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Abstract In the first part of this paper we present a new family of finite bounded
posets whose clones of monotone operations are not finitely generated. The proofs of
these results are analogues of those in the famous paper of Tardos. Another interesting
family of finite posets from the finite generability point of view is the family of locked
crowns. To decide whether the clone of a locked crown where the crown is of at least
six elements is finitely generated or not one needs to go beyond the scope of Tardos’s
proof. Although our investigations are not conclusive in this direction, they led to the
results in the second part of the paper.

We call a monotone operation ascending if it is greater than or equal to some
projection. We prove that the clones of bounded posets are generated by certain as-
cending idempotent monotone operations and the 0 and 1 constant operations. A
consequence of this result is that if the clone of ascending idempotent operations
of a finite bounded poset is finitely generated, then its clone is finitely generated as
well. We provide an example of a half bounded finite poset whose clone of ascending
idempotent operations is finitely generated but whose clone is not finitely generated.
Another interesting consequence of our result is that if the clone of a finite bounded
poset is finitely generated, then it has a three element generating set that consists of
an ascending idempotent monotone operation and the 0 and 1 constant operations.
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1 Introduction

Let F be a set of operations on a set A. We call F a clone if it is closed under com-
position and contains the projections. A subset of a clone is called a subclone if it is
closed under composition and contains the projections. On a set A the subclones of
the clone of all operations of A form a lattice, the lattice of clones on A.

A generating set of a clone F is a subset of F from which every element of F is
obtained by the use of composition and projections. A clone is finitely generated if
it has a finite generating set. In the present paper we study certain clones related to
finite posets. Our main goal is to decide if these clones are finitely generated.

We say that an n-ary operation f on A preserves a k-ary relation R on A, if by
applying f componentwise to any r1, . . . ,rn ∈ R the resulting k-tuple also is in R.
Clearly, for any set of relations S on A, the set of operations that preserve all of the
relations of S is a clone. The operations that preserve the one element subsets of their
base sets are called idempotent.

Let P be a partially ordered set, a poset for short. An operation f on the base set
of P is called monotone if f preserves the ordering ≤ of P. Then we also say that
P admits the operation f . For a finite poset P, let C (P) and I (P) denote the clone
of monotone operations of P and the clone of idempotent monotone operations of P,
respectively. We call C (P) the clone of P and I (P) the idempotent clone of P.

A clone is called maximal if it is a coatom in the lattice of clones. In [1] Rosenberg
proved that there are only six types of maximal clones in the lattice of clones on a
finite set. Later the clones of five types of them were shown to be finitely generated.
The clones of the sixth type are the clones of bounded posets. A poset is bounded if it
has a smallest and a largest element. On the finite generability of clones of bounded
posets only partial results were obtained so far.

An n-ary operation f , n≥ 3, is a near unanimity operation if it satisfies the iden-
tities

f (x,y, . . . ,y) = f (y,x, . . . ,y) = · · ·= f (y,y, . . . ,x) = y.

Notice that the near unanimity operations are idempotent. It is well known that on a
finite set any clone that contains an n-ary near unanimity operation is finitely gen-
erated. In [2] Demetrovics, Hannák and Rónyai proved that by deleting any convex
subset of a finite lattice we obtain a poset whose clone contains a near unanimity
operation. A fence is a finite poset of height 1 whose covering graph is a path. The
linear sum P+Q of two posets P and Q is the poset whose base set is the union of
the base sets of P and Q, and whose ordering is defined by a≤ b iff either a ∈ P and
b ∈ Q or a ≤ b in P or a ≤ b in Q. Let k denote the k-element antichain. If F is a
fence, then 1+2+F +2+1 is a called a locked fence. Fences and locked fences also
admit a near unanimity operation. It is easy to see that the class of finite posets whose
clones contain near unanimity operations is closed under retract and finite product. A
retract of a poset P is a poset R that is isomorphic to the image of a unary monotone
operation f on P where f 2 = f .
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It is an open question if besides the finite bounded posets that admit a near una-
nimity operation there are other types of finite bounded posets whose clones are
finitely generated. If we drop the boundedness condition in this question, then the
answer is positive. A crown is a poset of height 1 whose covering graph is a cycle. In
[3] Demetrovics and Rónyai proved that the clone of any crown is finitely generated.
It is well known, on the other hand, that the idempotent clone of any crown contains
only projections, hence its clone does not contain a near unanimity operation.

