
Array 6 (2020) 100021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE Publicatio Repozitórium - SZTE - Repository of Publications
Contents lists available at ScienceDirect

Array

journal homepage: www.elsevier.com/journals/array/2590-0056/open-access-journal
Deep learning in static, metric-based bug prediction

Rudolf Ferenc a,*, D�enes B�an a, Tam�as Gr�osz b,c, Tibor Gyim�othy a,c

a Department of Software Engineering, University of Szeged, Hungary
b Department of Computer Algorithms and Artificial Intelligence, University of Szeged, Hungary
c MTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary
A R T I C L E I N F O

Keywords:
Neural networks
Deep learning
Bug prediction
Code metrics
* Corresponding author. H-6720, Szeged, Dugoni
E-mail addresses: ferenc@inf.u-szeged.hu (R.

(T. Gyim�othy).

https://doi.org/10.1016/j.array.2020.100021
Received 16 December 2019; Received in revised f
Available online 30 March 2020
2590-0056/© 2020 The Authors. Published by Else
A B S T R A C T

Our increasing reliance on software products and the amount of money we spend on creating and maintaining
them makes it crucial to find bugs as early and as easily as possible. At the same time, it is not enough to know
that we should be paying more attention to bugs; finding them must become a quick and seamless process in order
to be actually used by developers. Our proposal is to revitalize static source code metrics – among the most easily
calculable, while still meaningful predictors – and combine them with deep learning – among the most promising
and generalizable prediction techniques – to flag suspicious code segments at the class level. In this paper, we
show a detailed methodology of how we adapted deep neural networks to bug prediction, applied them to a large
bug dataset (containing 8780 bugged and 38,838 not bugged Java classes), and compared them to multiple
“traditional” algorithms. We demonstrate that deep learning with static metrics can indeed boost prediction ac-
curacies. Our best model has an F-measure of 53.59%, which increases to 55.27% for the best ensemble model
containing a deep learning component. Additionally, another experiment suggests that these values could improve
even further with more data points. We also open-source our experimental Python framework to help other re-
searchers replicate our findings.
1. Introduction

Our society’s ever increasing reliance on software products puts
pressure on developers that is close to unsustainable. With fast idea-to-
market times, common overtime issues, and global competition, soft-
ware faults – or bugs, as they are more commonly referred to – are easy to
make, but hard and costly to fix [1]. Moreover, this cost increases pro-
portionately with the time of discovery, so the earlier we can catch them,
the better. Considering the scale of today’s source code, however, this
requires more automated support than ever. Even if we are not on the
level of intelligent fixes or perfect recall yet, narrowing down the po-
tential candidates or highlighting points of interest can be crucial for
engineers to be able to keep up with demand.

How these candidates are produced is still a heavily researched area,
though. Dynamic or symbolic analyses could provide much more exact
matches, but they also require more time and resources per every piece of
software under consideration. This is the main reason we are aiming to
restrict our necessary analysis techniques to static only. Another issue can
be insufficient data for generalizability, which is why we are using the
largest unified class level dataset [2] we are aware of.
cs t�er 13, Hungary.
Ferenc), zealot@inf.u-szeged.h

orm 16 February 2020; Accepted

vier Inc. This is an open access a
With the above constraints in place, most of the remaining research
focuses on “traditional”machine learning approaches like decision trees,
Bayesian models or Support Vector Machines for example. We, on the
other hand, focus on deep learning and how it can be applicable to the
same problem, since it already showed promising general use in other
areas.

Deep learning is a new and very successful area in machine learning;
the name stems from the fact that it applies deep neural networks
(DNNs). These deep networks differ from previously used artificial neural
networks in one key aspect, namely that they contain many hidden
layers. Unfortunately, with these deep structures we have to face the fact
that the traditional training algorithm encounters difficulties (“vanishing
gradient effect”) and fails to train good models. As a solution to this
problem, several new algorithms and modifications have been proposed
over the years. Of these, we opted for one of the simplest ones, the so
called deep rectifier network [3]. With a simple modification to the
activation function, the DNN can be trained without any further changes
using the standard stochastic gradient descent (SGD) algorithm.

Our plan was to take the above mentioned bug dataset and use it to
compare the performance of DNNs to other, more traditional machine
u (D. B�an), groszt@inf.u-szeged.hu (T. Gr�osz), gyimothy@inf.u-szeged.hu

23 February 2020

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/479407049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ferenc@inf.u-szeged.hu
mailto:zealot@inf.u-szeged.hu
mailto:groszt@inf.u-szeged.hu
mailto:gyimothy@inf.u-szeged.hu
www.sciencedirect.com/science/journal/25900056
www.elsevier.com/journals/array/2590-0056/open-access-journal
https://doi.org/10.1016/j.array.2020.100021
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.array.2020.100021


R. Ferenc et al. Array 6 (2020) 100021
learning techniques within the domain of bug prediction – specifically,
bug prediction from static source code metrics. We emphasize the
interdisciplinary aspect of this experiment by thoroughly detailing every
step we took on our way to training our optimal model, including the
possible data preprocessing, parameter fine-tuning, and further exami-
nations regarding current or future expectations. Consequently, the
coming sections could be a useful tool for static analysts not familiar with
deep learning, while the nature and quantity of the data – along with the
conclusions we can draw from them – could provide new insights for
machine learning practitioners as well.

Our best deep learning model achieved an F-measure of 53.59% using
a dynamically updated learning rate on the quite imbalanced bug dataset,
which contains 8780 (18%) bugged and 38,838 (82%) not bugged Java
classes. The only single approach capable of outperforming it was a
random forest classifier with an improvement of 0.12%, while an
ensemble model combining these two reached an F-measure of 55.27%.
Additionally, a separate experiment suggests that these deep learning
results could increase even further with more data points, as data
quantity seems to be more beneficial for neural networks than it is for
other algorithms.

Contributions. The contributions of our work include:

1. A detailed methodology, that serves as an interdisciplinary guide-
line for merging software quality andmachine learning best practices;

2. A large-scale case study, that demonstrates the applicability of both
deep learning and static source code metrics in bug prediction; and

3. An adaptable implementation, that provides replicability, a lower
barrier to entry, and facilitates the wider use of deep learning.

Paper organization. The rest of the paper is structured as follows:
Section 2 overviews the related literature, while Section 3 contains a
detailed account of our methodology. Then, we describe our process and
our corresponding findings in Section 4, with the possible threats to the
validity of our results being listed in Section 5. Finally, we summarize our
conclusions and outline potential future work in Section 6.

2. Related work

Defect prediction has been the focus of numerous research efforts for
a long time. In this section we give a high level overview of the trends we
observed in this field and highlight the differences of our approach.

Bug prediction features. Earlier work concentrated on static source
code metrics as the main predictors of software faults, including size,
complexity, and object-orientation measures [4–8]. The common de-
nominator in these approaches is the ability to look at a certain version of
the subject system in isolation, and the relative ease with which these
metrics are computable.

