seamless map of the distribution of aeolian sediments (mainly 

loess) and major potential source areas for loess Europe. The map was compiled combining geodata 

of different mapping approaches from 27 different countries, which are highly accurate. We review 

the European loess landscapes and divided them in six domains and 17 subdomains. In addition, we 

show geomorphologic aspects of loess regions including 3-D images of selected loess landscapes. 

Finally we propose three main depositional regimes for loess formation in Europe in a new 

conceptual model of loess genesis. We will provide all data of this new map on our CRC website for 

free download and provide funding for golden access of this paper.  

All authors have made substantial contributions to the submission. We confirm that each co-author 

was involved in the paper and have approved the final version of the manuscript: FL: 

Conceptualization, writing original draft, funding acquisition. JN: Project administration, 

methodology, validation, writing introduction, Chapter 3.3 and part of the discussion, review & 

editing. SP: Methodology, validation, data curation, writing regional part, Chapter 3.2, and part of the 

discussion. TS, PS, ZJ: Data curation, writing regional part, writing – review PA, JH, LW, DW AZ: 

Resources, data curation, writing regional part. SM, IO, DV. Data curation, writing regional part BB: 

Investigation, data curation, methodology VS: Visualization, formal analysis. JV: Investigation, data 

curation, software. UH: validation, partially designing and contributing to conceptual model, writing 

regional part, validation, review & editing. 

Potential reviewers could be:  
Prof. J. Vandenberghe, VU Amsterdam 
Prof. R. Schaetzl, Michigan State University, USA 
Prof. Lu Huayu, Nanjing University, China 
Dr. Gábor Újvári, Hungarian Academy of Sciences, Hungary 

On behalf of all authors  

Yours sincerely, 

Frank Lehmkuhl 

 

Cover Letter



Loess landscapes of Europe – mapping, geomorphology, and zonal differentiation 

Lehmkuhl, F.1*, Nett, J.J.1,  Pötter, S.1, Schulte, P.1, Sprafke, T.2, Jary, Z.3, Antoine, P.4, Wacha, L.5, 

Wolf, D.6 , Zerboni, A.7, Hošek, J.8,9, Marković, S.B.10, Obreht, I.1,11 , Sümegi, P.12, Veres, D.13, 

Zeeden, C. 1,14, Boemke, B1, Schaubert, V.1, Viehweger, J.1, Hambach, U.15 

Abstract 

Paleoenvironmental reconstructions on a (supra-)regional scale have gained attention in Quaternary 

sciences during the last decades. In terrestrial realms, loess deposits and especially intercalations of 

loess and buried soils, so called loess-paleosol sequences (LPS) are important archives in order to 

unravel the terrestrial response to e.g. climatic fluctuations and reconstruct paleoenvironments 

during the Pleistocene. The analysis of LPS requires the knowledge of several key factors, such as the 

distribution of the aeolian sediments, their location relative to (potential) source areas, the climate 

conditions that led to their emplacement and the topography of the sink area. These factors strongly 

influence the sedimentological and paleoenvironmental characteristics of LPS and show broad 

variations throughout Europe, leading to a distinct distribution pattern throughout the continent. 

In our study, we present a new map of the distribution of aeolian sediments (mainly loess) and major 

potential source areas for Europe. The map was compiled combining geodata of different mapping 

approaches. Most of the used geodata stems from national maps of 27 different countries, which are 

highly accurate. Problematic aspects such as different nomenclatures across administrative borders 

were carefully investigated and revised. The result is a seamless map, which comprises pedological, 

geological, and geomorphological data and can be used for paleoenvironmental and archeological 

studies and other applications.  

We use the map and geomorphological cross-sections to discuss the various influences of 

geomorphology and paleoenvironment on the deposition and preservation of loess throughout 

Europe. We divided the loess areas into 6 main loess domains and 17 subdomains, in order to 

understand and explain the factors controlling their distribution. For the subdivision we used the 

following criteria: (1) influence of silt production areas, (2) affiliation to subcatchments, as rivers are 

very important regional silt transport agents, (3) occurrence of past periglacial activity with 

characteristic overprinting of the deposits. Additionally, the sediment distribution is combined with 

elevation data, to investigate the loess distribution statistically as well as visually. 

Throughout Europe, the variations and differences of the loess domains are the results of a complex 

interplay of changing paleoenvironmental conditions and related geomorphologic processes, 

controlling dust sources, transport, accumulation, preservation, pedogenesis, and simultaneous 

erosional and reworking events. Climatic, paleoclimatic, and pedoclimatic gradients are on the 

continental scale an additional important factor, since there are e.g. latitudinal differences of 

permafrost and periglacial processes, an increase in continentality from west to east and in aridity 

from northwest to southeast and south, strongly affecting sedimentary and geomorphic dynamics. 

Abstract



We propose three main depositional regimes for loess formation in Europe: (1.) periglacial and 

tundra loess formation with periglacial processes and permafrost in the high latitude and 

mountainous regions; (2.) steppe and desert margin loess formation in the (semi-)arid regions; and 

(3.) loess and soil formation in temperate and subtropical regions. Loess deposits of (1.) and (2.) 

show coarser, sandier particle distributions toward the glacial and desert regions. In the humid areas 

(3.), forest vegetation limited dust production and accumulation, therefore, there is an increase in 

finer grain sizes due to the increase in weathering.  
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Abstract 28 

Paleoenvironmental reconstructions on a (supra-)regional scale have gained attention in Quaternary 29 

sciences during the last decades. In terrestrial realms, loess deposits and especially intercalations of 30 

loess and buried soils, so called loess-paleosol sequences (LPS) are important archives in order to 31 

unravel the terrestrial response to e.g. climatic fluctuations and reconstruct paleoenvironments 32 

during the Pleistocene. The analysis of LPS requires the knowledge of several key factors, such as the 33 

distribution of the aeolian sediments, their location relative to (potential) source areas, the climate 34 

conditions that led to their emplacement and the topography of the sink area. These factors strongly 35 

influence the sedimentological and paleoenvironmental characteristics of LPS and show broad 36 

variations throughout Europe, leading to a distinct distribution pattern throughout the continent. 37 

In our study, we present a new map of the distribution of aeolian sediments (mainly loess) and major 38 

potential source areas for Europe. The map was compiled combining geodata of different mapping 39 

approaches. Most of the used geodata stems from national maps of 27 different countries, which are 40 

highly accurate. Problematic aspects such as different nomenclatures across administrative borders 41 

were carefully investigated and revised. The result is a seamless map, which comprises pedological, 42 

geological, and geomorphological data and can be used for paleoenvironmental and archeological 43 

studies and other applications.  44 

We use the map and geomorphological cross-sections to discuss the various influences of 45 

geomorphology and paleoenvironment on the deposition and preservation of loess throughout 46 

Europe. We divided the loess areas into 6 main loess domains and 17 subdomains, in order to 47 

understand and explain the factors controlling their distribution. For the subdivision we used the 48 

following criteria: (1) influence of silt production areas, (2) affiliation to subcatchments, as rivers are 49 

very important regional silt transport agents, (3) occurrence of past periglacial activity with 50 

characteristic overprinting of the deposits. Additionally, the sediment distribution is combined with 51 

elevation data, to investigate the loess distribution statistically as well as visually. 52 

Throughout Europe, the variations and differences of the loess domains are the results of a complex 53 

interplay of changing paleoenvironmental conditions and related geomorphologic processes, 54 

controlling dust sources, transport, accumulation, preservation, pedogenesis, and simultaneous 55 

erosional and reworking events. Climatic, paleoclimatic, and pedoclimatic gradients are on the 56 

continental scale an additional important factor, since there are e.g. latitudinal differences of 57 

permafrost and periglacial processes, an increase in continentality from west to east and in aridity 58 

from northwest to southeast and south, strongly affecting sedimentary and geomorphic dynamics. 59 

We propose three main depositional regimes for loess formation in Europe: (1.) periglacial and 60 

tundra loess formation with periglacial processes and permafrost in the high latitude and 61 

mountainous regions; (2.) steppe and desert margin loess formation in the (semi-)arid regions; and 62 

(3.) loess and soil formation in temperate and subtropical regions. Loess deposits of (1.) and (2.) 63 

show coarser, sandier particle distributions toward the glacial and desert regions. In the humid areas 64 
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(3.), forest vegetation limited dust production and accumulation, therefore, there is an increase in 65 

finer grain sizes due to the increase in weathering.  66 

 67 

Highlights 68 

 New seamless loess map of Europe including related Late Pleistocene sediments 69 

 Review on European loess landscapes divided in six domains and 17 subdomains 70 

 Geomorphology of loess regions including 3-D images of selected loess landscapes 71 

 New conceptual model of loess genesis in Europe 72 

 Paleoenvironmental variations determine spatial pattern of loess formation and domain 73 

subdivision  74 

Keywords 75 

Aeolian deposits, Quaternary sediments, loess map, loess facies, dust deposition, conceptual loess 76 

formation model 77 
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1. Introduction and general approach 79 

Loess is one of the most extensively distributed Pleistocene sedimentary deposits in the northern 80 

hemisphere and Europe, representing the main archive of glacial periods (Bertran et al., 2016; Haase 81 

et al., 2007; Marković et al., 2015; Rousseau et al., 2013). The so-called loess-paleosol sequences 82 

(LPS) composed of the alternation of loess and buried soil (paleosol) horizons developed in response 83 

to climatic changes, and are key-archives in order to unravel paleoclimate (eg. Gallet et al., 1996; 84 

Obreht et al., 2017; Torre et al., 2020), paleoenvironments (eg. Hatté et al., 2013; Liu and Liu, 2017; 85 

Schaetzl et al., 2018; Schatz et al., 2011), and paleolandscapes (eg. Hughes et al., 2010; Lehmkuhl et 86 

al., 2016; Leonova et al., 2015). The fertile topsoils of loess landscapes have been heavily employed 87 

in agricultural practices with highly specialized past to present agricultural use of the loess lowlands 88 

already during the Neolithic, 7000 years ago (Bellwood, 2005; Whittle and Whittle, 1996). The Late 89 

Pleistocene loess steppe and loess tundra also play an important role in understanding early modern 90 

human migration and the occupation of Europe (Chu, 2018; Haesaerts et al., 2004; Hauck et al., 2017; 91 

Neugebauer-Maresch et al., 2014; Obreht et al., 2017; Zeuner, 1956). Stratigraphic and 92 

pedostratigraphic records across European LPS exhibit a more or less constant pattern including 93 

marker horizons (especially paleosols and paleosols complexes) that can be followed over long 94 

distances (Antoine et al., 2019, 2016; Haesaerts et al., 2004). This pattern demonstrates that LPS are 95 

formed in response to at least supra-regional climatic forcing at various time-scales from glacial-96 

interglacial (Bronger, 2003; Kukla, 1977) to millennial-scale cycles (e.g. Dansgaard-Oeschger cycles, 97 

Antoine et al., 2009a; Moine et al., 2017; Rousseau et al., 2011, 2007; Zeeden et al., 2018). To 98 

understand the environments under which loess deposits form, it is crucial to know their occurrence 99 

and distribution, the geomorphological setting they formed in, and the climate conditions present 100 

during their formation (e.g. Pécsi and Richter, 1996; Smalley and Leach, 1978). To comprehend and 101 

analyze these environments, maps of the distribution of Quaternary aeolian sediments in western 102 

Eurasia mid-latitudes show not only their abundance, but also their distance to potential source 103 

areas and their relationship to elevation and relief (Lehmkuhl et al., 2018a, 2018b; Lindner et al., 104 

2017). As early as the first half of the 20th century, the climatic importance of Scandinavian and 105 

Alpine ice sheets for the zonal evolution of loess deposits in Europe was understood and implications 106 

for a zonal distribution of loess facies were proposed (e.g. Zeuner, 1937). Generally, the distribution 107 

of loess and especially the development of LPS in Europe were controlled by relief, climate, the 108 

distance to large river systems, past continental ice sheets and the exposed shelf area of the North 109 

Sea may have been a key factor (Antoine et al., 2016; Lehmkuhl et al., 2016).  110 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5 
 

 111 

Figure 1: Modern climatic conditions in Europe. Mean annual air temperature on the upper panel, 112 

annual precipitation on the lower panel. Data adapted from Karger et al. (2017).  113 

Maps highlighting the distribution of Quaternary aeolian deposits are an important tool to 114 

understand paleoenvironments in a spatial manner and context, and to deduce source and sink 115 

relationships at greater geomorphological scales. Maps are also useful tool in paleoecology and to 116 

reconstruct the dynamic of past human groups. The first loess maps at the European scale were 117 

produced by Grahmann (1932) and Fink et al. (1977). Later, a digital European Loess Map was 118 
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published by Haase et al. (2007). More recently, Bertran et al. (2016) generated a map of European 119 

Pleistocene aeolian deposits based on topsoil textural data from the Land Use and Cover Area frame 120 

Statistical survey database (LUCAS, Orgiazzi et al., 2018; Tóth et al., 2013). Lastly, Li et al. (2020) 121 

prepared global distribution maps of provenance and transport pathways of major loess areas and 122 

discussed their genesis. Although several examples of loess maps exist, most mapping approaches 123 

encounter difficulties related to scale and availability of geodata. The choice of scale depends on the 124 

research question at hand. Most maps are either very detailed on a local scale or are presented at a 125 

larger scale and lack precision. Combining several national or regional maps can circumvent this 126 

problem but this often leads to artificial spatial breaks within the geodata, which can only be 127 

amended by evaluation and generalization of the geodata sets (e.g. Lehmkuhl et al., 2018a, 2018b).   128 

While gathering and processing continent-wide geodata for an updated, seamless map of aeolian 129 

sediments in Europe, we already compiled three regional-scale maps. The loess map of Hungary and 130 

western Romania is based on geological and pedological data (Lindner et al., 2017). The subsequent 131 

map of the entire Carpathian Basin, combines geodata sources from ten different countries 132 

(Lehmkuhl et al., 2018a). Several cross-border problems arose due to different terminologies and 133 

definitions of loess and related sediments, which are a consequence of the complex genesis of loess 134 

sediments and the fundamental lack of representative genetic formation models (Lehmkuhl et al., 135 

2018a; Smalley et al., 2011; Sprafke and Obreht, 2016). Such difficulties are not only restricted to 136 

national borders, but are sometimes even present within one country, as shown in the map of loess 137 

and other Quaternary sediments in Germany (Lehmkuhl et al., 2018b). Due to the federal system in 138 

Germany, artificial breaks between different states could only be avoided by combining loess and 139 

loess derivates in one mapping unit (Lehmkuhl et al., 2018b).  140 

The present study builds upon this experience and uses continent-wide geodata to present a map of 141 

the distribution of Late Pleistocene aeolian sediments for the entire European continent. We follow a 142 

two-pillar approach, in which the mapping based multi-national geodata forms the starting point of a 143 

conceptual model of loess genesis. The continent-wide spatial synthesis of loess distribution provides 144 

the genetic basis of our geographically and geoecologically derived loess formation and distribution 145 

model. As already done for our previous publications, this map presents the late last glacial 146 

environment, mainly referring to Last Glacial Maximum (LGM ~26.5 to 19 ka; cf. Clark et al., 2009) 147 

environments (e.g. ice sheet margins, permafrost boundary, alluvial plains, dry shelfs) to 148 

comprehend the complex conditions during the last main period of loess formation in western 149 

Europe. Additionally, we divided the map into six domains and 17 subdomains of different loess 150 

regions to differentiate depositional environments and areas. We visualize our analysis using cross-151 

sections and 3-D images. To put the loess map into context and give an overview of the present day 152 

environmental setting, Figure 1 depicts the modern climatic conditions of the European loess 153 

covered regions (after Karger et al., 2017). 154 

We demonstrate and discuss the influence of topography, the distance to ice margins and potential 155 

source areas, as well as paleoclimatic patterns, such as the distribution of permafrost, on the 156 

distribution and depositional facies of loess deposits in Europe. For this we compile different LPS of 157 
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Europe. In addition, the data will be compared to the existing maps of Haase et al. (2007) and the 158 

pedological approach by Bertran et al. (2016). Finally, we propose a conceptual model of loess 159 

genesis with three main deposition (paleoenvironmental) regimes for loess formation, and discuss 160 

some aspects of changes in loess formation though time. We envisage our approach will have strong 161 

implications in better assessing the distributions and importance of aeolian and especially loess 162 

deposits in Europe, including their paleoclimate and chronostratigraphic relevance. 163 

2. Material and methods  164 

2.1. Source maps, spatial data, and processing 165 

Spatial geodata from 27 different European countries was compiled, processed, and unified in order 166 

to create a seamless map of the distribution of Late Pleistocene aeolian sediments and their 167 

potential sources. In most cases, this included georeferencing and digitizing printed national and 168 

regional geological, pedological, and geomorphological maps. The source maps were chosen on a 169 

case-by-case basis, depending on the respective availability, age and quality of the maps, e.g. in 170 

respect to the differentiation between Quaternary sediments in geological maps. The used source 171 

data are described in the following and summarized in Supplementary Table S1.  172 

The published map of Quaternary sediments in the Carpathian Basin (Lehmkuhl et al., 2018a; Lindner 173 

et al., 2017) combines harmonized soil, geomorphological and geological data from 10 countries 174 

(Austria, Bosnia and Herzegovina, Croatia, Czech Republic, Hungary, Romania, Serbia, Slovakia, 175 

Slovenia and Ukraine). The map of loess and other Quaternary sediments for Germany uses 176 

geological data of 16 federal geological surveys and data from the Federal Geological Survey 177 

(Lehmkuhl et al., 2018b). The geodata of these published maps are used without major changes in 178 

the new European loess map. Only the geodata from Austria and Croatia were re-evaluated and 179 

altered in comparison to Lehmkuhl et al. (2018a). For easier cross-border comparison, we unite loess 180 

and loess derivates as one class in the new European map. 181 

For the Carpathian Basin (Lehmkuhl et al., 2018a), only the eastern part of Austria was mapped, 182 

based on the loess distribution in the geological map of Austria (scale 1:750,000) by Vetters (1933). 183 

This reference is sufficiently precise in continental northeastern Austria, with loess sediments rich in 184 

carbonate, whereas loess derivates in more humid northwest and southeast Austria are not 185 

represented. The geological maps (scale 1:200,000) of Upper Austria (Krenmayr et al., 2006), 186 

Burgenland (Pascher, 1999), and Styria (Flügel and Neubauer, 1984), representing these regions do 187 

not show the widespread loess derivates or indicate their joint occurrence with fluvial terraces 188 

(mainly in northeastern Austria) or pre-Quaternary Pannonian Basin sediments (in southeast Austria). 189 

Local geological maps (scale 1:50,000) have different degrees of detail and are incompatible with our 190 

approach. The map of Quaternary sediments (scale 1:1,000,000) by Fink and Nagl (1979) shows three 191 

classes of loess sediments, each in continuous or discontinuous distribution. Next to typical loess 192 

widespread in northeastern Austria these are 'Braunlöß' (German for 'brown loess') and 'Staublehm' 193 

(German for 'dusty loam'), both representing loess derivates widespread in northwestern and 194 
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southeastern Austria. Our new loess map combines the loess distribution according to Vetters (1933) 195 

and the continuous loess derivates of Fink and Nagl (1979). To be compatible with mapping 196 

standards of neighboring countries, we exclude discontinuous loess derivates shown on the map of 197 

the Carpathian Basin for the lowland from southeastern Austria into eastern Hungary and northern 198 

Slovenia (Lehmkuhl et al., 2018a).  199 

The data source for Croatia was updated compared to Lehmkuhl et al. (2018a). Here the basic 200 

geological map of the Republic of Croatia (scale 1:300,000) was used (Croatian Geological Survey, 201 

2009). It differentiates between typical loess and marshy loess. Both were reclassified as 'loess and 202 

loess derivates' for the European loess map. Furthermore, the coastal areas of Croatia were 203 

complemented by the data from Italy (see below). Mapping on the Croatian site of the Carpathian 204 

Basin between Sava and Drava was problematic as the geological map of former Yugoslavia 205 

(1:500,000; Federal Geological Institute, 1970) did not always differentiate the Quaternary. This is in 206 

some parts of the region quite difficult due to the high sedimentological similarities between 207 

Neogene Pannonian lake deposits and Quaternary sediments in general. 208 

The loess sediments in the United Kingdom are based on a national loess map (Catt, 1985). The 209 

source map differentiates between variations in loess thickness. For the European map, only loess 210 

with a thickness greater than 1 meter from Catt (1985) was used to keep the different data sets 211 

comparable. The alluvial fill and fluvial deposits are based upon superficial deposits in the BGS 212 

Geology 625k map (scale 1:625,000), with the permission of the British Geological Survey (2013). For 213 

Belgium, the national soil map (scale 1:500,000) was used to map both aeolian sediments and 214 

potential sediment sources (Marechal and Tavernier, 1970). The distribution of aeolian sediments 215 

and sediment sources in the Netherlands is based on the geological map (scale 1:600,000; Zagwijn 216 

and Van Staalduinen, 1975). It distinguished between loess, dunes and cover sands. For France, a 217 

map of loess and other aeolian sediments (Antoine et al., 1999a; scale 1:1,000,000) based on various 218 

geological and geomorphological maps, initially compiled in the 1970’ for the first INQUA loess map 219 

of Europe (Fink et al., 1977), was digitized. For Switzerland, the national general geological map 220 

(Christ, 1944, 1942; Christ and Nabholz, 1950) was used as the most recent terminologically 221 

consistent country-wide representation of loess (scale 1:200,000). In this case, georeferenced raster 222 

files were available from which a map unit representing loess and loess derivates was vectorized. The 223 

geodata for Spain contains information about the spatial distribution of loess, aeolian sand and 224 

alluvial plains for central and northeastern Spain (Wolf et al., 2019) and is based on the geological 225 

maps (scale 1:50,000; de San José Mancha, 1973) and the work by Balasch et al. (2019).  226 

For Italy, the loess distribution – considered as ‘loess derivates' for the European loess map – is 227 

based on data collected by many scholars and summarized in Cremaschi (2004, 1990a, 1987) and 228 

data collected to draw an updated loess map (Zerboni et al., 2018). Moreover, the litho-229 

paleoenvironmental maps of Italy prepared by the CLIMEX Group (Antonioli and Vai, 2004) and the 230 

national soil map (Costantini et al., 2012) have been considered. For this compilation, 231 

geomorphological units suitable for loess accumulation and preservation have been selected and 232 

compared to the distribution of investigated sequences and already mapped loess covers. In details, 233 
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we considered the occurrence of stable flat surfaces, such as terraces at the margins of Po Plain, pre-234 

LGM moraines and isolated hills, allowing the production of an integrated map of loess distribution 235 

(Badino et al., 2019). The distribution of loess was interpolated from known locations of loess by 236 

spatial analysis of environmental and geomorphological variables.  237 

For Romania, the national geological maps (Ovejanu et al., 1968, scale 1:200,000; Săndulescu et al., 238 