Fig. 1 Posets T, H, and N

In his famous paper [5] Tardos proved that the clone of the eight element poset T
in Figure 1 is not finitely generated. His result was generalized by the third author of
the present paper in [7]. A finite poset P is series-parallel if the four element poset
N in Figure 1 is not an induced subposet of P. In [7] it was proved that for a series-
parallel poset P, C (P) is finitely generated if and only if none of the posets T, H in
Figure 1 and the dual of H are retracts of P. A natural question arises: is it true that if
the clone of a finite poset is finitely generated, then the clone of any of its retracts is
finitely generated. We are not able to answer even the simpler question: is it true that
if T or H is a retract of a finite poset P, then C (P) is non-finitely generated.

The aim of this paper is to establish the non-finitely generated (or finitely gener-
ated) property for clones of posets in new classes of finite posets. We think that such
results eventually may lead to a characterization of finite posets with non-finitely
generated clones.
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Fig. 2 The posets C2,2, C3,2, C2,3, and C3,3

In Section 2 we exhibit an infinite family of finite (bounded) posets which are not
series-parallel and have non-finitely generated clones. Hence we get to new exam-
ples of non-finitely generated maximal clones. Let An be the poset obtained from the
Boolean lattice with n atoms by removing its greatest element, and Bn the dual of An.
Let Cm,n = Am +2+Bn. We shall prove that if m,n ≥ 2, then C (Cm,n) and I (Cm,n)
are non-finitely generated. An analogous proof shows that C (2+Bn) and I (2+Bn)
where n ≥ 2 are not finitely generated. We note that each of the posets Cm,n where
m,n≥ 2 retracts onto T , and each of the 2+Bn where n≥ 2 retracts onto H.

For any integer k ≥ 2, let Ck denote the 2k-element crown. Let Dk denote the
poset 1+ 2+Ck + 2+ 1. These posets were introduced by McKenzie in [4] under
the name of locked crowns. To settle the finite generability question for C (Dk) when
k ≥ 3 seems difficult and needs essentially new ideas beyond the scope of the ones
in Tardos’s seminal paper [5]. The poset D2 is series-parallel and hence, by [7], its
clone is non-finitely generated. When k≥ 3, then Dk is not series-parallel and it is not
known whether C (Dk) is finitely generated or not. Our investigations in this direction
led to the results in Section 3.

We call an n-ary monotone operation f on a poset ascending if it is greater than
or equal to some projection, that is there is an i such that f (x1, . . . ,xn) ≥ xi for all
(x1, . . . ,xn). We prove that the clones of bounded posets are generated by certain
ascending idempotent monotone operations and the 0 and 1 constant operations. A
consequence of this result is that if the clone of (ascending) idempotent operations of
a finite bounded poset is finitely generated, then its clone is finitely generated as well.
Another interesting consequence of our result is that if the clone of a finite bounded
poset is finitely generated, then it has a three element generating set that consists of
an ascending idempotent monotone operation and the 0 and 1 constant operations.
Our result does not extend to half bounded finite posets: we prove that the clone
of ascending idempotent operations of H is finitely generated but, as we mentioned
above, the clone of H is not finitely generated.
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Our investigations on the clone of Dk led us to seemingly simpler problems. Un-
fortunately, these problems turned out to be difficult ones, as well. For example,
we are not able to decide whether the clone of ascending idempotent operations of
1+ 2+ 2+ 1 is finitely generated. Per se, it also remains an open question whether
the clone of Dk, k ≥ 3, is finitely generated.

2 Classes of finite posets with non-finitely generated clones

In this section we shall prove that the clones and the idempotent clones of the posets
Cm,n, An + 2 and 2+Bn where m,n ≥ 2 are not finitely generated. We require some
basic definitions to proceed.

For two posets O and P, the partial mappings f : O ⇀ P are called P-colorings of
O. If f is a P-coloring of a poset O, then we call the pair (O, f ) a P-colored poset.
The P-colored poset (O, f ) is called P-extendible if there exists a fully defined mono-
tone extension of f to O. We say that a poset O′ is contained in an other poset O
if the ordering relation of O′ is contained in the ordering relation of O. A P-colored
poset (O, f ) is called a P-obstruction if (O, f ) is not extendible, but for all posets O′

properly contained in O, (O′, f |O′) is extendible. An obstruction is trivial if it has
two elements or, equivalently, has no non-colored elements. We note that if O is con-
nected, then in the preceding definition it suffices to take those O′ that are obtained
from O by deleting a single covering edge. Clearly, every finite non-extendible col-
ored poset contains an obstruction. Later throughout the text, we frequently use the
notation P \ S where P is a poset and either S is a subset of elements of P or S only
contains a covering edge of P. In these cases, P\S denotes the poset remaining from
P after removing the elements of S and all edges incident with the elements in S, or
removing the covering edge of S from P, respectively.