Later research shifted its attention to process-based metrics like
added or deleted lines, developer and history-related information, and
various aspects of the changes between versions [9–13]. These features
aim to capture bugs as they enter the source code, thereby having to
consider only a fraction of the full codebase. In exchange, however, a
more complicated data collection process is required.

In this work we utilize static source code metrics, only combined with
deep learning; a pairing that has not been sufficiently explored in our
opinion. We also note that more exhaustive surveys of defect detection
approaches are published by Menzies et al. [14] and D’Ambros et al.
[15].

Bug prediction methods. Once feature selection is decided, the next
customization opportunity is the machine learning algorithm used to
build the prediction model. There have been previous efforts to adapt
Support Vector Machines [16], Decision Trees [17], or Linear Regression
[15] to bug prediction. Comparative experiments [18,19] also incorpo-
rate Bayesian models, K Nearest Neighbors, clustering, and ensemble
methods. In contrast, we rely on Deep Neural Networks – discussed below
– and compare their performance to these more traditional approaches.
2

Another aspect is the granularity of the collected data and, by
extension, the predictions of the model. Many techniques stop at the file
level, we – among others – use class-level features, and there are method-
level studies as well.

Deep learning and bug prediction. With the advent of more
computing performance, deep learning [20] became practically appli-
cable to a wide spectrum of problems. We have seen it succeed in image
classification [21,22], speech recognition [23,24], natural language
processing [25,26], etc. It is reasonable, then, to try and apply it to the
problem of bug prediction as well.

From the previously mentioned features, however, only the change-
based ones seem to have “survived” the deep learning paradigm shift
[27]. On the other hand, there are multiple recent studies focusing on
source code-based tokenization with vector embeddings, approaching
the problem from a language processing perspective [28,29]. Another
use for these vector embeddings is bug localization, where the existence
of the bug is known beforehand and the task is automatically pairing it to
its corresponding report [30–32].

Although there are studies where static source code metrics and
neural networks appear together, we feel that the relationship is not
sufficiently explored. Therefore, our work aims to revitalize the use of
static source code metrics for bug prediction by combining it with
modern deep learning methodologies and a larger scale empirical
experiment.

A taxonomy of static bug prediction. To focus more exclusively on
the closest “neighbors” of our approach, we examined a number of
publications in order to build a local taxonomy of differences. The three
inclusion criteria were 1) static metric-based methods that are 2) con-
cerned with bugs, and 3) utilize some type of machine learning. A sys-
tematic review led to five aspects of potential variations:

� Deep Learning: whether the approach employed deep learning
� Other Sources: whether it collected data from sources other than
static source code metrics

� Quantity: the amount of training instances that were available
(represented in powers of 10)

� Granularity: the level of the source code elements that were
considered instances (Method, Class, or File)

� Prediction: whether there were any actual predictions, or only sta-
tistical evaluation

The results are presented in Table 1.
As the taxonomy shows, the novelty of our work lies in its specific

combination of aspects. While there are other studies using class-level
granularity, the evaluation is usually on a much smaller scale, and does
not involve a deep learning-based inference. On the other hand, when
there is more data or neural networks are used, the granularity is
different. So as far as class-level bug prediction is concerned, this is the
largest scale experiment yet, and, to the best of our knowledge, the first
ever to investigate actual deep learning prediction. Additionally, none of
the works from the table try ensemble models, nor do they consider the
possible effects of data quantity.

Since not only our classifier, but also our evaluation dataset is new,
exact comparisons to other state-of-the-art results are meaningless – even
if there were works that would conform to ours in all their taxonomy
aspects, which we are not aware of. We would like to note, however, that
a matching granularity usually leads to accuracies and F-measures in the
same ballpark, while significantly better performances seem to depend
on the method-level dataset in question. In the case of [33], for example,
a (losing) stock Bayesian network produced better results than our
winners, thereby showcasing the meaningful impact of the raw input.
From our perspective, the relative performance differences of the various
approaches – which can only be measured within an identical context –
are much more relevant.



Table 1
A taxonomy of static bug prediction.

Aspect [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] Our

Deep Learning ✓ ✓ ✓ ✓ ✓ ✓ ✓

Other Sources ✓ ✓ ✓

Quantity (10x) 3 6 2 5 3 3 3 2 3 3 4
Granularity M M F M M F M C C C C
Prediction ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2
Features calculated by the OpenStaticAnalyzer toolset.

Abbr. Name Abbr. Name

AD API Documentation NOA Number of Ancestors
CBO Coupling Between Object

classes
NOC Number of Children

CBOI Coupling Between Object
classes Inverse

NOD Number of Descendants

CC Clone Coverage NOI Number of Outgoing
Invocations

CCL Clone Classes NOP Number of Parents
CCO Clone Complexity NOS Number of Statements
CD Comment Density NPA Number of Public Attributes
CI Clone Instances NPM Number of Public Methods
CLC Clone Line Coverage NS Number of Setters
CLLC Clone Logical Line Coverage PDA Public Documented API
CLOC Comment Lines of Code PUA Public Undocumented API
DIT Depth of Inheritance Tree RFC Response set For Class
DLOC Documentation Lines of Code TCD Total Comment Density
LCOM5 Lack of Cohesion in Methods

5
TCLOC Total Comment Lines of Code

LDC Lines of Duplicated Code TLLOC Total Logical Lines of Code
LLDC Logical Lines of Duplicated

Code
TLOC Total Lines of Code

LLOC Logical Lines of Code TNA Total Number of Attributes
LOC Lines of Code TNG Total Number of Getters
NA Number of Attributes TNLA Total Number of Local

Attributes
NG Number of Getters TNLG Total Number of Local

Getters
NII Number of Incoming

Invocations
TNLM Total Number of Local

Methods
NL Nesting Level TNLPA Total Number of Local Public

Attributes
NLA Number of Local Attributes TNLPM Total Number of Local Public

Methods
NLE Nesting Level Else-If TNLS Total Number of Local

Setters
NLG Number of Local Getters TNM Total Number of Methods
NLM Number of Local Methods TNOS Total Number of Statements
NLPA Number of Local Public

Attributes
TNPA Total Number of Public

Attributes

R. Ferenc et al. Array 6 (2020) 100021
3. Methodology

3.1. Overview

To complete the experiment outlined in Section 1, we first selected an
appropriate dataset and applied optional preprocessing techniques
(detailed in Section 3.2). This was followed by a stratified 10-fold train/
dev/test split where the original dataset was split into 10 approximately
equal bins in a way that each bin had roughly the same bugged/not
bugged distribution as the whole. This allowed us to repeat every po-
tential learning algorithm 10 times, separating a different bin pair for
“dev” – a so called development set, reserved for gauging the effect of
later hyperparameter tweaks – and “test”, respectively. The remaining 8
bins were then merged together to form the training dataset.