1978, scale 1:1,000,000) albeit distinguish several loess chronostratigraphic units, do not always 239 

show a very good lateral representation of loess. Therefore, the approach by Lindner et al. (2017), 240 

that investigated western Romania, was extended to the whole country. The main source map 241 

analyzed is the soil map of Romania (Florea et al., 1971, scale 1 : 500,000), with which different soils 242 

and soil textures were translated into different corresponding loess probability classes. For example, 243 

dark Chernozems were assigned a loess probability class 3, while podzolic soils were assigned a loess 244 

probability class 0. These loess probability classes were then combined to achieve a homogenous 245 

classification of loess along the border region between Romania and Bulgaria. For Bulgaria, the 246 

geological map of Bulgaria (Cheshitev et al., 1989, scale 1:500,000) was digitized. 247 

National soil maps were digitized for Poland (Dobrzański et al., 1974), Moldova (Krupenikov et al., 248 

1969) and Ukraine (Sokolovsky et al., 1977a). The maps for Poland and Ukraine specifically stated 249 

which soils occur on loess or loess-like sediments. The Moldavian soil map provided a class solely for 250 

the substratum on which the different soils were formed. In this case, the two classes loess loam and 251 

eluvial-diluvial light clays and loams were reclassified as loess and loess derivates, respectively. For 252 

the loess distributions for Belarus and western Russia, the European loess map by Haase et al. (2007) 253 

was modified to fit the improved accuracy and scale. For this purpose, the map was compared to the 254 

ALOS digital elevation model (JAXA EORC, 2016). The loess distribution was aligned to the Pleistocene 255 

terraces and other geomorphological features determined via the elevation data. Afterwards, these 256 

terraces were vectorized as alluvial fill and fluvial deposits. 257 

In addition to the national data sets, pan-European data sets for potential aeolian Pleistocene 258 

sediment sources were evaluated and added to the map to substitute missing and deficient national 259 

datasets and add complementary map units. This includes inter alia Late Pleistocene and Holocene 260 

fluvial deposits, derived from the EUSR5000 soil map with a scale of 1:5,000,000 (BGR [Bundesanstalt 261 

für Geowissenschaften und Rohstoffe], 2005). This data set was primarily used to substitute the 262 

missing national data sets of fluvial deposits for the Netherlands, France, Spain, Italy, Belarus, and 263 

Russia. In some places, it was compared to the digital elevation model and modified to fit the Late 264 

Pleistocene terraces. In addition to alluvial fill and fluvial deposits, the modified Late Pleistocene dry 265 

continental shelf (Willmes, 2015) that represents the main source for aeolian sediments was added 266 

to the map. In order to pinpoint the main sediment sources and paths on the dry continental shelf, 267 

paleochannels on the shelves such as e.g. the Channel River were extracted using the European 268 

bathymetry data set EMODnet (2019). For an evaluation of the channel widths, estimates about 269 

discharge were made in comparison to recent rivers and paleoriver channels on the recent landmass. 270 

In the North Sea, areas with Holocene tidal sediment accumulation were corrected accordingly. As 271 

additional important paleoenvironmental factors we inserted the LGM northern timberline (mod. 272 
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acc. to Grichuk, 1992), the LGM boundaries of continuous and discontinuous permafrost 273 

(Vandenberghe et al., 2014a), the modified ice extent during the LGM (Ehlers et al., 2011), and the 274 

major rivers (current course; available at www.naturalearthdata.com). However, especially the limits 275 

of permafrost and the northern timberline are estimates and they are still a matter of debate. For 276 

example, a careful and comprehensive revision of paleoclimate proxies and periglacial features 277 

suggests that the lowland territory of the Carpathian Basin (or Pannonian Basin) was outside the 278 

continuous permafrost zone even during the most severe climate phases of the late Quaternary 279 

(Ruszkiczay-Rüdiger and Kern, 2015). These paleoenvironmental factors and recent rivers fit the pan-280 

European scale and are no references for national or regional scale studies.  281 

To harmonize and generalize the combined national and regional data sets, an automated tool was 282 

used. The tool is similar to the one used in Lehmkuhl et al. (2018b) and was applied to address cross-283 

map-problems like misalignments that can occur due to different scales and mapping approaches in 284 

the used maps. The tool consists of a 5-step-algorithm for aggregation, simplification and smoothing 285 

and was adjusted to fit an average national mapping scale (see scheme in Supplementary Figure S1). 286 

The result of this approach is a seamless map of Late Pleistocene aeolian sediments and potential 287 

sediment sources in Europe (Figure 2). Since it is mostly based on national and regional maps and 288 

data sets, the final resolution and accuracy is very high for a pan-European approach and a scale of 289 

approximately 1 : 1,000,000. A detailed table of the sources and a statistical analysis for each 290 

mapped country can be found in the supplementary material (Supplement Tab. S1). 291 

 292 
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Figure 2: Distribution of loess and selected Late Pleistocene sediments in Europe. The LGM extent of 293 

glaciers (Ehlers et al., 2011) and dry continental shelves (Willmes, 2015), as well as the 294 

northern timberline (modified after Grichuk, 1992) and the boundaries of continuous and 295 

discontinuous permafrost (Vandenberghe et al., 2014a) are also mapped.  296 

2.2. Visualization: Cross sections and 3-D images 297 

In order to outline the influence of the topography on the distribution of Late Pleistocene aeolian 298 

sediments, four north-south running cross sections were derived using the new map and the ALOS 299 

digital elevation model (JAXA EORC, 2016). To do so, polylines were interpolated based on the 300 

elevation data. The interpolated lines were superelevated by the factor 100 and intersected with the 301 

sediment distribution, glacial extents as well as the boundaries of (dis-) continuous permafrost and 302 

the northern timberline. Moreover, six block diagrams (3-D images) were created using ESRI 303 

ArcScene 10.6.1. The different 3-D images were superelevated with varying factors of 1 to 20, 304 

depending on the topography. The distribution of all mapped sediments was rasterized and 305 

superelevated to gain spatial and topographic impressions of selected areas within the differentiated 306 

loess domains. In some 3-D images, a further distinction between mapped sediments as e.g. Late 307 

Pleistocene fluvial deposits and Holocene alluvial fill or loess and loess derivates was possible due to 308 

the differing data sources. Key sites and major cities were displayed for orientation purposes. 309 

2.3. Statistics 310 

To analyze the distribution of loess in Europe, we extracted information on the surface and height 311 

distribution. For the area statistics, the area of each mapped unit in each (sub-)domain was 312 

calculated via the 'calculate geometry'-function in ArcMap 10.6.1. This was also done for each 313 

country in order to estimate the proportion of the national data sets.  314 

The ALOS digital elevation model (JAXA EORC, 2016) was clipped by the shapefiles representing ‘loess 315 

and loess derivates’ as well as ‘aeolian sand and sandy loess’. The resulting raster data sets were 316 

analyzed using the 'Zonal Statistics as Table' and the 'Zonal Histogram' tool with the vectorized (sub-) 317 

domains as feature zone data. The zonal histograms were used to calculate the relative surface 318 

percentage of each respective sediment unit at each elevation in meters above sea level (m a.s.l.). 319 

The outputs of the 'Zonal Statistics as Table' tool were used to assess main values such as minimum, 320 

maximum, mean, and median of the height distribution. In addition to the zonal statistics and 321 

histograms, the attribute tables of each clipped raster were exported for further analysis via RStudio. 322 

The data was then used to create boxplots, which illustrate the heights at which the corresponding 323 

sediments are distributed. To exclude extreme outliers, the upper and lower limit in the whisker was 324 

set to 1%. These outliers are probably related to misalignments between the loess shapefiles and the 325 

DEM, the scale of the source data or the smoothing process.  326 

2.4. Software 327 

Mapping, processing and statistical analysis were done using ESRI ArcMap10.6.1 in the focus of 328 

reproducibility and the broad availability of this software. Block diagrams were created using 329 
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ArcScene 10.6.1 and post-processed using Adobe Illustrator. Statistics were analyzed using R 3.4.1 (R 330 

Core Team, 2014) via the software RStudio 1.1.442 and Microsoft Excel 2016. Main graphics were 331 

created using R 3.4.1 or Adobe Illustrator. 332 

3. Spatial distribution of European loess landscapes 333 

The new map shows that loess is widely distributed in Europe (Figure 2). It spreads along the 334 

southern limit of the Pleistocene British and Fennoscandian ice sheets, spanning from southern 335 

England, through northern France, Germany, Poland and the Carpathian Basin to the Eastern 336 

European Plain. Within the Baltic part of Russia and northern Belarus, some loess patches can be 337 

found, which overlap with the LGM ice extend. These patches are part of the Late Pleistocene and 338 

late glacial sheets of aeolian sands and silts deposited after the ice receded. Several intramontane 339 

basins of the Central European low mountain ranges (German: Mittelgebirge), the valleys of large 340 

river systems such as the Rhône, Po, Rhine and Danube, and the lowlands of the Middle and Lower 341 

Danube Basin and the northern shore of the Black Sea are important loess covered areas. Some 342 

smaller spots reach the Mediterranean part of Europe and the Balkan Peninsula. The new map also 343 

depicts major alluvial and fluvial deposits. Here, the delta regions of the Rhône, Po and Danube rivers 344 

show an extremely wide Late Pleistocene and Holocene alluvial fill. These vast fluvial accumulations 345 

are the result of sea level rise after the deglaciation period and thus contains late glacial to Holocene 346 

deposits (e.g. Bruno et al., 2020).  347 

348 
Figure 3: Major domains (roman numerals) and subdomains (lowercase letters) of loess and 349 

loess derivates for the LGM loess landscapes as shown in Figure 2. 350 
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As the last glacial cycle comprises the last period of major loess deposition (Marković et al., 2015), we 351 

focus on that time period and added to our map the LGM extent of glaciers (modified according to 352 

Ehlers et al., 2011), the contemporaneously dry continental shelves (modified according to Willmes, 353 

2015), as well as the northern timberline (modified after Grichuk, 1992) and the boundaries of 354 

continuous and discontinuous permafrost (Vandenberghe et al., 2014a, Figure 2).  355 

We divided the European loess distribution in six major domains and 17 subdomains (Figure 3). For 356 

the differentiation we used the following criteria that determine the loess facies: (1) Influence of 357 

potential silt production areas (North European / Alpine ice sheets with glacial grinding and 358 

periglacial areas with frost weathering vs. drylands with soluble salts and prevailing insolation 359 

weathering). (2) Catchment areas, as rivers are very important regional silt transport agents and river 360 

valleys act both as sinks and sources of sedimentary particles. (3) Paleoenvironmental factors 361 

influencing the formation, preservation and transformation of loess deposits, such as past periglacial 362 

activity with characteristic overprinting of the deposits.  363 

The six major domains are (I) the Weichselian marginal or protogenetic zone; (II) the northern 364 

European loess belt; (III) the loess adjacent to Central European high altitude mountain ranges 365 

(northern fringe of the Alpine ice sheets and Carpathians); (IV) the Middle Danube Basin loess; (V) 366 

the eastern (Pontic) European loess; and (VI) the Mediterranean loess. Here we use the term ‘loess 367 

facies’ to describe its properties. This term should be seen in particularly in context of proximity to 368 

source as well as the type and intensity of weathering processes. Loess facies characteristics e.g. are 369 

influenced by factors such as the parent material of the deposits, distance of transport, and (post-) 370 

depositional milieus (Pécsi and Richter, 1996). There are large variations between loess deposited 371 

proximally to ice margins or more distally. Loess formation and preservation are among others 372 

factors strongly influenced by the environment. In western Europe, for example, sediment layers 373 

occur which show characteristics of laminated niveo-aeolian deposits (e.g. Antoine et al., 2016, 2001; 374 

Haesaerts et al., 2016), while in southeastern Europe, loess formation was rather homogeneous and 375 

more continuous sedimentation took place (Marković et al., 2015; Obreht et al., 2019; Zeeden et al., 376 

2016). Different potential major sources of aeolian deposits are the outwash plains of the British and 377 

Fennoscandian ice sheets, of alpine glaciations and the alluvial deposits of river systems. Sources and 378 

loess facies can also vary on a local scale. In southern Germany for example, we distinguish between 379 

loess linked to sources from the Swiss Alps (Upper Rhine Plain or Graben, subdomain IIIb) and from 380 

the Black Forest and the Eastern Alps (Upper Danube, subdomain IIIc). The most important (paleo-) 381 

environmental factors dividing the subdomains are (1) the boundaries of the (dis-) continuous 382 

permafrost, which strongly influences the preservation of loess, and (2) hydroclimatic factors, 383 

especially continentality which generally increases from west to east and strongly changes the 384 

chemical weathering and pedogenesis intensity. Both processes result in syndepositional/early 385 

diagenetic de-calcification, hydromorphic overprinting, and decomposition of organic compounds in 386 

humid and cold areas. On the contrary, in semi-arid regions, the preservation of dry, calcareous loess 387 

composed of almost pristine silty mineral dust dominates. Regarding pedogenesis, Chernozem-like 388 

(paleo-) soils are formed in the steppic areas, Greyzems (grey forest soils) in forest-steppe zones and 389 
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more rubified (paleo-) soils (e.g. chromic Cambisols or Terra Rossa) are found in areas under the 390 

Mediterranean climatic influence, whereas under Atlantic and boreal climatic environments Luvisols 391 

and Cambisols (brown soils) are predominant (European Soils Bureau Network, 2005). 392 

In the following, the six major domains and 17 subdomains are explained in detail to display the 393 

differences in aeolian sediment dynamics during the Late Pleistocene. The domains are described 394 

roughly from north to south. Figure 4 provides four loess landscapes transects that visualize the 395 

interplay of relief and loess in the various suggested subdomains across Europe (more information 396 

given in Chapter 3.7). In addition, we show a map with selected European loess sections as an 397 

orientation for the reader to locate the given examples in the text in Supplementary Figure 2. The 398 

figure is accompanied by Supplementary Table S2, which lists the referenced loess sections.  399 
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400 
Figure 4: N-S transects showing four exemplary loess landscapes across Europe. The location 401 

of the transects, the 3-D images (Figs. 7, 8, 10, 11, 13, 14), and the meso-scale loess 402 

landscapes is shown in the top map. Meso-scale loess landscape: Valley sections (So = 403 

Somme, Northern France Figure 6 and RH = Red Hill, Czech Republic, Figure 12) loess-edge 404 

ramp (LS = Lower Saxony, S = Saxony, both Germany, Figure 9). 405 
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3.1.  Loess domains and subdomains 406 

I: Weichselian marginal or protogenetic zone 407 

Following the suggestion by Łanczont and Wojtanowicz (2009) and Gozhik et al. (2014), we call the 408 

northernmost domain ‘Weichselian marginal or protogenetic zone’. However, this term and 409 

especially the associated genetic interpretation is used differently by Łanczont and Wojtanowicz 410 

(2009), who suggest that silty and silty-sandy deposits in this zone were created mainly as a result of 411 

cryogenic weathering. We use the geographical attribution and the name and interpret this as 412 

geographic transport and accumulation zone. Loess and loess derivates cover an area of ~248,000 413 

km². This domain comprises patches of sandy loess, sand sheets and cover sands (total ~15,000km²). 414 

The domain is divided further into two subdomains: Ia the western and Ib the eastern protogenetic 415 

subdomain.  416 

Ia: Western protogenetic subdomain 417 

This subdomain stretches between the Weichselian British Isles and Fennoscandian ice sheets and 418 

the northern European loess belt from southern England until the main drainage divide between the 419 

Vistula (Wisła) and Dnieper (Dnieper) rivers. In southern England loess deposits are usually found in 420 

rather thin covers with a maximum thickness of 4 m in local sedimentary traps (Catt, 1985, 1977). 421 

The new map only shows mapped loess deposits >2 m thick in Kent, Hampshire and Essex. For 422 

southern England such loess and loess derivates are described by Antoine et al. (2003). A recent 423 

review concerning loess in England is given in Assadi-Longroudi (2019).  424 

Sandy deposits form a belt spanning from Belgium, through the Netherlands, Germany, Poland up to 425 

northwestern Ukraine. Kozarski and Nowaczyk (1991) reported a relatively frequent occurrence of 426 

isolated loess and sandy loess patches in lower Oder (Odra) and Warta region (northwestern Poland). 427 

Within this belt, the aeolian sediments reach various thicknesses, up to several meters. However, 428 

quite many of these regional sand sheets have thicknesses less than 2 m. As our data is mainly based 429 

on geological maps, sediments with a thickness of less than 2 m are not all included in our map. The 430 

grain size decreases with increasing distance from the Weichselian ice sheets: aeolian sand and sandy 431 

loess can be found in proximity to the source areas (e.g. in Germany east of Hamburg and south of 432 

Berlin, respectively), whereas loess and loess derivates can be found in distal positions further south 433 

(domain II). There are also aeolian sand covers that are overlapping with the maximum extent of the 434 

Weichselian glaciation. This indicates a post-LGM sedimentation during the late glacial or even early 435 

Holocene (Hilgers et al., 2001b; Koster, 2005; Küster and Preusser, 2010; Zeeberg, 1998). 436 

Vandenberghe (in Schaetzl et al., 2018) gives a summary of these periglacial aeolian sands and their 437 

transition to loess. Most of the loess deposits in this subdomain can be found at elevations between 438 

27 m and 101 m, with its maximum at 229 m (cf. Chapter 3.3). 439 

Ib: Eastern protogenetic subdomain 440 

Subdomain Ib comprises the loess deposits on the plains of Belarus and Russia. Loess is found in 441 

elevations up to 285 m a.s.l. The southern border of this domain is the border between continuous 442 

and discontinuous loess mantle as suggested by Velichko (1990) along the line from Lviv through Kyiv 443 
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to Ryazan. Towards the north from this line up to the limits of Valdai (Weichselian) ice sheet, loess 444 

occurs rather sporadically (subdomain Ib) with the largest patches found in the vicinity of the cities of 445 

Minsk, Smolensk, Moscow and Vladimir. South of this line the loess forms an almost continuous 446 

mantle (domains II and V) stretching up to the coasts of Black and Azov Seas (cf. Gozhik et al., 2014). 447 

Discontinuous loess of subdomain Ib was deposited mainly during the Late Pleistocene (Velichko et 448 

al., 2006). The key loess sections in this area contain pedogenic marker horizons in the form of two 449 

well developed paleosol complexes assigned to Marine Isotope Stage (MIS) 5 and MIS 3, respectively, 450 

and are stratigraphically comparable to other marker paleosol complexes in European loess areas 451 

(Little et al., 2002; Rutter et al., 2003; Velichko, 1990). However, the particular feature of loess 452 

sequences in this subdomain are stratigraphically consistent and frequently repeating periglacial 453 

features indicating the impact of permafrost conditions and changing hydroclimate of the last glacial 454 

period (Morozova and Nechaev, 1997; Velichko et al., 2006). Loess deposits in this subdomain are 455 

found up to 277 m a.s.l. with a median of 199 m a.s.l. (cf. Chapter 3.3). 456 

II: Northern European loess belt 457 

The northern European loess belt preserves the most diversified pedo-sedimentary records in 458 

Europe. These deposits were strongly influenced by periglacial processes and environments and thus 459 

show a complex stratigraphy including erosional unconformities and permafrost features such as ice 460 

wedge casts or cryoturbation features as well as thermokarst erosion processes. This domain extends 461 

from western France through Belgium, Germany, and Poland to Ukraine and Russia. Geochemical 462 

results and heavy mineral signatures show that most material has its origin in northern Europe 463 

delivered by the British and Scandinavian ice sheets and contains also recycled material (Nawrocki et 464 

al., 2019; Rousseau et al., 2014; Skurzyński et al., 2020). In addition, there is a redistribution of the 465 

particles by periglacial braided rivers in the southern North Sea and eastern Channel, far from the 466 

original zone of production by glacial grinding (glacial fronts and outwash plain) (Antoine et al., 467 

2009a). We divided this domain into five subdomains: three (IIa-c) from west to east along the front 468 

of the Central European low mountain ranges stretching to western Ukraine and gradually passing on 469 

towards subdomain IId in northern Ukraine and Russian uplands. Towards the south, the subdomains 470 

IIa-c are mainly restricted by the Central European low mountain ranges. In subdomain IId there is a 471 

gradual transition towards domain V with no or less influence of permafrost and periglacial features 472 

towards the south. The last subdomain (IIe) includes basins within the Central European low 473 

mountain ranges with elevations between 200 and 600 m a.s.l.. Loess and loess derivates occur here 474 

rather in isolated patches covering mostly wide river terraces (in most cases older than the last 475 

glacial cycle). 476 

The northern boundary of the domain II with continuous loess distribution probably coincides with 477 

the northern fringe of past vegetation (biome) zones, as the vegetation influenced and enhanced the 478 

dust deposition. Due to the North Atlantic influence, loess in northern Europe has a rich stratigraphy 479 

that is generally similar in the whole domain from Normandy to Ukraine (Antoine et al., 2013, 2009b; 480 

Buggle et al., 2009; Jary and Ciszek, 2013; Lehmkuhl et al., 2018b, 2016; Rousseau, 1987; Rousseau et 481 

al., 2017, see Figure 5). There is a gradual transition from the subdomains IIa to IIc due to enhanced 482 
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continentality and less humidity towards the east. In addition, the distance to and extent of the last 483 

and penultimate Fennoscandian ice sheets influence the loess facies and thickness in these 484 

subdomains.  485 

This domain mainly contains loess that was deposited during the last glacial cycle. During this period, 486 

environmental conditions were highly variable and included erosive processes (slope wash and 487 

deflation, desert pavements) and periglacial processes (solifluction, involution, permafrost; 488 

Vandenberghe et al., 2014a; Zens et al., 2018). For example the Middle Pleniglacial (MPG) loess is 489 

rarely preserved due to several large erosion phases in contrary to the most recent loess (Upper 490 

Pleniglacial, UPG), that still occurs over a large area and exhibits the highest loess accumulation rates 491 

of the entire last glacial cycle (e.g. Frechen et al., 2003; Zens et al., 2018). Supra-regional attribution 492 

to past environmental conditions remains difficult (Kadereit et al., 2013; Sauer et al., 2016). 493 

However, long LPS sequences with a total thickness of more than 10 m, even including the whole 494 

Middle Pleniglacial (MPG) are locally preserved as cover deposits overlying high or middle fluvial 495 

terraces as in the Seine and Somme rivers (Grâce-Autoroute: Antoine et al., 2003; Saint-Pierre-lès-496 

Elbeuf: Coutard et al., 2018; Lautridou, 1987) or in dissolution sinkholes in the chalk bedrock 497 

(Coutard et al., 2018). In addition, recent improvement in dating allowed for evidencing a detailed 498 

succession of interstadial soil horizons for MPG or ~MIS3 in sections from the Rhine area, such as 499 