First we describe the Bn-obstructions. By Proposition 1.12 and Theorem 2.2 in [6]
each non-trivial Bn-obstruction consists of a single non-colored element that is cov-
ered by the colored elements of the obstruction. By taking into account the definition
of obstruction we have the following.

Theorem 1 Every non-trivial Bn-obstruction consists of a single non-colored ele-
ment that is covered by the colored elements of the obstruction. The colors of the
colored elements form an antichain in Bn such that their intersection does not exist
in Bn and the intersection of all but any one of them does exist in Bn.

Observe that the number of colored elements of a non-trivial Bn-obstruction is at most
n, and if the set of colors of a Bn-obstruction is contained in the set of coatoms of Bn,
then it is equal to it. It also follows that the set of colors of any Bn-obstruction with
n-colored elements is equal to the set of coatoms of Bn. We need the following result,
see Theorem 3.3 in [6].
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Fig. 3 An example of construction (iii) in Theorem 2

Theorem 2 Let P be a finite poset and B a poset whose obstructions have at most
one non-colored element. Let P′ = P+B. Then every non-trivial P′-obstruction is in
one of the following form:

(i) a P-obstruction in which every maximal element is colored,
(ii) a B-obstruction in which every minimal element is colored, or

(iii) it is obtained from a P-obstruction (O, f ) such that to each non-colored maximal
element of (O, f ) we glue a B-obstruction with a non-colored minimal element at
its minimal element, possibly identifying some colored maximal elements of the
same color after the gluing.

We note that part (i) is a special case of part (iii), when the P-obstruction (O, f )
has only colored maximal elements. For a more interesting use of part (iii) we pro-
vided an example in Figure 3.

We remark that the obstructions of the two element antichain {β ,β ′} are the
colored fences whose only colored elements are their two endpoints colored by β

and β ′, respectively.
By this remark, the preceding two theorems and their dual, we obtain a description

of the Cm,n-obstructions. From now on, we refer to the members of the two element
antichain in the definition (in the middle) of Cm,n as β and β ′.

Corollary 3 Every non-trivial Cm,n-obstruction is obtained from a colored fence
(O, f ) whose endpoints are colored by β and β ′ such that to each non-colored max-
imal element of (O, f ) we glue a non-trivial Bn-obstruction and to each non-colored
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minimal element of (O, f ) we glue a non-trivial Am-obstruction, possibly identify-
ing some colored maximal elements of the same color and some colored minimal
elements of the same color after the gluing.

Now, we are set to prove the main theorem of the section. Our proof is analogous
to that of Tardos, hence we advise the reader to consult Tardos’s original paper [5]
before getting into the proof of our theorem.

Theorem 4 If m, n ≥ 2, then the clone of Cm,n and the idempotent clone Cm,n are
non-finitely generated.

Proof First we prove that the clone of Cm,n is not finitely generated. For every k ≥
4 we shall define a relation R such that all [k/2]-ary monotone operations of Cm,n
preserve R but there is a monotone operation of Cm,n that does not preserve R. Then,
clearly, for every k ≥ 4, C (Cm,n) is not generated by the [k/2]-ary operations. Thus,
C (Cm,n) is not finitely generated.

x0 x2

w1 w3 w5 w2k−3

xm−1

w2k−1

y
w2 w4 w2k−2

y′

v1 v2 vn−1

z2 zk−1 zkz0 z1
. . .

. . .

. . .

. . .

Fig. 4 Poset Q

The relation R is defined by the help of the poset Q in Figure 4. For every k ≥ 4,
poset Q consists of

(i) the fence y,w1,w2, . . . ,w2k−1,y′,
(ii) the minimal elements x0,x2, . . . ,xm−1 that are all lower covers of the minimal

elements w1,w3, . . . ,w2k−1 of the fence,
(iii) the maximal elements v1,v2, . . . ,vn−1 that all cover the maximal elements w2,w4,

. . . , w2k−2 of the fence,
(iv) the maximal elements z1,z2, . . . ,zk−1 such that zi uniquely covers w2i for 1≤ i≤

k−1, and
(v) two isolated elements z0 and zk.
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Suppose f is a partial map from Q to Cm,n whose domain is the set of extremal
elements of Q. For every 0 ≤ j ≤ k we set f j(zi) = f (zi+ j) for all 0 ≤ i ≤ k where
the indices are meant modulo k+ 1, and f j(x) = f (x) where x is extremal and x 6=
z0, . . . ,zk.