In an additional parametric resampling phase, we could even choose
to alter the ratio of bugged and not bugged instances – only in the current
training set – in the hopes of enhancing the learning procedure. In this
case, upsampling meant repeating certain bugged instances to increase
their ratio, downsampling meant randomly discarding certain not bug-
ged instances to decrease their ratio, and the amount of resampling
meant how much of the gap between the two classes should be closed.
Note that while a complete resampling (including even the dev and test
sets) is not unheard of in isolated empirical experiments, it does not
correctly indicate real world predictive power as we have no influence
over the distribution of the instances we might see in the future. This
distinction should be taken into account when comparing the magnitude
of our results to other studies’.

After all these preparations came the actual machine learning through
deep neural networks and several other well-known algorithms, which
we will discuss in Section 3.3. These algorithms have many parameters,
and multiple “constellations” were tried for each to find the best per-
forming models. This arbitrary limiting and potential discretization of
parameter values and the evaluation of some (or all) tuples from their
Cartesian product is commonly referred to as a grid search. Finally, we
aggregated, evaluated, and compared the various results, based on the
principles explained in Section 3.4.
NLPM Number of Local Public
Methods

TNPM Total Number of Public
Methods

NLS Number of Local Setters TNS Total Number of Setters
NM Number of Methods WMC Weighted Methods per Class
3.2. Bug dataset

The basis for any machine learning endeavor is a large and repre-
sentative dataset. Our choice is the class-level part of the Unified Bug
Dataset [2] which contains 47,618 classes. It is an amalgamation of 3
preexisting sources (namely, PROMISE [43], the Bug Prediction Dataset
[44], and the GitHub Bug Dataset [45]), which, in turn, consist of
numerous open-source Java projects. Each class has 60 numeric metric
predictors – calculated by the OpenStaticAnalyzer toolset [46] and
summarized in Table 2 – and the number of bugs that were reported for
it.

As there are instances where multiple versions of the same project
appear, using the dataset as is could face the issue of “the future pre-
dicting the past”, where training instances from the more recent state
help predict older bugs. We did not treat this as a threat, though, because
a) the whole metric-based approach to bug prediction relies on the
assumption that the metrics are representative of the underlying faults, so
it shouldn’t matter where they came from, and b) there can be legitimate
causes for trying to use insight gained in later versions and extrapolate it
3

back to past snapshots of the codebase.
As for preprocessing, the main step preceding every execution was the

“binarization” of the labels, i.e., converting the number of bugs found in a
class to a boolean false or true (represented by 0 and 1), depending on
whether the number was 0 or not, respectively. This can be thought of as
making a “bugged” and a “not bugged” class for prediction.

Additional preprocessing options for the features included normali-
zation –where metrics were linearly transformed into the [0,1] interval –
and standardization – where each metric was decreased by its mean and
divided by its standard deviation, leading to a Gaussian distribution.
These transformations can defend against predictors unjustly influencing
model decisions just because their range or scale is drastically different.
For example, the predictor A being a few orders of magnitude larger than
predictor B does not automatically mean that A’s changes should affect
predictions more than B’s.



Table 3
Preprocessing method comparison.

none normalize standardize

knn 44.38% 42.63% 46.47%
bayes 34.35% 34.35% 34.35%
forest 24.15% 24.15% 24.13%
tree 25.95% 25.95% 25.95%
linear 21.47% 21.58% 21.40%
logistic 23.45% 24.44% 28.02%
svm N/A 9.23% 9.88%
sdnnc 19.56% 25.04% 34.07%

R. Ferenc et al. Array 6 (2020) 100021
3.3. Algorithms and infrastructure

Once the training dataset is given, machine learning can begin using
multiple approaches. These approaches are implemented following the
Strategy design pattern to be easily exchangeable and independently
parameterizable. Our obvious main aim was proving the usefulness of
deep neural networks –which we attempted with the help of TensorFlow
– but we also utilized numerous “traditional” algorithms from the scikit-
learn python package. To be able to experiment quickly, we relied on an
NVIDIA Titan Xp graphics card to perform the actual low-level compu-
tations. We note, however, that not having access to a dedicated graphics
card should not be considered a barrier to entry, because a CPU-based
execution only makes the experiments slower, not infeasible.

TensorFlow. TensorFlow [47] is an open, computation graph based
machine learning framework that is especially suited for neural net-
works. Our dependency is on at least the 1.8.0 version, but training can
also be run with anything more recent. We followed the setup steps of the
DNNClassifier class which we later fine-tuned using the Estimator API
and custom model functions. One other important requirement was
repeatability, so the Estimator’s RunConfig object always contains an
explicitly set random seed.

The structure of the networks we train is always rectangular and
dense (fully connected). Initial parameters can set the number of layers,
the number of neurons per layer (which is the same for every hidden
layer, hence the “rectangular” attribute), the batching (how many in-
stances are processed at a time), and the number of epochs learning
should run for. The defaults for these values are 3, 100, 100, and 5,
respectively. This algorithmwill be referred to as sdnnc, for “simple deep
neural network classifier”. More complex parameters and approaches are
explained as our experiment unfolds step by step in Section 4.

Scikit-learn. To make sure that going through the trouble of config-
uring and training deep neural networks is actually worth it, we have to
compare their results to “easier” – i.e., simpler, more quickly trainable –

models. We did so using the excellent scikit-learn 0.19.2 module [48].
The 8 algorithms we included in our study (and the names we will use to
refer to them from now on) are: KNeighborsClassifier (knn), GaussianNB
(bayes), DecisionTreeClassifier (tree), RandomForestClassifier (forest),
LinearRegression (linear), LogisticRegression (logistic), and SVC (svm).

Note that from the above listed algorithms, LinearRegression is not
really a classifier so we did an external binning on the output and
determined the prediction bugged if the result was above 0.5. This
threshold was not considered a parameter hereafter. Also note that
LogisticRegression, despite its name, is indeed a classifier. Finally, each
of these models started out with scikit-learn-provided defaults, but were
later fairly fine-tuned to make their competition with deep neural net-
works unbiased.

DeepBugHunter. DeepBugHunter is our experimental Python frame-
work collecting the above-mentioned libraries and algorithms into a high
abstraction level, parametric tool that makes it easy to either replicate
our results, or to adapt the approach to other, possibly unrelated fields as
well. We provide it as an accompanying, open-source contribution
through GitHub [49]. Our experiments were performed using Python 3.6,
and dependencies (apart from TensorFlow and scikit-learn) included
numpy v1.14.3, scipy v1.0.1, and pandas v0.22.0.