Nussloch (cf. Figure 5; Moine et al., 2017; Prud’homme et al., 2016) or at Remagen (Frechen and 500 

Schirmer, 2011; Schirmer, 2012) and other sections (e.g. Zens et al., 2018).  501 

Erosional unconformities are common features in this domain, which would make stratigraphic 502 

interpretations and correlations challenging (Antoine et al., 2001; Zöller and Semmel, 2001), but if 503 

they appear at supra-regional scale in response to global climate events they also offer strong marker 504 

levels for correlation (Antoine et al., 2016; Schirmer, 2016; Zens et al., 2018). The distribution of loess 505 

and related aeolian sediments was also influenced by sediment availability (e.g., proximity to the dry 506 

shelf, larger river systems, and the ice sheet margins itself), and prevailing wind directions. As a 507 

result, the thickness and temporal resolution of LPS can vary locally as well as between different 508 

loess regions (from < 2 to more than 10 m for the same time span). In our map, loess deposits in 509 

domain II cover an area of ~454,000 km², while aeolian sand and sandy loess are mapped on ~20,500 510 

km² (see Chapter 3.3).  511 
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Figure 5: Transect of 17 selected LPS from northern France to eastern Bulgaria, which span the last 514 

glacial cycle in the respective subdomains. For correlation, all sections schematically divided 515 

in chrono-climatic units of European loess sequences (Haesaerts and Mestdagh, 2000, 516 

Antoine et al., 2013): (Saalian), Interglacial (IG), Earlyglacial (EG), Lower Pleniglacial (LPG), 517 

Middle Pleniglacial (MPG) and Upper Pleniglacial (UPG). The interglacials are shown in brown 518 

and the glacials in grey scales. The hatchings indicate the soil types. The individual OSL ages 519 

can be obtained from the references given above the sequences; countries and subdomain 520 

are given as abbreviations. Danube Basin loess stratigraphic nomenclature follows Marković 521 

et al. (2015). 522 

IIa: Western European maritime (Atlantic) subdomain  523 

This subdomain contains the loess deposits in northern France, Belgium, the Netherlands, and the 524 

Lower Rhine Embayment in western Germany. Since the 1950s several loess stratigraphies based on 525 

paleosols and specific sedimentary units were developed for different subregions of this subdomain. 526 

The latest updates were recently published for central Belgium by Haesaerts et al. (2016), the Lower 527 

Rhine Embayment by Schirmer (2016), Lehmkuhl et al. (2016), and Fischer et al. (2019). A recent 528 

summary of the loess sequences in northern France and Belgium is given by Antoine et al. (2016). 529 

The studies include detailed descriptions of single units, their most important properties, and their 530 

chronostratigraphic position.  531 

In northern France, the Weichselian loess cover is represented by a semi-continuous mantle up to 532 

8 m in thickness in favored sediment traps such as leeward slopes or fluvial terraces (see Figure 6; 533 

Antoine et al., 2016). The LPS from the last interglacial-glacial cycle exhibit a particularly constant 534 

pattern, including well-identified pedological and periglacial marker horizons that can be followed in 535 

Belgium and towards western Germany (Antoine et al., 2016). In this Atlantic subdomain, more 536 

humid conditions enhanced the erosive periglacial processes, but also led also to preservation in 537 

favorable accumulative positions (Antoine et al., 2016; Lehmkuhl et al., 2016). 538 

For the whole area from Northern Brittany to Belgium the general stratigraphy of the last glacial 539 

period (115-11.7 ka) can be summarised as follows (Antoine et al., 2016, 2001; Zens et al., 2018): The 540 

Weichselian sequence starts above the truncated last interglacial brown leached soil complex 541 

(Rocourt / Elbeuf I) and can be further subdivided by four main chronoclimatic phases: (1) Early 542 

glacial (115-72 ka) consisting of a phase with grey forest soils (early glacial A) and a phase with 543 

steppe-like soils (early glacial B); (2) Lower Pleniglacial (LPG, 70-58 ka): first typical homogeneous 544 

loess deposits marking the first occurrence of typical periglacial conditions; (3) Middle Pleniglacial 545 

(MPG, 58-32): Loess deposition was strongly diminished and frequent phases of erosion reduced 546 

the resolution of MPG sediments in most LPS (Antoine et al., 2001). As a result of the relocation, the 547 

older units are redeposited in colluviums. A brown soil complex and very weak aeolian deposits have 548 

been preserved only in positions which are less affected by erosion; (4) Upper Pleniglacial (UPG, 32-549 

15 ka): characterised by a drastic increase in loess sedimentation and the formation of tundra-gley 550 

horizons and large ice wedge casts occur, especially between 30 and 23 ka (Antoine et al., 2016; Zens 551 

et al., 2018). 552 
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 553 

Figure 6: Loess stratigraphy in northern France (subdomain IIa) controlled by asymmetric valley 554 

topography (modified according to Antoine et al., 2016). 555 

The Belgian and Dutch parts of Limburg are partly covered by loess (van Baelen, 2017; Zagwijn and 556 

Van Staalduinen, 1975) and the deposits have a continuous thickness of 2 to 6 m (Antoine et al., 557 

2003, 1999a; Henze, 1998; Kels, 2007; Meijs, 2002). Both, Weichselian and Saalian loess deposits 558 

have been preserved (Kolfschoten et al., 1993; Meijs et al., 2013; van Baelen, 2017; Vancampenhout 559 

et al., 2013). The LPS Romont (cf. Figure 5), located between the villages Bassenge and Eben-Emael 5 560 

km southwards of Maastricht in Belgian Limburg (Haesaerts et al., 2011) is defined as a stratotype in 561 

Belgium because the sequence is the type locality of the Eben-Zone (Schirmer, 2003) and the Rocourt 562 

Tephra (Juvigné et al., 2008).  563 

The Lower Rhine Embayment shows clear differences in the presence and properties of loess related 564 

to the (meso-) relief. Loess sections in plateau-like positions are usually shorter and more affected by 565 

erosion than sections in depressions, paleochannels, on stretched slopes and slope toes. The latter 566 

ones are characterized by reworked sediments of older paleosols redeposited as heterogeneous, 567 

finely laminated colluvium (Lehmkuhl et al., 2016; Schirmer, 2016 and references therein). After the 568 

Eemian interglacial, Chernozem-like humic soils were formed under steppe-like environmental 569 

conditions. This was followed by a transition to colder and more continental conditions, which are 570 

reflected in the respective loess stratigraphies (eg. Haesaerts et al., 2016; Schirmer, 2016; Semmel, 571 

1998). The first phases of the last glacial cycle are characterized by redeposited finely laminated 572 

sediments while the loess packages contain several thin and weakly developed tundra gleys and 573 

humic soils (cf. Figure 5; Zens et al., 2018). The most recent loess layer in this subdomain can be 574 

divided into two sedimentary facies: the niveo-aeolian (cold-humid) and the homogenous loess (cold-575 

arid). They were termed Hesbaye and Brabant loess in Belgium and the Lower Rhine Embayment 576 

(e.g. Haesaerts et al., 2016; Schirmer, 2016) and can be also observed in northern France (Antoine et 577 

al., 2016). 578 

Figure 7 shows the clear boundary of loess from the lowlands in the southern part of the Lower Rhine 579 

Embayment against the northern margins of the Eifel Mountains as part of the Rhenish Massif. Its 580 
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restriction to lower elevations in the foreland is a typical feature for this subdomain. Loess in this 581 

subdomain is distributed on elevations up to 316 m with a median at 117 m (cf. Chapter 3.3).   582 

 583 

Figure 7: 3-D image of the distribution of loess, sandy deposits, and the late Quaternary floodplain in 584 

the southern part of the Lower Rhine Embayment. The size of the 3-D image is 40 x 55 km. 585 

Superelevated by factor 1 (no superelevation). 586 

IIb: Western European continental subdomain 587 

The subdomain IIb is situated in northern Germany on the northern margin of the Central European 588 

low mountain ranges from the foreland of the Rhenish Massif east of the Rhine River towards the 589 

eastern part of the foreland of the Harz Mountains close to the Elbe River. Further to the east it 590 

includes the loess region of Saxony north of the Ore Mountains, the northernmost part of Bohemia in 591 

the Czech Republic, and parts of western Poland up to the Odra (Oder) River. Here, thick loess 592 

sequences are mainly preserved in the eastern part of this subdomain, especially in parts of Saxony. 593 

In the western parts, e.g. in the foreland of the Harz Mountains, a more undulating relief developed 594 

on bedrock is covered with a generally thin loess cover. This is due to the advances and fluctuations 595 

of the ice sheets during the Saalian glacial period into this region and thus resulting in the absence of 596 

older LPS. Lehmkuhl et al. (2016) summarized the differences and similarities of LPS in the transition 597 

from more humid areas in the Lower Rhine Embayment towards drier areas in the east. In the 598 

foreland of the Harz Mountains, more continental climate condition lead to less intensive periglacial 599 

slope processes and solifluction, which is expressed by more complete preservation and less 600 

pronounced erosion and erosional discordances (Lehmkuhl et al., 2016). Figure 8 shows a 3-D 601 
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visualization of the loess distribution surrounding the Harz Mountains including the two selected 602 

sections of Hecklingen and Zilly. Recent papers provide a summary for selected sections in the 603 

northern foreland of the Harz Mountains (Krauß et al., 2016; Lehmkuhl et al., 2016). A stratigraphy is 604 

depicted in Figure 5. 605 

 606 

Figure 8: 3-D image of the distribution of loess, sandy deposits, and the late Quaternary floodplain 607 

surrounding the Harz Mountains in northern Germany. The size of the 3-D image is 180 x 190 608 

km. Superelevated by factor 20. 609 

The northern margin of the loess in this subdomain is in some areas a sharp, rectilinear boundary. 610 

Sections at this loess boundary show a distinct succession of loess, sandy loess and loess with sand 611 

layers, which were later modified by aeolian and cryogenic processes (Gehrt, 1994; Gehrt and 612 

Hagedorn, 1996). In Figure 9, the general composition of the so-called loess-edge ramp (Leger, 1990) 613 

(German: 'Lössrandstufe') and the stratigraphy in Lower Saxony and Saxony is summarized (redrawn 614 

and modified according to Gehrt (1994) and personal communication by E. Gehrt, 2020). 615 

Luminescence dating from sections of the loess-edge ramp leads to the assumption that the latest, 616 

northernmost loess formation occurred until the late glacial period. The time span covered by 617 

luminescence ages sedimentation starts at ~28 ka and lasts with the sandier sediments from about 618 

15 until 8 ka with the averages concentrated at ~11 ka. These findings confirm earlier suggestions 619 

that the northernmost loess deposits in northern Germany represent the return of strong aeolian 620 

processes (westerly winds) under the cold and dry conditions during the late glacial shaping this 621 

northern loess boundary (Hilgers et al., 2001a). 622 
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In Saxony, the thickness of the loess deposits increases from south to north and reaches a maximum 623 

of around 8-12 m close to the northern boundary. Northwards, there is an abrupt change from loess 624 

deposits to coarser-grained aeolian, glacial or glaciofluvial sediments (Haase et al., 1970; Meszner et 625 

al., 2014, 2013). The so-called loess-edge ramp, comparable, but still distinct to those in Lower 626 

Saxony, marks in parts of Saxony this clear northern border. With a step of around 10 m, it is 627 

significantly higher than the one in Lower Saxony (see Figure 9, redrawn and modified according to 628 

Haase et al., 1970). Meszner et al. (2013) conclude from sedimentological patterns and grain size 629 

distributions that dominantly westerly winds delivered the dust. 630 

 631 

Figure 9: Loess-edge ramp (“Lößrandstufe”) in Germany: Examples from Lower Saxony (redrawn and 632 

simplified according to Gehrt (1994) and personal communication by E. Gehrt, 2020) and 633 

Saxony (redrawn and modified according to Haase et al., 1970). 634 

Loess in southwestern Poland is distributed in several isolated patches differing in sediment 635 

thickness, stratigraphy and basic physical properties (Jary, 2010, 1996; Jary et al., 2016, 2002). Its 636 

aeolian origin was recognized early by Orth (1872). Thin, discontinuous patches of loess and loess-637 

derived sediments prevails but there are also thick loess covers (up to 10-15 m) with well-defined 638 

stratigraphy of the last glacial period (Jary, 2007; Moska et al., 2019, 2012, 2011). Aeolian silt was 639 

derived and deposited within a relatively narrow corridor between the Weichselian Ice Sheet and 640 

Sudetes Mountains. The loess material was presumably redistributed by the Great Odra Valley fluvial 641 

system (Badura et al., 2013) and then blown to the adjacent elevations by strong winds from the NW. 642 

The loess-edge ramp occurs both on the left and right side of the Odra river valley confirming the 643 

role of the river as a main transport and redistribution medium before the final aeolian event. Loess 644 

in this subdomain is distributed on elevations up to 381 m with a median of 160 m a.s.l. (cf. Chapter 645 

3.3). 646 
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IIc: Central European continental subdomain 647 

The third loess subdomain (IIc) is the continuation of the northern European loess belt to the east on 648 

the area of Vistula (Wisła) basin stretching within the widening corridor between the Carpathian 649 

mountain ranges in the south and the protogenetic zone in the north towards western Ukraine 650 

(Badura et al., 2013). There is a gradual shift from subdomain IIb to more continental conditions of 651 

subdomain IIc. This also affected the periglacial processes with more frequent cryoturbation horizons 652 

and larger ice wedge casts in the east (Jary, 2009; Jary and Ciszek, 2013). Compared to subdomain IIb 653 

this area has a greater distance to the Weichselian ice sheet and due to the absence of Saalian ice in 654 

most parts also pre-Weichselian loess deposits occur. Close to the state boundary between Poland 655 

and Ukraine there is a transitional area to the eastern European continental subdomain (IId). We 656 

draw this eastern border at the main drainage divide between the rivers that drain toward the Baltic 657 

Sea and those that drain towards the Black Sea. In addition, the maximum extent of the Saalian ice 658 

sheet is also close to this border (Figure 21). This subdomain includes also lowlands ( ~ 270 m asl) of 659 

Oder (Odra) River basin in the northeastern part of Czech Republic (south Silesia, the vicinity of 660 

Ostrava city) where up to 15 m thick Middle and Upper LPSs are preserved in isolated patches 661 

(Macoun et al., 1965). In comparison with southerly situated loess cover of Morava valleys (domain 662 

III), the loess is usually completely decalcified and signs of periglacial processes are more frequent. In 663 

many sites, textural and structural features of the loess (e.g. significant laminated structure or 664 

abundant ox/redox. signs) together with the specific combination of wetland and aquatic mollusc 665 

assemblages indicate an ephemeral swamp or limnic environment, in which dust was deposited (so 666 

called ‘swamp loess’ or ‘Sumpflöss’). This facies corresponds to large proglacial lakes and wetlands 667 

existing in the region during the Saalian and Elsterian glaciations. 668 

In Poland, Maruszczak (1991, 1985) distinguishes three regions of loess occurrence within the 669 

southern Polish upland region (in the vicinity of Kraków, Sandomierz and Lublin) and two foothill 670 

regions in the foreground of the Sudetes (subdomain IIb) and the Carpathians (subdomain IIc). A 671 

typical feature of the Polish loess areas is their occurrence as isolated patches and its transitional 672 

position between subdomains IIb (SW Poland) and IIc (SE Poland). Many authors claimed that the 673 

loess covers in Poland reflect present and past regional climatic conditions: continental in the east 674 

and more oceanic in the west (Cegła, 1972; Jersak, 1973; Maruszczak, 1991). The thickness, 675 

continuity and stratigraphic differentiation of loess cover increase towards the east (Jary, 2009; Jary 676 

and Ciszek, 2013). These isolated loess patches are composed of units of different ages; Late 677 

Pleistocene loess, however, predominates in the area of loess occurrence. In eastern Poland, loess of 678 

several glacial cycles formed thick sequences, locally up to 40 m thickness. A fundamental rule of 679 

loess arrangement in Poland is the connection of this deposit with a specified hypsometric level of 680 

180-300 m a.s.l.. Locally, the lower limit drops to 150 m whereas the upper limit of loess occurrence 681 

may exceed 400 m a.s.l. (Jersak, 1973; Maruszczak, 1991, 1985, 1969). The thick loess mantles are 682 

often limited by distinct morphologic margins controlled by primary accumulation. The main dust 683 

sources for loess formation in Poland are usually related to the Pleistocene Fennoscandian ice sheets 684 

(e.g. Jahn, 1950; Jary and Kida, 2000; Smalley and Leach, 1978; Tutkovsky, 1899). However, some 685 

authors stress the role of local sources (e.g. Malicki, 1950; Maruszczak, 1991) and/or the significance 686 
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of fluvial processes delivering material for aeolian deposits through the Vistula River and its 687 

tributaries  (e.g. Jersak, 1973; Maruszczak, 1991). Most of the loess in this subdomain is found at 688 

elevations between 218and 292 m a.s.l., with a minimum and maximum at 169 m and 438 m a.s.l., 689 

respectively (cf. Chapter 3.3).  690 

IId: Eastern European continental subdomain 691 

Loess in eastern Europe stretches from northern Russia and Belarus towards Ukraine, Romania and 692 

Bulgaria in the south, until the shore of the Black Sea, and covers including domain V and the Volga 693 

loess outside of our map more than one million square kilometers. This loess transitions gradually 694 

eastwards into the (Central) Asian steppe belt. South of the latitude of Kyiv, a virtually continuous 695 

and thick loess cover begins (Gozhik et al., 2014). We separated this subdomain from domain V 696 

because of the decreasing influence of periglacial processes (and Mid Pleistocene glacial deposits) 697 

and the increasing dust deposition towards the south. A recent example for Late Pleistocene loess in 698 

the Central Russian Upland is given in Sycheva et al. (2020).  699 

Important source areas of this loess subdomain and also for domain V were the alluvial and 700 

lacustrine plains that formed in front of the advancing and retreating Pleistocene ice sheets (Buggle 701 

et al., 2008; Makeev, 2009; Velichko, 1990; Velichko et al., 2006). The outwash material was 702 

transported by north-south flowing rivers (e.g. Dneiper, Dniester, Volga) or by frequent northerly 703 

winds. The loess cover in this subdomain is very thick (usually 10-20 m , Haase et al., 2007; Li et al., 704 

2020 report local occurrences up to 50 m). In this area, dust accumulated in more tundra-like 705 

environments. In some regions there are older glacial tills from the maximum extent of the Elsterian 706 

(Oka) and Saalian (Dnieper) glaciations even intercalated into the loess deposits. Especially the 707 

deposits of the Dnieper glaciation in the middle Dnieper basin are an important stratigraphic marker 708 

horizon, that is found approx. as far south as the latitude of Dnepropetrovsk (Gozhik et al., 2014). 709 

They occur either at the base of the loess cover or as an intercalated layer within loess sequences (cf. 710 

Figure 5; Rousseau et al., 2011). In addition, periglacial features are visible in the sections of this 711 

region (Veres et al., 2018). There is a gradual transition between this subdomain and domain V 712 

following the direction of the permafrost boundary. This transition is gradual because of the 713 

fluctuation of the ice margins and permafrost distribution during the Pleistocene. Most of the loess in 714 

this subdomain is distributed in elevations between 141 m and 225 m a.s.l. with maximum of 372 m 715 

a.s.l. (cf. Chapter 3.3).  716 

IIe: Central European low mountain ranges and basins subdomain 717 

The fifth subdomain of the northern European loess belt is located in basins of the German and 718 

northern Czech low mountain ranges. As described by Lehmkuhl et al. (2016, 2018b), there is a 719 

topographic limitation of these basins and the distribution pattern of their deposits is rather 720 

fragmentary. Exceptions are the lowlands of Lower Franconia (Germany) east of Frankfurt am Main 721 

(e.g. Roesner, 1990) or the Wetterau as a part of Hessian basin between Frankfurt am Main and 722 

Gießen (see stratigraphy in Figure 5; Steup and Fuchs, 2017). We attributed the loess downstream of 723 

the Alps in the eastern vicinity of the Rhine River in southwestern Germany to subdomain IIIc.  724 
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The loess sections further to the east in Bohemia (western part of Czech Republic) have more 725 

similarities with sections of the northern European loess belt (domain II) than those in the south 726 

Moravia (the southeastern part of the Czech Republic (domain III)), as apparent e.g. from 727 

geochemical and rock magnetic investigations conducting on the reference Late Pleistocene LPS 728 

(Hošek et al., 2015). The data reveal stronger leaching of central Bohemian compared to south 729 

Moravian loess and paleosols suggesting more humid conditions in the more northwesterly situated 730 

Bohemia. Consequently, these findings suggest that the transitional zone between the two climate 731 

regions, or the two different modes, of the Late Pleistocene climate in central Europe could be quite 732 

narrow. Bohemia was and is under the direct influence of Atlantic cyclones whereas south Moravia 733 

belongs geographically to the Pannonian Basin, which was marked in the Late Pleistocene by 734 

continuous dry continental climate conditions, under the effects of a temperate sub-Mediterranean 735 

climatic influence (Krolopp and Sümegi, 2002; Marković et al., 2007). In addition, the region benefits 736 

from its rain shadow position in the southeast of the Bohemian Massif and its proximity to the 737 

Carpathian Basin from where dry and warm air masses can penetrate. Therefore, we attribute the 738 

Bohemian area to IIe and the Moravian loess to the subdomain IIId. Most of the loess in this 739 

subdomain is distributed in elevations between 228 m and 326 m a.s.l. with a minimum and 740 

maximum of 125 m and 480 m a.s.l. (cf. Section 3.3). 741 

Marker features and horizons allowing correlation in domains II and III  742 

The complexity of the pedosedimentary and stratigraphical evolution of the last glacial cycle loess is 743 

particularly high in subdomain IIa and decreases towards domain V, while the loess thickness 744 

increases on average (Figure 5). Nevertheless, also in domain V there are situations in which 745 

significantly less sediment was deposited, but where many time phases can be traced in various 746 

proxy data (e.g. Kurortne). By using pedostratigraphical units as markers, a correlation over the 747 

whole European loess area is possible. During phases of strong erosion (visible by unconformities) in 748 

the LPG and UPG, especially but not exclusively on slope sites the Interglacial and MPG soil 749 

complexes were eroded. Romont and Mützenberg show the patchiness of some profiles and 750 

situations and Nussloch is rather an exception concerning preservation conditions and high 751 

resolution. In order to cover as many phases of the last glacial cycle as possible, for some 752 

subdomains more than one representative profile was selected. 753 

Marker features such as the Eltville tephra, or the Eben unconformity allow the inter-section 754 

correlation of individual profiles, and also the correlation between subdomains and domains, 755 

especially in-between domain II and III. In these domains, the homogenous uppermost loess package 756 

often starts above a periglacial marker horizon: the Nagelbeek tongue horizon (Haesaerts et al., 757 