Now, we define Ri to be the (m+ n+ k + 2)-ary relation that consists of those
partially defined maps f on Q whose domains are the set of extremal elements of Q,
(Q\{e}, f j) is extendible for every 0≤ j≤ k and covering edge e of Q, and (Q, fi) is
extendible. We note that the Ri are preserved by the monotone operations of Cm,n. Let
R = ∪k

i=0Ri. We conceive each element f ∈ R as an (m+n+ k+2)-tuple (a column
vector) of the form

( f (x0), . . . , f (xm−1), f (y), f (y′), f (z0), . . . , f (zk), f (v1), . . . , f (vn−1)). (1)

First, we prove that the [k/2]-ary operations of Cm,n preserve R. This follows from
the fact that for any [k/2] elements in R there is an i such that Ri contains all of these
elements. To prove this we show that any element f of R is contained by k− 1 of
the Ri. Suppose that f is in R but not in any of Ri0 ,Ri1 and Ri2 where i0, i1 and i2 are
pairwise different indices. This implies that (Q\{z0,zk}, fi0) is an obstruction. Hence
- by the use of Corollary 3, the second remark after Theorem 1 and its dual - up to a
symmetry of Cm,n

fi0(x0) = α0, . . . , fi0(xm−1) = αm−1, fi0(y) = β , fi0(y
′) = β

′,

fi0(z1) = · · ·= fi0(zk−1) = γ0, fi0(v1) = γ1, . . . , fi(vn−1) = γn−1

where the α j are the atoms of Am, {β ,β ′} = 2 is the two element antichain in the
middle of Cm,n, and the γl are the coatoms of Bn. We similarly have

fi1(z1) = · · ·= fi1(zk−1) = γ0 and fi2(z1) = · · ·= fi2(zk−1) = γ0.

So by the definition of the fi, fi0(z0) = fi0(zk) = γ0 also holds. Hence f is not in any
of the Ri, which contradicts f ∈ R. Thus, f is contained by k−1 of the Ri. Therefore,
for any choice of [k/2] elements in R there exists a j such that R j contains them.
Hence, any [k/2]-ary monotone operation of Cm,n preserves R.

Let g be the partial function from C2(k+1)
m,n to Cm,n defined by the (k+m+n+2)×

(2k+3)-matrix in Figure 5 such that for each row g assigns the (2k+3)-th component
to the 2(k+ 1)-tuple determined by the first 2(k+ 1) components of the row. As we
mentioned earlier, we conceive each element f ∈ R as a column vector of the form
(1). Notice then that the first 2(k + 1) columns of the matrix in Figure 5 are in R,
and the last column is not in R. We shall prove that the colored poset (C2(k+1)

m,n ,g) is
extendible. Then any extension of g is a monotone 2(k+1)-ary operation of Cm,n that
does not preserve R, which concludes the proof of the first part of the theorem.

So it remains to prove that (C2(k+1)
m,n ,g) is extendible. Suppose that (C2(k+1)

m,n ,g)
is not extendible. Then it contains an obstruction (O,g′). We invoke Corollary 3,
the first remark after Theorem 1 and its dual. Since g is monotone on its domain,
(O,g′) is obtained by adding some suitable colored elements to a colored fence whose
endpoints are colored by β and β ′, respectively. In particular, the endpoints colored
by β and β ′ are maximal in O, for otherwise one of these elements would be below
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Fig. 5 The matrix defining g