3.4. Model evaluation

As mentioned at the beginning of this section, our main model eval-
uation strategy is a 10-fold cross validation. We do not, however,
compute accuracy, precision, or recall values independently for any fold,
but collect and aggregate the raw confusion matrices (the true positive,
true negative, false positive, and false negative values). This enables us to
calculate the higher level measures once, at the end. Our primary mea-
sure and basis of comparison is the F-measure – i.e., the harmonic mean
of a model’s precision and recall – but in the case of the best models per
algorithm, we calculated additional ROC curves (Receiver Operating
4

Characteristics, mapping the relationship between false and true positive
rates), AUC values (area under the ROC curve), as well as training and
evaluation runtimes.

We also note that due to the nature of cross validation, each fold gets a
chance to be part of both the development and the test set. This, however,
does not mean that information from the test data “leaks” into the
hyperparameter tuning phase, as each fold leads to a different model with
a separate set of training data.

4. Results

This section details the results we achieved, step by step as we refined
our approach.

4.1. Preprocessing

The first phase, even before a single machine learning pass, involved
examining the available preprocessing strategies. Note that, as
mentioned in Section 3, the “binarization” of labels is already a given.

Normalization vs. Standardization. As a preprocessing step for the 60
features – or, predictors – we compared the results of the default algo-
rithms on the original data (none) vs. normalization and standardization,
introduced in Section 3.2. A comparison of the techniques is presented in
Table 3.

The results suggest that standardization almost always performs well
– as expected from previous empirical experiments. Even when it does
not, it is negligibly close, and it is also responsible for the largest
improvement in our deep neural network strategy. As there are already
many dimensions to cover in our search for the optimal bug prediction
model, with many more still to come – and even more we could have
added –we decided to finalize this standardization preprocessing step for
all further experimentation.

Note that bold font is used to denote our chosen configuration for the
given step while italic font (if any) denotes the previous state. Also note
that the “N/A” cell for the un-preprocessed svmmeans that execution had
to be shut down after even a single round of the 10-fold cross-validation
failed to complete in the allotted timeframe of 12 hours (while in the
other 2 cases, an svm fold took mere minutes).

Resampling. Similarly to preprocessing, we compared a few resam-
pling amounts in both directions. The results in Table 4 show the effect of
altering the ratio of bugged and not bugged instances in the training set
on predicting bugs in an unaltered test set. The numbers in the header
column represent the percentage of resampling in the given direction, as
described in Section 3.1.

We ended up choosing the 50% upsampling because it was the best
performing option for our sdnnc strategy and produced comparably good
results for the other algorithms as well. Similarly to above, it is also
considered a fixed dimension from here on out so we can concentrate on
the actual algorithm-specific hyperparameters. We do note, however,
that while it was out of scope for this particular study, replicating the
experiments with different resampling amounts definitely merits further
research.



Table 4
Resampling method and amount comparison.

down none up

100 75 50 25 0 25 50 75 100

knn 49.21% 51.10% 49.93% 48.46% 46.47% 50.08% 51.11% 51.17% 51.04%
bayes 34.70% 34.52% 34.39% 34.38% 34.35% 34.39% 34.62% 34.65% 34.78%
forest 47.91% 47.67% 41.17% 32.61% 24.13% 44.22% 48.43% 49.39% 48.15%
tree 46.83% 46.84% 44.28% 34.28% 25.95% 45.19% 47.42% 48.18% 47.37%
linear 46.34% 43.96% 36.02% 27.60% 21.40% 38.89% 45.57% 46.70% 46.50%
logistic 46.95% 45.10% 39.22% 33.44% 28.02% 41.35% 46.60% 47.64% 47.12%
svm 46.49% 41.13% 25.94% 15.69% 9.88% 31.00% 43.85% 47.12% 46.53%
sdnnc 48.25% 49.32% 46.04% 36.73% 34.07% 50.67% 52.03% 51.66% 50.59%

Table 6
The effect of the initial learning rate.

Learning Rate Result

0.025 52.69%
0.05 52.70%
0.1 52.47%
0.2 52.36%
0.3 51.76%
0.4 52.37%
0.5 51.87%

R. Ferenc et al. Array 6 (2020) 100021
4.2. Hyperparameter tuning

Simple Grid Search. In our first pass at improving the effectiveness of
deep learning, we tried fine-tuning the hyperparameters that were
already present in the default implementation, namely the number of
layers in the network, the number of neurons per layer (in the hidden
layers), and the number of epochs – i.e., the number of times we traverse
the whole training set. Note that the activation function of the neurons
(rectified linear) and the optimization method (Adagrad) were constant
throughout this study, while the batching number could have been varied
– and it will be in later stages – but were kept at a fixed 100 at this point.
The performance of the different configurations is summarized in
Table 5, where a better F-measure can help us select the most well-suited
hyperparameters.

As the F-measures show, the best setup so far is 5 layers of 200
neurons each, learning for 10 epochs. It is important to note, however,
that these F-measures are evaluated on the dev set, as the performance
information they provide can factor into what path we choose in further
optimization. Were we to use the test set for this, we would lose the
objectivity of our estimations about the model’s predictive power, so test
evaluations should only happen at the very end.

Initial Learning Rate. The next step was to consider the effects of
changing the learning rate – i.e., the amount a new batch of information
influences and changes the model’s previous opinions. These learning
rates are set only once at the beginning of the training process and are
fixed until the set number of epochs pass. Their effect on the resulting
model’s quality are shown in Table 6.

As we can see, lowering the learning rate to 0.05 – therebymaking the
model take “smaller steps” towards its optimum – helped it find a better
overall configuration.

Early Stopping and Dynamic Learning Rates. Our most dramatic
improvement was reached when we introduced validation during
training, and instead of learning for a set number of epochs, we imple-
mented early stopping. This meant that after every completed epoch, we
evaluated the F-measure of the in-progress model on the development set
and checked whether it is an improvement or a deterioration. In the case
of a deterioration, we reverted the model back to the previous – and, so
far, the best – state, halved the learning rate, and tried again; a strategy
called “new bob” in the QuickNet framework [50]. We repeated this loop
until there were 4 consecutive “misses”, signaling that the model seems
Table 5
Basic hyperparameter search.

Layers Neurons Epochs Result

2 100 5 52.01%
3 100 5 52.03%
4 100 5 51.84%
5 100 5 51.83%
5 150 5 52.46%
5 200 5 52.04%
5 200 2 51.26%
5 200 10 52.47%
5 200 20 52.18%

5

unable to learn any further. The rationale behind this approach is that a)
we start from a set learning rate and let the model learn while it can, and
b) if there is a “misstep”, we assume that it happened because the
learning rate is now too big and we overshot our target so we should retry
the previous step with a smaller rate.

The performance impact of this change is meaningful, as shown in
Table 7. Note that both the above limit of 4 for the consecutive misses
and the halving of the learning rates come from previous experience and
are considered constant. We will refer to this approach as cdnnc, for
“customized deep neural network classifier”.

Regularization. At this point, to decrease the gap between the training
and dev F-measures and hopefully increase the model’s generalization
capabilities, we tried L2 regularization [51]. It is a technique that adds an
extra penalty term to the model’s loss function in order to discourage
large weights and avoid over-fitting.