1981) or Nagelbeek Complex (E4 Soil) (Haesaerts et al., 2016; Schirmer, 2016, 2003). This important 758 

marker horizon follows a major unconformity (Eben discordance) which is continuously traceable in 759 

the western and Central European loess region (Krauß et al., 2016; Pouclet and Juvigne, 2009; Zens et 760 

al., 2018, 2017). The niveo-aeolian laminated loess below contains several tundra gleys (Gelic 761 

Cryosols) and the Eltville Tephra (Pouclet and Juvigne, 2009; Zens et al., 2017), which also allows 762 

correlations beyond different domains (Zens et al. 2017). This laminated loess facies is a marker-763 
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facies found from western France to Belgium and even to the Czech Republic in Dolní Věstonice 764 

(Antoine et al., 2013; Fuchs et al., 2013; Kukla, 1977) for the period between about 28 -23 ka (Moine 765 

et al., 2017). For the MPG, the main pedostratigraphic pattern which allows correlation (Zens et al., 766 

2018) is the occurrence of various interstadial soils with varying intensities and pedogenetic (Saint-767 

Acheul-Villiers-Adam; Antoine et al., 2003) or Lower and Upper Brown Soils (Antoine et al., 2016) in 768 

France, Les Vaux Soil in Belgium (Haesaerts et al., 2016); Lohne Soil, Böcking Soil, Boreal Soil 2 and 4 769 

(Zens et al., 2018; Zöller and Semmel, 2001), Remagen-1 to 5 Soils (Frechen and Schirmer, 2011), and 770 

Boreal Brown Soil (Antoine et al., 2013) in Germany. Due to low sedimentation rates, the MPG soils 771 

are generally condensed to a polygenetic brown soil complex, which represents the entire period. 772 

However, these are often preserved in domain II and the adjacent. During the Lower Pleniglacial the 773 

first Weichselian loess deposit (60-70 ka) can be considered as a very good level-mark for correlation 774 

through the area (Haesaerts et al., 2016). Below this loess layer follows a Boreal brown soil called 775 

Havrincourt Brown Silt in France (cf Figure 5; Antoine et al., 2014), Boreal Soil 1 (Zens et al., 2018) or 776 

Malplaquet Soil in Belgium (Haesaerts et al., 2016), and Jackerath Soil (Regosol-Cambisol) in the 777 

Lower Rhine Embayment (Schirmer, 2016). Finally, a characteristic humic soil complex, the 778 

Humiferous complex of Remicourt (Haesaerts et al., 2016), Saint-Sauflieu Soil Complex (Antoine et 779 

al., 2016), Mosbacher Humus Zone (cf Figure 5, Zens et al., 2018), Isohumic Soil (Antoine et al., 2013), 780 

Pryluky complex (Tecsa et al., 2020 and references therein) developed under early glacial conditions 781 

and including up to four distinct layers is traceable from northern France towards Ukraine (Antoine 782 

et al., 2013; Haesaerts et al., 2016; Haesaerts and Mestdagh, 2000). Due to its widespread 783 

distribution this soil complex serves as one of the major marker units of the last glacial (Figure 5).  784 

The preservation of the markers, especially the tephra layers, is often achieved by high aeolian 785 

accumulation rates at the time of their deposition. Therefore, for example at Ringen five individual 786 

bands of the Eltville tephra can be differentiated (Zens et al., 2017). In Susak, the loess is 787 

interfingered with rapidly deposited laterally strongly varying aeolian sands as well as three tephra 788 

layers (Wacha et al., 2011b). 789 

III: Loess adjacent to Central European high-altitude mountain ranges (northern Alps and 790 

Carpathians) 791 

This domain comprises the western, northern and northeastern margins of the European Alps, the 792 

northern part of the Carpathian Basin and Transylvania and the adjacent basins and catchment areas 793 

that drain these areas. During the LGM this domain was influenced by periglacial activity indicated by 794 

tundra gley soils and cryogenic features in the LPS. The resulting subdomains are located in the 795 

valleys of the Saône and Rhône River, the Upper Rhine graben and the upper reaches of the Danube 796 

including adjacent areas. Additionally, we enclose the northern part of the Carpathian Basin 797 

(southern slopes of the northern Carpathian Mountain ranges) and Transylvania, as the sequences of 798 

this area are also influenced by periglacial processes. These areas are strongly impacted by the 799 

mentioned major rivers, originating in the Alps (Rhône and Rhine), the Black Forest (the Danube 800 

major tributaries, like Inn River, draining the central Alps), and the northeastern Carpathian 801 

Mountains (Tisa, Somes, Mures), which are responsible for the silt transport from the Pleistocene 802 
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alpine glaciers. All these areas are still influenced by periglacial conditions during loess accumulation 803 

and therefore the LPS of this domain are usually comparable with those from the northern European 804 

loess belt (domain II). A west-east trend in increasing climate continentality, modulated by regional 805 

topographic variations, can be recognized in the character of the intercalated interglacial and 806 

interstadial paleosols. Our map shows ~53,000 km² loess, ~15,500 km² aeolian sand and sandy loess, 807 

and ~79,000 km² alluvial fill and fluvial deposits in this domain.  808 

IIIa: Saône to lower Rhône subdomain  809 

This subdomain in the Saône and lower Rhône catchments in southeastern France stretches from the 810 

confluence of the Rhône with the Saône River northward towards the Vosges. The source of the 811 

Rhône is close to the Pleistocene Rhône glacier and other smaller alpine glaciers along the western 812 

margin of the Alps. The climatic conditions along this north-to-south trending region represent a 813 

gradient from a humid-temperate to a Mediterranean climate today or warmer temperate climatic 814 

condition without permafrost during the LGM, respectively. Because the area south of Valence 815 

(~45°N) has been strongly influenced by the Mediterranean climate conditions we categorized this 816 

part to subdomain VIa (Bosq et al., 2020a, 2018). Recent studies investigate the Pleistocene loess of 817 

these areas, highlighting the Rhône River as the major dust source in the area. The (paleo-)wind 818 

direction in the southern part, the Rhône graben, is north-south since air masses are channelled and 819 

concentrated by the topography. The more Mediterranean influenced loess sequences of the 820 

southern Rhône valley and the Provence seem to have their source area more in ophiolitic areas of 821 

the Alp massif (Bosq et al., 2020a). Most of the loess in this subdomain is distributed in elevations 822 

between 204 m and 272 m a.s.l. with a minimum and maximum of 131 m and 515 m a.s.l. (cf. 823 

Chapter 3.3). 824 

IIIb: Upper Rhine subdomain  825 

This subdomain comprises loess in the Upper Rhine Plain (Graben) and adjacent areas, such as the 826 

Kraichgau and Neckar Basin to the east. Common features of this subdomain are (1) the Pleistocene 827 

glaciations of the Alps and the higher mountains of Jura, Vosges and Black forest as proximal areas 828 

for glacial silt production, (2) periglacial silt production and regional sediment transport of the Rhine 829 

River and its tributaries until the northern end of the Upper Rhine plain and aeolian transport from 830 

the wide Pleistocene braided river plain, and (3) features of periglacial overprinting of the LPS. 831 

Switzerland was largely covered by ice during the last glaciations. Loess deposits of few meters in 832 

thickness are present on high terraces and hills in the lowlands close to Aarau and along the Rhine 833 

River (Christ, 1944, 1942; Christ and Nabholz, 1950; Gouda, 1962). In the Upper Rhine Plain, the 834 

Rhine developed a large braided river system during the Pleistocene providing abundant material for 835 

mineral dust deflation. In the marginal hills of the southern Upper Rhine Plain and at the Kaiserstuhl, 836 

loess reaches in places thicknesses of more than 25 m (Guenther, 1987). Figure 10 indicates locations 837 

of important LPS in the Rhine-Neckar region, including the European reference LPS Nussloch located 838 

in a loess greda (dune-like morphology), characterized by an exceptional high last glacial dust 839 

accumulation rate (see Figure 5, Antoine et al., 2009b, 2001; Moine et al., 2017 and references 840 

therein). This 3-D image illustrates the distribution of alluvial fill and aeolian sediments from the 841 
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middle Upper Rhine Graben and the adjacent eastern shoulders with elevations between 300 and 842 

600 m a.s.l. (e.g. the Kraichgau and Neckar Basin). Aeolian sands are located close to the Rhine, 843 

indicating their local transport by westerly winds. Further east widespread loess covers indicate 844 

large-scale silt transport from the dry riverbeds of the Rhine, with a clear Alpine contribution. 845 

Antoine et al. (2009a) further assume significant deposition of dust from the English Channel and 846 

northern France in the region close to Heidelberg. Upstream the Neckar and its tributaries we 847 

assume next to the contribution from the glaciated Black Forest regional periglacial silt sources. Loess 848 

formation in subdomain IIIb occurred mainly under the cold and dry periglacial condition in a cold 849 

tundra environment (recent publications and references therein: Kadereit et al., 2013; Krauß et al., 850 

2017; Zens et al., 2018). The lowlands in this region are slightly dryer compared to the neighboring 851 

regions in the north and west, but there are also a lot of similarities to the northern European loess 852 

belt including tundra gley soils (Gelic Cryosols) and some of the same marker soil horizons. 853 

Swiss LPS are few and poorly studied. Most known is probably the c. 17 m thick Middle to Late 854 

Pleistocene section formerly exposed in the brickyard of Allschwil near Basel (Zollinger, Gaby, 1991). 855 

23 km upstream the Rhine, drillings revealed more than 6 m thick last glacial loess deposits, recently 856 

studied by Gaar and Preusser (2017). Close to Freiburg, at Heitersheim and Riegel, 20 to 30 m of loess 857 

contain one or more interglacial Bt horizons (Guenther, 1987). There are also thick loess sequences 858 

on the western side of the Rhine River in France; the most prominent site is Achenheim, including 859 

three interglacial paleosols along a more than 30 m thick LPS and which contains also Paleolithic 860 

findings (see Rousseau and Puisségur, 1990 and references therein). The LPS of the Rhein-Neckar 861 

region are shown in Figure 10 (see also Bibus, 2002). The 23 m thick LPS Nussloch is well known as 862 

highly resolved Upper Pleniglacial loess record of central Europe (see Figure 5). At Mainz-Weisenau, 863 

at the northern end of the Upper Rhine Plain, an over 6 m thick profile exposed the last interglacial 864 

soil and three early glacial humus zones (Bibus et al., 2002). Most of the loess in this subdomain is 865 

distributed in elevations between 186 m and 349 m a.s.l., with a minimum and maximum of 107 m 866 

and 577 m a.s.l. (cf. Chapter 3.3). 867 
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 868 

Figure 10: 3-D image of the distribution of loess, sandy deposits, the Late Pleistocene fluvial deposits 869 

and Holocene floodplain in the Upper Rhine Graben, the Kraichgau and Neckar Basin. The 870 

size of the 3-D image is 95 x 155km. Superelevated by factor 1 (no superelevation). 871 

IIIc: Northern margin of the European Alps subdomain (upper Danube) 872 

Subdomain IIIc comprises loess in southern Germany and northeastern Austria, which stretches 873 

mainly along the Danube River and its southern tributaries. These are primarily the water and 874 

sediment-rich rivers coming from the Alps, respectively the front of the alpine Würmian ice margin. 875 

Loess deposits are mainly found directly next to the (glaci)fluvial source areas and are widely 876 

distributed on terraces older than the last glacial. Very little silt contribution comes from the non-877 

glaciated highlands north of the Danube (Swabian-Franconian Alb, Bohemian Massif). This 878 

subdomain ends at the southern end of the Bohemian Massif, where the Danube tributaries are no 879 

longer draining former glacial areas. Furthermore, the Bohemian Massif acts as a barrier for moisture 880 

brought by the Westerlies, resulting in a change of loess facies. Carbonate-bearing loess in 881 

subdomain IIIc is largely restricted to the thickest last glacial deposits and the lowest altitudes of this 882 

region, whereas loess sediments in subdomain IIId usually have high carbonate contents (Fink, 1965). 883 

Closer to the Alps, with increasing moisture, the decalcified loess shows redoximorphic features, 884 

which corresponds to the brown loess and dust loam facies, respectively (Fink and Nagl, 1979; 885 

section 2.1. Most of the loess and loess derivates in subdomain IIIc are located at elevations between 886 

378 and 488 m, with minimum and maximum values of 290 m and 638 m (see Chapter 3.3). 887 

Upper terrace gravel pits expose up to 5-10 m thick last glacial LPS, for example Bobingen in 888 

southwestern Bavaria (Mayr et al., 2017) or Gunderding in northeastern Austria (Terhorst et al., 889 

2015). LPS of 10-15 m thickness reaching back into the Middle Pleistocene (with several Bt horizons) 890 

could be found in loam pits, usually on older Terrace levels (Deckenschotter) and in the Neogene 891 
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Alpine molasse hills, e.g. at Hagelstadt in Central Bavaria (Strunk, 1990) or Wels-Aschet in NE Austria 892 

(Terhorst, 2013). 893 

IIId: Eastern margin of the European Alps and northern Carpathian Basin (including adjacent 894 

basins) subdomain  895 

This subdomain comprises the loess in the eastern parts of the Bohemian Massif, the eastern and 896 

southeastern margin of the Alps and the widespread loess covers east of the uplands reaching from 897 

northeast Austria and southeast Czech Republic (Moravia) into the northern part of the Carpathian 898 

Basin (southern Slovakia, northern Hungary and Romania). Silt sources are mainly periglacial low 899 

mountain areas and the Danube with large amounts of Alpine glacial material. Smalley and Leach 900 

(1978) specify flysch rocks of the Carpathian Mountains as significant regional silt source and point to 901 

the possibility of silt transport from northern European glaciations through the Moravian gate in the 902 

northeastern part of the Czech Republic. Additionally, the authors indicate that regions far 903 

downstream the Alps contain significant proportions of reworked older loess, remobilized by wind 904 

and water. 905 

In northeast Austria, loess sediments are widespread along the higher terraces of the Danube and 906 

adjacent hills (Figure 11) locally reaching almost 40 m thickness at Krems, where the Danube leaves 907 

the narrow valley cutting through the Bohemian Massif (Wachau). Within the Wachau and at the 908 

eastern margin of the Bohemian Massif loess deposits are highly variable in age and thickness and 909 

often contain fragments of local rock mixed in by slope processes (Sprafke, 2016; Sprafke and 910 

Obreht, 2016). A high carbonate content (c. 20-25 %) and loess-like structure made Vetters (1933) 911 

map these silt-dominated deposits as loess, whereas decalcified aeolian silts in northwestern and 912 

southeastern Austria remain largely ignored on geological maps (see section 2). Thick loess deposits 913 

in northwestern Austria and Moravia can be found in the lowlands of the larger tributaries of the 914 

Danube (Morava/Thaya), but on the eastern side of these rivers on the border to the Slovakian 915 

Republic, large areas of aeolian sand are formed, which indicates that the wind mainly deflated dry 916 

floodplain deposits from western directions. Notable loess covers of variable thickness are present in 917 

the rolling hills between the larger rivers, but the highest altitudes between Danube and Thaya 918 

remain free of loess (Figure 11). 919 

LPS close to the Bohemian Massif and in the hills of northeastern Austria are variable in age and 920 

temporal resolution. Interglacial paleosols in the Krems-region are often polygenetic or missing 921 

completely because of reworking or partially erosion, especially at ending phases of interglacials, 922 

which renders pedostratigraphical approaches rather difficult (Sprafke, 2016). The classical LPS of 923 

Krems-Schießstätte (shooting range) and Stranzendorf are unique loess records of the Early 924 

Pleistocene paleoclimatic cycles (Fink and Kukla, 1977; Kukla and Cílek, 1996). The LPS Paudorf and 925 

Göttweig near Krems expose Middle Pleistocene to last interglacial pedocomplexes (Sprafke et al., 926 

2014). Thick calcified last glacial loess packages in the Wachau and Krems region are also famous for 927 

Upper Paleolithic cultural layers, e.g. at Willendorf (Wachau) (Nigst et al., 2014), Krems-Hundsteig 928 

(Neugebauer-Maresch, 2008) and Krems–Wachtberg (Einwögerer et al., 2006) and Stratzing 929 

(Neugebauer-Maresch, 1993).  930 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



33 
 

 931 

Figure 11: 3-D image of the distribution of loess, sandy deposits, the Late Pleistocene fluvial deposits 932 

and Holocene floodplain in Lower Austria. The size of the 3-D image is 35 x 70 km. 933 

Superelevated by factor 1 (no superelevation). 934 

Well-resolved MIS 5 pedocomplexes are exposed close to the Thaya and Morava rivers at the 935 

classical LPS Dolní Věstonice (Antoine et al., 2013; Fuchs et al., 2013 and references therein) and 936 

Stillfried (Fink, 1954; Terhorst et al., 2011), with nearby loess containing important Upper Paleolithic 937 

sites. In south Moravia (Czech Republic) loess sediments are mainly found in the lowland river basins 938 

where they cover mostly Pleistocene river terraces. Figure 12 provides an example from the famous 939 

Červený kopec (Red Hill) section at Brno, Czech Republic (Kukla, 1978, 1977). Based on this typical 940 

staircase of loess covered terraces (CK 1 -5) Kukla (1977) developed the classical European glacial 941 

stages in loess and the correlation with deep-sea sediments. The paleosols  of Middle and Late 942 

Pleistocene age that are often missing in the Krems-region were better preserved here (Fink and 943 

Kukla, 1977; Kukla and Cílek, 1996).  944 
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 945 

Figure 12: Redrawn and modified sketch from Kukla (1977, 1978) showing the Červený kopec (Red 946 

Hill) section at Brno Czech Republic with the terraces CK 1 -5 covered with LPS. The section 947 

was exposed in an excavation front of a brickyard pit and in boreholes.  948 

Cumulative loess thickness can reach up to 50 m in south Moravia, especially towards the Bohemian 949 

Massif foothills (Hošek et al., 2017, 2015; Lehmkuhl et al., 2018a; Zeman et al., 1986, 1980). The 950 

above-mentioned profile Červený Kopec at Brno (southeastern edge of Bohemian Massif) is an 951 

exclusive example of such accumulation. This classical loess section, intercalated by fourteen 952 

pedocomplexes, provides the most complete record in central Europe, covering last 1 Ma, i.e. MIS 25 953 

– MIS 2 (Kukla, 1975).  954 

In southwestern Slovakia Middle and Late Pleistocene loess covers a vast area of Danube and Záhoří 955 

lowlands, reaching up to 40 m in thickness (Šajgalík and Modlitba, 1983). Towards to the north 956 

(higher elevation along the western Carpathians) and east (East Slovakian lowlands) loess becomes 957 

coarser than in southwestern Slovakia and they are mainly decalcified and polygenetic with strongly 958 

(pseudo)gleyed paleosols (Košťálik, 1989; Lehmkuhl et al., 2018a; Šajgalík and Modlitba, 1983; 959 

Vaškovský, 1977). Some smaller patches of loess and loess derivates can also be found at the 960 

Carpathian foothills in western Ukraine, which also belong to this subdomain.   961 

Loess and its derivates and coarser variants, as well as aeolian sand, are widely distributed in 962 

(northern) Hungary (Pécsi, 1987) and northwestern Romania. Loess deposits are distributed along 963 

the Danube and Tisa rivers.  Several famous loess sections are part of this subdomain such as the LPS 964 

Basaharc (Sümegi et al., 2011), Mende (Borsy et al., 1979; Frechen et al., 1997; Marton, 1979; 965 

Wagner and M, 1979), Albertirsa (Novothny et al., 2002) and Süttő (Figure 5; Barta, 2014; Koeniger et 966 

al., 2014; Novothny et al., 2011, 2009; Profe et al., 2018a; Rolf et al., 2014). Most of the investigated 967 

loess sequences are located within the basin along the major rivers, but also in northeastern Hungary 968 

two sites were investigated: Bodrogkeresztúr and Tokaj (Bösken et al., 2019; Schatz et al., 2015a, 969 

2015b, 2012, 2011; Sümegi et al., 2016b, 2000). These sites highlight the more humid 970 

paleoenvironmental conditions at the Carpathian foothills.  971 
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Geomorphological processes in the northern part of Carpathian Basin were controlled by strong 972 

northern and northwestern winds during glacial times (Sebe et al., 2011). Most of the loess in this 973 

subdomain is distributed in elevations between 131 m and 261 m a.s.l. with a minimum and 974 

maximum of 84 m and 538 m a.s.l. (cf. Chapter 3.3). 975 

IIIe: Transylvanian subdomain 976 

Loess is distributed in one greater area in the western Transylvanian Plateau and several small 977 

isolated patches along the rivers in the rest of the basin. Due to the high elevations and the proximity 978 

to the (partly) glaciated Carpathian Mountains, the relatively steep slopes resulting from significant 979 

basin-wide neotectonic activity (including salt and gas diapirism), the Quaternary sediments were 980 

strongly influenced and overprinted by permafrost features (Pendea et al., 2008). Additionally, the 981 

sequences in Transylvania are often disturbed by slope processes, resulting in colluviated loess and 982 

loess derivates (Jakab, 2007; Pendea et al., 2009). These deposits are an archive for the landscape 983 

evolution and history of the area, but it is challenging to use them as paleoclimate archives. Please 984 

note that we adapt the permafrost boundary from Vandenberghe et al. (2014a) and in Transylvania 985 

this boundary is probably situated further south than shown in our map due to areas with higher 986 

elevation. Most of the loess in this subdomain is distributed in elevations between 334 m and 456 m 987 

a.s.l. with a minimum and maximum of 209 m and 705 m a.s.l., in thicknesses up to 20 m, especially 988 

along the Aries and Mures river cuesta (cf. Chapter 3.3). 989 

IV: Middle Danube loess  990 

The loess domain of the Middle Danube Basin has a long tradition of loess research (Marković et al., 991 

2016) and contains some of the thickest European loess sequences (at least >50 m in outcrops and 992 

approx. >100m recorded from drillings), preserving a quasi-continuous paleoenvironmental record 993 

extending to the Early Pleistocene (Buggle et al., 2013; Marković et al., 2011, 2015; Schaetzl et al., 994 

2018). In this domain we include the central and southern part of the Carpathian Basin (Middle 995 

Danube Basin). The southern limit of the extensive spatial loess distribution in this domain follows 996 

the valley of the Great Morava River and is bounded to the south by the foothills of the Dinaric and 997 

Carpatho-Balkan mountain ranges. South of these areas, loess distribution is characterized by many 998 

isolated deposits that essentially originate from local sources (see subdomain VIc).  999 