an element colored by γ0, which is impossible by the definition of g. As the set of
colors of (O,g′) is determined by g, each minimal non-colored element of the fence
has a lower cover colored by αi for all 0≤ i≤ m−1 and each maximal non-colored
element of the fence has an upper cover colored by a γ j for all 0≤ j≤ n−1. Observe
that all rows with a last component γ0 from the matrix occur in (O,g′) as γ0-colored
elements. Indeed, if the l-th one of them was missing, then the l-th projection of O
would be an extension of g′. Let ai, 1≤ i≤ t, be the sequence of γ0-colored elements
in (O,g′) where ai covers the i-th maximal non-colored element in the fence of non-
colored elements of (O,g′). Let (a j,γ0) the row of the matrix that occurs last in the
sequence (ai,γ0) 1≤ i≤ t. Say, (a j,γ0) is the s-th row of the matrix. Then the s−1-th
and the s+ 1-th rows of the matrix occur preceding (a j,γ0) in the sequence (ai,γ0),
1≤ i≤ t. Hence there is a subsequence of consecutive elements of (ai,γ0), 1≤ i≤ t
such that none of the s−1-th, s-th and s+1-th rows occur in it except the first and the
last members that coincide with the s−1-th and s+1-th rows in some order. Here the
indices s−1, s and s+1 are considered modulo k+1. Then, the colored poset whose
base poset is O and whose coloring is the restriction of the (s+ k+ 1)-th projection
to the colored elements of O is a non-extendible colored poset, a contradiction. Thus
we have proved that the clone of Cm,n is non-finitely generated.

In order to prove that the idempotent clone of Cm,n is not finitely generated it
suffices to prove that the partial function g given by the matrix in Figure 5 has a totally
defined idempotent monotone extension. First, we extend g by adding the constant γ0
row to the matrix to obtain a new partial function. The same proof as in the preceding
paragraph gives that the partial function defined in this way is extendible. Let ĝ be
any monotone extension of it onto C2(k+1)

m,n . We claim that the restriction of ĝ onto the
diagonal tuples must be a projection. The map ĝ restricted to the diagonal elements
where g is defined and to the constant γ0-tuple is clearly a projection. The value of ĝ
on the constant β -tuple must equal β by the definition of g and by the monotonicity
of ĝ. Similarly, on the constant β ′-tuple the value of ĝ is β ′. Then the values of ĝ are
uniquely determined on the remaining diagonal elements by the monotonicity of ĝ.
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Hence, ĝ is a projection restricted to the diagonal, so ĝ is an idempotent extension of
g. ut

Let Q2 denote the poset Q from the preceding proof for the parameters m = n =
2. We note that Q2 is the poset used by Tardos in his original proof. One of the
anonymous referees pointed out that by using Q2 instead of Q for defining R for any
m,n ≥ 2, a similar but a bit simpler proof can be given to prove that the clone of
Cm,n is non-finitely generated. We have opted for the present proof, since it easily
carries over to prove that the idempotent clone of Cm,n is non-finitely generated and,
in particular, to prove that the idempotent clone of 2+Bn is non-finitely generated.

Let Q′ be the poset obtained from poset Q in the preceding proof by deleting
the minimal elements x0, . . . ,xm−1. Then Q′ is used to get a proof of the following
theorem. The proof follows mutatis mutandis of the preceding proof, hence we omit
it.

Theorem 5 If n≥ 2, then the clones C (2+Bn) and I (2+Bn) are non-finitely gen-
erated.

We note that a similar claim holds for the poset An +2 if n ≥ 2. We shall see by
Corollary 8 in the next section that if the idempotent clone of a finite bounded poset
is finitely generated, then its clone is also finitely generated. By this result, the first
part of Theorem 4 implies its second part. We do not know a general result by which
the second part of Theorem 5 follows from its first part.

3 The clone of ascending idempotent operations

Recall that a monotone operation of a poset is ascending if it is greater than or equal
to some projection. Clearly, the ascending idempotent monotone operations form a
subclone in the clone of a poset. In this section we prove a theorem that reduces the
finite generability of the clone of a finite bounded poset to the finite generability of
the clone of its ascending idempotent operations. We prove that a similar theorem
does not hold for half bounded posets. Let Dk denote the poset 1+ 2+Ck + 2+ 1
where Ck is the 2k-element crown. We sketch a possible way to prove that the clone
of monotone ascending idempotent operations of Dk, k≥ 3, is non-finitely generated.
To decide if C (Dk), k ≥ 3, is finitely generated looks further away. An approach like
the ones in Tardos’s paper and in the proof of Theorem 4 does not seem to work since
the shapes of the Dk-obstructions are too unwieldy due to the fact that the shapes of
the Ck-obstructions are too unwieldy, cf. Theorem 2.

We call the clone of the ascending idempotent operations of a poset the reduced
idempotent clone of the poset. The reduced idempotent clone of P is denoted by
Ir(P). The following theorem gives indication how ascending idempotent operations
play a role in the generability of the clone of a bounded poset.