In our case, however, setting the coefficient of the L2 penalty term
(denoted by β) to non-zero caused only F-measure degradation (as shown
in Table 8), so we decided against its use. Note that we also tried β values
above 0.05, but those also lead to complete model failure.

Another Round of Hyperparameter Tuning. Considering the meaningful
jump in quality that cdnnc brought, we found it pertinent to repeat the
hyperparameter grid search paired with the early stopping as well,
netting us anotherþ0.45% improvement. The tweaked parameters were,
again, the number of layers, the number of neurons per layer, the
batching amount, and the initial learning rate (that was still halved after
every miss). The results, which are also our final results for deep learning
in this domain, are summarized in Table 9.

The best model we were able to build, then, has 5 layers, each with
250 neurons, gets its input in batches of 100, starts with a learning rate of
0.1, and halves its learning rate after every misstep with backtracking
Table 7
The effect of dynamic learning rates.

Learning Rate Result

0.025 53.98%
0.05 54.18%
0.1 54.48%
0.2 53.93%
0.3 54.14%
0.4 54.29%
0.5 54.31%



Table 8
The effect of L2 regularization.

β Result

0.0005 54.07%
0.001 53.34%
0.002 52.60%
0.005 51.05%
0.01 49.32%
0.02 43.35%
0.05þ 0.00%

Table 9
The effect of further hyperparameter tuning.

Layers Neurons Batch Learning Rate Result

4 200 100 0.1 54.77%
6 200 100 0.1 54.33%
5 150 100 0.1 54.67%
5 250 100 0.1 54.93%
5 200 50 0.1 54.65%
5 200 150 0.1 54.58%
5 300 100 0.1 54.68%
5 300 100 0.2 54.29%
5 300 100 0.3 54.48%
6 300 100 0.1 54.08%
6 300 100 0.2 54.49%
6 300 100 0.3 54.29%
6 350 100 0.1 54.58%
6 350 100 0.2 54.29%
6 350 100 0.3 54.29%
7 350 100 0.1 54.51%
7 350 100 0.2 53.89%
7 350 100 0.3 53.95%

Table 11
CDNNC confusion matrix.

Predicted

Bugged Not Bugged

Measured Bugged 5435 3345
Not Bugged 6069 32,769

R. Ferenc et al. Array 6 (2020) 100021
until 4 consecutive misses, thereby producing a 54.93% F-measure on the
development set. Having decided to stop refining the model, we could
also evaluate it on the test set, resulting in an F-measure of 53.59%.

Algorithm Comparison. To get some perspective on how good the
performance of deep learning is, we needed to compare it to similarly
fine-tuned versions of the other, more “traditional” algorithms listed in
Section 3.3. Their possible parameters are listed in the official scikit-learn
documentation [48], the method we used to tweak them is the same grid
search we utilized for deep learning previously, and the best configura-
tions we found are summarized in Table 10 in descending order of their
test F-measures. Note that although we used F-measures to guide the
optimization procedure, we list additional AUC values belonging to these
final models for a more complete evaluation. We also measured model
training and test set evaluation times, which are given in the last two
columns, respectively.
Table 10
The best version of each algorithm.

Alg. Parameters Train

F-mes. AUC F-mes.

forest –max-depth 10 74.38% 89.19% 53.55%
–criterion entropy
–n-estimators 100

cdnnc –layers 5 79.10% 91.16% 54.93%
–neurons 250
–batch 100 –lr 0.1

knn –n_neighbors 18 73.75% 89.17% 52.47%
svm –kernel rbf –C 2.6 69.30% 75.87% 52.62%

–gamma 0.02
tree –max-depth 10 72.33% 87.04% 50.26%
logistic –penalty l2 58.23% 78.28% 46.66%

–solver liblinear
–C 2.0 –tol 0.0001

linear 57.34% 77.64% 45.57%
bayes 39.78% 74.36% 34.62%

6

The highest generalization on the independent test set goes to the
random forest algorithm, although the highest train and dev results
belong to our deep learning approach according to both F-measure and
AUC figures. The numbers also show a fairly relevant gap between the
performance of the two best models (forest and cdnnc) and the rest of the
competitors. Additionally, while their evaluation times are at least
comparable – with others meaningfully behind – training a neural
network is two orders of magnitude slower.

Despite the close second place, the reader might justifiably discard
deep learning as a viable option for bug prediction at this point. Why
bother with the complex training procedure when a random forest can
yield comparable results in a small fraction of the time? In the next two
sections, however, we will attempt to show that deep learning can still be
useful (in its current form) with the potential of becoming even better
over time.
4.3. Ensemble model

One interesting aspect we noticed when comparing our cdnnc
approach to random forest was that although they perform nearly iden-
tically in terms of F-score, they arrive there in notably different ways.
Taking a look at the separate confusion matrices of the two algorithms in
Tables 11 and 12 shows a non-negligible amount of disagreement be-
tween the models. Computing their precision and recall values (shown in
the first two columns of Table 14) confirm their differences: cdnnc has
higher recall (which is arguably more important in bug prediction any-
way) at the price of lower precision, while forest is the exact opposite.

This prompted us to try and combine their predictions to see howwell
they could complement each other as an “ensemble” [52]. The method of
combination was averaging the probabilities each model assigned to the
bugged class and seeing if that average itself was over or under 0.5 –

instead of a simple logical or on the class outputs. The thinking behind
this experiment was that if the two models did learn the same “lessons”
from their training, then disregarding deep learning and simply using
forest is indeed the reasonable decision. If, on the other hand, they
learned different things, their combined knowledge might even surpass
those of the individual models’. Tables 13 and 14 attest to the second
theory, as the ensemble F-measure reached 55.27% (a 1.56% overall
Dev Test Time

AUC F-mes. AUC Train Eval.

83.23% 53.71% 82.98% 87.7s 0.5s

81.92% 53.59% 81.79% 2132.5s 12.7s

81.36% 52.40% 81.14% 124.3s 273.2s
70.96% 52.25% 70.75% 3142.0s 106.2s

77.85% 49.77% 77.34% 11.1s 0.1s
78.38% 46.43% 78.06% 58.4s 0.1s

77.74% 45.61% 77.47% 3.9s 0.1s
74.62% 34.84% 74.40% 0.5s 0.1s



Table 12
Forest confusion matrix.

Predicted

Bugged Not Bugged

Measured Bugged 5098 3682
Not Bugged 5105 33,733

Table 13
Ensemble confusion matrix.

Predicted

Bugged Not Bugged

Measured Bugged 5360 3420
Not Bugged 5255 33,583

Table 14
Comparison of individual and ensemble results.

CDNNC Forest Ensemble

Precision 47.24% 49.97% 50.49%
Recall 61.90% 58.06% 61.05%
F-Measure 53.59% 53.71% 55.27%
AUC 81.79% 82.98% 83.99%

Fig. 1. ROC comparison for CDNNC, Forest, and their Ensemble.