The loess deposits of the Carpathian Basin and adjacent areas are not as homogeneous as one might 1000 

expect. In the western part of domain IV  between southwestern Austria and Croatia the distinction 1001 

between Neogene Pannonian Basin silts and loess is not always clear, which is complicated by 1002 

redoximorphic features overprinting these sediments, i.e. dust loam according to Fink & Nagl (1979) 1003 

and pseudogleyed loess derivates after Rubinić et al. (2018). Yet, these poorly mapped and 1004 

investigated loess deposits can reach 10 m thickness at the northern side of the Mur River draining 1005 

the Alps. There is a gradual transition towards the southern part of domain IV that is reflected in 1006 

slight shifts in (paleo-)vegetation and environment from periglacial conditions with tundra and 1007 

forest-steppe towards drier steppe conditions. The boundary between domain III and IV follows 1008 

approximately the southern limit of continuous permafrost (Figure 2). Thus, loess from the central 1009 

and southern part of the Carpathian Basin does not belong to the same loess facies as the northern 1010 
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part (i.e. Moravia, the eastern parts of Austria and the northern Hungarian plain). Loess deposits 1011 

from domain IV share more commonalities with the loess deposits of the Lower Danube Basin 1012 

(domain V). However, modern and Pleistocene climate conditions differed between the Carpathian 1013 

Basin (Middle Danube Basin) and the Lower Danube Basin: both are rather continental but the aridity 1014 

is more pronounced in the latter one (Botti, 2018; Obreht et al., 2017).  1015 

Generally, LPSs in the Middle Danube basin reflect typical loess plateau deposition (e.g. Marković et 1016 

al., 2018a). Characteristics of these LPS also indicate a paleoclimatic gradient towards warmer and 1017 

drier conditions from northwest to southeast (Sümegi and Krolopp, 2002). Drier conditions indicated 1018 

better preservation of more complete LPS in the southeastern part of the Carpathian Basin (Marković 1019 

et al., 2015, 2008) and also higher sedimentation rates (Antoine et al., 2009a; Bokhorst et al., 2009; 1020 

Sümegi et al., 2013; Újvári et al., 2017, 2010). The domain is positioned in an important geographic 1021 

location, being close enough to the Atlantic Ocean to record its weakened influence, but at the same 1022 

time isolated inland by surrounding mountains and partly protected from intensive cold Arctic air 1023 

masses. Because of the geographic setting, climate and environmental conditions in the southeastern 1024 

Carpathian Basin region were more stable than those elsewhere, as indicated by other European late 1025 

Pleistocene loess-paleosol records (Antoine et al., 2001, 1999b; Rousseau, 2001; Rousseau et al., 1026 

1998; Vandenberghe et al., 1998). The mechanisms behind dust accretion in loess plateaus seem to 1027 

be restricted to steppe environments in which seasonal droughts during late summer and early 1028 

autumn occur (Buggle et al., 2014, 2013). In those climates of Cfb to Cfa type (Walter, 1974) 1029 

biological loess crusts and mats play an important role serving as dust traps and possibly also 1030 

facilitating loessification and transforming this way the semi-continuous accretion of dust to stable 1031 

LPS (Svirčev et al., 2019). Together with the flora of the semi-desert to steppe environments the 1032 

biocrusts effectively protect LPS from erosion and deflation leading to plateau deposits which record 1033 

Pleistocene environmental history since the late Lower Pleistocene at least. 1034 

The loess plateaus of domain IV are mainly located between the floodplains of the Danube River and 1035 

its major tributaries, such as Tisa, Drava, Sava and Timis/Tamiš. Loess plateaus are remarkably thick 1036 

at the confluences of the rivers, where deflatable material from both sides was deposited 1037 

(Fitzsimmons et al., 2012; Marković et al., 2008). This indicates that the Danube River and its 1038 

tributaries were important source areas during the Pleistocene, at least for the relatively coarse-1039 

grained silt and sand fractions (Bokhorst et al., 2011; Buggle et al., 2008; Smalley and Leach, 1978; 1040 

Újvári et al., 2008), while smaller particles potentially can be of far-distance origin (Varga et al., 2019; 1041 

Zeeden et al., 2016). Figure 13 provides an overview of different loess landscapes and loess sections 1042 

along the Danube in the southern part of the Carpathian Basin and their geomorphological situation. 1043 

Loess and loess derivates are distinguished according to Lehmkuhl et al. (2018a). The lowermost and 1044 

youngest terraces of the Tisa, Sava, and Danube rivers and their tributaries are covered by loess-like 1045 

sediments and loess derivates and are therefore often referred to as loess terraces. The famous Titel 1046 

loess plateau, which is situated in the Danube-Tisa-interfluve, can be clearly distinguished in the 1047 

figure. Next to the Titel LPS (Bokhorst et al., 2009), also the 20 m thick Surduk LPS on the opposite 1048 

bank of the Danube exhibits a very detailed record of the last interglacial-glacial cycle (Antoine et al., 1049 
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2009a; Fuchs et al., 2008). Surduk is located at the edge of the Srem loess plateau, which has been 1050 

formed between the Danube and Sava rivers at the southern and eastern slopes of the tectonically 1051 

uplifted Fruška Gora Mountains. These mountains are surrounded to the south by a system of loess 1052 

covered alluvial fans, with decreasing loess thickness upslope. This geomorphic situation influences 1053 

e.g. the stratigraphic succession and the characteristics of paleosols (Vandenberghe et al., 2014b). 1054 

Whereas the upslope section of Irig shows pure aeolian set-up, the downslope section of Ruma 1055 

comprises a loess facies also characterized by intense sediment relocation (Marković et al., 2007, 1056 

2006; Vandenberghe et al., 2014b). The plateaus continue west of the Fruška Gora Mountains in 1057 

eastern Croatian, where loess is regarded as generally pure or unaltered. Quaternary limnic, alluvial 1058 

and marsh sediments are overlain by aeolian deposits in the Croatian part of the Carpathian Basin 1059 

(e.g. Marković et al., 2009; Galović et al., 2011). .  1060 

 1061 

Figure 13: 3-D image of the loess landscape in the Vojvodina (northern Serbia) showing the 1062 

distribution of loess, loess derivates, the late Quaternary floodplain and numerous 1063 

investigated loess sequences. The size of the 3-D image is 53 x 57 km. Superelevated by 1064 

factor 1 (no superelevation). 1065 

Loess and loess derivates continue into Slavonija-Srijem/Srem area in Croatia, along the Danube-1066 

Drava-Sava interfluves where several LPS were described. This region can be regarded as the 1067 

southernmost border of the loess in the Carpathian Basin. Loess mostly covers alluvial river terrace 1068 

sediments and forms smaller plateaus in the river interfluve. There are several LPS described, e.g. 1069 

Šarengrad, Vukovar, Erdut and Zmajevac (Banak et al., 2016; Fenn et al., 2020; Galović et al., 2009; 1070 
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Wacha et al., 2013; Wacha and Frechen, 2011). The paleosols intercalating the loess are mostly 1071 

Chernozem-type soils and brown forest soils (Bronger, 2003). The provenance of the material is 1072 

similar to the Pannonian basin region with an evident, more local influence from southern provinces 1073 

(e.g. Sava River southern tributaries originating from the Dinaride Ophiolite zone; (Galović, 2016)). A 1074 

gradual increase in humidity is observed in the loess sequences going across the Pannonian region of 1075 

Croatia towards the west. This increase persisted throughout all (or most) climatic shifts from the 1076 

late glacial to today (Rubinić et al., 2018). A particularity of paleosols (mainly Stagnosols) in the 1077 

western part of the Pannonian region in Croatia is that the increased distance to the source allowed 1078 

pedogenesis to outcompete loess accumulation, so that no unaltered loess can be found in this area. 1079 

Rubinić et al. (2018) concluded that Croatian pseudogleys could be considered as soils that had 1080 

reached their quasi-equilibrium stage thousands of years ago and they have continued to form 1081 

throughout the Holocene. Loess in this domain is distributed in elevations up to 393 m a.s.l. with a 1082 

median of 98 m a.s.l. (cf. Chapter 3.3). The map shows ~60,500 km² loess and loess derivates, 1083 

~17,000 km² aeolian sand and sandy loess, and ~37,000 km² alluvial fill and fluvial deposits. Most of 1084 

the loess and loess derivates are located in elevations between 81 and 136 m a.s.l. with a maximum 1085 

of 285 m a.s.l. 1086 

V: Pontic East European domain  1087 

Domain V consists of the vast and laterally continuous aeolian deposits of southern Ukraine, Russia, 1088 

Moldova, the Moldavian Plateau and the Lower Danube Basin in Romania and Bulgaria, including the 1089 

Dobrogea. The most comprehensive studies of LPS in eastern Europe are located in this domain and 1090 

they contain a rich archive of paleoclimatic changes for at least the Middle and Late Pleistocene 1091 

(Antoine et al., 2019; Buggle et al., 2013; Chen et al., 2020; Haesaerts et al., 2003; Liang et al., 2016; 1092 

Lomax et al., 2019; Necula et al., 2015a; Obreht et al., 2017; Rousseau et al., 2020, 2013, 2001; Tecsa 1093 

et al., 2020; Tsatskin et al., 1998; Velichko et al., 2009; Zeeden et al., 2018). In this area, there are no 1094 

indications of permafrost and loess deposits developed under forest steppe and steppe conditions. 1095 

This is also reflected in the distribution of modern topsoils, with recent Luvisols in the former forest 1096 

steppes and Chernozems in the steppe areas (e.g. Velichko, 1990). Loess deposits are strongly 1097 

influenced by the Danube River, the Carpathian Mountains and the Black Sea, but also the Don, 1098 

Dniester, Dneiper and Volga run through this domain. Another relevant dust source are the drylands 1099 

around the Caspian Sea and further east and dust might have been transported by the Easterlies to 1100 

domain V (see e.g. Obreht et al., 2017 and references therein). This loess domain covers different 1101 

bioclimatic zones: continental conditions in the Lower Danube Basin, sub-Mediterranean Black and 1102 

Azov Sea coasts, and more semi-arid and desert conditions towards the east. Similar to domain IV, 1103 

the dominating depositional mode is the accretion of dust in plateau deposits over the entire 1104 

Pleistocene. At the western and northern shores of the Black Sea, the Sea of Azov and the Caspian 1105 

Basin loess deposits are influenced by desert margin conditions with dust input from the East 1106 

including endorheic basins and alluvial fans at the foot slopes of mountain ranges which both 1107 

delivered deflatable silt (Vandenberghe et al., 2006). Interestingly thicknesses of paleosol and loess 1108 

intervals are similar and grain sizes are getting finer in this area indicating continuous and steady 1109 

input of far travelled dust (Chen et al., 2020). Towards the Caspian Basin, the loess cover gets 1110 
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generally thinner. The shelf of the Black Sea is not a dominant source area as LPS are thinning 1111 

towards the coast (Jipa, 2014). This domain shows features which are commonly found in more arid 1112 

landscapes e.g. in Central Asia, such as alkaline lakes, which are frequent in the rain shadow of the 1113 

Carpathian Mountains in Lower Danube Basin and even north of the Black Sea coast. 1114 

The southern part of this domain is dominated by the Lower Danube Basin (LDB) and the Dobrogea 1115 

uplands. The LDB is strongly influenced by the Danube River and its tributaries, draining the eastern 1116 

and southern Carpathians, as well as the Balkans. The basin is characterized by vast aeolian plateaus 1117 

nested between major river valleys, and can be subdivided into the Wallachian Plain, the Bulgarian 1118 

Plain, the forelands of Carpathians and Balkans, the Moldavian Plateau as well as the Dobrogea 1119 

uplands (Jipa, 2014). The plains are usually covered with thick (tens of meters) Quaternary loess 1120 

mantles, smoothing the landscape. In these areas the sediment covers are dissected by rivers 1121 

forming loess bluffs at their banks (e.g. LPS Vlasca, Figs. 14). In contrast, the Dobrogea uplands 1122 

consist of a limestone plateau, which shows a dendritic fluvial system which is mostly covered by 1123 

loess deposits in variable thickness. Here, the thickest sections are usually available in abandoned 1124 

quarries (e.g. LPS Mircea Voda and Urluia, Figure 14) or also as loess bluffs along valleys (e.g. LPS 1125 

Rasova, Figure 14) or even in cliffs along the Danube and the Black Sea coast. In general, the 1126 

sequences of the LDB show a broad variability in thickness and age: whereas some sections cover 1127 

several glacial cycles (Costinești, Constantin et al., 2014; Mostiștea, Necula et al., 2015b; Urluia, 1128 

Obreht et al., 2017). Albeit loess records in the region are laterally very consistent 1129 

chronostratigraphically, thicknesses can also vary significantly. Additionally, several LPS preserve 1130 

tephra layers (Italian, Carpathian Caucasian), in places in considerable thickness (Anechitei-Deacu et 1131 

al., 2014; Antoine et al., 2019; Constantin et al., 2012; Lomax et al., 2019; Obreht et al., 2017; Veres 1132 

et al., 2013; Zeeden et al., 2018). 1133 

In addition to the paleoenvironmental preconditions, close to the Carpathian bending the area is also 1134 

influenced by tectonic subsidence, leading to thick Pliocene-Pleistocene sediment fillings, e.g. in the 1135 

Focşani Basin comprising up to 7 km thick Pliocene-Pleistocene fluvial and aeolian deposits (Matenco 1136 

et al., 2016). Most of the loess in this subdomain is distributed in elevations between 46 m and 1137 

139 m a.s.l. with a maximum of 139 m a.s.l. (cf. Chapter 3.3). The map shows ~246,000 km² loess and 1138 

loess derivates, ~1,600 km² aeolian sand and sandy loess, and ~46,000 km² alluvial fill and fluvial 1139 

deposits. Most of the loess deposits are found in elevations between 46 m and 138 m a.s.l. with a 1140 

maximum of 308 m a.s.l. 1141 
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 1142 

Figure 14: 3-D image of the distribution of loess and late Quaternary floodplain deposits in the Lower 1143 

Danube Basin. The size of the 3-D image is 50 x 55 km. Superelevated by factor 1 (no 1144 

superelevation). 1145 

VI: Mediterranean loess  1146 

This domain comprises loess and loess-like sediments in the Mediterranean area. Periglacial 1147 

processes are limited to discontinuous evidence of soil freezing and ice lensing recorded at the 1148 

margin of the Po Plain (Cremaschi et al., 2015, 1990; Cremaschi and Van Vliet-Lanoë, 1990). Recent 1149 

studies suggest that Pleistocene loess covers vast areas in the (peri) Mediterranean regions 1150 

(Boixadera et al., 2015; Bosq et al., 2020a; Wacha et al., 2018; Wolf et al., 2019; Zerboni et al., 2018). 1151 

Loess in these regions does not reach the thickness of loess in central and eastern Europe and is 1152 

often preserved as (relocated and weathered) loess-derivates. We present three subdomains: the 1153 

western Mediterranean subdomain (VIa), the northern Mediterranean subdomain (VIb) and the 1154 

eastern Mediterranean subdomain (VIc). A possible source for aeolian material besides globally 1155 

distributed dust are the rivers (such as Ebro or Po), glacial and pro-glacial system at the margin of 1156 

southern Alps, and glacial grinding from several paleoglaciation in the Mediterranean (Ehlers et al., 1157 

2011), especially on the Iberian Peninsula (summary in Oliva et al., 2019) and the Dinaric mountain 1158 

ranges (e.g. Hughes et al., 2011). Moreover, periglacial weathering processes in the mountains and 1159 

regional desert-like conditions and insolation weathering in the lowlands produced silt-sized 1160 

particles. Dry emerged shelves are a further source of loess along shorelines. The map shows ~18,000 1161 

km² of loess and loess derivates, ~2,800km² of aeolian sand and silty loess and ~82,000 km² alluvial 1162 

fill and fluvial deposits in this domain (see Chapter 3.3).  1163 
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VIa: Western Mediterranean subdomain  1164 

Loess in southwestern Europe is mostly concentrated on the Iberian peninsula (e.g. Bertran et al., 1165 

2016). Aeolian deposits can be found in the lower Ebro Basin in northeastern Spain (Boixadera et al., 1166 

2015) and the upper Tagus Basin in central Spain (Wolf et al., 2019, 2018). Boixadera et al. (2015) 1167 

reported about loess deposits in the Ebro Basin that are generally 3-4 m thick and consist of well-1168 

sorted fine sands and silts, i.e., coarser than typical loess. Loess in central Spain is distributed along 1169 

the upper Tagus River in elevations between 500 and 700 m a.s.l., covering fluvial terraces and 1170 

depressions nearby. The Tagus loess reaches thicknesses of around 8 m and reveals high contents of 1171 

calcium carbonate (between 30 and 40%) and soluble salts (~10 %) indicating that Tagus River 1172 

deposits and weathered local marls were important loess sources during the Pleistocene (Wolf et al., 1173 

2019). In contrast to other European loess areas, paleosols generally show reddish colors and can be 1174 

rated as Mediterranean Cambisols. In addition, there are some areas in the southern part of the 1175 

lower Rhône and Rhône delta region, which can be attributed to this subdomain (see IIIa). Especially 1176 

in the region of the Provence, Mediterranean influences on loess derivates lead to indicative soil 1177 

formation such as Terra Rossa (Bosq et al., 2020a). Loess in this subdomain is distributed in 1178 

elevations up to 707 m, with a median of 286 m (cf. Chapter 3.3). 1179 

VIb: Northern Mediterranean subdomain  1180 

In this subdomain, loess formation is widely recorded along the margins of the Po Plain (Cremaschi et 1181 

al., 2015) and the coastline of the northern and eastern Adriatic Sea and on the islands of Croatia 1182 

(Cremaschi, 1990a; Wacha et al., 2018, 2011b). These deposits are summarized as the Po plain loess 1183 

basin (Cremaschi, 2004, 1990a, 1987; Zerboni et al., 2018). Moreover, loess is discontinuously 1184 

distributed along the shorelines of the southern Adriatic, where it is mostly preserved at the top of 1185 

limestone plateau (eventually recycled by pedogenesis) and within caves and rock shelters 1186 

(Cremaschi, 2004; Cremaschi and Ferraro, 2007) and was occasionally described along the Tyrrhenian 1187 

shorelines (Boretto et al., 2017). Loess in Italy originates from the deflation of the Upper Pleistocene 1188 

fluvioglacial and fluvial deposits at the southern margin of the Alps, along the northern fringe 1189 

Apennines and along the Adriatic shelf. Along the southern Adriatic and Tyrrhenian shorelines a 1190 

further silt source are secondary tephra clasts deposited along the emerged shelf and later deflated 1191 

inland (Cremaschi and Ferraro, 2007; Hirniak et al., 2020). It is also often overprinted by pedogenesis 1192 

and thus its extent and paleoenvironmental significance were underestimated (Amit and Zerboni, 1193 

2013). A variety of soils are interbedded within loess sequences, including Chernozems, Alfisols, 1194 

Cambisols and Luvisols, and occasionally layers of reworked loess are also present. Only a few 1195 

sequences of thick, unweathered loess (e.g. the Val Sorda of Torino Hill sequence) and some complex 1196 

pedosequences (e.g. Monte Netto) can be found in northern Italy (Cremaschi et al., 1990; Ferraro, 1197 

2009; Forno, 1990; Zerboni et al., 2015). The Val Sorda sequence, for instance, was preserved 1198 

because it was capped by glacial deposits formed at the final LGM advance of the Garda Lake Glacier. 1199 

The majority, however, is deposited as sheets of wind-blown silt. Loess deposits are recurrent at 1200 

several geomorphological settings along the southern margin of the Alps and the northern margin of 1201 

the Apennines. These locations correspond to dissected fluvial terraces, pre-LGM glacial deposits, 1202 

uplifted isolated hills and karst plateaus (Cremaschi, 2004; Zerboni et al., 2018). Occasionally, loess 1203 
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bodies can be found on top of polygenetic paleosols, inside sinkholes and trapped within caves and 1204 

rock shelters, embedding anthropogenic deposits (Peresani et al., 2008). 1205 

Additionally to the Italian loess deposits, this subdomain also consists of loess on the Adriatic coast of 1206 

Croatia (e.g. Istrian Penisula: Zhang et al., 2018), including the islands of the Kvarner Bay (Profe et al., 1207 

2018b; Wacha et al., 2018). These deposits originate from Alpine glacial outwash plains in the Po 1208 

Plain (Cremaschi, 1990a; Mikulčić Pavlaković et al., 2011), but are strongly influenced by 1209 

Mediterranean climate (Profe et al., 2018b). The large glacio-fluvial outwash plains from the 1210 

Pleistocene alpine glaciers in the northern Po Plain and the dry shelf of the Adriatic Sea provide 1211 

additional dust sources. Heavy mineral assemblages of loess sequences from the two opposite sides 1212 

of the Adriatic Sea (Monte Conero and Susak Island) suggest the same source of wind sediments, 1213 

corresponding to the Upper Pleistocene alluvial plain of the Po River, today submerged by the 1214 

Adriatic Sea (Cremaschi, 1990b). 1215 

Loess along the eastern Adriatic coast and on the islands directly covers the Cretaceous carbonate 1216 

basement. The loess deposits are mostly coarser in grain size due to local winds than the loess in 1217 

domain IV. At Susak, for example, the grain size is shifted toward fine sand (Wacha et al., 2018). On a 1218 

more recent geological map of Croatian loess, Susak was mapped as sandy loess (Fuček et al., 2014). 1219 

It contains more paleosols compared to loess in eastern Croatia (domain IV). The soils are also more 1220 

reddish in color, highlighting the Mediterranean climate influence (see stratigraphy in Figure 5). The 1221 

thickness of the loess and loess derivates in the Adriatic region is quite small (Susak being the 1222 

exception with ca. 30 m thick loess deposits) and for that reason they were mostly not presented on 1223 

older maps. Its distribution is discontinuous and patchy. The loess in Istria, on the other hand, is finer 1224 

grained compared to the Susak loess, and therewith more similar to typical loess in domain IV, but it 1225 

also shows a higher degree of pedogenetic overprinting. The loess in the Adriatic region is mainly of 1226 

last glacial age (Cremaschi et al., 2015; Wacha et al., 2011a; Zhang et al., 2018), but it is suggested 1227 

that red paleosols below the loess on Susak formed on even older loess (Durn et al., 2018) as well as 1228 

buried paleosols at Monte Netto (Delpiano et al., 2019; Zerboni et al., 2015). Loess in this subdomain 1229 

is distributed in elevations up to 698 m, with a median of 188 m (cf. Chapter 3.3). 1230 

VIc: Eastern Mediterranean subdomain  1231 

There are several small patches of loess deposits in the basins and river valleys of the Balkans, 1232 

especially in Bosnia-Herzegovina, southern Serbia, Montenegro, and North Macedonia. These are 1233 

scarcely described in the literature. However, these deposits exhibit unique geophysical and 1234 

geochemical properties, reflecting the stronger influence of Mediterranean climate with more 1235 

intensive weathering (Basarin et al., 2011; Bösken et al., 2017; Obreht et al., 2016, 2014). Based on 1236 

the strong geochemical fingerprints of the silt originating from mafic rocks of surrounding mountains, 1237 

the most plausible major source areas are local rivers (Obreht et al., 2016). An illustrative example 1238 

for the alternating influence of the local rivers as a dust source is the Stalać LPS (Bösken et al., 2017; 1239 