Theorem 6 The clone of a finite bounded poset is generated by its ascending idem-
potent operations and the unary constant operations 0 and 1.
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Proof Let P be a finite bounded poset. It suffices to prove that for any monotone n-
ary f : Pn → P there exists an ascending idempotent monotone (n+ 2)-ary fI such
that fI(0,1,x1, . . . ,xn) = f (x1, . . . ,xn). We define fI as follows:

fI(y1,y2,x1,x2, . . . ,xn) :=


1 if y1 6= 0 and y2 = 1,
f (x1, . . . ,xn) if y1 = 0 and y2 = 1,
y1 otherwise.

(2)

Now it is clear that fI is idempotent, monotone, moreover

fI(0,1,x1, . . . ,xn) = f (x1, . . . ,xn) and fI(y1,y2,x1,x2, . . . ,xn)≥ y1.

ut

The preceding theorem has the following corollaries.

Corollary 7 If the reduced idempotent clone of a finite bounded poset is finitely gen-
erated, then its clone is also finitely generated.

Corollary 8 If the idempotent clone of a finite bounded poset is finitely generated,
then its clone is also finitely generated.

The first part of Theorem 4 and Corollary 7 immediately yield the following.

Corollary 9 If m,n≥ 2, then the clone Ir(Cm,n) is non-finitely generated.

We also note that the first part of Theorem 4 and Corollary 8 implies the second
part of Theorem 4.

Fig. 6 The poset 1+2+2+1

We do not know if the converse of Corollary 7 is true. The poset 1+2+2+1 is
a candidate for a counterexample. It is well known that 1+2+2+1 admits a 5-ary
near unanimity operation, so its clone and idempotent clone are finitely generated.
On the other hand, a near unanimity operation on a poset of more than one elements
is never ascending. So if the reduced idempotent clone of 1+2+2+1 is yet finitely
generated, the usual near unanimity argument does not work to prove it. Nevertheless,
we are able to prove for a finite bounded poset P that C (P) is finitely generated if and
only if an appropriate subclone of Ir(P) is finitely generated. For a finite bounded
poset P, let D(P) denote the clone generated by the ascending idempotent operations
defined in the proof of Theorem 6.
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Corollary 10 For a finite bounded poset P, C (P) is finitely generated if and only if
D(P) is finitely generated.

Proof If D(P) is finitely generated, then C (P) is finitely generated by the proof of
Theorem 6. For the converse suppose that C (P) has a finite generating set and is
generated by the operations f 1, . . . , f k. Let f 1

I , . . . , f k
I be the corresponding ascending

idempotent operations defined in the proof of Theorem 6.
Now we prove that for any monotone operation g, gI is a composition of f 1

I , . . . , f k
I ,

hence D(P) is generated by f 1
I , . . . , f k

I . The operation g is a composition of the op-
erations f 1 = f 1

I (0,1, . . .), . . . , f k = f 1
I (0,1, . . .) where the . . . within the parentheses

stands for a suitable number of variables. By replacing 0 with the variable y1 and 1
with the variable y2 in this composition, we get to a composition g′ of f 1

I , . . . , f k
I . By

the definition in (2), it is now easy to check that g′ = gI . ut

Another interesting corollary of Theorem 6 is as follows.

Corollary 11 If the clone of a finite bounded poset is finitely generated, then it is
generated by three elements: an ascending idempotent operation and the constant
operations 0 and 1.

Proof Let P be a finite bounded poset such that C (P) is generated by the operations
f 1, . . . , f k. Then let f 1

I , . . . , f k
I be the corresponding ascending idempotent operations

defined in the proof of Theorem 6. Then f 1
I , . . . , f k

I and the 0 and 1 constant operations
generate C (P). Finally, in this generating set we replace f 1

I , . . . , f k
I by a composition

f of them such that f 1
I , . . . , f k

I are obtained from f by identifying variables. Such an f
is defined by replacing two members - say, an m-ary s and an n-ary t - in the sequence
f 1
I , . . . , f k

I by the operation s(t(x1, . . . ,xn), . . . , t(x(m−1)n+1, . . . ,xmn)) and by iterating
this process until we get to a one element sequence of operations. ut

It looks as an interesting and non-trivial problem to give some tractable char-
acterization of the finite posets P such that the idempotent operations of P and the
constant operations of P together generate the clone of P. One of the anonymous
referees pointed out that a finite connected poset P with this property must satisfy
the fixed point property, that is, every monotone unary operation on P has a fixed
point. In this respect, we note that H is a finite connected poset that has the fixed
point property, but it is not hard to prove that the idempotent operations and constant
operations of H do not generate the clone of H. Our next theorem yields the weaker
consequence that the ascending idempotent operations and the constant operations of
H do not generate the clone of H.