R. Ferenc et al. Array 6 (2020) 100021
improvement) while the AUC reached 83.99% (a 1.01% improvement).
Moreover, the corresponding ROC curves provide a subtle (yet useful)

visual support for this theory. As we can see in Fig. 1, CDNNC and Forest
learned differently, hence the differences in their curves. CDNNC slightly
outperforms Forest at lower false positive rates, but the relationship is
reversed at higher rates. Combining their judgments leads to the dotted
Ensemble curve, which outperforms both.

This leads us to believe that deep neural networks might already be
useful for bug prediction – even if not by themselves but as parts of a
higher level ensemble model.

4.4. The effect of data quantity

Another auxiliary experiment we tried was based on the assumption
that “deep learning performs best with large datasets”. And by “large”,
we mean data points in at least the millions. While our dataset cannot be
considered small by any measure, – it is the most comprehensive unified
bug dataset we are aware of – it is still not on the “large dataset” scale.

The question then became the following: how could we empirically
show that deep learning would perform better on more data without
actually having more data? The answer we came up with inverts the
problem: we theorize that if data quantity is proportional to the “domi-
nance” of a deep learning strategy then it would also manifest as a faster
deterioration than the other algorithms when even less data is available.
So we artificially shrank – i.e., did a uniform stratified downsampling on
– the full dataset three times to produce a 25%, a 50%, and a 75% subset
to replicate our whole previous process on. The results are summarized in
Table 15.

The table consists of three regions, namely the various F-measures
evaluated on their test sets (left), the difference between the best deep
learning strategy and the current algorithm (middle), and the same dif-
ference, only normalized into the [0,1] interval (right). The normalized
relative differences are also illustrated in Fig. 2, where the slope of the
lines represent the change in the respective differences. So we track these
relative differences over changing dataset sizes, and the steeper the
incline of the lines, the less influence dataset sizes have over their cor-
responding algorithms compared to neural networks.

An imaginary y ¼ x diagonal line would mean that deep learning is
linearly more sensitive to more data, which would lead us to believe that
if there were any more data, we could linearly increase our performance.
7

And what we see in Fig. 2 is not far off from this theoretical indicator. In
the case of logistic vs. cdnnc, for example, growth in the differences
means that cdnnc is leaving logistic farther and farther behind as more
data becomes available. While in the case of forest vs. cdnnc, it means
that cdnnc is “catching up” – since the figures are negative, but their
absolute values are decreasing.

As most tendencies of the changing differences empirically corrobo-
rate, more data is good for every algorithm, but it has a bigger impact on
deep learning. Naturally, there are occasional swings like SVM’s decrease
at 75% – possibly due to the more “hectic” nature of the technique – or
KNN’s “hanging tail” at 100%. If we assume a linear kind of relationship,
however, even these cases show overall growth. This leads us to speculate
that deep neural networks could dominate their opponents – individu-
ally, even without resorting to the previously described model combi-
nation –when used in conjunction with larger datasets. We also note that
scalability should not be an issue, as larger input datasets would affect
only the training times of the models – which is usually an acceptable up-
front sacrifice – while leaving prediction speeds unchanged.

5. Threats to validity

Throughout this study, we aimed to remain as objective as possible by
disclosing all our presuppositions and publishing only concrete, repli-
cable results. However, there are still factors that could have skewed the
conclusions we drew. One is the reliability of the bug dataset we used as
our input. Building on faulty data will lead to faulty results – also known
as the “garbage in, garbage out” principle – but we are confident that this
is not the case here. The dataset is independently peer reviewed,
accepted, and is compiled using standard data mining techniques.

Another factor might be – ironically – bugs in our bug prediction
framework. We tried to combat this by rigorous manual inspections,
tests, and replications. Additionally, we are also making the source code
openly available on GitHub and invite community verification or
comments.

Yet another factor could be the study dimensions we decided to fix –

namely, the preprocessing technique, the preliminary resamplig, the
number of consecutive misses before stopping early, the 0.5 multiplier
for the learning rate “halving”, and even the random seed, which was the
same for every execution. Analyzing how changes to these parameters
would impact the results – if at all – was out of the scope of this study.

Finally, the connections and implications we discovered from the
objective figures might just be coincidences. Although there are perfectly
logical and reasonable explanations for the unveiled behavior –which we
discussed – there is still much to be examined and confirmed in this
domain.



Table 15
F-measures across different data quantities.

Algorithm Test results Relative difference Normalized relative difference

25 50 75 100 25 50 75 100 25 50 75 100

sdnnc 47.66% 50.73% 51.27% 53.37%
cdnnc 48.19% 51.01% 52.84% 53.59%
forest 50.02% 51.96% 53.31% 53.71% �1.83% �0.95% �0.47% �0.12% 0.00% 51.88% 79.92% 100.00%
knn 48.09% 49.55% 50.88% 52.40% 0.10% 1.46% 1.96% 1.19% 0.00% 73.04% 100.00% 58.27%
linear 43.91% 45.55% 45.16% 45.61% 4.28% 5.46% 7.68% 7.98% 0.00% 31.81% 91.93% 100.00%
logistic 44.75% 45.77% 46.02% 46.43% 3.44% 5.24% 6.82% 7.16% 0.00% 48.50% 91.02% 100.00%
svm 47.49% 49.77% 51.80% 52.25% 0.70% 1.24% 1.04% 1.34% 0.00% 83.59% 52.35% 100.00%
tree 45.96% 47.52% 48.82% 49.77% 2.23% 3.49% 4.02% 3.82% 0.00% 70.22% 100.00% 89.02%
bayes 35.48% 35.96% 35.25% 34.84% 12.71% 15.05% 17.59% 18.75% 0.00% 38.80% 80.79% 100.00%

Fig. 2. The tendencies of the normalized relative differences.

R. Ferenc et al. Array 6 (2020) 100021
6. Conclusions and future work

In this paper, we presented a detailed approach on how to apply deep
neural networks to predict the presence of bugs in classes from static
source code metrics alone. While neither deep learning nor bug predic-
tion are new topics in themselves, we aim to benefit their intersection by
combining ideas and best practices from both.

Our greatest contribution is the thorough, step by step description of
our process which – apart from the underexplored coupling of concepts –
leads to a deep neural network that is on par with random forests and
dominates everything else. Additionally, we unveiled that an ensemble
model made from our best deep neural network and forest classifiers is
actually better than either of its components individually, – suggesting
that deep learning is applicable right now – and that more data is likely to
make our approach even better. These are two further convincing argu-
ments supporting the assumption that the increased time and resource
requirements of training a deep learning model are worth it. Moreover,
we open-sourced the experimental tool we used to reach these conclu-
sions and invite the community to build on our findings.