Obreht et al., 2016), which lies in the vicinity of the confluence of the South (Južna) Morava and the 1240 

West (Zapadna) Morava rivers into the Great (Velika) Morava River. This setting of three river basins 1241 

served as local dust source, making loess accumulation possible. This makes this section exceptional 1242 
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since it preserves several glacial-interglacial cycles (Bösken et al., 2017; Kostić and Protić, 2000; 1243 

Obreht et al., 2016), while others usually cover just a part of the last glacial cycle (Basarin et al., 2011; 1244 

Obreht et al., 2014). Consequently, the occurrence of the small patches of loess deposits in this 1245 

subdomain is highly influenced by the local geomorphology and the extent of glaciers in the Balkan 1246 

mountain ranges (Obreht et al., 2016). Results from LPS of the region show that the central Balkans 1247 

are still under the influence of the westerlies from the Atlantic Ocean, but most prominently more 1248 

continental and Mediterranean climatic conditions prevail in this region. Investigations showed that 1249 

the climatic boundaries are sharp and fluctuated in the course of the Pleistocene. These fluctuations 1250 

are e.g. imprinted in indicative (paleo-) soil properties (Obreht et al., 2016). However, the transitional 1251 

region from the Balkans to the Carpathian Basin is characterized by loess that is more similar to 1252 

plateau loess in domain IV with some characteristic of Mediterranean loess, e.g. Nosak and 1253 

Smedarevo (Marković et al., 2014). Loess in this subdomain is distributed in elevations up to 1,307 m, 1254 

with a median of 374 m (cf. Chapter 3.3). 1255 

3.2. Relief and loess: Visualization with four north-south transects 1256 

The north-south transects were chosen in a longitudinal distance of approx. 400 km. They were 1257 

spread across Europe to visualize the interplay of relief and loess in various domains and 1258 

subdomains. The geographic location of transects are depicted in the top panel of Figure 4. 1259 

Transect A shows a cross section from the southern margin of the British Isles ice sheet, through 1260 

southern England, France, and the Massif Central towards the Mediterranean coast near the Rhône 1261 

delta. It depicts the broad area of the dry English Channel, which acted together with the exposed 1262 

North Sea shelf during glacial periods as deflation area and therefore major source of aeolian 1263 

sediments deposited further south (subdomain IIa). The nowadays French-Belgium coast in direct 1264 

vicinity to the source area is characterized by aeolian sands and dunes. To the south, broad and 1265 

extensive loess areas with a hilly relief adjoin. The Seine Basin, known for vast loess deposits, is also 1266 

visible and it is intersected by several fluvial systems (subdomain IIa). The central uplands with the 1267 

Loire valley are free of loess and aeolian sediments. They are bounded to the south by the Massif 1268 

Central. This boundary also coincides with the boundary of the continuous permafrost 1269 

(Vandenberghe et al., 2014a). Towards the Rhône delta, just small patches of Mediterranean loess 1270 

occur (subdomain VIa). 1271 

Transect B runs from the southwestern margin of the Fennoscandian ice sheet through northern 1272 

Germany, the Harz Mountains, the Central European low mountain ranges, the Danube valley, across 1273 

the Alps towards the Po plain in Italy. The protogenetic zone (subdomain Ia) is dominated in this area 1274 

by broad glaciofluvial sediments and sparse aeolian sediments, mainly sands. In the foreland of the 1275 

Harz Mountains, the sharp northern boundary of loess subdomain IIb (loess-edge ramp, see chapter 1276 

3.1) is visible. The foothills of the Harz Mountains are covered by a thinning loess cover, reaching up 1277 

to an elevation of approx. 300 m. This area was also influenced by the advances of the penultimate 1278 

(Saalian) glaciation. Thus, the loess-edge ramp at the northern loess margin covers Saalian glacial tills 1279 

(Figure 9). The glaciated mountain range is bounded to the south by the loess covered Thuringian 1280 
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Basin (subdomain IIe), which is adjoined by the central German low mountain ranges, where loess is 1281 

only found sparsely in basins and depressions. Along the German stretches of the Danube River 1282 

(subdomain IIIc), loess can be found in higher elevations and is intersected by alluvial plains of the 1283 

Danube River and its tributaries, which act as local dust sources. The (glacio-) fluvial deposits from 1284 

the Würmian Pleistocene glaciation of the Alps act as additional dust source and are mainly not loess 1285 

covered (cf. Lehmkuhl et al., 2018b). Within the transect loess distribution rapidly declines south of 1286 

the LGM-timberline, indicating reduced dust deposition in forested areas. Only the southern slopes 1287 

of the Alps and the northern slopes of the Apennines are covered with a loess blanket (subdomain 1288 

VIb). 1289 

Transect C runs from the southern margin of the Fennoscandian ice sheet southwards through 1290 

Poland, crossing the Western Carpathians and their forelands, the Carpathian Basin and ends on the 1291 

northern foothills of the Dinaric mountain ranges. The northern part (subdomain Ia) was strongly 1292 

influenced by the Weichselian and especially the Saalian ice sheet advances. The latter is also true for 1293 

subdomain IIb. Therefore, hardly any aeolian sediments can be found in this area. Southwards, the 1294 

loess regions of southern Poland adjoin (subdomain IIc), which are bounded by the Tatra Mountains, 1295 

as a part of the Western Carpathians. The mountain ranges of northern Hungary, such as the Bükk 1296 

Mountains, are free of aeolian sediments, which reoccur on their southern slopes. The northern 1297 

Carpathian Basin is dominated by vast deposits of loess and loess derivates (subdomain IIId). Further 1298 

to the south in the Danube-Tisa-interfluve, the aeolian sediments are coarser, forming sandy loess 1299 

deposits and large bodies of aeolian cover sands and dunes. The southern part of the basin is again 1300 

covered by loess (domain IV) until the foothills of the Dinaric mountain ranges. The timberline during 1301 

the LGM did not play a role in loess distribution in the Carpathian Basin, since it was located at higher 1302 

elevations. The southern Carpathian Basin acted as a refugium for several mammal species (Stojak et 1303 

al., 2015) and warmth-loving gastropod taxa (Sümegi et al., 2017) and especially the mountain 1304 

regions are regarded as biogeographical refugium with transitional zones in the loess steppe 1305 

(Marković et al., 2018b, 2008; Sümegi et al., 2016a). 1306 

Transect D starts at the eastern margin of the ice sheet near the Russian-Belarusian border, going 1307 

slightly tilted towards southwest through the Eastern European Plain, Moldova, southeast Romania 1308 

and northern Bulgaria to the eastern foothills of the Balkans. The northern fringe is slightly 1309 

influenced by last glacial ice advances. Southwards, the vast and flat East European Plain adjoins 1310 

(subdomain Ib), where loess and loess derivates are found in large extents. These are intersected by 1311 

the large river systems of the Dnieper. In subdomain Ib and IId, the area was strongly influenced by 1312 

ice advances of the penultimate glacial (MIS 6). The loess sequences in this area show in some cases 1313 

intercalations of glacial sediments (Lindner et al., 2002). The Moldavian Plateau south of the Dniester 1314 

is heavily intersected by fluvial erosion. It was still influenced by discontinuous permafrost during the 1315 

LGM and shows a hilly relief. Further to the south, the Lower Danube Basin with its flat topography 1316 

and vast extents of aeolian deposits is located (domain V). Within the foothills of the Balkans, loess 1317 

only occurs in patches within depressions and basins. 1318 
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3.3. Statistical analysis  1319 

In Europe more than 1 Mio km² are covered by loess and loess derivates, ~72,000 km² are covered by 1320 

aeolian sand and sandy loess deposits, and ~500,000 km² in the map shows alluvial fill and fluvial 1321 

deposits (Tab. 1). Loess and loess derivates cover vast areas of subdomains Ib, IId, and domain V, 1322 

while most of the aeolian sand and sandy loess is shown in domains Ia, IIa, IIId and IV, while in other 1323 

subdomains none are mapped. Large areas of alluvial fill and fluvial deposits cover domains I, IId, IIId, 1324 

V, and VI.   1325 

Table 1: Surface statistics of the distribution of loess and selected Late Pleistocene sediments in 1326 

Europe (Figure 2) per domain and subdomain.  1327 

Domain & 
subdomain Surface area [km²] 

  Loess & loess derivates Aeolian sand & sandy 
loess 

Alluvial fill & fluvial 
deposits 

I 248,379 14,769 137,794 

Ia 1,875 14,769 59,735 

Ib 246,504 0 78,059 

II 453,713 20,457 116,767 

IIa 46,718 16,723 27,067 

IIb 18,813 1,624 9,180 

IIc 21,316 0 15,776 

IId  351,082 509 54,865 

IIe  15,784 1,601 9,878 

III 53,249 15,563 79,232 

IIIa 3,295 0 10,936 

IIIb 9,955 987 10,131 

IIIc 7,297 92 18,182 

IIId 29,075 14,245 33,952 

IIIe  3,626 239 6,031 

IV 60,428 17,140 36,754 

V 245,978 1,588 45,810 

VI 17,916 2,843 81,887 

VIa 2,532 2,843 45,323 

VIb 13,276 0 28,245 

VIc 2,108 0 8,319 

Total 1,079,663 72,359 498,244 
 1328 

Figure 15 indicates that loess and loess derivates are distributed up to an elevation of 1307 m a.s.l.. 1329 

While half of the loess in each subdomain is clustered in a narrow elevation band for most domains, 1330 

the subdomains of domain VI show very broad distributions. Especially the upper limit was often very 1331 

far from the mean values, which is a reason why we only show 98% of the distribution (considering 1332 

that small misalignments between the loess distribution and the DEM with a resolution of ~30 m 1333 
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might lead to big differences in steep terrain). The highest elevation is found in domain VIc with 1334 

1307 m.  1335 

 1336 

Figure 15: Box plots of the elevation (ordinate) of loess and loess derivates in Europe per subdomain 1337 

(abscissae). To exclude extreme outliers, the upper and lower limit in the whisker was set to 1338 

1% (cf. Supplementary Tab. S3). 1339 

It is evident from Figure 16 that the sediments are not normally distributed in their height. While 1340 

some subdomains such as domain IV show a very narrow height distribution, most of the loess is 1341 

spread over several hundred m a.s.l. The broadest spectrum is observed in domain VI where loess 1342 

and loess derivates are found between 25 m and 1307 m. Domain IV shows a very sharp lower 1343 

boundary of loess distribution that is likely related to the flat landscape in the Carpathian Basin. In 1344 

domain II, subdomains IIa and IIb show a similar distribution, as do IIc and IIe. Some subdomains can 1345 

be almost distinguished by their height (e.g. Ia and Ib), but usually there is quite some overlap (IIIa, 1346 

IIIb, IIIe).  1347 
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 1348 

Figure 16: Frequency distributions of the elevation of loess and loess derivates per main and 1349 

subdomain. The ordinate shows the relative proportion of each elevation that is depicted on 1350 

the horizontal axis. A color legend is given for the subdomains. Note that the ordinated of 1351 

domain 4 uses a different scale.  1352 
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4. Discussion  1353 

4.1. Comparison to other methodological approaches 1354 

Maps of the distribution of aeolian sediments in Europe, either on a regional or continental scale, 1355 

were compiled for almost a century (e.g. Antoine et al., 2003; Bertran et al., 2016; Fink et al., 1977; 1356 

Fink and Nagl, 1979; Flint, 1971; Grahmann, 1932; Haase et al., 2007; Lehmkuhl et al., 2018a, 2018b; 1357 

Lindner et al., 2017; Zerboni et al., 2018). Especially the pan-European approaches are widely 1358 

recognized and used as a basis for geospatial analysis and interpretation (e.g. Buggle et al., 2013, 1359 

2008; Fitzsimmons et al., 2012; Franc et al., 2017; Iovita et al., 2012; Lehmkuhl et al., 2016; Nawrocki 1360 

et al., 2018; Sprafke and Obreht, 2016). Besides mapping approaches based on geological and 1361 

pedological data or field observations, potential dust emission and deposition areas can be 1362 

determined using numerical models (Schaffernicht et al., 2020; Sima et al., 2009). In the following 1363 

subchapters, we compare our map to the most widely used European loess map by Haase et al. 1364 

(2007), which combined several existing data sets and a more recent approach by Bertran et al. 1365 

(2016), where the distribution of aeolian sediments was derived from topsoil data. Finally, we discuss 1366 

our data with the results of the model-simulated dust deposition by Schaffernicht et al. (2020). 1367 

4.1.1. Comparison with the map of Haase et al. (2007) 1368 

One of the most commonly used maps of European loess is the one provided by Haase et al. (2007). 1369 

This map has a resolution of 1:2,500,000 and is based on data compilation carried out in the 1970s, 1370 

1980s and the 2000s. This collaborative effort was carried out by the INQUA Loess Commission under 1371 

guidance of J. Fink. Similar to our approach, the Haase map is based on digitizing paper maps from 1372 

numerous authors. This led e.g. to artificial breaks along borders, and the persistence of locally 1373 

separated loess classes such as the alluvial loess in Hungary. Additionally, important loess areas, such 1374 

as the whole Paris Basin, were not mapped by this approach. Figure 17 includes different categories 1375 

of aeolian sediments and compares the results of this study with the well-established map of Haase 1376 

et al. (2007). Differences occur e.g. in north-central France, where some sandy loess and loess 1377 

derivates are mapped that are not included in our new map. A possible explanation for these 1378 

discrepancies can be the fact that in France the loess with a minimum thickness of one meter was 1379 

mapped. For our study, the minimum thickness usually was two meters. These differences are also 1380 

observed in southern Germany, Austria and Slovenia. Haase et al. (2007) included discontinuous and 1381 

thin loess sediments in their map (cf. Fink and Nagl, 1979), leading to a more widespread loess 1382 

distribution. Furthermore, some sandy loess and loess derivates in eastern Germany and 1383 

southwestern Poland are mapped by Haase et al. (2007), which do not occur in our map. In these 1384 

areas, loess is often incorporated within loamy and sandy sediments. These polygenetic deposits 1385 

were not mapped by our approach. 1386 

In the southwestern Carpathian Basin, striking differences between the two mapping approaches are 1387 

visible. This may be due to the uncertain data situation for the area. Most Quaternary deposits are 1388 

mapped as “Quaternary in general” in the geological map of former Yugoslavia (Federal Geological 1389 

Institute, 1970), without further differentiation (Lehmkuhl et al., 2018a). This data was used in prior 1390 
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mapping approaches. Our new map includes the newest data from the Croatian geological survey 1391 

(Croatian Geological Survey, 2009), which have not been available e.g. during data acquisition for the 1392 

map compiled by Haase et al. (2007). This might explain the differences between the two data sets. 1393 

Minor differences are found in the southern Lower Danube Basin, as well as the western part of 1394 

Ukraine and parts of the western Crimea.  1395 

Areas that are mapped in our loess map that are not present in the map by Haase et al. (2007) are a 1396 

consequence of different source data or the combination of aeolian sand and sandy loess in our map. 1397 

This includes areas in Spain, southern France, Italy, and coastal Croatia, which were not mapped 1398 

before due to their small extent (Haase et al., 2007). Aeolian sediments in Great Britain and the 1399 

Netherlands have not been mapped by Haase et al. (2007), but have been included here. Some 1400 

differences occur in the Central German low mountain ranges, Czech Republic, and southern Poland. 1401 

These areas are influenced by e.g. slope processes, which can rework loess. We excluded data 1402 

concerning reworked loess deposits (see Lehmkuhl et al., 2018b), since regional differences hamper a 1403 

consistent mapping of these sediments. Differences in Hungary are related to the combination of 1404 

aeolian sands and sandy loess in one unit in our map. In Romania on the other hand loess deposits 1405 

were not mapped in detail in geological maps. Therefore, the map presented here is based on an 1406 

approach that uses pedological maps (Lindner et al., 2017) and thus shows different loess 1407 

distribution patterns. Haase et al. (2007) used a global stream network based on the grid cell 1408 

boundaries of the GLOBE DEM (Hastings et al., 1999) to extract alluvial plains from the loess 1409 

distribution. Since this DEM has a resolution of 1 km it is less precise than the pedological map we 1410 

used in Ukraine (Sokolovsky et al., 1977b), leading to differences between both maps. Generally, we 1411 

propose that our new map is more precise because in some areas updated maps were used, all data 1412 

were critically checked by local experts, and our maps has a higher resolution. Nevertheless, it 1413 

remains challenging to generate an absolutely accurate map since it is impossible to validate the 1414 

loess distribution in all regions in detail.  1415 

 1416 
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Figure 17: Comparison of our new European loess map to the mapping approach from Haase et al. 1417 

2007. Similarities are shown in yellow. The distribution of loess, sandy loess and aeolian sand, 1418 

and loess derivates that are only evident in our map is depicted in green, while the 1419 

distribution of loess, loess derivates, sandy and alluvial loess that is only present in the Haase 1420 

map is shown in blue. The extent of glaciers (Ehlers et al., 2011) and the dry continental 1421 

shelves (Willmes, 2015) during the LGM are depicted.  1422 

4.1.2. Comparison with the mapping approach of Bertran et al. (2016) 1423 

Since this study is based on a multitude of geological, geomorphological, and pedological maps (see 1424 

Chapter 2.1), the detection, removal and smoothing of artificial breaks was one of the main issues. 1425 

Other recent approaches to map aeolian cover sediments used continuous, European Union wide 1426 

data. Bertran et al. (2016) used the topsoil textural data from the Land Use and Cover Area frame 1427 

Statistical survey database (LUCAS, Orgiazzi et al., 2018; Tóth et al., 2013) to extract information 1428 

about the grain size distribution within the soils and therefore their parent material. The information 1429 

about clay, silt and sand content were extracted, set in relation and validated for various areas in 1430 

France and Belgium (Bertran et al., 2016). 1431 

In general, the result of our study is comparable to the approach by Bertran et al. (2016). It is, 1432 

however, obvious that the aeolian sediments mapped by Bertran et al. (2016) cover larger areas. This 1433 

is especially the case in northwestern France, northern Belgium, the Central German low mountain 1434 

ranges, southeastern Austria, eastern Slovakia, Transylvania, the eastern Carpathian foreland, 1435 

southwestern France, northern Spain and the Po plain (Figure 18). 1436 

The differences between the two approaches are due to manifold reasons. One of them is due to 1437 

differing mapping approaches. While the LUCAS database is based on data from top soil samples 1438 

(Orgiazzi et al., 2018; Tóth et al., 2013), this study is based on inter alia on geological maps. 1439 

Geological maps usually exclude the uppermost one to two meters below the surface. Therefore, this 1440 

approach can be expected to miss some of the thin loess and sand covers thinner than one or two 1441 

meters. This is especially the case in subdomains Ia and IIa. The underrepresentation of aeolian 1442 

sands, e.g. in northern Germany, is also due to the exploration depth of geological maps, since the 1443 

thicknesses of these covers are in many cases less than two meters and are therefore not mapped in 1444 

geological maps (cf. Lehmkuhl et al., 2018b). 1445 

As a result of the processing of the LUCAS data set, Bertran et al. (2016) classified aeolian sediments 1446 

in Europe in four categories: loess, colluviated loess, silty sand and cover sands. These categories 1447 

were set by combining the different grain size classes from the data set. The differing classification of 1448 

aeolian sediments by this approach compared to our study hampers a direct comparison of all 1449 

classes. Therefore, we only compare the classes loess and colluviated loess from Bertran et al. (2016) 1450 

with the class loess and loess derivates from our study. 1451 

Vast covers of colluviated loess are mapped in some areas, such as basins within the Central 1452 

European low mountain ranges (Figure 18). Colluviated loess is also mapped in e.g. geological maps 1453 

in Germany (so-called ‘Umlagerungsbildungen’ or ‘Schwemmlöss’; Lehmkuhl et al., 2018b), but their 1454 
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nomenclature is not consistent throughout Europe. Additionally, colluviated loess is usually not 1455 

mapped in soil maps. To avoid issues and inconsistencies, we disregarded the direct mapping of 1456 

every form of relocated aeolian sediments. Nevertheless, the class is included in the comparison 1457 

since it overlaps largely with loess derivates in many regions. 1458 

The differences are most striking in the Central European mountain ranges and the Transylvanian 1459 

Basin. The foothills of e.g. the Ore Mountains, the Sudetes, the Tatra and the Carpathians are 1460 

affected. Within these regions, the differences are mostly due to mapped colluviated loess. In 1461 

eastern Slovakia, however, there are vast areas of loess mapped by topsoil data, which were not 1462 

included in geological maps. There are some areas where the mapped colluviated loess is congruent 1463 

with loess and loess derivates. The loess deposits of these areas, e.g. the Moldavian plateau and the 1464 

upper reaches of the Danube River, were mapped as colluviated loess by Bertran et al. (2016) and as 1465 

loess and loess derivates in this study. Generally, the areas of colluviated loess according to Bertran 1466 

et al. (2016), which were not mapped by our approach, correspond to areas in which the loess 1467 

deposits are located in high elevations, compared to their surroundings. 1468 

Some inconsistencies between this study and Bertran et al. (2016) are noticeable especially within 1469 

the Mediterranean realm and the coasts of Normandy and Brittany in northern France. In the Ebro 1470 

basin in northern Spain and the Po plain in northern Italy, large areas of (colluviated) loess were 1471 

mapped. This may be due to substrates with a similar granulometric signature as loess, such as 1472 

weathered marls (Bosq et al., 2018). In studies following Bertran et al. (2016), the thresholds for 1473 

loess mapping were therefore adjusted (Bosq et al., 2018).  1474 

 1475 

Figure 18: Comparison of our new loess map to the mapping approach from Bertran et al 2016. 1476 

Please note that only data from the European Union was included due to the extent of the 1477 

base data. The extent of glaciers (Ehlers et al., 2011) and the dry continental shelves 1478 

(Willmes, 2015) during the LGM are depicted. 1479 
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4.1.3. Comparison of the new European loess map with an atmospheric LGM dust model 1480 

of Schaffernicht et al. (2020) 1481 

Here, we compare our map with the recent work by Schaffernicht et al. (2020) presenting an LGM 1482 

dust cycle model of Europe. According to this study, most of the dust emission occurred in a zone 1483 

between the Alps, the Black Sea and the southern margin of the ice sheets. Within this zone, the 1484 

highest deposition rates were located near the southernmost ice sheet margins in domain I and II. 1485 

Westwards relocation via dust plumes resulted in high modelled deposition rates in western Poland, 1486 

northern Czech Republic, the Netherlands, the southern North Sea region and northern and central 1487 