We shall prove that the reduced idempotent clone of H is finitely generated. On
the other hand, by Theorem 5 the clone of H is not finitely generated. This shows that
Corollary 7 does not extend to the class of the half bounded posets. Just to compare,
the idempotent clone of H is not finitely generated, also by Theorem 5.

Theorem 12 The reduced idempotent clone of H is finitely generated.

This theorem is an immediate consequence of the next two lemmas. We are going
to prove that any idempotent operation that is greater than or equal to the first projec-
tion is a composition of 4-ary operations of such a type. The whole argument works
for the other operations of the reduced idempotent clone analogously.
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β β ′

γ γ ′

1

Fig. 7 Poset H with labeling

Let Ir1 denote the set of the operations in Ir(H) that are greater than or equal
to the first projection π1, and let Ir1,n be the n-ary part of Ir1. Next we define some
basic operations in Ir1. Our proof is based on the observation that all members of Ir1
are built as compositions from these operations.

We say that f ∈ Ir1,n jumps to q at x ∈ Hn if π1(x) < f (x) = q. We define the
smallest operations in Ir1,n that jump to a certain value at a certain element. For
a ∈H, let a denote the m-tuple, each of whose components equals a, where m will be
clear from the context throughout. Let z = (z1, . . . ,zn) be an arbitrary element of Hn.

For any z with z1 < 1, z 6≤ γ and z 6≤ γ ′ we define

gz
1(x) :=

{
1 if z≤ x,
π1(x) otherwise.

For any z with z1 < γ and z 6≤ γ ′ we define

gz
γ(x) :=


γ if z≤ x and π1(x) = z1,

1 if z≤ x and π1(x) = γ ′,

π1(x) otherwise.

The operation gz
γ ′ is defined analogously to gz

γ . It is easy to see that gz
y ∈ Ir1,n for

every possible values of y and z. Notice that gz
y is the smallest operation in Ir1,n that

jumps to y at z.
We define a binary operation denoted by ∨ on H that is almost a compatible join

semilattice operation:

x∨ y =

{
x if {x,y}= {β ,β ′},
the least upper bound of x and y otherwise.

Obviously, ∨ ∈ Ir1,2. Moreover, ∨ is associative, not commutative, though.

Lemma 13 For any f ∈ Ir1,n and x ∈ Hn we have

f (x) =
∨
{gz

y(x) : f jumps to y at z }

where the order of joinands on the right hand side is chosen arbitrarily.
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Proof On one hand for each x ∈ Hn if y = f (z) > π1(z), then gz
y(x) takes on a value

between π1(x) and f (x). On the other hand, for each x where f jumps gx
f (x)(x) = f (x),

so the join on the right hand side of the equality in the claim equals f (x). If f does
not jump at x, then gz

y(x) = π1(x) for all of the gz
y on the right hand side, and so the

join equals π1(x). ut

By Lemma 13, it suffices to exhibit a finite generating set for the operations gz
y to

finish our proof. The following lemma yields us a generating set of 4-ary operations.
We note that the operations gz

y are defined only under some stipulations for the values
of the parameters y and z, see definition.

Lemma 14 Let n ≥ 5. Let y ∈ H and z = (z1, . . . ,zn) ∈ Hn such that the n-ary op-
eration gz

y is defined. Then there exist i, j and k 6= i, j,1 such that for the 4-tuple
z′ = (z1,zi,z j,zk) and the (n−1)-tuple z′′ = (z1, . . . ,zk−1,zk+1, . . . ,zn), the 4-ary op-
eration gz′

y and the (n−1)-ary operation gz′′
y are defined, and

gz
y(x) = g(z1,y,y)

y (x1,gz′
y (x
′),gz′′

y (x′′))

where x′ = (x1,xi,x j,xk) ∈ H4 and x′′ = (x1, . . . ,xk−1,xk+1, . . . ,xn) ∈ Hn−1.

Proof First, we consider the case when y = 1. Then z1 < 1, z 6≤ γ and z 6≤ γ ′. If zi = 1
for some i, then let j = i and choose k to be different from 1 and i. If for all i, zi 6= 1,
then there are two components of z such that one of them equals γ and the other does
γ ′. Then we choose i, j and k such that zi = γ , z j = γ ′ and k is different from 1, i, j. In
both cases, we take z′ and z′′ as in the claim. Notice that for the tuples z′ and z′′, gz′

1
and gz′′

1 are defined. Moreover,

z≤ x iff (z′ ≤ x′ and z′′ ≤ x′′).