Our future plans include comparing the effectiveness of static source
code metrics to change-based and vector embedding-based features
when utilized with the same deep learning techniques, and to quantify
the effects of different network architectures. We would also like to
replicate the outlined experiments with extra tweaks to the parameters
we considered fixed thus far (e.g., the random seed or the preprocessing
methodology), thereby examining how stable and resistant to noise our
8

results are. Additionally, we plan to expand the dataset – ideally some-
what automatically to be able to reach an official “large dataset” status in
the near future – and to integrate the current best bug prediction model
into the OpenStaticAnalyzer toolchain to issue possible bug warnings
alongside the existing source code metrics. In the meantime, we consider
our findings a successful step towards understanding the role deep neural
networks can play in bug prediction.

Acknowledgment

This work was partially supported by grant 2018–1.2.1-NKP-2018-
00004 “Security Enhancing Technologies for the IoT” funded by the
Hungarian National Research, Development and Innovation Office.
Ministry for Innovation and Technology, Hungary grant TUDFO/
47138–1/2019-ITM is acknowledged. The Titan Xp used for this research
was donated by the NVIDIA Corporation.

References

[1] Zhivich M, Cunningham RK. The real cost of software errors. IEEE Secur. Priv. 2009;
7(2):87–90.

[2] Ferenc R, T�oth Z, Lad�anyi G, Siket I, Gyim�othy T. A public unified bug dataset for
java. In: Proceedings of the 14th international conference on predictive models and
data analytics in software engineering. New York, NY, USA: PROMISE’18, ACM;
2018. p. 12–21. https://doi.org/10.1145/3273934.3273936. URL http://
doi.acm.org/10.1145/3273934.3273936.

http://refhub.elsevier.com/S2590-0056(20)30006-0/sref1
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref1
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref1
https://doi.org/10.1145/3273934.3273936


R. Ferenc et al. Array 6 (2020) 100021
[3] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In: Proceedings
of the fourteenth international conference on artificial intelligence and statistics;
2011. p. 315–23.

[4] El Emam K, Melo W, Machado JC. The prediction of faulty classes using object-
oriented design metrics. J Syst Software 2001;56(1):63–75.

[5] Subramanyam R, Krishnan MS. Empirical analysis of ck metrics for object-oriented
design complexity: implications for software defects. IEEE Trans Software Eng
2003;29(4):297–310.

[6] Gyimothy T, Ferenc R, Siket I. Empirical validation of object-oriented metrics on
open source software for fault prediction. IEEE Trans Software Eng 2005;31(10):
897–910.

[7] Nagappan N, Ball T. Static analysis tools as early indicators of pre-release defect
density. In: Proceedings of the 27th international conference on Software
engineering. ACM; 2005. p. 580–6.

[8] Nagappan N, Ball T, Zeller A. Mining metrics to predict component failures. In:
Proceedings of the 28th international conference on Software engineering. ACM;
2006. p. 452–61.

[9] Nagappan N, Ball T. Use of relative code churn measures to predict system defect
density. In: Proceedings of the 27th international conference on Software
engineering. ACM; 2005. p. 284–92.

[10] Hassan AE. Predicting faults using the complexity of code changes. In: Proceedings
of the 31st international conference on software engineering. IEEE Computer
Society; 2009. p. 78–88.

[11] Moser R, Pedrycz W, Succi G. A comparative analysis of the efficiency of change
metrics and static code attributes for defect prediction. In: Proceedings of the 30th
international conference on Software engineering. ACM; 2008. p. 181–90.

[12] Bernstein A, Ekanayake J, Pinzger M. Improving defect prediction using temporal
features and non linear models. In: Ninth international workshop on Principles of
software evolution: in conjunction with the 6th ESEC/FSE joint meeting. ACM;
2007. p. 11–8.

[13] Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N. A large-
scale empirical study of just-in-time quality assurance. IEEE Trans Software Eng
2013;39(6):757–73.

[14] Menzies T, Milton Z, Turhan B, Cukic B, Jiang Y, Bener A. Defect prediction from
static code features: current results, limitations, new approaches. Autom Software
Eng 2010;17(4):375–407.

[15] D’Ambros M, Lanza M, Robbes R. An extensive comparison of bug prediction
approaches. In: Mining software repositories (MSR), 2010 7th IEEE working
conference on. IEEE; 2010. p. 31–41.

[16] Shuai B, Li H, Li M, Zhang Q, Tang C. Software defect prediction using dynamic
support vector machine. In: Computational intelligence and security (CIS), 2013 9th
international conference on. IEEE; 2013. p. 260–3.

[17] Wang J, Shen B, Chen Y. Compressed c4. 5 models for software defect prediction.
In: Quality software (QSIC), 2012 12th international conference on. IEEE; 2012.
p. 13–6.

[18] Ghotra B, McIntosh S, Hassan AE. Revisiting the impact of classification techniques
on the performance of defect prediction models. In: Proceedings of the 37th
international conference on software engineering, vol. 1. IEEE Press; 2015.
p. 789–800.

[19] Rajbahadur GK, Wang S, Kamei Y, Hassan AE. The impact of using regression
models to build defect classifiers. In: Proceedings of the 14th international
conference on mining software repositories. IEEE Press; 2017. p. 135–45.

[20] Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural
networks. Science 2006;313(5786):504–7.

[21] D. Cireşan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image
classification, arXiv preprint arXiv:1202.2745.

[22] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep
convolutional neural networks. In: Advances in neural information processing
systems; 2012. p. 1097–105.

[23] T�oth L. Phone recognition with deep sparse rectifier neural networks. In: Acoustics,
speech and signal processing (ICASSP), 2013 IEEE international conference on.
IEEE; 2013. p. 6985–9.

[24] Mohamed A-r, Dahl GE, Hinton G, et al. Acoustic modeling using deep belief
networks. IEEE Trans. Audio Speech Lang. Process 2012;20(1):14–22.

[25] Mnih A, Hinton GE. A scalable hierarchical distributed language model. In:
Advances in neural information processing systems; 2009. p. 1081–8.

[26] Sarikaya R, Hinton GE, Deoras A. Application of deep belief networks for natural
language understanding. IEEE/ACM Trans. Audio Speech Lang. Process.(TASLP)
2014;22(4):778–84.
9

[27] Yang X, Lo D, Xia X, Zhang Y, Sun J. Deep learning for just-in-time defect
prediction. QRS; 2015. p. 17–26.

[28] Wang S, Liu T, Tan L. Automatically learning semantic features for defect
prediction. In: Software engineering (ICSE), 2016 IEEE/ACM 38th international
conference on. IEEE; 2016. p. 297–308.

[29] M. Pradel, K. Sen, reportDeep learning to find bugs, [Technical Report].
[30] Lam AN, Nguyen AT, Nguyen HA, Nguyen TN. Combining deep learning with

information retrieval to localize buggy files for bug reports (n). In: Automated
software engineering (ASE), 2015 30th IEEE/ACM international conference on,
IEEE; 2015. p. 476–81.