Germany (Figure 19). Relatively high dust production is mainly in domain I in front of the ice sheet 1488 

margin, while loess accumulation occurred mainly in domain II suggesting the role of higher 1489 

vegetation density southwards. 1490 

Figure 19 compares the atmospheric dust deposition of the dust cycle model (Schaffernicht et al., 1491 

2020) with the loess distribution and main domains established by this study. The dust deposition 1492 

was modelled using a regional climate-dust model. However, this atmospheric dust modeling 1493 

approach took only (far traveled) dust with small-sized particles of up to 20 μm diameter (fine- to 1494 

medium silt) into account, while loess deposits mainly contain coarser silt particles. The modeled 1495 

deposition rates from Schaffernicht et al. (2020), however, are in some contrast to the observed 1496 

thicknesses of the loess deposits (Figure 19). The thickest loess deposits occur in central-eastern and 1497 

southeastern Europe and not in the areas with the highest modeled rates. These differences can 1498 

probably be explained by the degree of preservation. Differences in domain I could be due to 1499 

insufficient vegetation cover that traps dust in the direct vicinity of the ice margins. Reworking, 1500 

erosion and relocation of sediment is also present in the periglacially influenced regions of northern 1501 

Europe. The model also indicates high deposition rates for high mountain areas, which is due to the 1502 

consideration of only fine silt, since coarse silt is rarely transported to mountainous areas by wind. 1503 

Nevertheless, the model can be used to understand the atmospheric circulation patterns and the 1504 

preservation potential of the different domains, although numerical models, due to their nature of 1505 

being models, can never constitute complex natural process chains such as the uptake, transport and 1506 

deposition of aeolian dust in appropriate spatial and temporal resolution. Large-scale models cannot 1507 

display e.g. short term shifts in atmospheric circulations or sediment availability, which are indeed an 1508 

important factor in dust deposition and loess formation (Antoine et al., 2009b). 1509 

In contrast to the current climatic situation, during the LGM winds from northeast, east and 1510 

southeast and cyclonic regimes prevailed over central Europe. While potentially a lot of dust 1511 

deposited within domains I-III, the preservation potential especially in domain I was very low. The 1512 

continentality and aridity, presumably coupled with appropriate dust traps (e.g. certain vegetation) 1513 

in domains Ib, IId, IV, and V probably lead to the loess preservation we see in those regions today. 1514 

However, it should be emphasized that in most climate models the coarse dust as observed during 1515 

dust fall (Goudie, 1983; Jarke, 1960; Schütz, 1980) is not considered (Adebiyi and Kok, 2020). 1516 

Additionally, the dust cycle model by Schaffernicht et al. (2020) only includes atmospheric variations 1517 
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during the LGM, whereas dust deposition occurred (sub-)continuously during the last glacial-1518 

interglacial cycles, while the hydroclimate fluctuated significantly.  1519 

 1520 

Figure 19: Dust deposition rates for the LGM according to modelled data from Schaffernicht et al. 1521 

(2020). The dust deposition rates comprise particles of up to 20 μm diameter (FD20) using a 1522 

dynamic downscaling (FD20 DD). Distribution of loess as well as the boundaries of the main 1523 

loess domains are given for comparison. 1524 

4.2. Discussion of the distribution of loess in Europe 1525 

Loess, loess derivates, sandy loess and aeolian sands are widely distributed throughout Europe. In 1526 

domain I, between the ice sheets and the northern boundary of the European loess belt, patches of 1527 

loess-like sediments, sandy loess, and widespread sand sheets (cover sands) appear. The boundary 1528 

between the protogenetic zone and the northern European loess belt is in most regions clearly 1529 

marked by the transition of sandy loess or sand sheets towards loess. Transitional zones can be 1530 

found in northern France, Belgium or the Lower Rhine Embayment in Western Germany (subdomain 1531 

IIa; see Vandenberghe in Schaetzl et al., 2018). In the central parts of domain II, a sharp and clear 1532 

boundary of the loess distribution occurs - the loess-edge ramp (subdomain IIb, see Figure 9). These 1533 

marginal steps vary in spatial distribution and shape inter alia due to the influences of and distance 1534 

to the extending ice sheets. The main distribution of loess within domain II is located at the northern 1535 

front of Central European low mountain ranges mainly between 105 to 231 m a.s.l (subdomains IIb). 1536 
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Domain II and III are strongly influenced by periglacial processes and permafrost. The loess 1537 

accumulation took place in many cases at downwind positions, creating asymmetric valleys (e.g. 1538 

Figure 6) and covering fluvial terraces (e.g. Figure 12). The influences of periglacial processes 1539 

gradually diminished southwards and finally disappear. For example, in the Rhône area of subdomain 1540 

IIIa there is a gradual transition towards domain VIa, where Mediterranean conditions prevailed 1541 

(Bosq et al., 2020a, 2020b). A similar shift occurs in the Carpathian Basin between domain IIId and IV 1542 

as well as further east between subdomain IId and domain V in the Eastern European lowlands. 1543 

These transitions are characterized by increasing temperate to humid subtropical climate conditions 1544 

with more intensive weathering and soil development in southwestern and southern Europe and to a 1545 

more semi-arid desert margin environment with lack of humidity in the eastern and southeastern 1546 

parts of Europe, respectively. In domain IV and V, loess dust accumulation occurred in plateau 1547 

situations. Due to the local depositional conditions and relative extensive erosional processes, these 1548 

plateaus were incised by the lowland rivers and are nowadays preserved between the alluvial plains 1549 

of these rivers. They represent the most complete records of Quaternary paleoclimate and 1550 

paleoenvironment in Europe beside few lake records. These plateaus are described in the literature 1551 

(e.g. Marković et al., 2016; Smalley et al., 2011) and their genesis is discussed e.g. by Florea (2010).  1552 

The distribution of sand and sandy loess in the domains I and II differs from those e.g. in other 1553 

domains. Generally, aeolian sands are transported by strong wind systems over short distances. In 1554 

domain I and II, however, sands are deflated from the outwash plains and other sandy sediments 1555 

related to Mid-Pleistocene (Saalian and Elsterian) ice extents, as well as (Early) Weichselian deposits. 1556 

In other loess domains, such as the peri-alpine river valleys (IIIa-c) or Eastern Europe (V), aeolian 1557 

sands originate from the deposits of larger rivers (e.g. Rhône, Rhine, and Danube River in subdomain 1558 

III and VI; Dnieper and Dniester in domain V). The Danube River and its tributaries in the Carpathian 1559 

Basin e.g. provide large quantities of silty and (fine) sandy material. When this material is deflated 1560 

and subsequently deposited, a complex sedimentary pattern of loess, sandy loess and aeolian sands 1561 

develops. In this pattern, it is difficult to distinguish between aeolian sand and sandy loess. 1562 

Therefore, and due to their similar genesis, we combined these two categories in one unit. 1563 

Nevertheless, one needs to be aware that this is not the case in domain I, e.g. in Northern Germany, 1564 

where sands, sandy loess and loess are clearly separated. Aeolian sands occur parallel to the ice 1565 

margin, whereas the northern boundary of loess distribution is further south. Between these two 1566 

boundaries, sandy loess is found. 1567 

Throughout Europe, loess is mostly distributed in the basins and lowlands (northern France, Belgium, 1568 

Germany, Czech Republic; up to 600 m a.s.l.), the foothills of the Central European low mountain 1569 

ranges (e.g. Central German low mountain ranges, Carpathian promontory, Fruška Gora Mountains, 1570 

mainly below 200 m a.s.l.), and in favorable geomorphological settings, e.g. the larger valleys of the 1571 

Rhône River and upper Rhine River (mainly below 300 to 400 m a.s.l.). In higher elevations, silt-sized 1572 

particles of aeolian origin are usually mixed with periglacial cover beds building the upper cover bed 1573 

(Lehmkuhl et al., 2016; Semmel and Terhorst, 2010). In the European Alps, Gild et al. (2018) used the 1574 

term drape for aeolian mantles in the western part of the Northern Limestone Alps. They described 1575 
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drapes as aeolian covers of a few decimeters in thickness covering different bedrock and Pleistocene 1576 

sediments. They are slightly modified by initial soil formation and late glacial in age. These drapes 1577 

have also been described along valleys of the Italian Dolomites (Cremaschi and Lanzinger, 1987, 1578 

1984). Usually no or only very limited typical loess deposits occur in the Pleistocene polar deserts in 1579 

northern Europe of domain I, high-mountain areas or south of the Pleistocene timberline.  1580 

The distribution of aeolian sediments is mainly controlled by sediment availability, prevalent wind 1581 

directions and the presence of suitable dust traps. The sediment availability is dependent on the 1582 

distance to potential source areas such as larger river systems (e.g. Smalley et al., 2009; Smalley and 1583 

Leach, 1978), dry shelves (Antoine et al., 2009a) or glacio-fluvial outwash plains of ice sheet margins 1584 

(e.g. Antoine et al., 2016; Lehmkuhl et al., 2016; Pye, 1995). The vegetation density in the source 1585 

areas also governs the amount of dust, which can be deflated, since vegetation acts as a dust trap 1586 

and fixes the sediment. It is obvious that the distribution of loess is closely linked to the distribution 1587 

of these source areas (Figure 2). The vastest and most prominent loess deposits occur south of the 1588 

ice margin and along large rivers, where during the Quaternary large amounts of sediment were 1589 

available with no or very spare vegetation covers. 1590 

The local geomorphological setting of sink areas strongly influenced the distribution, preservation 1591 

and thickness of loess sequences. Several depositional settings such as plateau and interfluve loess, 1592 

slope loess, colluvial (slope toe) loess, loess sedimentation in depressions and erosion channels 1593 

(valley loess) were distinguished (see Lehmkuhl et al., 2016 and references therein). Higher 1594 

accumulation rates were observed e.g. in depressions or on lee sites of topographic barriers, 1595 

according to the prevailing wind direction (e.g. Figure 6, Antoine et al., 2003). The best developed 1596 

loess sequences are generally preserved in sediments traps formed by the intersection between 1597 

alluvial terraces and slopes in stepped terraces systems as in the valleys of Dnieper, Danube, Rhine 1598 

and other large rivers in Europe (see examples in Figures 6 and 12; e.g. Kukla 1977, 1978). The most 1599 

thoroughly investigated loess sequences and related archeological findings in the northern parts of 1600 

Europe are in slope toe or plateau situations. (Lehmkuhl et al., 2016). In domains IV and V dust 1601 

sedimentation on plateaus is considered continuous since the Middle Pleistocene (Basarin et al., 1602 

2014; Marković et al., 2015). The LPS of those deposits can be correlated with the LPS of the Chinese 1603 

Loess Plateau (Zeeden et al., 2020, 2018).  1604 

To summarize, loess in Europe was formed, preserved, overprinted, reworked and relocated through 1605 

a multitude of different geomorphological, sedimentological and pedological processes. These 1606 

variations and differences are the results of a complex interplay of paleoclimate, paleoenvironment 1607 

and geomorphology. Additionally, there is a strong dependence on the distance to the ice sheets and 1608 

local source areas ((glacio-) fluvial, alluvial, dry shelves), as well as prevailing paleo-wind systems. 1609 

These conditions control dust accumulation, pedogenesis, preservation, and syngenetic and 1610 

subsequent erosional events (Maruszczak, 2000; Smalley et al., 2011; Sprafke and Obreht, 2016). 1611 
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4.3. Discussion of the genesis of loess in Europe 1612 

There is a multitude of approaches to differentiate the genesis of loess deposits. Two main directions 1613 

developed within the centuries: the sedimentological (geological) approach and the pedogenetic one 1614 

(e.g. Smalley et al., 2011; Smalley and Obreht, 2018; Sprafke and Obreht, 2016). Whereas mainly 1615 

Pécsi (e.g. 1990) developed many criteria for a loess definition from the latter direction, others  like 1616 

Pye (1995), used a more simple definition for loess as wind-blown dust (see the summarizing 1617 

discussion in Smalley et al., 2011). Besides the definition of loess itself, which is still under discussion 1618 

(Sprafke and Obreht, 2016), different modes of loess genesis are described in literature. Muhs and 1619 

his co-workers summarized, developed and focused on models of “glacial loess” (cold loess, higher 1620 

latitude loess) and “desert loess” (warm loess) formation (Lancaster, 2020; Muhs, 2013; Muhs and 1621 

Bettis, 2003; Schaetzl et al., 2018; Wright, 2001). Lately, Li et al. (2020) suggested three modes for 1622 

the global loess genesis: continental glacier provenance-river transport, mountain provenance-river 1623 

transport, and mountain provenance-river transport-desert transition. 1624 

However, there is not only the “glacial loess” versus “non-glacial” formation in Europe. The main 1625 

factors for loess formation are the amount of available dust (Crouvi et al., 2010; Maher et al., 2003) 1626 

and the degree of humidity (semi-arid to semi-humid conditions) as well as its seasonality. In the 1627 

more humid regions, pedogenesis dominates especially during the interglacials and amounts of 1628 

incoming far traveled dust are reduced in volume and immediately trapped and altered by soil 1629 

formation processes. In the semi-arid regions, however, dust can accrete also during interglacial 1630 

periods lowering but not inhibiting intensity of soil formation (Constantin et al., 2019; Tecsa et al., 1631 

2020; Varga et al., 2016). Additionally, (paleo-) environmental factors play an important role for the 1632 

accumulation and especially the preservation of dust aggradations. They determine the boundaries 1633 

of vegetation zones and the permafrost distribution, which in turn influence dust trapping, 1634 

weathering and erosional processes. A conceptual model of glacial loess genesis for Europe was 1635 

already proposed by Zeuner (1937). Anticyclonal synoptic patterns controlled by the Scandinavian 1636 

and Alpine ice sheets and their interplay with westerlies are the main element of this concept, in 1637 

which strong anticyclonal winds are responsible for dust uptake and transport and tundra/steppe 1638 

vegetation benefitting from humidity brought in by the westerlies controlled trapping and 1639 

stabilization of dust. According to various authors, the trapping of dust is mostly related to the 1640 

vegetation cover (e.g. Danin and Ganor, 1991; Hatté et al., 2013; Tsoar and Pye, 1987; Zech et al., 1641 

2013) or biocrusts (Svirčev et al., 2019, 2013). As it is assumed that the most common dust traps are 1642 

grasses (or possibly biocrusts as part of the steppe/tundra flora), the lack of widespread loess 1643 

deposits south of the northern timberline during the LGM might be explained by this model. In 1644 

addition to reduced dust sources, there is increasing pedogenesis towards more humid regions. 1645 

Therefore, the accumulation of dust and the formation of loess is related mainly to tundra and 1646 

steppe environments. 1647 

However, in any loess deposition, after sedimentation and initial fixation of atmospheric mineral dust 1648 

particles, first post-sedimentary alteration processes occur (Berg, 1916; Pécsi, 1990; Smalley et al., 1649 

2011; Svirčev et al., 2013; Smalley and Marković, 2014). It is a matter of debate whether such 1650 
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processes should be assigned to pedogenic or diagenetic process spheres or to a kind of transition 1651 

zone (Sprafke and Obreht, 2016). However, there is consensus that the typical structure of a loess 1652 

deposit is caused by these initial alteration processes, whereby the loess differs from primary 1653 

airborne dust (Pécsi, 1990; Sprafke and Obreht, 2016; Schulte and Lehmkuhl 2018). Besides the 1654 

factors influencing the mobilization, transport and sedimentation of the loess e.g. distance to source 1655 

areas or wind velocity (Újvári et al., 2016; Vandenberghe, 2013, 2018), the post-depositional 1656 

alterations such as chemical weathering or colluviation also have a considerable influence on the 1657 

grain size composition of the loess deposits (Schulte and Lehmkuhl, 2018; Újvári et al., 2016). Grain-1658 

size distribution of loess can serve as an indicator to distinguish among loess and loess-like deposits 1659 

(Vandenberghe et al., 2018), and may give insight into different acting processes. Coarser deposits 1660 

formed e.g. under the influence of stronger wind activities or under the influence of non-aeolian 1661 

processes, such as slope wash or soil creep. High contents of fine material (clay, fine and medium silt) 1662 

are the result of large distances to the source region, weaker wind conditions, and / or post-1663 

depositional alterations such as pedogenesis (Újvári et al., 2016; Vandenberghe, 2013, 2018; Schulte 1664 

and Lehmkuhl 2018).  1665 

4.4. Conceptual model of loess distribution 1666 

Finally, based on our observation in Europe and other loess regions, we suggest a conceptual model 1667 

of loess distribution, loess formation and loess landscapes. In this model, a triangle of the three main 1668 

ecozones (nival, humid and arid environments, Figure 20) is used to conceptualize the different 1669 

modes of loess formation as factors of humidity and temperature, mainly controlling the abundance 1670 

or absence of vegetation, periglacial processes and glaciers. The extreme nival regions with glaciers 1671 

and the polar desert including the periglacial zone are at the top of the triangle. The more humid 1672 

regions (densely vegetated and forested at the extreme end) are on the left side and the extreme 1673 

arid regions (deserts) are on the right side of the triangle. Please note, that there are gradual 1674 

transitions between the different environments, also towards the extreme regions at the corners. 1675 
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 1676 

Figure 20: Conceptual model of loess landscapes. Note that the corners represent the extreme end 1677 

with no loess formation. Top: Glacier with lager extend on the nival-humid axis. Left corner: 1678 

Forest with larger extend on the humid-nival axis. Right corner: Deserts. 1679 

Loess, as predominantly silt-sized aeolian sediment, can have different sources. As loess is found in 1680 

different environments, a single genetic path cannot explain all loess occurrences. Here we introduce 1681 

a model that tries to separate loess towards three genetic environments. Typical loess is situated in 1682 

the center. We propose main loess formation in a balance between nival, humid and arid ecozones 1683 

and environments.  1684 

Permafrost and periglacial environmental conditions, such as the ones found today in the 1685 

northernmost regions and high mountains of Europe, are indicated towards the top of the triangle 1686 

(nival regions = glaciers at the extreme end; they have larger extent on the nival-humid axis). These 1687 

environments included deep freezing during the winter season and freezing-thawing cycles, which 1688 

influenced the geomorphological and pedogenetic processes resulting in paleosols such as tundra 1689 

Gley soils (gelic Gleysols) also occurring in loess environments. Fluvial erosion and slope processes 1690 

(slope wash, sheet flows, solifluction) are enhanced during glacial and periglacial climates. 1691 

Desiccation due to low temperatures and frost enhanced the availability of small-sized particles 1692 

(Smalley, 1995). Precipitation mainly occurred as snow during the cold season. This produced high 1693 

meltwater discharge with its maximum during summer in glacial regions and/or during springtime in 1694 

periglacial regions, respectively. This resulted in large braided river systems, which fell dry in late 1695 

summer to autumn and during wintertime. During low water stands, floodplains acted as important 1696 

sand and silt source areas, especially in autumn (Sima et al., 2009; Smalley et al., 2009). Material 1697 

from glacial grinding and frost weathering in particular lead to the silt production and accumulation 1698 

in the floodplains during high discharge seasons (in Europe mainly in the Pleistocene). Therefore, 1699 

small-sized particles were available but also sands, especially close to rivers, are still found. In 1700 
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general, the dominance of coarse grain sizes (sand-sized particles) increases toward the polar and 1701 

glacier region. The transport and relocation depended on the humidity, which enforced relocation by 1702 

slope wash and solifluction. Li et al. (2020) proposed the continental glacier provenance-river 1703 

transport and mountain provenance-river transport modes for such environments. Although loess-1704 

like sediments and loess derivates formed in these environments, the lack of a stabilization process 1705 

as observed in more arid regions and prevalent geomorphic conditions have caused discordances and 1706 

hiati. Such loess deposits are very characteristic for domains I – III and mostly formed during cold 1707 

stadial conditions. Sometimes nivo-aeolian features formed under more humid conditions (depicted 1708 

as diagonally shaped triangle edge). Other deposits outside of Europe also fall in this part of the 1709 

conceptual model. For example, the ultimate member on the nival-arid axis are arctic ice silts known 1710 

as Yedoma deposits. They are found in the permafrost landscapes of Beringia (Central and Eastern 1711 

Siberia, Alaska and Northern Canada) and contain ice-saturated or supersaturated silt and fine sand 1712 

sediments (Strauss et al., 2017). They are characterized by a segregation ice content of 30-40% and 1713 

syngenetic ice wedges (Strauss et al., 2017). Several hypothesis concerning their genesis have been 1714 

proposed. Researchers working in the Yukon area and Alaska often characterize Yedoma silts as loess 1715 

or re-transported loess (Péwé, 1955; Sanborn et al., 2006). According to Schirrmeister et al. (2013), a 1716 

polygenetic hypothesis with a distinct aeolian input is the most popular in the recent scientific 1717 

literature. Strauss et al. (2017) posed the opinion that the loess and polygenetic concepts could be 1718 

merged, if the re-transportation of loess (also called secondary loess) is included in the loess concept. 1719 

We suggest that parts of domain I and IIc-d were influenced by such nival-arid conditions during the 1720 

Pleistocene. In the Carpathian Basin and eastern Europe there is a gradual transition from the 1721 

periglacial loess landscapes toward the steppe loess regions (domain III to IV and IId to V, Chapter 1722 

4.2) more in the center and right side of the triangle.  1723 

The lower right side of the triangle depicts the loess deposits in arid and semi-arid region, e.g. 1724 

domains V and VIc. These deposits range from silty loess towards more sandy loess in the direction of 1725 

increasing aridity. The nival-arid axis is distributed more towards the continental areas (domains Ib – 1726 

IId – V) whereas the humid-arid axis is the transition from domain IV to V. Especially domain IV and 1727 

the western part of domain V are situated more the center of the triangle. Desert environments are 1728 

located at the extreme end and are strictly speaking not found in Europe, but it is debatable if some 1729 

deposits e.g. in Spain and southeastern Europe, were formed under arid and desert margin 1730 

conditions. In these landscape, dry riverbeds and exposed lacustrine deposits act as source areas for 1731 

aeolian deflation also for mid- and long-distance transport of silt-sized particles. While in the center 1732 

of the triangle, that depicts ‘typical’ loess, continuous and silt-sized dominated loess formation take 1733 

place (e.g. domain IV, most parts of V), a gradual increase in the contribution of sand-sized particles 1734 

toward the arid corner is observed. Beside the proximity of source areas (e.g. large streams in 1735 

Europe; e.g. Jipa, 2014) also a reduced vegetation cover lead to the formation of sandy loess deposits 1736 

and sand formation especially at the desert margins of the world (e.g. Central Asian deserts, deserts 1737 

in China). This transition towards the desert margin loess can be found e.g. in eastern and 1738 

southeastern Europe towards Central Asia (e.g. Sea of Azov (Chen et al., 2020), and Caspian Lowlands 1739 

(Wei et al., 2020), where the fine and medium silt content of LPS is increased pointing to a 1740 
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contribution of far traveled dust. Moreover, a general and continuous contribution of long range 1741 

transported dust input stemming from desert margins in the Caspian Lowlands and western Central 1742 