Thus if z≤ x, then gz′
1 (x
′) = 1 and gz′′

1 (x′) = 1, hence

g(z1,1,1)
1 (x1,gz′

1 (x
′),gz′′

1 (x′′)) = g(z1,1,1)
1 (x1,1,1) = 1 = gz

1(x).

For the case when z 6≤ x, we may assume that x1 < 1, since otherwise both sides of
the equality in the claim equal 1. Now if, for example, z′ 6≤ x′, then gz′

1 (x
′) = x1 < 1.

This yields

g(z1,1,1)
1 (x1,gz′

1 (x
′),gz′′

1 (x′′)) = g(z1,1,1)
1 (x1,x1,gz′′

1 (x′′)) = x1 = gz
1(x),

which concludes our proof for the case y = 1.
For the remaining part of the proof, we assume without loss of generality that

y = γ . Then z1 < γ and z 6≤ γ ′. We may assume that z1 = β . Now, there exists an i
such that zi = 1 or zi = γ . We put j = i and choose k different from 1 and i. We take
z′ and z′′ as in the claim. Then gz′

γ and gz′′
γ are defined, and

z≤ x iff (z′ ≤ x′ and z′′ ≤ x′′).

We split the rest of the proof in three cases.
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In the first case we assume that z ≤ x and x1 = β . Then we have that gz′
γ (x
′) = γ

and gz′′
γ (x′′) = γ , hence

g(β ,γ,γ)γ (x1,gz′
γ (x
′),gz′′

γ (x′′)) = g(β ,γ,γ)γ (β ,γ,γ) = γ = gz
γ(x).

In the second case we assume that z≤ x and x1 = γ ′. Now we have that gz′
γ (x
′) = 1

and gz′′
γ (x′′) = 1, and hence

g(β ,γ,γ)γ (x1,gz′
γ (x
′),gz′′

γ (x′′)) = g(β ,γ,γ)γ (γ ′,1,1) = 1 = gz
γ(x).

For the third case we assume that none of the conditions

(z≤ x and x1 = β ) and (z≤ x and x1 = γ
′)

hold. This implies that if z ≤ x, then x1 = γ or x1 = 1, and it is clear in both cases
that both sides of the equality in the claim equal x1. Hence we have to consider only
z 6≤ x. Then, for example, z′′ 6≤ x′′ and gz′′

γ (x′′) = x1. This yields

g(β ,γ,γ)γ (x1,gz′
γ (x
′),gz′′

γ (x′′)) = g(β ,γ,γ)γ (x1,gz′
γ (x
′),x1) = x1 = gz

γ(x),

which concludes the proof. ut

Finally, we delineate some ideas on the question if Ir(Dk) is finitely generated.
We proceed with a straightforward lemma on general clones. A homomorphism from
a clone C to a clone D is a map that preserves the projections and commutes with
composition of operations. A clone D is a homomorphic image of a clone C if there
is an onto homomorphism from C to D.

Lemma 15 If a clone is finitely generated, then its homomorphic images are also
finitely generated.

Let P be a finite poset. A subset U of P is called an up-set of P, if for any a ∈U ,
b ∈ P and a≤ b we have b ∈U . We note that every n-ary monotone ascending idem-
potent operation of an up-set U of P extends to an n-ary monotone ascending idem-
potent operation on P. Indeed, by taking an appropriate projection on Pn \Un yields
an extension. Moreover, any up-set U of P is preserved by all monotone ascending
operations of P, hence Ir(U) is a homomorphic image of Ir(P) via the restriction
homomorphism. So by Lemma 15 we get the following.

Corollary 16 If the reduced idempotent clone of a finite poset P is finitely generated,
then the reduced idempotent clone of any up-set of P is finitely generated.

We mentioned above that we are not able to decide whether Ir(1+2+2+1) is
finitely generated. By the preceding corollary - as 1+2+2+1 is an up-set in Dk - a
negative answer would yield that Ir(Dk) is non-finitely generated. We note that D2
is series-parallel and T is a retract of it, and hence C (D2) is non-finitely generated.
So by Corollary 7, Ir(D2) is non-finitely generated. Nevertheless, it remains open
whether Ir(Dk) and C (Dk) are finitely generated if k ≥ 3.
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