[31] Lam AN, Nguyen AT, Nguyen HA, Nguyen TN. Bug localization with combination of
deep learning and information retrieval. In: Program comprehension (ICPC). IEEE:
IEEE/ACM 25th International Conference on; 2017. p. 218–29. 2017.

[32] Huo X, Li M, Zhou Z-H. Learning unified features from natural and programming
languages for locating buggy source code. IJCAI; 2016. p. 1606–12.

[33] Manjula C, Florence L. Deep neural network based hybrid approach for software
defect prediction using software metrics. Cluster Comput 2019;22(4):9847–63.

[34] Pascarella L, Palomba F, Bacchelli A. Re-evaluating method-level bug prediction. In:
2018 IEEE 25th international conference on software analysis, evolution and
reengineering (SANER). IEEE; 2018. p. 592–601.

[35] Clemente CJ, Jaafar F, Malik Y. Is predicting software security bugs using deep
learning better than the traditional machine learning algorithms?. In: 2018 IEEE
international conference on software quality, reliability and security (QRS). IEEE;
2018. p. 95–102.

[36] Giger E, D’Ambros M, Pinzger M, Gall HC. Method-level bug prediction. In:
Proceedings of the ACM-IEEE international symposium on Empirical software
engineering and measurement. ACM; 2012. p. 171–80.

[37] Jayanthi R, Florence L. Software defect prediction techniques using metrics based
on neural network classifier. Cluster Comput 2019;22(1):77–88.

[38] Li J, He P, Zhu J, Lyu MR. Software defect prediction via convolutional neural
network. In: 2017 IEEE international conference on software quality, reliability and
security (QRS). IEEE; 2017. p. 318–28.

[39] Capretz LF, Xu J. An empirical validation of object-oriented design metrics for fault
prediction. J Comput Sci 2008;4(7):571.

[40] Arar €OF, Ayan K. Software defect prediction using cost-sensitive neural network.
Appl Soft Comput 2015;33:263–77.

[41] Gyim�othy T, Ferenc R, Siket I. Empirical validation of object-oriented metrics on
open source software for fault prediction. IEEE Trans Software Eng 2005;31(10):
897–910.

[42] Gupta DL, Saxena K. Software bug prediction using object-oriented metrics.
S�adhan�a 2017;42(5):655–69.

[43] Menzies T, Krishna R, Pryor D. The promise repository of empirical software
engineering data. 2015. http://openscience.us/repo.

[44] D’Ambros M, Lanza M, Robbes R. An extensive comparison of bug prediction
approaches. In: 7th working conference on mining software repositories (MSR).
IEEE; 2010. p. 31–41.

[45] T�oth Z, Gyimesi P, Ferenc R. A public bug database of github projects and its
application in bug prediction. In: International conference on computational science
and its applications. Springer; 2016. p. 625–38.

[46] OpenStaticAnalyzer static code analyzer. 2018. https://github.com/sed-inf-u-s
zeged/OpenStaticAnalyzer.

[47] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A,
Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y,
Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Man�e D, Monga R, Moore S,
Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P,
Vanhoucke V, Vasudevan V, Vi�egas F, Vinyals O, Warden P, Wattenberg M,
Wicke M, Yu Y, Zheng X. TensorFlow: large-scale machine learning on
heterogeneous systems. software available from: tensorflow.org. 2015. URL, htt
p://tensorflow.org/.

[48] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D,
Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in Python.
J Mach Learn Res 2011;12:2825–30.

[49] DeepBugHunter – experimental python framework for deep learning. 2019. https
://github.com/sed-inf-u-szeged/DeepBugHunter.

[50] Johnson D. Quicknet. 2019. URL, http://www1.icsi.berkeley.edu/Speech/qn.html.
[51] Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016. http://www.d

eeplearningbook.org.
[52] Opitz D, Maclin R. Popular ensemble methods: an empirical study. J Artif Intell Res

1999;11:169–98.

http://refhub.elsevier.com/S2590-0056(20)30006-0/sref3
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref3
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref3
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref3
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref4
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref4
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref4
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref5
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref5
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref5
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref5
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref6
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref6
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref6
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref6
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref7
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref7
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref7
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref7
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref8
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref8
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref8
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref8
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref9
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref9
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref9
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref9
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref10
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref10
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref10
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref10
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref11
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref11
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref11
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref11
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref12
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref12
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref12
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref12
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref12
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref13
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref13
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref13
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref13
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref14
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref14
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref14
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref14
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref15
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref15
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref15
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref15
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref16
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref16
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref16
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref16
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref17
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref17
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref17
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref17
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref18
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref18
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref18
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref18
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref18
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref19
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref19
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref19
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref19
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref20
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref20
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref20
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref22
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref22
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref22
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref22
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref23
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref23
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref23
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref23
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref23
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref24
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref24
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref24
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref25
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref25
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref25
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref26
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref26
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref26
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref26
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref27
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref27
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref27
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref28
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref28
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref28
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref28
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref30
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref30
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref30
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref30
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref30
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref31
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref31
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref31
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref31
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref32
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref32
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref32
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref33
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref33
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref33
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref34
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref34
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref34
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref34
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref35
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref35
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref35
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref35
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref35
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref36
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref36
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref36
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref36
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref37
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref37
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref37
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref38
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref38
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref38
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref38
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref39
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref39
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref40
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref40
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref40
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref40
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref41
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref41
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref41
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref41
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref41
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref42
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref42
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref42
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref42
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref42
http://openscience.us/repo
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref44
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref44
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref44
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref44
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref45
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref45
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref45
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref45
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref45
https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
http://tensorflow.org/
http://tensorflow.org/
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref48
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref48
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref48
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref48
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref48
https://github.com/sed-inf-u-szeged/DeepBugHunter
https://github.com/sed-inf-u-szeged/DeepBugHunter
http://www1.icsi.berkeley.edu/Speech/qn.html
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref52
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref52
http://refhub.elsevier.com/S2590-0056(20)30006-0/sref52

	Deep learning in static, metric-based bug prediction
	1. Introduction
	2. Related work
	3. Methodology
	3.1. Overview
	3.2. Bug dataset
	3.3. Algorithms and infrastructure
	3.4. Model evaluation

	4. Results
	4.1. Preprocessing
	4.2. Hyperparameter tuning
	4.3. Ensemble model
	4.4. The effect of data quantity

	5. Threats to validity
	6. Conclusions and future work
	Acknowledgment
	References