Asia is likely for southeastern European and western Central Asian Holocene and older interglacial 1743 

soils (Constantin et al., 2019; Jordanova and Jordanova, 2020; Tecsa et al., 2020; Zhang et al., 2020). 1744 

Please note that there was and still is also a long range transport of aeolian dust from desert regions 1745 

(Goudie, 1983, 1978; Schütz, 1980), (Goudie, 1983, 1978; Schütz, 1980), which plays an important 1746 

role in the global climate system (Lancaster, 2020). The significance of modern, recent and 1747 

Pleistocene coarse silt transport from the deserts of Central Asia towards the Carpathian area as 1748 

already reported from the northern Black Sea by Jarke (1960) and also from the Saharan desert 1749 

towards Europe (Costantini et al., 2018; Longman et al., 2017; Varga et al., 2016, 2013) was 1750 

unrecognized for many years. However, during the last decade this dust contribution was realized for 1751 

being relevant for the entire Circum-Saharan realm and hence, also for the loess areas of south and 1752 

southeastern Europe and may be increased during interglacial times when the deserts tend to 1753 

expand (Muhs et al., 2010; von Suchodoletz et al., 2010).  1754 

On the left side of the triangle (humid = forested regions at the extreme end; they have a larger 1755 

extend on the humid-nival axis), humid temperate and subtropical (including Mediterranean) 1756 

landscapes occurred, as in the western and southern parts of Europe (domains IIIa, VIa, VIb) and at 1757 

higher elevations in central-eastern Europe (domains IV, V). The climatic conditions, especially the 1758 

availability of moisture and secondarily higher temperatures, lead to a denser vegetation cover 1759 

resulting in morphodynamic stability and increased chemical weathering and soil development. 1760 

These processes enhanced the in situ formation of clay-sized particles thereby reducing the amount 1761 

of coarser (silt-sized) particles. Additionally, higher clay contents of more than 20 % and cementation 1762 

processes hampered deflation (Pye, 1995). This conceptual zone is limited towards its corner by the 1763 

timberline, since no loess deposits were formed under dense forest. Our proposed temperate and 1764 

subtropical loess and the paleosols formed within were mainly developed in regions with a distinct 1765 

dry season (summer or winter, e.g. towards the Mediterranean regions with winter rainfall or in 1766 

monsoonal regions with summer rainfall). Dust sources in these regions are and were mainly local 1767 

and smaller in comparison to the other loess landscapes due to the higher vegetation cover and 1768 

fewer dry river beds.  1769 

Such humid loess deposits can be found at the foothills of the Carpathians in the Romanian Banat 1770 

(Kels et al., 2014), in Transcarpathia (Ukraine) between steppe and boreal forest at higher elevation 1771 

(Nawrocki et al., 2016). Such setting with changes between more humid loess environments and 1772 

more typical loess environment is also developed at the upper reaches of the Dniester between the 1773 

southern margin of the Scandinavian ice sheet and north of the Carpathian Mountains at the 1774 

transition of the forest refugia in higher altitudes and the tundra environments towards the ice 1775 

margin (Łanczont et al., 2019). Another example for subtropical loess and soil formation is the Stalać 1776 

LPS in subdomain VIc (Bösken et al., 2017; Obreht et al., 2016). Last glacial and penultimate glacial 1777 

paleosols are strongly weathered and the latter are expressed as reddish Cambisols highlighting the 1778 

occurrence of humid Mediterranean paleoenvironmental conditions during their formation. A similar 1779 
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setting is realized at the foothills of the southern Alps at the transition to the Po-plain (Zerboni et al., 1780 

2015). However, humid loess can be found in the subtropical regions of China (see below) and in 1781 

South America (e.g. Campodonico et al., 2019). A potential example of humid loess could be also the 1782 

loess from New Zealand, which is characterized by high contribution of clay and very low carbonate 1783 

content (Smalley, 1971), probably due to dissolution caused by high amounts of rainfall. 1784 

Nevertheless, we highlight that the formation of such loess is scarce in Europe during the last glacial 1785 

cycle, where an increase in humidity in temperate and subtropical areas was mostly related to 1786 

pedogenesis and weathering resulted in accretionary soils. These soils contain only minor amounts of 1787 

mineral dust and are therefore strictly speaking no proper loess deposits. In these cases, soil 1788 

formation outpaced dust accumulation.  1789 

Finally, primary or typical loess is usually not formed in any of the extreme conditions (triangle 1790 

corners) indicated in our conceptual model of loess landscape. We propose that this loess formation 1791 

occurred mainly during colder periods of the Pleistocene. However, in domain IV and partly in 1792 

domain V these processes continued at least also during the Holocene (Chen et al., 2018; Tecsa et al., 1793 

2020; Zeeden et al., 2018). When conditions become fully nival, humid or arid, already formed loess 1794 

is strongly altered, and the formation of thick and quasi-continuous silty deposit can be still ongoing. 1795 

However, conditions indicated as extreme in the triangle have a potential to ultimately alter the loess 1796 

in a way that its silt-sized origin is largely replaced by finer, strongly weathered material. In case of 1797 

humid and nival conditions loess could be fully altered into soils due to pedogenesis and reduced 1798 

dust flux or hampered preservation due to vegetation or snow cover. Under extreme arid conditions, 1799 

the lack of vegetation and biogenically induced loessification can make loess vulnerable to aeolian 1800 

deflation and other types of erosion. This includes the preferential deflation of silty material, leaving 1801 

only coarser components in the source areas. 1802 

The conceptual triangle also has relevance if used vertically. Towards higher elevation in more humid 1803 

mountain regions of Europe, we reach a zone of periglacial and glacial dynamics, yet loess formation 1804 

is quantitatively reduced by the lack of stable surfaces to support long-lasting dust accumulation (see 1805 

the discussion in Chapter 4.2 of the distribution of loess in the European Alps; e.g. Gild et al, 2018). In 1806 

addition, in the rather high mountains and plateaus of arid Central Asia, e.g. the Tibetan Plateau and 1807 

Qilian Shan, mountain loess deposits are found (Lehmkuhl et al., 2014, 2000; Nottebaum et al., 2015, 1808 

2014; Stauch et al., 2012; Yang et al., 2020). The uppermost boundary of loess is periglacial loess, 1809 

whereas the lowermost parts are desert margin loess (described in Nottebaum et al., 2015, 2014). 1810 

For these regions, there are still debates on the influence of glaciers and deserts in loess formation. 1811 

To further test if the conceptual model is applicable to regions outside Europe, we exemplify here 1812 

the model for the Chinese Loess Plateau. In the Chinese Loess Plateau there is a gradual transition in 1813 

grain-size from the more humid monsoonal areas in the Southeast (left side of the triangle in Figure 1814 

20) towards the semi-arid and arid regions with desert margin loess in the northwest (right side of 1815 

the triangle, e.g. Bloemendal et al., 2008; Derbyshire et al., 1995; Yang and Ding, 2003). The thick 1816 

beds of primary loess in western Manchuria (Obruchev, 1945) and in the mountain areas of western 1817 

China could be placed in the upper half of our triangle towards the nival environments. These loess 1818 
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landscapes are also influenced by periglacial processes and slope wash (top of the triangle). 1819 

Moreover, in southern China, e.g. in the Sichuan Basin, there is a debate on subtropical and strongly 1820 

weathered aeolian (loess) deposits (Feng et al., 2014; Yang et al., 2010). This fits well to the 1821 

subtropical loess landscapes on the humid-arid axis of our conceptual model. Feng et al. (2014) 1822 

provides evidence that the Chengdu Clay contains aeolian material of possibly local origin. They 1823 

assume alluvial sediments in the northwestern Sichuan Basin as the major source and transportation 1824 

of the material by an ancient katabatic wind over a short distance during glacial and stadial periods 1825 

(subtropical). Even further north of the desert regions of Central Asia we reach another zone of 1826 

desert margin loess (e.g. in Tajikistan (Ding et al., 2002) or Kazakhstan (Rao et al., 2013)), whereas in 1827 

northern Mongolia and Siberia periglacial or mountain loess appears (Andreeva et al., 2011; 1828 

Lehmkuhl et al., 2012, 2011; Muhs, 2014).  1829 

4.5. Aspects of mid-Pleistocene loess formation and distribution in Europe 1830 

The new loess map of Europe focusses on processes and paleoenvironments of the LGM as reference 1831 

period, but as climate changes, the conditions for loess formation and distribution within our 1832 

conceptual triangle are also shifting. This implies changing environments of loess formation through 1833 

both, space and time. We want to focus here especially on the Middle Pleistocene environments. For 1834 

example, ice sheets extended further south during the penultimate and older glaciations compared 1835 

to the last glacial cycle. Figure 21 indicates the extent of the Saalian and Elsterian ice sheets in the 1836 

northern part of Europe modified according to Ehlers (2011). The extent of Elsterian and Saalian ice 1837 

sheets was more than 100 km further south in England and more than 300 km further south in the 1838 

North Sea west of Denmark when compared to the Weichselian ice sheets. Such extent of ice sheets 1839 

also influenced the different loess domains, since larger areas were covered by ice (such as IIb and 1840 

partly IIc) and thus the dust deflation and accumulation areas shifted further south. Furthermore, 1841 

there were enlarged ice dammed and proglacial lakes close to the ice margins during the Middle 1842 

Pleistocene. For example, Supplementary Figure S3 shows that a 120,000km² large glacial lake in the 1843 

southern North Sea existed from around 450,000 to 400,000 years ago (Gibbard, 2007). The North 1844 

Sea area was covered by both, larger lakes and larger ice sheets during the Elsterian. This area of 1845 

more than 220,000 km² reduced silt production potential greatly. This is particularly relevant since 1846 

the same area was a very important potential source of dust at other times (e.g. after the 1847 

"catastrophic" flooding in MIS 12). Especially the larger extent of ice might be the main reason for 1848 

the limited accumulation of loess in domain II during the time of older glaciations. For example, older 1849 

loess deposits in northern France are thin non-calcareous and non-typical sandy loess deposits, 1850 

which accumulated between about 600 and 420 ka close to the former slopes. 1851 

During the end of the Middle Pleistocene (between about 380 and 180 ka), sandy loess was 1852 

deposited in sediment traps such as sinkholes in the chalk bedrock or more frequently as cover 1853 

sequences on river terraces and has been preserved until today. Its composition suggests a distinct 1854 

proportion of local sources (i.e. sands from braided rivers). However, the coarse silt fraction, 1855 

probably from more distant sources (we speculate that the eastern channel was a main source area), 1856 

increased in frequency over time. Extensive deposition and preservation of calcareous loess over the 1857 
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plateaus and on downwind slopes of the asymmetric valleys (NE–SE exposures) occurred only during 1858 

the late Saalian stage (MIS 6, ±150–135 ka; Antoine et al., 2016). They are clearly distinguished from 1859 

older loess by an especially high amount of green amphibole in the heavy minerals assemblages 1860 

(Meijs, 2002; Pirson et al., 2018).  1861 

The unprecedented increase in loess sedimentation at the end of MIS 6 is also observed in Belgium at 1862 

Kesselt (Nelissen), where the "B loess" reaches a thickness of 6 to 10 m and contains distinct 1863 

periglacial features (Meijs, 2002). In Germany, some Middle Pleistocene loess layers have also been 1864 

preserved, especially in the Lower Rhine Bight (opencast lignite mines Garzweiler and Inden, Fischer 1865 

et al., 2012) and in the Middle Rhine area (East Eifel volcanic field: e.g. Boenigk and Frechen, 2001a, 1866 

2001b). 1867 

To summarize, due to changing climate and environmental conditions, the accumulation of aeolian 1868 

sediments was shifting throughout the Pleistocene. Especially during the Middle Pleistocene, 1869 

sediment dynamics were strongly influenced by the more southward extension of the ice sheets 1870 

(Figure 21) and by the occurrence of large ice marginal lakes. Both, lakes and ice extent, reduced the 1871 

dust production areas in the protogenetic domain (I) and thus they also reduced the potential for 1872 

loess accumulation in domains II and III.  1873 

 1874 

Figure 21: Loess map and extent of Middle Pleistocene glaciation (Saalian / Rissian; Elsterian) 1875 

according to Ehlers (2011). 1876 

5. Conclusion 1877 

In this study, we present a new revised map of the distribution of aeolian sediments (mainly loess) 1878 

and major potential source areas in Europe. We divided the European loess deposits into six major 1879 

domains and 17 subdomains, based on their facies. Loess facies are differentiated by the silt 1880 

production area (source), where especially river catchments are important transport agents, and 1881 

paleoenvironmental factors that influence loess formation, preservation and transformation. By 1882 
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means of the new map and geomorphological cross-sections, we analyzed the various influences of 1883 

geomorphology and paleoenvironment on loess deposits throughout Europe. The main loess 1884 

domains in Europe are: (1) The northern European loess belt (domain II), (2) the loess adjacent to 1885 

Central European high-altitude mountain ranges (domain III), (3) the Middle Danube Basin loess 1886 

(domain IV), (4) the Pontic East European loess (domain V). Additional important loess regions with 1887 

less extensive loess covers are the protogenetic zone north of the northern European loess belt 1888 

(domain I) and areas in the Mediterranean (domain VI). In the Central European low mountain ranges 1889 

loess occurs in smaller patches in areas above 600 – 800 m a.s.l. thicknesses of less than two meters. 1890 

In the periglacial zone of northern Europe silty material can also be incorporated in the periglacial 1891 

cover beds. 1892 

The loess deposits in Europe show remarkable differences regarding their distribution and 1893 

characteristics. These, compared to other loess regions in the world, complex (post-)depositional 1894 

milieus are mainly due to: (1) the fluctuations of the British and Fennoscandian ice sheets in the 1895 

north; (2) the permafrost and vegetation boundaries and their fluctuation; (3) the geographical 1896 

position of Europe bordering the Atlantic Ocean that allows the moist air masses of the westerlies to 1897 

travel throughout the continent creating a west-east gradient in precipitation, seasonality and 1898 

continentality; (4) variation in the topography, such as the (low) mountain ranges and the occurrence 1899 

of extensive lowland basins; and (5) the position of different potential dust sources like the ice sheet 1900 

margins, mountain glacier forelands, dry shelfs and associated braided river systems, larger river 1901 

systems and alluvial fans in the more continental areas. 1902 

Based on our findings, we suggest a new conceptual model of loess distribution, loess formation and 1903 

loess landscapes in form of a humid – arid – nival triangle. This model presents three modes of loess 1904 

formation as factors of humidity, aridity, and temperature. The top of the triangle represents 1905 

periglacial environments. Although loess-like sediments and loess derivates formed in these 1906 

environments, the prevalent conditions have caused discordances and hiati. Such loess deposits are 1907 

very characteristic for domains I – III and mostly formed during cold stadial conditions. The right side 1908 

of the triangle presents loess in arid and semi-arid regions (e.g. domains V, VIc). These deposits range 1909 

from silty loess towards more sandy loess in the direction of increasing aridity. The left side of the 1910 

triangle describes humid temperate and subtropical landscapes as found in the western and 1911 

southern Europe (domains IIIa, VIa, VIb) and at higher elevations in central-eastern Europe (domains 1912 

IV, V). The climatic conditions led to a denser vegetation cover resulting in morphodynamic stability 1913 

and increased chemical weathering and soil development. These processes enhanced the formation 1914 

of clay-sized particles and reduced the amount of coarser (silt-sized) particles. Finally, typical loess is 1915 

not formed in any of the extreme conditions and we propose that typical loess formation occurred 1916 

mainly in domain IV and partly in domain V during colder periods of the Pleistocene. 1917 

Even though our map focuses on loess landscapes formed and shaped during the LGM, this study can 1918 

be related to older loess deposits dating to the Middle Pleistocene. The ice sheets extended further 1919 

south compared to the last glacial-interglacial cycle. These shifts pushed not only the known 1920 

paleoclimatic and paleoenrivonmental boundaries such as the permafrost boundary or the timberline 1921 
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further south, they also had crucial ramifications on the size, nature and location of silt production 1922 

and deposition areas. Additionally, paleogeographic factors such as a vast Elsterian glacial lake in the 1923 

North Sea Basin, reduced the extent of potential source areas for dust deflation. These factors as well 1924 

as the periglacial overprinting of loess deposits in subsequent glacial periods, led to the poor 1925 

preservation of Middle Pleistocene loess deposits, especially in Northern Europe. 1926 
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Figure 2: Distribution of loess and selected Late Pleistocene sediments in Europe. The LGM extent of 1954 
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timberline (modified after Grichuk, 1992) and the boundaries of continuous and discontinuous 1956 

permafrost (Vandenberghe et al., 2014a) are also mapped.  1957 

Figure 3: Major domains (roman numerals) and subdomains (lowercase letters) of loess and loess 1958 

derivates for the LGM loess landscapes as shown in Figure 2. 1959 

Figure 4: N-S transects showing four exemplary loess landscapes across Europe. The location of the 1960 

transects, the 3-D images (Figs. 7, 8, 10, 11, 13, 14), and the meso-scale loess landscapes is shown in 1961 

the top map. Meso-scale loess landscape: Valley sections (So = Somme, Northern France Figure 6 and 1962 

RH = Red Hill, Czech Republic, Figure 12) loess-edge ramp (LS = Lower Saxony, S = Saxony, both 1963 

Germany, Figure 9). 1964 

Figure 5: Transect of 17 selected LPS from northern France to eastern Bulgaria, which span the last 1965 

glacial cycle in the respective subdomains. For correlation, all sections schematically divided in 1966 

chrono-climatic units of European loess sequences (Haesaerts and Mestdagh, 2000, Antoine et al., 1967 

2013): (Saalian), Interglacial (IG), Earlyglacial (EG), Lower Pleniglacial (LPG), Middle Pleniglacial (MPG) 1968 

and Upper Pleniglacial (UPG). The interglacials are shown in brown and the glacials in grey scales. The 1969 

hatchings indicate the soil types. The individual OSL ages can be obtained from the references given 1970 

above the sequences; countries and subdomain are given as abbreviations. Danube Basin loess 1971 

stratigraphic nomenclature follows Marković et al. (2015). 1972 

Figure 6: Loess stratigraphy in northern France (subdomain IIa) controlled by asymmetric valley 1973 

topography (modified according to Antoine et al., 2016). 1974 

Figure 7: 3-D image of the distribution of loess, sandy deposits, and the late Quaternary floodplain in 1975 

the southern part of the Lower Rhine Embayment. The size of the 3-D image is 40 x 55 km. 1976 

Superelevated by factor 1 (no superelevation). 1977 

Figure 8: 3-D image of the distribution of loess, sandy deposits, and the late Quaternary floodplain 1978 

surrounding the Harz Mountains in northern Germany. The size of the 3-D image is 180 x 190 km. 1979 

Superelevated by factor 20. 1980 

Figure 9: Loess-edge ramp (“Lößrandstufe”) in Germany: Examples from Lower Saxony (redrawn and 1981 

simplified according to Gehrt (1994) and personal communication by E. Gehrt, 2020) and Saxony 1982 

(redrawn and modified according to Haase et al., 1970). 1983 

Figure 10: 3-D image of the distribution of loess, sandy deposits, the Late Pleistocene fluvial deposits 1984 

and Holocene floodplain in the Upper Rhine Graben, the Kraichgau and Neckar Basin. The size of the 1985 

3-D image is 95 x 155km. Superelevated by factor 1 (no superelevation). 1986 

Figure 11: 3-D image of the distribution of loess, sandy deposits, the Late Pleistocene fluvial deposits 1987 

and Holocene floodplain in Lower Austria. The size of the 3-D image is 35 x 70 km. Superelevated by 1988 

factor 1 (no superelevation). 1989 
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Figure 12: Redrawn and modified sketch from Kukla (1977, 1978) showing the Červený kopec (Red 1990 

Hill) section at Brno Czech Republic with the terraces CK 1 -5 covered with LPS. The section was 1991 

exposed in an excavation front of a brickyard pit and in boreholes.  1992 

Figure 13: 3-D image of the loess landscape in the Vojvodina (northern Serbia) showing the 1993 

distribution of loess, loess derivates, the late Quaternary floodplain and numerous investigated loess 1994 

sequences. The size of the 3-D image is 53 x 57 km. Superelevated by factor 1 (no superelevation). 1995 

Figure 14: 3-D image of the distribution of loess and late Quaternary floodplain deposits in the Lower 1996 

Danube Basin. The size of the 3-D image is 50 x 55 km. Superelevated by factor 1 (no superelevation). 1997 

Figure 15: Box plots of the elevation (ordinate) of loess and loess derivates in Europe per subdomain 1998 

(abscissae). To exclude extreme outliers, the upper and lower limit in the whisker was set to 1% (cf. 1999 

Supplementary Tab. S3). 2000 

Figure 16: Frequency distributions of the elevation of loess and loess derivates per main and 2001 

subdomain. The ordinate shows the relative proportion of each elevation that is depicted on the 2002 

horizontal axis. A color legend is given for the subdomains. Note that the ordinated of domain 4 uses 2003 

a different scale.  2004 

Figure 17: Comparison of our new European loess map to the mapping approach from Haase et al. 2005 

2007. Similarities are shown in yellow. The distribution of loess, sandy loess and aeolian sand, and 2006 

loess derivates that are only evident in our map is depicted in green, while the distribution of loess, 2007 

loess derivates, sandy and alluvial loess that is only present in the Haase map is shown in blue. The 2008 

extent of glaciers (Ehlers et al., 2011) and the dry continental shelves (Willmes, 2015) during the LGM 2009 

are depicted.  2010 

Figure 18: Comparison of our new loess map to the mapping approach from Bertran et al 2016. 2011 

Please note that only data from the European Union was included due to the extent of the base data. 2012 

The extent of glaciers (Ehlers et al., 2011) and the dry continental shelves (Willmes, 2015) during the 2013 

LGM are depicted. 2014 

Figure 19: Dust deposition rates for the LGM according to modelled data from Schaffernicht et al. 2015 

(2020). The dust deposition rates comprise particles of up to 20 μm diameter (FD20) using a dynamic 2016 

downscaling (FD20 DD). Distribution of loess as well as the boundaries of the main loess domains are 2017 

given for comparison. 2018 

Figure 20: Conceptual model of loess landscapes. Note that the corners represent the extreme end 2019 

with no loess formation. Top: Glacier with lager extend on the nival-humid axis. Left corner: Forest 2020 

with larger extend on the humid-nival axis. Right corner: Deserts. 2021 

Figure 21: Loess map and extent of Middle Pleistocene glaciation (Saalian / Rissian; Elsterian) 2022 

according to Ehlers (2011). 2023 
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Table 1: Surface statistics of the distribution of loess and selected Late Pleistocene sediments in 2026 

Europe (Figure 2) per domain and subdomain.  2027 
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